Sample records for acidic environment ph

  1. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  2. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  3. Acid loading test (pH)

    MedlinePlus

    ... medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the kidneys to send ...

  4. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    PubMed Central

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  5. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    PubMed

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  6. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer.

    PubMed

    Shamim, Uzma; Hanif, Sarmad; Albanyan, Abdulmajeed; Beck, Frances W J; Bao, Bin; Wang, Zhiwei; Banerjee, Sanjeev; Sarkar, Fazlul H; Mohammad, Ramzi M; Hadi, Sheikh M; Azmi, Asfar S

    2012-04-01

    Many critical factors such as hypoxia, nutrient deficiency, activation of glycolytic pathway/Warburg effect contribute to the observed low pH in tumors compared to normal tissue. Studies suggest that such tumor specific acidic environment can be exploited for the development of therapeutic strategies against cancer. Independent observations show reduction in pH of mammalian cells undergoing internucleosomal DNA fragmentation and apoptosis. As such, our group has extensively demonstrated that anticancer mechanisms of different plant polyphenols involve mobilization of endogenous copper and consequent internucleosomal DNA breakage. Copper is redox active metal, an essential component of chromatin and is sensitive to subtle pH changes in its microenvironment. Here we explored whether, acidic pH promotes growth inhibition, apoptosis, and DNA damaging capacity of chemopreventive agent resveratrol. Our results reveal that growth inhibition and internucleosomal DNA fragmentation induced apoptosis in Capan-2 and Panc-28 pancreatic cancer cell lines (and not in normal HPDE cells) by resveratrol is enhanced at lower pH. Using comet assay, we further demonstrate that DNA breakage by resveratrol is enhanced with acidification. Membrane permeable copper specific chelator neocuproine (and not iron chelator orthophenanthroline) abrogated growth inhibition and apoptosis by resveratrol. Western blot results show enhanced activation of DNA laddering marker H2.aX by resveratrol at acidic pH that was reversed by neocuproine and not by orthophenanthroline. Our findings provide irrevocable proof that low pH environment can be turned into tumor weakness and assist in eradication of cancer cells by resveratrol. Copyright © 2011 Wiley Periodicals, Inc.

  7. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  9. Interaction of melanin with proteins--the importance of an acidic intramelanosomal pH.

    PubMed

    Mani, I; Sharma, V; Tamboli, I; Raman, G

    2001-06-01

    Melanin is a highly irregular heteropolymer consisting of monomeric units derived from the enzymatic oxidation of the amino acid tyrosine. The process of melanin formation takes place in specialized acidic organelles (melanosomes) in melanocytes. The process of melanin polymerization requires an alkaline pH in vitro, and therefore, the purpose of an acidic environment in vivo remains a mystery. It is known that melanin is always bound to protein in vivo. It is also seen that polymerization in vitro at an acidic pH necessarily requires the presence of proteins. The effect of various model proteins on melanin synthesis and their interaction with melanin was studied. It was seen that many proteins could increase melanin synthesis at an acidic pH, and that different proteins resulted in the formation of different states of melanin, i.e., a precipitate or a soluble, protein-bound form. We also present evidence to show that soluble protein-bound melanin is present in vivo (in B16 cells as well as in B16 melanoma tissue). An acidic pH appeared to be necessary to ensure the formation of a uniform, very high molecular weight melano-protein complex. The interaction between melanin and proteins appears to be largely charge-dependent as evidenced by zeta potential measurements, and this interaction is also increased in an acidic pH. Thus, it appears that an acidic intramelanosomal pH is essential to ensure maximum interaction between protein and melanin, and also to ensure that all the melanin formed is protein-bound.

  10. [Advances in the effects of pH value of micro-environment on wound healing].

    PubMed

    Tian, Ruirui; Li, Na; Wei, Li

    2016-04-01

    Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.

  11. Phylogenetic relationships and taxonomic position of Chlorella-like isolates from low pH environments (pH < 3.0)

    PubMed Central

    Huss, Volker AR; Ciniglia, Claudia; Cennamo, Paola; Cozzolino, Salvatore; Pinto, Gabriele; Pollio, Antonino

    2002-01-01

    Background Little is known about phytoplankton communities inhabiting low pH environments such as volcanic and geothermal sites or acidic waters. Only specialised organisms are able to tolerate such extreme conditions. There is, thus, low species diversity. We have characterised the previously isolated acid tolerant Chlorella-like microalgae Viridiella fridericiana and Chlorella protothecoides var. acidicola by microscopical and biomolecular methods in order to assess their phylogenetic relationships. Results Both isolates belong to the trebouxiophycean lineage of chlorophytes. 18S and ITS1 sequence data clearly confirm that Viridiella fridericiana constitutes a new genus apart from the morphologically similar and likewise acid tolerant microalga Chlorella saccharophila. Chlorella protothecoides var. acidicola on the other hand is not a variety of Chlorella protothecoides but falls within a heterogeneous cluster consisting of Nannochloris, "Chlorella" spec. Yanaqocha, and Koliella, and is most closely related to algae which were also isolated from extreme environments. Conclusions The distribution of acid tolerant strains in the 18S rRNA tree shows that acquisition of acid tolerance was unlikely a monophyletic event in green microalgae. We propose that different strains have independently adapted to extreme environments. Some of them have spread worldwide and were able to colonise other extreme habitats. Considering the problems of successfully isolating acid tolerant strains, acidic soils could represent an unsuspected source of biological diversity with high potential for biotechnological utilisations. PMID:12194702

  12. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies.

    PubMed

    Pellegrini, Paola; Strambi, Angela; Zipoli, Chiara; Hägg-Olofsson, Maria; Buoncervello, Maria; Linder, Stig; De Milito, Angelo

    2014-04-01

    Acidic pH is an important feature of tumor microenvironment and a major determinant of tumor progression. We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress. Inhibition of autophagy by administration of chloroquine (CQ) in combination anticancer therapies is currently evaluated in clinical trials. We observed in 3 different human cancer cell lines cultured at acidic pH that autophagic flux is not blocked by CQ. This was consistent with a complete resistance to CQ toxicity in cells cultured in acidic conditions. Conversely, the autophagy-inhibiting activity of Lys-01, a novel CQ derivative, was still detectable at low pH. The lack of CQ activity was likely dependent on a dramatically reduced cellular uptake at acidic pH. Using cell lines stably adapted to chronic acidosis we could confirm that CQ lack of activity was merely caused by acidic pH. Moreover, unlike CQ, Lys-01 was able to kill low pH-adapted cell lines, although higher concentrations were required as compared with cells cultured at normal pH conditions. Notably, buffering medium pH in low pH-adapted cell lines reverted CQ resistance. In vivo analysis of tumors treated with CQ showed that accumulation of strong LC3 signals was observed only in normoxic areas but not in hypoxic/acidic regions. Our observations suggest that targeting autophagy in the tumor environment by CQ may be limited to well-perfused regions but not achieved in acidic regions, predicting possible limitations in efficacy of CQ in antitumor therapies.

  13. Protein-silver nanoparticle interactions to colloidal stability in acidic environments.

    PubMed

    Tai, Jui-Ting; Lai, Chao-Shun; Ho, Hsin-Chia; Yeh, Yu-Shan; Wang, Hsiao-Fang; Ho, Rong-Ming; Tsai, De-Hao

    2014-11-04

    We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.

  14. Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota

    PubMed Central

    O’Hanlon, Deirdre E.; Moench, Thomas R.; Cone, Richard A.

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid. PMID:24223212

  15. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  16. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    PubMed

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  17. Identification of Extracellular Domain Residues Required for Epithelial Na+ Channel Activation by Acidic pH

    PubMed Central

    Collier, Daniel M.; Peterson, Zerubbabel J.; Blokhin, Ilya O.; Benson, Christopher J.; Snyder, Peter M.

    2012-01-01

    A growing body of evidence suggests that the extracellular domain of the epithelial Na+ channel (ENaC) functions as a sensor that fine tunes channel activity in response to changes in the extracellular environment. We previously found that acidic pH increases the activity of human ENaC, which results from a decrease in Na+ self-inhibition. In the current work, we identified extracellular domain residues responsible for this regulation. We found that rat ENaC is less sensitive to pH than human ENaC, an effect mediated in part by the γ subunit. We identified a group of seven residues in the extracellular domain of γENaC (Asp-164, Gln-165, Asp-166, Glu-292, Asp-335, His-439, and Glu-455) that, when individually mutated to Ala, decreased proton activation of ENaC. γE455 is conserved in βENaC (Glu-446); mutation of this residue to neutral amino acids (Ala, Cys) reduced ENaC stimulation by acidic pH, whereas reintroduction of a negative charge (by MTSES modification of Cys) restored pH regulation. Combination of the seven γENaC mutations with βE446A generated a channel that was not activated by acidic pH, but inhibition by alkaline pH was intact. Moreover, these mutations reduced the effect of pH on Na+ self-inhibition. Together, the data identify eight extracellular domain residues in human β- and γENaC that are required for regulation by acidic pH. PMID:23060445

  18. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia.

    PubMed

    Mubarak, Zaki; Soraya, Cut

    2018-01-01

    Background:  The objective of the present study was to evaluate the acid tolerance response and pH adaptation when Enterococcus faecalis interacted with extract of lime ( Citrus aurant iifolia ). Methods : We used E. faecalis ATCC 29212 and lime extract from Aceh, Indonesia. The microbe was analyzed for its pH adaptation, acid tolerance response, and adhesion assay using a light microscope with a magnification of x1000. Further, statistical tests were performed to analyze both correlation and significance of the acid tolerance and pH adaptation as well as the interaction activity. Results : E. faecalis was able to adapt to a very acidic environment (pH 2.9), which was characterized by an increase in its pH (reaching 4.2) at all concentrations of the lime extract (p < 0.05). E. faecalis was also able to provide acid tolerance response to lime extract based on spectrophotometric data (595 nm) (p < 0.05). Also, the interaction activity of E. faecalis in different concentrations of lime extract was relatively stable within 6 up to 12 hours (p < 0.05), but it became unstable within 24-72 hours (p > 0.05) based on the mass profiles of its interaction activity. Conclusions : E. faecalis can adapt to acidic environments (pH 2.9-4.2); it is also able to tolerate acid generated by Citrus auranti ifolia extract, revealing a stable interaction in the first 6-12 hours.

  19. A mathematical model for the generation and control of a pH gradient in an immobilized enzyme system involving acid generation.

    PubMed

    Chen, G; Fournier, R L; Varanasi, S

    1998-02-20

    An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. Copyright 1998 John Wiley & Sons, Inc.

  20. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH.

    PubMed

    Barad, Shiri; Sela, Noa; Dubey, Amit K; Kumar, Dilip; Luria, Neta; Ment, Dana; Cohen, Shahar; Schaffer, Arthur A; Prusky, Dov

    2017-08-04

    The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit

  1. Titratable acidity of beverages influences salivary pH recovery.

    PubMed

    Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido

    2015-01-01

    A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  2. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    PubMed

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  3. Intracellular pH Recovery Rates in Bivalve Hemocytes Following Exposure to Acidic Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G. H.

    2012-12-01

    Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.

  4. Acidic pH modulation of Na+ channels in trigeminal mesencephalic nucleus neurons.

    PubMed

    Kang, In-Sik; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung

    2016-12-07

    Cell bodies of trigeminal mesencephalic nucleus (Vmes) neurons are located within the central nervous system, and therefore, peripheral as well as central acidosis can modulate the excitability of Vmes neurons. Here, we report the effect of acidic pH on voltage-gated Na channels in acutely isolated rat Vmes neurons using a conventional whole-cell patch clamp technique. Acidic pH (pH 6.0) slightly but significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. However, acidic pH (pH 6.0) had a minor effect on the inactivation kinetics of voltage-gated Na channels. Less sensitivity of voltage-gated Na channels to acidic pH may allow Vmes neurons to transduce the precise proprioceptive information even under acidic pH conditions.

  5. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    NASA Astrophysics Data System (ADS)

    Angeles Aguilera, Angeles

    2013-07-01

    A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).

  6. Neutralizing salivary pH by mouthwashes after an acidic challenge.

    PubMed

    Dehghan, Mojdeh; Tantbirojn, Daranee; Kymer-Davis, Emily; Stewart, Colette W; Zhang, Yanhui H; Versluis, Antheunis; Garcia-Godoy, Franklin

    2017-05-01

    The aim of the present study was to test the neutralizing effect of mouthwashes on salivary pH after an acidic challenge. Twelve participants were recruited for three visits, one morning per week. Resting saliva was collected at baseline and after 2-min swishing with 20 mL orange juice as an acidic challenge. Participants then rinsed their mouth for 30 s with 20 mL water (control), an over-the-counter mouthwash (Listerine), or a two-step mouthwash, randomly assigned for each visit. Saliva was collected immediately, 15, and 45 min after rinsing. The pH values of the collected saliva were measured and analyzed with anova, followed by Student-Newman-Keuls post-hoc test (significance level: 0.05). Orange juice significantly lowered salivary pH. Immediately after rinsing, Listerine and water brought pH back to baseline values, with the pH significantly higher in the Listerine group. The two-step mouthwash raised pH significantly higher than Listerine and water, and higher than the baseline value. Salivary pH returned to baseline and was not significantly different among groups at 15 and 45 min post-rinsing. Mouth rinsing after an acidic challenge increased salivary pH. The tested mouthwashes raised pH higher than water. Mouthwashes with a neutralizing effect can potentially reduce tooth erosion from acid exposure. © 2015 Wiley Publishing Asia Pty Ltd.

  7. Acidic pH retards the fibrillization of human Islet Amyloid Polypeptide due to electrostatic repulsion of histidines.

    PubMed

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z H

    2013-08-07

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  8. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  9. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    PubMed

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive

  10. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  11. Surface-enhanced Raman spectroscopy study on the structure changes of 4-Mercaptophenylboronic Acid under different pH conditions

    NASA Astrophysics Data System (ADS)

    Su, Hongyang; Wang, Yue; Yu, Zhi; Liu, Yawen; Zhang, Xiaolei; Wang, Xiaolei; Sui, Huimin; Sun, Chengbin; Zhao, Bing

    2017-10-01

    4-Mercaptophenylboronic Acid (4-MPBA) plays pivotal role in various fields. The orientation and existing form of the 4-MPBA strongly depend on the pH value of the media. The general aim of this work is to obtain information about the structure changes of 4-MPBA absorbed on Ag nanoparticles in different pH environment. Surface-enhanced Raman spectroscopy (SERS) technique is a simple and rapid method to study adsorption phenomena at molecule level. The investigation is done by means of SERS. In order to interpret the experimental information, a series of SERS spectra is carried out. The relative intensities of the totally symmetric (a1 mode) and non-totally symmetric (b2 mode) bands in the SERS spectra of 4-MPBA change depend on the environmental pH values, which is a manifestation of charge transfer (CT) processes. The degree of charge transfer increases with the pH value of the media changing from acidity to alkalinity. The structure changes of MPBA had been carried out in different pH environment. We envision that this approach will be of great significance in related fields of 4-MPBA-involved detection.

  12. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA.

  13. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  14. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  15. Acidic Extracellular pH Promotes Activation of Integrin αvβ3

    PubMed Central

    Paradise, Ranjani K.; Lauffenburger, Douglas A.; Van Vliet, Krystyn J.

    2011-01-01

    Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin αvβ3. Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the αvβ3 headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin αvβ3 on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer. PMID:21283814

  16. Putting the pH into phosphatidic acid signaling

    PubMed Central

    2011-01-01

    The lipid phosphatidic acid (PA) has important roles in cell signaling and metabolic regulation in all organisms. New evidence indicates that PA also has an unprecedented role as a pH biosensor, coupling changes in pH to intracellular signaling pathways. pH sensing is a property of the phosphomonoester headgroup of PA. A number of other potent signaling lipids also contain headgroups with phosphomonoesters, implying that pH sensing by lipids may be widespread in biology. PMID:22136116

  17. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    PubMed

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-03

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds.

    PubMed

    Lönnqvist, Susanna; Emanuelsson, Peter; Kratz, Gunnar

    2015-01-01

    Chronic wounds are one of the greatest challenges for the healthcare system. Today, a plethora of dressings are used in the treatment of these wounds, each with specific influence on the wound environment. Due to differences in the permeability of the dressings the use will result in differences in the pH balance in the wound bed. However, little is known about how changes in the pH in the wound environment affect the different phases of the healing process. The aim of the present study was to investigate the effects of acidic pH on the regeneration phase by studying keratinocyte function in vitro and re-epithelialisation in an in vitro model of human skin. In vitro assays showed reduced viability and migration rates in human keratinocytes when pH was lowered. Real time PCR revealed differential expression of genes related to wound healing and environmental impairment. Tissue culture showed no re-epithelialisation of wounds subjected to pH 5.0 and moderate re-epithelialisation at pH 6.0, compared to controls at pH 7.4. The results indicate that lowering pH down to pH 5.0 in wounds is counterproductive in aspect of keratinocyte function which is crucial for successful wound healing.

