Sample records for acid-volatile sulfides avs

  1. Are acid volatile sulfides (AVS) important trace metals sinks in semi-arid mangroves?

    PubMed

    Queiroz, Hermano Melo; Nóbrega, Gabriel Nuto; Otero, Xose L; Ferreira, Tiago Osório

    2018-01-01

    Acid-volatile sulfides (AVS) formation and its role on trace metals bioavailability were studied in semi-arid mangroves. The semi-arid climatic conditions at the studied sites, marked by low rainfall and high evapotranspiration rates, clearly limited the AVS formation (AVS contents varied from 0.10 to 2.34μmolg -1 ) by favoring oxic conditions (Eh>+350mV). The AVS contents were strongly correlated with reactive iron and organic carbon (r=0.84; r=0.83 respectively), evidencing their dominant role for AVS formation under semi-arid conditions. On the other hand, the recorded ΣSEM/AVS values remained >1 evidencing a little control of AVS over the bioavailability of trace metals and, thus, its minor role as a sink for toxic metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    PubMed

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (p<0.0001; α=0.05) among NA treatments (10, 20, 40, 60, and 80mg NA/L) and an untreated control (no NAs). Extent of AVS production was sufficient in all NA treatments to achieve ∑SEM:AVS <1, indicating that conditions were conducive for treatment of metals, with sulfide ligands in excess of SEM (Cu, Ni, and Zn). In addition, no adverse effects to SRB (in terms of density, relative abundance, and diversity) were measured following exposures of a commercial NA. In this bench-scale study, dissimilatory sulfate reduction and subsequent metal precipitation were not vulnerable to NAs, indicating passive treatment systems utilizing sulfide production (AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Can acid volatile sulfides (AVS) influence metal concentrations in the macrophyte Myriophyllum aquaticum?

    PubMed

    Teuchies, Johannes; De Jonge, Maarten; Meire, Patrick; Blust, Ronny; Bervoets, Lieven

    2012-08-21

    The difference between the molar concentrations of simultaneously extracted metals (SEM) and acid volatile sulfides (AVS) is widely used to predict metal availability toward invertebrates in hypoxic sediments. However, this model is poorly investigated for macrophytes. The present study evaluates metal accumulation in roots and stems of the macrophyte Myriophyllum aquaticum during a 54 day lab experiment. The macrophytes, rooting in metal contaminated, hypoxic, and sulfide rich field sediments were exposed to surface water with 40% or 90% oxygen. High oxygen concentrations in the 90% treatment resulted in dissolution of the metal-sulfide complexes and a gradual increase in labile metal concentrations during the experiment. However, the general trend of increasing availability in the sediment with time was not translated in rising M. aquaticum metal concentrations. Processes at the root-sediment interface, e.g., radial oxygen loss (ROL) or the release of organic compounds by plant roots and their effect on metal availability in the rhizosphere may be of larger importance for metal accumulation than the bulk metal mobility predicted by the SEM-AVS model.

  4. Acid Volatile Sulfides and Simultaneously Extracted Copper, Lead, and Zinc in Sediments of Sinclair Inlet, Washington

    DTIC Science & Technology

    1993-09-01

    to Doug Vaught, J. Towell, and Eric Schlierman of Puget Sound Naval Shipyard for providing laboratory space, equipment, and logistical support for the...availability and mobility of toxic metal contamination in the sediments of Sinclair Inlet, Puget Sound , Washington, acid volatile sulfide (AVS) and... Puget Sound , Washington ........ 1 2. Apparatus used for measuring acid volatile sulfides ........................... 5 3. Sulfide electrode

  5. MODIFICATION OF METAL PARTITIONING BY SUPPLEMENTING ACID VOLATILE SULFIDE IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Acid volatile sulfide is a component of sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. EPA has proposed AVS as a key normalization phase for the development of sediment quality criteria for metals. Experime...

  6. The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology.

    PubMed

    De Jonge, Maarten; Blust, Ronny; Bervoets, Lieven

    2010-05-01

    The present study evaluates the relationship between Acid Volatile Sulfides (AVS) and metal accumulation in invertebrates with different feeding behavior and ecological preferences. Natural sediments, pore water and surface water, together with benthic and epibenthic invertebrates were sampled at 28 Flemish lowland rivers. Different metals as well as metal binding sediment characteristics including AVS were measured and multiple regression was used to study their relationship with accumulated metals in the invertebrates taxa. Bioaccumulation in the benthic taxa was primarily influenced by total metal concentrations in the sediment. Regarding the epibenthic taxa metal accumulation was mostly explained by the more bioavailable metal fractions in both the sediment and the water. AVS concentrations were generally better correlated with metal accumulation in the epibenthic invertebrates, rather than with the benthic taxa. Our results indicated that the relation between AVS and metal accumulation in aquatic invertebrates is highly dependent on feeding behavior and ecology. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  8. BIOLOGICAL RESPONSE TO VARIATION OF ACID-VOLATILE SULFIDES AND METALS IN FIELD-EXPOSED SPIKED SEDIMENTS

    EPA Science Inventory

    Vertical and temporal variations of acid-volatile sulfides (AVS) and simultaneously extracted metals (SEM) in sediment can control biological impacts of metals. To assess the significance of these variations in field sediments, sediments spiked with cadmium, copper, lead, nickel ...

  9. PREDICTING THE TOXICITY OF CHROMIUM-SPIKED SEDIMENTS USING ACID-VOLATILE SULFIDE AND INTERSTITIAL WATER MEASUREMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (AVS) is formed only in anoxic sediments, therefor...

  10. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments

    USGS Publications Warehouse

    Brumbaugh, William G.; Hammerschmidt, Chad R.; Zanella, Luciana; Rogevich, Emily; Salata, Gregory; Bolek, Radoslaw

    2011-01-01

    An interlaboratory comparison of acid-volatile sulfide (AVS) and simultaneously extracted nickel (SEM_Ni) measurements of sediments was conducted among five independent laboratories. Relative standard deviations for the seven test samples ranged from 5.6 to 71% (mean = 25%) for AVS and from 5.5 to 15% (mean = 10%) for SEM_Ni. These results are in stark contrast to a recently published study that indicated AVS and SEM analyses were highly variable among laboratories.

  11. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions?

    PubMed

    De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven

    2009-06-15

    The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS.

  12. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.

    2000-01-01

    An 18-day microcosm study was conducted to evaluate the influence of acid volatile sulfides (AVS) and metal additions on bioaccumulation from sediments of Cd, Ni, and Zn in two clams (Macoma balthica and Potamocorbula amurensis) and three marine polychaetes (Neanthes arenaceodentata, Heteromastus filiformis, and Spiophanes missionensis). Manipulation of AVS by oxidation of naturally anoxic sediments allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.An 18-day microcosm study was conducted to evaluate the influence of acid volatile sulfides (AVS) and metal additions on bioaccumulation from sediments of Cd, Ni, and Zn in two clams (Macoma balthica and Potamocorbula amurensis) and three marine polychaetes (Neanthes arenaceodentata, Heteromastus filiformis, and Spiophanes missionensis). Manipulation of AVS by oxidation of naturally anoxic sediments

  13. Acid volatile sulfide and simultaneously extracted metals in superficial sediments from Baihua Lake, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jiping; Hu, Jiwei; Huang, Xianfei; Shen, Wei; Jin, Mei; Fu, Liya; Jin, Xiaofei

    2013-09-01

    The bioavailability of five divalent cationic heavy metals (Pb, Cd, Cu, Zn and Ni) in 10 superficial sediment samples from Baihua Lake was assessed based on the molar ratio of simultaneously extracted metals (SEMs) to acid volatile sulfide (AVS). Atomic absorption spectrometry (AAS) and X-ray powder diffraction (XRD) were used to determine the heavy metal concentrations and examine the mineralogy of the crystalline phases, respectively. The AVS loadings in sediments from Baihua Lake ranged from 64.30 to 350.08 μmol/g (dry weight). The corresponding SEM levels for the sampling sites varied from 1.770 to 14.660 μmol/g. The molar ratio of SEMs to AVS ranged from 0.014 to 0.084 with a mean value of 0.034. The XRD analysis also confirmed the presence of some metal sulfides in sediments from Baihua Lake. The SEMs/AVS ratios for all sampling sites were significantly lower than 1.0, indicating that AVS in the sediments was sufficient to bind the five heavy metals; thus, these heavy metals are currently not significantly bioavailable to benthic organisms. Comparing the SEMs results to published guideline values for metal toxicity to benthic organisms in sediments, however, suggests that Zn and Ni pose a risk at some sampling locations in Baihua Lake.

  14. Quality control considerations for the determination of acid-volatile sulfide and simultaneously extracted metals in sediments

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.

    1996-01-01

    The determination of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) in sediment by treatment with dilute HCl shows promise as a tool for predicting the potential for metal toxicity to sediment-dwelling organisms. Effective quality control measures must be developed if this method is to become a reliable procedure and to ensure comparability of data. However, establishing quality control measures that assess procedural errors for an operationally defined method can be problematic. For example, preextraction spikes added for assessing the accuracy of AVS and SEMs may be poorly recovered due to adsorption or reaction with sediment constituents. For a variety of sediment types, we found preextraction spikes of sulfide, mercury, and copper to be prone to variable recoveries for the AVS/SEM procedure; recoveries averaged 76.3% (SD, 20.9) for sulfide, 61.9% (39.6) for Hg, and 90.1% (12.7) for Cu. The average recovery was near 100% for preextraction spikes of sediments for Cd, Ni, Pb, and Zn, and the recoveries of preextraction blank spikes for all analytes were consistently 95 to 105%. Binding of Cu or Hg with sulfides is sufficiently strong that 1 N hydrochloric acid will not necessarily keep the spiked metal in the dissolved state. This does not mean that the SEM procedure is invalid for these metals, only that the quality control of procedural error is difficult to assess. However, Hg will generally not be detected when measured as an SEM because of its tendency to adsorb onto sulfide minerals even at extremely low pH. Some reference sediments may be useful for assessing consistency of AVS determinations; we measured 5.97 ± 0.65 μmol/g in National Institute of Standards and Technology (NIST) 1645 and 1.34 ± 0.14 μmol/g in NIST 2704 for repeated determinations conducted over the past 3 years. Apparently, some sediments may contain an oxidation-resistant sulfide component that can release low to moderate AVS when treated with dilute HCl.

  15. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments.

    PubMed

    Prica, M; Dalmacija, B; Roncević, S; Krcmar, D; Becelić, M

    2008-01-25

    The acid-volatile sulfide (AVS), simultaneously extracted metals (SEM), total metals, and pore-water metal concentrations were studied in Vojvodina (Serbia) sediments. In Serbia, there are no regulations concerning sediment quality standards and sediment management. Harmonization of legislation in the domain of environmental protection with EU requirements will increase the significance of the sediment issue. Sediment quality was assessed according to Dutch standards, but the results were also compared with Canadian and USEPA (United States Environmental Protection Agency) guidelines for sediment quality. A comparison of the results based on different criteria for sediment quality assessment shows that they are sometimes contradictory. Therefore, a single approach to quality assessment may be insufficient. The Sigma[SEM]/[AVS] ratio was found to be greater than one at several locations that were already recognized as places of high risk based on Dutch standards. Some other samples had Sigma[SEM]/[AVS]<1, despite of the high risk classification based on the Dutch evaluation. However, not all sediments with Sigma[SEM]/[AVS]>1 can cause increased toxicity because there are many other metal-binding phases in sediments. Metals that are associated with AVS may be released within sediments through storms, dredging activities, oxidation, etc., and may have adverse environmental impacts. This has to be taken into account during dredging, which is for some sediments necessary because the sediment is of class 4 (Dutch evaluation), because the dredging process will certainly increase the concentration of bioavailable heavy metals and disturb the sedimentation dynamics. The obtained results will be invaluable for future activities regarding dredging and sediment management in the country.

  16. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.

    PubMed

    Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D

    2011-03-01

    Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase. Copyright © 2010 SETAC.

  17. Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach.

    PubMed

    Shyleshchandran, Mohanachandran Nair; Mohan, Mahesh; Ramasamy, Eswara Venkatesaperumal

    2018-03-01

    Contamination of estuarine system due to heavy metals is a severe issue in tropical countries, especially in India. For the evaluation of the risk due to heavy metals, the current study assessed spatial and temporal variation of acid-volatile sulfide (AVS), simultaneously extracted metal (SEM), and total metal concentration as toxicity indicator of aquatic sediments in Vembanad Lake System (VLS), India. Surface sediment samples collected from 12 locations from the northern portion of VLS for 4 years during different seasons. The results suggest, in post-monsoon season, 91% of the sampling locations possessed high bioavailability of metals and results in toxicity to aquatic biota. The average seasonal distribution of SEM during the period of observations was in the order post-monsoon > pre-monsoon > monsoon (1.76 ± 2.00 > 1.35 ± 0.60 > 0.80 ± 0.54 μmol/g). The concentration of individual metals on ∑SEM are in the order SEM Zn > SEM Cu> SEM Cd ≈ SEM Pb > SEM Hg. Considering annual ΣSEM/AVS ratio, 83% of the sites cross the critical value of 'One,' reveals that active sulfide phase of the sediment for fixing the metals is saturated. The molar ratio (differences between SEM and AVS) and its normalized organic carbon ratio reveals that in the post-monsoon season, about 42% of the sites are in the category of adverse effects are possible. The study suggests the toxicity and mobility of the metals largely depend on the available AVS, and the current situation may pose harm to benthic organisms.

  18. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  19. Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.; Brown, C.L.

    2000-01-01

    The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kd(pw) (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing

  20. Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments.

    PubMed

    Younis, Alaa M; El-Zokm, Gehan M; Okbah, Mohamed A

    2014-06-01

    In risk assessment of aquatic sediments, the immobilizing effect of acid-volatile sulfide (AVS) on trace metals is a principal control on availability and associated toxicity of metals to aquatic biota, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides. Spatial variation pattern of AVS, simultaneously extracted metals (SEM), and sediment characteristics were studied for the first time in surface sediment samples (0-20 cm) from 43 locations in Egyptian northern delta lagoons (Manzalah, Burullus, and Maryut) as predictors of the bioavailability of some divalent metals (Cu, Zn, Cd, Pb, and Ni) in sediments as well as indicators of metal toxicity in anaerobic sediments. The results indicated that the ∑SEM (Cu + Zn + Cd + Pb + Ni) values in sediments of lagoon Burullus had higher concentrations than those of Maryut and Manzalah. In contrast, AVS concentrations were considerably higher in lagoons Manzalah and Maryut and seemed to be consistent with the increase in organic matter than lagoon Burullus. Generally, the average concentrations of the SEM in all lagoons were in the order of Zn > Cu > Ni > Pb > Cd. The ratios of ∑SEM/AVS were less than 1 at all the sampling stations except at one station in lagoon Maryut as well as four stations located in lagoon Burullus (∑SEM/AVS > 1), which suggests that the metals have toxicity potential in these sediments. Therefore, SEM concentrations probably are better indicators of the metal bioavailability in sediments than the conventional total metal concentrations.

  1. Assessing pollution in a Mediterranean lagoon using acid volatile sulfides and estimations of simultaneously extracted metals.

    PubMed

    Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi

    2016-11-01

    Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.

  2. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    PubMed

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  3. Effect of cadmium in sediments on colonization by benthic marine organisms: Role of interstitial cadmium and acid volatile sulfide in bioavailability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.; Berry, W.; Benyi, S.

    1995-12-31

    The role of interstitial cadmium and acid volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked with cadmium to achieve simultaneously extracted metal (SEM)/AVS molar ratios of 0. 0 (control), 0.1, 0.8 and 3.0 in this 118-day test. Oxidation of AVS in the surficial 2.4 cm within two to four weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 SEM/AVS treatment, measured SEM was always less than AVS. Interstitial cadmium concentrations (< 3--10 {micro}g/L) were below those likely tomore » cause biological effects. No significant biological effects were detected. In the nominal 0.8 SEM/AVS treatment, measured SEM commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations (24--157 {micro}g/L) were likely of toxicological significance to sensitive species. Shifts were observed in presence/absence of species, and there were fewer macrobenthic polychaetes (Mediomastus ambiseta, Strebloapio benedicti and Podarke obscura) and unidentified meiofaunal nematodes. In the nominal 3.0 SEM/AVS treatment, concentrations of SEM were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, these sediments were colonized by fewer macrobenthic species, polychaete species and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs and exhibited other impacts. The observed biological responses were consistent with measured SEM/AVS ratios in surficial sediments and interstitial water cadmium concentrations, further supporting their utility in predicting metals bioavailability.« less

  4. Heavy metals and acid-volatile sulfides in sediments of the Tijuana Estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, S.F.; Gersberg, R.M.

    1997-12-31

    The Tijuana Estuary in San Diego County, CA is a wetland-dominated estuary, which has been designated a National Estuarine Sanctuary for protection of a number of endangered species and their habitat. For decades, raw sewage from the city of Tijuana, Mexico has flowed into the Tijuana River and across the international border into the Tijuana Estuary. This problem has worsened in recent years with the substantial growth of Tijuana`s population along with intensive industrial development. Unfortunately, due to many factors, an industrial pretreatment program similar to one implemented in the United States, has not been initiated in Mexico, and themore » threat of chemical contamination of the Tijuana Estuary exists. To date, however, the degree and spatial nature of such contamination has not been well assessed. We report here on the levels of selected toxic metals in the sediments of the estuary. Additionally, we measured both acid-volatile sulfides (AVS) and simultaneously extracted metals (SEM) in order to estimate the potential toxicity of these estuarine sediments.« less

  5. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  6. Effects of spatial and temporal variation of acid-volatile sulfide on the bioavailability of copper and zinc in freshwater sediments

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Giesty, John P.

    1996-01-01

    Variation in concentrations of acid-volatile sulfide (AVS) in sediments from the upper Clark Fork River of Montana, USA, was associated with differences in bioaccumulation of Cu and Zn and growth of larvae of the midge, Chironomus tentans. Growth of midge larvae was significantly greater and bioaccumulation of Cu was significantly less in surface sections (0–3 cm depth) of sediment cores, which had greater concentrations of AVS and lesser ratios of simultaneously extracted metals to AVS (SEM:AVS ratios) than in subsurface sediments (6–9 cm). Concentrations of AVS were significantly less in sediments incubated with oxic overlying water for 9 weeks than in the same sediments incubated under anoxic conditions. Bioaccumulation of Cu differed significantly between incubation treatments, corresponding to differences in concentrations of AVS and SEM:AVS ratios, although midge growth did not. Bioaccumulation of Zn did not differ significantly between depth strata of sediment cores or between incubation treatments. When results from the two sets of bioassays were combined, bioaccumulation of Cu and Zn, but not growth, was significantly correlated with SEM:AVS ratios and other estimates of bioavailable metal fractions in sediments. Growth of midge larvae was significantly correlated with bioaccumulation of Zn, but not Cu, suggesting that Zn was the greater contributor to the toxicity of these sediments. Assessments of the toxicity of metal-contaminated freshwater sediments should consider the effects of spatial and temporal variation in AVS concentrations on metal bioavailability.

  7. [Acid volatile sulfide and bioaccumulation of Cr in sediments from a municipal polluted river].

    PubMed

    Li, Feng; Wen, Yan-Mao; Zhu, Ping-Ting; Jin, Hui; Song, Wei-Wei; Dai, Rui-Zhi

    2009-03-15

    Samples of sediment, overlying water, pore water, and benthic invertebrate were collected at 13 stations along a typical municipal polluted river in the Pearl River Delta. The samples were analyzed to study relationships between acid volatile sulfide (AVS) versus Cr(III) and Cr(VI) in sediment, overlying water, and pore water as well as Cr in Limnodrilus sp.. Based on the "Cr hypothesis", the relationship between AVS and bioavailability of Cr in heavily polluted areas was explored to extend the utility of AVS measurements as sediment assessments. The mean value of total Cr in sediment was 329.57 mg/kg, which was 9.4 times of background value (35 mg/kg). The result indicated that the study area has been seriously polluted by Cr. The concentrations of Cr(VI) in sediment and overlying water were low, indicating that most of Cr was in the form of Cr(III). In the study area, the value of AVS was relatively high with an average value of 650.38 mg/kg, while Cr in the pore water was low with the average of 68.42 microg/L. Cr(VI) in the pore water was below the detection limit except at Z1 station. The range of Cr concentrations in Limnodrilus sp. was from 12.46 mg/kg to 38.99 mg/kg of dried weight, with the average of 25.85 mg/kg, which was higher than other similar results in the literature. The result showed that the amount of Cr accumulation in Limnodrilus sp. was significant. A further analysis showed a significant correlation between Cr in Limnodrilus sp. and Cr in the pore water (r = 0.614, p < 0.05). Since most of Cr in pore water was in the form of Cr(III), the toxicity of Cr(III) in pore water to organism can not be neglected in the heavily polluted river.

  8. PREDICTING THE TOXICITY OF CHROMIUM-SPIKED SEDIMENTS USING ACID VOLATILE SULFIDE AND INTERSTITAL WATER MEASUREMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (A VS) is formed only in anoxic sediments, therefo...

  9. Chronic effect of cadmium in sediments on colonization by benthic marine organisms: An evaluation of the role of interstitial cadmium and acid-volatile sulfide in biological availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.J.; Berry, W.J.; Benyi, S.J.

    1996-12-01

    The role of interstitial cadmium and acid-volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked to achieve nominal cadmium/AVS molar ratios of 0.0 (control), 0.1, 0.8, and 3.0 in this 118-d test. Oxidation of AVS in the surficial 2.4 cm within 2 to 4 weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 cadmium/AVS treatment measured simultaneously extracted metal (SEM{sub Cd}) was always less than AVS. Interstitial cadmium concentrations were less than those likely to cause biological effects. Nomore » significant biological effects were detected. In the nominal 0.8 cadmium/AVS treatment, measured SEM{sub Cd} commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations were of likely toxicological significance to highly sensitive species. Shifts in the presence or absence over all taxa, and fewer macrobenthic polychaetes (Mediomastus ambiseta, Streblospio benedicti, and Podarke obscurea) and unidentified meiofaunal nematodes, were observed. In the nominal 3.0 cadmium/AVS treatment, concentrations of SEM{sub Cd} were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, the sediments were colonized by fewer macrobenthic species, polychaete species, and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs; and exhibited other impacts. Over all treatments, the observed biological responses were consistent with SEM{sub Cd}/AVS ratios in surficial sediments and interstitial water cadmium concentrations.« less

  10. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.

    PubMed

    Jong, Tony; Parry, David L

    2004-04-01

    Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be

  11. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors.

    PubMed

    Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf

    2012-01-30

    The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea: concentrations, spatial distributions and the indication of heavy metal pollution status.

    PubMed

    Zhuang, Wen; Gao, Xuelu

    2013-11-15

    Surface sediments were collected from the coastal waters of southwestern Laizhou Bay and the rivers it connects with during summer and autumn 2012. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) were measured to assess the sediment quality. The results showed that not all sediments with [SEM]-[AVS]>0 were capable of causing toxicity because the organic carbon is also an important metal-binding phase in sediments. Suppose the sediments had not been disturbed and the criteria of US Environmental Protection Agency had been followed, heavy metals in this area had no adverse biological effects in both seasons except for few riverine samples. The major ingredient of SEM was Zn, whereas the contribution of Cd - the most toxic metal studied - to SEM was <1%. The distributions of AVS and SEM in riverine sediments were more easily affected by anthropogenic activity compared with those in marine sediments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Acid Volatile Sulfides (avs) and the Bioavailability of Trace Metals in the Channel of the SÃO Francisco River, Sepetiba Bay - de Janeiro-Brazil

    NASA Astrophysics Data System (ADS)

    Monte, Christiane; Rodrigues, Ana Paula; Marinho, Matheus; Quaresma, Tássia; Machado, Wilson

    2014-05-01

    Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro. Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro.The San Francisco channel comes from the Guandu River and empties into Sepetiba Bay and is the main contributor of freshwater to the estuarine system. The Guandu River system/channel of San Francisco receives contribution of domestic and industrial effluents, which go largely to Sepetiba Bay. This work aimed to evaluate the .This work aimed to evaluate the ratio SEM/AVS as a way of predicting bioavailability trace metals from industrial sewage, mainly, in the estuarine system of Sepetiba. This model is based on the property of some Divalent metal cations (Cd, Cu, Ni, Pb and Zn), by presenting a low solubility constant, are removed from the soluble fraction by precipitation, forming secondary metal sulfides. Were held four transects, made up of three points each, the coast line to the center of the Bay. The surface sediment was collected with a van Veen sampler type ,packed in glass jars and kept frozen until analysis.The determination of SEM/AVS followed the methodology described by Allen et al. (1991). The variation between sulfide 159.88 ± 0.05 µmol/g on 12 points. The metals that entered the sum of simultaneous extraction were: Cd, Cu, Ni, Pb and Zn ranging from: 6.47 ± 0.11 µmol/g on sum.The means (± standard deviation) ratio SEM/AVS per transect were: 1.04 ± 1.20 (transect 1); 0.48 ± 0.53 (transect 2); 1.26 ± 1.32 (transect 3) and 0.18 ± 0.14 (transect 4). Only transects 1 and 3 had higher results than 1 , meaning that there are more divalent metal sulfides in the environment. This means that only the sulfides would not be capable of complex and may reflect the potential bioavailability of these in the aquatic environment. There is no statistical

  14. Assessment of sedimentary Cu availability: A comparison of biomimetic and AVS approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Mayer, L.M.

    1999-02-15

    Sedimentary Cu bioavailability during deposit feeding is determined by both the digestive physiology of the organisms and the geochemistry of the sediments. The authors assessed the contribution of these two factors by using a biomimetic approach involving extraction of Cu with digestive fluids of two deposit feeders and one suspension feeder and a geochemical approach measuring Cu associated with acid-volatile sulfide (AVS) in sediments. Cu bioavailability determined by the biomimetic method varied among species with varying digestive physiology but all showed a marked increase when SEM{sub Cu}-AVS {ge} 0, corroborating the premise underlying the AVS method in determining sedimentary Cumore » bioavailability. The existence of a positive SEM{sub Cu}-AVS threshold suggests the existence of additional Cu-binding phases or mixed Cu(I)--Cu(II) sulfides in sediments. In addition, Cu bioavailable to digestive fluids was much less than that measured as SEM{sub Cu}-AVS, indicating that the AVS method overestimates Cu bioavailability to digestive fluid of deposit feeders. Incubation of digestive fluids with two Cu-bound model phases, goethite and sulfide, corroborated the relative unavailability of sulfide-bound Cu. Subsurface deposit feeders feeding on anoxic sediments may be exposed to less Cu than their surface-feeding counterparts in Cu-contaminated environments.« less

  15. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    ERIC Educational Resources Information Center

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  16. Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Yoo, H.; Koh, C.-H.; Luoma, S.N.

    2001-01-01

    A laboratory bioassay determined the relative contribution of various pathways of Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata exposed to moderately contaminated sediments. Juvenile worms were exposed for 25 d to experimental sediments containing 5 different reactive sulfide (acid volatile sulfides, AVS) concentrations (1 to 30 ??mol g-1), but with constant Ag, Cd, and Zn concentrations of 0.1, 0.1 and 7 ??mol g-1, respectively. The sediments were supplemented with contaminated food (TetraMin??) containing 3 levels of Ag-Cd-Zn (uncontaminated, 1?? or 5??1 metal concentrations in the contaminated sediment). The results suggest that bioaccumulation of Ag, Cd and Zn in the worms occurred predominantly from ingestion of contaminated sediments and contaminated supplementary food. AVS or dissolved metals (in porewater and overlying water) had a minor effect on bioaccumulation of the 3 metals in most of the treatments. The contribution to uptake from the dissolved source was most important in the most oxic sediments, with maximum contributions of 8% for Ag, 30% for Cd and 20% for Zn bioaccumulation. Sediment bioassays where uncontaminated supplemental food is added could seriously underestimate metal exposures in an equilibrated system; N. arenaceodentata feeding on uncontaminated food would be exposed to 40-60% less metal than if the food source was equilibrated (as occurs in nature). Overall, the results show that pathways of metal exposure are dynamically linked in contaminated sediments and shift as external geochemical characteristics and internal biological attributes vary.

  17. Seasonal AVS-SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil.

    PubMed

    Nizoli, Erico Casare; Luiz-Silva, Wanilson

    2012-04-01

    In anoxic sediments, as those found in estuaries, the mobility of metals can be controlled by the formation of stable sulfide complexes. The potential bioavailability of a metal can then be predicted on the basis of the acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) criterion. Distributions of AVS and SEM (Hg, Cu, Pb, Cd, Zn, and Ni) along the sediment profiles were determined seasonally for three rivers that constitute the Santos-Cubatão estuarine system (SE Brazil), which is located in one of the most industrialized areas of Latin America. AVS and SEM concentrations varied significantly, from 0.04 to 31.9 μmol g(-1) and 0.086-6.659 μmol g(-1), respectively. The highest AVS levels in sediments were detected in the winter, whereas high SEM values predominated in the summer. Considering SEM-AVS molar differences as a parameter to evaluate potential bioavailability, sediments nearest to the industrial area represent higher risk to biota, especially during the summer. It is due to relatively low AVS values and not necessarily high concentrations of metals.

  18. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses.

    PubMed

    De Lange, H J; Van Griethuysen, C; Koelmans, A A

    2008-01-01

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the disturbance of the sediment. AVS and Simultaneously Extracted Metal (SEM) concentrations were compared to bioassay responses with the freshwater benthic macroinvertebrate Asellus aquaticus. Storage conditions and sediment treatment affected AVS but not SEM levels. AVS can be used as a proxy for sediment disturbance. The best way to pretreat the sediment for use in a bioassay in order to maintain initial AVS conditions was to sample the sediment with an Ekman grab, immediately store it in a jar without headspace, and freeze it as soon as possible. In a survey using seven different sediments, bioassay responses of A. aquaticus were correlated with SEM and AVS characteristics.

  19. Differences in SEM-AVS and ERM-ERL predictions of sediment impacts from metals in two US Virgin Islands marinas.

    PubMed

    Hinkey, Lynne M; Zaidi, Baqar R

    2007-02-01

    Two US Virgin Islands marinas were examined for potential metal impacts by comparing sediment chemistry data with two sediment quality guideline (SQG) values: the ratio of simultaneously extractable metals to acid volatile sulfides (SEM-AVS), and effects range-low and -mean (ERL-ERM) values. ERL-ERMs predicted the marina/boatyard complex (IBY: 2118 microg/g dry weight total metals, two exceeded ERMs) would have greater impacts than the marina with no boatyard (CBM: 231 microg/g dry weight total metals, no ERMs exceeded). The AVS-SEM method predicted IBY would have fewer effects due to high AVS-forming metal sulfide complexes, reducing trace metal bioavailability. These contradictory predictions demonstrate the importance of validating the results of either of these methods with other toxicity measures before making any management or regulatory decisions regarding boating and marina impacts. This is especially important in non-temperate areas where sediment quality guidelines have not been validated.

  20. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    PubMed

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  1. Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity.

    PubMed

    Arfaeinia, Hossein; Nabipour, Iraj; Ostovar, Afshin; Asadgol, Zahra; Abuee, Ehsan; Keshtkar, Mozhgan; Dobaradaran, Sina

    2016-05-01

    Sediment samples from the coastal area of Asaluyeh harbor were collected during autumn and spring 2015. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) were measured to assess the sediment quality and potential ecological risks. The average concentrations (and relative standard deviation (RSD)) of AVS in the industrial sediments were 12.32 μmol/g (36.91) and 6.34 μmol/g (80.05) in autumn and spring, respectively, while in the urban area, these values were 0.44 μmol/g (123.50) and 0.31 μmol/g (160.0) in autumn and spring, respectively. The average concentrations of SEM (and RSD) in the industrial sediments were 15.02 μmol/g (14.38) and 12.34 μmol/g (20.65) in autumn and spring, respectively, while in the urban area, these values were 1.10 μmol/g (43.03) and 1.06 μmol/g (55.59) in autumn and spring, respectively. Zn was the predominant component (34.25-86.24 %) of SEM, while the corresponding value for Cd, much more toxic ingredient, was less than 1 %. Some of the coastal sediments in the harbor of Asaluyeh (20 and 47 % in autumn and spring, respectively) had expected adverse biological effects based on the suggested criterion by United States Environmental Protection Agency (USEPA), while most stations (80 and 53 % in autumn and spring, respectively) had uncertain adverse effects.

  2. Identification of a potential toxic hot spot associated with AVS spatial and seasonal variation.

    PubMed

    Campana, O; Rodríguez, A; Blasco, J

    2009-04-01

    In risk assessment of aquatic sediments, much attention is paid to the difference between acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) as indicators of metal availability. Ten representative sampling sites were selected along the estuary of the Guadalete River. Surficial sediments were sampled in winter and summer to better understand SEM and AVS spatial and seasonal distributions and to establish priority risk areas. Total SEM concentration (SigmaSEM) ranged from 0.3 to 4.7 micromol g(-1). It was not significantly different between seasons, however, it showed a significant difference between sampling stations. AVS concentrations were much more variable, showing significant spatial and temporal variations. The values ranged from 0.8 to 22.4 micromol g(-1). The SEM/AVS ratio was found to be <1 at all except one station located near the mouth of the estuary. The results provided information on a potential pollution source near the mouth of the estuary, probably associated with vessel-related activities carried out in a local harbor area located near the station.

  3. The Role of Magmatic Volatile Input, Near-surface Seawater Entrainment and Sulfide Deposition in Regulating Metal Concentrations Within Manus Basin Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Craddock, P. R.; Tivey, M. K.; Seewald, J. S.; Rouxel, O.; Bach, W.

    2007-12-01

    Analyses of Fe, Mn, Cu, Zn, Pb, Ag, Cd, Co and Sb in vent fluid samples from four hydrothermal systems in the Manus back-arc basin, Papua New Guinea, were carried out by ICP-MS. Vienna Woods is located on the well- defined, basalt-dominated Manus Spreading Center, while the other systems are hosted in felsic volcanics on the Pual Ridge (PACMANUS), within a caldera (DESMOS), and on volcanic cones (SuSu Knolls). Metal concentrations were coupled with other fluid data (pH, SO4, Ca, H2S) to discriminate effects of deep- seated water-rock reaction and magmatic volatile input from near surface seawater entrainment, mixing, and consequent mineral precipitation and metal remobilization. Both magmatic volatile input (e.g. SO2, HCl, HF) and sulfide precipitation can increase fluid acidity and thus affect the aqueous mobility of metals. At Vienna Woods, 280°C end-member (Mg = 0) fluids have high pH (>4.2) and low metal contents (Fe <160 uM, Cu <10 uM, Zn <40 uM) relative to most mid-ocean ridge (MOR) vent fluids. The high pH and lack of evidence for magmatic volatile input are consistent with fluid compositions regulated by subsurface seawater- basalt/andesite reactions. Despite low aqueous Zn concentrations, Zn-rich (wurtzite-lined) chimneys are common at Vienna Woods active vents, reflecting deposition from fluids characterized by low Fe and Cu and high pH. At PACMANUS, black smoker fluids (T >300°C, pH ~ 2.7) are enriched in sulfide-forming metals by an order of magnitude relative to Vienna Woods fluids. Enrichments at PACMANUS reflect efficient leaching of metals at low pH, with the lower pH likely a result of input of magmatic volatiles. In addition, some vents fluids show clear evidence for seawater entrainment, subsurface precipitation of Cu-Fe-sulfides and preferential remobilization of Zn-sulfides (lower T, non-zero Mg, lower Fe, Cu, H2S and pH (2.3-2.4), but higher Zn, Pb, Cd and Ag, compared to black smokers). The higher metal concentrations and lower pH of

  4. The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM-AVS analysis.

    PubMed

    Chai, Minwei; Shen, Xiaoxue; Li, Ruili; Qiu, Guoyu

    2015-08-15

    The risks of heavy metal in Futian mangrove forest sediment were assessed using the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) methods. The results indicated that AVS distributions were more variable than the SEM distributions at all 16 sampling sites. The positive correlation between AVS and SEM indicated that their similar formative and existing conditions and that AVS acted as an important carrier for SEM. The major SEM component was Zn (69.7.3-94.2%), whereas the Cd contribution (the most toxic metal present) to SEM was no more than 1%. The possible adverse effects caused by heavy metals at ten sampling sites may be due to higher levels of SEMs, rather than AVSs. The total organic carbon (TOC) was an important metal-binding phase in the sediments. Taking into account the TOC concentration, there were no adverse effects due to heavy metals in any of the Futian mangrove forest sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [AVS concentrations in Xinan Creek and the influencing factors].

    PubMed

    Liu, Xiao-Bing; Wen, Yan-Mao; Li, Feng; Wu, Chang-Hua; Duan, Zhi-Peng

    2012-07-01

    Sediment and overlying water samples were collected at 10 sampling stations at Xinan Creek, a tidal river in Pearl River Delta, and analyzed for physical and chemical characteristics as well as microbial incicators, in order to reveal the main factors dominating the spatial distribution of acid volatile sulfide (AVS). The effects of Eh, SRB OC and TS on the spatial distribution of AVS were investigated and the impact of AVS on the toxicity of heavy metals in the studied area was evaluated. The results showed that the range of AVS was 0.207-41.453 micromol x g(-1), with an average of 6.684 micromol x g(-1), which is relatively high compared to the results in other studies. The AVS value of the surface layer was higher than the bottom layer in 5 stations. The AVS values in both the surface layer and the bottom layer were highly variable, the coefficients of variation being 93.61% and 153.09% , respectively. The analytical results revealed that TS was the factor with the greatest impact on the spatial distribution of AVS, and the order was TS > OC > Eh > SRB. Potential ecological risk of heavy metals existed in 60% of the smpling stations based on the value of Sigma (SEM5-AVS), however, with the criterion of [Sigma(SEM5-AVS)]/foc, none of them had inacceptable ecological risk. Furthermore, in terms of single species of heavy metals, there was certain risk of toxic effect for all the five heavy metals (Cd, Ni, Cu, Zn and Pb). The above mentioned results will provide valuable data for the in-depth study of the formation mechanism of AVS and helpful reference for environmental impact assessment and scientific rehabilitation of heavy metals in polluted rivers.

  6. Na, Rb and Cs partitioning between metal, silicate and sulfide: Implications for volatile depletion in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.

    2017-12-01

    Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.

  7. Coastal surface sediment quality assessment in Leizhou Peninsula (South China Sea) based on SEM-AVS analysis.

    PubMed

    Li, Feng; Lin, Jin-qin; Liang, Yan-yan; Gan, Hua-yang; Zeng, Xiang-yun; Duan, Zhi-peng; Liang, Kai; Liu, Xing; Huo, Zhen-hai; Wu, Chang-hua

    2014-07-15

    Surface sediments from the coastal area of the Leizhou Peninsula in the South China Sea were collected and analyzed and the potential ecological risks in the area were assessed based on acid-volatile sulfide (AVS) model. The AVS levels are between 0.109 and 55.6 μmol g(-1), with the average at 4.45 μmol g(-1). The high AVS-concentration zones include the aquaculture areas of Liusha Bay and the densely populated areas of Zhanjiang Bay. The simultaneously extracted metals (SEM) range from 0.026 μmol g(-1) to 8.61 μmol g(-1), with the average at 0.843 μmol g(-1). Most of high SEM-concentration stations were located in ports or aquaculture zones. Most of the coastal surface sediments of the Leizhou Peninsula (90%) had no adverse biological effects according to the criterion proposed by USEPA (2005); while adverse effects were uncertain in some stations (8%); even in 2 stations (2%) adverse biological effects may be expected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluating the Effects of Metals on Microorganisms in Flooded Paddy Soils Using the SEM/AVS-Based Approach and Measurements of Exchangeable Metal Concentrations.

    PubMed

    Kunito, Takashi; Toya, Hitomi; Sumi, Hirotaka; Ishikawa, Yuichi; Toda, Hideshige; Nagaoka, Kazunari; Saeki, Kazutoshi; Aikawa, Yoshio; Matsumoto, Satoshi

    2017-04-01

    We examined possible adverse effects of heavy metals on microbial activity, biomass, and community composition using the simultaneously extracted metals (SEM)/acid-volatile sulfide (AVS)-based approach and measurements of exchangeable metal concentrations in three paddy soils (wastewater-contaminated soil, mine-contaminated soil, and noncontaminated soil) incubated for 60 days under flooded conditions. Incubation under flooding increased pH and decreased Eh in all samples. AVS increased when Eh decreased to approximately -200 mV for the mine-contaminated and noncontaminated soils, while the wastewater-contaminated soil originally had a high concentration of AVS despite its air-dried condition. Addition of rice straw or alkaline material containing calcium carbonate and gypsum increased AVS levels under flooded conditions. We observed no apparent relationship between soil enzyme activity (β-D-glucosidase and acid phosphatase) and concentrations of SEM, [∑SEM - AVS], and exchangeable metals. Bacterial and fungal community composition, assessed using polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) analysis targeting rRNA genes, was largely influenced by site of collection and incubation time, but metal contamination did not influence community composition. We observed significant negative correlations between biomass C and [∑SEM - AVS] and between biomass C and ∑SEM, suggesting that [∑SEM - AVS] and ∑SEM might reflect the bioavailability of organic matter to microorganisms in these soils.

  9. Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil).

    PubMed

    Ribeiro, Andreza Portella; Figueiredo, Ana Maria Graciano; dos Santos, José Osman; Dantas, Elizabeth; Cotrim, Marycel Elena Barboza; Figueira, Rubens Cesar Lopes; Silva Filho, Emmanoel V; Wasserman, Julio Cesar

    2013-03-15

    This study proposes a new methodology to study contamination, bioavailability and mobility of metals (Cd, Cu, Ni, Pb, and Zn) using chemical and geostatistics approaches in marine sediments of Sepetiba Bay (SE Brazil). The chemical model of SEM (simultaneously extracted metals)/AVS (acid volatile sulfides) ratio uses a technique of cold acid extraction of metals to evaluate their bioavailability, and the geostatistical model of attenuation of concentrations estimates the mobility of metals. By coupling the two it was observed that Sepetiba Port, the urban area of Sepetiba and the riverine discharges may constitute potential sources of metals to Sepetiba Bay. The metals are concentrated in the NE area of the bay, where they tend to have their lowest mobility, as shown by the attenuation model, and are not bioavailable, as they tend to associate with sulfide and organic matter originated in the mangrove forests of nearby Guaratiba area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides.

    PubMed

    Hu, Yuling; Lian, Haixian; Zhou, Langjun; Li, Gongke

    2015-01-06

    The present study reported on an in situ solvothermal growth method for immobilization of metal-organic framework MOF-5 on porous copper foam support for enrichment of plant volatile sulfides. The porous copper support impregnated with mother liquor of MOF-5 anchors the nucleation and growth of MOF crystallites at its surface, and its architecture of the three-dimensional channel enables accommodation of the MOF-5 crystallite seed. A continuous and well-intergrown MOF-5 layer, evidenced from scanning electron microscope imaging and X-ray diffraction, was successfully immobilized on the porous metal bar with good adhesion and high stability. Results show that the resultant MOF-5 coating was thermally stable up to 420 °C and robust enough for replicate extraction for at least 200 times. The MOF-5 bar was then applied to the headspace sorptive extraction of the volatile organic sulfur compounds in Chinese chive and garlic sprout in combination with thermal desorption-gas chromatography/mass spectrometry. It showed high extraction sensitivity and good selectivity to these plant volatile sulfides owing to the extraordinary porosity of the metal-organic framework as well as the interaction between the S-donor sites and the surface cations at the crystal edges. Several primary sulfur volatiles containing allyl methyl sulfide, dimethyl disulfide, diallyl sulfide, methyl allyl disulfide, and diallyl disulfide were quantified. Their limits of detection were found to be in the range of 0.2-1.7 μg/L. The organic sulfides were detected in the range of 6.0-23.8 μg/g with recoveries of 76.6-100.2% in Chinese chive and 11.4-54.6 μg/g with recoveries of 77.1-99.8% in garlic sprout. The results indicate the immobilization of MOF-5 on copper foam provides an efficient enrichment formats for noninvasive sampling of plant volatiles.

  11. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  12. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  13. Case Study: Microbial Ecology and Forensics of Chinese Drywall-Elemental Sulfur Disproportionation as Primary Generator of Hydrogen Sulfide.

    PubMed

    Tomei Torres, Francisco A

    2017-06-21

    Drywall manufactured in China released foul odors attributed to volatile sulfur compounds. These included hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Given that calcium sulfate is the main component of drywall, one would suspect bacterial reduction of sulfate to sulfide as the primary culprit. However, when the forensics, i.e., the microbial and chemical signatures left in the drywall, are studied, the evidence suggests that, rather than dissimilatory sulfate reduction, disproportionation of elemental sulfur to hydrogen sulfide and sulfate was actually the primary cause of the malodors. Forensic evidence suggests that the transformation of elemental sulfur went through several abiological and microbial stages: (1) partial volatilization of elemental sulfur during the manufacture of plaster of Paris, (2) partial abiotic disproportionation of elemental sulfur to sulfide and thiosulfate during the manufacture of drywall, (3) microbial disproportionation of elemental sulfur to sulfide and sulfate resulting in neutralization of all alkalinity, and acidification below pH 4, (4) acidophilic microbial disproportionation of elemental sulfur to sulfide and sulfuric acid, and (5) hydrogen sulfide volatilization, coating of copper fixtures resulting in corrosion, and oxidation to sulfur dioxide.

  14. Assessment of heavy metals pollution using AVS-SEM and fractionation techniques in Edku Lagoon sediments, Mediterranean Sea, Egypt.

    PubMed

    El Zokm, Gehan M; Okbah, Mohamed A; Younis, Alaa M

    2015-01-01

    A method is presented to evaluate the fractionation of metals (Fe, Zn, Cu, Pb, Cd and Ni), acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) in Edku lagoon sediments. Thirteen sediment samples were collected from the study area in the period of 2010-2011 to assess the potential bioavailability and toxicity of the selected metals. According to classification of the Interim Sediment Quality Quidelines (ISQG), five stations near the drains exhibited 10% toxic probability. The high AVS and low ∑SEM ranges in Summer were identified as 6-138 and 0.86-3.3 µmol g(-1) dry wet, respectively which are referring to the low mobility of heavy metals in this season and vice versa for winter (2.5-23.9 and 1.16-3.82 µmol g(-1) dry wet, respectively). According to the evaluation of USEPA, all sediment samples showed ∑SEM/AVS < 1 and ΣSEM-AVS < 0 and this indicates that Edku lagoon sediments didn't cause any adverse effects. Meanwhile, the calculations of the global contamination factor (GCF) and the individual contamination factors (ICF) using fractionation technique gave values of 111.644 and 84.555 in El Bosily drain and station 1 near the cages of fish farm, respectively due to possible contamination. Interestingly, the collected data refer that the mobility and bioavailability of heavy metals in Edku lagoon sediments posed a low risk of adverse biological effects due to cadmium, copper, lead, nickel and zinc in all evaluated stations.

  15. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity.

  16. PREDICTING SEDIMENT METAL TOXICITY USING A SEDIMENT BIOTIC LIGAND MODEL: METHODOLOGY AND INITIAL APPLICATION

    EPA Science Inventory

    An extension of the simultaneously extracted metals/acid-volatile sulfide (SEM/AVS) procedure is presented that predicts the acute and chronic sediment metals effects concentrations. A biotic ligand model (BLM) and a pore water–sediment partitioning model are used to predict the ...

  17. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide.

    PubMed

    Garcia-Jimenez, Pilar; Brito-Romano, Olegario; Robaina, Rafael R

    2013-08-01

    The effects of different light conditions and exogenous ethylene on the emission of volatile compounds from the alga Gelidium arbuscula Bory de Saint-Vincent were studied. Special emphasis was placed on the possibility that the emission of ethylene and dimethyl sulfide (DMS) are related through the action of dimethylsulfoniopropionate (DMSP) lyase. The conversion of DMSP to DMS and acrylate, which is catalyzed by DMSP lyase, can indirectly support the synthesis of ethylene through the transformation of acrylate to ethylene. After mimicking the desiccation of G. arbuscula thalli experienced during low tides, the volatile compounds emitted were trapped in the headspace of 2 mL glass vials for 1 h. Two methods based on gas chromatography/mass spectrometry revealed that the range of organic volatile compounds released was affected by abiotic factors, such as the availability and spectral quality of light, salinity, and exogenous ethylene. Amines and methyl alkyl compounds were produced after exposure to white light and darkness but not after exposure to exogenous ethylene or red light. Volatiles potentially associated with the oxidation of fatty acids, such as alkenes and low-molecular-weight oxygenated compounds, accumu-lated after exposure to exogenous ethylene and red light. Ethylene was produced in all treatments, especially after exposure to exogenous ethylene. Levels of DMS, the most abundant sulfur-compound that was emitted in all of the conditions tested, did not increase after incubation with ethylene. Thus, although DMSP lyase is active in G. arbuscula, it is unlikely to contribute to ethylene synthesis. The generation of ethylene and DMS do not appear to be coordinated in G. arbuscula. © 2013 Phycological Society of America.

  18. SEASONAL MONITORING OF ELEMENTS AT THREE CONSTRUCTED TREATMENT WETLANDS: 1999-2001

    EPA Science Inventory

    A suite of major, minor, and trace elements in sediment, pore water, and overlying water were monitored during winter and summer over a three year period at three different types of constructed treatment wetlands to evaluate their efficacy with season. Acid-volatile sulfide (AVS)...

  19. PREDICTING THE TOXICITY OF CHROMIUM IN SEDIMENTS

    EPA Science Inventory

    Chromium exists in sediments in two oxidation states: Cr(III), which is relatively insoluble and nontoxic, and Cr(VI), which is much more soluble and toxic. Chromium(VI) is thermodynamically unstable in anoxic sediments, and acid-volatile sulfide (AVS) is formed only in anoxic se...

  20. Distribution of Alkalis (Na, Cs, Rb) Between Silicate and Sulfide: Implications for Planetary Volatile Depletion

    NASA Technical Reports Server (NTRS)

    Boujibar, A.; Fei, Y.; Righter, K.; Du, Z.; Bullock, E.