  19. Corrosion resistance of NiTi in fluoride and acid environments.

    PubMed

    Benyahia, Hicham; Ebntouhami, Mohamed; Forsal, Issam; Zaoui, Fatima; Aalloula, Elhoussine

    2009-12-01

    The aim of our study was to assess in the laboratory the electrochemical behavior of nickel-titanium alloy (NiTi) by simulating the aggressive conditions found in the mouth (notably fluoride and acidity) in order to determine its biocompatibility. The impact of fluoride and pH acid on the corrosion resistance of orthodontic NiTi was studied using classic electrochemical measurement techniques including follow-up over time of the corrosion potential, polarization measurements and impedance spectroscopy. In addition, scanning electron microscopy was used to evaluate the status of the alloy surface before and after immersion in the different media. The results demonstrated the particularly low corrosion resistance of NiTi alloy in the presence of fluorides. In an acidic environment, the alloy showed greater resistance thanks to the passivation phenomenon. The synergistic action of fluoride and ph Acid on NiTi corrosion was not clearly demonstrated. Copyright 2009 Collège Européen d'Orthodontie. Published by Elsevier Masson SAS.. All rights reserved.

  20. Bacteria and Archaea in acidic environments and a key to morphological identification

    USGS Publications Warehouse

    Robbins, E.I.

    2000-01-01

    Natural and anthropogenic acidic environments are dominated by bacteria and Archaea. As many as 86 genera or species have been identified or isolated from pH <4.5 environments. This paper reviews the worldwide literature and provide tables of morphological characteristics, habitat information and a key for light microscope identification for the non-microbiologist.

  1. Extracellular Acidic pH Inhibits Oligodendrocyte Precursor Viability, Migration, and Differentiation

    PubMed Central

    Jagielska, Anna; Wilhite, Kristen D.; Van Vliet, Krystyn J.

    2013-01-01

    Axon remyelination in the central nervous system requires oligodendrocytes that produce myelin. Failure of this repair process is characteristic of neurodegeneration in demyelinating diseases such as multiple sclerosis, and it remains unclear how the lesion microenvironment contributes to decreased remyelination potential of oligodendrocytes. Here, we show that acidic extracellular pH, which is characteristic of demyelinating lesions, decreases the migration, proliferation, and survival of oligodendrocyte precursor cells (OPCs), and reduces their differentiation into oligodendrocytes. Further, OPCs exhibit directional migration along pH gradients toward acidic pH. These in vitro findings support a possible in vivo scenario whereby pH gradients attract OPCs toward acidic lesions, but resulting reduction in OPC survival and motility in acid decreases progress toward demyelinated axons and is further compounded by decreased differentiation into myelin-producing oligodendrocytes. As these processes are integral to OPC response to nerve demyelination, our results suggest that lesion acidity could contribute to decreased remyelination. PMID:24098762

  2. Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: Influence of humic acid and pH.

    PubMed

    Wang, Peifang; Qi, Ning; Ao, Yanhui; Hou, Jun; Wang, Chao; Qian, Jin

    2016-05-01

    The behavior of photoactive TiO2 nanoparticles in an aquatic environment under UV irradiation was investigated. When there was no UV light irradiation, the attachment of humic acid (HA) onto the TiO2 nanoparticles improved their stability due to an increase in the electrostatic and steric repulsions between the particles. However, our study demonstrated that UV light clearly influenced the aggregation of TiO2 nanoparticles. Half an hour of UV irradiation caused the particles to aggregate from 331.0 nm to 1505.0 nm at a pH of 3.0. Similarly, the particles aggregated from 533.2 nm to 1037.0 nm at a pH of 6.5 and from 319.0 nm to 930.0 nm at a pH of 9.0. The aggregation continued with increased irradiation time, except for the condition at pH 3.0, which demonstrated disaggregation. Furthermore, we determined that the photocatalytic degradation of the HA dominated the behavior of TiO2 in our study. From the results of HA removal and 3DEEM fluorescence spectra data for the solution, a change in the HA was in accordance with the size change of the TiO2. The results illustrated that the UV irradiation affected the behavior of light-active nanomaterial (such as TiO2) in an aquatic system, thus influencing their bioavailability and reactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    PubMed Central

    2012-01-01

    Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The

  4. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior.

    PubMed

    Ruan, Changshun; Hu, Nan; Ma, Yufei; Li, Yuxiao; Liu, Juan; Zhang, Xinzhou; Pan, Haobo

    2017-07-28

    A weak alkaline environment is established to facilitate the growth of osteoblasts. Unfortunately, this is inconsistent with the application of biodegradable polymer in bone regeneration, as the degradation products are usually acidic. In this study, the variation of the interfacial pH of poly (D, L-lactide) and piperazine-based polyurethane ureas (P-PUUs), as the representations of acidic degradable materials, and the behavior of osteoblasts on these substrates with tunable interfacial pH were investigated in vitro. These results revealed that the release of degraded products caused a rapid decrease in the interfacial pH, and this could be relieved by the introduction of alkaline segments. On the contrary, when culturing with osteoblasts, the variation of the interfacial pH revealed an upward tendency, indicating that cell could construct the microenvironment by secreting cellular metabolites to satisfy its own survival. In addition, the behavior of osteoblasts on substrates exhibited that P-PUUs with the most PP units were better for cell growth and osteogenic differentiation of cells. This is due to the hydrophilic surface and the moderate N% in P-PUUs, key factors in the promotion of the early stages of cellular responses, and the interfacial pH contributing to the enhanced effect on osteogenic differentiation.

  5. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.

  6. A Triple-Fluorophore-Labeled Nucleic Acid pH Nanosensor to Investigate Non-viral Gene Delivery.

    PubMed

    Wilson, David R; Routkevitch, Denis; Rui, Yuan; Mosenia, Arman; Wahlin, Karl J; Quinones-Hinojosa, Alfredo; Zack, Donald J; Green, Jordan J

    2017-07-05

    There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  8. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH.

    PubMed

    Mason, A James; Gasnier, Claire; Kichler, Antoine; Prévost, Gilles; Aunis, Dominique; Metz-Boutigue, Marie-Hélène; Bechinger, Burkhard

    2006-10-01

    The histidine-rich amphipathic cationic peptide LAH4 has antibiotic and DNA delivery capabilities. Here, we explore the interaction of peptides from this family with model membranes as monitored by solid-state (2)H nuclear magnetic resonance and their antibiotic activities against a range of bacteria. At neutral pH, the membrane disruption is weak, but at acidic pH, the peptides strongly disturb the anionic lipid component of bacterial membranes and cause bacterial lysis. The peptides are effective antibiotics at both pH 7.2 and pH 5.5, although the antibacterial activity is strongly affected by the change in pH. At neutral pH, the LAH peptides were active against both methicillin-resistant and -sensitive Staphylococcus aureus strains but ineffective against Pseudomonas aeruginosa. In contrast, the LAH peptides were highly active against P. aeruginosa in an acidic environment, as is found in the epithelial-lining fluid of cystic fibrosis patients. Our results show that modest antibiotic activity of histidine-rich peptides can be dramatically enhanced by inducing membrane disruption, in this case by lowering the pH, and that histidine-rich peptides have potential as future antibiotic agents.

  9. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence.

    PubMed

    Choi, Jeongjoon; Groisman, Eduardo A

    2016-09-01

    pH regulates gene expression, biochemical activities and cellular behaviors. A mildly acidic pH activates the master virulence regulatory system PhoP/PhoQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The sensor PhoQ harbors an extracytoplasmic domain implicated in signal sensing, and a cytoplasmic domain controlling activation of the regulator PhoP. We now report that, surprisingly, a decrease in Salmonella's own cytoplasmic pH induces transcription of PhoP-activated genes even when the extracytoplasmic pH remains neutral. Amino acid substitutions in PhoQ's cytoplasmic domain hindered activation by acidic pH and attenuated virulence in mice, but did not abolish activation by low Mg(2+) or the antimicrobial peptide C18G. Conversely, removal of PhoQ's extracytoplasmic domains prevented the response to the latter PhoQ-activating signals but not to acidic pH. PhoP-dependent genes were minimally induced by acidic pH in the non-pathogenic species Salmonella bongori but were activated by low Mg(2+) and C18G as in pathogenic S. enterica. Our findings indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived signals that alter its cytoplasmic pH. © 2016 John Wiley & Sons Ltd.

  10. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies.

    PubMed

    Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh

    2003-04-01

    Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.

  11. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments.

    PubMed

    Fletcher, Eugene; Feizi, Amir; Bisschops, Markus M M; Hallström, Björn M; Khoomrung, Sakda; Siewers, Verena; Nielsen, Jens

    2017-01-01

    Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Turbulent acidic jets and plumes injected into an alkaline environment

    NASA Astrophysics Data System (ADS)

    Ulpre, Hendrik

    2012-11-01

    The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.

  13. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    NASA Astrophysics Data System (ADS)

    Liljestrand, Howard M.

    The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  14. Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.

    PubMed

    Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B

    2006-07-01

    alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.

  15. Humic Acid Effects on the Transport of Colloidal Particles in Unsaturated Porous Media: Humic Acid Dosage, pH, and Ionic Strength Dependence

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Gao, B.; Steenhuis, T. S.

    2008-12-01

    Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column

  16. The acid test of fluoride: how pH modulates toxicity.

    PubMed

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Skobe, Ziedonis; Tannous, Bakhos A; Bartlett, John D

    2010-05-28

    It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F(-)). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F(-). Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F(-) into cells. Here, we asked if F(-) was more toxic at low pH, as measured by increased cell stress and decreased cell function. Treatment of ameloblast-derived LS8 cells with F(-) at low pH reduced the threshold dose of F(-) required to phosphorylate stress-related proteins, PERK, eIF2alpha, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F(-) dose and pH. Luciferase secretion significantly decreased within 2 hr of F(-) treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F(-) in their drinking water exhibited increased stress-mediated phosphorylation of eIF2alpha in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH approximately 7.2). Intriguingly, F(-)-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. The low pH environment of maturation stage ameloblasts facilitates the uptake of F(-), causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.

  17. Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid

    PubMed Central

    Düwel, Stephan; Hundshammer, Christian; Gersch, Malte; Feuerecker, Benedikt; Steiger, Katja; Buck, Achim; Walch, Axel; Haase, Axel; Glaser, Steffen J.; Schwaiger, Markus; Schilling, Franz

    2017-01-01

    Natural pH regulatory mechanisms can be overruled during several pathologies such as cancer, inflammation and ischaemia, leading to local pH changes in the human body. Here we demonstrate that 13C-labelled zymonic acid (ZA) can be used as hyperpolarized magnetic resonance pH imaging sensor. ZA is synthesized from [1-13C]pyruvic acid and its 13C resonance frequencies shift up to 3.0 p.p.m. per pH unit in the physiological pH range. The long lifetime of the hyperpolarized signal enhancement enables monitoring of pH, independent of concentration, temperature, ionic strength and protein concentration. We show in vivo pH maps within rat kidneys and subcutaneously inoculated tumours derived from a mammary adenocarcinoma cell line and characterize ZA as non-toxic compound predominantly present in the extracellular space. We suggest that ZA represents a reliable and non-invasive extracellular imaging sensor to localize and quantify pH, with the potential to improve understanding, diagnosis and therapy of diseases characterized by aberrant acid-base balance. PMID:28492229

  18. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    PubMed

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  19. The Acid Test of Fluoride: How pH Modulates Toxicity

    PubMed Central

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Skobe, Ziedonis; Tannous, Bakhos A.; Bartlett, John D.

    2010-01-01

    Background It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F− into cells. Here, we asked if F− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings Treatment of ameloblast-derived LS8 cells with F− at low pH reduced the threshold dose of F− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F− dose and pH. Luciferase secretion significantly decreased within 2 hr of F− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, F−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions The low pH environment of maturation stage ameloblasts facilitates the uptake of F−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis. PMID:20531944

  20. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    PubMed

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  1. Cell Membrane Fatty Acid Composition of Chryseobacterium frigidisoli PB4T, Isolated from Antarctic Glacier Forefield Soils, in Response to Changing Temperature and pH Conditions

    PubMed Central

    Bajerski, Felizitas; Wagner, Dirk; Mangelsdorf, Kai

    2017-01-01

    Microorganisms in Antarctic glacier forefields are directly exposed to the hostile environment of their habitat characterized by extremely low temperatures and changing geochemical conditions. To survive under those stress conditions microorganisms adapt, among others, their cell membrane fatty acid inventory. However, only little is known about the adaptation potential of microorganisms from Antarctic soil environments. In this study, we examined the adaptation of the cell membrane polar lipid fatty acid inventory of Chryseobacterium frigidisoli PB4T in response to changing temperature (0°C to 20°C) and pH (5.5 to 8.5) regimes, because this new strain isolated from an Antarctic glacier forefield showed specific adaptation mechanisms during its detailed physiological characterization. Flavobacteriaceae including Chryseobacterium species occur frequently in extreme habitats such as ice-free oases in Antarctica. C. frigidisoli shows a complex restructuring of membrane derived fatty acids in response to different stress levels. Thus, from 20°C to 10°C a change from less iso-C15:0 to more iso-C17:1ω7 is observed. Below 10°C temperature adaptation is regulated by a constant increase of anteiso-FAs and decrease of iso-FAs. An anteiso- and bis-unsaturated fatty acid, anteiso-heptadeca-9,13-dienoic acid, shows a continuous increase with decreasing cultivation temperatures underlining the particular importance of this fatty acid for temperature adaptation in C. frigidisoli. Concerning adaptation to changing pH conditions, most of the dominant fatty acids reveal constant relative proportions around neutral pH (pH 6–8). Strong variations are mainly observed at the pH extremes (pH 5.5 and 8.5). At high pH short chain saturated iso- and anteiso-FAs increase while longer chain unsaturated iso- and anteiso-FAs decrease. At low pH the opposite trend is observed. The study shows a complex interplay of different membrane components and provides, therefore, deep insights into

  2. Monascus ruber as cell factory for lactic acid production at low pH.

    PubMed

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    PubMed

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pH<7), 2 municipal (or "tap") waters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  4. The Growth Advantage in Stationary-Phase Phenotype Conferred by rpoS Mutations Is Dependent on the pH and Nutrient Environment

    PubMed Central

    Farrell, Michael J.; Finkel, Steven E.

    2003-01-01

    Escherichia coli cells that are aged in batch culture display an increased fitness referred to as the growth advantage in stationary phase, or GASP, phenotype. A common early adaptation to this culture environment is a mutant rpoS allele, such as rpoS819, that results in attenuated RpoS activity. However, it is important to note that during long-term batch culture, environmental conditions are in flux. To date, most studies of the GASP phenotype have focused on identifying alleles that render an advantage in a specific environment, Luria-Bertani broth (LB) batch culture. To determine what role environmental conditions play in rendering relative fitness advantages to E. coli cells carrying either the wild-type or rpoS819 alleles, we performed competitions under a variety of culture conditions in which either the available nutrients, the pH, or both were manipulated. In LB medium, we found that while the rpoS819 allele confers a strong competitive fitness advantage at basic pH, it confers a reduced advantage under neutral conditions, and it is disadvantageous under acidic conditions. Similar results were found using other media. rpoS819 conferred its greatest advantage in basic minimal medium in which either glucose or Casamino Acids were the sole source of carbon and energy. In acidic medium supplemented with either Casamino Acids or glucose, the wild-type allele conferred a slight advantage. In addition, populations were dynamic under all pH conditions tested, with neither the wild-type nor mutant rpoS alleles sweeping a culture. We also found that the strength of the fitness advantage gained during a 10-day incubation is pH dependent. PMID:14645263

  5. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    PubMed

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.

  6. Proteomics Analysis of the Adhesion Activity of Lactobacillus acidophilus ATCC 4356 Upon Growth in an Intestine-Like pH Environment.

    PubMed

    Wu, Zhen; Wang, Gang; Wang, Wenwen; Pan, Daodong; Peng, Liuyang; Lian, Liwei

    2018-03-01

    Many health effects of Lactobacillus acidophilus are desirable among these the adhesion ability is vital to enhance the possibility of colonization and stabilization associated with the gut mucosal barrier. In this study, the growth characteristics and the adhesion activity of L. acidophilus in the intestine-like pH environment (pH 7.5) are identified. The number of bacteria adhering to the HT-29 cells is found with a gradual increase trend (pH 5.5-7.5). This also leads to the morphological changes of L. acidophilus after exposure to different pH environments. Furthermore, with the help of the isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis, 207 proteins are detected differentially expressed at pH of 7.5. The use of GO analysis and KEGG analysis indicates three essential pathways related to the cell envelope peptide-glycan biosynthesis, carbohydrate metabolism, and amino acid metabolism are obviously changed. Adhesion related surface protein fmtB and PrtP are upregulated in pH 7.5 group. While the moonlight proteins like pyruvate kinase, which binds specifically to the mucin layer and inhibits the adhesive activity of L. acidophilus, is found downregulated. These results could be useful to understand the adhesion mechanism of L. acidophilus adapting for the gut mucosal barrier in the intestinal environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

    PubMed

    Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M

    2016-11-01

    Intracellular pH (pH i ) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pH i homeostasis. Unfortunately, accurate pH i quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pH i at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pH i in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pH i and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pH i regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous growth

  8. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  9. A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release.

    PubMed

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2016-10-01

    A pH and redox dual stimuli-responsive poly(aspartic acid) derivative for controlled drug release was successfully developed through progressive ring-opening reactions of polysuccinimide (PSI). Polyethylene glycol (PEG) chains were grafted onto the polyaspartamide backbone via redox-responsive disulfide linkages, providing a sheddable shell for the polymeric micelles in a reductive environment. Phenyl groups were introduced into the polyaspartamide backbone via the aminolysis reaction of PSI to serve as the hydrophobic segment of micelles. The polyaspartamide scaffold was also functionalized with N-(3-aminopropyl)-imidazole to obtain the pH-responsiveness manifesting as a swelling of the core of micelles at a low pH. The polymeric micelles with a core-shell nanostructure forming in neutral media exhibited both pH and redox responsive characteristics. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through both hydrophobic and π-π interactions between aromatic rings and the DOX-loaded polymeric micelles exhibited accelerated drug release behaviors in an acidic and reductive environment due to the swelling of hydrophobic cores and the shedding of PEG shells. Furthermore, the cytocompability of the polymer and the cytotoxicity of DOX-loaded micelles towards Hela cells under corresponding conditions were evaluated, and the endocytosis of DOX-loaded polymeric micelles and the intracellular drug release from micelles were observed. All obtained data indicated that the micelle was a promising candidate for controlled drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Environmental responsiveness of polygalacturonic acid-based multilayers to variation of pH.

    PubMed

    Westwood, Marta; Noel, Timothy R; Parker, Roger

    2011-02-14

    The effect of pH on the stability of layer-by-layer deposited polygalacturonic acid (PGalA)-based multilayer films prepared with the polycations poly-L-lysine, chitosan, and lysozyme is studied. The response was characterized using a quartz crystal microbalance, dual polarization interferometry, and Fourier transform infrared spectroscopy which probe multilayer thickness, density, polymer mass (composition and speciation), and hydration. All multilayers showed irreversible changes in response to pH change becoming thinner due to the partial disassembly. Preferential loss of the polycation (50-80% w/w) and relative small losses of PGaLA (10-35% w/w) occurred. The charge density on the polycation has a strong influence on the response to the acid cycle. Most of the disassembly takes place at the pH lower that pK(a) of PGaLA, indicating that this factor was crucial in determining the stability of the films. The pH challenge also revealed a polycation-dependent shift to acid pH in the PGaLA pK(a).

  11. Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching.

    PubMed

    Han, Lijuan; Tang, Pengyi; Reyes-Carmona, Álvaro; Rodríguez-García, Bárbara; Torréns, Mabel; Morante, Joan Ramon; Arbiol, Jordi; Galan-Mascaros, Jose Ramon

    2016-12-14

    The development of upscalable oxygen evolving electrocatalysts from earth-abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge for the realization of artificial photosynthesis. In this study, we report a highly active phase of heterobimetallic cyanide-bridged electrocatalysts able to promote water oxidation under neutral, basic (pH < 13), and acidic conditions (pH > 1). Cobalt-iron Prussian blue-type thin films, formed by chemical etching of Co(OH) 1.0 (CO 3 ) 0.5 ·nH 2 O nanocrystals, yield a dramatic enhancement of the catalytic performance toward oxygen production, when compared with previous reports for analogous materials. Electrochemical, spectroscopic, and structural studies confirm the excellent performance, stability, and corrosion resistance, even when compared with state-of-the-art metal oxide catalysts under moderate overpotentials and in a remarkably large pH range, including acid media where most cost-effective water oxidation catalysts are not useful. The origin of the superior electrocatalytic activity toward water oxidation appears to be in the optimized interfacial matching between catalyst and electrode surface obtained through this fabrication method.

  12. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  13. Global Survey of Submicron Aerosol Acidity (pH)

    NASA Astrophysics Data System (ADS)

    Nault, B.; Day, D. A.; Campuzano Jost, P.; Hu, W.; Schroder, J. C.; Bian, H.; Chin, M.; Clegg, S. L.; Colarco, P. R.; Dibb, J. E.; Kim, M. J.; Kodros, J.; Marais, E. A.; Pierce, J. R.; Scheuer, E. M.; Wennberg, P. O.; Jimenez, J. L.

    2017-12-01

    Aerosol acidity (H+, often expressed as "pH" defined in various ways) is an important property that influences uptake and partitioning of gases, and homogeneous and surface aqueous reactions of key inorganic and organic compounds. As there is currently no rapid method to measure ambient aerosol acidity, a thermodynamic model, constrained by both inorganic aerosol species (e.g., NH4, NO3, SO4, Cl) and at least one inorganic gas (HNO3, NH3, or HCl), are currently understood to lead to the most reliable estimates of aerosol acidity. In this study, we calculated submicron (less than PM1) aerosol pH from the NASA ATom, "pole-to-pole," flights that covers both the Pacific and Atlantic ocean basins. The E-AIM thermodynamic model was used with measurements by an Aerodyne high-resolution time-of-flight aerosol-mass-spectrometer (HR-ToF-AMS) of inorganic aerosol species, along with inorganic gas measurements from other mass spectrometers and ion chromatography. We compare the results with those for the NASA KORUS-AQ, SEAC4RS, DC3, and ARCTAS campaigns, as well as several ground-based campaigns and recently-published studies. This provides an opportunity to compare the aerosol acidity in urban, rural, and remote regions, by season, and between the boundary layer and free troposphere. In addition, we compare the submicron aerosol acidity from these various localities with results from global models, such as GEOS-Chem, in order to investigate the ability of the global models to simulate aerosol acidity, and the processes it affects, such as nitrate, ammonium, and MSA partitioning.

  14. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  15. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Low pH increases the yield of exosome isolation.

    PubMed

    Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2015-05-22

    Exosomes are the extracellular vesicles secreted by various cells. Exosomes mediate intercellular communication by delivering a variety of molecules between cells. Cancer cell derived exosomes seem to be related with tumor progression and metastasis. Tumor microenvironment is thought to be acidic and this low pH controls exosome physiology, leading to tumor progression. Despite the importance of microenvironmental pH on exosome, most of exosome studies have been performed without regard to pH. Therefore, the difference of exosome stability and yield of isolation by different pH need to be studied. In this research, we investigated the yield of total exosomal protein and RNA after incubation in acidic, neutral and alkaline conditioned medium. Representative exosome markers were investigated by western blot after incubation of exosomes in different pH. As a result, the concentrations of exosomal protein and nucleic acid were significantly increased after incubation in the acidic medium compared with neutral medium. The higher levels of exosome markers including CD9, CD63 and HSP70 were observed after incubation in an acidic environment. On the other hand, no exosomal protein, exosomal RNA and exosome markers have been detected after incubation in an alkaline condition. In summary, our results indicate that the acidic condition is the favorable environment for existence and isolation of exosomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The effect of varied pH on the luminescence characteristics of antibody-mercaptoacetic acid conjugated ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Chaudhry, Madeeha; Rehman, Malik Abdul; Gul, Asghari; Qamar, Raheel; Bhatti, Arshad Saleem

    2017-11-01

    We demonstrate here that the effect of varied pH of the media on the photoluminescence (PL) properties of mercaptoacetic acid (MAA) and digoxin antibody (Ab) conjugated zinc sulphide (ZnS) nanowires. The charge-transfer kinetics from MAA to ZnS and vice versa showed a profound effect on the luminescence of ZnS defect states. The PL intensity of the ZnS defect states showed strong dependence on the value of pH with respect to the pKa of MAA. The carboxyl and thiol group of MAA in the protonated (pH < pKa) and deprotonated (pH > pKa) states resulted in the quenched PL intensity. While for pH ∼ pKa, the PL intensity was regained as there was equal probability of both protonated and deprotonated carboxyl and thiol groups. These findings indicated that pH of the environment is a key parameter for the use of MAA-Ab conjugated ZnS nanowires as an optical biomarker.

  18. Navigational choice between reversal and curve during acidic pH avoidance behavior in Caenorhabditis elegans.

    PubMed

    Wakabayashi, Tokumitsu; Sakata, Kazumi; Togashi, Takuya; Itoi, Hiroaki; Shinohe, Sayaka; Watanabe, Miwa; Shingai, Ryuzo

    2015-11-19

    Under experimental conditions, virtually all behaviors of Caenorhabditis elegans are achieved by combinations of simple locomotion, including forward, reversal movement, turning by deep body bending, and gradual shallow turning. To study how worms regulate these locomotion in response to sensory information, acidic pH avoidance behavior was analyzed by using worm tracking system. In the acidic pH avoidance, we characterized two types of behavioral maneuvers that have similar behavioral sequences in chemotaxis and thermotaxis. A stereotypic reversal-turn-forward sequence of reversal avoidance caused an abrupt random reorientation, and a shallow gradual turn in curve avoidance caused non-random reorientation in a less acidic direction to avoid the acidic pH. Our results suggest that these two maneuvers were each triggered by a distinct threshold pH. A simulation study using the two-distinct-threshold model reproduced the avoidance behavior of the real worm, supporting the presence of the threshold. Threshold pH for both reversal and curve avoidance was altered in mutants with reduced or enhanced glutamatergic signaling from acid-sensing neurons. C. elegans employ two behavioral maneuvers, reversal (klinokinesis) and curve (klinotaxis) to avoid acidic pH. Unlike the chemotaxis in C. elegans, reversal and curve avoidances were triggered by absolute pH rather than temporal derivative of stimulus concentration in this behavior. The pH threshold is different between reversal and curve avoidance. Mutant studies suggested that the difference results from a differential amount of glutamate released from ASH and ASK chemosensory neurons.

  19. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids

    PubMed Central

    Danhof, Heather A.; Vylkova, Slavena; Vesely, Elisa M.; Ford, Amy E.; Gonzalez-Garay, Manuel

    2016-01-01

    ABSTRACT The opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, α-ketoglutarate (αKG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize αKG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded αKG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1Δ stp2Δ mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. PMID:27935835

  20. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.

    PubMed

    Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung

    2017-03-01

    The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

  1. The effect of environmental pH on polymeric transfection efficiency.

    PubMed

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2012-02-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6-7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1-2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  3. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  4. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    PubMed

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable. 2010 Elsevier B.V. All rights reserved.

  5. Acid precipitation effects on soil pH and base saturation of exchange sites

    Treesearch

    W. W. McFee; J. M. Kelly; R. H. Beck

    1976-01-01

    The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid...

  6. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity. © 2014 International Society for Diseases of the Esophagus.

  7. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    USDA-ARS?s Scientific Manuscript database

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  8. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  9. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGES

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; ...

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm 2 at -765 mV (0.065 mA/cm 2 sterile control at -800 mV) bymore » the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m 3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m 3/day formate, and 3.1 kg/m 3/day acetate ( = 4.7 kg CO 2 captured).« less

  10. Characterization of an Invertase with pH Tolerance and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH

    PubMed Central

    Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme. PMID:23638032

  11. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  12. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan.

    PubMed

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Soto Obando, Alina; Hoxha, Sany; Ja, William W

    2015-12-01

    Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival. © 2015 American Society for Nutrition.

  13. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance

    PubMed Central

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris

    2015-01-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199

  14. History of blood gas analysis. II. pH and acid-base balance measurements.

    PubMed

    Severinghaus, J W; Astrup, P B

    1985-10-01

    Electrometric measurement of the hydrogen ion concentration was discovered by Wilhelm Ostwald in Leipzig about 1890 and described thermodynamically by his student Walther Nernst, using the van't Hoff concept of osmotic pressure as a kind of gas pressure, and the Arrhenius concept of ionization of acids, both of which had been formalized in 1887. Hasselbalch, after adapting the pH nomenclature of Sørensen to the carbonic-acid mass equation of Henderson, made the first actual blood pH measurements (with a hydrogen electrode) and proposed that metabolic acid-base imbalance be quantified as the "reduced" pH of blood after equilibration to a carbon dioxide tension (PCO2) of 40 mm Hg. This good idea, coming 40 years before simple blood pH measurements at 37 degrees C became widely available, was never adopted. Instead, Van Slyke developed a concept of acid-base chemistry that depended on measuring plasma CO2 content with his manometric apparatus, a standard method until the 1960s, when it was displaced by the three-electrode method of blood gas analysis. The 1952 polio epidemic in Copenhagen stimulated Astrup to develop a glass electrode in which pH could be measured in blood at 37 degrees C before and after equilibration with known PCO2. He introduced the interpolative measurement of PCO2 and bicarbonate level (later base excess) using only pH measurements and, with Siggaard-Andersen, developed clinical acid-base chemistry. Controversy arose when blood base excess was noted to be altered by acute changes in PCO2 and when abnormalities of base excess were called metabolic acidosis or alkalosis, even when they represented compensation for respiratory abnormalities in PCO2. In the 1970s it became clear that "in-vivo" or "extracellular fluid" base excess (measured at an average extracellular fluid hemoglobin concentration of 5 g) eliminated the error caused by acute changes in PCO2. Base excess is now almost universally used as the index of nonrespiratory acid

  15. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    DOE PAGES

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; ...

    2017-07-14

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O 2 2+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0–835 ppm) or Suwanee River Fulvic Acid (SRFA) (0–955 ppm). Here, no evidence was found for reduction of uranyl by either form of NOM aftermore » 24 h of exposure.« less

  16. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O 2 2+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0–835 ppm) or Suwanee River Fulvic Acid (SRFA) (0–955 ppm). Here, no evidence was found for reduction of uranyl by either form of NOM aftermore » 24 h of exposure.« less

  17. Characterizations of the Formation of Polydopamine-Coated Halloysite Nanotubes in Various pH Environments.

    PubMed

    Feng, Junran; Fan, Hailong; Zha, Dao-An; Wang, Le; Jin, Zhaoxia

    2016-10-11

    Recent studies demonstrated that polydopamine (PDA) coating is universal to nearly all substrates, and it endows substrates with biocompatibility, postfunctionality, and other useful properties. Surface chemistry of PDA coating is important for its postmodifications and applications. However, there is less understanding of the formation mechanism and surface functional groups of PDA layers generated in different conditions. Halloysite is a kind of clay mineral with tubular nanostructure. Water-swellable halloysite has unique reactivity. In this study, we have investigated the reaction of dopamine in the presence of water-swellable halloysite. We have tracked the reaction progresses in different pH environments by using UV-vis spectroscopy and surface-enhanced Raman spectroscopy (SERS). The surface properties of PDA on halloysite were clarified by X-ray photoelectron spectroscopy (XPS), SERS, Fourier transform infrared (FTIR) characterizations, zeta potential, surface wettability, and morphological characterizations. We noticed that the interaction between halloysite surface and dopamine strongly influences the surface functionality of coated PDA. In addition, pH condition further modulates surface functional groups, resulting in less content of secondary/aromatic amine in PDA generated in weak acidic environment. This study demonstrates that the formation mechanism of polydopamine becomes complex in the presence of inorganic nanomaterials. Substrate property and reaction condition dominate the functionality of obtained PDA together.

  18. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum.

    PubMed

    Barad, Shiri; Espeso, Eduardo A; Sherman, Amir; Prusky, Dov

    2016-06-01

    Penicillium expansum, the causal agent of blue mould rot, causes severe post-harvest fruit maceration simultaneously with the secretion of d-gluconic acid (GLA) and the mycotoxin patulin in colonized tissue. The factor(s) inducing patulin biosynthesis during colonization of the host acidic environment is unclear. During the colonization of apple fruit in vivo and growth in culture, P. expansum secretes pH-modulating GLA and ammonia. Although patulin and its possible opportunistic precursor GLA accumulate together during fungal development, ammonia is detected on the colonized tissue's leading edge and after extended culture, close to patulin accumulation. Here, we demonstrate ammonia-induced transcript activation of the global pH modulator PacC and patulin accumulation in the presence of GLA by: (i) direct exogenous treatment of P. expansum growing on solid medium; (ii) direct exogenous treatment on colonized apple tissue; (iii) growth under self-ammonia production conditions with limited carbon; and (iv) analysis of the transcriptional response to ammonia of the patulin biosynthesis cluster. Ammonia induced patulin accumulation concurrently with the transcript activation of pacC and patulin biosynthesis cluster genes, indicating the regulatory effect of ammonia on pacC transcript expression under acidic conditions. Electrophoretic mobility shift assays using P. expansum PacC and antibodies to the different cleaved proteins showed that PacC is not protected against proteolytic signalling at pH 4.5 relative to pH 7.0, but NH4 addition did not further enhance its proteolytic cleavage. Ammonia enhanced the activation of palF transcript in the Pal pathway under acidic conditions. Ammonia accumulation in the host environment by the pathogen under acidic pH may be a regulatory cue for pacC activation, towards the accumulation of secondary metabolites, such as patulin. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  19. Influence of environmental pH on G2-phase arrest caused by ionizing radiation.

    PubMed

    Park, Heon Joo; Lee, Sang Hwa; Chung, HyunSook; Rhee, Yun Hee; Lim, Byung Uk; Ha, Sung Whan; Griffin, Robert J; Lee, Hyung Sik; Song, Chang Won; Choi, Eun Kyung

    2003-01-01

    We investigated the effects of an acidic environment on the G2/M-phase arrest, apoptosis, clonogenic death, and changes in cyclin B1-CDC2 kinase activity caused by a 4-Gy irradiation in RKO.C human colorectal cancer cells in vitro. The time to reach peak G2/M-phase arrest after irradiation was delayed in pH 6.6 medium compared to that in pH 7.5 medium. Furthermore, the radiation-induced G2/M-phase arrest decayed more slowly in pH 6.6 medium than in pH 7.5 medium. Finally, there was less radiation-induced apoptosis and clonogenic cell death in pH 6.6 medium than in pH 7.5 medium. It appeared that the prolongation of G2-phase arrest after irradiation in the acidic environment allowed for greater repair of radiation-induced DNA damage, thereby decreasing the radiation-induced cell death. The prolongation of G2-phase arrest after irradiation in the acidic pH environment appeared to be related at least in part to a prolongation of the phosphorylation of CDC2, which inhibited cyclin B1-CDC2 kinase activity.