    2018-01-01

    The abundances of volatile elements in the Earth's mantle are correlated with their temperatures of condensation. This depletion can be due to either incomplete condensation of the elements during the nebula condensation or evaporation processes during planetary growth. Elements that have affinities with metals (siderophile) and sulfides (chalcophile) are additionally depleted due to their segregation into the core. Therefore, study of lithophile elements could be useful to isolate processes of volatilization and their effect on the abundance of the elements in the Earth's mantle. However, the correlation of these lithophile elements including alkali elements, with their temperatures of condensation shows a significant scatter, which is difficult to reconcile with a depletion by vaporization or incomplete condensation alone.

  1. Aspects of the bottom sediment of Lake Nakaumi and Honjo area ~ featuring with organic matter and the Sulfides ~

    NASA Astrophysics Data System (ADS)

    Shinohara, R.

    2015-12-01

    Lake Nakaumi is a brackish water located at southwest Japan. Seawater from the Sea of Japan inflows through Sakai-strait, and river water flows through the Oohashi River into this lake. Lake Nakaumi is characterized with hypoxic and/or anoxic condition of bottom water derived with the distinct stratification of salinity in summer season. In this lake, a public project had been carried out for land reclamation since 1963. Honjo Area located to the north part of Lake Nakaumi, was semi-separated from Lake Nakaumi by reclamation dikes constructed for this project at 1981. However, this public project was aborted with the change of social conditions. To the effective utilization of the area, the partial removal of dike was carried out. Seawater from Sakai-strait flows directly into Honjo Area again. Environmental change of the lake is expected by this inflow of the seawater in Lake Nakaumi and Honjo Area after this restoration. It is well known that the surface sediment reflects the environment of lake bottom. The organic matter and the sulfides in sediment are good indicators of sedimentation environment. In this study, we analyzed them by several methods and grasped the bottom environment of both areas after the removal of dikes. We examined the impact of the restoration to both areas by comparing the observations with the past data. Surface sediment samples in Lake Nakaumi and Honjo Area were obtained at 77 and 40 stations, respectively. We collected surface sediment (about 1cm) were for each station, and analyzed total organic carbon (TOC) and total nitrogen (TN) as organic matter, and hydrogen sulfide (H2S) in pore water, total sulfide (TS) and acid volatile sulfide (AVS) as sulfides. TOC contents of Lake Nakaumi and Honjo Area range within 0.0-5.1% and 0.2-4.9%, respectively. TN contents range within 0.0-0.6 % and 0.1-0.6 %. TS contents range within 0.1-2.6% and 0.0-2.0 %. H2S contents range within 0.3-119.0 ppm and 0.5-140.4 ppm. AVS contents range within 0

  2. Analytical Measurement of Discrete Hydrogen Sulfide Pools in Biological Specimens

    PubMed Central

    Shen, Xinggui; Peter, Elvis A.; Bir, Shyamal; Wang, Rui; Kevil, Christopher G.

    2015-01-01

    Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that plays a vital role in numerous cellular functions and has become the focus of many research endeavors including pharmaco-therapeutic manipulation. Amongst the challenges facing the field is the accurate measurement of biologically active H2S. We have recently reported that the typically used methylene blue method and its associated results are invalid and do not measure bonafide H2S. The complexity of analytical H2S measurement reflects the fact that hydrogen sulfide is a volatile gas and exists in the body in different forms, including a free form, an acid labile pool and as bound sulfane sulfur. Here we describe a new protocol to discretely measure specific H2S pools using the monobromobimane method coupled with RP-HPLC. This new protocol involves selective liberation, trapping and derivatization of H2S. Acid-labile H2S is released by incubating the sample in an acidic solution (pH 2.6) of 100 mM phosphate buffer with 0.1 mM DTPA, in an enclosed system to contain volatilized H2S. Volatilized H2S is then trapped in 100 mM Tris-HCl (pH 9.5, 0.1 mM DTPA) and then reacted with excess monobromobimane. In a separate aliquot, the contribution of bound sulfane sulfur pool was measured by incubating the sample with 1 mM TCEP (Tris(2-carboxyethyl)phosphine hydrochloride), a reducing agent to reduce disulfide bonds, in 100 mM phosphate buffer (pH 2.6, 0.1 mM DTPA), and H2S measurement performed in an analogous manner to the one described above. The acid labile pool was determined by subtracting the free hydrogen sulfide value from the value obtained by the acid liberation protocol. The bound sulfane sulfur pool was determined by subtracting the H2S measurement from the acid liberation protocol alone compared to that of TCEP plus acidic conditions. In summary, our new method protocol allows very sensitive and accurate measurement of the three primary biological pools of H2S including free, acid labile

  3. Importance of sulfide interaction with iron as regulator of the microbial community in biogas reactors and its effect on methanogenesis, volatile fatty acids turnover, and syntrophic long-chain fatty acids degradation.

    PubMed

    Shakeri Yekta, Sepehr; Ziels, Ryan M; Björn, Annika; Skyllberg, Ulf; Ejlertsson, Jörgen; Karlsson, Anna; Svedlund, Matilda; Willén, Magnus; Svensson, Bo H

    2017-05-01

    The inhibitory effects of sulfide on microbial processes during anaerobic digestion have been widely addressed. However, other effects of sulfide are less explored, given that sulfide is a potential sulfur source for microorganisms and its high reactivity triggers a suit of abiotic reactions. We demonstrated that sulfide interaction with Fe regulates the dynamics and activities of microbial community during anaerobic digestion. This was manifested by the S:Fe molar ratio, whose increase adversely influenced the acetoclastic methanogens, Methanosaeta, and turnover of acetate. Dynamics of hydrogenotrophic methanogens, Methanoculleus and Methanobrevibacter, were presumably influenced by sulfide-induced changes in the partial pressure of hydrogen. Interestingly, conversion of the long-chain fatty acid (LCFA), oleate, to methane was enhanced together with the abundance of LCFA-degrading, β-oxidizing Syntrophomonas at an elevated S:Fe molar ratio. The results suggested that sulfur chemical speciation is a controlling factor for microbial community functions in anaerobic digestion processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  5. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  6. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  7. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  8. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  9. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  10. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...

  11. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...

  12. Flux of the biogenic volatiles isoprene and dimethyl sulfide from an oligotrophic lake.

    PubMed

    Steinke, Michael; Hodapp, Bettina; Subhan, Rameez; Bell, Thomas G; Martin-Creuzburg, Dominik

    2018-01-12

    Biogenic volatile organic compounds (BVOCs) affect atmospheric chemistry, climate and regional air quality in terrestrial and marine atmospheres. Although isoprene is a major BVOC produced in vascular plants, and marine phototrophs release dimethyl sulfide (DMS), lakes have been widely ignored for their production. Here we demonstrate that oligotrophic Lake Constance, a model for north temperate deep lakes, emits both volatiles to the atmosphere. Depth profiles indicated that highest concentrations of isoprene and DMS were associated with the chlorophyll maximum, suggesting that their production is closely linked to phototrophic processes. Significant correlations of the concentration patterns with taxon-specific fluorescence data, and measurements from algal cultures confirmed the phototrophic production of isoprene and DMS. Diurnal fluctuations in lake isoprene suggested an unrecognised physiological role in environmental acclimation similar to the antioxidant function of isoprene that has been suggested for marine biota. Flux estimations demonstrated that lakes are a currently undocumented source of DMS and isoprene to the atmosphere. Lakes may be of increasing importance for their contribution of isoprene and DMS to the atmosphere in the arctic zone where lake area coverage is high but terrestrial sources of BVOCs are small.

  13. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also

  14. Technique for Simultaneous Determination of [35S]Sulfide and [14C]Carbon Dioxide in Anaerobic Aqueous Samples †

    PubMed Central

    Taylor, Craig D.; Ljungdahl, Per O.; Molongoski, John J.

    1981-01-01

    A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide. PMID:16345742

  15. Acid production potentials of massive sulfide minerals and lead-zinc mine tailings: a medium-term study.

    PubMed

    Çelebi, Emin Ender; Öncel, Mehmet Salim; Kobya, Mehmet

    2018-01-01

    Weathering of sulfide minerals is a principal source of acid generation. To determine acid-forming potentials of sulfide-bearing materials, two basic approaches named static and kinetic tests are available. Static tests are short-term, and easily undertaken within a few days and in a laboratory. In contrast, kinetic tests are long-term procedures and mostly carried out on site. In this study, experiments were conducted over a medium-term period of 2 months, not as short as static tests and also not as long as kinetic tests. As a result, pH and electrical conductivity oscillations as a function of time, acid-forming potentials and elemental contents of synthetically prepared rainwater leachates of massive sulfides and sulfide-bearing lead-zinc tailings from abandoned and currently used deposition areas have been determined. Although the lowest final pH of 2.70 was obtained in massive pyrite leachate, massive chalcopyrite leachate showed the highest titrable acidity of 1.764 g H 2 SO 4 /L. On the other hand, a composite of currently deposited mine tailings showed no acidic characteristic with a final pH of 7.77. The composite abandoned mine tailing leachate had a final pH of 6.70, close to the final pH of massive galena and sphalerite leachates, and produced a slight titrable acidity of 0.130 g H 2 SO 4 /L.

  16. Partitioning of U, Th and K Between Metal, Sulfide and Silicate, Insights into the Volatile-Content of Mercury

    NASA Technical Reports Server (NTRS)

    Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.; Chidester, B.

    2016-01-01

    During the early stages of the Solar System formation, especially during the T-Tauri phase, the Sun emitted strong solar winds, which are thought to have expelled a portion of the volatile elements from the inner solar system. It is therefore usually believed that the volatile depletion of a planet is correlated with its proximity to the Sun. This trend was supported by the K/Th and K/U ratios of Venus, the Earth, and Mars. Prior to the MESSENGER mission, it was expected that Mercury is the most volatile-depleted planet. However, the Gamma Ray Spectrometer of MESSENGER spacecraft revealed elevated K/U and K/Th ratios for the surface of Mercury, much higher than previous expectations. It is possible that the K/Th and K/U ratios on the surface are not a reliable gauge of the bulk volatile content of Mercury. Mercury is enriched in sulfur and is the most reduced of the terrestrial planets, with oxygen fugacity (fO2) between IW-6.3 and IW-2.6 log units. At these particular compositions, U, Th and K behave differently and can become more siderophile or chalcophile. If significant amounts of U and Th are sequestered in the core, the apparent K/U and K/Th ratios measured on the surface may not represent the volatile budget of the whole planet. An accurate determination of the partitioning of these elements between silicate, metal, and sulfide phases under Mercurian conditions is therefore essential to better constrain Mercury's volatile content and assess planetary formation models.

  17. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.

    PubMed

    Baldwin, Darren S; Mitchell, Alison

    2012-03-15

    The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle. Crown Copyright © 2011. Published by Elsevier Ltd. All

  18. Assessing Mercury and Methylmercury Bioavailability in Sediment Pore Water Using Mercury-Specific Hydrogels

    DTIC Science & Technology

    2015-06-01

    gram AVS acid volatile sulfides BrCl bromium chloride cm centimeter(s) cm2 g-1 square centimeter(s) per gram CVAFS cold vapor atomic...Production The DGT devices used in our experiments consist of three principal components: a diffusive gel, a resin gel, and a membrane. Gel synthesis is...based on the laboratory procedures for the synthesis of polyacrylamide electrophoresis gels (Clarisse and Hintelmann 2006); although, instead of

  19. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae.

    PubMed

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-06-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization.

  20. Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Çelebi, E. Ender; Öncel, M. Salim

    2016-12-01

    Weathering of sulfide minerals is a major source of acid production in nature and especially in mining territories. Pyrite is not the only principal mineral that generates acid drainage: other sulfide minerals (sphalerite, galena, chalcopyrite, etc.) may also be responsible for acid production. In addition to massive sulfide minerals, sulfide-bearing mine tailings may also produce acid drainage due to oxidation and hydrolysis reactions in waste dumps. The lead/zinc (Pb/Zn) mining region in Balya and Balıkesir, in Turkey, has operated mines intensively since the 1860s; so that characterization of the sulfide minerals and tailings situated and formed around the mining site is of great importance to secure a sustainable environment. For this purpose, acid production and neutralization potentials of massive sulfide ores of the region, and in the Pb/Zn process facility mine tailings from ten different points of tailings dam, have been determined by applied conventional Acid-Base Accounting (ABA) and Net Acid Generation (NAG) static tests after chemical and mineralogical analysis. The NAG pH and net acid production potential (NAPP) values were compared on a chart in order to classify the samples as either acid generating or non-acid generating. According to the comparisons, the sulfide minerals were classified as potentially acid forming (PAF). Massive pyrite had the highest NAPP and NAG pH value of 1966.6 kg H2SO4/ton and 1.91, respectively and the galena had the lowest NAPP value of 558.9 kg H2SO4/ton. However, the sphalerite NAG leachate pH value of 4.30 was the highest in sulfide minerals so that the sphalerite plotted near the uncertainty reference border in the PAF zone. In the mine tailings, NAPP values of 105.9 kg H2SO4/ton on average and the NAG pH values of over 7.5 were determined. In addition to these tests, water leaching (agitation test) was carried out on tailings in order to generate more information. The tailings did not generate acidic leachates as

  1. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae

    PubMed Central

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-01-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization. PMID:24471125

  2. Luminescent behavior of cadmium sulfide quantum dots for gallic acid estimation

    NASA Astrophysics Data System (ADS)

    Singh, Suman; Garg, Sourav; Chahal, Jitender; Raheja, Khushboo; Singh, Deepak; Singla, M. L.

    2013-03-01

    Thioglycolic acid capped cadmium sulfide (CdS/T) quantum dots have been synthesized using wet chemistry and their optical behavior has been investigated using UV-visible absorption and fluorescence spectroscopy. The role of the capping agent, sulfide source concentration, pH and temperature has been studied and discussed. Studies showed that alkaline pH leads to a decrease in the size of quantum dots and reflux temperature above 70 °C resulted in red-shift of emission spectra which is due to narrowing of the bandgap. Further, to reduce the toxicity and photochemical instability of quantum dots, the quantum dots have been functionalized with polyethylene glycol (PEG), which resulted in a 20% enhancement of the fluorescence intensity. The application potential of CdS/T-PEG quantum dots was further studied using gallic acid as a model compound. The sensing is based on fluorescence quenching of quantum dots in the presence of gallic acid, and this study showed linearity in the range from 1.3 × 10-8 to 46.5 × 10-8 mM, with a detection limit of 3.6 × 10-8 mM.

  3. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments

    NASA Astrophysics Data System (ADS)

    Aller, Robert C.; Rude, Peter D.

    1988-03-01

    During the physical or biological reworking of surficial marine sediments, metal oxides are often brought into contact with both solid and dissolved sulfides. Experiments simulating these mixing processes demonstrate that in natural sediments Mn-oxides can completely oxidize solid phase sulfides to SO 4- under anoxic conditions. The major source of sulfur is probably acid volatile sulfide. Minerals containing Mn +4 are apparently more effective than Mn +3 in driving the oxidation. There is slight or no evidence for complete sulfide oxidation by Fe-oxides under similar conditions. The reaction is inhibited by DNP (dinitrophenol) and azide, implying biological mediation by a group of chemolithotrophic bacteria such as the thiobacilli, having a well-organized cytochrome system, oxidative phosphorylation coupled with sulfide oxidation, and possibly aulolrophic CO 2 fixation. Lack of sensitivity to chlorate suggests that a No 3- reductase complex is not involved. Because of metal reduction and the overall stoichiometry of reaction, this sulfide oxidation causes a rise in pH in contrast to oxidation by O 2. Alkalinity is also simultaneously depeleted by Mn, Ca carbonate precipitation. Both manganoan kutnahorite and manganoan calcite are observed to form rapidly (days) during Mn reduction. The oxidation of sulfides by Mn-oxides is likely to be important, but highly variable, in organic-rich shelf sediments and environments such as hydrothermal vents where sulfidic plumes contact oxidized metals. A substantial Proportion of sedimentary sulfide may be oxidized and Mn reduced by this pathway, particularly in bioturbated sediments. The relative roles of lithotrophic (S) and heterotrophic (C) Mn-reduction in marine sediments are presently unknown.

  4. Generation of volatile fatty acids by axillary bacteria.

    PubMed

    James, A G; Hyliands, D; Johnston, H

    2004-06-01

    It is generally accepted that short-chain (C(2)-C(5)) volatile fatty acids (VFAs) are among the causal molecules of axillary malodour. It is also widely acknowledged that malodour generation is attributable to the biotransformation of odourless natural secretions, into volatile odorous products, by axillary bacteria. However, little information is available on the biochemical origins of VFAs on axillary skin. In these studies, assay systems were developed to investigate the generation of VFAs from substrates readily available to the bacteria resident on axillary skin. Propionibacteria and staphylococci were shown to ferment glycerol and lactic acid to the short-chain (C(2)-C(3)) VFAs, acetic and propionic acid. Furthermore, staphylococci are capable of converting branched aliphatic amino acids, such as leucine, to highly odorous short-chain (C(4)-C(5)) methyl-branched VFAs, such as isovaleric acid, which are traditionally associated with the acidic note of axillary malodour. However, in vitro kinetic data indicates that these pathways contribute less to axillary VFA levels, than fatty acid biotransformations by a recently defined sub-group of the Corynebacterium genus, corynebacteria (A). The results of these studies provide new understanding on the biochemical origins of VFA-based axillary malodour which, in turn, should lead to the development of novel deodorant systems.

  5. Effect of Inorganic Salts on the Volatility of Organic Acids

    PubMed Central

    2014-01-01

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance. PMID:25369247

  6. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  7. AV3V lesions attenuate the cardiovascular responses produced by blood-borne excitatory amino acid analogs

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Beltz, T. G.; Lewis, S. J.; Johnson, A. K.

    1999-01-01

    Systemic injections of the excitatory amino acid (EAA) analogs, kainic acid (KA) and N-methyl-D-aspartate (NMDA), produce a pressor response in conscious rats that is caused by a centrally mediated activation of sympathetic drive and the release of arginine vasopressin (AVP). This study tested the hypothesis that the tissue surrounding the anteroventral part of the third ventricle (AV3V) plays a role in the expression of the pressor responses produced by systemically injected EAA analogs. Specifically, we examined whether prior electrolytic ablation of the AV3V region would affect the pressor responses to KA and NMDA (1 mg/kg iv) in conscious rats. The KA-induced pressor response was smaller in AV3V-lesioned than in sham-lesioned rats (11 +/- 2 vs. 29 +/- 2 mmHg; P < 0.05). After ganglion blockade, KA produced a pressor response in sham-lesioned but not AV3V-lesioned rats (+27 +/- 3 vs. +1 +/- 2 mmHg; P < 0.05). The KA-induced pressor response in ganglion-blocked sham-lesioned rats was abolished by a vasopressin V1-receptor antagonist. Similar results were obtained with NMDA. The pressor response to AVP (10 ng/kg iv) was slightly smaller in AV3V-lesioned than in sham-lesioned ganglion-blocked rats (45 +/- 3 vs. 57 +/- 4 mmHg; P < 0.05). This study demonstrates that the pressor responses to systemically injected EAA analogs are smaller in AV3V-lesioned rats. The EAA analogs may produce pressor responses by stimulation of EAA receptors in the AV3V region, or the AV3V region may play an important role in the expression of these responses.

  8. Correlations between health status and OralChroma™-determined volatile sulfide levels in mouth air of the elderly.

    PubMed

    Awano, Shuji; Takata, Yutaka; Soh, Inho; Yoshida, Akihiro; Hamasaki, Tomoko; Sonoki, Kazuo; Ohsumi, Tomoko; Nishihara, Tatsuji; Ansai, Toshihiro

    2011-12-01

    Dimethyl sulfide (DMS), a volatile sulfur compound (VSC) found in mouth air, is thought to be associated with systemic diseases; this in contrast to the two other VSCs found in mouth air: hydrogen sulfide and methyl mercaptan (MM). This study aimed to validate the relationship between DMS in mouth air and oral and systemic factors. The subjects were 393 elderly Japanese volunteers participating in an oral and systemic health survey. They were surveyed for the concentration of VSC components in their mouth air and for their oral and systemic health status. Using logistic regression models, the prevalence of DMS in mouth air above the organoleptic threshold level (OTL) was found to be significantly associated with high-density lipoprotein (HDL) cholesterol level, medical history of colon polyps and asthma, being female, and the presence of MM in mouth air above the OTL. Our data suggest that systemic factors, such as a high serum HDL cholesterol level and a medical history of asthma and colon polyps, might be more prominent in subjects with elevated DMS. The differences, although statistically significant, are quite small. They also indicate that an oral factor, such as a high MM mouth-air level also influences the DMS mouth-air level in addition to systemic factors.

  9. Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus).

    PubMed

    Caprino, Fabio; Moretti, Vittorio Maria; Bellagamba, Federica; Turchini, Giovanni Mario; Busetto, Maria Letizia; Giani, Ivan; Paleari, Maria Antonietta; Pazzaglia, Mario

    2008-06-09

    The present study was conducted to characterize caviar obtained from farmed white sturgeons (Acipenser transmontanus) subjected to different dietary treatments. Twenty caviar samples from fish fed two experimental diets containing different dietary lipid sources have been analysed for chemical composition, fatty acids and flavour volatile compounds. Fatty acid make up of caviar was only minimally influenced by dietary fatty acid composition. Irrespective of dietary treatments, palmitic acid (16:0) and oleic acid (OA, 18:1 n-9) were the most abundant fatty acid followed by docosahexaenoic acid (DHA, 22:6 n-3) and eicopentaenoic (EPA, 20:5 n-3). Thirty-three volatile compounds were isolated using simultaneous distillation-extraction (SDE) and identified by GC-MS. The largest group of volatiles were represented by aldehydes with 20 compounds, representing the 60% of the total volatiles. n-Alkanals, 2-alkenals and 2,4-alkadienals are largely the main responsible for a wide range of flavours in caviar from farmed white surgeon.

  10. Discrimination among iron sulfide species formed in microbial cultures.

    PubMed

    Popa, R; Kinkle, B K

    2000-10-01

    A quantitative method for the study of iron sulfides precipitated in liquid cultures of bacteria is described. This method can be used to quantify and discriminate among amorphous iron sulfide (FeS(amorph)), iron monosulfide minerals such as mackinawite or greigite (FeS(min)), and iron disulfide minerals such as pyrite or marcasite (FeS(2min)) formed in liquid cultures. Degradation of iron sulfides is performed using a modified Cr(2+) reduction method with reflux distillation. The basic steps of the method are: first, separation of FeS(amorph); second, elimination of interfering species of S such as colloidal sulfur (S(c) degrees ), thiosulphate (S(2)O(3)(2-)) and polysulfides (S(x)(2-)); third, separation of FeS(min); and fourth, separation of FeS(2min). The final product is H(2)S which is determined after trapping. The efficiency of recovery is 96-99% for FeS(amorph), 76-88% for FeS(min), and >97% for FeS(2min). This method has a high reproducibility if the experimental conditions are rigorously applied and only glass conduits are used. A well ventilated fume hood must be used because of the toxicity and volatility of several reagents and products. The advantage relative to previously described methods are better resolution for iron sulfide species and use of the same bottles for both incubation of cultures and acid degradation. The method can also be used for Fe/S stoichiometry with sub-sampling and Fe analysis.

  11. Venus: Halide cloud condensation and volatile element inventories

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.; Fegley, B., Jr.

    1982-01-01

    Several Venus cloud condensates, including A12C16 as well as halides, oxides and sulfides of arsenic and antimony, are assessed for their thermodynamic and geochemical plausibility. Aluminum chloride can confidently be ruled out, and condensation of arsenic sulfides on the surface will cause arsenic compounds to be too rare to produce the observed clouds. Antimony may conceivably be sufficiently volatile, but the expected molecular form is gaseous SbS, not the chloride. Arsenic and antimony compounds in the atmosphere will be regulated at very low levels by sulfide precipitation, irrespective of the planetary inventory of As and Sb. Thus the arguments for a volatile-deficient origin for Venus based on the depletion of water and mercury (relative to Earth) cannot be tested by a search for atmospheric arsenic or antimony.

  12. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    PubMed Central

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.

    2015-01-01

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment. PMID:26157421

  13. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    DOE PAGES

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; ...

    2015-06-23

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanismsmore » at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.« less

  14. A pilot study on remediation of sediments enriched by oyster farming wastes using granulated coal ash.

    PubMed

    Yamamoto, T; Kim, K H; Shirono, K

    2015-01-15

    In order to evaluate the ability of granulated coal ash (GCA), a byproduct of coal thermal electric power stations, to remove hydrogen sulfide from organically enriched sediments, a pilot study was carried out at oyster farming sites, where sediments were enriched with oyster feces and dead oysters. Concentration of hydrogen sulfide in the interstitial water of the sediment decreased to nearly zero in both experimental sites, whereas it remained over 0.2mg/l in the control site. Concentration of acid volatile sulfide (AVS) in the sediment also decreased significantly in both experimental sites, while remained over 0.4 mg/g in the control site. Increases were observed in both the number of benthic microalgae species and the individual number of benthic animals in the surface sediments. This may have been due to the decrease in hydrogen sulfide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mid-term variation of vertical distribution of acid volatile sulphide and simultaneously extracted metals in sediment cores from Lake Albufera (Valencia, Spain).

    PubMed

    Hernández-Crespo, Carmen; Martín, Miguel

    2013-11-01

    Lake Albufera is one of the most eutrophic bodies of water in Spain due to point and diffuse pollution over past decades, and its sediments are likely to be anoxic because of high organic matter flux. Hence, sulphides can play an important role in limiting the mobility of heavy metals. This study aimed to study the vertical variation of acid volatile sulphide (AVS) and simultaneously extracted metals (SEM) in sediment cores collected from Lake Albufera; other sediment characteristics, such as organic matter, biochemical oxygen, demand or total metals, were also studied. Three sites were selected, and four sampling campaigns were performed to study spatial and temporal variation as well as to obtain information regarding historical variation in the composition of sediments. AVS and SEM were analysed by the purge-and-trap method. The vertical distribution of AVS and SEM varied depending on the sampling site-concentrations of AVS and SEM were higher at sites close to mouths of inflowing channels. A decreasing trend of AVS has been found at these sites over time: In the two first samplings, AVS increased with depth reaching maximum concentrations of 40 and 21 μmol g(-1), but from then on AVS were lower and decreased with depth. SEM decreased with depth from 3 μmol g(-1) in surface layers to approximately 1 μmol g(-1) at deeper segments at these sites. However, the central site was more uniform with respect to depth as well as with time; it presented lower values of SEM and AVS (mean 0.9 and 2.0 μmol g(-1) respectively), and the maximum value of AVS (7 μmol g(-1)) was found at the top layer (0-3 cm). According to the (SEM-AVS)/fOC approach, every site, and throughout the cores, can be classified as containing nontoxic metals because the values were <130 μmol g(-1).

  16. Influences on copper bioaccumulation, growth, and survival of the midge, Chironomus tentans, in metal-contaminated sediments

    USGS Publications Warehouse

    Besser, John M.; Kubitz, Jody A.; Ingersoll, Chris G.; Braselton, W. Emmett; Giesy, John P.

    1995-01-01

    Sediment bioassays with larvae of the midge, Chironomus tentans, were used to evaluate influences on the bioavailability and toxicity of copper (Cu) in sediments with a wide range of concentrations of metals, acid-volatile sulfide (AVS), and other physicochemical characteristics. Sediments were collected from sixteen lakes in Michigan, USA, and from twelve sites in the Clark Fork River drainage of Montana, USA, which are contaminated with metals from mining activities and from other anthropogenic sources. Bioassays with C. tentans larvae were conducted for ten days in a static-renewal test system, with endpoints of survival, growth, and metal bioaccumulation. Bioaccumulation of copper (Cu) was strongly correlated with Cu concentrations in porewater, and was increased significantly at Cu concentrations less than those affecting growth or survival. Midge survival and growth were not significantly correlated with concentrations of Cu in sediment or porewater, and were poorly predicted by ratios of acid-extractable metals to AVS in sediments. Principal components analysis indicated that Cu concentrations in porewater and bioaccumulation of Cu by midge larvae were influenced by AVS, sediment organic carbon, and porewater pH, and that toxicity was associated with high concentrations of Cu, high concentrations of zinc (Zn) and ammonia. No toxicity was observed in several sediments which contained low concentrations of AVS and high concentrations of Cu and Zn. In sediments which contain little AVS, bioavailability of metals may be controlled by constituents other than sulfides, such as organic matter and metal hydrous oxides. These results indicate that assessments of toxicity in metal-contaminated sediments should evaluate the importance of metal-binding phases other than sulfides, and the possible contributions of ammonia or other toxicants to toxicity in sediment bioassays.

  17. Assessment of heavy metal impact on sediment quality of the Xiaoqinghe estuary in the coastal Laizhou Bay, Bohai Sea: inconsistency between two commonly used criteria.

    PubMed

    Zhuang, Wen; Gao, Xuelu

    2014-06-15

    Surface sediments in the Xiaoqinghe estuary, southwestern coastal Laizhou Bay, were examined to assess the bio-toxic risk of heavy metals (Cd, Cu, Ni, Pb and Zn) with the effects range-low and effects range-median guidelines (ERL-ERMs) and the concentration ratio of simultaneously extractable metals to acid volatile sulfides ([SEM]/[AVS]). Based on the ERL-ERM guidelines, bio-toxic effect caused by Cu, Ni, Pb and Zn could be expected in the riverine surface sediments of the Xiaoqinghe estuary; and the surface sediments in the marine area were in good quality and only Ni might cause bio-toxic effect occasionally. The AVS-SEM guidelines revealed that no bio-toxic effect could be caused by any of the studied metals in both the riverine and marine sediments, since there were excess sulfides in surface sediments which could form water-insoluble substances with free metal ions and reduce the bioavailability of heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Sediment quality assessment in a coastal lagoon (Ravenna, NE Italy) based on SEM-AVS and sequential extraction procedure.

    PubMed

    Pignotti, Emanuela; Guerra, Roberta; Covelli, Stefano; Fabbri, Elena; Dinelli, Enrico

    2018-09-01

    Sediments from the Pialassa Piomboni coastal lagoon (NE Italy) were studied to assess the degree of contamination and ecological risk related to trace metals by combining a geochemical characterization of bulk sediments with the assessment of the bioavailable forms of trace metals. With this purpose, sediment contamination (Cd, Cu, Hg, Ni, Pb, and Zn) was assessed by Enrichment Factors (EFs), and potential bioavailability by the Simultaneously Extracted Metals and Acid Volatile Sulfides (SEM-AVS) approach (Cd, Cu, Ni, Pb, and Zn), and by Sequential Extraction Procedure (Co, Cr, Cu, Ni, Pb, and Zn). On average, Cr and Ni exhibited no contamination (EF ≤1.5), and a predominance in the residual fraction of the sediment, indicating natural origin for these metals. Cu, Pb and Zn displayed a local contamination, which resulted in a higher proportion of Cu bound to the reducible and oxidizable fractions (~30% and ~40% as median, respectively), and Pb mostly associated with the reducible phase (~60% as median). Hence, Cu and Pb could be mobilized when environmental conditions become reducing or oxidizing. Zn resulted mainly partitioned into the reducible and residual fractions (~50% as median, in both fractions). The Risk Assessment Code (RAC) indicated that approximately 30% of samples had >10% of total Zn weakly bound to the sediment, suggesting a medium risk of exposure for aquatic organisms. RAC results were consistent with the ∑SEM-AVS findings, pointing to possible adverse effects for aquatic biota in ~30% of samples, with Zn mostly accounting for the total metal bioavailability. Hg showed a moderate to very severe enrichment, indicating that a substantial amount of this metal derives from anthropogenic sources and may pose adverse effects on the aquatic biota of the Pialassa Piomboni lagoon. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    PubMed

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use.

    PubMed

    Ramírez-Sáenz, D; Zarate-Segura, P B; Guerrero-Barajas, C; García-Peña, E I

    2009-04-30

    In the present work, the main objective was to evaluate a biofiltration system for removing hydrogen sulfide (H(2)S) and volatile fatty acids (VFAs) contained in a gaseous stream from an anaerobic digestor (AD). The elimination of these compounds allowed the potential use of biogas while maintaining the methane (CH(4)) content throughout the process. The biodegradation of H(2)S was determined in the lava rock biofilter under two different empty bed residence times (EBRT). Inlet loadings lower than 200 g/m(3)h at an EBRT of 81 s yielded a complete removal, attaining an elimination capacity (EC) of 142 g/m(3)h, whereas at an EBRT of 31 s, a critical EC of 200 g/m(3)h was reached and the EC obtained exhibited a maximum value of 232 g/m(3)h. For 1500 ppmv of H(2)S, 99% removal was maintained during 90 days and complete biodegradation of VFAs was observed. A recovery of 60% as sulfate was obtained due to the constant excess of O(2) concentration in the system. Acetic and propionic acids as a sole source of carbon were also evaluated in the bioreactor at different inlet loadings (0-120 g/m(3)h) obtaining a complete removal (99%) for both. Microcosms biodegradation experiments conducted with VFAs demonstrated that acetic acid provided the highest biodegradation rate.

  1. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  2. Assessment of sand quality on concrete performance : examination of acidic and sulfate/sulfide-bearing sands.

    DOT National Transportation Integrated Search

    2014-12-01

    The purpose of this research is to examine how the presence of sulfide- and sulfate-containing : minerals in acidic aggregates may affect the properties of mortar and concrete. Analyses were : performed to compare two sands from a deposit in the Geor...

  3. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    PubMed

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  4. Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.

    PubMed

    Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L

    2008-10-08

    Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.

  5. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  6. Using electromagnetic induction technology to predict volatile fatty acid, source area differences

    USDA-ARS?s Scientific Manuscript database

    Subsurface sampling techniques have been adapted to measure manure accumulation on feedlot surface. Objectives of this study were to determine if sensor data could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced on the feedlot surface three days following a...

  7. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    PubMed

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  8. Distribution of volatile branched-chain fatty acids in various lamb tissues.

    PubMed

    Brennand, C P; Lindsay, R C

    1992-01-01

    Volatile fatty acids (C4-C11) including even-, odd-, and branched-chain members in lamb tissues were quantitatively analyzed. Volatile branched-chain fatty acids (BCFA) were more concentrated in subcutaneous adipose tissue samples (rump, shoulder, breast) than in perinepheric adipose or muscle tissues. Perinepheric adipose tissue contained relatively high quantities of n-chain, even-numbered fatty acids and very low levels of BCFA. Greater variation existed in fatty acid profiles among similar subcutaneous adipose tissues from different lambs than between samples of adipose tissue from different carcass sites from a given lamb sample. 4-Methyl- and 4-ethyloctanoic acids were present at concentrations greatly above threshold levels in all lamb fats tested, and thus upon hydrolysis would contribute species-related flavors to lamb. 4-Methylnonanoic concentrations in lamb fats ranged from nondetectable to greater than the threshold level, and therefore this compound would not always contribute to the species-related flavors of lamb. Lean meat samples contained very low concentrations of 4-methyl- and 4-ethyloctanoic acids. Copyright © 1992. Published by Elsevier Ltd.

  9. On the transformation of sulfur-containing amino acids and peptides to volatile sulfur compounds (VSC) in the human mouth.

    PubMed

    Wåler, S M

    1997-10-01

    Halitosis is most often caused by oral conditions. Volatile sulfur compounds (VSC), constituting the major components of oral malodor, are produced by anaerobic, gram-negative bacteria retained mainly in periodontal pockets or on the tongue dorsum. Sulfur-containing amino acids serve as substrate for these bacteria. VSC have also been found to have unfavorable effect on the tissue. The aim of this study was to examine whether normal, healthy individuals with no history of halitosis were able to produce VSC from cysteine, when applied as a mouthrinse. A further aim of the study was to investigate and compare the potential of other sulfur-containing amino acids and peptides as substrates for oral VSC production and to localize the odor-production sites. A portable sulfide monitor was used for VSC registration. Results showed that all test subjects produced high oral concentrations of VSC upon rinses with cysteine, which thus seems to be a major substrate for VSC production. The other sulfur-containing substrates had much less effect. It was found that the tongue was the major site for VSC production, and that saliva per se caused low VSC production.

  10. Vesicle-metal-sulfide assemblages from the Chelyabinsk meteorite

    NASA Astrophysics Data System (ADS)

    Andronikov, A.; Lauretta, D.; Hill, D.; Andronikova, I.

    2014-07-01

    On February 15, 2013, an ET object entered the Earth's atmosphere over the Russian city of Chelyabinsk. It entered at a preatmospheric velocity of 18.6 km/sec at the angle of 17--20°. The bolide responsible for this event was estimated to be 17-20 m in diameter and had a mass of ˜10 Ktons; the ensuing airburst occurred at an altitude >20 km and released a total energy of ˜440 kT [1,2]. The Chelyabinsk meteorite is an equilibrated LL5 ordinary chondrite, shock stage S4, and weathering grade WG0 similar to other LL5 falls [1,2]. Our studied sample is an impact melt breccia consisting of shock-darkened chondrite clasts (SDC) and vesicular impact melt lithology (IML). The SDC have recrystallized textures and contain barred- and porphyritic-olivine, porphyritic-olivine-pyroxene and radial-pyroxene chondrules in the intrachondrule matrix. A dense network of thin fractures in the SDC is filled up with opaque minerals [cf. 3]. Metals in the SDC are kamacite (4.7--8.5 % Ni), taenite (21.4--33.5 % Ni), and martensite (14.5--18.6 % Ni). The IML consists mostly of tiny (<10 microns) silicate grains surrounded by patches of glass. The IML is characterized by the presence of multiple vesicles (up to 1 mm) in silicate matrix. The vesicles are often filled up with sulfide-metal assemblages or only with sulfide. Metals in the IML are martensite (12.9--18.4 % Ni) and taenite (19.3--47.3 % Ni). Sulfides from both SDC and IML are Ni-bearing troilite (62.2--64.2 % Fe; 35.2--37.2 % S; 3000--5000 ppm Ni), with rare pentlandite (41.2--48.6 % Fe, 33.2--34.3 % S, 19.4--23.9 % Ni). The presence of abundant vesicles in the IML indicates strong heating and volatilization. Since no other phase except for sulfide-metal assemblages were observed to fill up vesicles, the likely source of volatiles is S vapor formed by vaporization of FeS during impact melting [cf. 4]. Molten metal and sulfide coalesced into droplets of metal-sulfide liquids forming eventually sulfide-metal assemblages. A

  11. Cupriavidus necator H16 Uses Flavocytochrome c Sulfide Dehydrogenase To Oxidize Self-Produced and Added Sulfide

    PubMed Central

    Lü, Chuanjuan; Xia, Yongzhen; Liu, Daixi; Zhao, Rui; Gao, Rui

    2017-01-01

    ABSTRACT Production of sulfide (H2S, HS−, and S2−) by heterotrophic bacteria during aerobic growth is a common phenomenon. Some bacteria with sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) can oxidize self-produced sulfide to sulfite and thiosulfate, but other bacteria without these enzymes release sulfide into the medium, from which H2S can volatilize into the gas phase. Here, we report that Cupriavidus necator H16, with the fccA and fccB genes encoding flavocytochrome c sulfide dehydrogenases (FCSDs), also oxidized self-produced H2S. A mutant in which fccA and fccB were deleted accumulated and released H2S. When fccA and fccB were expressed in Pseudomonas aeruginosa strain Pa3K with deletions of its sqr and pdo genes, the recombinant rapidly oxidized sulfide to sulfane sulfur. When PDO was also cloned into the recombinant, the recombinant with both FCSD and PDO oxidized sulfide to sulfite and thiosulfate. Thus, the proposed pathway is similar to the pathway catalyzed by SQR and PDO, in which FCSD oxidizes sulfide to polysulfide, polysulfide spontaneously reacts with reduced glutathione (GSH) to produce glutathione persulfide (GSSH), and PDO oxidizes GSSH to sulfite, which chemically reacts with polysulfide to produce thiosulfate. About 20.6% of sequenced bacterial genomes contain SQR, and only 3.9% contain FCSD. This is not a surprise, since SQR is more efficient in conserving energy because it passes electrons from sulfide oxidation into the electron transport chain at the quinone level, while FCSD passes electrons to cytochrome c. The transport of electrons from the latter to O2 conserves less energy. FCSDs are grouped into three subgroups, well conserved at the taxonomic level. Thus, our data show the diversity in sulfide oxidation by heterotrophic bacteria. IMPORTANCE Heterotrophic bacteria with SQR and PDO can oxidize self-produced sulfide and do not release H2S into the gas phase. C. necator H16 has FCSD but not SQR, and it does

  12. Determination of the volatile and semi-volatile secondary metabolites, and aristolochic acids in Aristolochia ringens Vahl.

    PubMed

    Stashenko, Elena E; Andrés Ordóñez, Sergio; Marín, Néstor Armando; Martínez, Jairo René

    2009-10-01

    Volatile and semi-volatile secondary metabolites, as well as aristolochic acids (AA), present in leaves, stems, and flowers of Aristolochia ringens were determined by gas chromatography (GC)-mass spectrometry (MS) and high-performance liquid chromatography (HPLC) methods, respectively. Metabolite isolation was performed using different extraction techniques: microwave-assisted hydrodistillation (MWHD), supercritical fluid extraction, and headspace solid-phase microextraction (HS-SPME). The chemical composition of the extracts and oils was established by GC-MS. The determinations of AAI and AAII were conducted by methanolic extraction of different plant parts followed by HPLC analysis. Essential oil yields from leaves and stems were 0.008 +/- 0.0022% and 0.047 +/- 0.0026%, respectively. Aristolochia ringens flowers did not yield essential oil under MWHD. Sesquiterpene hydrocarbons (66%) were the main compounds in the essential oil isolated from leaves whereas monoterpene hydrocarbons (73%) predominated in the stems essential oil. Yields of extracts isolated by SFE from leaves, stems, and flowers were 4 +/- 1.8%, 1.2 +/- 0.25%, and 4 +/- 1.8%, respectively. In vivo HS-SPME of flowers isolated compounds with known unpleasant smells such as volatile aldehydes and short-chain carboxylic acids. HPLC analysis detected the presence of AAII in the flowers of Aristolochia ringens at a concentration of 610 +/- 47 mg/kg of dried flower.

  13. Acidic volatiles and the Mars Soil

    NASA Astrophysics Data System (ADS)

    Banin, A.; Han, F. X.; Kan, I.; Cicelsky, A.

    1997-06-01

    Large portions of Mars' surface are covered with deposits of fine, homogeneous, weathered dusty-soil material. Nanophase iron oxides, silicate mineraloids, and salts prevail in the soil. The mode of formation of this somewhat peculiar type of soil is still far from being clear. One scenario suggests that weathering took place during early epochs when Mars may have been ``warm and wet.'' The properties of the soil are not easily reconciled with this scenario. We propose another possible scenario that attributes, in part, the peculiar nature of the Martian dust and soil to a relatively ``young'' weathering product formed during the last few hundreds of millions of years in a process that involves acidic volatiles. We tested this hypothesis in an experimental study of the first step of acidolytic weathering of a partly palagonitized volcanic tephra of hawaiitic lava origin, using sulfuric, hydrochloric and nitric acids and their mixtures. The tephra effectively ``neutralize'' the added acidity. The protonic acidity added to the tephra attacks the primary minerals, releasing Fe, Al, and Mg, which control the pH, acting as Lewis-acid species of varying acid strengths. The full amount of acidity added to the tephra is stored in it, but only a very small fraction is preserved as the original protonic acidity. The majority of the added sulfate and chloride were present as salts and easily solubilized minerals. Well-crystallized sulfate salt minerals of aluminum and calcium were detected by powder X ray diffractometry, whereas secondary magnesium and iron minerals were not detected, due probably to lack of crystallinity. The presence of gypsum (CaSO4.2H2O) and alunogen (Al2(SO4)3.17H2O) is probably responsible for the observed increased hygroscopicity of the acidified tephra and their tendency to form hardened crusts. We suggest that if this mechanism is of importance on Mars, then the chemically weathered component of the Martian soil consists of a salt-rich mineral

  14. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    NASA Astrophysics Data System (ADS)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  15. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans.

    PubMed

    Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe

    2017-11-01

    This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    PubMed

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  17. Deodorization of garlic breath volatiles by food and food components.

    PubMed

    Munch, Ryan; Barringer, Sheryl A

    2014-04-01

    The ability of foods and beverages to reduce allyl methyl disulfide, diallyl disulfide, allyl mercaptan, and allyl methyl sulfide on human breath after consumption of raw garlic was examined. The treatments were consumed immediately following raw garlic consumption for breath measurements, or were blended with garlic prior to headspace measurements. Measurements were done using a selected ion flow tube-mass spectrometer. Chlorophyllin treatment demonstrated no deodorization in comparison to the control. Successful treatments may be due to enzymatic, polyphenolic, or acid deodorization. Enzymatic deodorization involved oxidation of polyphenolic compounds by enzymes, with the oxidized polyphenols causing deodorization. This was the probable mechanism in raw apple, parsley, spinach, and mint treatments. Polyphenolic deodorization involved deodorization by polyphenolic compounds without enzymatic activity. This probably occurred for microwaved apple, green tea, and lemon juice treatments. When pH is below 3.6, the enzyme alliinase is inactivated, which causes a reduction in volatile formation. This was demonstrated in pH-adjusted headspace measurements. However, the mechanism for volatile reduction on human breath (after volatile formation) is unclear, and may have occurred in soft drink and lemon juice breath treatments. Whey protein was not an effective garlic breath deodorant and had no enzymatic activity, polyphenolic compounds, or acidity. Headspace concentrations did not correlate well to breath treatments. © 2014 Institute of Food Technologists®

  18. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity.

    PubMed

    Li, Tongyu; Li, Erchao; Suo, Yantong; Xu, Zhixin; Jia, Yongyi; Qin, Jian G; Chen, Liqiao; Gu, Zhimin

    2017-02-01

    The toxicity and poisoning mechanisms of sulfide were studied in Litopenaeus vannamei from the perspective of energy metabolism and metabolomics. The lethal concentrations of sulfide in L. vannamei (LC50) at 24h, 48h, 72h, and 96h were determined. Sulfide at a concentration of 0, 1/10 (425.5μg/L), and 1/5 (851μg/L) of the LC 50 at 96h was used to test the metabolic responses of L. vannamei for 21days. The chronic exposure of shrimp to a higher sulfide concentration of 851μg/L decreased shrimp survival but did not affect weight gain or the hepatopancreas index. The glycogen content in the hepatopancreas and muscle and the activity of hepatopancreas cytochrome C oxidase of the shrimp exposed to all sulfide concentrations were significantly lower, and the serum glucose and lactic acid levels and lactic acid dehydrogenase activity were significantly lower than those in the control. Metabolomics assays showed that shrimp exposed to sulfide had lower amounts of serum pyruvic acid, succinic acid, glycine, alanine, and proline in the 425.5μg/L group and phosphate, succinic acid, beta-alanine, serine, and l-histidine in the 851μg/L group than in the control. Chronic sulfide exposure could disturb protein synthesis in shrimp but enhance gluconeogenesis and substrate absorption for ATP synthesis and tricarboxylic acid cycles to provide extra energy to cope with sulfide stress. Chronic sulfide exposure could adversely affect the health status of L. vannamei, as indicated by the high amounts of serum n-ethylmaleamic acid, pyroglutamic acid, aspartic acid and phenylalanine relative to the control. This study indicates that chronic exposure of shrimp to sulfide can decrease health and lower survival through functional changes in gluconeogenesis, protein synthesis and energy metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Occurrence and abatement of volatile sulfur compounds during biogas production.

    PubMed

    Andersson, Fräs Annika T; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2004-07-01

    Volatile sulfur compounds (VSCs) in biogas originating from a biogas production plant and from a municipal sewage water treatment plant were identified. Samples were taken at various stages of the biogas-producing process, including upgrading the gas to vehicle-fuel quality. Solid-phase microextraction was used for preconcentration of the VSCs, which were subsequently analyzed using gas chromatography in combination with mass spectrometry. Other volatile organic compounds present also were identified. The most commonly occurring VSCs in the biogas were hydrogen sulfide, carbonyl sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide, and hydrogen sulfide was not always the most abundant sulfur (S) compound. Besides VSCs, oxygenated organic compounds were commonly present (e.g., ketones, alcohols, and esters). The effect of adding iron chloride to the biogas reactor on the occurrence of VSCs also was investigated. It was found that additions of 500-g/m3 substrate gave an optimal removal of VSCs. Also, the use of a prefermentation step could reduce the amount of VSCs formed in the biogas process. Moreover, in the carbon dioxide scrubber used for upgrading the gas, VSCs were removed efficiently, leaving traces (ppbv levels). The scrubber also removed other organic compounds.

  20. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    PubMed

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  1. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    NASA Astrophysics Data System (ADS)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  2. Volatiles formation in gelled emulsions enriched in polyunsaturated fatty acids during storage: type of oil and antioxidant.

    PubMed

    Gayoso, Lucía; Poyato, Candelaria; Calvo, María Isabel; Cavero, Rita Yolanda; Ansorena, Diana; Astiasarán, Iciar

    2017-08-01

    Gelled emulsions with carrageenan are a novel type of emulsion that could be used as a carrier of unsaturated fatty acids in functional foods formulations. Lipid degradation through volatile compounds was studied in gelled emulsions which were high in polyunsaturated oils (sunflower or algae oil) after 49 days of storage. Aqueous Lavandula latifolia extract was tested as a natural antioxidant. Analysis of the complete volatile profile of the samples resulted in a total of 40 compounds, classified in alkanes, alkenes, aldehydes, ketones, acids, alcohols, furans, terpenes and aromatic hydrocarbons. During storage, the formation of the volatile compounds was mostly related to the oxidation of the main fatty acids of the sunflower oil (linolenic acid) and the algae oil (docosahexaenoic acid). Despite the antioxidant capacity shown by the L. latifolia extract, its influence in the oxidative stability in terms of total volatiles was only noticed in sunflower oil gels ( p  < 0.05), where a significant decrease in the aldehydes fraction was found.