  20. The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics.

    PubMed

    Kozin, S V; Shkarin, P; Gerweck, L E

    2001-06-15

    The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.

  1. Effect of acidic pH on the stability of α-synuclein dimers.

    PubMed

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean Christophe; Blanchard, Scott C; Lyubchenko, Yuri L

    2016-10-01

    Environmental factors, such as acidic pH, facilitate the assembly of α-synuclein (α-Syn) in aggregates, but the impact of pH on the very first step of α-Syn aggregation remains elusive. Recently, we developed a single-molecule approach that enabled us to measure directly the stability of α-Syn dimers. Unlabeled α-Syn monomers were immobilized on a substrate, and fluorophore-labeled monomers were added to the solution to allow them to form dimers with immobilized α-Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single-molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α-Syn dimers. The experiments were performed at pH 5 and 7 for wild-type α-Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α-Syn dimers lifetimes with some variability between the α-Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96-140 of α-Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α-Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α-Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715-724, 2016. © 2016 Wiley Periodicals, Inc.

  2. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    PubMed

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  3. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  4. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  6. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values.

    PubMed

    Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien

    2015-01-01

    Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.

  7. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  8. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  9. Intracellular pH Recovery Rates of Hemocytes from Estuarine and Open Ocean Bivalve Species Following In vitro Acid Challenge

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G.

    2013-12-01

    Decreasing pH in estuarine systems is a growing concern for researchers studying mollusk species. Debates continue on whether estuarine bivalve species are more or less vulnerable to ocean acidification than marine species because estuaries can present multiple environmental stressors. The aim of this study is to understand the homeostatic mechanisms of bivalve hemocytes following exposure to extracellular acid treatment. Previous measurements using fluorescent SNARF probes and flow-cytometry have determined the intracellular pH of hemocytes from several bivalve species (eastern oyster, bay scallop, northern quahog, soft-shell clam, and blue mussel) to range between 7.0-7.4. In the present study of four bivalve species, recovery rate profiles were determined for intracellular hemocyte pH following addition of acid to hemolymph in vitro. These profiles indicate that soft-shell clams and bay scallops maintained homeostasis with very little change in intracellular pH. In contrast, an initial drop in intracellular pH in northern quahogs was followed by a steady recovery of intracellular pH. Contrasting results between species appear to be unrelated to mineral shell composition (aragonite vs. calcite) or habitat location (infaunal vs. epifaunal). The next phase of this study will be to determine if offshore species (surfclams and sea scallops) will have similar responses. Results from these studies will provide a better understanding of the physiological responses of estuarine and marine species exposed to acidified environments.

  10. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH.

    PubMed

    Droghetti, Enrica; Sumithran, Suganya; Sono, Masanori; Antalík, Marián; Fedurco, Milan; Dawson, John H; Smulevich, Giulietta

    2009-09-01

    The heme iron coordination of ferric myoglobin (Mb) in the presence of 9.0M urea and 8.0M acetic acid at acidic pH values has been probed by electronic absorption, magnetic circular dichroism and resonance Raman spectroscopic techniques. Unlike Mb at pH 2.0, where heme is not released from the protein despite the acid denaturation and the loss of the axial ligand, upon increasing the concentration of either urea or acetic acid, a spin state change is observed, and a novel, non-native six-coordinated high-spin species prevails, where heme is released from the protein.

  11. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  12. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  13. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    PubMed

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    PubMed Central

    Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K

    2012-01-01

    Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901

  16. Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters.

    PubMed

    Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina

    2018-05-01

    Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  17. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    NASA Astrophysics Data System (ADS)

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-02-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems.

  18. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    PubMed Central

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-01-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems. PMID:26905939

  19. pH regulation of mitochondrial branch chain alpha-keto acid transport and oxidation in rat heart mitochondria.

    PubMed

    Hutson, S M

    1987-07-15

    The kinetics of branched chain alpha-keto acid uptake and efflux were studied as a function of varied external and matrix pH. Matrix pH was determined by the distribution of 5,5'-dimethyloxazolidine-2,4-dione. When rat heart mitochondria were incubated under transport conditions at pH 7.0 with succinate as respiratory substrate, the matrix pH was significantly greater than 8.0. Matrix pH remained greater than or equal to 8.0 when the medium pH was varied from 6.3 to 8.3, and it was lowered below 8.0 by addition of 5 mM phosphate or uncoupler. No pH gradient was detectable when mitochondria were incubated in the presence of valinomycin and uncoupler. Efflux of alpha-ketoisocaproate or alpha-ketoisovalerate from rat heart mitochondria obeyed first order kinetics. Varying the external pH from 6.6 to 8.3 had no significant effect on efflux, and at an external pH of 7.0, the first order rate constant for efflux was not affected by decreasing the matrix pH. On the other hand, exchange was sensitive to changes in medium but not matrix pH. The K0.5 for external branched chain alpha-keto acid was lowered by changing the medium pH from 7.6 to 6.3. At medium pH values greater than or equal to 8.0 both K0.5 and Vmax were affected. Uptake was determined either by measuring initial rates or was calculated after measuring the first order approach to a final equilibrium value. Unlike efflux, uptake was sensitive to changes in both external and matrix pH. The rate of branched chain alpha-keto acid uptake was stimulated by decreasing the medium pH from 8.3 to 6.3 and by alkalinization of the mitochondrial matrix. The estimated external pK for proton binding was 6.9. The data indicate that the branched chain alpha-keto acid transporter is asymmetric, that is, binding sites for substrate on the inside and outside of the mitochondrial membrane are not identical. alpha-Ketoisocaproate oxidation was measured at 37 degrees C in isolated mitochondria over the pH range of 6.6 to 8

  20. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    PubMed

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan12

    PubMed Central

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Obando, Alina Soto; Hoxha, Sany; Ja, William W

    2015-01-01

    Background: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. Objectives: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. Methods: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. Results: An acidic diet increased Drosophila gustatory responses (40–230%) and food intake (5–50%) and extended survival (10–160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5–20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Conclusions: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and

  2. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    PubMed

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  3. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mineralogy and Organic Geochemistry of Acid Sulfate Environments from Valles Caldera, New Mexico: Habitability, Weathering and Biosignatures

    NASA Astrophysics Data System (ADS)

    Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Kubo, M.

    2009-12-01

    We report on the mineralogy, organic preservation potential and habitability of sulfate deposits in acid sulfate volcanic settings at Valles Caldera, New Mexico. Fumaroles and acidic springs are potential analogs for aqueous environments on Mars and may offer insights into habitability of sulfate deposits such as those at Meridiani Planum. Sulfates recently detected on Mars are posited to have formed from fluids derived from basaltic weathering and igneous volatile input, ultimately precipitating from acidic brines subjected to desiccation and freeze-thaw cycles (McClennan and Grotzinger, 2008). Key issues concerning martian sulfate deposits are their relationship to aqueous clay deposits, and whether or not specific sulfates deposits represent former habitable environments (see Soderblum and Bell, 2008; Tosca et al., 2008). Modern terrestrial volcanic fumaroles and hot springs precipitate various Ca-, Mg- and Fe- sulfates along with clays, and can help clarify whether certain acid sulfate mineral assemblages reflect habitable environments. Valles caldera is a resurgent caldera last active in the Pleistocene (1.4 - 1.0 Ma) that hosts several active fumaroles and over 40 geothermal exploration wells (see Goff, 2009). Fumaroles and associated mudpots and springs at Valles range from pH < 1 to 3, and affect argillic alteration upon rhylolitic tuffs and sedimentary deposits (Charles et al., 1986). We identified assemblages containing gypsum, quartz, Al-sulfates, elemental sulfur, clays and other minerals using XRD and SEM-EDS. Our previous research has shown that sulfates from different marine depositional environments display textural and morphological traits that are indicative of biological influence, or specific conditions in the depositional environments (Vogel et al., 2009). Gypsum crystals that develop in the presence of microbial biofilms in marine environments may have distorted crystal morphologies, biofilm - associated dissolution features, and accessory

  5. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  6. What is the critical pH and why does a tooth dissolve in acid?

    PubMed

    Dawes, Colin

    2003-12-01

    This paper discusses the concept of critical pH for dissolution of enamel in oral fluids. The critical pH does not have a fixed value but rather is inversely proportional to the calcium and phosphate concentrations in the solution. The paper also discusses why teeth dissolve in acid, why remineralization of white-spot caries lesions is possible and why remineralization of teeth eroded by acid is not possible.

  7. Adsorption of aliphatic polyhydroxy carboxylic acids on gibbsite: pH dependency and importance of adsorbate structure.

    PubMed

    Schneckenburger, Tatjana; Riefstahl, Jens; Fischer, Klaus

    2018-01-01

    Aliphatic (poly)hydroxy carboxylic acids [(P)HCA] occur in natural, e.g. soils, and in technical (waste disposal sites, nuclear waste repositories) compartments . Their distribution, mobility and chemical reactivity, e.g. complex formation with metal ions and radionuclides, depend, among others, on their adsorption onto mineral surfaces. Aluminium hydroxides, e.g. gibbsite [α-Al(OH) 3 ], are common constituents of related solid materials and mimic the molecular surface properties of clay minerals. Thus, the study was pursued to characterize the adsorption of glycolic, threonic, tartaric, gluconic, and glucaric acids onto gibbsite over a wide pH and (P)HCA concentration range. To consider specific conditions occurring in radioactive wastes, adsorption applying an artificial cement pore water (pH 13.3) as solution phase was investigated additionally. The sorption of gluconic acid at pH 4, 7, 9, and 12 was best described by the "two-site" Langmuir isotherm, combining "high affinity" sorption sites (adsorption affinity constants [Formula: see text] > 1 L mmol -1 , adsorption capacities < 6.5 mmol kg -1 ) with "low affinity" sites ([Formula: see text] < 0.1 L mmol -1 , adsorption capacities ≥ 19 mmol kg -1 ). The total adsorption capacities at pH 9 and 12 were roughly tenfold of that at pH 4 and 7. The S-shaped pH sorption edge of gluconic acid was modelled applying a constant capacitance model, considering electrostatic interactions, hydrogen bonding, surface complex formation, and formation of solved polynuclear complexes between Al 3+ ions and gluconic acid. A Pearson and Spearman rank correlation between (P)HCA molecular properties and adsorption parameters revealed the high importance of the size and the charge of the adsorbates. The adsorption behaviour of (P)HCAs is best described by a combination of adsorption properties of carboxylic acids at acidic pH and of polyols at alkaline pH. Depending on the molecular properties of the adsorbates and

  8. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  9. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  10. pH shift protein recovery with organic acids on texture and color of cooked gels.

    PubMed

    Paker, Ilgin; Beamer, Sarah; Jaczynski, Jacek; Matak, Kristen E

    2015-01-01

    Isoelectric solubilization and precipitation (ISP) processing uses pH shifts to separate protein from fish frames, which may increase commercial interest for silver carp. Texture and color properties of gels made from silver carp protein recovered at different pH strategies and organic acid types were compared. ISP was applied to headed gutted silver carp using 10 mol L(-1) sodium hydroxide (NaOH) and either glacial acetic acid (AA) or a (1:1) formic and lactic acid combination (F&L). Protein gels were made with recovered protein and standard functional additives. Texture profile analysis and the Kramer shear test showed that protein gels made from protein solubilized at basic pH values were firmer, harder, more cohesive, gummier and chewier (P < 0.05) than proteins solubilized under acidic conditions. Acidic solubilization led to whiter (P < 0.05) gels, and using F&L during ISP yielded whiter gels under all treatments (P < 0.05). Gels made from ISP-recovered silver carp protein using organic acids show potential for use as a functional ingredient in restructured foods. © 2014 Society of Chemical Industry.

  11. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid

    NASA Astrophysics Data System (ADS)

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi

    2018-02-01

    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00 ≤ pH ≤ 7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields.

  12. Kinetics of salivary pH after acidic beverage intake by patients undergoing orthodontic treatment.

    PubMed

    Turssi, Cecilia P; Silva, Carolina S; Bridi, Enrico C; Amaral, Flavia Lb; Franca, Fabiana Mg; Basting, Roberta T

    2015-01-01

    The saliva of patients undergoing orthodontic treatment with fixed appliances can potentially present a delay in the diluting, clearing, and buffering of dietary acids due to an increased number of retention areas. The aim of this clinical trial was to compare salivary pH kinetics of patients with and without orthodontic treatment, following the intake of an acidic beverage. Twenty participants undergoing orthodontic treatment and 20 control counterparts had their saliva assessed for flow rate, pH, and buffering capacity. There was no significant difference between salivary parameters in participants with or without an orthodontic appliance. Salivary pH recovery following acidic beverage intake was slower in the orthodontic subjects compared to controls. Patients with fixed orthodontic appliances, therefore, seem to be at higher risk of dental erosion, suggesting that dietary advice and preventive care need to be implemented during orthodontic treatment.

  13. Estimated net acid excretion inversely correlates with urine pH in vegans, lacto-ovo vegetarians, and omnivores.

    PubMed

    Ausman, Lynne M; Oliver, Lauren M; Goldin, Barry R; Woods, Margo N; Gorbach, Sherwood L; Dwyer, Johanna T

    2008-09-01

    Diet affects urine pH and acid-base balance. Both excess acid/alkaline ash (EAA) and estimated net acid excretion (NAE) calculations have been used to estimate the effects of diet on urine pH. This study's goal was to determine if free-living vegans, lacto-ovo vegetarians, and omnivores have increasingly acidic urine, and to assess the ability of EAA and estimated NAE calculations to predict urine pH. This study used a cross-sectional design. This study assessed urine samples of 10 vegan, 16 lacto-ovo vegetarian, and 16 healthy omnivorous women in the Boston metropolitan area. Six 3-day food records from each dietary group were analyzed for EAA content and estimated NAE, and correlations with measured urine pH were calculated. The mean (+/- SD) urine pH was 6.15 +/- 0.40 for vegans, 5.90 +/- 0.36 for lacto-ovo vegetarians, and 5.74 +/- 0.21 for omnivores (analysis of variance, P = .013). Calculated EAA values were not significantly different among the three groups, whereas mean estimated NAE values were significantly different: 17.3 +/- 14.5 mEq/day for vegans, 31.3 +/- 8.5 mEq/day for lacto-ovo vegetarians, and 42.6 +/- 13.2 mEq/day for omnivores (analysis of variance, P = .01). The average deattenuated correlation between urine pH and EAA was 0.333; this value was -0.768 for estimated NAE and urine pH, with a regression equation of pH = 6.33 - 0.014 NAE (P = .02, r = -0.54). Habitual diet and estimated NAE calculations indicate the probable ranking of urine pH by dietary groups, and may be used to determine the likely acid-base status of an individual; EAA calculations were not predictive of urine pH.

  14. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions.

    PubMed

    Delaunay, Anne; Gasull, Xavier; Salinas, Miguel; Noël, Jacques; Friend, Valérie; Lingueglia, Eric; Deval, Emmanuel

    2012-08-07

    In rodent sensory neurons, acid-sensing ion channel 3 (ASIC3) has recently emerged as a particularly important sensor of nonadaptive pain associated with tissue acidosis. However, little is known about the human ASIC3 channel, which includes three splice variants differing in their C-terminal domain (hASIC3a, hASIC3b, and hASIC3c). hASIC3a transcripts represent the main mRNAs expressed in both peripheral and central neuronal tissues (dorsal root ganglia [DRG], spinal cord, and brain), where a small proportion of hASIC3c transcripts is also detected. We show that hASIC3 channels (hASIC3a, hASIC3b, or hASIC3c) are able to directly sense extracellular pH changes not only during acidification (up to pH 5.0), but also during alkalization (up to pH 8.0), an original and inducible property yet unknown. When the external pH decreases, hASIC3 display a transient acid mode with brief activation that is relevant to the classical ASIC currents, as previously described. On the other hand, an external pH increase activates a sustained alkaline mode leading to a constitutive activity at resting pH. Both modes are inhibited by the APETx2 toxin, an ASIC3-type channel inhibitor. The alkaline sensitivity of hASIC3 is an intrinsic property of the channel, which is supported by the extracellular loop and involves two arginines (R68 and R83) only present in the human clone. hASIC3 is thus able to sense the extracellular pH in both directions and therefore to dynamically adapt its activity between pH 5.0 and 8.0, a property likely to participate in the fine tuning of neuronal membrane potential and to neuron sensitization in various pH environments.

  15. Generation of pH responsive fluorescent nano capsules through simple steps for the oral delivery of low pH susceptible drugs

    NASA Astrophysics Data System (ADS)

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2016-11-01

    pH responsive nano capsules are promising as it can encapsulate low pH susceptible drugs like insulin and guard them from the hostile environments in the intestinal tract. The strong acidity of the gastro-intestinal tract and the presence of proteolytic enzymes are the tumbling blocks for the design of drug delivery vehicles through oral route for drugs like insulin. Nano capsules are normally built over templates which are subsequently removed by further steps. Such processes are complex and often lead into deformed and collapsed capsules. In this study, we choose calcium carbonate (CaCO3) nano particles to serve as template. Over CaCO3 nanoparticles, silica layers were built followed by polymethacrylic acid chains to acquire pH responsiveness. During the polymerization process of the methacrylic acid, the calcium carbonate core particles were dissolved leading to the formation of nano hollow capsules having a size that ranges from 225 to 246 nm and thickness from 19 to 58 nm. The methodology is simple and devoid of additional steps. The nano shells exhibited 80% release of the loaded model drug, insulin at pH 7.4 while at pH 2.0 the capsules nearly stopped the release of the drug. Polymethacrylic acid shows pH responsive swelling behavior that it swells at intestinal pH (7.0-7.5) and shrinks at gastric pH (˜2.0) thus enabling the safe unloading of the drug from the nano capsules.