  3. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  4. Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown Reservoir, Montana

    USGS Publications Warehouse

    Brumbaugh, W. G.; Ingersoll, C.G.; Kemble, N.E.; May, T.W.; Zajicek, J.L.

    1994-01-01

    The upper Clark Fork River basin in western Montana is widely contaminated by metals from past mining, milling, and smelting activities As part of a comprehensive ecological risk assessment for the upper Clark Fork River, we measured physical and chemical characteristics of surficial sediment samples that were collected from depositional zones for subsequent toxicity evaluations Sampling stations included five locations along the upper 200 km of the river, six locations in or near Milltown Reservoir (about 205 km from the river origin), and two tributary reference sites Concentrations of As, Cd, Cu, Mn, Pb, and Zn decreased from the upper stations to the downstream stations in the Clark Fork River but then increased in all Milltown Reservoir stations to levels similar to uppermost river stations Large percentages (50 to 90%) of the total Cd, Cu, Pb, and Zn were extractable by dilute (3 n) HCl for all samples Copper and zinc accounted for greater than 95% of extractable metals on a molar basis Acid-volatile sulfide (AVS) concentrations were typically moderate (0 6 to 23 μmol/g) in grab sediment samples and appeared to regulate dissolved (filterable) concentrations of Cd, Cu, and Zn in sediment pore waters Acid volatile sulfide is important in controlling metal solubility in the depositional areas of the Clark Fork River and should be monitored in any future studies Spatial variability within a sampling station was high for Cu, Zn, and AVS, therefore, the potential for toxicity to sediment dwelling organisms may be highly localized.

  5. The analysis of forms of sulfur in ancient sediments and sedimentary rocks: comments and cautions

    USGS Publications Warehouse

    Rice, C.A.; Tuttle, M.L.; Reynolds, R.L.

    1993-01-01

    Assumptions commonly made during analysis of the amount of monosulfides [acid-volatile sulfides (AVS)] and disulfides in modern sediments, may not be valid for ancient sedimentary rocks. It is known that ferric iron can oxidize H2S during AVS analysis unless a reducing agent such as stannous chloride is added to the treatment. In addition, some monosulfides such as greigite and pyrrhotite require heat during the AVS analysis in order to dissolve completely. However, the use of heat and/or stannous chloride in the AVS treatment may partially dissolve disulfides and it is generally recommended that stannous chloride not be used in the AVS treatment for modern sediments. Most of the monosulfides are assumed to be recovered as AVS without the addition of stannous chloride. This study investigates the recovery of monosulfides during sulfur speciation analysis with application to ancient sedimentary rocks. Sulfur in samples containing naturally occurring greigite and mackinawite or pyrite was measured using variations of a common sulfur-speciation scheme. The sulfur-speciation scheme analyzes for monosulfide sulfur, disulfide sulfur, elemental sulfur, inorganic sulfate and organically bound sulfur. The effects of heat, stannous chloride and ferric iron on the amounts of acid-volatile sulfide and disulfide recovered during treatment for AVS were investigated. Isotopic compositions of the recovered sulfur species along with yields from an extended sulfur-speciation scheme were used to quantify the effects. Hot 6 N HCl AVS treatment recovers > 60% of the monosulfides as AVS in samples containing pure greigite and mackinawite. The remaining monosulfide sulfur is recovered in a subsequent elemental sulfur extraction. Hot 6 N HCl plus stannous chloride recovers 100% of the monosulfides as AVS. The addition of ferric iron to pure greigite and mackinawite samples during AVS treatment without stannous chloride decreased the amount of monosulfides recovered as AVS and, if present

  6. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    PubMed

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Characterization of trace metal removal products in vertical flow bioreactor substrates at the Mayer Ranch Passive Treatment System in the Tar Creek Superfund Site.

    PubMed

    LaBar, Julie A; Nairn, Robert W

    2018-05-01

    A passive treatment system (PTS), including two parallel vertical flow bioreactors (VFBR), was constructed in 2008 for the treatment of unabated net-alkaline ferruginous mine drainage in the Tar Creek Superfund Site in northeastern Oklahoma. Water quality data collected since the PTS began operation indicate significant removal of trace metals in the VFBR. Results of a sequential extraction procedure (SEP) performed on substrate samples showed that the majority of Cd, Co, Fe, Ni, Pb, and Zn were retained in the refractory organic/sulfide fraction. Subsequent acid volatile sulfide/simultaneously extracted metals (AVS/SEM) analyses confirmed the retention of Cd, Fe, Pb, and Zn as sulfides, but Co and Ni results were less certain. The majority of trace metals were retained as insoluble products in the VFBR, while up to 20% of most of the trace metals were retained in soluble, bioavailable fractions. Nearly 70% of Mn was retained in the soluble and bioavailable exchangeable, carbonate, and labile organic fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    PubMed

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  9. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    PubMed

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  10. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  11. A study of the trace sulfide mineral assemblages in the Stillwater Complex, Montana, USA

    NASA Astrophysics Data System (ADS)

    Aird, Hannah M.; Ferguson, Katherine M.; Lehrer, Malia L.; Boudreau, Alan E.

    2017-03-01

    The sulfide assemblages of the Stillwater Complex away from the well-studied ore zones are composed mainly of variable proportions of pyrrhotite, chalcopyrite, pentlandite, and ±pyrite. Excluding vein assemblages and those affected by greenschist and lower temperature alteration, the majority can be classified into two broad assemblages, defined here as pristine (multiphase, often globular in shape) or volatile-bearing (multiphase, high-temperature, volatile-rich minerals such as biotite, hornblende, or an unmixed calcite-dolomite assemblage). The volatile-bearing assemblages are mainly found within and below the J-M reef, where native copper and sphalerite are also locally present. Pristine sulfides are found throughout the stratigraphy. Both groups can be affected by apparent S loss in the form of pyrite being converted to magnetite and chalcopyrite to a Cu-Fe-oxide (delafossite), with little to no silicate alteration. An upward trend from pentlandite-rich to pyrrhotite-rich to pyrite-rich assemblages is observed in the footwall rocks in upper GN-I, and the same trend repeats from just below the reef and continues into the overlying N-II and GN-II. Modeling suggests that the sulfide Ni in the Peridotite Zone is largely controlled by silicate Ni. When taken together, observations are most readily explained by the remobilization of selected elements by a high-temperature fluid with the apparent loss of S > Cu > Ni. This could concentrate ore metals by vapor refining, eventually producing a platinum group element-enriched sulfide ore zone, such as the J-M reef.

  12. Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain

    NASA Astrophysics Data System (ADS)

    Gómez-Ortiz, David; Fernández-Remolar, David C.; Granda, Ángel; Quesada, Cecilio; Granda, Teresa; Prieto-Ballesteros, Olga; Molina, Antonio; Amils, Ricardo

    2014-04-01

    The acidic waters of the Río Tinto rise from several acidic springs that emerge in the area surrounding Peña de Hierro (Fernández-Remolar et al., 2005). These springs are located above minor normal faults that act as natural conduits for the water from the underlying deep aquifer. Although it has been suggested that the acidity of the river originates from the biooxidation of massive and stockwork sulfides (Fernández-Remolar et al., 2008a), the location of the source for these acidic solutions has not previously been established. This lack of evidence has been used to suggest that the acidity of the Río Tinto may be the product of the most conspicuous of the possible source, the extensive mining of the area over approximately the last 5000 years (Davis et al., 2000). In this paper, we report resistivity and time-domain electromagnetic sounding data from the Río Tinto aquifer to a depth of ∼600 m, revealing the locations for the acidic sources. Both types of data support the presence of two distinct geological units that we interpret as thrust sheets emplaced onto each other during the Variscan orogeny of the Carboniferous. These units, both of which contain massive and stockwork sulfides, act as the aquifer for the acidic waters of the Río Tinto. Under this scenario, which is in agreement with the geological record of the Río Tinto fluvial system for the past 6 Ma (Moreno et al., 2003), our results imply that mining activity had little influence on the generation of the acidic river waters.

  13. [VOLATILE FATTY ACIDS IN SALIVA--BIOLOGICAL MARKERS FOR ASSESSMENT OF DRINKING WATER POLLUTANTS ON CHILDREN].

    PubMed

    Akaizina, A E; Akaizin, E S; Starodumov, V L

    2015-01-01

    The use of modern methods of analysis is aimed to the search of ultimately novel biological markers. Volatile fatty acids in saliva were not used previously for the assessment of the effects of contaminating substances in the drinking water on the body of children. The aim of the study is to investigate the informative value of volatile fatty acids in saliva as biological markers of the impact for the assessment of the exposure to contaminating substances in the drinking water on the body of children. Hygienic assessment of drinking water quality was made according to data of the own research of drinking water from centralized supply system of the city of Ivanovo. For the comparison of indices there was investigated the drinking water from wells at the village Podvyaznovsky of the Ivanovo region. In the Ivanovo water from the distributing network of centralized drinking water supply system of the city of Ivanovo, there were identified indices of the permanganate oxidation and the total concentration of residual chlorine exceeding norms, and also chloroform and carbon tetrachloride were in concentrations not exceeding the norms. Studied by us the samples of drinking water from Podvyaznovsky village wells, the water met the standards for all investigated parameters. The was studied the informative value of volatile fatty acids in the saliva of children aged 9-14 years from the city of Ivanovo and the Podvyaznovsky village, Ivanovo region. There was established the fall in acetic, butyric, isovaleric acids and the total amount of volatile fatty acids in the saliva in children of the city of Ivanovo, consuming water treated with chlorine of Ivanovo centralized drinking water supply system. Indices of volatile fatty acids in saliva are informative for the assessment of the impact of organic pollutants, residual chlorine and organic chlorine compounds of drinking water on the body of children.

  14. Changes in soil organic carbon fractions after remediation of a coastal floodplain soil.

    PubMed

    Wong, V N L; McNaughton, C; Pearson, A

    2016-03-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise to form coastal acid sulfate soils (CASS) and contain high concentrations of acidity and trace metals. CASS are found on every continent globally except Antarctica. When sulfidic sediments are oxidised, scalds can form, which are large bare patches without vegetation. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a CASS scald. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m (426 Mg C/ha, 478 Mg C/ha and 473 Mg C/ha at sites C, LO and LM, respectively). The particulate organic C (POC) fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Reformation of acid volatile sulfide (AVS) occurred throughout the profile at site LM, whereas only limited AVS reformation occurred at sites LO and C. Higher AVS at site LM may be linked to the additional source of organic matter provided by the mulch. POC can also potentially contribute to decreasing acidity as a labile SOC source for Fe(3+) and SO4(2-) reduction. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production. These results highlight the importance of maintaining vegetation cover in coastal floodplains and wetlands for

  15. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... intended for use as a source of energy in dairy cattle feed. (d) Labeling. The label and labeling of the... thoroughly mixed in dairy cattle feed as a source of energy.” For calcium salts of volatile fatty acids, the...

  16. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... intended for use as a source of energy in dairy cattle feed. (d) Labeling. The label and labeling of the... thoroughly mixed in dairy cattle feed as a source of energy.” For calcium salts of volatile fatty acids, the...

  17. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... intended for use as a source of energy in dairy cattle feed. (d) Labeling. The label and labeling of the... thoroughly mixed in dairy cattle feed as a source of energy.” For calcium salts of volatile fatty acids, the...

  18. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... intended for use as a source of energy in dairy cattle feed. (d) Labeling. The label and labeling of the... thoroughly mixed in dairy cattle feed as a source of energy.” For calcium salts of volatile fatty acids, the...

  19. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... intended for use as a source of energy in dairy cattle feed. (d) Labeling. The label and labeling of the... thoroughly mixed in dairy cattle feed as a source of energy.” For calcium salts of volatile fatty acids, the...

  20. A preliminary cost analysis of the biotreatment of refinery spent-sulfidic caustic.

    PubMed

    Sublette, K L

    1997-01-01

    Caustics are used in petroleum refining to remove hydrogen sulfide from various hydrocarbon streams. Spent-sulfidic caustics from three refineries have been successfully biotreated on the bench and pilot scale, resulting in neutralization and removal of active Sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans strain F. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic. A commercial-scale treatment system has been designed that features a bioreactor with a suspended culture of flocculated T. denitrificans, a settler and acid and nutrient storage and delivery systems. A cost analysis has been performed for nine cases representing a range of spent caustic sulfide and hydroxide concentrations at a base treatment rate of 10 gpm. This analysis shows that refinery spent-sulfidic caustic can be biotreated for 4-8.3 cent/gal.

  1. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    PubMed

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.

  2. THE PRODUCTION OF VOLATILE FATTY ACIDS BY BACTERIA OF THE DYSENTERY GROUP

    PubMed Central

    Zoller, Harper F.; Clark, W. Mansfield

    1921-01-01

    These studies show: 1. A close agreement exists among all the organisms studied in the total quantity of volatile fatty acids produced and in the ratio of formic to acetic, under aerobic conditions, and in the presence of 1 per cent of glucose. 2. When grown upon peptone alone, with free access of air to the cultures, volatile fatty acids are produced in appreciable quantities, although the reaction of the solution has gone more alkaline as shown by colorimetric pH tests. Formic acid is not found, but in its place we obtain propionic acid. 3. Upon exhaustion of air from the non-sugar medium the bacteria again produce formic acid, and in addition some butyric. This is true for both Shiga and non-Shiga cultures. The reaction is distinctly more acid. 4. The presence of glucose in the medium from which the air has been pumped furnishes a condition which provokes about the same type and degree of fermentation that operates in the glucose medium bathed in air at atmospheric pressure. 5. The enormous quantity of formic acid produced by these bacteria may play a significant part in the digestive disturbances and toxic symptoms accompanying their infection of the human intestinal tract. PMID:19871867

  3. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Chemical dissolution of sulfide minerals

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  5. Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage.

    PubMed

    Korehi, Hananeh; Blöthe, Marco; Schippers, Axel

    2014-11-01

    In freshly deposited sulfidic mine tailings the pH is alkaline or circumneutral. Due to pyrite or pyrrhotite oxidation the pH is dropping over time to pH values <3 at which acidophilic iron- and sulfur-oxidizing prokaryotes prevail and accelerate the oxidation processes, well described for several mine waste sites. The microbial communities at the moderate acidic stage in mine tailings are only scarcely studied. Here we investigated the microbial diversity via 16S rRNA gene sequence analysis in eight samples (pH range 3.2-6.5) from three different sulfidic mine tailings dumps in Botswana, Germany and Sweden. In total 701 partial 16S rRNA gene sequences revealed a divergent microbial community between the three sites and at different tailings depths. Proteobacteria and Firmicutes were overall the most abundant phyla in the clone libraries. Acidobacteria, Actinobacteria, Bacteroidetes, and Nitrospira occurred less frequently. The found microbial communities were completely different to microbial communities in tailings at

  6. Laboratory Studies of Aedes aegypti Attraction to Ketones, Sulfides, and Primary Chloroalkanes Tested Alone and in Combination with L-Lactic Acid.

    PubMed

    Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R

    2015-03-01

    The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.

  7. A modified two-point titration method for the determination of volatile fatty acids in anaerobic systems.

    PubMed

    Mu, Zhe-Xuan; He, Chuan-Shu; Jiang, Jian-Kai; Zhang, Jie; Yang, Hou-Yun; Mu, Yang

    2018-08-01

    The volatile fatty acids (VFA) concentration plays important roles in the rapid start-up and stable operation of anaerobic reactors. It's essential to develop a simple and accurate method to monitor the VFA concentration in the anaerobic systems. In present work, a modified two-point titration method was developed to determine the VFA concentration. The results show that VFA concentration in standard solutions estimated by the titration method coincided well with that measured by gas chromatograph, where all relative errors were lower than 5.5%. Compared with the phosphate, ammonium and sulfide subsystems, the effect of bicarbonate on the accuracy of the developed method was relatively significant. When the bicarbonate concentration varied from 0 to 8 mmol/L, the relative errors increased from 1.2% to 30% for VFA concentration at 1 mmol/L, but were within 2.0% for that at 5 mmol/L. In addition, the VFA composition affected the accuracy of the titration method to some extent. This developed titration method was further proved to be effective with practical effluents from a lab-scale anaerobic reactor under organic shock loadings and an unstable full-scale anaerobic reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOEpatents

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  9. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  10. Banding of urea increased ammonia volatilization in a dry acidic soil.

    PubMed

    Rochette, Philippe; Macdonald, J Douglas; Angers, Denis A; Chantigny, Martin H; Gasser, Marc-Olivier; Bertrand, Normand

    2009-01-01

    Volatilization of ammonia following application of urea contributes to smog formation and degradation of natural ecosystems. The objective of this study was to evaluate the impact of (i) incorporation and banding of urea and (ii) surface broadcast of slow-release urea types on NH(3) volatilization in a dry acidic soil. Volatilization was measured using wind tunnels for 25 d after standard urea (140 kg N ha(-1)) was broadcast, broadcast and incorporated (0-5 cm), or incorporated in shallow bands (3-5 cm) to a conventionally tilled silty loam soil. Urea supplemented with a urease inhibitor or coated with a polymer was also broadcast at the soil surface. Little N diffused out of the polymer-coated granules and ammonia losses were low (4% of applied N). Use of a urease inhibitor also resulted in a low NH(3) loss (5% of applied N) while maintaining soil mineral N at levels similar to plots where untreated urea was broadcast. The rate of hydrolysis of urea broadcast at the soil surface was slowed by the lack of moisture and NH(3) loss (9% applied N) was the lowest of all treatments with standard urea. Incorporation of broadcast urea increased emissions (16% applied N) by increasing urea hydrolysis relative to surface application. Furthermore, incorporation in band also increased emissions (27% applied N) due to a localized increase in soil pH from 6.0 to 8.7. We conclude that incorporating urea in bands in a dry acidic soil can increase NH(3) volatilization compared to broadcast application followed by incorporation.

  11. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  12. Colloidal 3-Mercaptopropionic Acid Capped Lead Sulfide Quantum Dots in a Low Boiling Point Solvent.

    PubMed

    Reinhart, Chase C; Johansson, Erik

    2017-04-26

    Colloidal 3-mercaptopropionic acid (3-MPA) capped lead sulfide quantum dots were prepared in a variety of organic solvents stabilized with a quaternary ammonium halide salt. The stabilized colloids' optical properties were studied through optical absorption and emission spectroscopy and found to be dependent on both the concentration of a new ligand and stabilizer, and sample age. Nanocrystal ligand chemistry was studied through a combination of 1 H NMR and two-dimensional Nuclear Overhauser Effect Spectroscopy (NOESY) which revealed full displacement of the original oleate ligand to form a dynamically exchanging ligand shell. The colloids were studied optically and via NMR as they aged and revealed a quantitative conversion of monomeric 3-mercaptopropionic acid to its dimer, dithiodipropionic acid (dTdPA).

  13. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.

    PubMed

    Sima, Mihaela; Dold, Bernhard; Frei, Linda; Senila, Marin; Balteanu, Dan; Zobrist, Jurg

    2011-05-30

    Sulfidic mine tailings have to be classified as one of the major source of hazardous materials leading to water contamination. This study highlights the processes leading to sulfide oxidation and acid mine drainage (AMD) formation in the active stage of two tailings impoundments located in the southern part of the Apuseni Mountains, in Romania, a well-known region for its long-term gold-silver and metal mining activity. Sampling was undertaken when both impoundments were still in operation in order to assess their actual stage of oxidation and long-term behavior in terms of the potential for acid mine drainage generation. Both tailings have high potential for AMD formation (2.5 and 3.7 wt.% of pyrite equivalent, respectively) with lesser amount of carbonates (5.6 and 3.6 wt.% of calcite equivalent) as neutralization potential (ABA=-55.6 and -85.1 tCaCO(3)/1000 t ) and showed clear signs of sulfide oxidation yet during operation. Sequential extraction results indicate a stronger enrichment and mobility of elements in the oxidized tailings: Fe as Fe(III) oxy-hydroxides and oxides (transformation from sulfide minerals, leaching in oxidation zone), Ca mainly in water soluble and exchangeable form where gypsum and calcite are dissolved and higher mobility of Cu for Ribita and Pb for Mialu. Two processes leading to the formation of mine drainage at this stage could be highlighted (1) a neutral Fe(II) plume forming in the impoundment with ferrihydrite precipitation at its outcrop and (2) acid mine drainage seeping in the unsaturated zone of the active dam, leading to the formation of schwertmannite at its outcrop. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Antimicrobial Effects of Free Nitrous Acid on Desulfovibrio vulgaris: Implications for Sulfide-Induced Corrosion of Concrete

    PubMed Central

    Gao, Shu-Hong; Ho, Jun Yuan; Fan, Lu; Richardson, David J.; Yuan, Zhiguo

    2016-01-01

    ABSTRACT Hydrogen sulfide produced by sulfate-reducing bacteria (SRB) in sewers causes odor problems and asset deterioration due to the sulfide-induced concrete corrosion. Free nitrous acid (FNA) was recently demonstrated as a promising antimicrobial agent to alleviate hydrogen sulfide production in sewers. However, details of the antimicrobial mechanisms of FNA are largely unknown. Here, we report the multiple-targeted antimicrobial effects of FNA on the SRB Desulfovibrio vulgaris Hildenborough by determining the growth, physiological, and gene expression responses to FNA exposure. The activities of growth, respiration, and ATP generation were inhibited when exposed to FNA. These changes were reflected in the transcript levels detected during exposure. The removal of FNA was evident by nitrite reduction that likely involved nitrite reductase and the poorly characterized hybrid cluster protein, and the genes coding for these proteins were highly expressed. During FNA exposure, lowered ribosome activity and protein production were detected. Additionally, conditions within the cells were more oxidizing, and there was evidence of oxidative stress. Based on an interpretation of the measured responses, we present a model depicting the antimicrobial effects of FNA on D. vulgaris. These findings provide new insight for understanding the responses of D. vulgaris to FNA and will provide a foundation for optimal application of this antimicrobial agent for improved control of sewer corrosion and odor management. IMPORTANCE Hydrogen sulfide produced by SRB in sewers causes odor problems and results in serious deterioration of sewer assets that requires very costly and demanding rehabilitation. Currently, there is successful application of the antimicrobial agent free nitrous acid (FNA), the protonated form of nitrite, for the control of sulfide levels in sewers (G. Jiang et al., Water Res 47:4331–4339, 2013, http://dx.doi.org/10.1016/j.watres.2013.05.024). However, the

  15. Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions.

    PubMed

    Jin, Yaomin; Veiga, María C; Kennes, Christian

    2007-06-01

    Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.

  16. Amino Acid Profile and Volatile Flavour Compounds of Raw and Steamed Patin Catfish (Pangasius hypophthalmus) and Narrow-barred Spanish Mackerel (Scomberomorus commerson)

    NASA Astrophysics Data System (ADS)

    Pratama, Rusky I.; Rostini, I.; Rochima, E.

    2018-02-01

    Fish species and processing methods could affect the volatile flavour composition and amino acid profile of fishery commodity. The objectives of this study were to identify volatile components and amino acid profile of two considered predominant fish species in Indonesia which are freshwater Patin catfish (Pangasius hypophthalmus) and marine water fish, Spanish mackerel (Scomberomorus commerson). The methods used in this study were to detect volatile compounds using Gas Chromatography/Mass Spectrometry (GC/MS) on fresh and steamed of both species samples (100°C for 30 minutes) and amino acid profile were also analyzed using High Performance Liquid Chromatography (HPLC). The volatile components analysis successfully detects as much as 29 and 59 volatiles compounds in fresh and steamed Patin catfish respectively, while 37 and 102 compounds were detected in fresh and steamed Spanish mackerel samples. Most of detected components derives from hydrocarbons, aldehydes, alcohols and ketone groups which could affected by their chemical composition and resulted from various thermal involved reaction. The amino acids profile identification results showed that glutamic acid was found higher compared to other amino acids standards in both samples. Glutamic acid is non-essential amino acid which is important in umami taste substances.

  17. Analysis of organic volatile flavor compounds in fermented stinky tofu using SPME with different fiber coatings.

    PubMed

    Liu, Yuping; Miao, Zhiwei; Guan, Wei; Sun, Baoguo

    2012-03-26

    The organic volatile flavor compounds in fermented stinky tofu (FST) were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs) of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  18. From source to sink: Rare-earth elements trace the legacy of sulfuric dredge spoils on estuarine sediments.

    PubMed

    Xu, Nian; Morgan, Bree; Rate, Andrew W

    2018-05-17

    Land disposal of dredged sulfide-rich coastal sediments generates secondary coastal acid sulfate soils (CASS), as previously reduced sulfide minerals oxidise to produce acidic drainage rich in Fe, SO 4 2- and rare-earth elements (REEs). Few studies investigate both the source and the sink of REEs in the context of interpreting their mobilisation and potential use in tracing anthropogenic activity. Here we investigate REE signatures in estuarine sediments (and overlying surface waters) that have received acute, long-term (>15 years) acidic drainage from legacy sulfuric dredge spoils. It was found that the dredge spoil continues to act as a source of acidity (pH 3.5-5.5), Fe and REEs during development of CASS, and contains negligible acid volatile sulfide (AVS, a proxy for FeS) and relatively low concentrations of ΣREE (mean 44.5 mg/kg, range 4.1-362 mg/kg). In the receiving sediments, high AVS concentrations (mean 92.2 μmol/g, range 0.38-278 μmol/g) reflect elevated FeS content, likely due to high inputs of Fe and SO 4 2- from the acidic drainage, and correspond with a high concentration of total S (mean 852 μmol/g, range 105-2209 μmol/g) and an accumulation of ΣREE (mean 670 mg/kg, range 19.9-1819 mg/kg). Importantly, where drain sediments that were previously enriched in highly reactive sulfidic minerals and trace elements and have become exposed to the atmosphere (e.g. Site 3) and partially oxidised, they provide a further source of acidification, remobilising the REEs to the downstream sediments. Interestingly, we also found a clear positive correlation between phosphorous and REEs both in the dredge spoil and sediment, suggesting phosphate minerals may act as a sink for REEs in CASS influenced drain sediments. This is further supported by strong positive gadolinium anomalies (1.1-1.6) and high calculated anthropogenic Gd values (12-38%), which may reflect the influence of phosphate fertiliser on this eutrophic system. Copyright

  19. Time course effects of fermentation on fatty acid and volatile compound profiles of Cheonggukjang using new soybean cultivars.

    PubMed

    Cho, Kye Man; Lim, Ho-Jeong; Kim, Mi-So; Kim, Da Som; Hwang, Chung Eun; Nam, Sang Hae; Joo, Ok Soo; Lee, Byong Won; Kim, Jae Kyeom; Shin, Eui-Cheol

    2017-07-01

    In this study, we investigated the effects of the potential probiotic Bacillus subtilis CSY191 on the fatty acid profiles of Cheonggukjang, a fermented soybean paste, prepared using new Korean brown soybean cultivars, protein-rich cultivar (Saedanbaek), and oil-rich cultivar (Neulchan). Twelve fatty acids were identified in the sample set-myristic, palmitic, palmitoleic, stearic, oleic, vaccenic, linoleic, α-linolenic, arachidic, gondoic, behenic, and lignoceric acids-yet, no specific changes driven by fermentation were noted in the fatty acid profiles. To further explore the effects of fermentation of B. subtilis CSY191, complete profiles of volatiles were monitored. In total, 121, 136, and 127 volatile compounds were detected in the Saedanbaek, Daewon (control cultivar), and Neulchan samples, respectively. Interestingly, the content of pyrazines-compounds responsible for pungent and unpleasant Cheonggukjang flavors-was significantly higher in Neulchan compared to that in Saedanbaek. Although the fermentation period was not a strong factor affecting the observed changes in fatty acid profiles, we noted that profiles of volatiles in Cheonggukjang changed significantly over time, and different cultivars represented specific volatile profiles. Thus, further sensory evaluation might be needed to determine if such differences influence consumers' preferences. Furthermore, additional studies to elucidate the associations between B. subtilis CSY191 fermentation and other nutritional components (e.g., amino acids) and their health-promoting potential are warranted. Copyright © 2016. Published by Elsevier B.V.

  20. Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.

    PubMed

    Berton, Mateo; Mello, Rossella; González-Núñez, María Elena

    2016-12-20

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO 2 capture coupled with H 2 S removal may have been relevant as a prebiotic carbon dioxide fixation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  2. Heavy metal in sediments of Ziya River in northern China: distribution, potential risks, and source apportionment.

    PubMed

    Zhu, Xiaolei; Shan, Baoqing; Tang, Wenzhong

    2016-12-01

    The concentration partitioning between the sediment particle and the interstitial water phase plays an important role in controlling the toxicity of heavy metals in aquatic systems. The aim of this study was to assess the sediment quality in a polluted area of the Ziya River, Northern China. The contamination potential and bioavailability of six metals were determined from the concentrations of total metals and the bioavailable fractions. The results showed that the concentrations of Cr, Cu, Ni, Zn, and Pb exceeded the probable effect concentration at several sites. The high geoaccumulation indices showed that the sediments were seriously contaminated by Cd. The ratio of acid-volatile sulfide (AVS) to simultaneously extracted metal (SEM) was higher than 1, which indicated that the availability of metals in sediments was low. The risk assessment of interstitial waters confirmed that there was little chance of release of metals associated with acid-volatile sulfide into the water column. Values of the interstitial water criteria toxicity unit indicated that none of the concentrations of the studied metals exceeded the corresponding water quality thresholds of the US Environmental Protection Agency. Positive matrix factorization showed that the major sources of metals were related to anthropogenic activities. Further, if assessments are based on total heavy metal concentrations, the toxicity of heavy metals in sediment may be overestimated.

  3. Effects of high pressure processing on fatty acid composition and volatile compounds in Korean native black goat meat.

    PubMed

    Kang, Geunho; Cho, Soohyun; Seong, Pilnam; Park, Beomyoung; Kim, Sangwoo; Kim, Donghun; Kim, Youngjun; Kang, Sunmun; Park, Kyoungmi

    2013-08-01

    This study investigated the effects of high pressure processing (HPP) on fatty acid composition and volatile compounds in Korean native black goat (KNBG) meat. Fatty acid content in KNBG meat was not significantly (p > 0.05) different among the control goats and those subjected HPP. The 9,12-octadecadienoic acid and octadecanoic acid, well-known causes of off-flavors, were detected from meat of some KNBG. A difference between the control and HPP treatment was observed in the discriminated function analysis using an electronic nose. The results suggest that the volatile compounds in KNBG meat were affected by HPP.

  4. Anchoring the Gas-Phase Acidity Scale from Hydrogen Sulfide to Pyrrole. Experimental Bond Dissociation Energies of Nitromethane, Ethanethiol, and Cyclopentadiene.

    PubMed

    Ervin, Kent M; Nickel, Alex A; Lanorio, Jerry G; Ghale, Surja B

    2015-07-16

    A meta-analysis of experimental information from a variety of sources is combined with statistical thermodynamics calculations to refine the gas-phase acidity scale from hydrogen sulfide to pyrrole. The absolute acidities of hydrogen sulfide, methanethiol, and pyrrole are evaluated from literature R-H bond energies and radical electron affinities to anchor the scale. Relative acidities from proton-transfer equilibrium experiments are used in a local thermochemical network optimized by least-squares analysis to obtain absolute acidities of 14 additional acids in the region. Thermal enthalpy and entropy corrections are applied using molecular parameters from density functional theory, with explicit calculation of hindered rotor energy levels for torsional modes. The analysis reduces the uncertainties of the absolute acidities of the 14 acids to within ±1.2 to ±3.3 kJ/mol, expressed as estimates of the 95% confidence level. The experimental gas-phase acidities are compared with calculations, with generally good agreement. For nitromethane, ethanethiol, and cyclopentadiene, the refined acidities can be combined with electron affinities of the corresponding radicals from photoelectron spectroscopy to obtain improved values of the C-H or S-H bond dissociation energies, yielding D298(H-CH2NO2) = 423.5 ± 2.2 kJ mol(-1), D298(C2H5S-H) = 364.7 ± 2.2 kJ mol(-1), and D298(C5H5-H) = 347.4 ± 2.2 kJ mol(-1). These values represent the best-available experimental bond dissociation energies for these species.

  5. Fe-C-S systematics in Bengal Fan sediments

    NASA Astrophysics Data System (ADS)

    Volvoikar, S. P.; Mazumdar, A.; Goswami, H.; Pujari, S.; Peketi, A.

    2017-12-01

    Global biogeochemical cycles of iron, carbon and sulfur (Fe-C-S) are interrelated. Sulfate reduction in marine sediments is the major factor controlling the cycling and burial of carbon, sulfur and iron. Organoclastic sulfate reduction and anaerobic oxidation of methane (AOM) are the two main processes responsible for sulfate reduction in marine sediments. The amount and reactivity of organic matter, iron minerals and concentrations of dissolved sulfide in pore water control the burial of iron sulfide and organic bound sulfur in marine sediments. Here we investigate the sulfidization process in a sediment core from the western part of upper Bay of Bengal fan characterized by efficient burial of organic matter with siliclastic load. A 30 m long sediment core (MD 161/29, Lat. 170 18.04' N, Long. 870 22.56' E, water depth: 2434m) was collected onboard Marion Dufresne (May, 2007) and studied for Fe-S speciation and organic matter characterization. Buffered dithionite extractable iron (FeD) varies from 0.71 to 1.43 wt % (Avg. 0.79 wt %). FeD represents Fe oxides and oxyhydroxides mainly, ferrihydrite, lepidocrocite, goethite and hematite. Acid volatile sulfur (AVS) varies from 0.0015 to 0.63 wt % (avg: 0.058 wt %), while chromium reducible sulfur (CRS) varies from 0.00047 to 0.29 wt % (avg. 0.054 wt %). Based on the vertical distribution patterns of FeD, AVS and CRS, the core is divided into three zones, the lower (3000 to 1833 cm), middle (1833 to 398 cm) and upper (398 cm to surface) zones. FeD shows higher concentration in the lower zone. FeTR (FeOx + FeD + FeCRS + FeAVS) also exhibit higher concentration in this zone, suggesting higher availability of reactive iron for iron sulfide precipitation. AVS, elemental sulfur, spikes of CRS and gradual enrichment of δ34SAVS and δ34SCRS with sharp peaks in-between is noted in the lower zone. The gradual enrichment of δ34SAVS and δ34SCRS is the outcome of late diagenetic pyritization with higher availability of sulfide

  6. Toxicity of stormwater treatment pond sediments to Hyallela azteca (Amphipoda)

    USGS Publications Warehouse

    Karouna-Renier, N.K.; Sparling, D.W.

    1997-01-01

    Stormwater wetlands are created to contain runoff from human developments and are designed to retain contaminants such as heavy metals, petroleum hydrocarbons, silt, pesticides, and nutrients before the runoff enter natural waterways. Because of this design, stormwater wetlands have a potential of becoming toxic sinks to organisms utilizing the wetlands for habitat. We conducted a 10-day sediment bioassay on Hyallela azteca as part of a larger study on the possible hazards of stormwater wetlands to aquatic invertebrates. Water and sediments from 10 wetlands separated into reference, residential, commercial, and highway land uses were used. No differences in survival were observed among land use categories, possibly because the ratio of acid volatile sulfides/simultaneously extractable metals (AVS/SEM) was > 1.0 for all of the ponds tested; values > 1 in this ratio are indications that toxic metals may not be bioavailable. Survival and growth rates correlated positively with AVS.

  7. Abiogenic and Microbial Controls on Volatile Fatty Acids in Precambrian Crustal Fracture Waters

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Heuer, V.; Tille, S.; Moran, J.; Slater, G.; Sutcliffe, C. N.; Glein, C. R.; Hinrichs, K. U.; Sherwood Lollar, B.

    2015-12-01

    Saline fracture waters within the Precambrian Shield rocks of Canada and South Africa have been sequestered underground over geologic timescales up to 1.1-1.8 Ga [1, 2]. These fluids are rich in H2 derived from radiolysis and hydration of mafic and ultramafic rocks [1, 2, 3] and host a low-biomass, low-diversity microbial ecosystem at some sites [2]. The abiogenic or biogenic nature of geochemical processes has important implications for bioavailable carbon sources and the role played by abiotic organic synthesis in sustaining a chemosynthetic deep biosphere. Volatile fatty acids (VFAs) are simple carboxylic acids that may support microbial communities in such environments, such as those found in terrestrial [4] and deep-sea [5] hot springs. We present abundance and δ13C analysis for VFAs in a spectrum of Canadian Shield fluids characterized by varying dissolved H2, CH4, and C2+ n-alkane compositions. Isotope mass balance indicates that microbially mediated fermentation of carbon-rich graphitic sulfides may produce the elevated levels of acetate (39-273 μM) found in Birchtree and Thompson mine. In contrast, thermodynamic considerations and isotopic signatures of the notably higher acetate (1.2-1.9 mM), as well as formate and propionate abundances (371-816 μM and 20-38 μM, respectively) found at Kidd Creek mine suggest a role for abiogenic production via reduction of dissolved inorganic carbon with H2 for formate, and oxidation of C2+ n-alkanes for acetate and propionate, along with possible microbial cycling. VFAs comprise the bulk of dissolved and total organic carbon in the mines surveyed, and as such represent a potential key substrate for life. [1] Holland et al. (2013) Nature 497: 367-360. [2] Lin et al. (2006) Science 314: 479-482. [3] Sherwood Lollar et al. (2014) Nature 516: 379-382. [4] Windman et al. (2007) Astrobiology 7(6): 873-890. [5] Lang et al. (2010) Geochim. Cosmochim. Acta 92: 82-99.

  8. Delineation and management of sulfidic materials in Virginia highway corridors.

    DOT National Transportation Integrated Search

    2002-01-01

    Excavation through sulfidic geologic materials during road construction has resulted in acid drainage related problems at numerous discrete locations across Virginia. Barren acidic roadbanks, and acidic runoff and fill seepage clearly cause local env...

  9. MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)

    EPA Science Inventory

    A sulfide identification protocol was developed to quantify specific metal
    sulfides that could exist in river water. Using a series of acid additions,
    nitrogen purges, and voltammetric analyses, metal sulfides were identified and
    semiquantified in three specific gr...

  10. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques.

    PubMed

    Tres, A; Ruiz-Samblas, C; van der Veer, G; van Ruth, S M

    2013-04-15

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been applied to verify the geographical origin of crude palm oil (continental scale). For this purpose 94 crude palm oil samples were collected from South East Asia (55), South America (11) and Africa (28). Partial least squares discriminant analysis (PLS-DA) was used to develop a hierarchical classification model by combining two consecutive binary PLS-DA models. First, a PLS-DA model was built to distinguish South East Asian from non-South East Asian palm oil samples. Then a second model was developed, only for the non-Asian samples, to discriminate African from South American crude palm oil. Models were externally validated by using them to predict the identity of new authentic samples. The fatty acid fingerprinting model revealed three misclassified samples. The volatile compound fingerprinting models showed an 88%, 100% and 100% accuracy for the South East Asian, African and American class, respectively. The verification of the geographical origin of crude palm oil is feasible by fatty acid and volatile compound fingerprinting. Further research is required to further validate the approach and to increase its spatial specificity to country/province scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The behavior of Pt, Pd, Cu and Ni in the Se-sulfide system between 1050 and 700 °C and the role of Se in platinum-group elements fractionation in sulfide melts

    NASA Astrophysics Data System (ADS)

    Helmy, Hassan M.; Fonseca, Raúl O. C.

    2017-11-01

    The behavior of Pt, Pd, Ni and Cu in Se-sulfide system and the role of Se in platinum-group elements (PGE) fractionation have been experimentally investigated at temperatures between 1050 and 700 °C in evacuated silica tubes. At 1050 °C, Se partially partitions into a vapor phase. At 980 °C, monosulfide solid solution (mss) and sulfide melt are the only stable phases. No Pt or Pd-bearing discrete selenide phases form down to 700 °C. Instead cooperite (PtS) forms at 900 °C. Both mss and sulfide melt can accommodate wt.% levels of Se over the whole temperature range covered by the experiments. The addition of Se in the sulfide system leads to an increase in the activity coefficients of Ni and Pd in sulfide melt. This is reflected by an increase in the partition coefficients of Ni and Pd between mss and sulfide melt. The Pt-Se activity coefficient in sulfide melt is lower than that of Pt-S. Owing to selenium's high solubility in sulfides, there never become oversaturated in Se to the extent that discrete selenides form. As such, base metal sulfides are expected to control the geochemical behavior of Se in natural systems. Interestingly, partition coefficients for the platinum-group elements (Os, Ir, Ru, Pt, Rh, Pd) between mss and sulfide melt are undistinguishable regardless of whether Se is present or not. These results imply that Se plays little role in the fractionation of PGE as sulfide melt cools down and crystallize. Furthermore, our experimental results provide evidence that Se is volatile at magmatic temperature and is likely to be degassed like sulfur.

  12. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries.

    PubMed

    Ju, Yan-Lun; Liu, Min; Zhao, Hui; Meng, Jiang-Fei; Fang, Yu-Lin

    2016-10-12

    The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  13. Volatile organic chemicals of a shore-dwelling cyanobacterial mat community.

    PubMed

    Evans, W G

    1994-02-01

    The main components of a cyanobacterial mat community of a hypersaline lake shore consist of edaphic, mat-forming strains (ecophenes), and littoral strains ofOscillatoria animalis Agardh andO. subbrevis Schmidle, other microorganisms associated with these cyanobacteria, several species ofBembidion (Carabidae: Coleoptera), and two halophytic flowering plants:Puccinellia nuttalliana (salt meadow grass) andSalicornia europaea rubra (samphire). The volatile organic compounds of this community are a blend of those emitted by each of these components such as the C17 alka(e)nes, geosmin, 2-methylisoborneol,β-cyclocitral,β-ionone, dimethyl sulfide, and dimethyl trisulfide of cyanobacteria and associated microorganisms; alcohols, esters, and aldehydes usually associated with flowering plants; and possibly some insect-derived esters, particularly isopropyl tetradecanoate. The dominant compounds were: C11, C13, C15, and C17 alka(e)nes, methyl esters of C16 and C18:2 acids, isopropyl tetradecanoate, heptanal, 3-octanone and 2-nonanone, the acyclic terpene linalool, and the alcohols 1-heptanol, 1-hexanol, 1-octanol, 3-hexen-1-ol, and 2-octen-1-ol. It is concluded that this community may be distinguished from related communities by its repertoire of volatile organic compounds.

  14. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.

  15. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).

    PubMed

    Wang, Shanshan; Saito, Takanori; Ohkawa, Katsuya; Ohara, Hitoshi; Shishido, Masahiro; Ikeura, Hiromi; Takagi, Kazuteru; Ogawa, Shigeyuki; Yokoyama, Mineyuki; Kondo, Satoru

    2016-03-15

    Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Kemble, N.E.; May, T.W.; Ingersoll, C.G.

    2004-01-01

    We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicity tests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 ??g/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (<1 ??mol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.

  17. Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry.

    PubMed

    Sun, Shi-Hao; Xie, Jian-Ping; Xie, Fu-Wei; Zong, Yong-Li

    2008-02-01

    A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.

  18. Effect of modified atmosphere packaging and temperature abuse on flavor related volatile compounds of rocket leaves (Diplotaxis tenuifolia L.).

    PubMed

    Mastrandrea, Leonarda; Amodio, Maria Luisa; Pati, Sandra; Colelli, Giancarlo

    2017-07-01

    The effect of storage conditions on flavor-related volatile composition of wild rocket ( Diplotaxis tenuifolia ) was investigated on Modified Atmosphere packed (MAP) leaves stored under isothermal and non-isothermal conditions. In a first experiment the effect of MAP was compared to the storage in air at 5 °C; a second experiment aimed to study the effect of non isothermal conditions, with two temperature abuses (at 13 °C for 24 h) during a 5 °C. Twenty-four volatiles were detected, including C6, C5, isothiocyanate, lipid-derived and sulfur compounds. In the first experiment, MAP-stored rocket showed a slower loss of typical flavour volatiles (thiocyanates and isothiocyanates) and a slower production of off-flavors until 6 days of storage, compared to leaves stored in air. After this time, dimethyl sulfide and acetaldehyde dramatically increased in MAP-stored rocket samples. In the second experiment, samples stored under non-isothermal conditions showed lower O 2 and higher CO 2 concentrations than samples stored under isothermal conditions. Rocket leaves stored under non-isothermal conditions showed an increased production of volatiles responsible of off-flavors (acetaldehyde and dimethyl sulfide) following temperature abuse comparing to storage in isothermal condition. Thus, dimethyl sulfide and acetaldehyde could be effective markers for tracking the effect of temperature fluctuations on rocket during storage.

  19. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGES

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; ...

    2016-04-05

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  20. Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1982-01-01

    The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation.

  1. Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment.

    PubMed

    Wu, Qing-Lian; Guo, Wan-Qian; Bao, Xian; Yin, Ren-Li; Feng, Xiao-Chi; Zheng, He-Shan; Luo, Hai-Chao; Ren, Nan-Qi

    2017-09-01

    A new pretreatment method based on tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide was tried to enhance sludge disintegration, and improved sludge biodegradability and subsequent volatile fatty acid (VFA) production. Sludge activity decreased to less than 10% after 2 days pretreatment using 20mg/g-TSS THPS, which also obviously destroyed EPS and cell membrane, and dissolved more biodegradable substances (48.8%) than raw sludge (19.7%). Moreover, 20mg/g-TSS THPS pretreatment shortened fermentation time to 4days and improved VFA production to 2778mg COD/L (4.35 times than that in control). Therein, the sum of n-butyric, n-valeric and iso-valeric acids unexpectedly accounted for 60.5% of total VFA (only 20.1% of that in control). The more high molecular weight VFAs (C4-C5) than low molecular VFAs (C2-C3) resulted from THPS pretreatment benefited to subsequent medium-chain volatile acids (C6-C12) generation to realize the separation and recovery of organic carbon more efficiently. Copyright © 2017. Published by Elsevier Ltd.

  2. Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM-ERL predictions.

    PubMed

    Garcia, Carlos Alexandre Borges; Passos, Elisangela de Andrade; Alves, José do Patrocínio Hora

    2011-10-01

    This paper presents the distributions of the investigation of trace metals geochemistry in surface sediments of the Sergipe river estuary, northeast Brazil. Analyses were carried out by Flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). Principal component analysis was applied to results to identify any groupings among the different sampling sites. In order to determine the extent of contamination, taking into account natural variability within the region, metal concentrations were normalized relative to aluminium. Cr, Cu, Ni and Zn contamination was observed in sediments from the area receiving highest inputs of domestic wastes, while cadmium contamination occurred in sediments from the region affected by highest inflows of industrial effluents. Possible toxicity related to these metals was examined using the relationship simultaneously extracted metals/acid volatile sulfide and by comparing sediment chemical data with sediment quality guidelines ERL-ERM values. Results obtained using the two methods were in agreement and indicated that adverse effects on aquatic biota should rarely occur.

  3. Evidence of magmatic degassing in Archean komatiites: Insights from the Wannaway nickel-sulfide deposit, Western Australia

    NASA Astrophysics Data System (ADS)

    Caruso, Stefano; Fiorentini, Marco L.; Moroni, Marilena; Martin, Laure A. J.

    2017-12-01

    Magmatic degassing from komatiite lava flows potentially influenced the geochemical evolution of the Archean atmosphere and hydrosphere. We argue that the escape of SO2-rich volatiles from komatiites impacted on the mineralogical, geochemical and isotopic composition of associated nickel-sulfide mineralization leaving behind detectable and measurable footprints that can be best observed where the polarity of the magmatic sequence is clearly recognizable. Here we focus on the ore-bearing sequence of the Archean komatiite-hosted N01 nickel-sulfide orebody at Wannaway, Yilgarn Craton, Western Australia. This deposit displays a volcanic sequence with a well-defined succession of stratigraphically-correlated facies comprising a massive sulfide horizon at the base of the channelized komatiite flow, overlain by matrix and disseminated sulfide mineralization. Pyrrhotite is the dominant sulfide phase in the lower part of the ore profile. The amount of troilite gradually increases from the base of the matrix ore over several meters up-sequence, eventually becoming dominant at the expense of pyrrhotite. In the upper portion of the mineralized sequence troilite is associated with accessory Mn sulfide alabandite (MnS), which is usually reported in reduced terrestrial and extra-terrestrial environments. Such mineralogical and volcanological features are consistent with upwards decreasing in fS2 and fO2 away from the basal contact of the komatiite flow. After evaluating the possible role of metamorphism, the pyrrhotite-troilite-alabandite assemblage and the progressive up-sequence decrease of the pyrrhotite/troilite ratio across the upper part of the mineralized sequence are interpreted as magmatic and indicative of progressive loss of sulfur with concomitant establishment of reducing conditions within the sulfide melt ponding at the base of the komatiite lava. In this context, the investigation of spatially constrained sulfur isotopic signatures allows to isolate the multiple

  4. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    PubMed Central

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237

  5. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains.

    PubMed

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  6. Laboratory studies of Aedes aegypti (L.) attraction to ketones, sulfides and primary chloroalkanes tested alone and in combination with l-lactic acid

    USDA-ARS?s Scientific Manuscript database

    The attraction of female Aedes aegypti to single compounds and binary compositions comprised of L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because o...

  7. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  8. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    PubMed

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  10. Correlations Between Surficial Sulfur and a REE Crustal Assimilation Signature in Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Franz, H. B.

    2015-01-01

    Compared to terrestrial basalts, the Martian shergottite meteorites have an extraordinary range of Sr and Nd isotopic signatures. In addition, the S isotopic compositions of many shergottites show evidence of interaction with the Martian surface/ atmosphere through mass-independent isotopic fractionations (MIF, positive, non-zero delta(exp 33)S) that must have originated in the Martian atmosphere, yet ultimately were incorporated into igneous sulfides (AVS - acid-volatile sulfur). These positive delta(exp 33)S signatures are thought to be governed by solar UV photochemical processes. And to the extent that S is bound to Mars and not lost to space from the upper atmosphere, a positive delta(exp 33)S reservoir must be mass balanced by a complementary negative reservoir.