  16. Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter

    PubMed Central

    Peng, Cheng; Shen, Chensi; Zheng, Siyuan; Yang, Weiling; Hu, Hang; Liu, Jianshe; Shi, Jiyan

    2017-01-01

    Many studies have shown the effect of solution chemistry on the environmental behavior of metal-based nanoparticles (NPs), except CuO NPs. Here, we investigated the agglomeration, sedimentation, dissolution, and speciation of CuO NPs by varying pH, ionic strength, ionic valence, and natural organic matter (NOM). The results showed that as the pH moved away from 6, the size of CuO agglomerates decreased, along with the enhanced NP suspension stabilization, due to the increase of electrostatic repulsive force. Increasing ionic strength and valence intensified the agglomeration and sedimentation of CuO NPs because of the compression of electrical double layers. The presence of humic acid and citric acid enhanced the dispersion and stabilization of CuO NP suspension, but l-cysteine showed a different impact. Decreasing pH, increasing ionic strength and all NOM improved the dissolution of CuO NPs, but the divalent electrolyte (CaCl2) inhibited the Cu2+ release from CuO NPs compared to the monovalent electrolyte (NaCl). In addition, X-ray absorption near edge structure (XANES) analysis demonstrated that the presence of l-cysteine transformed more than 30% of CuO NPs to Cu(I)-cysteine by coordinating with thiol group. This study can give us an in-depth understanding on the environmental behavior and fate of CuO NPs in the aquatic environment. PMID:29036921

  17. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ΔG o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ΔG o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ΔG o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  18. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  19. Superoxide Triggers an Acid Burst in Saccharomyces cerevisiae to Condition the Environment of Glucose-starved Cells*

    PubMed Central

    Baron, J. Allen; Laws, Kaitlin M.; Chen, Janice S.; Culotta, Valeria C.

    2013-01-01

    Although yeast cells grown in abundant glucose tend to acidify their extracellular environment, they raise the pH of the environment when starved for glucose or when grown strictly with non-fermentable carbon sources. Following prolonged periods in this alkaline phase, Saccharomyces cerevisiae cells will switch to producing acid. The mechanisms and rationale for this “acid burst” were unknown. Herein we provide strong evidence for the role of mitochondrial superoxide in initiating the acid burst. Yeast mutants lacking the mitochondrial matrix superoxide dismutase (SOD2) enzyme, but not the cytosolic Cu,Zn-SOD1 enzyme, exhibited marked acceleration in production of acid on non-fermentable carbon sources. Acid production is also dramatically enhanced by the superoxide-producing agent, paraquat. Conversely, the acid burst is eliminated by boosting cellular levels of Mn-antioxidant mimics of SOD. We demonstrate that the acid burst is dependent on the mitochondrial aldehyde dehydrogenase Ald4p. Our data are consistent with a model in which mitochondrial superoxide damage to Fe-S enzymes in the tricarboxylic acid (TCA) cycle leads to acetate buildup by Ald4p. The resultant expulsion of acetate into the extracellular environment can provide a new carbon source to glucose-starved cells and enhance growth of yeast. By triggering production of organic acids, mitochondrial superoxide has the potential to promote cell population growth under nutrient depravation stress. PMID:23281478

  20. pH studies in the synthesis of amino acid coated hydrophilic MNPs

    NASA Astrophysics Data System (ADS)

    Saxena, Namita; Dube, Charu Lata

    2018-04-01

    Magnetic iron oxide nanoparticles magnetite and maghemite (MNPs) are specially useful in various fields like biomedical, waste disposal, catalysis etc. because of their biocompatibility and magnetic properties. They can be manipulated by applying magnetic field and hence their easier separation, wider applications and unending scope in the field of research. They are inherently hydrophobic, and aggregate easily mainly due to magnetic and nanosize effects. The present work reports the synthesis of hydrophilic, stably dispersed MNPs coated by different amino acids at different pH values. Lower concentration of amino acids, 1/3 (moles by moles) of Iron salts concentration was used in the study. Crystallites were found to be approximately 6-7 nm in size, as determined by XRD and also found to have good magnetization values in VSM studies. The effects of coating are mainly studied by FTIR and TG. Higher/lower pH values have been studied for better coating, and it is observed that higher pH is more helpful in getting better results, on bare MNPs synthesized under a pH of approximately 13.3. The effects of net charge on coating efficiency were also studied.

  1. Adsorption and Reduction of Hexavalent Chromium on the Surface of Vivianite at Acidic Environment

    NASA Astrophysics Data System (ADS)

    HA, S.; Hyun, S. P.; Lee, W.

    2016-12-01

    Due to the rapid increase of chemical use in industrial activities, acid spills have frequently occurred in Korea. The acid spill causes soil and water acidification and additional problems such as heavy metal leaching from the soil. Hexavalent chromium (Cr(VI)) is relatively mobile in the environment and toxic and mutagenic. Monoclinic octa-hydrated ferrous phosphate, vivianite, is one of commonly found iron-bearing soil minerals occurring in phosphorous-enriched reducing environments. We have investigated reductive sorption of Cr(VI) on the vivianite surfaces using batch experimental tests under diverse groundwater conditions. Cr(VI) (5 mg/L) was added in 6.5 g/L vivianite suspension buffered at pH 5, 7, and 9, using 0.05 M HEPES or tris buffer solution, to check the effect of pH on the reductive sorption of Cr(VI) on the vivianite surface. The aqueous Cr(VI) removal was fastest at pH 5, followed by pH 7, and pH 9. The effect of ionic strength on the removal kinetics of Cr(VI) was negligible. It could be subsequently removed via sorption and reduction on the surface of vivianite of which reactive chemical species could be aqueous Fe(II), iron oxides, and metavivianite. Adsorption test was conducted using the same amount of Cr(III) to check the selectivity of chromium species on the vivianite surface for the reductive adsorption. Through Cr extraction test, amount of strong-bound Cr to vivianite is similar for Cr(III) and Cr(VI) injection but amount of weak-bound Cr is bigger for Cr(VI) injection. Reaction mechanism for the sorption and reductive transformation of Cr(VI) to Cr(III) species at reactive sites of vivianite surface are discussed based on surface complexation modeling and K-edge Fe X-ray absorption near edge structure (XANES) results. Since vivianite is reacted with Cr(VI), two smooth peaks of absorption edge changed to one sharp peak. Pre-edge that contains 1s-3d transition information tends to show high peak when reaction time is increased and pH is

  2. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no

  3. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  4. Investigation of pH Influence on Skin Permeation Behavior of Weak Acids Using Nonsteroidal Anti-Inflammatory Drugs.

    PubMed

    Chantasart, Doungdaw; Chootanasoontorn, Siriwan; Suksiriworapong, Jiraphong; Li, S Kevin

    2015-10-01

    As a continuing effort to understand the skin permeation behavior of weak acids and bases, the objectives of the present study were to evaluate skin permeation of nonsteroidal anti-inflammatory drugs (NSAIDs) under the influence of pH, investigate the mechanism of pH effect, and examine a previous hypothesis that the effective skin pH for drug permeation is different from donor solution pH. In vitro permeability experiments were performed in side-by-side diffusion cells with diclofenac, ibuprofen, flurbiprofen, ketoprofen, and naproxen and human skin. The donor solution pH significantly affected skin permeation of NSAIDs, whereas no effect of the receiver pH was observed. Similar to previous observations, the apparent permeability coefficient versus donor solution pH relationships deviated from the predictions (fractions of unionized NSAIDs) according to the acid/base theory. The influences of the viable epidermis barrier, polar pathway transport, ion permeation across skin, and effective skin pH were investigated. The effective pH values for skin permeation determined using the NSAIDs (weak acids) in this study were different from those obtained previously with a weak base at the same donor solution pH conditions, suggesting that the observed permeability-pH relationships could not be explained solely by possible pH differences between skin and donor solution. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  6. Deletion of the pH sensor GPR4 decreases renal acid excretion.

    PubMed

    Sun, Xuming; Yang, Li V; Tiegs, Brian C; Arend, Lois J; McGraw, Dennis W; Penn, Raymond B; Petrovic, Snezana

    2010-10-01

    Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.

  7. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  8. Degradation kinetics of chlorogenic acid at various pH values and effects of ascorbic acid and epigallocatechin gallate on its stability under alkaline conditions.

    PubMed

    Narita, Yusaku; Inouye, Kuniyo

    2013-01-30

    5-Caffeoylquinic acid (5-CQA) is generally referred to as chlorogenic acid and exhibits various biological activities such as antioxidant activity and porcine pancreas α-amylase inhibitory activities. 5-CQA may be useful as an antioxidant for food and to prevent diabetes and obesity. The degradation of 5-CQA and caffeic acid (CA) in an aqueous solution at 37 °C and pH 5.0-9.0 was studied. The degradation of 5-CQA and CA, demonstrating time and pH dependence (i.e., the rate constant, k, was higher at higher pH), was satisfactorily described by the Weibull equation. The stability of 5-CQA at pH 7.4 and 9.0 was improved by adding (-)-epigallocatechin gallate (EGCG) and ascorbic acid (AA). Moreover, the degradation of 5-CQA in the presence of EGCG or AA could be described by the Weibull equation. The k value in the presence of EGCG or AA was dependent on their concentration.

  9. Transfer of Oleic Acid between Albumin and Phospholipid Vesicles

    NASA Astrophysics Data System (ADS)

    Hamilton, James A.; Cistola, David P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13C NMR spectroscopy and 90% isotopically substituted [1-13C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles (vesicles or albumin with oleic acid) and acceptor particles (fatty acid-free albumin or vesicles), the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with >= 80% of the oleic acid associated with albumin at pH 7.4; association was >= 90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin; at pH 5.4, <= 10% of the oleic acid was bound to albumin and >90% was associated with vesicles. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.

  10. Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression.

    PubMed

    Kondo, Ayano; Yamamoto, Shogo; Nakaki, Ryo; Shimamura, Teppei; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Yoshida, Tetsuo; Aburatani, Hiroyuki; Osawa, Tsuyoshi

    2017-02-28

    Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol.

    PubMed

    Shi, Guoliang; Xu, Jiao; Peng, Xing; Xiao, Zhimei; Chen, Kui; Tian, Yingze; Guan, Xinbei; Feng, Yinchang; Yu, Haofei; Nenes, Athanasios; Russell, Armistead G

    2017-04-18

    Acidity (pH) plays a key role in the physical and chemical behavior of PM 2.5 . However, understanding of how specific PM sources impact aerosol pH is rarely considered. Performing source apportionment of PM 2.5 allows a unique link of sources pH of aerosol from the polluted city. Hourly water-soluble (WS) ions of PM 2.5 were measured online from December 25th, 2014 to June 19th, 2015 in a northern city in China. Five sources were resolved including secondary nitrate (41%), secondary sulfate (26%), coal combustion (14%), mineral dust (11%), and vehicle exhaust (9%). The influence of source contributions to pH was estimated by ISORROPIA-II. The lowest aerosol pH levels were found at low WS-ion levels and then increased with increasing total ion levels, until high ion levels occur, at which point the aerosol becomes more acidic as both sulfate and nitrate increase. Ammonium levels increased nearly linearly with sulfate and nitrate until approximately 20 μg m -3 , supporting that the ammonium in the aerosol was more limited by thermodynamics than source limitations, and aerosol pH responded more to the contributions of sources such as dust than levels of sulfate. Commonly used pH indicator ratios were not indicative of the pH estimated using the thermodynamic model.

  12. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  13. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus.

    PubMed

    Lemaire, Sandrine; Tulkens, Paul M; Van Bambeke, Françoise

    2011-02-01

    In contrast to currently marketed fluoroquinolones, which are zwitterionic, delafloxacin is an investigational fluoroquinolone with an anionic character that is highly active against Gram-positive bacteria. We have examined the effect of acidic pH on its accumulation in Staphylococcus aureus and in human THP-1 cells, in parallel with its activity against extracellular and intracellular S. aureus. Moxifloxacin was used as a comparator. Delafloxacin showed MICs 3 to 5 log(2) dilutions lower than those of moxifloxacin for a collection of 35 strains with relevant resistance mechanisms and also proved to be 10-fold more potent against intracellular S. aureus ATCC 25923. In medium at pH 5.5, this difference was further enhanced, with the MIC decreasing by 5 log(2) dilutions. In infected cells incubated in acidic medium, the relative potency was 10-fold higher than that at neutral pH and the maximal relative efficacy reached a bactericidal effect at 24 h. These results can be explained by a 10-fold increase in delafloxacin accumulation in both bacteria and cells at acidic pH, making delafloxacin one of the most efficient drugs tested in this model. Opposite effects were seen for moxifloxacin with respect to both activity and accumulation. As reported for zwitterionic fluoroquinolones, delafloxacin was found associated with the soluble fraction in homogenates of eukaryotic cells. Taken together, these properties may confer to delafloxacin an advantage for the eradication of S. aureus in acidic environments, including intracellular infections.

  14. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells

    PubMed Central

    Pandey, Rachna; Vischer, Norbert O. E.; Smelt, Jan P. P. M.; van Beilen, Johan W. A.; Ter Beek, Alexander; De Vos, Winnok H.; Manders, Erik M. M.

    2016-01-01

    ABSTRACT Intracellular pH (pHi) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pHi homeostasis. Unfortunately, accurate pHi quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pHi at single-cell levels in Bacillus subtilis. Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pHi in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pHi and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pHi regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. IMPORTANCE This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous

  15. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation.

  16. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  17. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH.

    PubMed

    Wang, Kun; Yin, Jun; Shen, Dongsheng; Li, Na

    2014-06-01

    Food waste anaerobic fermentation was carried out under acidic conditions using inocula based on aerobic activated sludge (Inoculum AE) or anaerobic activated sludge (Inoculum AN) for volatile fatty acids (VFAs) production. The results showed that food waste hydrolysis increased obviously when Inoculum AN was used relative to Inoculum AE at any pH investigated. Hydrolysis at pH 4.0 and uncontrolled pH was higher than that at other pHs when either inoculum was used. Additionally, VFAs production at pH 6.0 was the highest, regardless of the inoculum used. The optimum VFA yields were 0.482g/gVSSremoval with Inoculum AE and 0.918g/gVSSremoval with Inoculum AN, which were observed after 4d and 20d of fermentation, respectively. VFAs composition analysis showed that butyrate acid was the prevalent acid at pH 6.0, followed by acetate acid and propionic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers.

    PubMed

    Negri, Graciela E; Deming, Timothy J

    2017-01-01

    New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  20. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds.

    PubMed

    Oja, M; Maran, U

    2015-01-01

    Absorption in gastrointestinal tract compartments varies and is largely influenced by pH. Therefore, considering pH in studies and analyses of membrane permeability provides an opportunity to gain a better understanding of the behaviour of compounds and to obtain good permeability estimates for prediction purposes. This study concentrates on relationships between the chemical structure and membrane permeability of acidic and basic drugs and drug-like compounds. The membrane permeability of 36 acidic and 61 basic compounds was measured using the parallel artificial membrane permeability assay (PAMPA) at pH 3, 5, 7.4 and 9. Descriptive and/or predictive single-parameter quantitative structure-permeability relationships were derived for all pH values. For acidic compounds, membrane permeability is mainly influenced by hydrogen bond donor properties, as revealed by models with r(2) > 0.8 for pH 3 and pH 5. For basic compounds, the best (r(2) > 0.7) structure-permeability relationships are obtained with the octanol-water distribution coefficient for pH 7.4 and pH 9, indicating the importance of partition properties. In addition to the validation set, the prediction quality of the developed models was tested with folic acid and astemizole, showing good matches between experimental and calculated membrane permeabilities at key pHs. Selected QSAR models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.166 ).

  1. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production.

    PubMed

    Scervino, J M; Papinutti, V L; Godoy, M S; Rodriguez, M A; Della Monica, I; Recchi, M; Pettinari, M J; Godeas, A M

    2011-05-01

    To study phosphate solubilization in Penicillium purpurogenum as function of medium pH, and carbon and nitrogen concentrations. Tricalcium phosphate (CP) solubilization efficiency of P. purpurogenum was evaluated at acid or alkaline pH using different C and N sources. Glucose- and (NH(4) )(2) SO(4) -based media showed the highest P solubilization values followed by fructose. P. purpurogenum solubilizing ability was higher in cultures grown at pH 6·5 than cultures at pH 8·5. Organic acids were detected in both alkaline and neutral media, but the relative percentages of each organic acid differed. Highest P release coincided with the highest organic acids production peak, especially gluconic acid. When P. purpurogenum grew in alkaline media, the nature and concentration of organic acids changed at different N and C concentrations. A factorial categorical experimental design showed that the highest P-solubilizing activity, coinciding with the highest organic acid production, corresponded to the highest C concentration and lowest N concentration. The results described in the present study show that medium pH and carbon and nitrogen concentrations modulate the P solubilization efficiency of P. purpurogenum through the production of organic acids and particularly that of gluconic acid. In the P solubilization optimization studies, glucose and (NH(4) )(2) SO(4) as C and N sources allowed a higher solubilization efficiency at high pH. This organism is a potentially proficient soil inoculant, especially in P-poor alkaline soils where other P solubilizers fail to release soluble P. Further work is necessary to elucidate whether these results can be extrapolated to natural soil ecosystems, where different pH values are present. Penicillium purpurogenum could be used to develop a bioprocess for the manufacture of phosphatic fertilizer with phosphate calcium minerals. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-07-01

    External environments affect prenyl alcohol production by squalene synthetase-deficient mutant Saccharomyces cerevisiae ATCC 64031. Cultivation of the yeast in medium with an initial pH ranging from 7.0 to 8.0 increased the amount of secreted farnesol (FOH). In contrast, acidic medium with a pH below 4.0 increased the intracellular FOH and its isomer nerolidol. These effects of alkaline pH were also observed on constant pH cultivation in a jar fermenter. On cultivation for 133 h, the FOH production reached 102.8 mg/l.