  11. Changes in sugars, acids, and volatiles during ripening of koubo [Cereus peruvianus (L.) Miller] fruits.

    PubMed

    Ninio, Racheli; Lewinsohn, Efraim; Mizrahi, Yosef; Sitrit, Yaron

    2003-01-29

    The columnar cactus Cereus peruvianus (L.) Miller, Cactaceae (koubo), is grown commercially in Israel. The unripe fruits are green, and the color changes to violet and then to red when the fruit is fully ripe. The content of soluble sugars was found to increase 5-fold during ripening. Glucose and fructose were the main sugars accumulated in the fruit pulp, and each increased from 0.5 to 5.5 g/100 g fresh weight during ripening. The polysaccharides content decreased during ripening from 1.4 to 0.4 g/100 g fresh weight. The titratable acidity decreased and the pH increased during ripening. The major organic acid found in the fruit was malic acid, which decreased from 0.75 g/100 g fresh weight at the mature green stage to 0.355 g/100 g fresh weight in ripe fruits. Citric, succinic, and oxalic acids were found in concentrations lower than 0.07 g/100 g fresh weight. Prominent accumulation of aroma volatiles occurred toward the end of the ripening process. The main volatile found in the ripe fruit was linalool, reaching concentrations of 1.5-3.5 microg/g fresh weight.

  12. Volatile fatty acids production from marine macroalgae by anaerobic fermentation.

    PubMed

    Pham, Thi Nhan; Nam, Woo Joong; Jeon, Young Joong; Yoon, Hyon Hee

    2012-11-01

    Volatile fatty acids (VFAs) were produced from the marine macroalgae, Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinite by anaerobic fermentation using a microbial community derived from a municipal wastewater treatment plant. Methanogen inhibitor (iodoform), pH control, substrate concentration, and alkaline and thermal pretreatments affected VFA productivity. Acetic, propionic, and butyric acids were the main products. A maximum VFA concentration of 15.2g/L was obtained from 50 g/L of L. japonica in three days at 35°C and pH 6.5-7.0. Pretreatment with 0.5 N NaOH improved VFA productivity by 56% compared to control. The result shows the applicability of marine macroalgae as biomass feedstock for the production of VFAs which can be converted to mixed alcohol fuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity.

    PubMed

    Hasan, Salah Din Mahmud; Giongo, Citieli; Fiorese, Mônica Lady; Gomes, Simone Damasceno; Ferrari, Tatiane Caroline; Savoldi, Tarcio Enrico

    2015-01-01

    The production of volatile fatty acids (VFAs), intermediates in the anaerobic degradation process of organic matter from waste water, was evaluated in this work. A batch reactor was used to investigate the effect of temperature, and alkalinity in the production of VFAs, from the fermentation of industrial cassava waste water. Peak production of total volatile fatty acids (TVFAs) was observed in the first two days of acidogenesis. A central composite design was performed, and the highest yield (3400 mg L(-1) of TVFA) was obtained with 30°C and 3 g L(-1) of sodium bicarbonate. The peak of VFA was in 45 h (pH 5.9) with a predominance of acetic (63%) and butyric acid (22%), followed by propionic acid (12%). Decreases in amounts of cyanide (12.9%) and chemical oxygen demand (21.6%) were observed, in addition to the production of biogas (0.53 cm(3) h(-1)). The process was validated experimentally and 3400 g L(-1) of TVFA were obtained with a low relative standard deviation.

  14. A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition

    NASA Astrophysics Data System (ADS)

    Li, Haiwei; Feng, Xiao; Guo, Yuexin; Chen, Didi; Li, Rui; Ren, Xiaoqian; Jiang, Xin; Dong, Yuping; Wang, Bo

    2014-03-01

    A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.

  15. Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis.

    PubMed

    Kappers, Iris F; Verstappen, Francel W A; Luckerhoff, Ludo L P; Bouwmeester, Harro J; Dicke, Marcel

    2010-05-01

    Cucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography-mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, and (E)-beta-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.

  16. Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis

    PubMed Central

    Verstappen, Francel W. A.; Luckerhoff, Ludo L. P.; Bouwmeester, Harro J.; Dicke, Marcel

    2010-01-01

    Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents. PMID:20383796

  17. Recombinant allergens Pru av 1 and Pru av 4 and a newly identified lipid transfer protein in the in vitro diagnosis of cherry allergy.

    PubMed

    Scheurer, S; Pastorello, E A; Wangorsch, A; Kästner, M; Haustein, D; Vieths, S

    2001-04-01

    In central and northern Europe food allergy to fruits of the Rosaceae family is strongly associated with birch pollinosis because of the existence of IgE cross-reactive homologous allergens in birch pollen and food. By contrast, in the Mediterranean population allergic reactions to these fruits frequently are not related to birch pollen allergy and are predominantly elicited by lipid transfer proteins (LTPs). We sought to determine the prevalence of IgE sensitization to the recombinant cherry allergens Pru av 1 and Pru av 4 in comparison with cherry extract within a representative group of patients who were allergic to cherries recruited in Germany and to compare the relevance of IgE to cherry LTPs in Italian patients. Recombinant Pru av 1 and rPru av 4 were available from earlier studies. The cDNA of the cherry LTPs was obtained by using a PCR-cloning strategy. The protein was expressed in Escherichia coli and purified by means of metal chelate affinity chromatography. Sera from 101 German patients with birch pollinosis and oral allergy syndrome to cherry and sera from 7 Italian patients with cherry allergy were investigated by using enzyme allergosorbent tests for IgE reactivity with cherry extract, rPru av 1, rPru av 4, and the recombinant cherry LTP. Inhibition experiments were performed to compare the IgE reactivity of natural and recombinant cherry LTPs and to investigate potential cross-reactivity with birch pollen allergens. The LTP from cherry comprises 91 amino acids and a 26 amino acid signal peptide. The mature cherry LTP shows high amino acid sequence identity with allergenic LTPs from peach (Pru p 3, 88%), apricot (Pru ar 3, 86%), and maize (Zea m 14, 59%) and displays no IgE cross-reactivity with birch pollen. The IgE prevalences in the German patients were as follows: LTP, 3 of 101 (3%); rPru av 1, 97 of 101 (96.0%); rPru av 4, 16 of 101 (16.2%); and cherry extract, 98 of 101 (97%). All 7 Italian patients had IgE against the cherry LTP. Recombinant

  18. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice.

    PubMed

    Kelebek, Hasim; Selli, Serkan

    2011-08-15

    Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.

  19. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  20. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    NASA Astrophysics Data System (ADS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiation(1-7 kGy) and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC.

  1. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  2. AVS on satellite

    NASA Astrophysics Data System (ADS)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang

    2005-07-01

    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  3. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    PubMed

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  4. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of clary sage seed (Salvia sclarea L.).

    PubMed

    Yalcin, Hasan; Ozturk, Ismet; Tulukcu, Eray; Sagdic, Osman

    2011-09-01

    Clary sage seeds (Salvia sclarea L.) were obtained from plants cultivated, and 2.5, 4.0, 5.5, and 7.0 kGy doses of γ-irradiation were applied to the clary sage seeds. They were then analyzed for their protein, ash, oil and dry matter contents, and fatty acid composition. Additionally, the total phenolic contents, antiradical, antioxidant activities, and volatile compounds of the clary sage seed extract were determined. There was no significant difference in protein content. However, the moisture, oil, and ash contents of the samples were affected by irradiation. While the 7 kGy dose had a positive effect on the total phenolic content and antiradical activity of the sage seed extract, all doses have negative effects on the antioxidant activity of the sage seed. The main fatty acid of the sage seed was remarkably found as α-linolenic acid. The four irradiation levels caused significant differences in fatty acid composition by affecting all fatty acids except palmitic, palmitoleic, and eicosenoic acids. The dominant volatile compounds of control sage seed were found as β-pinene (18.81%) and limonene (15.60%). Higher doses of the irradiation decreased volatile components of sage seed. Clary sage seed including high omega-3 can be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. Clary sage is one of the most popular Salvia species in Turkey and many countries. Clary sage seed has approximately 29% oil content and this oil contains >50% of α-linolenic acid. γ-Irradiation is widely applied in the preservation of spice quality. The present study shows that the antioxidant activity of the clary sage seed is decreased by γ-irradiation. Additionally, higher doses of irradiation also decreased the volatile components of sage seed. Therefore, we suggest that clary sage seed which includes high levels of omega-3 should be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. © 2011 Institute of Food Technologists®

  5. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is

  7. Production of volatiles in fresh-cut apple: effect of applying alginate coatings containing linoleic acid or isoleucine.

    PubMed

    Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I

    2014-11-01

    One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. © 2014 Institute of Food Technologists®

  8. Kinetics of Ni3S2 sulfide dissolution in solutions of sulfuric and hydrochloric acids

    NASA Astrophysics Data System (ADS)

    Palant, A. A.; Bryukvin, V. A.; Vinetskaya, T. N.; Makarenkova, T. A.

    2008-02-01

    The kinetics of Ni3S2 sulfide (heazlewoodite) dissolution in solutions of hydrochloric and sulfuric acids is studied. The process under study in the temperature range of 30 90°C is found to occur in a kinetic regime and is controlled by the corresponding chemical reactions of the Ni3S2 decomposition by solutions of inorganic acids ( E a = 67 92 kJ/mol, or 16 22 kcal/mol). The only exception is the Ni3S2-HCl system at elevated temperatures (60 90°C). In this case, the apparent activation energy decreases sharply to 8.8 kJ/mol (2.1 kcal/mol), which is explained by the catalytic effect of gaseous chlorine formed under these conditions. The studies performed are related to the physicochemical substantiation of the hydrometallurgical processing of the copper-nickel converter mattes produced in the industrial cycle of the Norilsk Mining Company.

  9. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    ERIC Educational Resources Information Center

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  10. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    NASA Astrophysics Data System (ADS)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  11. Quantification of selected volatile organic compounds in human urine by gas chromatography selective reagent ionization time of flight mass spectrometry (GC-SRI-TOF-MS) coupled with head-space solid-phase microextraction (HS-SPME).

    PubMed

    Mochalski, Paweł; Unterkofler, Karl

    2016-08-07

    Selective reagent ionization time of flight mass spectrometry with NO(+) as the reagent ion (SRI-TOF-MS(NO(+))) in conjunction with gas chromatography (GC) and head-space solid-phase microextraction (HS-SPME) was used to determine selected volatile organic compounds in human urine. A total of 16 volatiles exhibiting high incidence rates were quantified in the urine of 19 healthy volunteers. Amongst them there were ten ketones (acetone, 2-butanone, 3-methyl-2-butanone, 2-pentanone, 3-methyl-2-pentanone, 4-methyl-2-pentanone, 2-hexanone, 3-hexanone, 2-heptanone, and 4-heptanone), three volatile sulphur compounds (dimethyl sulfide, allyl methyl sulfide, and methyl propyl sulfide), and three heterocyclic compounds (furan, 2-methylfuran, 3-methylfuran). The concentrations of the species under study varied between 0.55 nmol L(-1) (0.05 nmol mmol(-1)creatinine) for allyl methyl sulfide and 11.6 μmol L(-1) (1.54 μmol mmol(-1)creatinine) for acetone considering medians. Limits of detection (LODs) ranged from 0.08 nmol L(-1) for allyl methyl sulfide to 1.0 nmol L(-1) for acetone and furan (with RSDs ranging from 5 to 9%). The presented experimental setup assists both real-time and GC analyses of volatile organic compounds, which can be performed consecutively using the same analytical system. Such an approach supports the novel concept of hybrid volatolomics, an approach which combines VOC profiles obtained from two or more body fluids to improve and complement the chemical information on the physiological status of an individual.

  12. Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit.

    PubMed

    Yu, Qibin; Plotto, Anne; Baldwin, Elizabeth A; Bai, Jinhe; Huang, Ming; Yu, Yuan; Dhaliwal, Harvinder S; Gmitter, Frederick G

    2015-03-06

    Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. Fruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced. We showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit.

  13. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores

    PubMed Central

    Bruinsma, Maaike; Posthumus, Maarten A.; Mumm, Roland; Mueller, Martin J.; van Loon, Joop J. A.; Dicke, Marcel

    2009-01-01

    Caterpillar feeding induces direct and indirect defences in brassicaceous plants. This study focused on the role of the octadecanoid pathway in induced indirect defence in Brassica oleracea. The effect of induction by exogenous application of jasmonic acid (JA) on the responses of Brussels sprouts plants and on host-location behaviour of associated parasitoid wasps was studied. Feeding by the biting–chewing herbivores Pieris rapae and Plutella xylostella resulted in significantly increased endogenous levels of JA, a central component in the octadecanoid signalling pathway that mediates induced plant defence. The levels of the intermediate 12-oxophyto-dienoic acid (OPDA) were significantly induced only after P. rapae feeding. Three species of parasitoid wasps, Cotesia glomerata, C. rubecula, and Diadegma semiclausum, differing in host range and host specificity, were tested for their behavioural responses to volatiles from herbivore-induced, JA-induced, and non-induced plants. All three species were attracted to volatiles from JA-induced plants compared with control plants; however, they preferred volatiles from herbivore-induced plants over volatiles from JA-induced plants. Attraction of C. glomerata depended on both timing and dose of JA application. JA-induced plants produced larger quantities of volatiles than herbivore-induced and control plants, indicating that not only quantity, but also quality of the volatile blend is important in the host-location behaviour of the wasps. PMID:19451186

  14. CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two Erythroxylum species.

    PubMed

    Luck, Katrin; Jirschitzka, Jan; Irmisch, Sandra; Huber, Meret; Gershenzon, Jonathan; Köllner, Tobias G

    2016-10-04

    Amino acid-derived aldoximes and nitriles play important roles in plant defence. They are well-known as precursors for constitutive defence compounds such as cyanogenic glucosides and glucosinolates, but are also released as volatiles after insect feeding. Cytochrome P450 monooxygenases (CYP) of the CYP79 family catalyze the formation of aldoximes from the corresponding amino acids. However, the majority of CYP79s characterized so far are involved in cyanogenic glucoside or glucosinolate biosynthesis and only a few have been reported to be responsible for nitrogenous volatile production. In this study we analysed and compared the jasmonic acid-induced volatile blends of two Erythroxylum species, the cultivated South American crop species E. coca and the African wild species E. fischeri. Both species produced different nitrogenous compounds including aliphatic aldoximes and an aromatic nitrile. Four isolated CYP79 genes (two from each species) were heterologously expressed in yeast and biochemically characterized. CYP79D62 from E. coca and CYP79D61 and CYP79D60 from E. fischeri showed broad substrate specificity in vitro and converted L-phenylalanine, L-isoleucine, L-leucine, L-tryptophan, and L-tyrosine into the respective aldoximes. In contrast, recombinant CYP79D63 from E. coca exclusively accepted L-tryptophan as substrate. Quantitative real-time PCR revealed that CYP79D60, CYP79D61, and CYP79D62 were significantly upregulated in jasmonic acid-treated Erythroxylum leaves. The kinetic parameters of the enzymes expressed in vitro coupled with the expression patterns of the corresponding genes and the accumulation and emission of (E/Z)-phenylacetaldoxime, (E/Z)-indole-3-acetaldoxime, (E/Z)-3-methylbutyraldoxime, and (E/Z)-2-methylbutyraldoxime in jasmonic acid-treated leaves suggest that CYP79D60, CYP79D61, and CYP79D62 accept L-phenylalanine, L-leucine, L-isoleucine, and L-tryptophan as substrates in vivo and contribute to the production of volatile and semi-volatile

  15. Measurement of plasma hydrogen sulfide in vivo and in vitro

    PubMed Central

    Shen, Xinggui; Pattillo, Christopher B.; Pardue, Sibile; Bir, Shyamal C.; Wang, Rui; Kevil, Christopher G.

    2015-01-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H2S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H2S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris–HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6×250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media. PMID:21276849

  16. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    PubMed

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder.

    PubMed

    Cremer, D R; Eichner, K

    2000-06-01

    Spice paprika (red pepper; Capsicum annuum) is the most cultivated spice worldwide and is used mainly for its color and pungency. However, current research is also focusing on the flavor as an important parameter. This paper deals with the kinetics of the formation of those volatiles that indicate a decrease in spice paprika quality due to Maillard reaction, hydrolytic reactions, and oxidative degradation reactions of lipids such as fatty acids and carotenoids. Spice paprika volatiles were quantitatively analyzed by means of headspace gas chromatography (HS-GC) and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The kinetics of their formation were investigated, and the respective activation energies determined. Strecker aldehyde, acetone, and methanol formation followed a pseudo-zero-order reaction kinetic, and formation of dimethyl sulfide (DMS) was characterized by a first-order kinetic. The activation energies determined were between 86.3 and 101.8 for the Strecker aldehydes acetaldehyde (AA), 2-methylpropanal (2-MP), 3-methylbutanal (3-MB), and 2-methylbutanal (2-MB), 130.7 for acetone, 114.2 for methanol, and 109.7 kJ/mol for DMS. The amounts of Strecker aldehydes formed were correlated to the concentrations of the corresponding free amino acids present in the samples. The formation of hexanal and 6-methyl-5-hepten-2-one in Capsicum annuum during processing was confirmed, and the formation of beta-ionone was probably described for the first time. During heating, the concentration of hexanal increased rapidly. The formation of 6-methyl-5-hepten-2-one confirms that Capsicum annuum fruits contain lycopene.

  18. Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid.

    PubMed

    Wang, X D; Bohlscheid, J C; Edwards, C G

    2003-01-01

    To understand the impact of assimilable nitrogen and pantothenic acid on fermentation rate and synthesis of volatile compounds by Saccharomyces under fermentative conditions. A 2 x 3 factorial experimental design was employed with the concentrations of yeast assimilable nitrogen (YAN) (60 and 250 mg l(-1)) and pantothenic acid (10, 50 and 250 microg l(-1)) as variables. In media containing 250 microg l(-1) pantothenic acid, H2S production by two different species of Saccharomyces decreased when YAN was increased from 60 to 250 mg l(-1). Conversely, H2S production was significantly higher when the concentration of assimilable nitrogen was increased if pantothenic acid was deficient (10 or 50 microg l(-1)). Yeast synthesis of other volatile compounds were impacted by both assimilable nitrogen and pantothenic acid. While growth and fermentative rate of Saccharomyces was more influenced by nitrogen than by pantothenic acid, complicated interactions exist between these nutrients that affect the synthesis of volatile compounds including H2S. This study has important implications for the winemaking industry where a better understanding of the nutritional requirements of Saccharomyces is necessary to reduce fermentation problems and to improve final product quality.

  19. PRESERVATION OF SULFIDIC WATERS CONTAINING DISSOLVED AS (III)

    EPA Science Inventory

    Field samples for arsenic analyses are commonly preserved by acidification with hydrochloric or nitric acid. In some suboxic samples, appreciable concentrations of H2S and HS- are observed due to the microbial respiration of sulfate-reducing bacteria. If both As(III) and sulfid...

  20. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  1. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments.

    PubMed

    Besser, John M; Brumbaugh, William G; Ingersoll, Christopher G; Ivey, Chris D; Kunz, James L; Kemble, Nile E; Schlekat, Christian E; Garman, Emily Rogevich

    2013-11-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94-38 µmol/g) and total organic carbon (TOC; 0.42-10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni. © 2013 SETAC.

  2. Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments.

    PubMed

    Vazquez-Landaverde, P A; Qian, M C; Torres, J A

    2007-09-01

    Volatile formation in milk subjected to pressure-assisted thermal processing (PATP) was investigated from a reaction kinetic analysis point of view to illustrate the advantages of this technology. The concentration of 27 volatiles of different chemical class in milk subjected to pressure, temperature, and time treatments was fitted to zero-, 1st-, and 2nd-order chemical reaction models. Temperature and pressure effects on rate constants were analyzed to obtain activation energy (E(a)) and activation volume (deltaV*) values. Hexanal, heptanal, octanal, nonanal, and decanal followed 1st-order kinetics with rate constants characterized by E(a) values decreasing with pressure reflecting negative deltaV* values. Formation of 2-methylpropanal, 2,3-butanedione, and hydrogen sulfide followed zero-order kinetics with rate constants increasing with temperature but with unclear pressure effects. E(a) values for 2-methylpropanal and 2,3-butanedione increased with pressure, that is, deltaV* > 0, whereas values for hydrogen sulfide remained constant, that is, deltaV* = 0. The concentration of all other volatiles, including methanethiol, remained unchanged in pressure-treated samples, suggesting large negative deltaV* values. The concentration of methyl ketones, including 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, 2-decanone, and 2-undecanone, was independent of pressure and pressure-holding time. PATP promoted the formation of few compounds, had no effect on some, and inhibited the formation of volatiles reported to be factors of the consumer rejection of "cooked" milk flavor. The kinetic behavior observed suggested that new reaction formation mechanisms were not likely involved in volatile formation in PATP milk. The application of the Le Chatelier principle frequently used to explain the high quality of pressure-treated foods, often with no supporting experimental evidence, was not necessary.

  3. Selenium Sulfide

    MedlinePlus

    ... minutes.Do not leave selenium sulfide on your hair, scalp, or skin for long periods (e.g., ... jewelry; selenium sulfide may damage it. Wash your hair with ordinary shampoo and rinse it well. Shake ...

  4. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo

    USDA-ARS?s Scientific Manuscript database

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess impact of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between VFA and VFA pool size (VFAmol), possibly related to ruminal digesta liquid amount (LIQ, kg), suggest issues...

  5. Electrochemical hydrogen sulfide biosensors.

    PubMed

    Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji

    2016-02-21

    The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.

  6. A rare positively charged nicotinic acid di­sulfide: 2,2′-di­thio­dinicotinic acid hydro­chloride monohydrate

    PubMed Central

    McGuire, Chad M.; Albrecht-Schmitt, Thomas E.

    2018-01-01

    The title compound {systematic name: 3-carb­oxy-2-[2-(3-carb­oxy­pyridin-2-yl)disulfan-1-yl)]pyridin-1-ium chloride monohydrate}, C12H9N2O4S2 +·Cl−·H2O, crystallizes in the triclinic space group P . A pair of 2-mercaptonicotinic acid moieties is connected by a 2,2′-di­sulfide bond with a dihedral angle of 78.79 (3)°. One of the N atom is protonated, as are both carboxyl­ate groups, resulting in an overall +1 charge on the dimer. The structure comprises a zigzagging layer of the dimerized di­thio­dinicotinic acid rings, with charge-balancing chloride ions and water mol­ecules between the layers. Hydrogen bonding between the chloride and water sites with the dimer appears to hold the structure together. Nearest neighbor nicotinic acid rings are offset when viewed down the a axis, suggesting no added stability from ring stacking. The asymmetric unit corresponds to the empirical formula of the compound, and it packs with two formula units per unit cell.

  7. Prevention of sulfide oxidation in sulfide-rich waste rock

    NASA Astrophysics Data System (ADS)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  8. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  10. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  11. Release of volatile mercury from vascular plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  12. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2014-05-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.

  13. A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid.

    PubMed

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg; Yuan, Zhiguo

    2015-03-01

    Improved technologies are currently required for mitigating microbially induced concrete corrosion caused by the oxidation of sulfide to sulfuric acid in sewer systems. This study presents a novel strategy for reducing H2S oxidation on concrete surfaces that accommodate an active corrosion biofilm. The strategy aims to reduce biological oxidation of sulfide through treating the corrosion biofilm with free nitrous acid (FNA, i.e. HNO2). Two concrete coupons with active corrosion activity and surface pH of 3.8 ± 0.3 and 2.7 ± 0.2 were sprayed with nitrite. For both coupons, the H2S uptake rates were reduced by 84%-92% 15 days after the nitrite spray. No obvious recovery of the H2S uptake rate was observed during the entire experimental period (up to 12 months after the spray), indicating the long-term effectiveness of the FNA treatment in controlling the activity of the corrosion-causing biofilms. Live/Dead staining tests on the microorganisms on the concrete coupon surfaces demonstrated that viable bacterial cells decreased by > 80% 39 h after the nitrite spray, suggesting that biofilm cells were killed by the treatment. Examination of a corrosion layer within a suspended solution, containing the corrosion-causing biofilms, indicated that biological activity (ATP level and ratio of viable bacterial cells) was severely decreased by the treatment, confirming the bactericidal effect of FNA on the microorganisms in the biofilms. While field trials are still required to verify its effectiveness, it has been demonstrated here that the FNA spray is potentially a very cheap and effective strategy to reduce sewer corrosion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Copper Diffusion in Silicate Melts and Melt Inclusion Study on Volatiles in The Lunar Interior

    NASA Astrophysics Data System (ADS)

    Ni, Peng

    This thesis focuses on the application of diffusion kinetics to both terrestrial and lunar geochemistry. In Chapters II and III, diffusivities of Cu in silicate melts were experimentally determined and used to discuss the role of Cu diffusion in formation of Cu ore deposits and also Cu isotope fractionation in tektites. In Chapters IV and V, lunar olivine-hosted melt inclusions are studied to understand their volatile loss during homogenization in lab, to estimate cooling rate for lunar Apollo sample 74220, and to estimate volatile abundance in the lunar mantle. Magmatic sulfide deposits and porphyry-type Cu deposits are two major types of Cu deposits that supply the world's Cu. In particular, porphyry-type Cu deposits provide ˜57% of the world's total discovered Cu. Recent studies suggest a potential role of diffusive transport of metals (e.g. Cu, Au, PGE, Mo) in the formation of magmatic sulfide deposits and porphyry-type deposits. Diffusivities of Cu in silicate melts, however, are poorly determined. In Chapters II and III of this thesis, Cu diffusion in basaltic melt and rhyolitic melts are studied by diffusion couple and chalcocite "dissolution" methods. Our results indicate high diffusivities of Cu and a general equation for Cu diffusion in silicate melts is obtained. The high diffusivity of Cu indicate that partition of Cu between the silicate phase and the sulfide or fluid phase can be assumed to be in equilibrium during the formation of magmatic sulfide deposits or porphyry-type deposits. In addition, our Cu diffusion data helps explain why Cu isotopes are more fractionated than Zn isotopes in tektites. Volatile abundances in the lunar mantle have profound implications for the origin of the Moon, which was thought to be bone-dry till about a decade ago, when trace amounts of H2O were detected in various types of lunar samples. In particular, high H2O concentrations comparable to mid-ocean ridge basalts were reported in lunar melt inclusions. There are

  15. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia)

    USGS Publications Warehouse

    Duran, C.J.; Barnes, S-J.; Pleše, P.; Prašek, M. Kudrna; Zientek, Michael L.; Pagé, P.

    2017-01-01

    The distribution of platinum-group elements (PGE) within zoned magmatic ore bodies has been extensively studied and appears to be controlled by the partitioning behavior of the PGE during fractional crystallization of magmatic sulfide liquids. However, other chalcophile elements, especially TABS (Te, As, Bi, Sb, and Sn) have been neglected despite their critical role in forming platinum-group minerals (PGM). TABS are volatile trace elements that are considered to be mobile so investigating their primary distribution may be challenging in magmatic ore bodies that have been somewhat altered. Magmatic sulfide ore bodies from the Noril’sk-Talnakh mining district (polar Siberia, Russia) offer an exceptional opportunity to investigate the behavior of TABS during fractional crystallization of sulfide liquids and PGM formation as the primary features of the ore bodies have been relatively well preserved. In this study, new petrographic (2D and 3D) and whole-rock geochemical data from Cu-poor to Cu-rich sulfide ores of the Noril’sk-Talnakh mining district are integrated with published data to consider the role of fractional crystallization in generating mineralogical and geochemical variations across the different ore types (disseminated to massive). Despite textural variations in Cu-rich massive sulfides (lenses, veins, and breccias), these sulfides have similar chemical compositions, which suggests that Cu-rich veins and breccias formed from fractionated sulfide liquids that were injected into the surrounding rocks. Numerical modeling using the median disseminated sulfide composition as the initial sulfide liquid composition and recent DMSS/liq and DISS/liq predicts the compositional variations observed in the massive sulfides, especially in terms of Pt, Pd, and TABS. Therefore, distribution of these elements in the massive sulfides was likely controlled by their partitioning behavior during sulfide liquid fractional crystallization, prior to PGM formation. Our

  16. Fermentation of wet-exploded corn stover for the production of volatile fatty acids.

    PubMed

    Murali, Nanditha; Fernandez, Sebastian; Ahring, Birgitte Kiaer

    2017-03-01

    Volatile fatty acids (VFA) have been used as platform molecules for production of biofuels and bioproducts. In the current study, we examine the VFA production from wet-exploded corn stover through anaerobic fermentation using rumen bacteria. The total VFA yield (acetic acid equivalents) was found to increase from 22.8g/L at 2.5% total solids (TS) to 40.8g/L at 5% TS. It was found that the acetic acid concentration increased from 10g/L to 22g/L at 2.5% and 5% TS, respectively. An increased propionic acid production was seen between day 10 and 20 at 5% TS. Valeric acid (4g/L) was produced at 5% TS and not at 2.5% TS. Composition analysis showed that 50% of the carbohydrates were converted to VFA at 5% TS and 33% at 2.5% TS. Our results show that rumen fermentation of lignocellulosic biomass after wet explosion can produce high concentrations of VFA without addition of external enzymes of importance for the process economics of lignocellulosic biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine.

    PubMed

    Luo, Zongli; Walkey, Christopher J; Madilao, Lufiani L; Measday, Vivien; Van Vuuren, Hennie J J

    2013-08-01

    Control of volatile acidity (VA) is a major issue for wine quality. In this study, we investigated the production of VA by a deletion mutant of the fermentation stress response gene AAF1 in the budding yeast Saccharomyces cerevisiae. Fermentations were carried out in commercial Chardonnay grape must to mimic industrial wine-making conditions. We demonstrated that a wine yeast strain deleted for AAF1 reduced acetic acid levels in wine by up to 39.2% without increasing the acetaldehyde levels, revealing a potential for industrial application. Deletion of the cytosolic aldehyde dehydrogenase gene ALD6 also reduced acetic acid levels dramatically, but increased the acetaldehyde levels by 41.4%, which is not desired by the wine industry. By comparison, ALD4 and the AAF1 paralog RSF2 had no effects on acetic acid production in wine. Deletion of AAF1 was detrimental to the growth of ald6Δ and ald4Δald6Δ mutants, but had no effect on acetic acid production. Overexpression of AAF1 dramatically increased acetic acid levels in wine in an Ald6p-dependent manner, indicating that Aaf1p regulates acetic acid production mainly via Ald6p. Overexpression of AAF1 in an ald4Δald6Δ strain produced significantly more acetic acid in wine than the ald4Δald6Δ mutant, suggesting that Aaf1p may also regulate acetic acid synthesis independently of Ald4p and Ald6p. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. PROCESS FOR TREATING VOLATILE METAL FLUORIDES

    DOEpatents

    Rudge, A.J.; Lowe, A.J.

    1957-10-01

    This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.

  19. Sources of volatiles in basalts from the Galapagos Archipelago: deep and shallow evidence

    NASA Astrophysics Data System (ADS)

    Peterson, M. E.; Saal, A. E.; Hauri, E. H.; Werner, R.; Hauff, S. F.; Kurz, M. D.; Geist, D.; Harpp, K. S.

    2010-12-01

    The study of volatiles (H2O, CO2, F, S, and Cl) is important because volatiles assert a strong influence on mantle melting and magma crystallization, as well as on the viscosity and rheology of the mantle. Despite this importance, there have been a minimal number of volatile studies done on magmas from the four main mantle sources that define the end member compositions of the Galapagos lavas. For this reason, we here present new volatile concentrations of 89 submarine glass chips from dredges collected across the archipelago during the SONNE SO158, PLUM02, AHA-NEMO, and DRIFT04 cruises. All samples, with the exception of six, were collected at depths greater than 1000m. Major elements (E-probe), and volatile and trace elements (SIMS), are analyzed on the same glass chip, using 4 chips per sample, to better represent natural and analytical variation. Trace element contents reveal three main compositional groups: an enriched group typical of OIB, a group with intermediate compositions, and a group with a depleted trace element composition similar to MORB. The absolute ranges of volatile contents for all three compositional groups are .098-1.15wt% for H2O, 10.7-193.7 ppm for CO2, 61.4-806.5 ppm for F, 715.8-1599.2 ppm for S and 3.8-493.3 for Cl. The effect of degassing, sulfide saturation and assimilation of hydrothermally altered material must be understood before using the volatile content of submarine glasses to establish the primary volatile concentration of basalts and their mantle sources. CO2 has a low solubility in basaltic melts causing it to extensively degas. Based on the CO2/Nb ratio, we estimate the extent of degassing for the Galapagos lavas to range from approximately undegassed to 90% degassed. We demonstrate that 98% of the samples are sulfur undersaturated. Therefore, sulfur will behave as a moderately incompatible element during magmatic processes. Finally, we evaluate the effect of assimilation of hydrothermally altered material on the volatile

  20. Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells.

    PubMed

    Zhang, Jing; Zhang, Baogang; Tian, Caixing; Ye, Zhengfang; Liu, Ye; Lei, Zhongfang; Huang, Wenli; Feng, Chuanping

    2013-06-01

    Microbial fuel cells (MFCs), representing a promising method to treat combined pollutants with energy recovery, were utilized to remove sulfide and recover power with corn stover filtrate (CSF) as the co-substrate in present study. A maximum power density of 744 mW/m(2) was achieved with sulfide removal of 91% during 72 h operation when the CSF concentrations (mg-COD/l) and the electrolyte conductivity were set at 800 mg/l and 10.06 mS/cm, respectively, while almost 52% COD was removed due to the microbial degradation of CSF to the volatile organic carbons. CSF concentrations and electrolyte conductivities had significant effects on the performance of the MFCs. Simultaneous removals of inorganic pollutant and complex organic compounds with electricity generation in MFCs are reported for the first time. These results provide a good reference for multiple contaminations treatment especially sulfide containing wastewaters based on the MFC technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Volatile flavor compounds in yogurt: a review.

    PubMed

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  2. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model.

    PubMed

    Kang, Bo-Sik; Lee, Jang-Eun; Park, Hyun-Jin

    2014-06-01

    In Korean rice wine (makgeolli) model, we tried to develop a prediction model capable of eliciting a quantitative relationship between initial amino acids in makgeolli mash and major aromatic compounds, such as fusel alcohols, their acetate esters, and ethyl esters of fatty acids, in makgeolli brewed. Mass-spectrometry-based electronic nose (MS-EN) was used to qualitatively discriminate between makgeollis made from makgeolli mashes with different amino acid compositions. Following this measurement, headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (GC-MS) combined with partial least-squares regression (PLSR) method was employed to quantitatively correlate amino acid composition of makgeolli mash with major aromatic compounds evolved during makgeolli fermentation. In qualitative prediction with MS-EN analysis, the makgeollis were well discriminated according to the volatile compounds derived from amino acids of makgeolli mash. Twenty-seven ion fragments with mass-to-charge ratio (m/z) of 55 to 98 amu were responsible for the discrimination. In GC-MS combined with PLSR method, a quantitative approach between the initial amino acids of makgeolli mash and the fusel compounds of makgeolli demonstrated that coefficient of determination (R(2)) of most of the fusel compounds ranged from 0.77 to 0.94 in good correlation, except for 2-phenylethanol (R(2) = 0.21), whereas R(2) for ethyl esters of MCFAs including ethyl caproate, ethyl caprylate, and ethyl caprate was 0.17 to 0.40 in poor correlation. The amino acids have been known to affect the aroma in alcoholic beverages. In this study, we demonstrated that an electronic nose qualitatively differentiated Korean rice wines (makgeollis) by their volatile compounds evolved from amino acids with rapidity and reproducibility and successively, a quantitative correlation with acceptable R2 between amino acids and fusel compounds could be established via HS-SPME GC-MS combined with partial least

  3. Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography-flame photometric detection.

    PubMed

    Inomata, Y; Matsunaga, K; Murai, Y; Osada, K; Iwasaka, Y

    1999-12-09

    A method for the simultaneous measurement of volatile sulfur compounds (COS, H2S, CS2, CH3SH, DMS) is established with preconcentration and GC-flame photometric detection (FPD). Prior to preconcentration of ambient air, it was necessary to remove SO2, water vapor and atmospheric oxidant. SO2 and water vapor were removed using a glass fiber filter and a cooled PTFE water trap loop, respectively. In order to remove atmospheric oxidant, the efficiency of an ascorbic acid scrubber was examined. It was found that an ascorbic acid scrubber enabled measurement of volatile sulfur compounds without adsorption and reaction loss. The detection limits for COS, H2S, CS2, CH3SH and DMS were 20, 34, 35, 263 and 44 pg of S, respectively.

  4. Metal Oxides in Surface Sediment Control Nickel Bioavailability to Benthic Macroinvertebrates.

    PubMed

    Mendonca, Raissa M; Daley, Jennifer M; Hudson, Michelle L; Schlekat, Christian E; Burton, G Allen; Costello, David M

    2017-11-21

    In aquatic ecosystems, the cycling and toxicity of nickel (Ni) are coupled to other elemental cycles that can limit its bioavailability. Current sediment risk assessment approaches consider acid-volatile sulfide (AVS) as the major binding phase for Ni, but have not yet incorporated ligands that are present in oxic sediments. Our study aimed to assess how metal oxides play a role in Ni bioavailability in surficial sediments exposed to effluent from two mine sites. We coupled spatially explicit sediment geochemistry (i.e., separate oxic and suboxic) to the indigenous macroinvertebrate community structure. Effluent-exposed sites contained high concentrations of sediment Ni and AVS, though roughly 80% less AVS was observed in surface sediments. Iron (Fe) oxide mineral concentrations were elevated in surface sediments and bound a substantial proportion of Ni. Redundancy analysis of the invertebrate community showed surface sediment geochemistry significantly explained shifts in community abundances. Relative abundance of the dominant mayfly (Ephemeridae) was reduced in sites with greater bioavailable Ni, but accounting for Fe oxide-bound Ni greatly decreased variation in effect thresholds between the two mine sites. Our results provide field-based evidence that solid-phase ligands in oxic sediment, most notably Fe oxides, may have a critical role in controlling nickel bioavailability.

  5. Volatile organic compounds in Gulf of Mexico sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, T.J.

    1988-01-01

    Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, andmore » benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.« less

  6. Ammonia volatilization losses from paddy fields under controlled irrigation with different drainage treatments.

    PubMed

    He, Yupu; Yang, Shihong; Xu, Junzeng; Wang, Yijiang; Peng, Shizhang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha(-1), respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields.

  7. Diel rhythms in the volatile emission of apple and grape foliage.

    PubMed

    Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio

    2017-06-01

    This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO 2 , methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops. Copyright © 2017. Published by Elsevier Ltd.

  8. Pretreatment of macroalgae for volatile fatty acid production.

    PubMed

    Pham, Thi Nhan; Um, Youngsoon; Yoon, Hyon Hee

    2013-10-01

    In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. [Effect of Ce3+ on volatile fatty acid concentrations during anaerobic granular sludge digestion].

    PubMed

    Liang, Rui; Xia, Qing; Ding, Li-Li; Shi, Xiao-Lei; Zhao, Ming-Yu; Ren, Hong-Qiang

    2009-04-15

    Batch experiments were conducted to investigate the effect of Ce3+ on volatile fatty acid(VFA) concentrations by anaerobic granular sludge digestion using D-Glucose and acetic sodium as substrate in the state of stabilization and restart-up. Results show that when the concentration of Ce3+ is lower than 1 mg/L, VFA concentration decreases, which suggests the transformation of butyric acid to acetic acid and acetic acid to methane is promoted. When the concentration of Ce3+ is 1-10 mg/L, the bacterial activity decreases and decomposition of the acetic acid and butyric acid becomes more difficult compared with the control. Adding Ce3+ brings little change in the constitution of VFA: 96% of VFA is acetic acid and butyric acid, while the propionic acid accounts for less than 3%. With the acetic sodium as the sole carbon and energy source, adding 0.05 mg/L Ce3+ could accelerate acetate degradation. After being conserved for 4 months, the activity of the Ce-containing anaerobic granular sludge is higher than that of the Ce-free sludge. The present of Ce contributes to the restart-up of anaerobic reactors.

  10. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    PubMed Central

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  11. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Pathobiology and Potential Therapeutic Value of Intestinal Short-Chain Fatty Acids in Gut Inflammation and Obesity

    PubMed Central

    Soldavini, Jessica

    2014-01-01

    Background The lumen of the gastrointestinal tract contains many substances produced from the breakdown of foodstuffs, from salivary, esophageal, intestinal, hepatic, and pancreatic secretions, and from sloughed cells present in the gastrointestinal lumen. Although these substances were traditionally regarded as waste products, there is increasing realization that many can be biologically active, either as signalling compounds or as nutrients. For example, proteins are broken down into amino acids, which are then sensed by nutrient receptors. The gut microbiome, which is at highest abundance in the ileocecum, has powerful metabolic activity, digesting and breaking down unabsorbed carbohydrates, proteins, and other ingested nutrients into phenols, amines, volatile organic compounds, methane, carbon dioxide, hydrogen, and hydrogen sulfide into volatile fatty acids, also called short-chain fatty acids (SCFAs). Conclusion These latter substances are the topic of this review. In this review, we will briefly discuss recent advances in the understanding SCFA production, signalling, and absorption, followed by a detailed description and discussion of trials of SCFAs, probiotics, and prebiotics in the treatment of gastrointestinal disease, in particular ulcerative colitis (UC), pouchitis, short bowel syndrome, and obesity. PMID:23839339

  13. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    PubMed

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated

  14. Recovery of Volatile Fatty Acids from Fermented Wastewater by Adsorption

    PubMed Central

    2017-01-01

    Separation of volatile fatty acids (VFAs) from fermented wastewater is challenging, due to low VFA concentrations in mineral-rich streams. As a result, separation capacity and selectivity with traditional solvents and adsorbents are both compromised. In this study, using a complex artificial model solution mimicking real fermented wastewaters, it is shown that a simple and robust adsorption-based separation technique can retain a remarkable capacity and selectivity for VFAs. Four types of polystyrene-divinylbenzene-based resins (primary, secondary, and tertiary amine-functionalized, and nonfunctionalized) were examined as the adsorbents. The presence of chloride, sulfate, and phosphate salts resulted in coadsorption of their acidic forms HCl, H2SO4, and H3PO4 on amine-functionalized adsorbents, and severely reduced the VFA capacity. With the nonfunctionalized adsorbent, almost no mineral acid coadsorption was observed. This together with a high total VFA capacity of up to 76 g/kg in equilibrium with the model solution containing a total VFA concentration of 1 wt % resulted in a very high selectivity for the VFAs. Nitrogen-stripping with various temperature profiles was applied to regenerate the adsorbent, and study the potential for fractionation of the VFAs during regeneration. Butyric acid (HBu) was obtained in mole fractions of up to 0.8 using a stepwise increase in the stripping temperature from 25 °C via 120 to 200 °C. During four successive adsorption–regeneration cycles, no reduction in the adsorption capacity was observed. PMID:28989827

  15. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2015-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

  16. Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2013-11-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.

  17. Polystyrene bound oxidovanadium(IV) and dioxidovanadium(V) complexes of histamine derived ligand for the oxidation of methyl phenyl sulfide, diphenyl sulfide and benzoin.

    PubMed

    Maurya, Mannar R; Arya, Aarti; Kumar, Amit; Pessoa, João Costa

    2009-03-28

    Ligand Hsal-his (I) derived from salicylaldehyde and histamine has been covalently bound to chloromethylated polystyrene cross-linked with 5% divinylbenzene. Upon treatment with [VO(acac)(2)] in DMF, the polystyrene-bound ligand (abbreviated as PS-Hsal-his, II) gave the stable polystyrene-bound oxidovanadium(iv) complex PS-[V(IV)O(sal-his)(acac)] , which upon oxidation yielded the dioxidovanadium(v) PS-[V(V)O(2)(sal-his)] complex. The corresponding non polymer-bound complexes [V(IV)O(sal-his)(acac)] and [V(V)O(2)(sal-his)] have also been obtained. These complexes have been characterised by IR, electronic, (51)V NMR and EPR spectral studies, and thermal as well as scanning electron micrograph studies. Complexes and have been used as a catalyst for the oxidation of methyl phenyl sulfide, diphenyl sulfide and benzoin with 30% H(2)O(2) as oxidant. Under the optimised reaction conditions, a maximum of 93.8% conversion of methyl phenyl sulfide with 63.7% selectivity towards methyl phenyl sulfoxide and 36.3% towards methyl phenyl sulfone has been achieved in 2 h with 2 . Under similar conditions, diphenyl sulfide gave 83.4% conversion where selectivity of reaction products varied in the order: diphenyl sulfoxide (71.8%) > diphenyl sulfone (28.2%). A maximum of 91.2% conversion of benzoin has been achieved within 6 h, and the selectivities of reaction products are: methylbenzoate (37.0%) > benzil (30.5%) > benzaldehyde-dimethylacetal (22.5%) > benzoic acid (8.1%). The PS-bound complex, 1 exhibits very comparable catalytic potential. These polymer-anchored heterogeneous catalysts do not leach during catalytic action, are recyclable and show higher catalytic activity and turnover frequency than the corresponding non polymer-bound complexes. EPR and (51)V NMR spectroscopy was used to characterise methanolic solutions of 3 and 4 and to identify species formed upon addition of H(2)O(2) and/or acid and/or methyl phenyl sulfide.

  18. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering].

    PubMed

    Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming

    2014-09-01

    In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction.

  19. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors

    PubMed Central

    Xue, Yuan; Voordouw, Gerrit

    2015-01-01

    Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate) at a flow rate of 3 or 6 pore volumes (PV) per day. Pulsed injection of the biocides glutaraldehyde (Glut), benzalkonium chloride (BAC) and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT) needed to re-establish an aqueous sulfide concentration of 0.8–1 mM (of the 1.7–2 mM before the pulse). Pulses were either for a long time (120 h) at low concentration (long-low) or for a short time (1 h) at high concentration (short-high). The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy. PMID:26696994

  20. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats

    NASA Technical Reports Server (NTRS)

    Miller, Scott R.; Bebout, Brad M.

    2004-01-01

    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.

  1. Brazilian cheeses: A survey covering physicochemical characteristics, mineral content, fatty acid profile and volatile compounds.

    PubMed

    Matera, Juliana; Luna, Aderval S; Batista, Diego B; Pimentel, Tatiana C; Moraes, Jeremias; Kamimura, Bruna A; Ferreira, Marcus Vinicius S; Silva, Hugo L A; Mathias, Simone P; Esmerino, Erick A; Freitas, Monica Q; Raices, Renata S L; Quitério, Simone L; Sant'Ana, Anderson S; Silva, Marcia C; Cruz, Adriano G

    2018-06-01

    Chemical characteristics, mineral levels (Ca, Fe, K, Mg, Na, Zn, Cr, Cu, and Mn), fatty acid profile and volatile compounds of typically Brazilian cheeses (Minas Frescal, Minas Padrão, Prato and Coalho, n = 200, equally distributed) were investigated. The cheeses have proven to be a source of Ca, Cu and Zn (>15% RDI/30 g), with low atherogenic and thrombogenic indices, with ethanol as the main alcohol and butanoic acid as the main acid, and moderate to high sodium content. Minas Frescal cheese presented lower nutritional value (proteins, lipids, and minerals), while Prato cheese had a higher fatty acids concentration, including conjugated linoleic acid (0.013 g 100 g -1 ). Coalho cheese had a higher acetic acid level, while citric acid and lactic acid predominated in Minas Padrão cheese. The results provide essential information for Brazilian consumers, demonstrated that the manufacturing conditions are heterogeneous and suggested that a standardized manufacturing protocol for dairy processors is needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. SULFIDE MINERALS IN SEDIMENTS

    EPA Science Inventory

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  3. Sulfur-in-apatite: An indicator of the volatile evolution during lunar magmatism

    NASA Astrophysics Data System (ADS)

    Konecke, B.; Fiege, A.; Simon, A. C.; Holtz, F.

    2017-12-01

    The volatile content of lunar magmas remains controversial despite nearly five decades of interrogating samples from the NASA Apollo missions. Recently, the mineral apatite in lunar mare basalts has been investigated owing to its potential to constrain the volatile (F, Cl, H, S) budget of magmas [1-3]. The F-Cl-H signatures of lunar apatite were interpreted to record fractional crystallization, with nucleation and growth of apatite from a late-stage, interstitial, nearly anhydrous (<10 μg/g H2O), rhyolitic melt that evolved from a sulfide-undersaturated mare basalt [1]. The enigmatic S signature reported for those apatite grains was not interpreted due to the absence of published thermodynamic (partitioning) data for S. Here, we report new experimentally determined apatite/melt partition coefficients for S (DSap/m) at conditions applicable to lunar systems. The DSap/m values and thermodynamically modeled S content (XS) of lunar residual melt were used to constrain plausible S contents of lunar apatite produced by crystal fractionation (Sap = XS * DSap/m). Our results demonstrate that apatite crystallizing under lunar-like conditions from rhyolitic melt cannot obtain the reported 430 μg/g of S [2] by fractional crystallization. The results indicate that 5-35x higher S contents than feasible in sulfide-undersaturated, hydrous and dry rhyolitic melt, respectively, would be required to support crystal fractionation models [1]. Even elevated water concentrations in a sulfide-saturated rhyolitic melt cannot explain the S contents of lunar apatite rims. We propose two plausible scenarios: (A) The necessary concentration of S in rhyolitic melts may be achieved at >5 orders of magnitude higher fO2 (>ΔFMQ+1.2) than reported for lunar magmas, where S6+ is the prevalent oxidation state of S in rhyolitic melt, related to the significant degassing and preferential loss of H2 that drives oxidation of the residual melt [4]. (B) The volatile (F-Cl-H-S) signatures of lunar

  4. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA

    PubMed Central

    Lapakko, Kim A.; Wenz, Zachary J.; Olson, Michael C.; Roepke, Elizabeth W.; Novak, Paige J.; Bailey, Jake V.

    2017-01-01

    ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest

  5. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA.

    PubMed

    Jones, Daniel S; Lapakko, Kim A; Wenz, Zachary J; Olson, Michael C; Roepke, Elizabeth W; Sadowsky, Michael J; Novak, Paige J; Bailey, Jake V

    2017-08-15

    The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula , as well as from diverse clades of uncultivated Chloroflexi , Acidobacteria , and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest

  6. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    /MS. Especially the acidic lakes are sources for trihalomethanes in agreement with laboratory studies on model compounds like catechol [3]. Other compounds that are formed are chloromethane, -butane, -hexane and heptane as well as monocyclic terpenes and furan derivatives. Additionally, there are different sulphur compounds such as thiophene derivatives, carbon disulfide and dimethyl sulfide. Western Australia offers a variety of hypersaline environments with various hydrogeochemical parameters that will help to understand the abiotic formation of different volatile organic compounds. The field of research includes the complex relationships between agriculture, secondary salinisation and particle formation from volatile organic compounds emitted from the salt lakes. [1] Williams, 2001, Hydrobiologia, 466, 329-337. [2] Junkermann et al., 2009, Atmos. Chem. Phys., 9, 6531-6539. [3] Huber et al., 2009, Environ. Sci. Technol., 43 (13), 4934-4939.

  7. Anaerobic digestion of tuna waste for the production of volatile fatty acids.

    PubMed

    Bermúdez-Penabad, Noela; Kennes, Christian; Veiga, Maria C

    2017-10-01

    Fish canning industries generate a significant amount of solid waste that can be digested anaerobically into volatile fatty acids (VFA). The aim of this research was to study the effect of various pHs, ranging from 5.0 to 10.0, and percentage of total solids on the anaerobic digestion of tuna waste into VFA, both in batch assays and continuous reactor. The production of VFA was affected by pH and was significantly higher under alkaline conditions. At pH 8.0, the VFA production reached 30,611mgCOD/L. The VFA mainly consisted of acetic, propionic, n-butyric and i-valeric acids. Acetic acid was the main product at all the pHs tested. In terms of total solids (TS) the best results were obtained with 2.5% total solids, reaching 0.73gCOD VFA /gCOD waste . At higher TS concentrations (5 and 8% TS) lower yields were reached probably due to inhibition at high VFA concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Helium isotope data from the Goldfield epithermal system, Nevada: Evidence for volatile input from a primitive mantle source during ore formation

    NASA Astrophysics Data System (ADS)

    Hofstra, A. H.; Manning, A. H.

    2013-12-01

    Goldfield is the largest high sulfidation epithermal gold mining district in the United States with over 130 t of gold production and 23 sq. km. of argillic alteration (with alunite, pyrophyllite, or kaolinite). It formed at 20.0×0.5 Ma in an andesite to rhyolite volcanic field in the ancestral Cascades continental magmatic arc. Previous stable isotope studies of quartz, alunite, and sulfide minerals suggest that the gold ores formed in a magmatic vapor plume derived from a subjacent porphyry intrusion, which displaced and mixed with meteoric groundwater at shallow levels. The isotopic compositions of He, Ne, and Ar trapped in fluid inclusions in hydrothermal minerals (Cu-sulfides and sulfosalts, pyrite, quartz) were measured to further constrain volatile source and migration processes. Gases were released by thermal decrepitation at 300°C and analyzed using a high resolution static sector mass spectrometer. The isotopic compositions of Ne and Ar are typical of air-saturated water (ASW), indicating that the samples contain little nucleogenic Ne or radiogenic Ar derived from underlying old crustal sources. In contrast, He/Ne and He/Ar ratios are much greater than ASW, indicating that a component of He was produced in the subsurface. The wide range of He R/Ra values, 0.4 to 20, suggests that He was derived from both crustal and mantle sources. 4He/40Ar* and 4He/21Ne* systematics are characteristic of magma degassing. The highest R/Ra values (15-20) are well above those previously reported for modern volcanic rocks and geothermal fluids in subduction-related arcs. Such R/Ra values indicate a primitive mantle source, perhaps below the subducting slab. We hypothesize that the discharge of metal-laden fluids from the subjacent porphyry intrusion was influenced by the input of hot volatiles from mafic mantle-derived magmas. This scenario implies a magma column that remained open to the flux of volatiles over a considerable depth range, from the mantle to the shallow

  9. Development of sensitive and selective food sensors using new Re(I)-Pt(II) bimetallic complexes to detect volatile biogenic sulfides formed by meat spoilage.

    PubMed

    Chow, Cheuk-Fai; Ho, Pui-Yu; Sun, Dong; Lu, Yu-Jing; Wong, Wing-Leung; Tang, Qian; Gong, Cheng-Bin

    2017-02-01

    Detection of volatile biogenic sulfides (VBS) plays a crucial role in food safety because the amounts of these compounds can reflect the freshness of meat. A new indicator-displacement assay with Re(I)-Pt(II) complexes, [Re(Lig)(CO)3(bridge)]-[Pt(DMSO)(Cl)2] (1: Lig=5-phenyl-1,10-phenanthroline and bridge=NCS(-); 2: Lig=5-phenyl-1,10-phenanthroline and bridge=CN(-); 3: Lig=2,2'-biquinoline and bridge=NCS(-)), was demonstrated to be a very effective sensing method to VBS. The results indicated that the control of Re(I)-bridge-Pt(II) and Re(I)-ligand combination are able to regulate their sensing selectivity and sensitivity. This system was successfully applied to detect CH3SCH3 in real rotten pork with a linear luminometric response up to 20.0mgkg(-1) (R=0.997) with the detection limit as 0.05 mgkg(-1). Complex 1 also gave comparable results on the detection of VBS with respect to those determined by GCMS with recovery range from 76% to 102% (RSD%=13.8). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Chemical components of Vetiveria zizanioides volatiles].

    PubMed

    Huang, Jinghua; Li, Huashou; Yang, Jun; Chen, Yufen; Liu, Yinghu; Li, Ning; Nie, Chengrong

    2004-01-01

    The chemical components of the volatiles from Vetiveria zizanioides were analyzed by SPME and GC-MS. In the roots, the main component was valencene (30.36%), while in the shoots and leaves, they were 9-octadecenamide (33.50%), 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene (27.46%), and 1,2-benzendicarboxylic acid, diisooctyl ester(18.29%). The results showed that there were many terpenoids in the volatils. In shoot volatiles, there existed 3 monoterpenes, 2 sequiterpenes and 1 triterpene. Most of the volatiles in roots were sesquiterpenes.

  11. Spectroscopy of sulfides in the simulated environment of Mercury and their detection from the orbit

    NASA Astrophysics Data System (ADS)

    Varatharajan, I.; Maturilli, A.; Helbert, J.; Hiesinger, H.

    2017-09-01

    In order to detect the mineral diversity on the planet's surface, it is essential to study the spectral variations along broad wavelength range in their respective simulated laboratory conditions. MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) mission to Mercury discovered that irrespective of its formation closest to the sun, Mercury in rich in volatiles than previously expected especially S (4 wt%). S in the Mercury interior can be brought to the surface through volcanic activity as slag deposits in Mercury hollows and pyroclasts. However, the complete spectral library of sulfide minerals in vacuum conditions at Mercury's daytime temperature in the wide spectral range (0.2-100 µm) is still missing. This affects our detectability and understanding of distribution, abundance, and type of sulfides on Mercury using spectral datasets in the past missions to Mercury. In the case of Mercury, the effect of thermal weathering in the spectral behavior of these sulfides must be studied carefully for their effective detection. In the study, we thermally processed the fresh synthetic sulfides by heating them slowly upto 500 ºC in vacuum and during the process, we measured the thermal radiance/emissivity of these sulfides in the thermal infrared spectral region (TIR: 7-14 µm) at the interval of every 100 ºC. After this, we collectively measured the spectral reflectance of fresh and heated synthetic sulfides at wide spectral range (0.2-100 µm) at four different phase angles, 26º, 40º, 60º, 80º. Therefore, this study facilitates the detection of sulfides by past and future missions to Mercury by any spectrometer of any spectral range. The synthetic sulfides used in the study includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Thus, the emissivity measurements in the study will support the The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA BepiColombo mission to Mercury which will study the surface mineralogy at

  12. Nitrogen release from forest soils containing sulfide-bearing sediments

    NASA Astrophysics Data System (ADS)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa

    2014-05-01

    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  13. Ammonia Volatilization Losses from Paddy Fields under Controlled Irrigation with Different Drainage Treatments

    PubMed Central

    He, Yupu; Yang, Shihong; Wang, Yijiang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha−1, respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields. PMID:24741349

  14. Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng Hui Li; Keh Perng Shen

    1993-01-01

    Alkanolamine aqueous solutions are frequently used for the removal of acidic gases, such as CO[sub 2] and H[sub 2]S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubilities of hydrogen sulfide in aqueous mixtures of monoethanolamine (MEA) with N-methyl-diethanolamine (MDEA) have been measured at 40, 60, 80, and 100C and at partial pressures of hydrogen sulfide ranging from 1.0 to 450 kPa. The mixtures of alkanolamines studied are 4.95 kmol/m[sup 3] MEA, 3.97 kmol/m[sup 3] MEA + 0.51 kmol/m[sup 3] MDEA, 2.0 kmol/m[sup 3] MEA + 1.54 kmol/m[sup 3] MDEA, and 2.57more » kmol/m[sup 3] MDEA aqueous solutions. The solubilities of hydrogen sulfide in aqueous alkanolamine solutions are reported as functions of the partial pressure of hydrogen sulfide at the temperatures of 40-100C.« less

  15. Real-time quantification of emissions of volatile organic compounds from land spreading of pig slurry measured by PTR-MS and wind tunnels.

    PubMed

    Liu, Dezhao; Nyord, Tavs; Rong, Li; Feilberg, Anders

    2018-10-15

    Volatile organic compounds (VOC) and hydrogen sulfide are emitted from land spreading of manure slurry to the atmosphere and contribute to odour nuisance, particle formation and tropospheric ozone formation. Data on emissions is almost non-existing partly due to lack of suitable quantitative methods for measuring emissions in full scale. Here we present a method based on application of wind tunnels for simulation of air exchange combined with the use of online mass spectrometry (PTR-MS). The focus was on odorous VOC but all relevant VOC were included. A method for quantification of VOC emission based on calculated proton-transfer reaction rate constants was validated by comparison to reference concentrations for typical VOC emitted from pig manure slurry. Wall losses of volatile sulfur compounds in the wind tunnels were assessed to be insignificant and recoveries >95% were observed for these compounds. An influence of air exchange rate was clearly observed highlighting the need to identify realistic air exchange rates for future application of the method. Emission data was obtained for spreading of pig manure slurry as an example of an important source of gases. Emissions were monitored for ~37 h following land spreading and time-resolved emission data was presented for the first time. Highest emissions were observed for short-chain volatile carboxylic acids (C 2 -C 6 ) with acetic acid being the most abundant compound. Emission peaks were observed immediately following application and were followed by declining emissions until the second day at which emissions reached a second peak for several compounds. This second emission peak was speculated to be caused by a temperature-induced diurnal effect. Emissions of volatile sulfur compounds occurred on a short time-scale and ceased shortly after application. Odour activity values were dominated by C 4 -C 5 carboxylic acids and 4-methylphenol with a less pronounced influence of 4-methylphenol on day 2. Copyright

  16. Optimization of Sulfide/Sulfite Pretreatment of Lignocellulosic Biomass for Lactic Acid Production

    PubMed Central

    Adnan, Ahmad; Qureshi, Fahim Ashraf

    2013-01-01

    Potential of sodium sulfide and sodium sulfite, in the presence of sodium hydroxide was investigated to pretreat the corncob (CC), bagasse (BG), water hyacinth and rice husk (RH) for maximum digestibility. Response Surface Methodology was employed for the optimization of pretreatment factors such as temperature, time and concentration of Na2S and Na2SO3, which had high coefficient of determination (R 2) along with low probability value (P), indicating the reliable predictability of the model. At optimized conditions, Na2S and Na2SO3 remove up to 97% lignin, from WH and RH, along with removal of hemicellulose (up to 93%) during pretreatment providing maximum cellulose, while in BG and CC; 75.0% and 90.0% reduction in lignin and hemicellulose was observed. Saccharification efficiency of RH, WH, BG and CC after treatment with 1.0% Na2S at 130°C for 2.3–3.0 h was 79.40, 85.93, 87.70, and 88.43%, respectively. WH treated with Na2SO3 showed higher hydrolysis yield (86.34%) as compared to Na2S while other biomass substrates showed 2.0–3.0% less yield with Na2SO3. Resulting sugars were evaluated as substrate for lactic acid production, yielding 26.48, 25.36, 31.73, and 30.31 gL−1 of lactic acid with 76.0, 76.0, 86.0, and 83.0% conversion yield from CC, BG, WH, and RH hydrolyzate, respectively. PMID:24058918

  17. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study.

    PubMed

    Tanda, Naoko; Washio, Jumpei; Ikawa, Kyoko; Suzuki, Kengo; Koseki, Takeyoshi; Iwakura, Masaki

    2007-07-01

    For measuring oral malodor in daily clinical practice and in field study, we developed and evaluated a highly sensitive portable monitor system. We examined sensitivity and specificity of the sensor for volatile sulfur compounds (VSC) and obstructive gases, such as ethanol, acetone, and acetaldehyde. Each mouth air provided by 46 people was measured by this monitor, gas chromatography (GC), and olfactory panel and compared with each other. Based on the result, we used the monitor for mass health examination of a rural town with standardized measuring. The sensor detected hydrogen sulfide, methyl mercaptan, and dimethyl sulfide with 10-1000 times higher sensitivity than the other gases. The monitor's specificity was significantly improved by a VSC-selective filter. There were significant correlations between VSC concentration by the sulfide monitor and by GC, and by organoleptic score. Thirty-six percent of 969 examinees had oral malodor in a rural town. Seventy-eight percent of 969 examinees were motivated to take care of their oral condition by oral malodor measuring with the monitor. The portable sulfide monitor was useful to promote oral health care not only in clinics, but also in field study. The simple and quick operation system and the standardized measuring make it one of parameters of oral condition.

  18. Quantification of volatile fatty acids from cattle manure via non-catalytic esterification for odour indication.

    PubMed

    Lee, Sang-Ryong; Lee, Jechan; Cho, Seong-Heon; Kim, Jieun; Oh, Jeong-Ik; Tsang, Daniel C W; Jeong, Kwang-Hwa; Kwon, Eilhann E

    2018-01-01

    This report proposes a new approach to evaluate the odour nuisance of cattle manure samples from three different cattle breeds (i.e., native cattle, beef cattle, and milk cow) by means of quantification and speciation of volatile fatty acids (VFAs). To this end, non-catalytic esterification thermally induced in the presence of a porous material (silica) was undertaken, and the optimal operational parameters such as the derivatizing temperature (330°C) for the maximum yield (≥99±0.4%) of volatile fatty acid methyl esters (VFAMEs) were established. Among the VFA species in cattle manure based on quantification of VFAs, the major species were acetic, butyric and valeric acid. Considering the odour threshold of each VFA, our experimental results suggested that the major contributors to odour nuisance were C 4-5 VFA species (i.e., butyric and valeric acid). Hydrothermal treatment was performed at 150°C for 0-40min to correlate the formation of VFAs with different types of cattle feed formulations. Our experimental data demonstrated that the formation of total VFAs is linearly proportional to the hydrothermal treatment duration and the total content of VFAs in native cattle, beef cattle, and milk cow manure samples reached up to ~1000, ~3200, and ~2800ppm, respectively. Thus, this study demonstrated that the degree of VFA formation is highly dependent on cattle feed formulations, which rely significantly on the protein content. Furthermore, the hydrothermal treatment provides a favourable condition for generating more VFAs. In this context, producing cattle manure into refused derived fuel (RDF) via a hydrothermal treatment is not a viable option to control odour. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Mishra, S. K.; Pierson, D. L.

    1997-01-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  20. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics.

    PubMed

    Ahearn, D G; Crow, S A; Simmons, R B; Price, D L; Mishra, S K; Pierson, D L

    1997-11-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  1. Major Odorants Released as Urinary Volatiles by Urinary Incontinent Patients

    PubMed Central

    Pandey, Sudhir Kumar; Kim, Ki-Hyun; Choi, Si On; Sa, In Young; Oh, Soo Yeon

    2013-01-01

    In this study, volatile urinary components were collected using three different types of samples from patients suffering from urinary incontinence (UI): (1) urine (A); (2) urine + non-used pad (B); and (3) urine + used pad (C). In addition, urine + non-used pad (D) samples from non-patients were also collected as a reference. The collection of urinary volatiles was conducted with the aid of a glass impinger-based mini-chamber method. Each of the four sample types (A through D) was placed in a glass impinger and incubated for 4 hours at 37 °C. Ultra pure air was then passed through the chamber, and volatile urine gas components were collected into Tedlar bags at the other end. These bag samples were then analyzed for a wide range of VOCs and major offensive odorants (e.g., reduced sulfur compounds (RSCs), carbonyls, trimethylamine (TMA), ammonia, etc.). Among the various odorants, sulfur compounds (methanethiol and hydrogen sulfide) and aldehydes (acetaldehyde, butylaldehyde, and isovaleraldehyde) were detected above odor threshold and predicted to contribute most effectively to odor intensity of urine incontinence. PMID:23823973

  2. Pharmacokinetics of avenanthramides (AV) from AV-enriched malted oats in healthy older adults

    USDA-ARS?s Scientific Manuscript database

    Avenanthramides (AV) are a unique group of phytochemicals found in oat bran. In vitro studies show both purified AV and concentrated oat AV mixtures have anti-atherogenic and anti-inflammatory activity, suggesting they may have similar effects in vivo if they are sufficiently bioavailable. The bioav...

  3. Sulfide-responsive transcriptional repressor SqrR functions as a master regulator of sulfide-dependent photosynthesis.

    PubMed

    Shimizu, Takayuki; Shen, Jiangchuan; Fang, Mingxu; Zhang, Yixiang; Hori, Koichi; Trinidad, Jonathan C; Bauer, Carl E; Giedroc, David P; Masuda, Shinji

    2017-02-28

    Sulfide was used as an electron donor early in the evolution of photosynthesis, with many extant photosynthetic bacteria still capable of using sulfur compounds such as hydrogen sulfide (H 2 S) as a photosynthetic electron donor. Although enzymes involved in H 2 S oxidation have been characterized, mechanisms of regulation of sulfide-dependent photosynthesis have not been elucidated. In this study, we have identified a sulfide-responsive transcriptional repressor, SqrR, that functions as a master regulator of sulfide-dependent gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus SqrR has three cysteine residues, two of which, C41 and C107, are conserved in SqrR homologs from other bacteria. Analysis with liquid chromatography coupled with an electrospray-interface tandem-mass spectrometer reveals that SqrR forms an intramolecular tetrasulfide bond between C41 and C107 when incubated with the sulfur donor glutathione persulfide. SqrR is oxidized in sulfide-stressed cells, and tetrasulfide-cross-linked SqrR binds more weakly to a target promoter relative to unmodified SqrR. C41S and C107S R. capsulatus SqrRs lack the ability to respond to sulfide, and constitutively repress target gene expression in cells. These results establish that SqrR is a sensor of H 2 S-derived reactive sulfur species that maintain sulfide homeostasis in this photosynthetic bacterium and reveal the mechanism of sulfide-dependent transcriptional derepression of genes involved in sulfide metabolism.

  4. Volatile constituents of wolf (Canis lupus) urine as related to gender and season

    USGS Publications Warehouse

    Raymer, J.; Wiesler, D.; Novotny, M.; Asa, C.; Seal, U.S.; Mech, L.D.

    1984-01-01

    The volatile constituents of wolf urine were examined via capillary gas chromatography and compared among male, female, and castrate male. Several compounds including methyl isopentyl sulfide, 3,5-dimethyl-2-octanone, and acetophenone were clearly associated with the gender of the animal and many displayed a seasonal dependence. In addition, 2 long-chain aldehydes isolated from urine samples by an HPLC procedure also correlated with the endrocrine status of the animal.

  5. Nanostructured metal sulfides for energy storage

    NASA Astrophysics Data System (ADS)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-08-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  6. Diffusion-reaction modelling of early diagenesis of sediments affected by acid mine drainage.

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Arias, J. L.; Garcia Robledo, E.; Papaspyrou, S.; Corzo, A.

    2012-04-01

    The Sancho Reservoir (SW Spain) is a monomictic water reservoir affected by acid mine drainage. It has a pH of ~4, with high sulfate (200 ppm) and heavy metal concentrations in the water column. The reservoir develops reducing conditions at the bottom during the stratification period. A laboratory experiment was carried out to study the effect of this oxygen variation on the early diagenesis processes and the cycling of metals. Sediment cores and bottom water were collected during the stratification period and brought to the laboratory. The cores were maintained in an aquarium bubbled with nitrogen gas to maintain hypoxic conditions (~10 µmol O2 L-1) for 1 day. Then, oxic conditions were induced by bubbling with air and maintained for 50 days. Finally, hypoxia was re-established for 10 days. Triplicate cores were sliced in a anaerobic glove box at each stage. Pore water was extracted by centrifugation and: Eh, pH, DO, DOC, sulfate, Fe and trace metals were analyzed. The sediment was freeze-dried and a sequential extraction protocol was applied to determine the exchangeable, AVS, Fe-(oxy)hydroxides, Fe-oxides, organic matter, pyrite sulfur and residual phase iron fractions. Organic carbon and total C, N, H and S were also analyzed in the sediment. A reactive diffusion model has been used to obtain the rates of biogeochemical reactions by fitting to the experimental data. During hypoxic conditions sulfate and Fe-(oxy)hydroxides are reduced, due to the anaerobic oxidation of organic matter, at the very first few cm, releasing sulfide and Fe(II) which precipitate as iron sulfide. When oxygen diffuses in the sediment, sulfate-reduction and the sulfide peaks are displaced deeper into the sediment. Oxygen penetration depth and its consumption rates in the sediment increase quickly, resulting in the reoxidation of the iron sulfides that had precipitated during hypoxic conditions. Sulfide and Fe(II) are released and are again oxidized to Fe(III) and sulfate respectively

  7. Caterpillar-induced plant volatiles attract conspecific adults in nature

    PubMed Central

    El-Sayed, Ashraf M.; Knight, Alan L.; Byers, John A.; Judd, Gary J. R.; Suckling, David M.

    2016-01-01

    Plants release volatiles in response to caterpillar feeding that attract natural enemies of the herbivores, a tri-trophic interaction which has been considered an indirect plant defence against herbivores. The caterpillar-induced plant volatiles have been reported to repel or attract conspecific adult herbivores. To date however, no volatile signals that either repel or attract conspecific adults under field conditions have been chemically identified. Apple seedlings uniquely released seven compounds including acetic acid, acetic anhydride, benzyl alcohol, benzyl nitrile, indole, 2-phenylethanol, and (E)-nerolidol only when infested by larvae of the light brown apple moth, Epiphyas postvittana. In field tests in New Zealand, a blend of two of these, benzyl nitrile and acetic acid, attracted a large number of conspecific male and female adult moths. In North America, male and female adults of the tortricid, oblique-banded leafroller, Choristoneura rosaceana, were most attracted to a blend of 2-phenylethanol and acetic acid. Both sexes of the eye-spotted bud moth, Spilonota ocellana, were highly attracted to a blend of benzyl nitrile and acetic acid. This study provides the first identification of caterpillar-induced plant volatiles that attract conspecific adult herbivores under natural conditions, challenging the expectation of herbivore avoidance of these induced volatiles. PMID:27892474

  8. Emerald ash borer responses to induced plant volatiles

    Treesearch

    Cesar Rodriguez-Saona; Therese M. Poland; James Miller; Lukasz Stelinski; Linda Buchan; Gary Grant; Peter de Groot; Linda MacDonald

    2007-01-01

    Herbivore feeding and methyl jasmonate, a volatile derivative of the stress-eliciting plant hormone, jasmonic acid, induce responses in plants which include the synthesis and emission of volatiles. These induced volatiles can serve to attract or repel herbivores; therefore, they may have potential use in pest management programs. The exotic emerald ash borer (EAB),...

  9. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.

    PubMed

    Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun

    2016-02-01

    Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.

  10. Tungsten speciation in sulfidic waters: Stability and lability of thiotungstates

    NASA Astrophysics Data System (ADS)

    Cui, M.; Johannesson, K. H.

    2017-12-01

    Tungsten (W) is an important metal that has been widely used in industries. It normally occurs as the monomeric tungstate oxyanion in circumneutral to alkaline pH natural waters but tends to form polytungstates species at low pH and high W concentrations. A number of studies show that W is strongly correlated with dissolved sulfide in natural waters. Laboratory investigations have presented evidence that, like Mo, W undergoes sulfidation in four steps that conserve tungstate and lead to the formation of tetrathiotungstate. In addition, natural waters may be seasonally anoxic, thus W speciation is likely to be kinetically controlled. Our previous studies showed that the speciation of tungsten is important in controlling its fate and transport in natural waters. Thiotungstate and tungstate are adsorbed differently to the mineral surfaces such as goethite and pyrite. In our present study, we have observed that the sulfidation reactions of W are acid catalyzed. We suggest that in environments such as sediment porewaters, the presence of Brønsted acids, will promote conversion of tungstate to thiotungstates. However, the conversion of the predominant anion from a hard to a soft base alters W's geochemical behavior, increasing its susceptibility to scavenging. Thus, an important product of this research will be an improved understanding of the scavenging pathways of W in euxinic environments.

  11. Sulfur speciation and sulfide oxidation in the water column of the Black Sea

    NASA Astrophysics Data System (ADS)

    Luther, George W., III; Church, Thomas M.; Powell, David

    storage onboard ship even though they were filtered (0.2 μm) and handled to exclude oxygen contamination. Chemical additives such as formaldehyde, glutaraldehyde, hydroxylamine and ascorbic acid prevented or retarded the sulfide loss. Thiosulfate and azide did not inhibit sulfide loss. These studies suggest an anaerobic chemical oxidation of sulfide rather than a biological oxidation on stored and filtered samples.

  12. Advances in fruit aroma volatile research.

    PubMed

    El Hadi, Muna Ahmed Mohamed; Zhang, Feng-Jie; Wu, Fei-Fei; Zhou, Chun-Hua; Tao, Jun

    2013-07-11

    Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.

  13. Comparison of volatile and non-volatile metabolites in rice wine fermented by Koji inoculated with Saccharomycopsis fibuligera and Aspergillus oryzae.

    PubMed

    Son, Eun Yeong; Lee, Sang Mi; Kim, Minjoo; Seo, Jeong-Ah; Kim, Young-Suk

    2018-07-01

    This study investigated volatile and nonvolatile metabolite profiles of makgeolli (a traditional rice wine in Korea) fermented by koji inoculated with Saccharomycopsis fibuligera and/or Aspergillus oryzae. The enzyme activities in koji were also examined to determine their effects on the formation of metabolites. The contents of all 18 amino acids detected were the highest in makgeolli fermented by S. fibuligera CN2601-09, and increased after combining with A. oryzae CN1102-08, unlike the contents of most fatty acids. On the other hand, major volatile metabolites were fusel alcohols, acetate esters, and ethyl esters. The contents of most fusel alcohols and acetate esters were the highest in makgeolli fermented by S. fibuligera CN2601-09, for which the protease activity was the highest, leading to the largest amounts of amino acods. The makgeolli samples fermented only by koji inoculated with S. fibuligera could be discriminated on PCA plots from the makgeolli samples fermented in combination with A. oryzae. In the case of nonvolatile metabolites, all amino acids and some metabolites such as xylose, 2-methylbenzoic acid, and oxalic acid contributed mainly to the characteristics of makgeolli fermented by koji inoculated with S. fibuligera and A. oryzae. These results showed that the formations of volatile and nonvolatile metabolites in makgeolli can be significantly affected by microbial strains with different enzyme activities in koji. To our knowledge, this study is the first report on the effects of S. fibuligera strains on the formation of volatile and non-volatile metabolites in rice wine, facilitating their use in brewing rice wine. Copyright © 2018. Published by Elsevier Ltd.

  14. Chilling Stress Upregulates α-Linolenic Acid-Oxidation Pathway and Induces Volatiles of C6 and C9 Aldehydes in Mango Fruit.

    PubMed

    Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam

    2017-01-25

    Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C 6 and C 9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.

  15. Sulfide mineralization: Its role in chemical weathering of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produced degradation products in the Martian regolith. By analogy with terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato- and hydroxo-complex ions and sols formed gossans above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite) and silica (opal). Underlying groundwater, now permafrost, contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, etc., which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates and phyllosilicates during dust storms on Mars.

  16. Effects of feeding legume-grass pasture and different concentrate levels on fatty acid profile, volatile compounds, and off-flavor of the M. longissimus thoracis.

    PubMed

    Fruet, A P B; Trombetta, F; Stefanello, F S; Speroni, C S; Donadel, J Z; De Souza, A N M; Rosado Júnior, A; Tonetto, C J; Wagner, R; De Mello, A; Nörnberg, J L

    2018-06-01

    Pasture-finished beef is becoming more popular among consumers due to concerns related to fatty acid content and sustainable practices. The effects of finishing crossbred steers on legume-grass pasture comprised of oats, ryegrass, and clover (PAST), legume-grass pasture plus whole corn grain (WCG) supplementation (SUPP), and only with WCG (GRAIN) on fatty acids profile, volatile compounds, sensory, and texture attributes were studied. Pasture diets (PAST and SUPP) led to lower n-6/n-3 ratio (P < 0.001), and highest deposition of C18:2 cis-9 trans-11 (P < 0.001) in the lean. Beef from steers fed GRAIN had the highest values of volatile compounds associated with lipid oxidation. Off-flavor intensity was significantly greater on beef from steers fed GRAIN when compared to PAST. Overall, muscles from steers finished on PAST and SUPP showed similar attributes but differ when compared to GRAIN. The presence of forage is essential to improve fatty acid profile, decrease volatile compounds associated with lipid oxidation, and minimize off-flavor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: An experimental study

    NASA Astrophysics Data System (ADS)

    Guo, Haihao; Audétat, Andreas

    2017-02-01

    In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock <0.1). This trend is broadly consistent with relative element volatilities determined on natural high-temperature fumarole gases, although some differences exist. Based on the volatility data and measured mineral-melt and sulfide-melt partition coefficients, volatile fluxing in

  18. Environmental geochemistry of a Kuroko-type massive sulfide deposit at the abandoned Valzinco mine, Virginia, USA

    USGS Publications Warehouse

    Seal, R.R.; Hammarstrom, J.M.; Johnson, A.N.; Piatak, N.M.; Wandless, G.A.

    2008-01-01

    The abandoned Valzinco mine, which worked a steeply dipping Kuroko-type massive sulfide deposit in the Virginia Au-pyrite belt, contributed significant metal-laden acid-mine drainage to the Knight's Branch watershed. The host rocks were dominated by metamorphosed felsic volcanic rocks, which offered limited acid-neutralizing potential. The ores were dominated by pyrite, sphalerite, galena, and chalcopyrite, which represented significant acid-generating potential. Acid-base accounting and leaching studies of flotation tailings - the dominant mine waste at the site - indicated that they were acid generating and therefore, should have liberated significant quantities of metals to solution. Field studies of mine drainage from the site confirmed that mine drainage and the impacted stream waters had pH values from 1.1 to 6.4 and exceeded aquatic ecosystem toxicity limits for Fe, Al, Cd, Cu, Pb and Zn. Stable isotope studies of water, dissolved SO42 -, and primary and secondary sulfate and sulfide minerals indicated that two distinct sulfide oxidation pathways were operative at the site: one dominated by Fe(III) as the oxidant, and another by molecular O2 as the oxidant. Reaction-path modeling suggested that geochemical interactions between tailings and waters approached a steady state within about a year. Both leaching studies and geochemical reaction-path modeling provided reasonable predictions of the mine-drainage chemistry.

  19. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.

    PubMed

    Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L

    2014-03-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Trapping female Pandemis limitata (Lepidoptera: Tortricidae) moths with mixtures of acetic acid, benzenoid apple leaf volatiles, and sex pheromones

    USDA-ARS?s Scientific Manuscript database

    Pandemis limitata (Robinson) is one of several leaf-feeding caterpillar pests of commercial tree-fruit crops in British Columbia. Recent discovery that European Pandemis spp. are attracted to lures containing acetic acid (AA) and caterpillar-induced benzenoid apple leaf volatiles, 2-phenylethanol a...

  1. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park.

    PubMed

    Macur, R E; Jay, Z J; Taylor, W P; Kozubal, M A; Kocar, B D; Inskeep, W P

    2013-01-01

    Geothermal and hydrothermal waters often contain high concentrations of dissolved sulfide, which reacts with oxygen (abiotically or biotically) to yield elemental sulfur and other sulfur species that may support microbial metabolism. The primary goal of this study was to elucidate predominant biogeochemical processes important in sulfur biogeochemistry by identifying predominant sulfur species and describing microbial community structure within high-temperature, hypoxic, sulfur sediments ranging in pH from 4.2 to 6.1. Detailed analysis of aqueous species and solid phases present in hypoxic sulfur sediments revealed unique habitats containing high concentrations of dissolved sulfide, thiosulfate, and arsenite, as well as rhombohedral and spherical elemental sulfur and/or sulfide phases such as orpiment, stibnite, and pyrite, as well as alunite and quartz. Results from 16S rRNA gene sequencing show that these sediments are dominated by Crenarchaeota of the orders Desulfurococcales and Thermoproteales. Numerous cultivated representatives of these lineages, as well as the Thermoproteales strain (WP30) isolated in this study, require complex sources of carbon and respire elemental sulfur. We describe a new archaeal isolate (strain WP30) belonging to the order Thermoproteales (phylum Crenarchaeota, 98% identity to Pyrobaculum/Thermoproteus spp. 16S rRNA genes), which was obtained from sulfur sediments using in situ geochemical composition to design cultivation medium. This isolate produces sulfide during growth, which further promotes the formation of sulfide phases including orpiment, stibnite, or pyrite, depending on solution conditions. Geochemical, molecular, and physiological data were integrated to suggest primary factors controlling microbial community structure and function in high-temperature sulfur sediments. © 2012 Blackwell Publishing Ltd.

  2. Thiobarbituric acid reactive substances and volatile compounds in chicken breast meat infused with plant extracts and subjected to electron beam irradiation.

    PubMed

    Rababah, T; Hettiarachchy, N S; Horax, R; Cho, M J; Davis, B; Dickson, J

    2006-06-01

    The effect of irradiation on thiobarbituric acid reactive substances (TBARS) and volatile compounds in raw and cooked nonirradiated and irradiated chicken breast meat infused with green tea and grape seed extracts was investigated. Chicken breast meat was vacuum infused with green tea extract (3,000 ppm), grape seed extract (3,000 ppm), or their combination (at a total of 6,000 ppm), irradiated with an electron beam, and stored at 5 degrees C for 12 d. The targeted irradiation dosage was 3.0 kGy and the average absorbed dosage was 3.12 kGy. Values of TBARS and volatile compound contents of raw and cooked chicken meat were determined during the 12-d storage period. Thiobarbituric acid reactive substances values ranged from 15.5 to 71.4 mg of malondialdehyde/kg for nonirradiated raw chicken and 17.3 to 80.1 mg of malondialdehyde/kg for irradiated raw chicken. Values for cooked chicken ranged from 31.4 to 386.2 and 38.4 to 504.1 mg of malondialdehyde/kg for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS and hexanal values of controls and meat infused with plant extracts. Hexanal had the highest intensity of volatiles followed by pentanal and other volatiles. Cooking the samples significantly (P < 0.05) increased the amounts of TBARS and volatiles. Addition of plant extracts decreased the amount of TBARS as well as hexanal and pentanal values. Although irradiation increases lipid oxidation, infusion of chicken meat with plant extracts could reduce lipid oxidation caused by irradiation.

  3. Size distributions of low molecular weight dicarboxylic acids, ketocarboxylic acids, glyoxal and methylglyoxal in the marine aerosols from Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Lazaar, M.

    2008-12-01

    Size-segregated marine aerosol samples (5 sets) were collected in 2008 spring at Cape Hedo Station of National Institute of Environmental Studies, Okinawa (128.25° E, 26.87° N), an outflow region of Chinese aerosols and their precursors, using an Andersen middle volume impactor at a flow rate of 100 lpm and pre-combusted quartz fiber filters. The samples were analyzed for low molecular weight diacids and related compounds, using a capillary gas chromatography and GC/MS after BF3/n-butanol derivatization. Particle size cuts (8 stages + BUF) are 0.43, 0.65, 1.1, 2.1, 3.3, 4.7, 7 and 11.3 µm in diameter. Homologous series of aliphatic (C2-C12) and aromatic (phthalic, iso- and tere-phthalic) diacids were detected as well as w-oxoacids (C2-C9), glyoxal and methylglyoxal. Oxalic acid (C2) was found as the dominant diacid in all the size ranges, followed by malonic (C3) and succinic (C4) acids. Glyoxylic (wC2) acid was the most abundant ketoacid followed by wC4 acid. Most of the organic species maximized in fine mode of 0.65-1.1 or 1.1-2.1µm. Oxalic acid (C2, 4.4-70.6 ngm-3, av. 23.9 ngm-3) comprised 54-80% (av. 67%) of total diacid concentrations. The small diacids showed concentration peaks on fine mode, suggesting that they are produced by photochemical oxidation of volatile organic precursors during long-range atmospheric transport from Asian Continent. They may also be produced by heterogeneous reactions in the atmospheric particles (dusts and cloud droplets).

  4. A novel method for improving cerussite sulfidization

    NASA Astrophysics Data System (ADS)

    Feng, Qi-cheng; Wen, Shu-ming; Zhao, Wen-juan; Cao, Qin-bo; Lü, Chao

    2016-06-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  5. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers

    NASA Astrophysics Data System (ADS)

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-01

    Hygroscopicity and volatility of single magnesium acetate (MgAc2) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH < 50% is significantly impeded on a time scale of 140,000 s. Different phase transition at RH < 10% is proposed to explain the distinct water loss after the gel formation. To compare volatilization of HAc in different systems, MgAc2 and sodium acetate (NaAc) droplets are maintained at several different stable RHs during up to 86,000 s. At RH ≈ 74%, magnesium hydroxide (Mg(OH)2) inclusions are formed in MgAc2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable.

  6. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    NASA Astrophysics Data System (ADS)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  7. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer.

    PubMed

    Mungall, Emma L; Abbatt, Jonathan P D; Wentzell, Jeremy J B; Lee, Alex K Y; Thomas, Jennie L; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A; Papakyriakou, Tim; Willis, Megan D; Liggio, John

    2017-06-13

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  8. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    PubMed Central

    Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Miller, Lisa A.; Papakyriakou, Tim; Liggio, John

    2017-01-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate. PMID:28559340

  9. Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide.

    PubMed

    Liu, Qi; Zhao, Han-Qing; Li, Lei; He, Pan-Pan; Wang, Yi-Xuan; Yang, Hou-Yun; Hu, Zhen-Hu; Mu, Yang

    2018-06-04

    Carbon nanotubes (CNTs) could be directly used as metal-free catalysts for the reduction of nitroaromatics by sulfide in water, but their catalytic ability need a further improvement. This study evaluated the feasibility of surface modification through thermal and radiation pretreatments to enhance catalytic activity of CNTs on nitrobenzene reduction by sulfide. The results show that thermal treatment could effectively improve the catalytic behaviors of CNTs for the reduction of nitrobenzene by sulfide, where the optimum annealing temperature was 400 °C. However, plasma radiation pretreatment didn't result in an obvious improvement of the CNTs catalytic activity. Moreover, the possible reasons have been explored and discussed in the study. Additionally, the impacts of various operational parameters on nitrobenzene reduction catalyzed by the CNTs after an optimized surface modification were also evaluated. It was found that the rate of nitrobenzene removal by sulfide was positively correlated with CNTs doses in a range of 0.3-300 mg L -1 ; the optimum pH was around 8.0; higher temperature and sulfide concentration facilitated the reaction; and the presence of humic acid exhibited a negative effect on nitrobenzene reduction. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Influence of lipid content and lipoxygenase on flavor volatiles in the tomato peel and flesh.

    PubMed

    Ties, Paige; Barringer, Sheryl

    2012-07-01

    Ten different varieties of tomatoes were separated into peel and flesh and each portion was measured separately. Headspace volatiles were measured in real time using selected ion flow tube mass spectrometry. Lipoxygenase activity was measured using the adsorption of conjugated dienes formed by lipoxygenase. Lipid was extracted and fatty acids were quantified using a gas chromatograph. Volatiles were significantly greater in the peel than flesh when there was a significant difference. The lipoxygenase activity of flesh and peel correlated with the volatiles produced by the lipoxygenase pathway. There was no correlation with other volatiles, which are not dependent on lipid oxidation by lipoxygenase. The lipoxygenase activity, total fatty acid content, and linolenic acid of the peel were greater than the flesh, which is directly related to an increase in fresh, green volatiles. Addition of exogenous lipoxygenase had no effect on lipoxygenase-derived volatiles formed. The addition of linoleic acid caused an increase in hexanal, 1-hexanol, and (E)-2-heptenal in the flesh and (E)-2-heptenal in the peel. Stored unrefrigerated peel had higher volatile concentrations, whereas refrigerated peel had significantly lower concentration than day 0. Storage decreased lipoxygenase activity in the unrefrigerated and refrigerated peel, but had no effect on the fatty acid content. Overall, linolenic acid was the most important to the formation of headspace volatiles, but lipoxygenase activity and unknown factors are also important. The peel of a tomato is most beneficial to the production of volatiles associated with the fresh aroma of tomatoes; therefore, it should be used in the processing of tomato products to produce a fresh, green aroma rather than being removed. Knowledge of the effects of lipoxygenase activity, total fatty acid content, and fatty acid profile on flavor volatiles will allow for better selection of a variety for raw consumption. © 2012 Institute of Food

  11. Measurement, analysis, and modeling of hydrogen sulfide emissions from a swine facility in North Carolina

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica

    Annual global source contributions of sulfur compounds to the natural atmospheric environment are estimated to be 142 x 106 tons. Although not quantified, volatilization from animal wastes may be an important source of gaseous reduced sulfur compounds. Hydrogen sulfide (H2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" odor. Once released into the atmosphere, H 2S is oxidized and the eventual byproduct, sulfuric acid, may combine with other atmospheric constituents to form aerosol products such as ammonium bisulfate and ammonium sulfate. In recent years, confined animal feeding operations (CAFOs) have increased in size, resulting in more geographically concentrated areas of animals and, subsequently, animal waste. In North Carolina and across the southeastern United States anaerobic waste treatment lagoons are traditionally used to store and treat hog excreta at commercial hog farms. Currently, no state regulations exist for H2S gaseous emissions from animal production facilities in North Carolina and the amount of H2S being emitted into the atmosphere from these potential sources is widely unknown. In response to the need for data, this research initiative has been undertaken in an effort to quantify emissions of H2S from swine CAFOs. An experimental study was conducted at a commercial swine farm in eastern North Carolina to measure hydrogen sulfide emissions from a hog housing unit utilizing a mechanical fan ventilation system and from an on-site waste storage treatment lagoon. A dynamic flow-through chamber system was employed to make lagoon flux measurements. Semi-continuous measurements were made over a one-year period (2004-2005) for a few days during each of the four predominant seasons in order to assess diurnal and temporal variability in emissions. Fan rpm from the barn was continuously measured and flow rates were calculated in order to accurately assess gaseous emissions from the system

  12. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.

    PubMed

    Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Venkata Mohan, S

    2015-04-01

    Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Volatile fatty acid profile for grass hay or alfalfa hay fed to alpacas (Vicugna pacos).

    PubMed

    Oldham, C L; Robinson, T F; Hunter, Z R; Taylor, L; White, J; Johnston, N P

    2014-10-01

    The purpose of this study was to determine the diurnal composition and concentration of volatile fatty acids (VFA) and to determine VFA composition and concentration differences between stomach compartment 1 (C1) and caecum of alpacas fed grass and alfalfa hay. The study was divided into two experiments. In Experiment 1 (EXP 1), 10 male alpacas (3+ years old, 65 kg BW) were divided into two groups, housed in drylot pens, provided ad libitum water and fed alfalfa (AH) or grass hay (GH) for 30 days. The alpacas were slaughtered and the digestive tract collected, divided into sub-tract sections, weighed and digesta sampled for pH, dry matter (DM) and NDF. Volatile fatty acid composition and concentration were determined on C1 and caecal material. Four adult male (3+ years old, 60 kg BW), C1 fistulated alpacas were housed in metabolism crates and divided into two forage groups for Experiment 2 (EXP 2). Alpacas were fed the forages as in EXP 1. Diurnal C1 VFA samples were drawn at 1, 3, 6, 9, 12, 18 and 24 h post-feeding. There were no differences between forages for tract weight, C1 and caecum digesta DM or NDF. Differences were noted (p < 0.05) for pH between forages and sub-tract site. Volatile fatty acids concentrations were different (p < 0.05) for forage and site, and total VFA was higher for AH than GH (110.6 and 79.1 mm) and C1 than caecum (40.7 and 27.6 mm). Proportion of VFA was significant (p < 0.05) for forage and site, C1 acetate highest for GH (84.8 vs. 74.0 mm) and caecum acetate 83.7 and 76.2 mm for GH and AH respectively. These data demonstrate the level of VFA produced in C1 and the caecum of alpacas and the diurnal VFA patterns. Composition of VFA is similar to other ruminant species. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  14. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment

    NASA Astrophysics Data System (ADS)

    Alperin, M. J.; Albert, D. B.; Martens, C. S.

    1994-11-01

    Dissolved organic carbon (DOC) concentrations in anoxic marine sediments are controlled by at least three processes: (1) production of nonvolatile dissolved compounds, such as peptides and amino acids, soluble saccharides and fatty acids, via hydrolysis of particulate organic carbon (POC). (2) conversion of these compounds to volatile fatty acids and alcohols by fermentative bacteria. (3) consumption of volatile fatty acids and alcohols by terminal bacteria, such as sulfate reducers and methanogens. We monitored seasonal changes in concentration profiles of total DOC, nonacid-volatile (NAV) DOC and acid-volatile (AV) DOC in anoxic sediment from Cape Lookout Bight, North Carolina, USA, in order to investigate the factors that control seasonal variations in rates of hydrolysis, fermentation, and terminal metabolism. During the winter months, DOC concentrations increased continuously from 0.2 mM in the bottomwater to ~4 mM at a depth of 36 cm in the sediment column. During the summer, a large DOC maximum developed between 5 and 20 cm, with peak concentrations approaching 10 mM. The mid-depth summertime maximum was driven by increases in both NAV- and AV-DOC concentrations. Net NAV-DOC reaction rates were estimated by a diagenetic model applied to NAV-DOC concentration profiles. Depth-integrated production rates of NAV-DOC increased from February through July, suggesting that net rates of POC hydrolysis during this period are controlled by temperature. Net consumption of NAV-DOC during the late summer and early fall suggests reduced gross NAV-DOC production rates, presumably due to a decline in the availability of labile POC. A distinct subsurface peak in AV-DOC concentration developed during the late spring, when the sulfate depletion depth shoaled from 25 to 10 cm. We hypothesize that the AV-DOC maximum results from a decline in consumption by sulfate-reducing bacteria (due to sulfate limitation) and a lag in the development of an active population of methanogenic

  15. Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots.

    PubMed

    Guimarães, Isabela Costa; dos Reis, Kelen Cristina; Menezes, Evandro Galvão Tavares; Borges, Paulo Rogério Siriano; Rodrigues, Ariel Costa; Leal, Renato; Hernandes, Thais; de Carvalho, Elisângela Helena Nunes; Vilas Boas, Eduardo Valério de Barros

    2016-01-01

    This work evaluates fresh-cut carrots (FCC) coated with montmorillonite (MMT) subjected to passive modified atmosphere packaging. Carrots were sanitized, cooled, peeled and sliced. Half of the FCC were coated with MMT nanoparticle film and the other half were not. All FCCs were packed in a polypropylene rigid tray, covered with a polypropylene rigid lid or sealed with polyethylene + propylene film, in four treatments (RL, rigid lid; RLC, rigid lid + coating; ST, sealed tray; STC, sealed tray + coating). FCCs were stored at 4 °C and were analyzed weekly for 4 weeks (total antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl method and the β-carotene/linoleic acid, phenolic compounds, organic acids and volatile compounds). The use of coating film with starch nanoparticles and a modified atmosphere leads to the preservation of the total antioxidant activity, the volatile and organic acids of FCC.

  16. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    NASA Astrophysics Data System (ADS)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in

  17. Biologically active nanocomposite of DNA-PbS nanoparticles: A new material for non-volatile memory devices

    NASA Astrophysics Data System (ADS)

    Murgunde, B. K.; Rabinal, M. K.; Kalasad, M. N.

    2018-01-01

    Composite films of deoxyribonucleic acid (DNA) and lead sulfide (PbS) nanoparticles are prepared to fabricate biological memory devices. A simple solution based electrografting is developed to deposit large (few cm2) uniform films of DNA:PbS on conducting substrates. The films are studied by X-ray photoelectron spectroscopy, field emission SEM, FTIR and optical spectroscopy to understand their properties. Charge transport measurements are carried out on ITO-DNA:PbS-metal junctions by cyclic voltage scans, electrical bi-stability is observed with ON/OFF ratio more than ∼104 times with good stability and endurance, such performance being rarely reported. The observed results are interpreted in the light of strong electrostatic binding of nanoparticles and DNA stands, which leads doping of Pb atoms into DNA. As a result, these devices exhibit negative differential resistance (NDR) effect due to oxidation of doped metal atoms. These composites can be the potential materials in the development of new generation non-volatile memory devices.

  18. Volatile metabolite profiling reveals the changes in the volatile compounds of new spontaneously generated loquat cultivars.