  3. The Simultaneous Determination of Muscle Cell pH Using a Weak Acid and Weak Base

    PubMed Central

    Adler, Sheldon

    1972-01-01

    Should significant pH heterogeneity exist within cells then the simultaneous calculation of intracellular pH from the distribution of a weak acid will give a value closest to the highest pH in the system, whereas calculation from the distribution of a weak base will give a value closer to the lowest pH. These two values should then differ significantly. Intact rat diaphragms were exposed in vitro to varying bicarbonate concentrations (pure metabolic) and CO2 tensions (pure respiratory), and steady-state cell pH was measured simultaneously either by distribution of the weak acid 5,5-dimethyloxazolidine-2,4-dione-14C (pH DMO) or by distribution of the weak base nicotine-14C (pH nicotine). The latter compound was found suitable to measure cell pH since it was neither metabolized nor bound by rat diaphragms. At an external pH of 7.40, pH DMO was 7.17 while pH nicotine was 6.69—a pH difference of 0.48 pH units (P < 0.001). In either respiratory or metabolic alkalosis both DMO and pH nicotine rose so that differences between them remained essentially constant. Metabolic acidosis induced a decrease in both values though they fell more slowly than did extracellular pH. In contradistinction, in respiratory acidosis, decreasing extracellular pH from 7.40 to 6.80 resulted in 0.35 pH unit drop in pH DMO while pH nicotine remained constant. In every experiment, under all external conditions, pH DMO exceeded pH nicotine. These results indicate that there is significant pH heterogeneity within diaphragm muscle, but the degree of heterogeneity may vary under different external conditions. The metabolic implications of these findings are discussed. In addition, the data show that true overall cell pH is between 6.69 and 7.17—a full pH higher than would be expected from thermodynamic considerations alone. This implies the presence of active processes to maintain cell pH. PMID:5009113

  4. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of pH on skin permeation enhancement of acidic drugs by l-menthol-ethanol system.

    PubMed

    Katayama, K; Matsui, R; Hatanaka, T; Koizumi, T

    2001-09-11

    The effect of pH on the skin permeation enhancement of three acidic drugs by the l-menthol-ethanol system was investigated. The total flux of acidic drugs from the system remarkably varied over the pH range 3.0-8.0, and the permeation enhancement factor depended on the system pH and drug. A skin permeation model, which consists of two permeant (unionized and ionized) species, two system (oily and aqueous) phases, and two permeation (lipid and pore) pathways, was developed. The assumptions were made that only the unionized species can distribute to the oily phase and transport via the lipid pathway. The model explained the relationship between the concentration of drug in the aqueous phase and system pH. The skin permeability data were also described by the model and permeability coefficients corresponding to the physicochemical properties of permeant were calculated for the lipid and pore pathways. The model simulation showed that the permeation of acidic drugs occurred from the aqueous phase and the oily phase acted as a reservoir. Whether the total flux increased with increase of pH was dependent on the lipophilicity of drug. These results suggest that the pH of l-menthol-ethanol system should be given attention to elicit the maximum permeation enhancement.

  6. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7.

    PubMed

    Hosein, Althea M; Breidt, Frederick; Smith, Charles E

    2011-02-01

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.

  7. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. STXM/C 1s-NEXAFS study of Eu(III) and Uranyl humic acid aggregates at different pH

    NASA Astrophysics Data System (ADS)

    Plaschke, M.; Rothe, J.; Denecke, M. A.; Geckeis, H.

    2010-04-01

    Humic acids (HA) are chemically heterogeneous and structurally ill-defined biopolymers which are able to bind traces of actinides or lanthanides. Due to their dimensions in the colloidal size range they may affect transport of these elements in aquatic systems. Eu(III)- and UO22+-HA aggregates have been investigated by Scanning Transmission X-ray Microscopy (STXM) and C 1s-NEXAFS under systematic variation of pH. In the Eu(III)- and UO22+-HA systems aggregate morphologies at near neutral pH were similar to those observed in previous studies: optically dense zones (high absorption at the carbon K-edge) are embedded in a matrix of less dense material. C 1s-NEXAFS signatures observed in the different zones, i.e., the intensity of the characteristic complexation feature previously experimentally described and recently theoretically characterized, strongly depends on sample pH. In the alkaline regime (pH 9) with added carbonate, co-precipitation of Eu(III)-carbonate (or ternary carbonate/(oxo)hydroxide complexes) with the Eu(III)-HA majority fraction is observed but Eu(III) binding to HA over carbonate in the dense zones seems to be favoured. The UO22+-HA system exhibits in alkaline solution more compact morphologies combined with a strong metal ion complexation effect in the NEXAFS. Eu(III) and UO22+ polyacrylic acid (PAA) aggregates used as HA model systems show similar spectral trends; these aggregates exhibit highly branched morphologies without segregation into zones with different NEXAFS signatures. The chemical environment such as pH or the type of metal cation strongly influences both HA aggregate morphologies and NEXAFS spectral signatures. These can, in turn, be used as indicators of the strength of lanthanide or actinide ion bound HA interaction.

  9. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bilayers and wormlike micelles at high pH in fatty acid soap systems.

    PubMed

    Xu, Wenlong; Liu, Huizhong; Song, Aixin; Hao, Jingcheng

    2016-03-01

    Bilayers at high pH in the fatty acid systems of palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O and stearic acid/CsOH/H2O can form spontaneously (Xu et al., 2014, 2015). In this work, the bilayers can still be observed at 25°C with an increase of the concentration of fatty acids. We found that wormlike micelles can also be prepared in the fatty acid soap systems at high pH, even though the temperature was increased to be 50°C. The viscoelasticity, apparent viscosity, yield stress of the bilayers were determined by the rheological measurements. Wormlike micelles were identified by cryogenic transmission electron microscopy (cryo-TEM) and emphasized by the rheological characterizations, which are in accordance with the Maxwell fluids with good fit of Cole-Cole plots. The phase transition temperature was determined by differential scanning calorimetry (DSC) and the transition process was recorded. The regulating role of counterions of fatty acids were discussed by (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) as comparison, concluding that counterions with appropriate hydrated radius were the vital factor in the formation wormlike micelles. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The osmotic stress response of split influenza vaccine particles in an acidic environment.

    PubMed

    Choi, Hyo-Jick; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D

    2014-12-01

    Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow light scattering (SFLS), intrinsic fluorescence, transmission electron microscopy (TEM), and hemagglutination assay. Split vaccine particles were found to exhibit a step-wise morphological change in response to osmotic stress due to double-layered wall structure. The presence of hyper-osmotic stress in acidic medium (0.3 osmolarity, pH 2.0) induced a significant level of membrane perturbation as measured by SFLS and TEM, imposing more damage to antigenic proteins on vaccine envelope than can be caused by pH-induced conformational change at acidic iso-osmotic condition. Further supports were provided by the intrinsic fluorescence and hemagglutinin activity measurements. Thus, hyper-osmotic stress becomes an important factor for determining stability of split vaccine particles in acidic medium. These results are useful in better understanding the destabilizing mechanism of split influenza vaccine particles in gastric environment and in designing oral influenza vaccine formulations.

  12. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    NASA Astrophysics Data System (ADS)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; Fendorf, Scott; Kumar, Naresh; Lowry, Gregory V.; Brown, Gordon E.

    2017-10-01

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O22+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0-835 ppm) or Suwanee River Fulvic Acid (SRFA) (0-955 ppm). No evidence was found for reduction of uranyl by either form of NOM after 24 h of exposure. The following three size fractions were considered in this study: (1) ≥0.2 μm (Fh-NOM aggregates), (2) 0.02-0.2 μm (dispersed Fh nanoparticles and NOM macro-molecules), and (3) <0.02 μm (dissolved). The extent to which U(VI) is sorbed in aggregates or dispersed as colloids was assessed by comparing U, Fe, and NOM concentrations in these three size fractions. Partitioning of uranyl between Fh and NOM was determined in size fraction (1) using X-ray absorption spectroscopy (XAS). Uranyl sorption on Fh-NOM aggregates was affected by the presence of NOM in different ways depending on pH and type of NOM (ESHA vs. SRFA). The presence of ESHA in the uranyl-Fh-NOM ternary system at pH 4.6 enhanced uranyl uptake more than the presence of SRFA. In contrast, neither form of NOM affected uranyl sorption at pH 7.0 over most of the NOM concentration range examined (0-500 ppm); at the highest NOM concentrations (500-955 ppm) uranyl uptake in the aggregates was slightly inhibited at pH 7.0, which is interpreted as being due to the dispersion of Fh aggregates. XAS at the U LIII-edge was used to characterize molecular-level changes in uranyl complexation as a result of sorption to the Fh-NOM aggregates. In the absence of NOM, uranyl formed dominantly inner-sphere, mononuclear, bidentate sorption complexes on Fh. However, when NOM concentration was increased at pH 4.6, the

  13. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH.

    ERIC Educational Resources Information Center

    Heckman, J. R.; Strick, J. E.

    1996-01-01

    Presents a laboratory exercise that uses a simple imaging technique to illustrate the profound effects that living roots exert on the pH of the surrounding soil environment. Achieves visually stimulating results that can be used to reinforce lectures on rhizosphere pH, nutrient availability, plant tolerance of soil acidity, microbial activity, and…

  15. Use of D(acid)-, D(bile)-, z(acid)-, and z(bile)-values in evaluating Bifidobacteria with regard to stomach pH and bile salt sensitivity.

    PubMed

    Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D

    2010-01-01

    The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (<3.4 log CFU/mL). The z(acid)- and z(bile)-values calculated from the D(acid)- and D(bile)-values ranged from 1.11 to 1.55 pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as

  16. Relative Amino Acid Composition Signatures of Organisms and Environments

    PubMed Central

    Moura, Alexandra; Savageau, Michael A.; Alves, Rui

    2013-01-01

    Background Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. Methodologies/Principal Findings To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Conclusions Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms. PMID:24204807

  17. Relative amino acid composition signatures of organisms and environments.

    PubMed

    Moura, Alexandra; Savageau, Michael A; Alves, Rui

    2013-01-01

    Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms.

  18. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values.

    PubMed

    Cheng, Weixiao; Chen, Hong; Yan, ShuHai; Su, Jianqiang

    2014-09-01

    Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.

  19. New Amino-Acid-Based β-Phosphorylated Nitroxides for Probing Acidic pH in Biological Systems by EPR Spectroscopy.

    PubMed

    Thétiot-Laurent, Sophie; Gosset, Gaëlle; Clément, Jean-Louis; Cassien, Mathieu; Mercier, Anne; Siri, Didier; Gaudel-Siri, Anouk; Rockenbauer, Antal; Culcasi, Marcel; Pietri, Sylvia

    2017-02-01

    There is increasing interest in measuring pH in biological samples by using nitroxides with pH-dependent electron paramagnetic resonance (EPR) spectra. Aiming to improve the spectral sensitivity (Δa X ) of these probes (i.e., the difference between the EPR hyperfine splitting (hfs) in their protonated and unprotonated forms), we characterized a series of novel linear α-carboxy, α'-diethoxyphosphoryl nitroxides constructed on an amino acid core and featuring an (α or α')-C-H bond. In buffer, the three main hfs (a N , a H , and a P ) of their EPR spectra vary reversibly with pH and, from a P or a H titration curves, a two- to fourfold increase in sensitivity was achieved compared to reference imidazoline or imidazolidine nitroxides. The crystallized carboxylate 10 b (pK a ≈3.6), which demonstrated low cytotoxicity and good resistance to bioreduction, was applied to probe stomach acidity in rats. The results pave the way to a novel generation of highly sensitive EPR pH markers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Change of physical and chemical parameters of fulvic acids at different pH of the system

    NASA Astrophysics Data System (ADS)

    Dinu, Marina; Kremleva, Tatyana

    2017-04-01

    Organic substances of humic nature significantly change physicochemical properties at different pH of natural waters. As a consequence, a large number of consecutive and parallel reactions in the structure of organic polymers, and reacting with inorganic anions. The main indicators of changes in the properties of organic acids in natural systems are changes in their IR spectra, changes in the colloid stability (the zeta potential) as well as in the molecular weight and emission spectra (fluorescence emission spectra). The aim of our study was to evaluate of changing in physical and chemical properties of the fulvic acid from soil/water samples in the natural areas of European Russia and Western Siberia (the steppe and the northern taiga zones) at different pH (from 8 to 1.5). Changes in absorption bands of fulvic acid caused by both COOH groups and amino groups with varying degrees of protonation were found. Consequently, we can assume that in an electric field fulvic acid change the sign of their charge at depending on pH. During the lowering of the pH intensity of C-O bands generally decreases, while in the region 1590 cm-1 disappears. In turn, the band at 1700 cm-1 is the most intense; it could mean a complete protonation of the carboxyl groups. According to our data, the values of zeta potential changes depending on pH of the system. The zeta potential becomes more negative with increasing pH and it may be due to ionization of oxygen groups of fulvic acid. For the colloidal polymer systems the value of the zeta potential is strongly negative (less than -20 mV) and strongly positive (over 20 mV) characterize the system as the most stable. Our experimental data for the study of the zeta potential of fulvic acids extracted from the soils and waters of different climatic zones show zonal influence of the qualitative characteristics of organic substances on the surface charge of the high-molecular micelle of fulvic acids. It was found that fulvic acids extracted

  1. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Treesearch

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  2. Determination of the titratable acidity and the pH of wine based on potentiometric flow injection analysis.

    PubMed

    Vahl, Katja; Kahlert, Heike; von Mühlen, Lisandro; Albrecht, Anja; Meyer, Gabriele; Behnert, Jürgen

    2013-07-15

    A FIA system using a pH-sensitive detector based on a graphite/quinhydrone/silicone composite electrode was applied to determine sequentially the titratable acidity and the pH of wine, as well as the sum of calcium and magnesium ions. For all measurements the same FIA configuration was used employing different carrier solutions. The results for the determination of acidity and pH are in good agreement with those obtained by classical potentiometric titrations and by pH measurements using a conventional glass electrode. The standard deviation was less than 1.5% for both kinds of measurements and the sample volume was 150 μL. The method allows about 40 determinations of titratable acidity per hour and 30 pH measurements per hour. The titration method can be adjusted to the legal requirements in USA and Europe. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids.

    PubMed Central

    Kamp, F; Hamilton, J A

    1992-01-01

    A central, unresolved question in cell physiology is how fatty acids move across cell membranes and whether protein(s) are required to facilitate transbilayer movement. We have developed a method for monitoring movement of fatty acids across protein-free model membranes (phospholipid bilayers). Pyranin, a water-soluble, pH-sensitive fluorescent molecule, was trapped inside well-sealed phosphatidylcholine vesicles (with or without cholesterol) in Hepes buffer (pH 7.4). Upon addition of a long-chain fatty acid (e.g., oleic acid) to the external buffer (also Hepes, pH 7.4), a decrease in fluorescence of pyranin was observed immediately (within 10 sec). This acidification of the internal volume was the result of the "flip" of un-ionized fatty acids to the inner leaflet, followed by a release of protons from approximately 50% of these fatty acid molecules (apparent pKa in the bilayer = 7.6). The proton gradient thus generated dissipated slowly because of slow cyclic proton transfer by fatty acids. Addition of bovine serum albumin to vesicles with fatty acids instantly removed the pH gradient, indicating complete removal of fatty acids, which requires rapid "flop" of fatty acids from the inner to the outer monolayer layer. Using a four-state kinetic diagram of fatty acids in membranes, we conclude that un-ionized fatty acid flip-flops rapidly (t1/2 < or = 2 sec) whereas ionized fatty acid flip-flops slowly (t1/2 of minutes). Since fatty acids move across phosphatidylcholine bilayers spontaneously and rapidly, complex mechanisms (e.g., transport proteins) may not be required for translocation of fatty acids in biological membranes. The proton movement accompanying fatty acid flip-flop is an important consideration for fatty acid metabolism in normal physiology and in disease states such as cardiac ischemia. Images PMID:1454821

  4. Cation effects on phosphatidic acid monolayers at various pH conditions.

    PubMed

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pH<10, DPPA monolayers on water are predominantly populated by neutral species and display the highest packing density. Cations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.

    PubMed

    Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi

    2006-09-14

    Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.

  6. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  7. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.

    PubMed

    Peterson, Eric C; Daugulis, Andrew J

    2014-03-01

    Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR. © 2013 Wiley Periodicals, Inc.

  8. Assessment of the suitability of Durafet-based sensors for pH measurement in dynamic estuarine environments

    NASA Astrophysics Data System (ADS)

    Gonski, Stephen F.; Cai, Wei-Jun; Ullman, William J.; Joesoef, Andrew; Main, Christopher R.; Pettay, D. Tye; Martz, Todd R.