    PubMed

    Besada, C; Sanchez, G; Gil, R; Granell, A; Salvador, A

    2017-10-01

    In recent years, the advantageous traits of three new loquat cultivars have drawn the attention of breeders and growers. All three have spontaneously arisen from the 'Algerie' cultivar: the new 'Xirlero' cultivar is a bud mutant of 'Algerie', while 'Amadeo' and 'Raúl' arose as chance seedlings. Following a non-targeted approach based on HS-SPME-GC-MS, the volatile compounds profile of the fruits from the new cultivars were obtained and compared to the original 'Algerie' cultivar. Carboxylic acids clearly dominated the volatile profile of all the loquat cultivars, but esters, aldehydes, ketones and alcohols were also predominant compounds. Interestingly when the bud mutant event did not lead to marked changes in the volatile compounds complement, pronounced changes in the volatile composition of chance seedling-generated cultivars 'Amadeo' and 'Raúl' were observed. 'Amadeo' fruits showed lower levels of 2-methyl butanoic acid and much higher levels of methylhexanoate, methylbutanoate and 2-hydroxy-5-methylacetophenone. The 'Raúl' cultivar also had a distinctive volatile profile characterised by high levels of C6-aldehydes, (E)-2-hexanal, 2-hexenal, (Z)-3-hexenal and hexanal, and several carotenoid-derived volatiles; e.g. 2-pentene-1,4-dione 1-(1,2,2-trimethylcyclopentyl), (S)-dihydroactinidiolide, isodurene, cis-geranyl acetone, β-damascenone, β-ionone, α-ionone and 3,4-dehydro-β-ionone. These changes in volatiles were associated with a more intense flavour in cultivars 'Amadeo' and 'Raúl', according to the sensory evaluation of the flavour intensity carried out by a semi-trained panel. A metabolomic correlation network analysis provided insights as to how volatiles were regulated, and revealed that the compounds modified in 'Amadeo' were uncoupled from the rest of the volatilome, while the volatiles modified in 'Raul' changed according to specific groups. To conclude, this work provides a holistic view of how the loquat volatilome was affected, and this

  19. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    PubMed

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Novel consortium of Klebsiella variicola and Lactobacillus species enhances the functional potential of fermented dairy products by increasing the availability of branched-chain amino acids and the amount of distinctive volatiles.

    PubMed

    Rosales-Bravo, H; Morales-Torres, H C; Vázquez-Martínez, J; Molina-Torres, J; Olalde-Portugal, V; Partida-Martínez, L P

    2017-11-01

    Identify novel bacterial taxa that could increase the availability of branched-chain amino acids and the amount of distinctive volatiles during skim milk fermentation. We recovered 344 bacterial isolates from stool samples of healthy and breastfed infants. Five were selected based on their ability to produce branched-chain amino acids. Three strains were identified as Escherichia coli, one as Klebsiella pneumoniae and other as Klebsiella variicola by molecular and biochemical methods. HPLC and solid-phase microextraction with GC-MS were used for the determination of free amino acids and volatile compounds respectively. The consortium formed by K. variicola and four Lactobacillus species showed the highest production of Leu and Ile in skim milk fermentation. In addition, the production of volatile compounds, such as acetoin, ethanol, 2-nonanone, and acetic, hexanoic and octanoic acids, increased in comparison to commercial yogurt, Emmental and Gouda cheese. Also, distinctive volatiles, such as 2,3-butanediol, 4-methyl-2- hexanone and octanol, were identified. The use of K. variicola in combination with probiotic Lactobacillus species enhances the availability of Leu and Ile and the amount of distinctive volatiles during skim milk fermentation. The identified consortium increases the functional potential of fermented dairy products. © 2017 The Society for Applied Microbiology.

  1. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    PubMed Central

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.

    2017-01-01

    ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the

  2. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.

    ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes frommore » metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction

  3. Copper(II)-Mediated Hydrogen Sulfide and Thiol Oxidation to Disulfides and Organic Polysulfanes and Their Reductive Cleavage in Wine: Mechanistic Elucidation and Potential Applications.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2017-03-29

    Fermentation-derived volatile sulfur compounds (VSCs) are undesirable in wine and are often remediated in a process known as copper fining. In the present study, the addition of Cu(II) to model and real wine systems containing hydrogen sulfide (H 2 S) and thiols provided evidence for the generation of disulfides (disulfanes) and organic polysulfanes. Cu(II) fining of a white wine spiked with glutathione, H 2 S, and methanethiol (MeSH) resulted in the generation of MeSH-glutathione disulfide and trisulfane. In the present study, the mechanisms underlying the interaction of H 2 S and thiols with Cu(II) is discussed, and a prospective diagnostic test for releasing volatile sulfur compounds from their nonvolatile forms in wine is investigated. This test utilized a combination of reducing agents, metal chelators, and low-oxygen conditions to promote the release of H 2 S and MeSH, at levels above their reported sensory thresholds, from red and white wines that were otherwise free of sulfidic off-odors at the time of addition.

  4. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  5. Sulfide oxidation under chemolithoautotrophic denitrifying conditions.

    PubMed

    Cardoso, Ricardo Beristain; Sierra-Alvarez, Reyes; Rowlette, Pieter; Flores, Elias Razo; Gómez, Jorge; Field, Jim A

    2006-12-20

    Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate. Copyright 2006 Wiley Periodicals, Inc.

  6. Characterization of volatile aroma compounds from red and black rice bran.

    PubMed

    Sukhonthara, Sukhontha; Theerakulkait, Chockchai; Miyazawa, Mitsuo

    2009-01-01

    The volatile oils from red and black rice bran were obtained by hydrodistillation using diethyl ester and the components of that oil were analyzed by capillary GC-MS. The volatile components of essential oil from red and black rice bran were analyzed by GC and GC-MS. One hundred twenty-nine (129) of volatile compounds were identified in red and black rice bran. Myristic acid, nonanal, (E)-beta-ocimene and 6, 10, 14-trimethyl-2-pentadecanone were main compounds in red rice bran, whereas myristic acid, nonanal, caproic acid, pentadecanal and pelargonic acid were main compounds in black rice bran. Guaiacol, presented at 0.81 mg/100 g in black rice bran, is responsible for the characteristic component in black rice.

  7. Microbial control of hydrogen sulfide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of coresmore » and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.« less

  8. Product ion distributions for the reactions of NO+ with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer

    PubMed Central

    Mochalski, Paweł; Unterkofler, Karl; Španěl, Patrik; Smith, David; Amann, Anton

    2014-01-01

    RATIONALE The reactions of NO+ with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO+ ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds – dimethyl selenide and dimethyl diselenide. RESULTS Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M+ cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO+M, formed by ion-molecule association, and [M–H]+ ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)+* adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3, CH4 and/or C2H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS The findings of this study are of particular importance for data interpretation in studies of volatile

  9. Efficient lowering of triglyceride levels in mice by human apoAV protein variants associated with hypertriglyceridemia.

    PubMed

    Vaessen, Stefan F C; Sierts, Jeroen A; Kuivenhoven, Jan Albert; Schaap, Frank G

    2009-02-06

    Variation in the apolipoprotein A5 (APOA5) gene has consistently been associated with increased plasma triglyceride (TG) levels in epidemiological studies. In vivo functionality of these variations, however, has thus far not been tested. Using adenoviral over-expression, we evaluated plasma expression levels and TG-lowering efficacies of wild-type human apoAV, two human apoAV variants associated with increased TG (S19W, G185C) and one variant (Q341H) that is predicted to have altered protein function. Injection of mice with adenovirus encoding wild-type or mutant apoAV resulted in an identical dose-dependent elevation of human apoAV levels in plasma. The increase in apoAV levels resulted in pronounced lowering of plasma TG levels at two viral dosages. Unexpectedly, the TG-lowering efficacy of all three apoAV variants was similar to wild-type apoAV. In addition, no effect on TG-hydrolysis-related plasma parameters (free fatty acids, glycerol and post-heparin lipoprotein lipase activity) was apparent upon expression of all apoAV variants. In conclusion, our data indicate that despite their association with hypertriglyceridemia and/or predicted protein dysfunction, the 19W, 185C and 341H apoAV variants are equally effective in reducing plasma TG levels in mice.

  10. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  11. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers.

    PubMed

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-05

    Hygroscopicity and volatility of single magnesium acetate (MgAc 2 ) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc 2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH < 50% is significantly impeded on a time scale of 140,000 s. Different phase transition at RH < 10% is proposed to explain the distinct water loss after the gel formation. To compare volatilization of HAc in different systems, MgAc 2 and sodium acetate (NaAc) droplets are maintained at several different stable RHs during up to 86,000 s. At RH ≈ 74%, magnesium hydroxide (Mg(OH) 2 ) inclusions are formed in MgAc 2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc 2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano.

    PubMed

    Lazzi, Camilla; Povolo, Milena; Locci, Francesco; Bernini, Valentina; Neviani, Erasmo; Gatti, Monica

    2016-09-16

    In this study, the relationship between the dynamics of the growth and lysis of lactic acid bacteria in Grana Padano cheese and the formation of the volatile flavor compounds during cheese ripening was investigated. The microbial dynamics of Grana Padano cheeses that were produced in two different dairies were followed during ripening. The total and cultivable lactic microflora, community composition as determined by length heterogeneity-PCR (LH-PCR), and extent of bacterial lysis using an intracellular enzymatic activity assay were compared among cheeses after 2, 6 and 13months of ripening in two dairies. The evolution of whole and lysed microbiota was different between the two dairies. In dairy 2, the number of total cells was higher than that in dairy 1 in all samples, and the number of cells that lysed during ripening was lower. In addition, at the beginning of ripening (2months), the community structure of the cheese from dairy 2 was more complex and was composed of starter lactic acid bacteria (Lactobacillus helveticus and Lactobacillus delbrueckii) and NSLAB, possibly arising from raw milk, including Lactobacillus rhamnosus/Lactobacillus casei and Pediococcus acidilactici. On the other hand, the cheese from dairy 1 that ripened for 2months was mainly composed of the SLAB L. helveticus and L. delbrueckii. An evaluation of the free-DNA fraction through LH-PCR identified those species that had a high degree of lysis. Data on the dynamics of bacterial growth and lysis were evaluated with respect to the volatile profile and the organic acid content of the two cheeses after 13months of ripening, producing very different results. Cheese from dairy 1 showed a higher content of free fatty acids, particularly those deriving from milk fat lipolysis, benzaldehyde and organic acids, such as pGlu and citric. In contrast, cheese from dairy 2 had a greater amount of ketones, alcohols, hydrocarbons, acetic acid and propionic acid. Based on these results, we can conclude that

  13. Effects of irrigation regimes on fatty acid composition, antioxidant and antifungal properties of volatiles from fruits of Koroneiki cultivar grown under Tunisian conditions.

    PubMed

    Brahmi, Faten; Chehab, Hechmi; Flamini, Guido; Dhibi, Madiha; Issaoui, Manel; Mastouri, Maha; Hammami, Mohamed

    2013-11-15

    The olive tree is generally grown under rain-fed conditions. However, since the yield response to irrigation is great, even with low amounts of water, there is increasing interest in irrigated agriculture. The main goal of this study was, therefore, to investigate the effect of irrigation regimes on olive (Olea europaea L., cv. Koroneiki) obtained from an intensively-managed orchard in a semi-arid area with a Mediterranean climate in Tunisia. Different irrigation treatments 50% ETc, 75% ETc and 100% ETc were applied to the olive orchard. Accordingly, the effects of three irrigation regimes on volatile compounds, fatty acid composition and biological activities of Koroneiki cultivar were studied. The total profile of the volatile constituents of all samples revealed the predominance of 3-ethenylpyridine (from 14.9-19.6%), phenylethyl alcool (from 7.8-19.2%) and benzaldehyde (from 9.0 to 13.8%). During watering level treatments studied, the major fatty acids were oleic, palmitic and linoleic. Antioxidant activity of the fresh fruit volatiles cultivated at a watering level of 100% ETc was higher than that obtained under 50 and 75% Etc. The results of antifungal activity showed that the fruits volatiles of the three irrigation treatments had varying degrees of growth inhibition against the microorganisms tested.

  14. Pt(ii) coordination complexes as visible light photocatalysts for the oxidation of sulfides using batch and flow processes.

    PubMed

    Casado-Sánchez, Antonio; Gómez-Ballesteros, Rocío; Tato, Francisco; Soriano, Francisco J; Pascual-Coca, Gustavo; Cabrera, Silvia; Alemán, José

    2016-07-12

    A new catalytic system for the photooxidation of sulfides based on Pt(ii) complexes is presented. The catalyst is capable of oxidizing a large number of sulfides containing aryl, alkyl, allyl, benzyl, as well as more complex structures such as heterocycles and methionine amino acid, with complete chemoselectivity. In addition, the first sulfur oxidation in a continuous flow process has been developed.

  15. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    PubMed

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  16. Evidence for abiotic sulfurization of marine dissolved organic matter in sulfidic environments

    NASA Astrophysics Data System (ADS)

    Pohlabeln, A. M.; Niggemann, J.; Dittmar, T.

    2016-02-01

    Sedimentary organic matter abiotically sulfurizes in sulfidic marine environments. Here we hypothesize that sulfurization also affects dissolved organic matter (DOM), and that sulfidic marine environments are sources of dissolved organic sulfur (DOS) to the ocean. To test these hypotheses we studied solid-phase extractable (SPE) DOS in the Black Sea at various water column depths (oxic and anoxic) and in sediment porewaters from the German Wadden Sea. The concentration and molecular composition of SPE-DOS from these sites and from the oxic water columns of the North Sea (Germany) and of the North Pacific were compared. In support of our hypotheses, SPE-DOS concentrations were elevated in sulfidic waters compared to oxic waters. For a detailed molecular characterization of SPE-DOS, selective wet-chemical alteration experiments targeting different sulfur-containing functional groups were applied prior to Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). These experiments included harsh hydrolysis, selective derivatization of thiols, oxidation, and deoxygenation to test for thioesters, sulfonic acid esters, alkylsulfates, thiols, non-aromatic thioethers, and sulfoxides. Additionally, collision-induced fragmentation experiments were applied to test for sulfonic acids. The tests revealed that the sulfonic acid group was the main structural feature in SPE-DOS, independent of the environmental conditions of the sampling site. Only in Wadden Sea anoxic porewater also non-aromatic thioethers were found which are presumably not stable in oxic waters. The findings from our field studies were confirmed in laboratory experiments, where we abiotically sulfurized marine and algal-derived DOM under conditions similar to that in anoxic marine sediments.

  17. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  18. Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal

    PubMed Central

    Manos, Manolis J.; Ding, Nan; Kanatzidis, Mercouri G.

    2008-01-01

    In this article, we report the family of robust layered sulfides K2xMnxSn3-xS6 (x = 0.5–0.95) (KMS-1). These materials feature hexagonal [MnxSn3-xS6]2x− slabs of the CdI2 type and contain highly mobile K+ ions in their interlayer space that are easily exchangeable with other cations and particularly strontium. KMS-1 display outstanding preference for strontium ions in highly alkaline solutions containing extremely large excess of sodium cations as well as in acidic environment where most alternative adsorbents with oxygen ligands are nearly inactive. The implication of these results is that simple layered sulfides should be considered for the efficient remediation of certain nuclear wastes. PMID:18316731

  19. Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors.

    PubMed

    Riggio, S; Torrijos, M; Vives, G; Esposito, G; van Hullebusch, E D; Steyer, J P; Escudié, R

    2017-05-01

    In anaerobic leach-bed reactors (LBRs) co-digesting an easily- and a slowly-degradable substrate, the importance of the leachate flush both on extracting volatile fatty acids (VFAs) at the beginning of newly-started batches and on their consumption in mature reactors was tested. Regarding VFA extraction three leachate flush-rate conditions were studied: 0.5, 1 and 2Lkg -1 TSd -1 . Results showed that increasing the leachate flush-rate during the acidification phase is essential to increase degradation kinetics. After this initial phase, leachate injection is less important and the flush-rate could be reduced. The injection in mature reactors of leachate with an acetic acid concentration of 5 or 10gL -1 showed that for an optimized VFA consumption in LBRs, VFAs should be provided straight after the methane production peak in order to profit from a higher methanogenic activity, and every 6-7h to maintain a high biogas production rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry

    PubMed Central

    Shen, Xinggui; Chakraborty, Sourav; Dugas, Tammy R; Kevil, Christopher G

    2015-01-01

    Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS− with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods. PMID:24932544

  1. Changes in salivary microbiota increase volatile sulfur compounds production in healthy male subjects with academic-related chronic stress.

    PubMed

    Nani, Bruno Dias; Lima, Patricia Oliveira de; Marcondes, Fernanda Klein; Groppo, Francisco Carlos; Rolim, Gustavo Sattolo; Moraes, Antonio Bento Alves de; Cogo-Müller, Karina; Franz-Montan, Michelle

    2017-01-01

    To investigate the associations among salivary bacteria, oral emanations of volatile sulfur compounds, and academic-related chronic stress in healthy male subjects. Seventy-eight healthy male undergraduate dental students were classified as stressed or not by evaluation of burnout, a syndrome attributed to academic-related chronic stress. This evaluation was carried out using the Maslach Burnout Inventory-Student Survey questionnaire. Oral emanations of hydrogen sulfide, methyl mercaptan, and dimethyl sulfide were measured using an Oral Chroma™ portable gas chromatograph. The amounts in saliva of total bacteria and seven bacteria associated with halitosis were quantified by qPCR. The in vitro production of H2S by S. moorei and/or F. nucleatum was also measured with the Oral Chroma™ instrument. The stressed students group showed increased oral emanations of hydrogen sulfide and dimethyl sulfide, together with higher salivary Solobacterium moorei levels (p < 0.05, Mann Whitney test). There were moderate positive correlations between the following pairs of variables: Fusobacterium nucleatum and S. moorei; F. nucleatum and hydrogen sulfide; Tannerella forsythia and F. nucleatum; T. forsythia and S. moorei. These correlations only occurred for the stressed group (p < 0.05, Spearman correlation). The in vitro experiment demonstrated that S. moorei increased H2S production by F. nucleatum (p < 0.05, ANOVA and Tukey's test). The increased amount of S. moorei in saliva, and its coexistence with F. nucleatum and T. forsythia, seemed to be responsible for increased oral hydrogen sulfide in the healthy male stressed subjects.

  2. Characterization of the volatile organic compounds present in the headspace of decomposing human remains.

    PubMed

    Hoffman, Erin M; Curran, Allison M; Dulgerian, Nishan; Stockham, Rex A; Eckenrode, Brian A

    2009-04-15

    Law enforcement agencies frequently use canines trained to detect the odor of human decomposition to aid in determining the location of clandestine burials and human remains deposited or scattered on the surface. However, few studies attempt to identify the specific volatile organic compounds (VOCs) that elicit an appropriate response from victim recovery (VR) canines. Solid-phase microextraction (SPME) was combined with gas chromatography-mass spectrometry (GC-MS) to identify the VOCs released into the headspace associated with 14 separate tissue samples of human remains previously used for VR canine training. The headspace was found to contain various classes of VOCs, including acids, alcohols, aldehydes, halogens, aromatic hydrocarbons, ketones, and sulfides. Analysis of the data indicates that the VOCs associated with human decomposition share similarities across regions of the body and across types of tissue. However, sufficient differences exist to warrant VR canine testing to identify potential mimic odor chemical profiles that can be used as training aids. The resulting data will assist in the identification of the most suitable mixture and relative concentrations of VOCs to appropriately train VR canines.

  3. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine

    NASA Astrophysics Data System (ADS)

    Kulchat, Sirinan; Boonta, Wissuta; Todee, Apinya; Sianglam, Pradthana; Ngeontae, Wittaya

    2018-05-01

    A fluorescent sensor based on thioglycolic acid-capped cadmium sulfide quantum dots (TGA-CdS QDs) has been designed for the sensitive and selective detection of dopamine (DA). In the presence of dopamine (DA), the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) activates the reaction between the carboxylic group of the TGA and the amino group of dopamine to form an amide bond, quenching the fluorescence of the QDs. The fluorescence intensity of TGA-CdS QDs can be used to sense the presence of dopamine with a limit of detection of 0.68 μM and a working linear range of 1.0-17.5 μM. This sensor system shows great potential application for dopamine detection in dopamine drug samples and for future easy-to-make analytical devices.

  4. Sulfide binding properties of truncated hemoglobins.

    PubMed

    Nicoletti, Francesco P; Comandini, Alessandra; Bonamore, Alessandra; Boechi, Leonardo; Boubeta, Fernando Martin; Feis, Alessandro; Smulevich, Giulietta; Boffi, Alberto

    2010-03-16

    The truncated hemoglobins from Bacillus subtilis (Bs-trHb) and Thermobifida fusca (Tf-trHb) have been shown to form high-affinity complexes with hydrogen sulfide in their ferric state. The recombinant proteins, as extracted from Escherichia coli cells after overexpression, are indeed partially saturated with sulfide, and even highly purified samples still contain a small but significant amount of iron-bound sulfide. Thus, a complete thermodynamic and kinetic study has been undertaken by means of equilibrium and kinetic displacement experiments to assess the relevant sulfide binding parameters. The body of experimental data indicates that both proteins possess a high affinity for hydrogen sulfide (K = 5.0 x 10(6) and 2.8 x 10(6) M(-1) for Bs-trHb and Tf-trHb, respectively, at pH 7.0), though lower with respect to that reported previously for the sulfide avid Lucina pectinata I hemoglobins (2.9 x 10(8) M(-1)). From the kinetic point of view, the overall high affinity resides in the slow rate of sulfide release, attributed to hydrogen bonding stabilization of the bound ligand by distal residue WG8. A set of point mutants in which these residues have been replaced with Phe indicates that the WG8 residue represents the major kinetic barrier to the escape of the bound sulfide species. Accordingly, classical molecular dynamics simulations of SH(-)-bound ferric Tf-trHb show that WG8 plays a key role in the stabilization of coordinated SH(-) whereas the YCD1 and YB10 contributions are negligible. Interestingly, the triple Tf-trHb mutant bearing only Phe residues in the relevant B10, G8, and CD1 positions is endowed with a higher overall affinity for sulfide characterized by a very fast second-order rate constant and 2 order of magnitude faster kinetics of sulfide release with respect to the wild-type protein. Resonance Raman spectroscopy data indicate that the sulfide adducts are typical of a ferric iron low-spin derivative. In analogy with other low-spin ferric sulfide

  5. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    PubMed

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  6. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1987-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  7. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR HYDROGEN SULFIDE (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Hydrogen sulfide (H2S) is a colorless gas with a strong odor of rotten eggs. Its primary uses include the production of elemental sulfur and sulfuric acid, the manufacture of heavy water and other chemicals. Occupational exposure occurs primarily from its presence in petroleum, n...

  8. Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and Jasmonic acid.

    PubMed

    Ozawa, Rika; Bertea, Cinzia M; Foti, Maria; Narayana, Ravishankar; Arimura, Gen-Ichiro; Muroi, Atsushi; Horiuchi, Jun-Ichiro; Nishioka, Takaaki; Maffei, Massimo E; Takabayashi, Junji

    2009-12-01

    We investigated the role of polyamines (PAs) in lima bean (Phaseolus lunatus) leaves on the production of herbivorous mite (Tetranychus urticae)-induced plant volatiles that attract carnivorous natural enemies of the herbivores. To do this, we focused on the effects of the exogenous PAs [cadaverine, putrescine, spermidine and spermine (Spm)] on the production of volatiles, H(2)O(2) and jasmonic acid (JA) and the levels of defensive genes, cytosolic calcium and reactive oxygen species (ROS). Among the tested PAs, Spm was the most active in inducing the production of volatile terpenoids known to be induced by T. urticae. An increase in JA levels was also found after Spm treatment, indicating that Spm induces the biosynthesis of JA, which has been shown elsewhere to regulate the production of some volatile terpenoids. Further, treatment with JA and Spm together resulted in greater volatile emission than that with JA alone. In a Y-tube olfactometer, leaves treated with Spm + JA attracted more predatory mites (Phytoseiulus persimilis) than those treated with JA alone. After treatment with Spm + JA, no effects were found on the enzyme activity of polyamine oxidase and copper amine oxidase. However, induction of calcium influx and ROS production, and increased enzyme activities and gene expression for NADPH oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase were found after treatment with Spm + JA. These results indicate that Spm plays an important role in the production of T. urticae-induced lima bean leaf volatiles.

  9. Chemical Bonding in Sulfide Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, David J.; Rosso, Kevin M.

    An understanding of chemical bonding and electronic structure in sulfide minerals is central to any attempt at understanding their crystal structures, stabilities and physical properties. It is also an essential precursor to understanding reactivity through modeling surface structure at the molecular scale. In recent decades, there have been remarkable advances in first principles (ab initio) methods for the quantitative calculation of electronic structure. These advances have been made possible by the very rapid development of high performance computers. Several review volumes that chart the applications of these developments in mineralogy and geochemistry are available (Tossell and Vaughan, 1992; Cygan andmore » Kubicki, 2001). An important feature of the sulfide minerals is the diversity of their electronic structures, as evidenced by their electrical and magnetic properties (see Pearce et al. 2006, this volume). Thus, sulfide minerals range from insulators through semiconductors to metals, and exhibit every type of magnetic behavior. This has presented problems for those attempting to develop bonding models for sulfides, and also led to certain misconceptions regarding the kinds of models that may be appropriate. In this chapter, chemical bonding and electronic structure models for sulfides are reviewed with emphasis on more recent developments. Although the fully ab initio quantitative methods are now capable of a remarkable degree of sophistication in terms of agreement with experiment and potential to interpret and predict behavior with varying conditions, both qualitative and more simplistic quantitative approaches will also be briefly discussed. This is because we believe that the insights which they provide are still helpful to those studying sulfide minerals. In addition to the application of electronic structure models and calculations to solid sulfides, work on sulfide mineral surfaces (Rosso and Vaughan 2006a,b) and solution complexes and clusters

  10. Collection and analysis of organic gases from natural ecosystems - Application to poultry manure

    NASA Technical Reports Server (NTRS)

    Smith, M. S.; Francis, A. J.; Duxbury, J. M.

    1977-01-01

    Combined gas chromatography-mass spectrometry was used to identify volatile compounds generated from chicken manure and collected in Poropak QS-Carbosieve B traps. Various alcohols, ketones, esters, and carboxylic acids together with dimethyl sulfide and dimethyl disulfide were detected when the wastes were incubated in an argon atmosphere. Significant amounts of dimethyl sulfide and dimethyl disulfide but few other compounds were found when the manure was incubated in air

  11. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1987-01-06

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  12. High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits

    NASA Astrophysics Data System (ADS)

    Hanley, J. J.; Mungall, J. E.

    2004-12-01

    are comparable to and often exceed the economic concentrations of the metals within the ores themselves. As a consequence of these results, current genetic models must be revised to consider the role played by hydrous saline melts and magmatic brines in deposit development, and the potential for interaction and competition between sulfide liquids (or PGE-bearing sulfide minerals) and hydrosaline volatiles for available PGE and Au in a crystallizing mafic igneous system must be critically evaluated.

  13. Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Ren, Deliang; Lu, Chao; Yan, Xiaobing

    2018-06-01

    In this study, the non-volatile flash memory devices utilize tungsten sulfide flakes as the charge trapping stack layers were fabricated. The sandwiched structure of Pd/ZHO/WS2/ZHO/WS2/SiO2/Si manifests a memory window of 2.26 V and a high density of trapped charges 4.88 × 1012/cm2 under a ±5 V gate sweeping voltage. Moreover, the data retention results of as-fabricated non-volatile memories demonstrate that the high and low capacitance states are enhanced by 3.81% and 3.11%, respectively, after a measurement duration of 1.20 × 104 s. These remarkable achievements are probably attributed to the defects and band gap of WS2 flakes. Besides, the proposed memory fabrication is not only compatible with CMOS manufacturing processes but also gets rid of the high-temperature annealing process. Overall, this proposed non-volatile memory is highly attractive for low voltage, long data retention applications.

  14. Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro

    PubMed Central

    2013-01-01

    Background Volatile organic compounds (VOCs) emitted by human body offer a unique insight into biochemical processes ongoing in healthy and diseased human organisms. Unfortunately, in many cases their origin and metabolic fate have not been yet elucidated in sufficient depth, thus limiting their clinical application. The primary goal of this work was to identify and quantify volatile organic compounds being released or metabolized by HepG2 hepatocellular carcinoma cells. Methods The hepatocellular carcinoma cells were incubated in specially designed head-space 1-L glass bottles sealed for 24 hours prior to measurements. Identification and quantification of volatiles released and consumed by cells under study were performed by gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap device extraction (HS-NTD) as the pre-concentration technique. Most of the compounds were identified both by spectral library match as well as retention time comparison based on standards. Results A total of nine compounds were found to be metabolised and further twelve released by the cells under study (Wilcoxon signed-rank test, p<0.05). The former group comprised 6 aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-ethylacrolein, 3-methyl butanal, n-hexanal and benzaldehyde), n-propyl propionate, n-butyl acetate, and isoprene. Amongst the released species there were five ketones (2-pentanone, 3-heptanone, 2-heptanone, 3-octanone, 2-nonanone), five volatile sulphur compounds (dimethyl sulfide, ethyl methyl sulfide, 3-methyl thiophene, 2-methyl-1-(methylthio)- propane and 2-methyl-5-(methylthio) furan), n-propyl acetate, and 2-heptene. Conclusions The emission and uptake of the aforementioned VOCs may reflect the activity of abundant liver enzymes and support the potential of VOC analysis for the assessment of enzymes function. PMID:23870484

  15. Comment on “Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain” by Gómez-Ortiz et al. (Earth Planet. Sci. Lett. 391 (2014) 36-41)

    NASA Astrophysics Data System (ADS)

    Olías, Manuel; Nieto, José Miguel

    2014-10-01

    The source of the Río Tinto (SW Spain) is currently located close to the Peña de Hierro mine, where it receives the first acidic waters. A few kilometers south, the river crosses the Río Tinto mines, a supergiant massive sulfide deposit that is much more important than those of Peña de Hierro, and the acid pollutant contributions to the river increase by orders of magnitude.

  16. Environmental implications of the use of sulfidic back-bay sediments for dune reconstruction — Lessons learned post Hurricane Sandy

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Benzel, William M.; Hoefen, Todd M.; Hageman, Philip L.; Morman, Suzette A.; Reilly, Timothy J.; Adams, Monique; Berry, Cyrus J.; Fischer, Jeffrey; Fisher, Irene

    2016-01-01

    Some barrier-island dunes damaged or destroyed by Hurricane Sandy's storm surges in October 2012 have been reconstructed using sediments dredged from back bays. These sand-, clay-, and iron sulfide-rich sediments were used to make berm-like cores for the reconstructed dunes, which were then covered by beach sand. In November 2013, we sampled and analyzed partially weathered materials collected from the cores of reconstructed dunes. There are generally low levels of metal toxicants in the reconstructed dune materials. However oxidation of reactive iron sulfides by percolating rainwater produces acid-sulfate pore waters, which evaporate during dry periods to produce efflorescent gypsum and sodium jarosite salts. The results suggest use of sulfidic sediments in dune reconstruction has both drawbacks (e.g., potential to generate acid runoff from dune cores following rainfall, enhanced corrosion of steel bulwarks) and possible benefits (e.g., efflorescent salts may enhance structural integrity).

  17. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  18. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  19. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  20. Characterization of volatile sulfur compound production by Solobacterium moorei.

    PubMed

    Tanabe, Shin-ichi; Grenier, Daniel

    2012-12-01

    Solobacterium moorei is a Gram positive bacterium that has been specifically associated with halitosis. The aim of this study was to characterize volatile sulfur compound (VSC) production by S. moorei. S. moorei was either grown or incubated in the presence of various supplements prior to determining VSC production with a Halimeter sulfide monitor. The effect of exogenous proteases or glycosidase inhibitors on VSC production by S. moorei was examined. We first showed that S. moorei can convert cysteine into hydrogen sulfide. The capacity of S. moorei to produce VSCs from serum, saliva, and mucin was dependent on the presence of an exogenous source of proteases such as pancreatic trypsin or Porphyromonas gingivalis gingipains. VSC production from mucin was inhibited by the presence of a β-galactosidase inhibitor, thus suggesting that deglycosylation of mucin by S. moorei is critical for VSC production. Our study suggests that S. moorei can be a major source of malodorous compounds in halitosis by producing VSCs through a process involving the β-galactosidase activity of the bacterium and an exogenous source of proteases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    USDA-ARS?s Scientific Manuscript database

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  2. Environmental Quality Assessment of Bizerte Lagoon (Tunisia) Using Living Foraminifera Assemblages and a Multiproxy Approach.

    PubMed

    Alves Martins, Maria Virgínia; Zaaboub, Noureddine; Aleya, Lotfi; Frontalini, Fabrizio; Pereira, Egberto; Miranda, Paulo; Mane, Miguel; Rocha, Fernando; Laut, Lazaro; El Bour, Monia

    2015-01-01

    This study investigated the environmental quality of the Bizerte Lagoon (Tunisia) through an integrated approach that combined environmental, biogeochemical, and living benthic foraminiferal analyses. Specifically, we analyzed the physicochemical parameters of the water and sediment. The textural, mineralogical, and geochemical characteristics of the sediment, including total organic carbon, total nitrogen, simultaneously extracted metals (SEM), acid volatile sulfides (AVS), chlorophyll a, CaCO3, and changes in bacterial populations and carbon isotopes were measured. The SEM/AVS values indicated the presence of relatively high concentrations of toxic metals in only some areas. Foraminiferal assemblages were dominated by species such as A. parkinsoniana (20-91%), Bolivina striatula (<40%), Hopkinsina atlantica (<17%), and Bolivina ordinaria (<15%) that cannot be considered typical of impacted coastal lagoons both in Mediterranean and northeast Atlantic regions. The results of this work suggest that Bizerte Lagoon is a unique setting. This lagoon is populated by typical marine species that invaded this ecosystem, attracted not only by the prevailing favorable environmental conditions but also by the abundance and quality of food. The results indicate that the metal pollution found in some areas have a negative impact on the assemblages of foraminifera. At present, however, this negative impact is not highly alarming.

  3. Environmental Quality Assessment of Bizerte Lagoon (Tunisia) Using Living Foraminifera Assemblages and a Multiproxy Approach

    PubMed Central

    Alves Martins, Maria Virgínia; Zaaboub, Noureddine; Aleya, Lotfi; Frontalini, Fabrizio; Pereira, Egberto; Miranda, Paulo; Mane, Miguel; Rocha, Fernando; Laut, Lazaro; El Bour, Monia

    2015-01-01

    This study investigated the environmental quality of the Bizerte Lagoon (Tunisia) through an integrated approach that combined environmental, biogeochemical, and living benthic foraminiferal analyses. Specifically, we analyzed the physicochemical parameters of the water and sediment. The textural, mineralogical, and geochemical characteristics of the sediment, including total organic carbon, total nitrogen, simultaneously extracted metals (SEM), acid volatile sulfides (AVS), chlorophyll a, CaCO3, and changes in bacterial populations and carbon isotopes were measured. The SEM/AVS values indicated the presence of relatively high concentrations of toxic metals in only some areas. Foraminiferal assemblages were dominated by species such as A. parkinsoniana (20–91%), Bolivina striatula (<40%), Hopkinsina atlantica (<17%), and Bolivina ordinaria (<15%) that cannot be considered typical of impacted coastal lagoons both in Mediterranean and northeast Atlantic regions. The results of this work suggest that Bizerte Lagoon is a unique setting. This lagoon is populated by typical marine species that invaded this ecosystem, attracted not only by the prevailing favorable environmental conditions but also by the abundance and quality of food. The results indicate that the metal pollution found in some areas have a negative impact on the assemblages of foraminifera. At present, however, this negative impact is not highly alarming. PMID:26372655

  4. Isolation and chemical characterization of agelaiatoxin8 (AvTx8) from Agelaia vicina wasp venom and its biological effects on GABA neurotransmission.

    PubMed

    Pizzo, Andrea B; Beleboni, Renê O; Gomes Carolino, Ruither O; de Oliveira, Luciana; Miranda, Antonio; Coutinho-Netto, Joaquim; Fontana, Andréia C K; Dos Santos, Wagner Ferreira

    2017-10-01

    Arthropod venoms are sources of molecules that may be useful tools to investigate molecular mechanisms of putative new medicines and laboratory drugs. Here we show the effects of the compound agelaiatoxin-8 (AVTx8), isolated from Agelaia vicina venom, on γ-aminobutyric acid (GABA) neurotransmission in rat brain synaptosomes. Analysis reveals that AvTx8 is composed by 14 amino acid residues with a molecular weight (MW) of 1567 Da. AvTx8 increased GABA release and inhibited GABA uptake in synaptosomes from rat cerebral cortex. AvTx8 inhibited GABA uptake and increased GABA release in the presence of Ca + , Na + , and K + channel blockers, suggesting that it acts directly on GABA transporters. In addition, AvTx8 significantly decreases GABA binding in synaptic membranes from rat brain cortex, suggesting that it also modulates the activity of GABA receptors. Moreover, AvTx8 decreased GAT-1- and GAT-3-mediated GABA uptake in transfected COS-7 cells. Accordingly, we suggest that AvTx8 modulates GABA neurotransmission and might provide a novel entry point for identifying a new class of GABA-modulating neuroprotective drugs. © 2017 Wiley Periodicals, Inc.

  5. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  6. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  7. The Evolution of Sulfide Tolerance in the Cyanobacteria

    NASA Technical Reports Server (NTRS)

    Miller, Scott R.; Bebout, Brad M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Understanding how the function of extant microorganisms has recorded both their evolutionary histories and their past interactions with the environment is a stated goal of astrobiology. We are taking a multidisciplinary approach to investigate the diversification of sulfide tolerance mechanisms in the cyanobacteria, which vary both in their degree of exposure to sulfide and in their capacity to tolerate this inhibitor of photosynthetic electron transport. Since conditions were very reducing during the first part of Earth's history and detrital sulfides have been found in Archean sediments, mechanisms conferring sulfide tolerance may have been important for the evolutionary success of the ancestors of extant cyanobacteria. Two tolerance mechanisms have been identified in this group: (1) resistance of photosystem II, the principal target of sulfide toxicity; and (2) maintenance of the ability to fix carbon despite photosystem II inhibition by utilizing sulfide as an electron donor in photosystem I - dependent, anoxygenic photosynthesis. We are presently collecting comparative data on aspects of sulfide physiology for laboratory clones isolated from a variety of habitats. These data will be analyzed within a phylogenetic framework inferred from molecular sequence data collected for these clones to test how frequently different mechanisms of tolerance have evolved and which tolerance mechanism evolved first. In addition, by analyzing these physiological data together with environmental sulfide data collected from our research sites using microelectrodes, we can also test whether the breadth of an organism's sulfide tolerance can be predicted from the magnitude of variation in environmental sulfide concentration it has experienced in its recent evolutionary past and whether greater average sulfide concentration and/or temporal variability in sulfide favors the evolution of a particular mechanism of sulfide tolerance.

  8. Maillard reaction and enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus avium).

    PubMed

    Gruber, Patrick; Vieths, Stefan; Wangorsch, Andrea; Nerkamp, Jörg; Hofmann, Thomas

    2004-06-16

    The influence of thermal processing and nonenymatic as well as polyphenoloxidase-catalyzed browning reaction on the allergenicity of the major cherry allergen Pru av 1 was investigated. After thermal treatment of the recombinant protein rPru av 1 in the absence or presence of carbohydrates, SDS-PAGE, enzyme allergosorbent tests, and inhibition assays revealed that thermal treatment of rPru av 1 alone did not show any influence on the IgE-binding activity of the protein at least for 30 min, thus correlating well with the refolding of the allergen in buffer solution as demonstrated by CD spectroscopic experiments. Incubation of the protein with starch and maltose also showed no effect on IgE-binding activity, whereas reaction with glucose and ribose and, even more pronounced, with the carbohydrate breakdown products glyceraldehyde and glyoxal induced a strong decrease of the IgE-binding capacity of rPru av 1. In the second part of the study, the effect of polyphenoloxidase-catalyzed oxidation of polyphenols on food allergen activity was investigated. Incubation of rPru av 1 with epicatechin in the presence of tyrosinase led to a drastic decrease in IgE-binding activity of the protein. Variations of the phenolic compound revealed caffeic acid and epicatechin as the most active inhibitors of the IgE-binding activity of rPru av 1, followed by catechin and gallic acid, and, finally, by quercetin and rutin, showing significantly lower activity. On the basis of these data, reactive intermediates formed during thermal carbohydrate degradation as well as during enzymatic polyphenol oxidation are suggested as the active chemical species responsible for modifying nucleophilic amino acid side chains of proteins, thus inducing an irreversible change in the tertiary structure of the protein and resulting in a loss of conformational epitopes of the allergen.

  9. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles.

    PubMed

    Kwon, Young Sang; Ryu, Choong-Min; Lee, Soohyun; Park, Hyo Bee; Han, Ki Soo; Lee, Jung Han; Lee, Kyunghee; Chung, Woo Sik; Jeong, Mi-Jeong; Kim, Hee Kyu; Bae, Dong-Won

    2010-11-01

    Plant root-associated bacteria (rhizobacteria) elicit plant basal immunity referred to as induced systemic resistance (ISR) against multiple pathogens. Among multi-bacterial determinants involving such ISR, the induction of ISR and promotion of growth by bacterial volatile compounds was previously reported. To exploit global de novo expression of plant proteins by bacterial volatiles, proteomic analysis was performed after exposure of Arabidopsis plants to the rhizobacterium Bacillus subtilis GB03. Ethylene biosynthesis enzymes were significantly up-regulated. Analysis by quantitative reverse transcriptase polymerase chain reaction confirmed that ethylene biosynthesis-related genes SAM-2, ACS4, ACS12, and ACO2 as well as ethylene response genes, ERF1, GST2, and CHIB were up-regulated by the exposure to bacterial volatiles. More interestingly, the emission of bacterial volatiles significantly up-regulated both key defense mechanisms mediated by jasmonic acid and salicylic acid signaling pathways. In addition, high accumulation of antioxidant proteins also provided evidence of decreased sensitivity to reactive oxygen species during the elicitation of ISR by bacterial volatiles. The present results suggest that the proteomic analysis of plant defense responses in bacterial volatile-mediated ISR can reveal the mechanisms of plant basal defenses orchestrated by endogenous ethylene production pathways and the generation of reactive oxygen species.

  10. Preparation and evaluation of 188 Re sulfide colloidal nanoparticles loaded biodegradable poly (L-lactic acid) microspheres for radioembolization therapy.

    PubMed

    Jamre, Mina; Shamsaei, Mojtaba; Erfani, Mostafa; Sadjadi, Sodeh; Ghannadi Maragheh, Mohammad

    2018-04-12

    Radioembolization with radioactive microspheres has been an effective method for the treatment of liver lesions. The aim of this study was to prepare carrier-free 188 Re loaded poly (L-lactic acid) (PLLA) microspheres through 188 Re sulfide colloidal nanoparticles ( 188 Re-SC nanoparticles). The formation of 188 Re-SC nanoparticles was confirmed by ultraviolet-visible spectrophotometry. The labeling yield of 188 Re-SC nanoparticles was verified using the RTLC method. Effects of synthesis parameters on morphology and size of prepared 188 Re-sulfide colloidal-PLLA microspheres ( 188 Re-SC-PLLA microspheres) were studied by scanning electron microscopy. In vitro stability of 188 Re-SC-PLLA microspheres was investigated in normal saline at room temperature and in human serum at 37°C. In vivo distribution studies and gamma camera imaging were performed in healthy BALB/c mice. The microspheres could be prepared with sizes between 13 and 48 μm (modal value 29 μm) and radiolabeling efficiency >99%. After incubation, the microspheres were found stable in vitro up to 72 hours. The biodistribution after intravenous injection in healthy BALB/c mice showed high accumulation in lung as a first capture pathway organ for microsphere followed by great retention over 48 hours for these microspheres. These data show that 188 Re-SC-PLLA microspheres are suitable candidate for clinical studies. Copyright © 2018 John Wiley & Sons, Ltd.

  11. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  12. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.504 Section 250.504...-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in...

  13. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.604 Section 250.604...-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in...

  14. Anti-inflammatory and cytoprotective properties of hydrogen sulfide.

    PubMed

    Gemici, Burcu; Wallace, John L

    2015-01-01

    Hydrogen sulfide is an endogenous gaseous mediator that plays important roles in many physiological processes in microbes, plants, and animals. This chapter focuses on the important roles of hydrogen sulfide in protecting tissues against injury, promoting the repair of damage, and downregulating the inflammatory responses. The chapter focuses largely, but not exclusively, on these roles of hydrogen sulfide in the gastrointestinal tract. Hydrogen sulfide is produced throughout the gastrointestinal tract, and it contributes to maintenance of mucosal integrity. Suppression of hydrogen sulfide synthesis renders the tissue more susceptible to injury and it impairs repair. In contrast, administration of hydrogen sulfide donors can increase resistance to injury and accelerate repair. Hydrogen sulfide synthesis is rapidly and dramatically enhanced in the gastrointestinal tract after injury is induced. These increases occur specifically at the site of tissue injury. Hydrogen sulfide also plays an important role in promoting resolution of inflammation, and restoration of normal tissue function. In recent years, these beneficial actions of hydrogen sulfide have provided the basis for development of novel hydrogen sulfide-releasing drugs. Nonsteroidal anti-inflammatory drugs that release small amounts of hydrogen sulfide are among the most advanced of the hydrogen sulfide-based drugs. Unlike the parent drugs, these modified drugs do not cause injury in the gastrointestinal tract, and do not interfere with healing of preexisting damage. Because of the increased safety profile of these drugs, they can be used in circumstances in which the toxicity of the parent drug would normally limit their use, such as in chemoprevention of cancer. © 2015 Elsevier Inc. All rights reserved.

  15. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  16. Two ω-3 FADs Are Associated with Peach Fruit Volatile Formation

    PubMed Central

    Wang, Jiao-Jiao; Liu, Hong-Ru; Gao, Jie; Huang, Yu-Ji; Zhang, Bo; Chen, Kun-Song

    2016-01-01

    Aroma-related volatiles, together with sugars and acids, play an important role in determining fruit flavor quality. Characteristic volatiles of peach fruit are mainly derived from fatty acids such as linoleic acid (18:2) and linolenic acid (18:3). In the present study, six genes encoding fatty acid desaturases (FAD) were cloned, including two ω-6 FAD genes (PpFAD2, PpFAD6) and four ω-3 FAD genes (PpFAD3-1, PpFAD3-2, PpFAD7 and PpFAD8). Heterologous expression of peach FADs in tobacco plants showed that PpFAD3-1, and PpFAD3-2 significantly reduced contents of 18:2, and accumulated significant higher levels of 18:3. In the case of volatiles, transgenic plants produced lower concentrations of hexanal and higher levels of (E)-2-hexenal. Consequently, the ratio of the (E)-2-hexenal and hexanal was about 5- and 3-fold higher than that of wild type (WT) in PpFAD3-1 and PpFAD3-2 transformants, respectively. No significant changes in volatile profiles were observed in transgenic plants overexpressing the four other peach FAD genes. Real-time quantitative polymerase chain reaction (qPCR) analysis showed that ripe fruit had high PpFAD3-1 and low PpFAD3-2 transcript levels. In contrast, high PpFAD3-2 and low PpFAD3-1 transcript levels were observed in young fruit. These results indicate a temporal regulation of these two ω-3 FADs during development and ripening, influencing peach fruit volatile formation. PMID:27043529

  17. Sedimentary sulfur geochemistry of the Paleogene Green River Formation, western USA: Implications for interpreting depositional and diagenetic processes in saline alkaline lakes

    USGS Publications Warehouse

    Tuttle, M.L.; Goldhaber, M.B.

    1993-01-01

    The sulfur geochemistry of the lacustrine Paleogene Green River Formation (Colorado, Utah, and Wyoming, USA) is unlike that of most marine and other lacustrine rocks. Distinctive chemical, isotopic, and mineralogical characteristics of the formation are pyrrhotite and marcasite, high contents of iron mineral sulfides strikingly enriched in 34S, cyclical trends in sulfur abundance and ??34S values, and long-term evolutionary trends in ??34S values. Analyses that identified and quantified these characteristics include carbonate-free abundance of organic carbon (0.13-47 wt%), total iron (0.31-13 wt%), reactive iron (>70% of total iron), total sulfur (0.02-16 wt%), acid-volatile monosulfide (SAv), disulfide (SDi > 70% of total sulfur), sulfate (SSO4) and organosulfur (SOrg); isotopic composition of separated sulfur phases (??34SDi,Av up to +49???); and mineralogy, morphology and paragenesis of sulfide minerals. Mineralogy, morphology, ??34SDi,Av, and ??34SOrg have a distinctive relation, reflecting variable and unique depositional and early diagenetic conditions in the Green River lakes. When the lakes were brackish, dissimilatory sulfate-reducing bacteria in the sediment produced H2S, which initially reacted with labile iron to form pyrite framboids and more gradually with organic matter to form organosulfur compounds. During a long-lived stage of saline lake water, the amount of sulfate supplied by inflow decreased and alkalinity and pH of lake waters increased substantially. Extensive bacterial sulfate reduction in the water column kept lake waters undersaturated with sulfate minerals. A very high H2S:SO4 ratio developed in stagnant bottom water aided by the high pH that kinetically inhibited iron sulfidization. Progressive removal of H2S by coeval formation of iron sulfides and organosulfur compounds caused the isotopic composition of the entire dissolved sulfur reservoir to evolve to ??34S values much greater than that of inflow sulfate, which is estimated to have

  18. Depositionally controlled recycling of iron and sulfur in marine sediments and its isotopic consequences

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Formolo, M.; Arnold, G. L.; Vossmeyer, A.; Henkel, S.; Sawicka, J.; Kasten, S.; Lyons, T. W.