    2018-01-01

    The suitability of the Honeywell Durafet to the measurement of pH in productive, high-fouling, and highly-turbid estuarine environments was investigated at the confluence of the Murderkill Estuary and Delaware Bay (Delaware, USA). Three different flow configurations of the SeapHOx sensor equipped with a Honeywell Durafet and its integrated internal (Ag/AgCl reference electrode containing a 4.5 M KCl gel liquid junction) and external (solid-state chloride ion selective electrode, Cl-ISE) reference electrodes were deployed for four periods between April 2015 and September 2016. In this environment, the Honeywell Durafet proved capable of making high-resolution and high-frequency pH measurements on the total scale between pH 6.8 and 8.4. Natural pH fluctuations of >1 pH unit were routinely captured over a range of timescales. The sensor pH collected between May and August 2016 using the most refined SeapHOx configuration exhibited good agreement with multiple sets of independently measured reference pH values. When deployed in conjunction with rigorous discrete sampling and calibration schemes, the sensor pH had a root-mean squared error ranging between 0.011 and 0.036 pH units across a wide range of salinity relative to both pHT calculated from measured dissolved inorganic carbon and total alkalinity and pHNBS measured with a glass electrode corrected to pHT at in situ conditions. The present work demonstrates the viability of the Honeywell Durafet to the measurement of pH to within the weather-level precision defined by the Global Ocean Acidification Observing Network (GOA-ON, ≤ 0.02 pH units) as a part of future estuarine CO2 chemistry studies undertaken in dynamic environments.

  9. pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect.

    PubMed

    Fan, Xiaohong; Zhao, Xuesong; Qu, Xinkai; Fang, Jun

    2015-12-30

    Cisplatin (CDDP) is widely used anticancer drug for various solid tumors including lung cancer. However, its indiscriminate distribution causes serious adverse effects and limits its therapeutic effect. In this study, by using hyaluronic acid (HA) we synthesized a complex of CDDP (HA-CDDP), by utilizing ionic interaction between Pt(2+) of CDDP with carboxyl group of HA. The mean HA-CDDP particle size was 208.5nm in PBS according to dynamic light scattering which was also confirmed by TEM, which could exert tumor-targeting property by enhanced permeability and retention (EPR) effect. The CDDP loading in this preparation was 13% (w/w), and release rate of free CDDP from the HA-CDDP complex at physiological pH (7.4) was ∼20%/day. However, in acidic pH the release was much faster, i.e., ∼95% of CDDP was released in 72h at pH 5.5. Moreover, HA-CDDP showed a 2.5-fold higher tumor accumulation than free CDDP whereas no increase of distribution was found in most normal tissues. In addition, because HA receptor CD44 is overexpressed in many tumor cells, we also observed CD44-based endocytosis of HA-CDDP in mouse lung carcinoma LCC cells. These findings together suggest that HA-CDDP may show tumor-selective cytotoxicity by taking advantage of EPR effect, weak acidic environment of tumor tissues (e.g., pH 6∼7), as well as CD44-based intracellular uptake. As expected, HA-CDDP exhibited much improved therapeutic effect than free CDDP in mouse LCC tumor model, whereas no apparent side effect was found. These findings may shed some light on the potential utility of HA for development of tumor-targeted polymeric CDDP drugs, which need further investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers

    PubMed Central

    Desriac, Noémie; Broussolle, Véronique; Postollec, Florence; Mathot, Anne-Gabrielle; Sohier, Danièle; Coroller, Louis; Leguerinel, Ivan

    2013-01-01

    Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain. PMID:24106490

  11. Ligand Accessibility and Bioactivity of a Hormone-Dendrimer Conjugate Depend on pH and pH History

    PubMed Central

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; Carlson, Kathryn E.; Mayne, Christopher G.; Granick, Steve; Katzenellenbogen, Benita S.; Katzenellenbogen, John A.

    2016-01-01

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the non-genomic actions of estrogens in target cells. In response to pH changes, however, these estrogen-dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine, TMR) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR-PAMAM reveal high ligand shielding above pH 7 and low shielding below pH 7. Furthermore, when pH was cycled from 8.5 (conditions of ligand-PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol and diphenolic acid PAMAM conjugates experience a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicate that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen-dendrimer conjugates appears to be metastable. This pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers. PMID:26186415

  12. Contrasting Effects of Acidic pH on the Extracellular and Intracellular Activities of the Anti-Gram-Positive Fluoroquinolones Moxifloxacin and Delafloxacin against Staphylococcus aureus ▿ †

    PubMed Central

    Lemaire, Sandrine; Tulkens, Paul M.; Van Bambeke, Françoise

    2011-01-01

    In contrast to currently marketed fluoroquinolones, which are zwitterionic, delafloxacin is an investigational fluoroquinolone with an anionic character that is highly active against Gram-positive bacteria. We have examined the effect of acidic pH on its accumulation in Staphylococcus aureus and in human THP-1 cells, in parallel with its activity against extracellular and intracellular S. aureus. Moxifloxacin was used as a comparator. Delafloxacin showed MICs 3 to 5 log2 dilutions lower than those of moxifloxacin for a collection of 35 strains with relevant resistance mechanisms and also proved to be 10-fold more potent against intracellular S. aureus ATCC 25923. In medium at pH 5.5, this difference was further enhanced, with the MIC decreasing by 5 log2 dilutions. In infected cells incubated in acidic medium, the relative potency was 10-fold higher than that at neutral pH and the maximal relative efficacy reached a bactericidal effect at 24 h. These results can be explained by a 10-fold increase in delafloxacin accumulation in both bacteria and cells at acidic pH, making delafloxacin one of the most efficient drugs tested in this model. Opposite effects were seen for moxifloxacin with respect to both activity and accumulation. As reported for zwitterionic fluoroquinolones, delafloxacin was found associated with the soluble fraction in homogenates of eukaryotic cells. Taken together, these properties may confer to delafloxacin an advantage for the eradication of S. aureus in acidic environments, including intracellular infections. PMID:21135179

  13. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments.

    PubMed

    Sharp, Christine E; Smirnova, Angela V; Graham, Jaime M; Stott, Matthew B; Khadka, Roshan; Moore, Tim R; Grasby, Stephen E; Strack, Maria; Dunfield, Peter F

    2014-06-01

    Recently, methanotrophic members of the phylum Verrucomicrobia have been described, but little is known about their distribution in nature. We surveyed methanotrophic bacteria in geothermal springs and acidic wetlands via pyrosequencing of 16S rRNA gene amplicons. Putative methanotrophic Verrucomicrobia were found in samples covering a broad temperature range (22.5-81.6°C), but only in acidic conditions (pH 1.8-5.0) and only in geothermal environments, not in acidic bogs or fens. Phylogenetically, three 16S rRNA gene sequence clusters of putative methanotrophic Verrucomicrobia were observed. Those detected in high-temperature geothermal samples (44.1-81.6°C) grouped with known thermoacidiphilic 'Methylacidiphilum' isolates. A second group dominated in moderate-temperature geothermal samples (22.5-40.1°C) and a representative mesophilic methanotroph from this group was isolated (strain LP2A). Genome sequencing verified that strain LP2A possessed particulate methane monooxygenase, but its 16S rRNA gene sequence identity to 'Methylacidiphilum infernorum' strain V4 was only 90.6%. A third group clustered distantly with known methanotrophic Verrucomicrobia. Using pmoA-gene targeted quantitative polymerase chain reaction, two geothermal soil profiles showed a dominance of LP2A-like pmoA sequences in the cooler surface layers and 'Methylacidiphilum'-like pmoA sequences in deeper, hotter layers. Based on these results, there appears to be a thermophilic group and a mesophilic group of methanotrophic Verrucomicrobia. However, both were detected only in acidic geothermal environments. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2013-02-01

    Natural organic acids may play an important role in influencing the mobility of toxic contaminants in the environment. The mobilization of arsenic (As) and heavy metals from an oxidized Pb-Zn mine tailings sample in the presence of three low-molecular-weight organic acids, aspartic acid, cysteine, and succinic acid, was investigated at a mass ratio of 10 mg organic additive/g mine tailings in this study. The effect of pH was also evaluated. The mine tailings sample, containing elevated levels of As (2,180 mg/kg), copper (Cu, 1,100 mg/kg), lead (Pb, 12,860 mg/kg), and zinc (Zn, 5,075 mg/kg), was collected from Bathurst, New Brunswick, Canada. It was found that the organic additives inhibited As and heavy metal mobilization under acidic conditions (at pH 3 or 5), but enhanced it under neutral to alkaline conditions (at pH above 7) through forming aqueous organic complexes. At pH 11, As, Cu, Pb, and Zn were mobilized mostly by the organic additives, 45, 46, 1,660, and 128 mg/kg by aspartic acid, 31, 28, 1,040, and 112 mg/kg by succinic acid, and 53, 38, 2,020, and 150 mg/kg by cysteine, respectively, whereas those by distilled water were 6, 16, 260, and 52 mg/kg, respectively. It was also found that the mobilization of As and the heavy metals was closely correlated, and both were closely correlated to Fe mobilization. Arsenic mobilization by the three LMWOAs was found to be consistent with the order of the stability of Fe-, Cu-, Pb-, and Zn-organic ligand complexes. The organic acids might be used potentially in the natural attenuation and remediation of As and heavy metal-contaminated sites.

  15. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these

  16. Release of 5-Aminosalicylic Acid (5-ASA) from Mesalamine Formulations at Various pH Levels.

    PubMed

    Abinusawa, Adeyinka; Tenjarla, Srini

    2015-05-01

    Oral formulations of 5-aminosalicylic acid (5-ASA) for treatment of ulcerative colitis have been developed to minimize absorption prior to the drug reaching the colon. In this study, we investigate the release of 5-ASA from available oral mesalamine formulations in physiologically relevant pH conditions. Release of 5-ASA from 6 mesalamine formulations (APRISO®, Salix Pharmaceuticals, Inc., USA; ASACOL® MR, Procter & Gamble Pharmaceuticals UK Ltd.; ASACOL® HD, Procter & Gamble Pharmaceuticals, USA; MEZAVANT XL®, Shire US Inc.; PENTASA®, Ferring Pharmaceuticals, Ltd., UK; SALOFALK®, Dr. Falk Pharma UK Ltd.) was evaluated using United States Pharmacopeia apparatus I and II at pH values of 1.0 (2 h), 6.0 (1 h), and 6.8 (8 h). Dissolution profiles were determined for each formulation, respectively. Of the tested formulations, only the PENTASA formulation demonstrated release of 5-ASA at pH 1.0 (48%), with 56% cumulative release after exposure to pH 6.0 and 92% 5-ASA release after 6-8 h at pH 6.8. No other mesalamine formulation showed >1% drug release at pH 1.0. The APRISO formulation revealed 36% 5-ASA release at pH 6.0, with 100% release after 3 h at pH 6.8. The SALOFALK formulation revealed 11% 5-ASA release at pH 6.0, with 100% release after 1 h at pH 6.8. No 5-ASA was released by the ASACOL MR, ASACOL HD, and MEZAVANT XL formulations at pH 6.0. At pH 6.8, the ASACOL MR and ASACOL HD formulations exhibited complete release of 5-ASA after 4 and 2 h, respectively, and the MEZAVANT XL formulation demonstrated complete 5-ASA release over 6-7 h. 5-Aminosalicylic acid release profiles were variable among various commercially available formulations. Shire Development LLC.

  17. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage

    USGS Publications Warehouse

    White, Sarah Jane O.; Hussain, Fatima A.; Hemond, Harold F.; Sacco, Sarah A.; Shine, James P.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~ 3, indium concentrations are 6–29 μg/L (10,000 × those found in natural rivers), and are completely filterable through a 0.45 μm filter. During a pH modification experiment, the pH of the system was raised to > 8, and > 99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45 μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

  18. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid.

    PubMed

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi

    2018-02-15

    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00≤pH≤7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  20. The effect of pH on citric acid cough challenge: A randomised control trial in chronic cough and healthy volunteers.

    PubMed

    Rai, Z L; Fowles, H E; Wright, C; Howard, Joseph; Morice, A H

    2018-03-06

    Citric acid has been used for over six decades to induce cough; however the mechanism of its pro-tussive effect is still not fully understood. We assessed the response to inhalation of citric acid at varying levels of acidity to determine if the pH of the solution plays a role in the induction of cough. Data was collected from both healthy volunteers and patients with chronic cough. 20 chronic cough patients and 20 healthy volunteers were recruited and underwent three cough challenges on separate days. Each visit involved 5 repeated one second inhalations of 300 mM citric acid solution. The concentration of the citrate cation remained constant, but the pH of the solution altered by the addition of sodium bicarbonate to 3, 5 and 6, representing the pK a values of the individual acid moieties. The total number of coughs elicited was recorded for each inhalation. Two subjects withdrew and were not included in the analysis. Participants were gender matched, each group consisting of 12 females. 74% of chronic coughers coughed at pH 3 (mean coughs 16), 89% coughed at pH 5 (18) and 63% coughed at pH 6 (7). In healthy volunteers, 60% of subjects coughed at pH 3 (9), 30% of subjects coughed at pH 5 (3), and 10% of subjects coughed at pH 6 (0). Thus chronic cough patients coughed more than healthy volunteers and did not exhibit a clear pH concentration response. There was also a greater variability in their response to individual challenges. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Simultaneous wireless assessment of intra-oral pH and temperature.

    PubMed

    Farella, M; Loke, C; Sander, S; Songini, A; Allen, M; Mei, L; Cannon, R D

    2016-08-01

    Intra-oral pH plays an important role in the pathogenesis of tooth erosion and decay, but there is limited information about its variation in real life settings. The aims of this research were to: 1) develop a wireless device, which can be used to continuously monitor intra-oral pH and temperature in real-time; 2) test and validate the device under controlled laboratory conditions; and 3) collect data in a natural environment in a sample of healthy volunteers. A wireless device for measuring pH and temperature simultaneously was developed, calibrated and validated against the gold standard glass electrode pH meter. A smart phone was used as data logger. The wireless device was embedded in an oral appliance and worn by eleven participants (mean age 31.1±6.9years) for 24h, while conducting standardised drinking tasks and regular daily activities. The wireless device could accurately measure pH and temperature both in vitro and in vivo. The recovery time following the swallow of a standard acidic drink varied markedly among individuals (mean=1.3±0.9min). The intra-oral pH and temperature recorded in the natural environment also showed a large inter- and intra-individual variability. The average intra-oral pH when asleep (6.7±0.5) was lower (p<0.001) than when awake (7.2±0.5). The average intra-oral temperature during sleep (35.6±0.5°C) was higher (p<0.001) than when awake (34.5±0.7°C). Intra-oral pH and temperature can be continuously and wirelessly assessed in real-life settings, and show individual-specific patterns with circadian variations. Intra-oral pH becomes slightly acidic during sleep while intra-oral temperature increases and fluctuates less. We propose a wireless device that is capable of measuring intra-oral pH over a 24-h period. We found marked inter-individual variation after acidic stimuli, and day to sleep time variation of both intra-oral temperature and pH. Our approach may provide new insight into the relationship between oral pH, tooth

  2. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    NASA Astrophysics Data System (ADS)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  3. The Potential Role of Systemic Buffers in Reducing Intratumoral Extracellular pH and Acid-Mediated Invasion

    PubMed Central

    Silva, Ariosto S.; Yunes, Jose A.; Gillies, Robert J.; Gatenby, Robert A.

    2013-01-01

    A number of studies have shown that the extracellular pH (pHe) in cancers is typically lower than that in normal tissue and that an acidic pHe promotes invasive tumor growth in primary and metastatic cancers. Here, we investigate the hypothesis that increased systemic concentrations of pH buffers reduce intratumoral and peritumoral acidosis and, as a result, inhibit malignant growth. Computer simulations are used to quantify the ability of systemic pH buffers to increase the acidic pHe of tumors in vivo and investigate the chemical specifications of an optimal buffer for such purpose. We show that increased serum concentrations of the sodium bicarbonate (NaHCO3) can be achieved by ingesting amounts that have been used in published clinical trials. Furthermore, we find that consequent reduction of tumor acid concentrations significantly reduces tumor growth and invasion without altering the pH of blood or normal tissues. The simulations also show that the critical parameter governing buffer effectiveness is its pKa. This indicates that NaHCO3, with a pKa of 6.1, is not an ideal intratumoral buffer and that greater intratumoral pHe changes could be obtained using a buffer with a pKa of ~7. The simulations support the hypothesis that systemic pH buffers can be used to increase the tumor pHe and inhibit tumor invasion. PMID:19276380

  4. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

  5. Proton Transport and pH Control in Fungi

    PubMed Central

    Kane, Patricia M.