    2011-12-01

    The continental margin off Uruguay and Argentina is characterized by highly dynamic depositional conditions. This variable depositional regime significantly impacts the biogeochemical cycles of iron and sulfur. Mass deposit related redeposition of reduced minerals can lead to the reoxidation of these phases and thus to an overprint of their geochemical primary signatures. Due to rapid burial these oxidized phases are still present in deeper subsurface sediments. To study the effects of sediment relocation on the sulfur and iron inventory we collected shallow and deep subsurface sediment samples via multicorer and gravity cores, respectively, in the western Argentine Basin during the RV Meteor Expedition M78/3 in May-July 2009. The samples were retrieved from shelf, slope and deep basin sites. The concentration and sulfur isotope composition of acid volatile sulfur (AVS), chromium reducible sulfur (CRS), elemental sulfur and total organic sulfur were determined. Furthermore, sequential iron extraction techniques were applied assess the distribution of iron oxide phases within the sediment. The investigated sediments are dominated by terrigenous inputs, with high amounts of reactive ferric iron minerals and only low concentrations of calcium carbonate. Total organic carbon concentrations show strong variation in the shallow subsurface sediments ranging between approximately 0.7 and 6.4 wt% for different sites. These concentrations do not correlate with water depths. Pore water accumulations of hydrogen sulfide are restricted to an interval at the sulfate-methane transition (SMT) zone a few meters below the sediment surface. In these deeper subsurface sediments pyrite is precipitated in this zone of hydrogen sulfide excess, whereas the accumulation of authigenic AVS and elemental sulfur (up to 2000 ppm) occurs at the upper and lower boundary of the sulfidic zone due the reaction of iron oxides with limited amounts of sulfide. Furthermore, our preliminary results

  19. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  20. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  1. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  2. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  3. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  4. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  5. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder

  6. Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham.

    PubMed

    Pérez-Santaescolástica, C; Carballo, J; Fulladosa, E; Garcia-Perez, José V; Benedito, J; Lorenzo, J M

    2018-05-01

    Defective textures in dry-cured ham are a common problem that causes important economic losses in the ham industry. An increase of proteolysis during the dry-cured ham processing may lead to high adhesiveness and consumer rejection of the product. Therefore, the influence of proteolysis index (PI) on instrumental adhesiveness, free amino acids and volatile profile of dry-cured ham was assessed. Two hundred Spanish dry-cured ham units were firstly classified according to their PI: low PI (<32%), medium PI (32-36%) and high PI (>36%). Instrumental adhesiveness was affected by PI, showing the lowest values in the batch with low PI. Significant differences (P < 0.05) among groups were found in six amino acids: serine, taurine, cysteine, methionine, isoleucine and leucine. The content of leucine, serine, methionine, and isoleucine significantly (P < 0.05) increased as the proteolysis index rose. However, taurine and cysteine content showed an opposite behaviour, reaching the highest values in the dry-cured hams with low PI. Significant differences (P < 0.001) in the total content of volatile compounds among ham groups were observed, with the highest concentration in the batch with low PI, and decreasing the concentration as the PI increased. Regarding the different chemical families of volatiles, the hydrocarbons (the main family), alcohols, aldehydes, ketones and acids were more abundant in the hams showing the lowest PI. Esters did not show significant differences among the three batches of hams studied. The present study demonstrated that, apart from the effect on the adhesiveness, an excessive proteolysis seems to be associated with negative effects on the taste and aroma of the dry-cured ham. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Volatile components of ethanolic extract from broccolini leaves.

    PubMed

    Wang, Xiaoqin; Zhang, Bochao; Wang, Bingfang; Zhang, Xuewu

    2012-01-01

    Broccolini (Brassica oleracea Italica × Alboglabra) is a hybrid of broccoli and kai-lan, Chinese broccoli. To date, no study has been reported on the chemical composition of the volatile fractions of this raw material. In this study, the volatile constituents from the ethanolic extract of broccolini leaves were analysed by gas chromatography-mass spectrometry (GC-MS). Sixteen compounds were identified. The major components include 5-phenyl-undecane (11%), n-hexadecanoic acid (9.34%), octadecanoic acid (6.39%), 1,1,3-trimethyl-3-phenyl-indan (4.0%), 3-(2-phenylethyl)benzonitrile (3.48%) and phytol (3.37%).

  8. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    USGS Publications Warehouse

    Wynn, Jeffrey C.

    2000-01-01

    INTRODUCTION AND BACKGROUND: Prince William Forest Park is situated at the northeastern end of the Virginia Gold-Pyrite belt northwest of the town of Dumfries, VA. The U. S. Marine Corps Reservation at Quantico borders the park on the west and south, and occupies part of the same watershed. Two abandoned mines are found within the park: the Cabin Branch pyrite mine, a historic source of acid mine drainage, and the Greenwood gold mine, a source of mercury contamination. Both are within the watershed of Quantico Creek (Fig.1). The Cabin Branch mine (also known as the Dumfries mine) lies about 2.4 km northwest of the town of Dumfries. It exploited a 300 meter-long, lens-shaped body of massive sulfide ore hosted by metamorphosed volcanic rocks; during its history over 200,000 tons of ore were extracted and processed locally. The site became part of the National Capitol Region of the National Park Service in 1940 and is currently managed by the National Park Service. In 1995 the National Park Service, in cooperation with the Virginia Department of Mines, Minerals, and Energy reclaimed the Cabin Branch site. The Virginia Gold-Pyrite belt, also known as the central Virginia volcanic-plutonic belt, is host to numerous abandoned metal mines (Pavlides and others, 1982), including the Cabin Branch deposit. The belt itself extends from its northern terminus near Cabin Branch, about 50 km south of Washington, D.C., approximately 175 km to the southwest into central Virginia. It is underlain by metamorphosed volcanic and clastic (non-carbonate) sedimentary rocks, originally deposited approximately 460 million years ago during the Ordovician Period (Horton and others, 1998). Three kinds of deposits are found in the belt: volcanic-associated massive sulfide deposits, low-sulfide quartz-gold vein deposits, and gold placer deposits. The massive sulfide deposits such as Cabin Branch were historically mined for their sulfur, copper, zinc, and lead contents, but also yielded byproduct

  9. Investigation of the Prebiotic Synthesis of Amino Acids and RNA Bases from CO2 Using FeS/H2S As a Reducing Agent

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.; McDonald, Gene; Bada, Jeffrey

    1995-01-01

    An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purities, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role In the origin of metabolism or the origin of life.

  10. Investigation of the Prebiotic Synthesis of Amino Acids and RNA Bases from CO2 using FeS/H2S as a Reducing Agent

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.; McDonald, Gene; Bada, Jeffrey

    1995-01-01

    An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purines, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role in the origin of metabolism or the origin of life.

  11. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    NASA Astrophysics Data System (ADS)

    Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.

    2017-02-01

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate surface-applied soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manure additive to mitigate emissions of odorous volatile organic compounds (VOC) including dimethyl disulfide/methanethiol (DMDS/MT), dimethyl trisulfide, n-butyric acid, valeric acid, isovaleric acid, p-cresol, indole, and skatole. The secondary impact on emissions of NH3, H2S, and GHG was also measured. The SBP was tested at four treatments (2.28-45.7 kg/m2 manure) with CaO2 (4.2% by weight of SBP) over 137 days. Significant reductions in VOC emissions were observed: DMDS/MT (36.2%-84.7%), p-cresol (53.1%-89.5%), and skatole (63.2%-92.5%). There was a corresponding significant reduction in NH3 (14.6%-67.6%), and significant increases in the greenhouse gases CH4 (32.7%-232%) and CO2 (20.8%-124%). The remaining emissions (including N2O) were not statistically different. At a cost relative to 0.8% of a marketed hog it appears that SBP/CaO2 treatment could be a promising option at the lowest (2.28 kg/m2) treatment rate for reducing odorous gas and NH3 emissions at swine operations, and field-scale testing is warranted.

  12. Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.

    1992-01-01

    The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.

  13. Platinum and Palladium Exsolution Textures in Quenched Sulfide Melts

    NASA Astrophysics Data System (ADS)

    Reo, G.; Frank, M. R.; Loocke, M. P.; Macey, C. J.

    2017-12-01

    Magmatic sulfide ore deposits account for over 80% of the world's platinum group element (PGE) reserves. Layered mafic intrusions (LMIs), a type of magmatic sulfide ore deposit, contain alternating layers of silicate and sulfide mineralization that are thought to have coexisted as an immiscible silicate + sulfide melt pair. Platinum and palladium, the most common PGEs found in LMIs, heavily favor the sulfide melt. Nernst partition coefficients for Pt (D = wt% of Pt in sulfide/wt% of Pt in silicate) range from 102 to 109. This study examined the Pt- and Pd-bearing phases that formed from the quenched sulfide melts to better constrain the PGE-rich sulfide layers of LMIs system. Experiments were conducted with a basalt melt, sulfide melt, and Pt-Pd metal in a vertical tube furnace at 1100°C and 1 atm and with oxygen fugacity buffered to QFM (quartz-fayalite-magnetite). Following the experiments, run products containing both sulfide and silicate glasses (quenched melts) were analyzed by a Shimadzu EPMA-1720HT Electron Probe Microanalyzer. The focus here is on the quenched Fe-rich sulfides whereas data on the partitioning of Pt and Pd between the coexisting silicate and sulfide melts will be presented in the future. The sulfide samples were imaged in back-scattering mode and major and trace element concentrations of separate metal-rich phases in the sulfide matrix were ascertained through wavelength-dispersive x-ray spectroscopy. Three discernable PGE-rich phases were found to have exsolved from the sulfide matrix upon quenching of the sulfide melt. All of these phases had Fe and S of 21-24 and 16-22 wt.%, respectively. An irregularly shaped Pd- and Cu-rich sulfide phase ( 36 and 14 wt.%, respectively) makes up the majority of the exsolution product. A separate Pd- and Ni-rich phase ( 22 and 14 wt%, respectively) can be found as grains or rims adjacent to the exsolved Pd- and Cu-rich phase. A third Pd- and Pt-rich phase ( 26 and 18 wt.%, respectively) exhibits a

  14. Investigating the Influence of Magmatic Volatile Input and Seawater Entrainment on Vent Deposit Morphology and Composition in Manus Basin (Back-arc) Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Tivey, M.; Bach, W.; Tivey, M.; Seewald, J.; Craddock, P.; Rouxel, O.; Yoerger, D.; Yeats, C.; McConachy, T.; Quigley, M.; Vanko, D.

    2006-12-01

    In August 2006, hydrothermal activity within the eastern Manus Basin north of Papua New Guinea was investigated using a combination of mapping (SeaBeam from the R/V Melville, near-bottom multi-beam sonar and magnetometer from AUV ABE and ROV Jason-2) and sampling (fluids and solids using ROV Jason-2). Objectives included identifying tectonic/geologic settings, examining interactions of seawater with felsic rocks that constitute the high silica end-member in the range of basement compositions, determining the extent of volatile magmatic inputs into these systems, and examining the evolution of hydrothermal activity through time. At the PACMANUS (Papua New Guinea Australia Canada Manus) area five previously discovered vent fields were mapped and sampled, and a new very active field, Fenway, was located south of the Satanic Mills field. The core of the Fenway field is a 40 m diameter two-tiered mound. A large black smoker complex venting boiling (356C, 172 bar) fluids forms the upper tier, with the lower tier composed of sulfide debris, massive anhydrite-sulfide deposits, and anhydrite sand. At the DESMOS Caldera hyaloclastites and extensive patches of bleached and stained substrate were mapped and sampled, as were diffuse (72C) and focused (119C) acidic fluids with a pH (25C) of 1.0; no sulfide deposits were observed in the area. At the North Su vent field within the SuSu Knolls area even lower pH fluids were sampled (see Seewald et al., this session). Hydrothermal activity includes venting of white sulfur-rich fluids through cracks and sediments, formation of native sulfur flanges, diffuse venting through spires, and black smoker activity (324C). Anhydrite cement is also present. The abundance of massive anhydrite at Fenway and presence of anhydrite cement at North Su is consistent with significant local entrainment and heating of seawater. The extremely low pH (less than 2) of some vent fluids supports previous hypotheses that fluids in this area contain

  15. Changes in Volatile and Non-Volatile Flavor Chemicals of "Valencia" Orange Juice over the Harvest Seasons.

    PubMed

    Bai, Jinhe; Baldwin, Elizabeth A; McCollum, Greg; Plotto, Anne; Manthey, John A; Widmer, Wilbur W; Luzio, Gary; Cameron, Randall

    2016-01-04

    Florida "Valencia" oranges have a wide harvest window, covering four months after first reaching the commercial maturity. However, the influence of harvest time on juice flavor chemicals is not well documented, with the exception of sugars and acids. Therefore, we investigated the major flavor chemicals, volatile (aroma), non-volatile (taste) and mouth feel attributes, in the two harvest seasons (March to June in 2007 and February to May in 2012). Bitter limonoid compounds, limonin and nomilin, decreased gradually. Out of a total of 94 volatiles, 32 increased, 47 peaked mid to late season, and 15 decreased. Juice insoluble solids and pectin content increased over the season; however, pectin methylesterase activity remained unchanged. Fruit harvested in the earlier months had lower flavor quality. Juice from later harvests had a higher sugar/acid ratio with less bitterness, while, many important aroma compounds occurred at the highest concentrations in the middle to late season, but occurred at lower concentrations at the end of the season. The results provide information to the orange juice processing industry for selection of optimal harvest time and for setting of precise blending strategy.

  16. AV3V lesions reduce the pressor response to L-glutamate into the RVLM.

    PubMed

    Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; Colombari, Débora Simões de Almeida; Menani, José V

    2006-05-01

    Neurons from the rostral ventrolateral medulla (RVLM) directly activate sympathetic pre-ganglionic neurons in the spinal cord. Hypertensive responses and sympathetic activation produced by different stimuli are strongly affected by lesions of the preoptic periventricular tissue surrounding the anteroventral third ventricle (AV3V region). Therefore, in the present study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the AV3V region on the pressor responses produced by injections of the excitatory amino acid L-glutamate into the RVLM of unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the RVLM were used. The pressor responses produced by injections of L-glutamate (1, 5 and 10 nmol/100 nl) into the RVLM were reduced 1 day (9 +/- 4, 39 +/- 6 and 37 +/- 4 mm Hg, respectively) and 15 days after AV3V lesions (13 +/- 6, 39 +/- 4 and 43 +/- 4 mm Hg, respectively, vs. sham lesions: 29 +/- 3, 50 +/- 2 and 58 +/- 3 mm Hg, respectively). Injections of L-glutamate into the RVLM in sham or AV3V-lesioned rats produced no significant change in the heart rate (HR). Baroreflex bradycardia and tachycardia produced by iv phenylephrine or sodium nitroprusside, respectively, and the pressor and bradycardic responses to chemoreflex activation with iv potassium cyanide were not modified by AV3V lesions. The results suggest that signals from the AV3V region are important for sympathetic activation induced by L-glutamate into the RVLM.

  17. Chemistry and mineralogy of pyrite-enriched sediments at a passive margin sulfide brine seep: abyssal Gulf of Mexico

    USGS Publications Warehouse

    Commeau, R.F.; Paull, C.K.; Commeau, J.A.; Poppe, L.J.

    1987-01-01

    Pyrite is rapidly accumulating at the contact between the Cretaceous limestones of the Florida Platform and the hemipelagic sediments of the abyssal Gulf of Mexico. Sediments sampled with the submersible "Alvin" in 3266 m of water are associated with a dense community of organisms that depend on chemosynthetic primary production as a food source. Analysis of the chemistry, mineralogy, and textural composition of these sediments indicate that iron sulfide mineralization is occurring at the seafloor within an anoxic micro-habitat sustained by the advection of hydrogen sulfide-charged saline brines from the adjacent platform. The chemosynthetic bacteria that directly overlie the sediments oxidize hydrogen sulfide for energy and provide elemental sulfur that reacts with iron monosulfide to form some of the pyrite. The sediments are mixtures of pyrite (??? 30 wt.%), BaSr sulfates (??? 4 wt.%), clays, and locally derived biogenic carbonates and are progressively being cemented by iron sulfides. Oxidation of hydrogen sulfide produces locally acidic conditions that corrode the adjacent limestones. Potential sources of S, H2S, Fe, Ba, and Sr are discussed. ?? 1987.

  18. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters

    PubMed Central

    Vanwonterghem, Inka; Jensen, Paul D.; Rabaey, Korneel; Tyson, Gene W.

    2015-01-01

    Anaerobic digestion is a widely used technology for waste stabilization and generation of biogas, and has recently emerged as a potentially important process for the production of high value volatile fatty acids (VFAs) and alcohols. Here, three reactors were seeded with inoculum from a stably performing methanogenic digester, and selective operating conditions (37°C and 55°C; 12 day and 4 day solids retention time) were applied to restrict methanogenesis while maintaining hydrolysis and fermentation. Replicated experiments performed at each set of operating conditions led to reproducible VFA production profiles which could be correlated with specific changes in microbial community composition. The mesophilic reactor at short solids retention time showed accumulation of propionate and acetate (42 ± 2% and 15 ± 6% of CODhydrolyzed, respectively), and dominance of Fibrobacter and Bacteroidales. Acetate accumulation (>50% of CODhydrolyzed) was also observed in the thermophilic reactors, which were dominated by Clostridium. Under all tested conditions, there was a shift from acetoclastic to hydrogenotrophic methanogenesis, and a reduction in methane production by >50% of CODhydrolyzed. Our results demonstrate that shortening the SRT and increasing the temperature are effective strategies for driving microbial communities towards controlled production of high levels of specific volatile fatty acids. PMID:25683239

  19. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters

    NASA Astrophysics Data System (ADS)

    Vanwonterghem, Inka; Jensen, Paul D.; Rabaey, Korneel; Tyson, Gene W.

    2015-02-01

    Anaerobic digestion is a widely used technology for waste stabilization and generation of biogas, and has recently emerged as a potentially important process for the production of high value volatile fatty acids (VFAs) and alcohols. Here, three reactors were seeded with inoculum from a stably performing methanogenic digester, and selective operating conditions (37°C and 55°C 12 day and 4 day solids retention time) were applied to restrict methanogenesis while maintaining hydrolysis and fermentation. Replicated experiments performed at each set of operating conditions led to reproducible VFA production profiles which could be correlated with specific changes in microbial community composition. The mesophilic reactor at short solids retention time showed accumulation of propionate and acetate (42 +/- 2% and 15 +/- 6% of CODhydrolyzed, respectively), and dominance of Fibrobacter and Bacteroidales. Acetate accumulation (>50% of CODhydrolyzed) was also observed in the thermophilic reactors, which were dominated by Clostridium. Under all tested conditions, there was a shift from acetoclastic to hydrogenotrophic methanogenesis, and a reduction in methane production by >50% of CODhydrolyzed. Our results demonstrate that shortening the SRT and increasing the temperature are effective strategies for driving microbial communities towards controlled production of high levels of specific volatile fatty acids.

  20. Volatiles and water- and fat-soluble precursors of Saanen goat and cross Suffolk lamb flavour.

    PubMed

    Madruga, Marta; Dantas, Ingrid; Queiroz, Angela; Brasil, Luciana; Ishihara, Yuri

    2013-02-07

    This paper evaluates the concentrations of water- and fat-soluble precursors of meat flavour, with the aim of characterising the effect of species on the volatile profile of grilled goat and lamb meat. Compared to goat, lamb meat had higher levels of saturated fatty acids--SFA, monounsaturated fatty acids--MUFA and polyunsaturated fatty acids--PUFA and similar levels of sugars and free amino acids, except for lysine and glycine, which were higher in goat. Major differences were detected in lipid-derived volatiles; only pyrazine, thiazole, and some Strecker aldehydes were at different concentrations in these species. Volatile compounds derived from the oxidation of linoleic acid were at higher levels in meat from lamb due to the higher concentration of the latter, while compounds formed from α-linolenic acid were at higher levels in goat. It can be concluded that lamb meat has a stronger flavour profile compared to goat meat because it has the highest concentrations of lipid-derived volatile compounds, primarily straight saturated alkanals, pyrazines and thiazole.

  1. Characteristic odor components of volatile oil from the cultivation medium of Lactobacillus acidophilus.

    PubMed

    Ono, Toshirou; Yonejima, Yasunori; Ikeda, Atsushi; Kashima, Yusei; Nakaya, Satoshi; Miyazawa, Mitsuo

    2014-01-01

    Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of Lactobacillus acidophilus were isolated by hydrodistillation (HD) and analyzed to investigate the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 46 and 19 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were fatty acids, including pentanoic acid (12.75%), heptanoic acid (14.05%), and nonanoic acid (14.04%). The important aroma-active compounds in the oils were detected by GC-MS/Olfactometry (GC-O), and their intensity of aroma were measured by aroma extraction dilution analysis (AEDA). Pyrazines were determined as key aroma components; in particular, 2-ethyl-5-methylpyrazine was the most primary aroma-active compound in MAI oil. In addition, as the characteristic aroma-active compounds, 3-(methylthio)-propanal, trimethylpyrazine, and pentanoic acid were also detected in MAI oil. These results imply that the waste medium after incubation of L. acidophilus may be utilized as a source of volatile oils.

  2. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    PubMed Central

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments. PMID:26030258

  3. Elevated O3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants.

    PubMed

    Cui, Hongying; Wei, Jianing; Su, Jianwei; Li, Chuanyou; Ge, Feng

    2016-12-01

    The elevated atmospheric O 3 level may change the interactions of plants and insects, which potentially affects direct and indirect plant defences. However, the underlying mechanism of the impact of elevated O 3 on indirect plant defence, namely the efficacy of natural enemies, is unclear. Here we tested a hypothesis that linked the effects of elevated O 3 and whitefly herbivory on tomato volatile releases mediated by the jasmonic acid (JA) pathway with the preferences of parasitoid Encarsia formosa for two different tomato genotypes (wild-type (Wt) and JA-deficient genotype (spr2)). The O 3 and whitefly herbivory significantly increased the production of volatile organic compounds (VOCs), including monoterpenes and green leaf volatiles (GLVs). The Wt plants released higher volatile levels, particularly monoterpenes, than did the spr2 plants. In Y-tube tests, limonene and Z-3-hexanol played key roles in the attraction of E. formosa. Moreover, regardless of plant genotype, the two plant genotypes were preferred by adult E. formosa under the O 3 and O 3 + herbivory treatments. Our results suggest that under elevated O 3 , the activation of the JA pathway significantly up-regulates the emission rates of volatiles, through which the efficacy of natural enemy might be promoted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Controls on Weathering of Pyrrhotite in a Low-Sulfide, Granitic Mine-Waste Rock in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Langman, J. B.; Holland, S.; Sinclair, S.; Blowes, D.

    2013-12-01

    Increased environmental risk is incurred with expansion of mineral extraction in the Arctic. A greater understanding of geochemical processes associated with hard-rock mining in this cold climate is needed to evaluate and mitigate these risks. A laboratory and in-situ experiment was conducted to examine mineral weathering and the generation of acid rock drainage in a low-sulfide, run-of-mine waste rock in an Arctic climate. Rock with different concentrations of sulfides (primarily pyrrhotite [Fe7S8] containing small amounts of Co and Ni) and carbonates were weathered in the laboratory and in-situ, large-scale test piles to examine leachate composition and mineral weathering. The relatively larger sulfide-containing rock produced sufficient acid to overcome carbonate buffering and produced a declining pH environment with concomitant release of SO4, Fe, Co, and Ni. Following carbonate consumption, aluminosilicate buffering stabilized the pH above 4 until a reduction in acid generation. Results from the laboratory experiment assisted in determining that after consumption of 1.6 percent of the total sulfide, the larger sulfide-concentration test pile likely is at an internal steady-state or maximal weathering rate after seven years of precipitation input and weathering that is controlled by an annual freeze-thaw cycle. Further weathering of the test pile should be driven by external factors of temperature and precipitation in this Arctic, semi-arid region instead of internal factors of wetting and non-equilibrium buffering. It is predicted that maximal weathering will continue until at least 20 percent of the total sulfide is consumed. Using the identified evolution of sulfide consumption in this Arctic climate, a variable rate factor can now be assessed for the possible early evolution and maximal weathering of larger scale waste-rock piles and seasonal differences because of changes in the volume of a waste-rock pile undergoing active weathering due to the freeze

  5. Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice.

    PubMed

    de Godoy Alves Filho, Elenilson; Rodrigues, Tigressa Helena Soares; Fernandes, Fabiano André Narciso; Pereira, Ana Lucia Fernandes; Narain, Narendra; de Brito, Edy Sousa; Rodrigues, Sueli

    2017-09-01

    The aim of this study was to evaluate the influence of the lactic acid fermentation on volatile compounds of melon and cashew apple juices. The effect of the fermentation processing on the volatile profile of probiotic juices was assessed by HS-SPME/GC-MS coupled to chemometrics with 67.9% and 81.0% of the variance in the first principal component for melon and cashew juices, respectively. The Lactobacillus casei fermentation imparted a reduction of ethyl butanoate, ethyl-2-methylbutirate, and ethyl hexanoate for melon juice; and of ethyl acetate, ethyl-2-methyl butanoate, ethyl crotonate, ethyl isovalerate, benzaldehyde, and ethyl hexanoate for cashew juice. Measurements of the stability of these compounds and the formation of the component 3-methyl-2-butenyl in melon juice may be used as a volatile marker to follow the juice fermentation. These findings suggested that even though it is not a dairy product the lactic acid fermentation of fruits developed a volatile profile combining the fruit and lactic acid fermentation volatiles with mildly formation or degradation of aroma compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Search for Interstellar Sulfide Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  7. GEOCHEMICAL AND BIOLOGICAL ASPECTS OF SULFIDE MINERAL DISSOLUTION: LESSONS FROM IRON MOUNTAIN, CALIFORNIA. (R826189)

    EPA Science Inventory

    Abstract

    The oxidative dissolution of sulfide minerals leading to acid mine drainage (AMD) involves a complex interplay between microorganisms, solutions, and mineral surfaces. Consequently, models that link molecular level reactions and the microbial communities that ...

  8. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    PubMed

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P < 0.01) reduced by exposure of the strawberry fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.

  9. Volatile organic compounds as markers of quality changes during the storage of wild rocket.

    PubMed

    Luca, Alexandru; Kjær, Anders; Edelenbos, Merete

    2017-10-01

    The quality of leafy green vegetables changes during storage. Leaves become yellow or disintegrate, and an off-odor may develop. In addition, small amounts of volatile organic compounds (VOCs) are released. In this study, the release of acetone, carbon disulfide, dimethyl sulfide, nitromethane, pentane, 3-methylfuran, 2-ethylfuran, and dimethyl disulfide from wild rocket with different initial qualities was monitored during 8d storage at 10°C and correlated to aerobic bacteria counts, yeast and mold counts, and degree of tissue disintegration. The release of VOCs, except for 3-methylfuran, was influenced by the initial quality of the leaves. The release of pentane and 2-ethylfuran was related to the degree of tissue disintegration, and the release of dimethyl sulfide and dimethyl disulfide was related to the total aerobic bacteria count. The results demonstrated that VOCs can be used as markers for monitoring the complex quality changes taking place in packaged fresh produce during storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds.

    PubMed

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-03-21

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.

  11. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    NASA Astrophysics Data System (ADS)

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-03-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.

  12. In situ distributions and characteristics of heavy metals in full-scale landfill layers.

    PubMed

    He, Pin-Jing; Xiao, Zheng; Shao, Li-Ming; Yu, Ji-Yu; Lee, Duu-Jong

    2006-10-11

    The leachate from methanogenic landfill normally contains low concentrations of heavy metals. Little samples had ever been collected from the full-scale landfill piles owing to technical difficulty for well drilling. We drilled two wells in Hangzhou Tianziling landfill, 20 m and 32 m in depth each, and collected solid samples of waste age of 1-4 years from both wells. The total amounts, the sequentially extracted amounts, and the chemical binding forms of heavy metals of the samples collected at different depths were measured. With the correlation between leachate production amount and the yearly rainfall amount, the leached ratio of the heavy metals were estimated only 0.13%, 1.8%, 0.15%, and 0.19% of Cu, Cd, Pb, and Zn, respectively. The heavy metals amounts in the main compositions of MSW, like glass, food waste, paper, coal cinders, were measured using fresh MSW samples. Afterward, the contents of heavy metals initially landfilled were estimated. A positive correlation was noted between the measured and the estimated initial contents of heavy metals, indicating that the low migration of heavy metals in landfill layers. However, among the metals investigated, Zn has shown better mobility inside landfill layers. Acid volatile sulfide (AVS) and the simultaneously extracted metals (SEM) were measured for all collected samples with optimal reaction conditions identified to yield nearly perfect sulfide recovery as follows: 100 g wet samples, 80 mL min(-1) N(2) flow rate, reaction time of 150 min. The SEM/AVS ratios ranged 25-45, indicating that the AVS was insufficient to immobilize the SEM. Sequential extraction using six-fraction scheme revealed that the sum of exchangeable and the avid soluble fractions of heavy metals follow: Zn>Cd>Cu, Ni, Pb>Cr. The insoluble fraction of heavy metals in MSW was high, for instance, over 80% for Cr and Pb high insoluble fractions of heavy metals in the landfilled MSW and the sorption capability of the methanogenic landfill layers

  13. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 1: sampling hydrochloric acid (HCl) and nitric acid (HNO₃) from a test gas atmosphere.

    PubMed

    Howe, Alan; Musgrove, Darren; Breuer, Dietmar; Gusbeth, Krista; Moritz, Andreas; Demange, Martine; Oury, Véronique; Rousset, Davy; Dorotte, Michel

    2011-08-01

    Historically, workplace exposure to the volatile inorganic acids hydrochloric acid (HCl) and nitric acid (HNO(3)) has been determined mostly by collection on silica gel sorbent tubes and analysis of the corresponding anions by ion chromatography (IC). However, HCl and HNO(3) can be present in workplace air in the form of mist as well as vapor, so it is important to sample the inhalable fraction of airborne particles. As sorbent tubes exhibit a low sampling efficiency for inhalable particles, a more suitable method was required. This is the first of two articles on "Evaluation of Sampling Methods for Measuring Exposure to Volatile Inorganic Acids in Workplace Air" and describes collaborative sampling exercises carried out to evaluate an alternative method for sampling HCl and HNO(3) using sodium carbonate-impregnated filters. The second article describes sampling capacity and breakthrough tests. The method was found to perform well and a quartz fiber filter impregnated with 500 μL of 1 M Na(2)CO(3) (10% (m/v) Na(2)CO(3)) was found to have sufficient sampling capacity for use in workplace air measurement. A pre-filter is required to remove particulate chlorides and nitrates that when present would otherwise result in a positive interference. A GSP sampler fitted with a plastic cone, a closed face cassette, or a plastic IOM sampler were all found to be suitable for mounting the pre-filter and sampling filter(s), but care has to be taken with the IOM sampler to ensure that the sampler is tightly closed to avoid leaks. HCl and HNO(3) can react with co-sampled particulate matter on the pre-filter, e.g., zinc oxide, leading to low results, and stronger acids can react with particulate chlorides and nitrates removed by the pre-filter to liberate HCl and HNO(3), which are subsequently collected on the sampling filter, leading to high results. However, although there is this potential for both positive and negative interferences in the measurement, these are unavoidable

  14. Theoretical Studies on Heavy Metal Sulfides in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tossell, John A.

    2007-10-31

    'Calculating the stabilities, Raman and UV spectra and acidities of As sulfides in aqueous solution', J. A. Tossell, M. D. Zimmermann and G. R. Helz. Some of the Raman spectra obtained by reacting aqueous As(OH)3 with aqueous bisulfide are shown, taken from Wood, et al. (2002). To interpret these spectra we have carried out an extensive series of calculations, detailed for the case of AsS(SH){sub 2}{sup -} in Table 1 below. By employing state of the art quantum chemical techniques to determine gas-phase harmonic and anharmonic frequencies and solution phase corrections we can accurately match features in the experimental spectrummore » shown in the top figure. The AsS(SH){sub 2}{sup -}...22 H{sub 2}O nanocluster employed is shown in the lower figure. For this species we have calculated the equilibrium structure and the harmonic vibrational spectrum at the CBSB7 B3LYP level. For the free solute species AsS(SH){sub 2}{sup -} we have carried out a whole series of calculations, evaluating harmonic and anharmonic vibrational frequencies at a number of different quantum mechanical levels. In the spectra below, Fig. 3 and Fig. 5 from Wood, et al. (2002), the features around 700-800 cm{sup -1} are attributed to As-O stretches and those around 350-450 cm{sup -1} to As-S stretches. In the nanocluster an isolated vibrational feature is observed at 425 cm{sup -1}, an As=S stretch, close to the value (415 cm{sup -1}) determined by Wood, et al. (2002). Analysis of the calculated frequencies for AsS(SH){sub 2}{sup -} within a polarizable continuum model yields a similar result. Taking the highest level harmonic results, obtained from a CCSD calculation, and adding anharmonic and PCM corrections at the B3LYP level (designated (3) + (5) - (1) in Table 1) gives a frequency for the intense high frequency As=S stretch within 15 cm{sup -1} of experiment. Although there is still interesting work to be done on the stabilities and the Raman and UV spectra of As sulfides, most of the

  15. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others.

    PubMed

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2013-09-01

    The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Chemometric formulation of bacterial consortium-AVS for improved decolorization of resonance-stabilized and heteropolyaromatic dyes.

    PubMed

    Kumar, Madhava Anil; Kumar, Vaidyanathan Vinoth; Premkumar, Manickam Periyaraman; Baskaralingam, Palanichamy; Thiruvengadaravi, Kadathur Varathachary; Dhanasekaran, Anuradha; Sivanesan, Subramanian

    2012-11-01

    A bacterial consortium-AVS, consisting of Pseudomonas desmolyticum NCIM 2112, Kocuria rosea MTCC 1532 and Micrococcus glutamicus NCIM 2168 was formulated chemometrically, using the mixture design matrix based on the design of experiments methodology. The formulated consortium-AVS decolorized acid blue 15 and methylene blue with a higher average decolorization rate, which is more rapid than that of the pure cultures. The UV-vis spectrophotometric, Fourier transform infra red spectrophotometric and high performance liquid chromatographic analysis confirm that the decolorization was due to biodegradation by oxido-reductive enzymes, produced by the consortium-AVS. The toxicological assessment of plant growth parameters and the chlorophyll pigment concentrations of Phaseolus mungo and Triticum aestivum seedlings revealed the reduced toxic nature of the biodegraded products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Semi-volatiles at Mercury: Sodium (Na) and potassium (K)

    NASA Technical Reports Server (NTRS)

    Sprague, A.

    1994-01-01

    Several lines of evidence now suggest that Mercury is a planet rich in moderately-volatile elements such as Na and K. Recent mid-infrared spectral observations of Mercury's equatorial and mid-latitude region near 120 degrees mercurian longitude indicate the presence of plagioclase feldspar. Spectra of Mercury's surface exhibit spectral activity similar to labradorite (plagioclase feldspar with NaAlSi3O8: 30-50 percent) and bytownite (NaAlSi3O8: 10-30 percent). These surface studies were stimulated by the relatively large abundance of Na and K observed in Mercury's atmosphere. An enhanced column of K is observed at the longitudes of Caloris Basin and of the antipodal terrain. Extreme heating at these 'hot' longitudes and severe fracturing suffered from the large impact event could lead to enhanced outgassing from surface or subsurface materials. Alternatively, sputtering from a surface enriched in K could be the source of the observed enhancement. Recent microwave measurements of Mercury also give indirect evidence of a mercurian regolith less FeO-rich than the Moon. An anomalously high index of refraction derived from the whole-disk integrated phase curve of Danjon may also be indicative of surface sulfides contributing to a regolith that is moderately volatile-rich. The recent exciting observations of radar-bright spots at high latitudes also indicate that a substance of high volume scattering, like ice, is present in shadowed regions. Other radar-bright spots have been seen at locations of Na enhancements on the atmosphere. All combined, these pieces of evidence point to a planet that is not severely depleted in volatiles or semi-volatiles.

  18. Quantitating Organoleptic Volatile Phenols in Smoke-Exposed Vitis vinifera Berries.

    PubMed

    Noestheden, Matthew; Thiessen, Katelyn; Dennis, Eric G; Tiet, Ben; Zandberg, Wesley F

    2017-09-27

    Accurate methods for quantitating volatile phenols (i.e., guaiacol, syringol, 4-ethylphenol, etc.) in smoke-exposed Vitis vinifera berries prior to fermentation are needed to predict the likelihood of perceptible smoke taint following vinification. Reported here is a complete, cross-validated analytical workflow to accurately quantitate free and glycosidically bound volatile phenols in smoke-exposed berries using liquid-liquid extraction, acid-mediated hydrolysis, and gas chromatography-tandem mass spectrometry. The reported workflow addresses critical gaps in existing methods for volatile phenols that impact quantitative accuracy, most notably the effect of injection port temperature and the variability in acid-mediated hydrolytic procedures currently used. Addressing these deficiencies will help the wine industry make accurate, informed decisions when producing wines from smoke-exposed berries.

  19. Uptake pathway for Ag bioaccumulation in three benthic invertebrates exposed to contaminated sediments

    USGS Publications Warehouse

    Yoo, H.; Lee, J.-S.; Lee, B.-G.; Lee, I.T.; Schlekat, C.E.; Koh, C.-H.; Luoma, S.N.

    2004-01-01

    We exposed 3 benthic invertebrates, the clam Macoma balthica, the polychaete Neanthes arenaceodentata and the amphipod Leptocheirus plumulosus, to Ag-contaminated sediments to evaluate the relative importance of various uptake routes (sediments, porewater or overlying water, and supplementary food) for Ag bioaccumulation. Silver bioaccumulation was evaluated at 4 levels of sediment Ag (0.1, 0,3, 1,2 and 3.3 ??mol Ag g-1) and 2 levels of acid-volatile sulfide (AVS), <0.5 or ???40 ??mol g-1, and compared among food treatments with or without Ag contamination, or with different food rations. L. plumulosus were incubated for 35 d in the Ag-contaminated sediments after 3 mo of Ag-sediment equilibration, and M. balthica and N. arenaceodentata for 19 d after 5 mo equilibration. Ag bioaccumulation in the 3 organisms was significantly correlated with 1N HCl-extractable Ag concentrations (Ag-SEM: simultaneously extracted Ag with AVS) in sediments. The Ag concentrations in porewater and overlying water were greatest in the sediments with least AVS, consistent with previous studies. Nevertheless, the amphipod and clam exposed to oxic sediments (<0.5 ??mol AVS g-1) accumulated amounts of Ag similar to those accumulated by organisms exposed to anoxic sediments (???40 ??mol AVS g-1), when Ag-SEM levels were comparable. The dissolved Ag source was important for bioaccumulation in the polychaete N. arenaceodentata. Amphipods fed Ag-contaminated food contained ???1.8-fold more tissue Ag concentrations than those fed uncontaminated food. As suggested in kinetic (DYMBAM) modeling studies, ingestion of contaminated sediments and food were the principle routes of Ag bioaccumulation by the benthic invertebrates during chronic exposure, but the relative importance of each uptake route differed among species.

  20. Volatile substance abuse--post-mortem diagnosis.

    PubMed

    Wille, Sarah M R; Lambert, Willy E E

    2004-06-10

    A substantial number of children and adolescents world-wide abuse volatile substances with the intention to experience an euphoric state of consciousness. Although the ratio of deaths to nonfatal inhalation escapades is low, it is an important and preventable cause of death in young people. In the analytical investigation of volatile substances proper sample collection, storage and handling are important in view of the volatile nature of the compounds. Volatile organic compounds in post-mortem matrices such as blood, urine and tissues are generally determined by gas chromatography after extracting the compounds with methods such as static and dynamic headspace or even with pulse-heating and solvent extraction. In post-mortem cases, metabolites in urine seem less relevant, however, trichloroethanol and trichloroacetic acid were determined in several cases. When interpreting qualitative and quantitative results, researchers should be aware of false conclusions. The main reason why scepticism is necessary is the occurrence of losses of analytes during sampling, sample handling and storage, which results in false quantitation.

  1. Changes in Volatile and Non-Volatile Flavor Chemicals of “Valencia” Orange Juice over the Harvest Seasons

    PubMed Central

    Bai, Jinhe; Baldwin, Elizabeth A.; McCollum, Greg; Plotto, Anne; Manthey, John A.; Widmer, Wilbur W.; Luzio, Gary; Cameron, Randall

    2016-01-01

    Florida “Valencia” oranges have a wide harvest window, covering four months after first reaching the commercial maturity. However, the influence of harvest time on juice flavor chemicals is not well documented, with the exception of sugars and acids. Therefore, we investigated the major flavor chemicals, volatile (aroma), non-volatile (taste) and mouth feel attributes, in the two harvest seasons (March to June in 2007 and February to May in 2012). Bitter limonoid compounds, limonin and nomilin, decreased gradually. Out of a total of 94 volatiles, 32 increased, 47 peaked mid to late season, and 15 decreased. Juice insoluble solids and pectin content increased over the season; however, pectin methylesterase activity remained unchanged. Fruit harvested in the earlier months had lower flavor quality. Juice from later harvests had a higher sugar/acid ratio with less bitterness, while, many important aroma compounds occurred at the highest concentrations in the middle to late season, but occurred at lower concentrations at the end of the season. The results provide information to the orange juice processing industry for selection of optimal harvest time and for setting of precise blending strategy. PMID:28231099

  2. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.

    PubMed

    Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn

    2014-02-28

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: A field evaluation

    USGS Publications Warehouse

    Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn

    2014-01-01

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.

  4. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH.

    PubMed

    Wang, Kun; Yin, Jun; Shen, Dongsheng; Li, Na

    2014-06-01

    Food waste anaerobic fermentation was carried out under acidic conditions using inocula based on aerobic activated sludge (Inoculum AE) or anaerobic activated sludge (Inoculum AN) for volatile fatty acids (VFAs) production. The results showed that food waste hydrolysis increased obviously when Inoculum AN was used relative to Inoculum AE at any pH investigated. Hydrolysis at pH 4.0 and uncontrolled pH was higher than that at other pHs when either inoculum was used. Additionally, VFAs production at pH 6.0 was the highest, regardless of the inoculum used. The optimum VFA yields were 0.482g/gVSSremoval with Inoculum AE and 0.918g/gVSSremoval with Inoculum AN, which were observed after 4d and 20d of fermentation, respectively. VFAs composition analysis showed that butyrate acid was the prevalent acid at pH 6.0, followed by acetate acid and propionic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Tracing the link between plant volatile organic compound emissions and CO2 fluxes and by stable isotopes

    NASA Astrophysics Data System (ADS)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2015-04-01

    The vegetation exerts a large influence on the atmosphere through the emission of volatile organic compounds (VOCs) and the emission and uptake of the greenhouse gas CO2. Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as photosynthetic carbon uptake, respiratory CO2 emission and VOC synthesis, remains unclear. Moreover, vegetation-atmosphere CO2 exchange is associated with a large isotopic imprint due to photosynthetic carbon isotope discrimination and 13C-fractionation during respiratory CO2 release1. The latter has been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate the linkage between VOC emissions, CO2 fluxes and associated isotope effects based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS). We utilized positionally specific 13C-labeled pyruvate branch feeding experiments in the mediterranean shrub (Halimium halimifolium) to trace the partitioning of C1, C2, and C3 carbon atoms of pyruvate into VOCs versus CO2 emissions in the light and in the dark. In the light, we found high emission rates of a large array of VOC including volatile isoprenoids, oxygenated VOCs, green leaf volatiles, aromatics, sulfides, and nitrogen containing VOCs. These observations suggest that in the light, H. halimifolium dedicates a high carbon flux through secondary biosynthetic pathways including the pyruvate dehydrogenase bypass, mevalonic acid, MEP/DOXP, shikimic acid, and

  6. The role of sulfides in the fractionation of highly siderophile and chalcophile elements during the formation of martian shergottite meteorites

    NASA Astrophysics Data System (ADS)

    Baumgartner, Raphael J.; Fiorentini, Marco L.; Lorand, Jean-Pierre; Baratoux, David; Zaccarini, Federica; Ferrière, Ludovic; Prašek, Marko K.; Sener, Kerim

    2017-08-01

    The shergottite meteorites are ultramafic to mafic igneous rocks whose parental magmas formed from partial melting of the martian mantle. This study reports in-situ laser ablation inductively coupled plasma mass spectrometry analyses for siderophile and chalcophile major and trace elements (i.e., Co, Ni, Cu, As, Se, Ag, Sb, Te, Pb, Bi, and the highly siderophile platinum-group elements, PGE: Os, Ir, Ru, Rh, Pt and Pd) of magmatic Fe-Ni-Cu sulfide assemblages from four shergottite meteorites. They include three geochemically similar incompatible trace element- (ITE-) depleted olivine-phyric shergottites (Yamato-980459, Dar al Gani 476 and Dhofar 019) that presumably formed from similar mantle and magma sources, and one distinctively ITE-enriched basaltic shergottite (Zagami). The sulfides in the shergottites have been variably modified by alteration on Earth and Mars, as well as by impact shock-shock related melting/volatilization during meteorite ejection. However, they inherit and retain their magmatic PGE signatures. The CI chondrite-normalized PGE concentration patterns of sulfides reproduce the whole-rock signatures determined in previous studies. These similarities indicate that sulfides exerted a major control on the PGE during shergottite petrogenesis. However, depletions of Pt (and Ir) in sulfide relative to the other PGE suggest that additional phases such discrete Pt-Fe-Ir alloys have played an important role in the concentration of these elements. These alloys are expected to have enhanced stability in reduced and FeO-rich shergottite magmas, and could be a common feature in martian igneous systems. A Pt-rich PGM was found to occur in a sulfide assemblage in Dhofar 019. However, its origin may be related to impact shock-related sulfide melting and volatilisation during meteorite ejection. In the ITE-depleted olivine-phyric shergottites, positive relationships exist between petrogenetic indicators (e.g., whole-rock Mg-number) and most moderately to

  7. Whey acerola-flavoured drink submitted Ohmic Heating: Bioactive compounds, antioxidant capacity, thermal behavior, water mobility, fatty acid profile and volatile compounds.

    PubMed

    Cappato, Leandro P; Ferreira, Marcus Vinicius S; Moraes, Jeremias; Pires, Roberto P S; Rocha, Ramon S; Silva, Ramon; Neto, Roberto P C; Tavares, Maria Inês B; Freitas, Mônica Q; Rodrigues, Flavio N; Calado, Veronica M A; Raices, Renata S L; Silva, Marcia C; Cruz, Adriano G

    2018-10-15

    Whey acerola-flavoured drink was subjected to Ohmic Heating (OH) under different operational conditions (45, 60, 80 V at 60 Hz and 10, 100, 1000 Hz with 25 V, 65 °C/30 min) and conventional pasteurization (65 °C/30 min). Bioactive compounds (total phenolics, DPPH, FRAP, ACE levels), fatty acid profile, volatile compounds (CG-MS), thermal behaviors (DSC) and water mobility (TD-NMR) were performed. Reduction of frequency (1000-10 Hz) resulted in a lower bioactive compounds and antioxidant capacity of the samples, except for the DPPH values. Concerning the thermal behaviors, fatty acids profile and volatile compounds, different findings were observed as a function of the parameters used (voltage and frequency). In respect of TD-NMR parameters, OH led to a slightly reduction of the relaxation time when compared to the conventional treatment, suggesting more viscous beverages. Overall, OH may be interesting option to whey acerola-flavoured drink processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Importance of equilibration time in the partitioning and toxicity of zinc in spiked sediment bioassays

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Luoma, S.N.; Yoo, H.

    2004-01-01

    The influences of spiked Zn concentrations (1-40 ??mol/g) and equilibration time (???95 d) on the partitioning of Zn between pore water (PW) and sediment were evaluated with estuarine sediments containing two levels (5 and 15 ??mol/g) of acid volatile sulfides (AVS). Their influence on Zn bioavailability was also evaluated by a parallel, 10-d amphipod (Leptocheirus plumulosus) mortality test at 5, 20, and 85 d of equilibration. During the equilibration, AVS increased (up to twofold) with spiked Zn concentration ([Zn]), whereas Zn-simultaneously extracted metals ([SEM]; Zn with AVS) remained relatively constant. Concentrations of Zn in PW decreased most rapidly during the initial 30 d and by 11- to 23-fold during the whole 95-d equilibration period. The apparent partitioning coefficient (Kpw, ratio of [Zn] in SEM to PW) increased by 10- to 20-fold with time and decreased with spiked [Zn] in sediments. The decrease of PW [Zn] could be explained by a combination of changes in AVS and redistribution of Zn into more insoluble phases as the sediment aged. Amphipod mortality decreased significantly with the equilibration time, consistent with decrease in dissolved [Zn]. The median lethal concentration (LC50) value (33 ??M) in the second bioassay, conducted after 20 d of equilibration, was twofold the LC50 in the initial bioassay at 5 d of equilibration, probably because of the change of dissolved Zn speciation. Sediment bioassay protocols employing a short equilibration time and high spiked metal concentrations could accentuate partitioning of metals to the dissolved phase and shift the pathway for metal exposure toward the dissolved phase.

  9. Emission spectrographic determination of volatile trace elements in geologic materials by a carrier distillation technique

    USGS Publications Warehouse

    Barton, H.N.

    1986-01-01

    Trace levels of chalcophile elements that form volatile sulfide minerals are determined in stream sediments and in the nonmagnetic fraction of a heavy-mineral concentrate of stream sediments by a carrier distillation emission spectrographic method. Photographically recorded spectra of samples are visually compared with those of synthetic standards for the two sample types. Rock and soil samples may also be analyzed by comparison with the stream-sediment standards. A gallium oxide spectrochemical carrier/buffer enhances the early emission of the volatile elements. Detection limits in parts per million attained are: Sb 5, As 20, Bi 0.1, Cd 1, Cu 1, Pb 2, Ag 0.1, Zn 2, and Sn 0.1. A comparison with other methods of analysis, total-burn emission and atomic absorption spectroscopy, shows good correlation for standard reference for materials and samples from a variety of geologic terranes. ?? 1986.

  10. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production.

    PubMed

    Hussain, Abid; Filiatrault, Mélissa; Guiot, Serge R

    2017-12-01

    The effect of pH control (4, 5, 6, 7) on volatile fatty acids (VFA) production from food waste was investigated in a leach bed reactor (LBR) operated at 50°C. Stabilisation of pH at 7 resulted in hydrolysis yield of 530g soluble chemical oxygen demand (sCOD)/kg total volatile solids (TVS) added and VFA yield of 247gCOD/kg TVS added, which were highest among all pH tested. Butyric acid dominated the VFA mix (49-54%) at pH of 7 and 6, while acetate composed the primary VFA (41-56%) at pH of 4 and 5. A metabolic shift towards lactic acid production was observed at pH of 5. Improving leachate recirculation rate further improved the hydrolysis and degradation efficiency by 10-16% and the acidification yield to 340gCOD/kgTVS added. The butyric acid concentration of 16.8g/L obtained at neutral pH conditions is among the highest reported in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Experimental simulations of sulfide formation in the solar nebula.

    PubMed

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  12. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Luminescent zinc sulfide. 73.2995 Section 73.2995 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity. The color additive luminescent zinc sulfide...

  13. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Luminescent zinc sulfide. 73.2995 Section 73.2995 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity. The color additive luminescent zinc sulfide...

  14. The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules

    NASA Astrophysics Data System (ADS)

    Pringle, Emily A.; Moynier, Frédéric; Beck, Pierre; Paniello, Randal; Hezel, Dominik C.

    2017-06-01

    Volatile lithophile elements are depleted in the different planetary materials to various degrees, but the origin of these depletions is still debated. Stable isotopes of moderately volatile elements such as Zn can be used to understand the origin of volatile element depletions. Samples with significant volatile element depletions, including the Moon and terrestrial tektites, display heavy Zn isotope compositions (i.e. enrichment of 66Zn vs. 64Zn), consistent with kinetic Zn isotope fractionation during evaporation. However, Luck et al. (2005) found a negative correlation between δ66Zn and 1/[Zn] between CI, CM, CO, and CV chondrites, opposite to what would be expected if evaporation caused the Zn abundance variations among chondrite groups. We have analyzed the Zn isotope composition of multiple samples of the major carbonaceous chondrite classes: CI (1), CM (4), CV (2), CO (4), CB (2), CH (2), CK (4), and CK/CR (1). The bulk chondrites define a negative correlation in a plot of δ66Zn vs 1/[Zn], confirming earlier results that Zn abundance variations among carbonaceous chondrites cannot be explained by evaporation. Exceptions are CB and CH chondrites, which display Zn systematics consistent with a collisional formation mechanism that created enrichment in heavy Zn isotopes relative to the trend defined by CI-CK. We further report Zn isotope analyses of chondrite components, including chondrules from Allende (CV3) and Mokoia (CV3), as well as an aliquot of Allende matrix. All chondrules are enriched in light Zn isotopes (∼500 ppm on 66Zn/64Zn) relative to the bulk, contrary to what would be expected if Zn were depleted during evaporation, on the other hand the matrix has a complementary heavy isotope composition. We report sequential leaching experiments in un-equilibrated ordinary chondrites, which show sulfides are isotopically heavy compared to silicates and the bulk meteorite by ca. +0.65 per mil on 66Zn/64Zn. We suggest isotopically heavy sulfides were

  15. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element.

    PubMed

    Prieur, Xavier; Coste, Herve; Rodriguez, Joan C

    2003-07-11

    The newly identified apolipoprotein AV (apoAV) gene is a key player in determining plasma triglyceride concentrations. Because hypertriglyceridemia is a major independent risk factor in coronary artery disease, the understanding of the regulation of the expression of this gene is of considerable importance. We presently characterize the structure, the transcription start site, and the promoter of the human apoAV gene. Since the peroxisome proliferator-activated receptor-alpha (PPARalpha) and the farnesoid X-activated receptor (FXR) have been shown to modulate the expression of genes involved in triglyceride metabolism, we evaluated the potential role of these nuclear receptors in the regulation of apoAV transcription. Bile acids and FXR induced the apoAV gene promoter activity. 5'-Deletion, mutagenesis, and gel shift analysis identified a heretofore unknown element at positions -103/-84 consisting of an inverted repeat of two consensus receptor-binding hexads separated by 8 nucleotides (IR8), which was required for the response to bile acid-activated FXR. The isolated IR8 element conferred FXR responsiveness on a heterologous promoter. On the other hand, in apoAV-expressing human hepatic Hep3B cells, transfection of PPARalpha specifically enhanced apoAV promoter activity. By deletion, site-directed mutagenesis, and binding analysis, a PPARalpha response element located 271 bp upstream of the transcription start site was identified. Finally, treatment with a specific PPARalpha activator led to a significant induction of apoAV mRNA expression in hepatocytes. The identification of apoAV as a PPARalpha target gene has major implications with respect to mechanisms whereby pharmacological PPARalpha agonists may exert their beneficial hypotriglyceridemic actions.

  16. Hydrogen sulfide-powered solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts

  17. Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries.

    PubMed

    Chi, Xiaowei; Liang, Yanliang; Hao, Fang; Zhang, Ye; Whiteley, Justin; Dong, Hui; Hu, Pu; Lee, Sehee; Yao, Yan

    2018-03-01

    All-solid-state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium-ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium-ion cathodes leads to a volatile cathode-electrolyte interface and undesirable cell performance. Here we report a high-capacity organic cathode, Na 4 C 6 O 6 , that is chemically and electrochemically compatible with sulfide electrolytes. A bulk-type ASSSB shows high specific capacity (184 mAh g -1 ) and one of the highest specific energies (395 Wh kg -1 ) among intercalation compound-based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na 4 C 6 O 6 functions as a capable anode material, enabling a symmetric all-organic ASSSB with Na 4 C 6 O 6 as both cathode and anode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles.

    PubMed

    Hofacker, Anke F; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2013-07-16

    Mercury is a highly toxic priority pollutant that can be released from wetlands as a result of biogeochemical redox processes. To investigate the temperature-dependent release of colloidal and dissolved Hg induced by flooding of a contaminated riparian soil, we performed laboratory microcosm experiments at 5, 14, and 23 °C. Our results demonstrate substantial colloidal Hg mobilization concomitant with Cu prior to the main period of sulfate reduction. For Cu, we previously showed that this mobilization was due to biomineralization of metallic Cu nanoparticles associated with suspended bacteria. X-ray absorption spectroscopy at the Hg LIII-edge showed that colloidal Hg corresponded to Hg substituting for Cu in the metallic Cu nanoparticles. Over the course of microbial sulfate reduction, colloidal Hg concentrations decreased but continued to dominate total Hg in the pore water for up to 5 weeks of flooding at all temperatures. Transmission electron microscopy (TEM) suggested that Hg became associated with Cu-rich mixed metal sulfide nanoparticles. The formation of Hg-containing metallic Cu and metal sulfide nanoparticles in contaminated riparian soils may influence the availability of Hg for methylation or volatilization processes and has substantial potential to drive Hg release into adjacent water bodies.

  19. Importance of Hydrogen Sulfide, Thiosulfate, and Methylmercaptan for Growth of Thiobacilli during Simulation of Concrete Corrosion

    PubMed Central

    Sand, Wolfgang

    1987-01-01

    Biogenic sulfuric acid corrosion of concrete surfaces caused by thiobacilli was reproduced in simulation experiments. At 9 months after inoculation with thiobacilli, concrete blocks were severely corroded. The sulfur compounds hydrogen sulfide, thiosulfate, and methylmercaptan were tested for their corrosive action. With hydrogen sulfide, severe corrosion was noted. The flora was dominated by Thiobacillus thiooxidans. Thiosulfate led to medium corrosion and a dominance of Thiobacillus neapolitanus and Thiobacillus intermedius. Methylmercaptan resulted in negligible corrosion. A flora of heterotrophs and fungi grew on the blocks. This result implies that methylmercaptan cannot be degraded by thiobacilli. PMID:16347391

  20. The effects of diet and breed on the volatile compounds of cooked lamb.

    PubMed

    Elmore, J S; Mottram, D S; Enser, M; Wood, J D

    2000-06-01

    The effect of varying the n-3 polyunsaturated fatty acid (PUFA) composition of lamb muscle on the formation of aroma volatiles during cooking has been examined. The meat was obtained from four groups of Suffolk and Soay lambs fed different supplementary fats: a palm-oil based control; bruised whole linseed, which increased muscle levels of α-linolenic acid (C18:3 n-3); fish oil, which increased eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3); and equal quantities of linseed and fish oil (fat basis). Higher quantities of lipid oxidation products were found in the aroma volatiles of lamb muscle from animals fed fish oil, compared to the control. In particular, unsaturated aldehydes, unsaturated hydrocarbons and alkylfurans increased up to fourfold. These compounds derived from the autoxidation of PUFAs during cooking. Although some of these volatiles were increased in meat from animals fed the linseed supplement, the effect was not as great as with the fish oil fed lambs. Levels of volatiles derived from the Maillard reaction, such as pyrazines and sulfur compounds, were up to four times higher in Soays than Suffolks.

  1. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong

    2017-11-01

    A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.

  2. Floral volatiles in a sapromyiophilous plant and their importance in attracting house fly pollinators.

    PubMed

    Zito, Pietro; Dötterl, Stefan; Sajeva, Maurizio

    2015-04-01

    Floral scent in sapromyiophilous plants often consists of complex blends with not only fetid (e.g., sulfides) but also sweet (e.g., terpenoids) volatile organic compounds, and a recent study suggests that both groups of compounds are involved in pollinator attraction. However, little is known about the number and identity of compounds involved in pollinator attraction in these deceptive plants that mimic breeding sites of fly pollinators. In the present paper, we studied flower volatiles of sapromyiophilous Periploca laevigata and their capability to elicit biological responses in one of the pollinator species, Musca domestica. Floral volatiles were collected by dynamic headspace and analyzed by gas chromatography/mass spectrometry (GC/MS), and electrophysiological (GC/EAD) and behavioral assays (two choice olfactometer) were conducted. In the floral scent of P. laevigata, we detected 44 compounds, of which indole, β-caryophyllene, and germacrene D, as well as dimethyl trisulfide, which was present in trace amounts, were electrophysiologically active in the antennae of M. domestica. However, when we evaluated in behavioral experiments the attractiveness of the electrophysiologically active compounds (complete mixture against partial mixtures or against single compounds), we found that indole was the only attractive compound for the flies.

  3. Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge.

    PubMed

    Duan, Xu; Wang, Xiao; Xie, Jing; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-11-15

    Most of the reported studies on anaerobic fermentation of sludge focused on the influences of operating conditions, pretreatment methods, and its characteristics, and little attention was paid to those of persistent organic pollutants (POPs) which widespreadly appeared in sludge. In this study, the effect of nonylphenol, a typical POPs in waste activated sludge (WAS), on anaerobic fermentation for volatile fatty acids (VFAs) accumulation was investigated. The concentration of VFAs during WAS anaerobic fermentation was found to be affected positively from 2856 mg COD/L in the control (without NP) to 5620 mg COD/L with NP of 200 mg/kg dry sludge. Mechanism exploration exhibited that the main reason for the enhanced VFAs accumulation in the presence of NP was that more acetic acid was generated during the acidification of WAS, which was increased by almost three times (3790 versus 1310 mg COD/L). In WAS fermentation systems, the abundance of anaerobic functional microorganisms was advantageous to the accumulation of acetic acid. Further investigation by the pure acetogen revealed that both the viability and activity of Proteiniphilum acetatigenes were improved by NP during anaerobic fermentation, resulting in more production of acetic acid and showing good agreement with that in the real WAS fermentation systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Study on the correlation between volatile fatty acids and gas production in dry fermentation of kitchen waste

    NASA Astrophysics Data System (ADS)

    Li, Qiangqiang; Ma, Yunfeng; Du, Boying; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In this study, continuous kitchen waste fermentation and anaerobic digestion experiments were conducted to analyze the gas production potential, and to study the correlation between gas production rate and volatile fatty acid (VFAs) and its component concentration. During the experiment, the total solid(TS) concentration of the reaction system was increased by adding the kitchen waste, analysis of kitchen waste dry fermentation process to start, run, imbalance and imbalance after recovery and the parameters in the process of realizing the change trend and influencing factors of dry fermentation process, pH and ammonia concentration.

  6. Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.

    PubMed

    Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R

    1998-01-01

    Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components.

  7. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  8. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  9. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  10. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  11. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    NASA Astrophysics Data System (ADS)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel

  12. Influence of pulsed electric field treatments on the volatile compounds of milk in comparison with pasteurized processing.

    PubMed

    Zhang, Sha; Yang, Ruijin; Zhao, Wei; Hua, Xiao; Zhang, Wenbin; Zhang, Zhong

    2011-01-01

    Effects of pulsed electric field (PEF) treatments on the volatile profiles of milk were studied and compared with pasteurized treatment of high temperature short time (HTST) (75 °C, 15 s). Volatile compounds were extracted by solid-phase micro-extraction (SPME) and identified by gas chromatography/mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). A total of 37 volatile compounds were determined by GC-MS, and 19 volatile compounds were considered to be major contributors to the characteristic flavor of milk samples. PEF treatment resulted in an increase in aldehydes. Milk treated with PEF at 30 kV/cm showed the highest content of pentanal, hexanal, and nonanal, while heptanal and decanal contents were lower than in pasteurized milk, but higher than in raw milk. All the methyl ketones detected in PEF milk were lower than in pasteurized milk. No significant differences in acids (acetic acid, butanoic acid, hexanoic acid, octanoic acid, and decanoic acid), lactones, and alcohols were observed between pasteurized and PEF-treated samples; however, 2(5H)-furanone was only detected in PEF-treated milk. Although GC-MS results showed that there were some volatile differences between pasteurized and PEF-treated milk, GC-O data showed no significant difference between the 2 samples.

  13. Production of hydrogen and volatile fatty acid by Enterobacter sp. T4384 using organic waste materials.

    PubMed

    Kim, Byung-Chun; Deshpande, Tushar R; Chun, Jongsik; Yi, Sung Chul; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2013-02-01

    In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of 10-45 degrees C and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l H2, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l H2, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l H2, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l H2, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l H2, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

  14. Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A.; Duchesne, J., E-mail: josee.duchesne@ggl.ulaval.ca; Fournier, B.

    Damages in concrete containing sulfide-bearing aggregates were recently observed in the Trois-Rivieres area (Quebec, Canada), characterized by rapid deterioration within 3 to 5 years after construction. A petrographic examination of concrete core samples was carried out using a combination of tools including: stereomicroscopic evaluation, polarized light microscopy, scanning electron microscopy, X-ray diffraction and electron microprobe analysis. The aggregate used to produce concrete was an intrusive igneous rock with different metamorphism degrees and various proportions of sulfide minerals. In the rock, sulfide minerals were often surrounded by a thin layer of carbonate minerals (siderite). Secondary reaction products observed in the damagedmore » concrete include 'rust' mineral forms (e.g. ferric oxyhydroxides such as goethite, limonite (FeO (OH) nH{sub 2}O) and ferrihydrite), gypsum, ettringite and thaumasite. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste/aggregate and provokes the formation of sulfate minerals. Understanding both mechanisms, oxidation and internal sulfate attack, is important to be able to duplicate the damaging reaction in laboratory conditions, thus allowing the development of a performance test for evaluating the potential for deleterious expansion in concrete associated with sulfide-bearing aggregates.« less

  15. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    PubMed Central

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-01-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene. PMID:28322320

  16. Experimental Investigation on the Topotaxy of Sulfide and Silicate Melts in Peridotite: Implications for the Origin of PGE-depleted Cu-Ni Sulfide Deposit

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhang, J.; Jin, Z.

    2016-12-01

    Cu-Ni sulfide deposit is generally considered partial melt originated from the mantle which is usually PGE-enriched. However, the largest Cu-Ni sulfide deposits of China (the Jinchuan Cu-Ni deposit) is PGE-depleted. Comparing to silicate melt, the nature and topotaxy of sulfide melt have remained poorly understood. Here we report experimental investigation on the topotaxy of sulfide and silicate melts in peridotite using a piston-cylinder press and a 5GPa Griggs-type deformation apparatus. The starting material consists of polycrystalline olivine or pyrolite and 1 wt% Fe-Ni-Cu sulfide. Hydrostatic and deformation experiments were conducted at a pressure of 1.5 GPa and a temperature of 1250°. Under hydrostatic conditions, our results reveal that the apparent dihedral angle of sulfide melt in an olivine matrix( 96°) is much larger than that of silicate + sulfide melt in pyrolite(<60°) under hydrostatic conditions. The sulfide melt pockets appear mostly as blobs in triple junctions with an immiscible Ni-poor center surrounded by a Ni-rich layer. Under deformation conditions, olivine develops pronounced fabrics with the pole of the (010) forming high concentrations approximately normal to the foliation plane and the [100] axes forming a girdle in the foliation plane. EBSD phase mapping analyses reveal strong shape preferred orientations (SPO) of sulfide +silicate melt in the 45, 90, 135 degree directions for deformation experiments indicating complete wetting of grain boundaries and forming a favorable source for ore deposits. Deformation also causes mixing of the Ni-rich and the Ni-poor sulfide melts. As the platinum-group elements(PGE) prefer to concentrate in the Ni-rich sulfide melt at high temperatures, our results suggest that the metallogenetic source of the PGE-depleted Cu-Ni deposits may have formed under relatively intense deformation and low temperatures with a small fraction of mixed sulfide and silicate melts.

  17. Metal-Silicate-Sulfide Partitioning of U, Th, and K: Implications for the Budget of Volatile Elements in Mercury

    NASA Technical Reports Server (NTRS)

    Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.

    2016-01-01

    During formation of the solar system, the Sun produced strong solar winds, which stripped away a portion of the volatile elements from the forming planets. Hence, it was expected that planets closest to the sun, such as Mercury, are more depleted in volatile elements in comparison to other terrestrial planets. However, the MESSENGER mission detected higher than expected K/U and K/Th ratios on Mercury's surface, indicating a volatile content between that of Mars and Earth. Our experiments aim to resolve this discrepancy by experimentally determining the partition coefficients (D(sup met/sil)) of K, U, and Th between metal and silicate at varying pressure (1 to 5 GPa), temperature (1500 to 1900 C), oxygen fugacity (IW-2.5 to IW-6.5) and sulfur-content in the metal (0 to 33 wt%). Our data show that U, Th, and K become more siderophile with decreasing fO2 and increasing sulfur-content, with a stronger effect for U and Th in comparison to K. Using these results, the concentrations of U, Th, and K in the bulk planet were calculated for different scenarios, where the planet equilibrated at a fO2 between IW-4 and IW-7, assuming the existence of a FeS layer, between the core and mantle, with variable thickness. These models show that significant amounts of U and Th are partitioned into Mercury's core. The elevated superficial K/U and K/Th values are therefore only a consequence of the sequestration of U and Th into the core, not evidence of the overall volatile content of Mercury.

  18. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    PubMed Central

    Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin

    2012-01-01

    Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg−1 and 380.66 μg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple. PMID:22837701

  19. Measurement of non-enteric emission fluxes of volatile fatty acids from a California dairy by solid phase micro-extraction with gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Alanis, Phillip; Sorenson, Mark; Beene, Matt; Krauter, Charles; Shamp, Brian; Hasson, Alam S.

    Dairies are a major source of volatile organic compounds (VOCs) in California's San Joaquin Valley; a region that experiences high ozone levels during summer. Short-chain carboxylic acids, or volatile fatty acids (VFAs), are believed to make up a large fraction of VOC emissions from these facilities, although there are few studies to substantiate this. In this work, a method using a flux chamber coupled to solid phase micro-extraction (SPME) fibers followed by analysis using gas chromatography/mass spectrometry was developed to quantify emissions of six VFAs (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid and 3-methyl butanoic acid) from non-enteric sources. The technique was then used to quantify VFA fluxes from a small dairy located on the campus of California State University Fresno. Both animal feed and animal waste are found to be major sources of VFAs, with acetic acid contributing 70-90% of emissions from the sources tested. Measured total acid fluxes during spring (with an average temperature of 20 °C) were 1.84 ± 0.01, 1.06 ± 0.08, (1.3 ± 0.5) × 10 -2, (1.7 ± 0.2) × 10 -2 and (1.2 ± 0.5) × 10 -2 g m -2 h -1 from silage, total mixed rations, flushing lane, open lot and lagoon sources, respectively. VFA emissions from the sources tested total 390 ± 80 g h -1. The data indicate high fluxes of VFAs from dairy facilities, but differences in the design and operation of dairies in the San Joaquin Valley as well as seasonal variations mean that additional measurements must be made to accurately determine emissions inventories for the region.

  20. AVS-1357 inhibits melanogenesis via prolonged ERK activation.

    PubMed

    Kim, Dong-Seok; Lee, Hyun-Kyung; Park, Seo-Hyoung; Chae, Chong Hak; Park, Kyoung-Chan

    2009-08-01

    In this study, we demonstrated that a derivative of imidazole, AVS-1357, is a novel skin-whitening compound. AVS-1357 was found to significantly inhibit melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase. Furthermore, we found that AVS-1357 induced prolonged activation of extracellular signal-regulated kinase (ERK) and Akt, while it downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase. It has been reported that the activation of ERK and/or Akt is involved in melanogenesis. Therefore, we examined the effects of AVS-1357 on melanogenesis in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway) and/or LY294002 (a specific inhibitor of the Akt pathway). PD98059 dramatically increased melanogenesis, whereas LY294002 had no effect. Furthermore, PD98059 attenuated AVS-1357 induced ERK activation, as well as the downregulation of MITF and tyrosinase. These findings suggest that the effects of AVS-1357 occur via downregulation of MITF and tyrosinase, which is caused by AVS-1357-induced prolonged ERK activation. Taken together, our results indicate that AVS-1357 has the potential as a new skin whitening agent.

  1. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiguchi, Satoshi, E-mail: kamigu@riken.jp; Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198; Okumura, Kazu

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is storedmore » in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.« less

  2. Mineralogy and trace element geochemistry of the Co- and Cu-bearing sulfides from the Shilu Fe-Co-Cu ore district in Hainan Province of South China

    NASA Astrophysics Data System (ADS)

    Wang, Zhilin; Xu, Deru; Zhang, Zhaochong; Zou, Fenghui; Wang, Li; Yu, Liangliang; Hu, Mingyue

    2015-12-01

    Hosted within the metamorphosed, neritic siliciclastic rocks and sedimentary carbonates of the Proterozoic Shilu Group, the Shilu Fe-Co-Cu ore district in Hainan Province of South China comprises the upper Fe- and the lower Co-Cu ore layers. Combined with the field observation, the mineralogical and geochemical studies of sulfides using electron microprobe and laser ablation ICP-MS analyses recognized three types of Co-Cu ores. Type I is represented by massive ores and mainly comprises the first generation of pyrite (PyI) which occurred either as recrystallized, subhedral to euhedral microcrystal aggregates (PyIa) or as elongated, fine-grained euhedral grains (PyIb) with an orientated alignment parallel to S1 foliation. Type II is banded, disseminated and brecciated ores, and composed of the second generation of pyrite (PyII) which displays internal rhythmic growth zoning, the first generations of chalcopyrite (CcpI) and pyrrhotite (PoI), and associated Co-(Ni)-(As)-sulfide minerals. Type III occurring as veins or veinlets mainly consists of the third generation of pyrite (PyIII) and the second generations of chalcopyrite (CcpII) and pyrrhotite (PoII), of which PyIII appears as subhedral to euhedrall grains or as rims of composite pyrite. The moderate Co and As, and high Ni contents as well as the low Co/Ni ratios (∼2-5) in PyI indicate a sedimentary-metamorphic origin for Type I ores. The higher Co, Ni and As concentrations in PyIb relative to PyIa likely was related to an inhomogeneous deformation-metamorphism. The highest Co (av. 51,195 ppm) in PyII and Ni (av. 3374 ppm) in PoI most likely were linked to the preferred incorporation of Co into pyrite and Ni into pyrrhotite. Combined with the high Ag concentrations in CcpI (av. 266 ppm) and PyII (av. 13.32 ppm), the high Co/Ni ratios in PyII (av. 1241) suggest the derivation of Type II ores from a Co-Cu-Ni-Ag-rich hydrothermal fluid. Further, up to 9 wt.% Co concentrations in PyII show a temperature condition of

  3. Molecular basis of pollen-related food allergy: identification of a second cross-reactive IgE epitope on Pru av 1, the major cherry (Prunus avium) allergen.

    PubMed

    Wiche, Regina; Gubesch, Michaela; König, Herbert; Fötisch, Kay; Hoffmann, Andreas; Wangorsch, Andrea; Scheurer, Stephan; Vieths, Stefan

    2005-01-01

    Birch (Betula verrucosa) pollen-associated food allergy is a well-characterized syndrome, which is due to the cross-reactivity of IgE antibodies to homologous allergens in various foods. One crossreacting area on the major birch pollen allergen Bet v 1 and its homologue in cherry (Prunus avium) Pru av 1 has already been identified. This is the so-called 'P-loop' region, which encompasses amino acid residues around position 45 and is found on the two virtually identical tertiary protein structures. We tried to determine an additional IgE cross-reacting patch on Pru av 1 and Bet v 1. The putative IgE-binding region on Pru av 1 was localized with a mAb (monoclonal antibody) that was generated against Bet v 1, and cross-reacts with several Bet v 1 homologues in food and inhibits the binding of patients' IgE to Pru av 1. mAb reactivity pattern was analysed and amino acid positions 28 and 108 of Pru av 1 were selected and mutated by site-directed mutagenesis. The Pru av 1 mutants were produced as recombinant proteins and characterized for their folding, mAb- and IgE-binding capacity and allergenic potency with a cellular assay using the humanized rat basophilic leukaemia cell line RBL-25/30. Amino acid position 28 is involved in a second major IgE-binding region on Pru av 1 and probably on Bet v 1. The identification of this second major IgE-binding region is an essential prerequisite to understand the phenomenon of cross-reactivity and its clinical consequences, and to produce hypoallergenic proteins for an improved immunotherapy of type I allergy.

  4. A critical comparison of different approaches to sediment-quality assessments in the Santos Estuarine System in Brazil.

    PubMed

    Torres, Ronaldo J; Cesar, Augusto; Pastor, Victor A; Pereira, Camilo D S; Choueri, Rodrigo B; Cortez, Fernando S; Morais, Rodofley D; Abessa, Denis M S; do Nascimento, Marcos R L; Morais, Cassia R; Fadini, Pedro S; Casillas, Tomas A Del Valls; Mozeto, Antônio A

    2015-01-01

    This study focuses on the discussion of different lines of evidence (LoEs) applied to a sediment-quality assessment that considered the following: chemical concentrations of metals; polycyclic aromatic hydrocarbons (PAHs) in estuarine waters, sediments, and oysters (native and caged Crassostrea brasiliana); PAHs in semipermeable membrane devices (SPMDs); simultaneously extracted metals-acid volatile sulfides (SEM-AVS); benthic community assessment (the exploratory benthic index and the relative benthic index); chronic toxicity tests with the sea urchin Lytechinus variegatus; and bioaccumulation models. Significantly contaminated sediments from the Santos Estuarine System and the consequent toxicity of tested organisms were measured. Caged oysters presented bioaccumulation rates ≤2,500% of total PAH content and 200% of metal content when compared with control organisms from an uncontaminated area. SPMD results presented the same bioaccumulation pattern as caged oysters but at lower concentrations. Benthic communities presented some alterations, and there was a predominance of tolerant species in the inner part of the estuary. According to the SEM-AVS approach, metals should be assumed to be nonbioavailable, but experiments with transplanted C. brasiliana showed metal bioaccumulation, particularly in the cases of chromium, copper, mercury, and zinc. The weight-of-evidence approach was applied to compare and harmonize LoEs commonly used in sediment-quality assessments and to then classify estuary environments according to both their potential for having adverse effects on the biota and their possible ecological risks. All of the results of these approaches (except for SEM-AVS) were found to complement each other.

  5. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    PubMed

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (p<0.0001) between the observed toxicities and the total risk quotients of the heavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  6. Effects of Methyl Jasmonate on the Composition of Volatile Compounds in Pyropia yezoensis

    NASA Astrophysics Data System (ADS)

    He, Lihong; Wang, Liang; Wang, Linfang; Shen, Songdong

    2018-04-01

    Volatile organic compounds in marine algae have been reported to comprise characteristic flavor of algae and play an important role in their growth, development and defensive response. Yet their biogeneration remain largely unknown. Here we studied the composition of volatile compouds in Pyropia yezoensis and their variations in response to methyl jasmonate (MeJA) and diethyldithiocarbamic acid (DIECA) treatment using gas chromatography-mass spectrometry (GC-MS). A total of 44 compounds belonging to the following chemical classes (n) were identified, including aldehydes (11), alcohols (8), acids and esters (6), alkanes (5), ketones (5), alkenes (3), and S- or N-containing miscellaneous compounds (6). External treatment with plant hormone MeJA increased the content of 1-dodecanol, 4-heptenal, and 2-propenoic acid-2-methyl dodecylester, but decreased the content of phytol, 3-heptadecene, 2-pentadecanone, and isophytol. When pretreated with DIECA, an inhibitor of the octadecanoid pathway leading to the biosynthesis of endogeneous jasmonates and some secondary metabolites, phytol and isophytol were increased, while 4-heptenal, 1-dodecanol, and 2-propenoic acid-2-methyl dodecylester were decreased, both of which were negatively correlated with their variations under MeJA treatment. Collectively, these results suggest that MeJA does affect the volatile composition of P. yezoensis, and the octadecanoid pathway together with endogenous jasmonate pathway may be involved in the biosynthesis of volatile compounds, thereby providing some preliminary envision on the composition and biogeneration of volatile compounds in P. yezoensis.

  7. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions.

    PubMed

    Beskin, Kelly V; Holcomb, Chelsea D; Cammack, Jonathan A; Crippen, Tawni L; Knap, Anthony H; Sweet, Stephen T; Tomberlin, Jeffery K

    2018-04-01

    Volatile emissions from decomposing animal waste are known environmental pollutants. The black soldier fly, Hermetia illucens (L.), is being evaluated for industrialization as a means to recycle wastes and produce protein for use as food and feed. We examined the ability of black soldier fly larvae to reduce odorous compounds associated with animal wastes. Black soldier fly larvae were reared under laboratory conditions on poultry, swine, and dairy manure at feed rates of 18.0 and 27.0 g every other day until 40% reached the prepupal stage. Volatile emissions were collected and analyzed from freshly thawed as well as the digested waste when 90% of the black soldier fly larvae reached the prepupal stage. Volatiles were also collected simultaneously from manure not inoculated with black soldier fly larvae (non-digested) and held under similar conditions. Manure samples were analyzed for relative amounts of nine select odorous volatile organic compounds: phenol, 4-methylphenol, indole, 3-methylindole, propanoic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and pentanoic acid. Black soldier fly larvae reduced emissions of all volatile organic compounds by 87% or greater. Complete reductions were observed for 2-methly propanoic acid in digested poultry manure, phenol, 4-methylphenol, indole and all five fatty acids in digested swine manure, and 4-methylphenol, indole, 3-methylindole and all five acids in digested dairy manure. This study is the first to identify volatile emissions from manure digested by black soldier fly larvae and compare to those found in non-digested manure. These data demonstrate additional benefits of using black soldier fly larvae as a cost-effective and environmentally friendly means of livestock manure management in comparison to current methods. Black soldier fly larvae are capable of altering the overall profile of volatile organic compounds and reducing levels of targeted odorous compounds in livestock manure

  8. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    PubMed Central

    Li, Shiue-Lin; Nealson, Kenneth H.

    2015-01-01

    Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at +30 mV (vs. SHE) at all pH ranges tested (from pH = 4 to 8), while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA) were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA) in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte) equipped with carbon-felt electrodes. In both cases, when potentials of +630 or +130 mV (vs. SHE) were applied, currents were consistently higher at +630 then at +130 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter) not well-known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes. PMID:25741331

  9. Volatile element chemistry of selected lunar, meteoritic, and terrestrial samples

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Christiansen, P. C.; Burlingame, A. L.

    1973-01-01

    Using vacuum pyrolysis and high resolution mass spectrometry, a study is made of the gas release patterns of representative lunar samples, meteorites, terrestrial samples, and synthetic samples doped with various sources of carbon and nitrogen. The pyrolytic gas evolution patterns were intercorrelated, allowing an assessment of the possible sources of the volatilizable material in the lunar samples to be made. Lightly surface adsorbed species and more strongly chemisorbed species are released from ambient to 300 C and from 300 to 500 C, respectively. The low-temperature volatiles (less than 500 C) derived from various chondrites correlate well with the gas evolution patterns of volatile-rich samples, as for example 74220 and 61221. Solar wind entrapped species and molecules derived from reactions probably in the grain surfaces are evolved from about 500 to 700 C, respectively. Solar wind implanted C, N, and S species are generated from 750 to 1150 C, probably by reaction with the mineral matrix during the annealing process. Possible indigenous and/or refractory carbide, nitride, and sulfide C, N, and S are released in the region from 1200 C to fusion.

  10. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor.

    PubMed

    Wegener, R; Schulz, S; Meiners, T; Hadwich, K; Hilker, M

    2001-03-01

    Egg deposition of the elm leaf beetle Xanthogaleruca luteola causes the emission of volatiles from its food plant, Ulmus minor. These volatiles are exploited by the egg parasitoid, Oomyzus gallerucae, to locate its host. In contrast to other tritrophic systems, the release of volatiles is not induced by feeding but by egg deposition. Previous investigations showed that the release is systemic and can be triggered by jasmonic acid. Comparison of headspace analysis revealed similarities in the blend of volatiles emitted following egg deposition and feeding. The mixture consists of more than 40 compounds; most of the substances are terpenoids. Leaves next to those carrying eggs emit fewer compounds. When treated with jasmonic acid, leaves emit a blend that consists almost exclusively of terpenoids. Dichloromethane extracts of leaves treated with jasmonic acid were also investigated. After separation of extracts of jasmonate induced elm leaves on silica, we obtained a fraction of terpenoid hydrocarbons that was attractive to the parasitoids. This indicates that jasmonic acid stimulates the production of terpenoid hydrocarbons that convey information of egg deposition to the parasitoid.

  11. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma.

  12. Extraction and Esterification of Low-Titer Short-Chain Volatile Fatty Acids from Anaerobic Fermentation with Ionic Liquids.

    PubMed

    Andersen, Stephen J; Berton, Jan K E T; Naert, Pieter; Gildemyn, Sylvia; Rabaey, Korneel; Stevens, Christian V

    2016-08-23

    Ionic liquids can both act as a solvent and mediate esterification to valorize low-titer volatile fatty acids and generate organic solvents from renewable carbon sources including biowaste and CO2 . In this study, four phosphonium ionic liquids were tested for single-stage extraction of acetic acid from a dilute stream and esterification to ethyl acetate with added ethanol and heat. The esterification proceeded with a maximum conversion of 85.9±1.3 % after 30 min at 75 °C at a 1:1 stoichiometric ratio of reactants. Extraction and esterification can be tailored using mixed-anion ionic liquids; this is demonstrated herein using a common trihexyl(tetradecyl)phosphonium cation and a mixed chloride and bis(trifluoromethylsulfonyl)imide anion ionic liquid. As a further proof-of-concept, ethyl acetate was generated from an ionic liquid-driven esterification of an acetic acid extractant generated using CO2 as the only carbon source by microbial electrosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Recovery of ostracod with known ages in differently textured sediments and comparison of toxicity of heavily contaminated sediments with ostracod Heterocypris incongruens and amphipod Hyalella azteca

    NASA Astrophysics Data System (ADS)

    Stepanova, N. Yu; Nikitin, O. V.; Latypova, V. Z.; Vybornova, I. B.; Galieva, G. S.; Okunev, R. V.

    2018-01-01

    The recovery of 1-, 4-, 6,-, and 8-d-old ostracods (Heterocypris incongruens) from sediments with different texture has been evaluated. The recovery of ostracods at all ages has been in agreement with the acceptability criterion of 80% of survival for sediment tests. The recovery of ostracods has turned out to be equal to or more than 80% for sand and silt sediments, respectively. The comparison of survival rates between ostracods and amphipods has shown good convergence in the tests of heavily contaminated sediments (R2=0.75, p<0.05). The sediment quality criteria (TEC) have been exceeded mostly for total petroleum hydrocarbons (100% samples), Cr (100%), Ni (87%), Cu (87%), Pb (47%), and Cd (53%). The content of acid volatile sulfides (AVS) has been significantly higher than that of simultaneously extracted metals (SEM). The obtained results have indicated that, metals (Cu, Zn, Cd, Ni, and Pb) are non-bioavailable. Only one sample has exceeded TEC for PAHs (dibenz[a,h]anthracene). It was observed that, no significant correlation between the effect of toxicity and the chemical content.

  14. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  15. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen...

  16. Association between volatile sulfur compounds and periodontal disease progression in elderly non-smokers.

    PubMed

    Makino, Yuka; Yamaga, Takayuki; Yoshihara, Akihiro; Nohno, Kaname; Miyazaki, Hideo

    2012-05-01

    Periodontal pathogenic microorganisms produce volatile sulfur compounds (VSCs), such as hydrogen sulfide, methyl mercaptan, and dimethyl sulfide. VSCs are toxic to periodontal tissue. Therefore, there is a relationship between periodontitis and the VSC level of mouth air. However, the association between VSC and periodontal disease progression has not been investigated in a longitudinal study. The purpose of this study is to evaluate the association between VSCs in mouth air and periodontal disease progression among elderly dentulous non-smokers. Two hundred forty-one dentulous non-smokers (103 males and 138 females; all 70 years old) had their VSC levels examined with a portable sulfide monitor, and their periodontal status was assessed. Periodontal examinations were performed at baseline and once a year for 3 years to investigate the clinical attachment levels of all teeth. Participants were classified by membership in tertile groups (lowest, middle, and highest) according to the value of baseline VSC measurements. In negative binomial regression analysis, the number of teeth with periodontal disease progression for participants in the highest tertile of VSC measurement was greater (incidence rate ratio of 1.33, P = 0.011) than for the reference group (lowest tertile of VSC measurement) after simultaneously adjusting for sex, number of remaining teeth, and maximum clinical attachment level. VSC measurements were significantly associated with periodontal disease progression in a non-smoking dentulous elderly population. This suggests that VSC measurements are useful for the diagnosis of periodontal disease progression.

  17. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Wang, Xinming; Li, Dejun; Yi, Zhigang

    2010-12-01

    Food wastes collected from typical urban residential communities were investigated for the emission of volatile organic sulfur compounds (VOSCs) during laboratory-controlled aerobic decomposition in an incubator for a period of 41 days. Emission of VOSCs from the food wastes totaled 409.9 mg kg -1 (dry weight), and dimethyl disulfide (DMDS), dimethyl sulfide (DMS), methyl 2-propenyl disulfide, carbonyl sulfide and methyl 1-propenyl sulfide were the five most abundant VOSCs, with shares of 75.5%, 13.5%, 4.8%, 2.2% and 1.3% in total 15 VOSCs released, respectively. The emission fluxes of major VOSCs were very low at the beginning (day 0). They peaked at days 2-4 and then decreased sharply until they leveled off after 10 days of incubation. For most VOSCs, over 95% of their emission occurred in the first 10 days. The time series of VOSC emission fluxes, as well as their significant correlation with internal food waste temperature ( p < 0.05) during incubation, suggested that production of VOSC species was induced mainly by microbial activities during the aerobic decomposition instead of as inherited. Released VOSCs accounted for 5.3% of sulfur content in the food wastes, implying that during aerobic decomposition considerable portion of sulfur in food wastes would be released into the atmosphere as VOSCs, primarily as DMDS, which is very short-lived in the atmosphere and thus usually less considered in the sources and sinks of reduced sulfur gases.

  18. Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to identify volatiles released by apple, Malus domestica Borkhausen, foliage subjected to herbivore feeding. The volatiles released upon herbivore attack could be attractive to adult leafroller, Pandemis pyrusana Kearfott when combined with acetic acid. First, volatiles relea...

  19. Herbivore-induced blueberry volatiles and intra-plant signaling.

    PubMed

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  20. Platinum metals in magmatic sulfide ores

    USGS Publications Warehouse

    Naldrett, A.J.; Duke, J.M.

    1980-01-01

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. Copyright ?? 1980 AAAS.

  1. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  2. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  3. Calculation of the visible-UV absorption spectra of hydrogen sulfide, bisulfide, polysulfides, and As and Sb sulfides, in aqueous solution

    PubMed Central

    Tossell, JA

    2003-01-01

    Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)3, As(SH)2S- and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides Sn2-, n = 2–6, the bisulfide anion, SH-, hydrogen sulfide, H2S and the sulfanes, SnH2, n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH- to H2S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S8 with SH- to produce the polysulfides

  4. ACID-BASE ACCOUNT EFFECTIVENESS FOR DETERMINATION OF MINE WASTE POTENTIAL ACIDITY. (R825549C048)

    EPA Science Inventory

    The oxidation of sulfide minerals in mine waste is a widespread source of resource degradation, often resulting in the generation of acidic water and mobilization of heavy metals. The quantity of acid forming minerals present in mine waste, dominantly as pyrite (FeS2

  5. Methods for producing hydrogen (BI) sulfide and/or removing metals

    DOEpatents

    Truex, Michael J [Richland, WA; Peyton, Brent M [Pullman, WA; Toth, James J [Kennewick, WA

    2002-05-14

    The present invention is a process wherein sulfide production by bacteria is efficiently turned on and off, using pH adjustment. The adjustment of pH impacts sulfide production by bacteria by altering the relative amounts of H.sub.2 S and HS-- in solution and thereby control the inhibition of the bacterial metabolism that produces sulfide. This process can be used to make a bioreactor produce sulfide "on-demand" so that the production of sulfide can be matched to its use as a metal precipitation reagent. The present invention is of significance because it enables the use of a biological reactor, a cost effective sulfide production system, by making the biological reactor produce hydrogen sulfide "on demand", and therefore responsive to production schedules, waste stream generation rate, and health and safety requirements/goals.

  6. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge.

    USGS Publications Warehouse

    Brett, R.; Evans, H.T.; Gibson, E.K.; Hedenquist, J.W.; Wandless, M.-V.; Sommer, M.A.

    1987-01-01

    Specifically considers unusual minerals and geothermometric relations not previously covered. Equilibrium, if attained at all, during deposition of most sulfides was a transient event over a few tens of micrometers at most and was perturbed by rapid temperature and compositional changes of the circulating fluid. Two new minerals were found: one, a hydrated Zn, Fe hydroxy-chlorosulfate, and the other, a (Mn, Mg, Fe) hydroxide or hydroxy-hydrate. Both were formed at relatively low temperatures. Lizardite, starkeyite, and anatase were found for the first time in such an environment.-from Authors

  7. A Reaction Involving Oxygen and Metal Sulfides.

    ERIC Educational Resources Information Center

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  8. Role of reactive oxygen species and sulfide-quinone oxoreductase in hydrogen sulfide-induced contraction of rat pulmonary arteries

    PubMed Central

    Prieto-Lloret, Jesus; Snetkov, Vladimir A.; Shaifta, Yasin; Docio, Inmaculada; Connolly, Michelle J.; MacKay, Charles E.; Knock, Greg A.

    2018-01-01

    Application of H2S (“sulfide”) elicits a complex contraction in rat pulmonary arteries (PAs) comprising a small transient contraction (phase 1; Ph1) followed by relaxation and then a second, larger, and more sustained contraction (phase 2; Ph2). We investigated the mechanisms causing this response using isometric myography in rat second-order PAs, with Na2S as a sulfide donor. Both phases of contraction to 1,000 μM Na2S were attenuated by the pan-PKC inhibitor Gö6983 (3 μM) and by 50 μM ryanodine; the Ca2+ channel blocker nifedipine (1 μM) was without effect. Ph2 was attenuated by the mitochondrial complex III blocker myxothiazol (1 μM), the NADPH oxidase (NOX) blocker VAS2870 (10 μM), and the antioxidant TEMPOL (3 mM) but was unaffected by the complex I blocker rotenone (1 μM). The bath sulfide concentration, measured using an amperometric sensor, decreased rapidly following Na2S application, and the peak of Ph2 occurred when this had fallen to ~50 μM. Sulfide caused a transient increase in NAD(P)H autofluorescence, the offset of which coincided with development of the Ph2 contraction. Sulfide also caused a brief mitochondrial hyperpolarization (assessed using tetramethylrhodamine ethyl ester), followed immediately by depolarization and then a second more prolonged hyperpolarization, the onset of which was temporally correlated with the Ph2 contraction. Sulfide application to cultured PA smooth muscle cells increased reactive oxygen species (ROS) production (recorded using L012); this was absent when the mitochondrial flavoprotein sulfide-quinone oxoreductase (SQR) was knocked down using small interfering RNA. We propose that the Ph2 contraction is largely caused by SQR-mediated sulfide metabolism, which, by donating electrons to ubiquinone, increases electron production by complex III and thereby ROS production. PMID:29351439

  9. Removal of insoluble heavy metal sulfides from water.

    PubMed

    Banfalvi, Gaspar

    2006-05-01

    The necessity of heavy metal removal from wastewater has led to increasing interest in absorbents. We have developed a new approach to obtain high metal adsorption capacity by precipitating metal sulfides with sodium sulfide on the surface of bentonite and adhere them to the absorbent. This method allowed to remove approximately 90% of cadmium as CdS from 10(-4)-10(-6) M CdCl2 solutions. Additional reactions are related to the removal of excess sodium sulfide by the release of hydrogen sulfide and oxidation to sulfur using carbogen gas (5% CO2, 95% O2) followed by aeration.

  10. Use of sulfide-containing liquors for removing mercury from flue gases

    DOEpatents

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  11. Use of sulfide-containing liquors for removing mercury from flue gases

    DOEpatents

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2003-01-01

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  12. Trade-Off Between Dimethyl Sulfide and Isoprene Emissions from Marine Phytoplankton.

    PubMed

    Dani, K G Srikanta; Loreto, Francesco

    2017-05-01

    Marine phytoplankton emit volatile organic compounds (VOCs) such as dimethyl sulfide (DMS) and isoprene that influence air quality, cloud dynamics, and planetary albedo. We show that globally (i) marine phytoplankton taxa tend to emit either DMS or isoprene, and (ii) sea-water surface concentration and emission hotspots of DMS and isoprene have opposite latitudinal gradients. We argue that a convergence of antioxidant functions between DMS and isoprene is possible, driven by potential metabolic competition for photosynthetic substrates. Linking phytoplankton emission traits to their latitudinal niches, we hypothesize that natural selection favors DMS emission in cold (polar) waters and isoprene emission in warm (tropical) oceans, and that global warming may expand the geographic range of marine isoprene-emitters. A trade-off between DMS and isoprene at metabolic, organismal, and geographic levels may have important consequences for future marine biosphere-atmosphere interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Taurocholic acid metabolism by gut microbes and colon cancer

    PubMed Central

    Ridlon, Jason M.; Wolf, Patricia G.; Gaskins, H. Rex

    2016-01-01

    ABSTRACT Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  14. Contribution of early impact events to metal-silicate separation, thermal annealing, and volatile redistribution: Evidence in the Pułtusk H chondrite

    NASA Astrophysics Data System (ADS)

    Krzesińska, Agata M.

    2017-11-01

    Three-dimensional X-ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pułtusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase-rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal-sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post-impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal-rich and sulfide-rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen-rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F-apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.

  15. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  16. Lifting of Administrative Stay for Hydrogen Sulfide

    EPA Pesticide Factsheets

    EPA lifted the Administrative Stay of the TRI reporting requirements for hydrogen sulfide. Hydrogen sulfide can reasonably be anticipated to cause chronic health effects in humans and significant adverse effects in aquatic organisms.

  17. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    PubMed Central

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-01-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g−1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures. PMID:27324522

  18. Distribution of stable free radicals among amino acids of isolated soy proteins.

    PubMed

    Lei, Qingxin; Liebold, Christopher M; Boatright, William L; Shah Jahan, M

    2010-09-01

    Application of deuterium sulfide to powdered isolated soy proteins (ISP) was used to quench stable free radicals and produce a single deuterium label on amino acids where free radicals reside. The deuterium labels rendered increases of isotope ratio for the specific ions of radical-bearing amino acids. Isotope ratio measurements were achieved by gas chromatography/mass spectrometry (GC/MS) analyses after the amino acids were released by acidic hydrolysis and converted to volatile derivatives with propyl chloroformate. The isotope enrichment data showed the stable free radicals were located on Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp but not on Val, Pro, Met, Phe, Lys, and His. Due to the low abundance of Ser, Thr, and Cys derivatives and the impossibility to accurately measure their isotope ratios, the radical bearing status for these amino acids remained undetermined even though their derivatives were positively identified from ISP hydrolysates. The relative isotope enrichment for radical-bearing amino acids Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp were 8.67%, 2.96%, 2.90%, 3.94%, 6.03%, 3.91%, and 21.48%, respectively. Isotope ratio increase for Tyr was also observed but further investigation revealed such increase was mainly from nonspecific deuterium-hydrogen exchange not free radical quenching. The results obtained from the present study provide important information for a better understanding of the mechanisms of free radical formation and stabilization in "dry" ISP.

  19. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 005 www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN SULFIDE ( CAS No . 7783 - 06 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been

  20. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate.

    PubMed

    Murshed, Mohamed; Rockstraw, David A; Hanson, Adrian T; Johnson, Michael

    2003-01-01

    The chemistry of sulfide mine tailings treated with potassium ferrate (K2FeO4) in aqueous slurry has been investigated. The reaction system is believed to parallel a geochemical oxidation in which ferrate ion replaces oxygen. This chemical system utilized in a pipeline (as a plug flow reactor) may have application eliminating the potential for tailings to leach acid while recovering the metal from the tailings. Elemental analyses were performed using an ICP spectrometer for the aqueous phase extract of the treated tailings; and an SEM-EDX for the tailing solids. Solids were analyzed before and after treatments were applied. ICP shows that as the mass ratio of ferrate ion to tailings increases, the concentration of metals in the extract solution increases; while EDX indicates a corresponding decrease in sulfur content of the tailing solids. The extraction of metal and reduction in sulfide content is significant. The kinetic timeframe is on the order of minutes.