    2018-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPaseare coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This re view describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi. PMID:26721270

  6. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  7. Characterization of squamous esophageal cells resistant to bile acids at acidic pH: implication for Barrett's esophagus pathogenesis

    PubMed Central

    Goldman, Aaron; Chen, Hwu Dau Rw; Roesly, Heather B.; Hill, Kimberly A.; Tome, Margaret E.; Dvorak, Bohuslav; Bernstein, Harris

    2011-01-01

    Barrett's esophagus (BE) is a premalignant condition, where normal squamous epithelium is replaced by intestinal epithelium. BE is associated with an increased risk of developing esophageal adenocarcinoma (EAC). However, the BE cell of origin is not clear. We hypothesize that BE tissue originates from esophageal squamous cells, which can differentiate to columnar cells as a result of repeated exposure to gastric acid and bile acids, two components of refluxate implicated in BE pathology. To test this hypothesis, we repeatedly exposed squamous esophageal HET1A cells to 0.2 mM bile acid (BA) cocktail at pH 5.5 and developed an HET1AR-resistant cell line. These cells are able to survive and proliferate after repeated 2-h treatments with BA at pH 5.5. HET1AR cells are resistant to acidification and express markers of columnar differentiation, villin, CDX2, and cytokeratin 8/18. HET1AR cells have increased amounts of reactive oxygen species, concomitant with a decreased level and activity of manganese superoxide dismutase compared with parental cells. Furthermore, HET1AR cells express proteins and activate signaling pathways associated with inflammation, cell survival, and tumorigenesis that are thought to contribute to BE and EAC development. These include STAT3, NF-κB, epidermal growth factor receptor (EGFR), cyclooxygenase-2, interleukin-6, phosphorylated mammalian target of rapamycin (p-mTOR), and Mcl-1. The expression of prosurvival and inflammatory proteins and resistance to cell death could be partially modified by inhibition of STAT3 signaling. In summary, our study shows that long-term exposure of squamous cells to BA at acidic pH causes the cells to display the same characteristics and markers as BE. PMID:21127259

  8. Did Life Emerge in Thermo-Acidic Conditions?

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2017-12-01

    There is widespread, but not unanimous, agreement that life emerged in hot conditions by exploiting redox and pH disequilibria found on early earth. Although there are several hypotheses to explain the postulated pH disequilibria, few of these consider that life evolved at very low pH (<4). Such environments are thought to be hostile to life and certainly a poor area to search for clues for the abiotic to biotic transition and the early evolution of energetic pathways. However, low pH environments offer some remarkable opportunities for early biological evolution. This presentation will evaluate the pros and cons of the hypothesis that the early evolution of life occurred in thermo-acidic conditions. Such environments are thought to have been abundant on early earth and were probably rich in hydrogen and soluble metals including iron and sulfur that could have served as sources and sinks of electrons. Extant thermo-acidophiles thrive in such conditions. Low pH environments are rich in protons that are the major drivers of energy conservation by coupling to phosphorylation in virtually all organisms on earth; this may be a "biochemical fossil" reflecting the use of protons (low pH) in primitive energy conservation. It has also been proposed that acidic conditions favored the evolution of an RNA world with expanded catalytic activities. On the other hand, the idea that life emerged in thermo-acidic conditions can be challenged because of the proposed difficulties of folding and stabilizing proteins simultaneously exposed to high temperature and low pH. In addition, although thermo-acidophiles root to the base of the phylogenetic tree of life, consistent with the proposition that they evolved early, yet there are problems of interpretation of their subsequent evolution that cloud this simplistic phylogenetic view. We propose solutions to these problems and hypothesize that life evolved in thermo-acidic conditions.

  9. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  10. Probing pH difference between micellar solution and nanoscale water within common black film by fluorescent dye

    NASA Astrophysics Data System (ADS)

    Fu, Jingni; Zhang, Luning

    2018-03-01

    The protonation/deprotonation equilibrium of a fluorescent pH probe (carboxy-seminaphthorhodafluor-1, SNARF-1) within the nanoscale water layer confined in common black films (CBFs) has been studied. We find that SNARF-1 molecules feel a more acidic environment in CBFs than when they are in the bulk micellar solution, using the base/acid peak area ratio of the dye to indicate its microenvironment pH. Three surfactants are used to study the dependence of the pH drop versus charge: cationic (cetyltrimethylammonium bromide, CTAB), anionic (sodium dodecylsulphate, SDS) and nonionic (Triton X-100) species. The decrease of CBFs pH versus the pH of the micellar solution is the following: ΔpH ≈ 1.5 for CTAB (pH: 7.0-9.0), ΔpH ≈ 0.8 for SDS, and ΔpH ≈ 0.4 for Triton X-100. With the addition of electrolyte in CBFs, we observe large decrease the amplitude of the pH anomaly, thus suggesting an electrostatic origin of the pH change at nanoscale environment.

  11. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  12. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasrotia, Puja; Green, Stefan; Canion, Andy

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungalmore » communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.« less

  13. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper.

    PubMed

    Meyer, Abigail; Greene, Melissa; Kimmelshue, Chad; Cademartiri, Rebecca

    2017-12-01

    Bacteriophages find applications in agriculture, medicine, and food safety. Many of these applications can expose bacteriophages to stresses that inactivate them including acidic and basic pH. Bacteriophages can be stabilized against these stresses by materials including paper, a common material in packaging and consumer products. Combining paper and bacteriophages creates antibacterial materials, which can reduce the use of antibiotics. Here we show that adsorption on paper protects T4, T5, and T7 bacteriophage from acidic and basic pH. We added bacteriophages to filter paper functionalized with carboxylic acid (carboxyl methyl cellulose) or amine (chitosan) groups, and exposed them to pH from 5.6 to 14. We determined the number of infective bacteriophages after exposure directly on the paper. All papers extended the lifetime of infective bacteriophage by at least a factor of four with some papers stabilizing bacteriophages for up to one week. The degree of stabilization depended on five main factors (i) the family of the bacteriophage, (ii) the charge of the paper and bacteriophages, (iii) the location of the bacteriophages within the paper, (iv) the ability of the paper to prevent bacteriophage-bacteriophage aggregation, and (v) the sensitivity of the bacteriophage proteins to the tested pH. Even when adsorbed on paper the bacteriophages were able to remove E. coli in milk. Choosing the right paper modification or material will protect bacteriophages adsorbed on that material against detrimental pH and other environmental challenges increasing the range of applications of bacteriophages on materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cytoplasmic pH Response to Acid Stress in Individual Cells of Escherichia coli and Bacillus subtilis Observed by Fluorescence Ratio Imaging Microscopy

    PubMed Central

    Martinez, Keith A.; Kitko, Ryan D.; Mershon, J. Patrick; Adcox, Haley E.; Malek, Kotiba A.; Berkmen, Melanie B.

    2012-01-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no “overshoot” but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms. PMID:22427503

  15. Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy.

    PubMed

    Martinez, Keith A; Kitko, Ryan D; Mershon, J Patrick; Adcox, Haley E; Malek, Kotiba A; Berkmen, Melanie B; Slonczewski, Joan L

    2012-05-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.

  16. Selenium speciation in acidic environmental samples: application to acid rain-soil interaction at Mount Etna volcano.

    PubMed

    Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus

    2011-09-01

    Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH<4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 μg L(-1) using (78)Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-05

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  18. Naturally occurring alkaline amino acids function as efficient catalysts on Knoevenagel condensation at physiological pH: a mechanistic elucidation.

    PubMed

    Li, Weina; Fedosov, Sergey; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2014-05-01

    To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic α-amino acid of L-lysine, L-arginine, and L-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation.

  19. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  20. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation.

    PubMed

    Zhao, Jianwei; Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Guo, Wenshan; Yang, Qi; Li, Xiaoming

    2018-02-01

    This study reports an innovative strategy known as stepwise pH fermentation, developed to enhance the production of short chain volatile fatty acids (SCFA) from waste activated sludge (WAS) anaerobic fermentation. Experimental results confirmed the optimal pH for WAS disruption and acidification was 11 and 9, respectively, and corresponding optimal time was, respectively, 5 d and 2 d. In this scenario, the optimal SCFA yield was 2356 mg chemical oxygen demand (COD)/L, which was much higher than that derived from alkaline fermentation system. Investigation of the mechanism indicated that pH 11 could accelerate the disruption of WAS and inhibit the activities of methanogens; furthermore, pH 9 was beneficial to the activity of acid-producing bacteria, resulting in more SCFA production. Stepwise pH fermentation integrated with sodium chloride (NaCl) present in WAS had synergistic impacts on WAS anaerobic fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity.

    PubMed

    Rindelaub, Joel D; Craig, Rebecca L; Nandy, Lucy; Bondy, Amy L; Dutcher, Cari S; Shepson, Paul B; Ault, Andrew P

    2016-02-18

    Atmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles. Herein, Raman microspectroscopy was used to determine the pH of individual particles (H2SO4+MgSO4) based on sulfate and bisulfate concentrations determined from νs(SO4(2-)) and νs(HSO4(-)), the acid dissociation constant, and activity coefficients from extended Debye-Hückel calculations. Shifts in pH and peak positions of νs(SO4(2-)) and νs(HSO4(-)) were observed as a function of relative humidity. These results indicate the potential for direct spectroscopic determination of pH in individual particles and the need to improve fundamental understanding of ion behavior in atmospheric particles.

  2. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.

    PubMed

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-05

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Extracellular pH regulation in microdomains of colonic crypts: effects of short-chain fatty acids.

    PubMed Central

    Chu, S; Montrose, M H

    1995-01-01

    It has been suggested that transepithelial gradients of short-chain fatty acids (SCFAs; the major anions in the colonic lumen) generate pH gradients across the colonic epithelium. Quantitative confocal microscopy was used to study extracellular pH in mouse distal colon with intact epithelial architecture, by superfusing tissue with carboxy SNARF-1 (a pH-sensitive fluorescent dye). Results demonstrate extracellular pH regulation in two separate microdomains surrounding colonic crypts: the crypt lumen and the subepithelial tissue adjacent to crypt colonocytes. Apical superfusion with (i) a poorly metabolized SCFA (isobutyrate), (ii) an avidly metabolized SCFA (n-butyrate), or (iii) a physiologic mixture of acetate/propionate/n-butyrate produced similar results: alkalinization of the crypt lumen and acidification of subepithelial tissue. Effects were (i) dependent on the presence and orientation of a transepithelial SCFA gradient, (ii) not observed with gluconate substitution, and (iii) required activation of sustained vectorial acid/base transport by SCFAs. Results suggest that the crypt lumen functions as a pH microdomain due to slow mixing with bulk superfusates and that crypts contribute significant buffering capacity to the lumen. In conclusion, physiologic SCFA gradients cause polarized extracellular pH regulation because epithelial architecture and vectorial transport synergize to establish regulated microenvironments. Images Fig. 1 Fig. 3 PMID:7724557

  4. The effect of antioxidants on quantitative changes of lysine and methionine in linoleic acid emulsions at different pH conditions.

    PubMed

    Hęś, Marzanna; Gliszczyńska-Świgło, Anna; Gramza-Michałowska, Anna

    2017-01-01

    Plants are an important source of phenolic compounds. The antioxidant capacities of green tea, thyme and rosemary extracts that contain these compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in emulsions and inhibit the interaction of lipid oxidation products with amino acids. Therefore, the influence of green tea, thyme and rosemary extracts and BHT (butylated hydroxytoluene) on quantitative changes in lysine and methionine in linoleic acid emulsions at a pH of isoelectric point and a pH lower than the isoelectric point of amino acids was investigated. Total phenolic contents in plant extracts were determined spectrophotometrically by using Folin-Ciocalteu's reagent, and individual phenols by using HPLC. The level of oxidation of emulsion was determined using the measurement of peroxides and TBARS (thiobarbituric acid reactive substances). Methionine and lysine in the system were reacted with sodium nitroprusside and trinitrobenzenesulphonic acid respectively, and the absorbance of the complexes was measured. Extract of green tea had the highest total polyphenol content. The system containing antioxidants and amino acid protected linoleic acid more efficiently than by the addition of antioxidants only. Lysine and methionine losses in samples without the addition of antioxidants were lower in their isoelectric points than below these points. Antioxidants decrease the loss of amino acids. The protective properties of antioxidants towards methionine were higher in a pH of isoelectric point whereas towards lysine in pH below this point. Green tea, thyme and rosemary extracts exhibit antioxidant activity in linoleic acid emulsions. Moreover, they can be utilized to inhibit quantitative changes in amino acids in lipid emulsions. However, the antioxidant efficiency of these extracts seems to depend on pH conditions. Further investigations should be carried out to clarify this issue.

  5. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  6. Comparison of the multichannel intraluminal impedance pH and conventional pH for measuring esophageal acid exposure: a propensity score-matched analysis.

    PubMed

    Hoshino, Masato; Omura, Nobuo; Yano, Fumiaki; Tsuboi, Kazuto; Yamamoto, Se Ryung; Akimoto, Shunsuke; Masuda, Takahiro; Kashiwagi, Hideyuki; Yanaga, Katsuhiko

    2017-12-01

    The modalities for evaluating acid reflux in medical care for gastroesophageal reflux disease (GERD) include conventional pH (C-pH), wireless pH (Bravo ® ) and multichannel intraluminal impedance pH (MII-pH), which have been reported to vary with respect to the duration of acid reflux. In this study, we examined the difference between the acid reflux in C-pH and MII-pH among patients with GERD. Prior to initial laparoscopic fundoplication carried out on 297 cases from December 1994 to April 2016, an upper gastrointestinal endoscopy and C-pH or MII-pH were conducted. A propensity score-matched analysis was carried out about five factors including age, sex, BMI, the extent of reflux esophagitis (Los Angeles classification), and the presence of hiatal hernia (HH), ultimately leading to the creation of a C-pH group (81 cases) and MII-pH group (81 cases) as the subjects. Concerning pH < 4 holding time (18.9 vs. 7.3%, p < 0.001), DeMeester score (58.5 vs. 24.4, p < 0.001), and the number of times reflux continued for longer than 5 min (8.8 vs. 4.1 times/day, p = 0.002), the C-pH group had significantly higher values for each, while the positive rate of acid reflux (Positive pH) was significantly higher in the C-pH group (p < 0.001), at 80% in the C-pH group and 42% in the MII-pH group. In terms of the correlation between the extent of reflux esophagitis and pH < 4 holding time, a moderate level of positive correlation was seen in both the C-pH group and MII-pH group (r of each = 0.427, r = 0.408); moreover, regardless of the presence of HH, the holding time was significantly higher in the C-pH group than the MII-pH group (p of each <0.001, p = 0.040). While the values of each parameter regarding acid reflux are calculated as lower in MII-pH than in C-pH, there is no difference in the evaluation of the pathology between the two modalities.

  7. [Association of the pH change of vaginal environment in bacterial vaginosis with presence of Enterococcus faecalis in vagina].

    PubMed

    Jahić, Mahira; Nurkić, Mahmud; Fatusić, Zlatan

    2006-01-01

    Normal pH value of vagina from 3.8 to 4.2 has regulatory and protectors mechanisms of vaginal environment. The change in the pH value indicates to presence of disbalance in the ecosystem of vaginal environment. The value of pH above 4.0 is indicator of the decreased number of lactobacillus bacteria and the increased number of other microorganisms in the vaginal environment. This situation is present in the case of developing of bacterial vaginosis. One of the bacteria which is often isolated from vaginal swabs is Enterococcus faecalis. Aims of this study are to examine presence o f Enterococcus faecalis in vagina in healthy women and womenwith signs of bacterial vaginosis, the most often present signs in patients with bacterial vaginosis and isolated Enterococcus faecalis from vaginal swabs, and to determine whether the change of the pH value of vaginal environment could be indicator for bacterial vaginosis associated with Enterococcus faecalis. In this study there were included 90 patients. To all patients there were done: gynecological survey, determined pH of vaginal environment and color of vaginal secret, amino odor test, and taken vaginal swabs for microbiological examination. Enterococcus faecalis was found in the patients with pH 4.0 in 24.05 % cases, but in the patients with signs of bacterial vaginosis it was found in 52.78 %. Positive findings of Enterococcus faecalis was the most often associated with presence of all tree signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret and positive amino odor test) it is in 60.78 6% cases. With two signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret) Enterococcus faecalis was present in 60 % cases. The only presence of change in the pH>4.0 was associated with Enterococcus faecalis in 52.78 %. This study showed that pH change of vaginal environment was associated with Enterococcus faecalis in bacterial vaginosis in high percentage but it can not be used as the sure sign of presence

  8. pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.

    PubMed

    Stempfhuber, Barbara; Engel, Marion; Fischer, Doreen; Neskovic-Prit, Ganna; Wubet, Tesfaye; Schöning, Ingo; Gubry-Rangin, Cécile; Kublik, Susanne; Schloter-Hai, Brigitte; Rattei, Thomas; Welzl, Gerhard; Nicol, Graeme W; Schrumpf, Marion; Buscot, Francois; Prosser, James I; Schloter, Michael

    2015-05-01

    In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH.

  9. Effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen acidosis in vitro.

    PubMed

    Long, M; Feng, W J; Li, P; Zhang, Y; He, R X; Yu, L H; He, J B; Jing, W Y; Li, Y M; Wang, Z; Liu, G W

    2014-02-01

    The aim of this study was to examine the effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 (M. elsdenii H6F32) on ruminal pH and the lactic acid concentrations in simulated rumen acidosis conditions in vitro. A mixed culture of ruminal bacteria, buffer, and primarily degradable substrates was inoculated with equal numbers of M. elsdenii H6 or M. elsdenii H6F32. The pH and lactic acid concentrations in the mixed culture were determined at 0, 2, 4, 6, 8, 10, 12, 14, 16, and 18 h of incubation. Acid-tolerant M. elsdenii H6F32 reduced the accumulation of lactic acid and increased the pH value. These results indicate that acid-tolerant M. elsdenii H6F32 could be a potential candidate for preventing rumen acidosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  11. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    PubMed

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Mechanisms of intragastric pH sensing.

    PubMed

    Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D

    2010-12-01

    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.

  13. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus

    NASA Astrophysics Data System (ADS)

    Sang, Min; Wang, Ming; Liu, Jianhui; Zhang, Chengwu; Li, Aifen

    2012-06-01

    The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20°C with the temperature being set at 20, 24, and 28°C. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100 μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.

  14. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].

    PubMed

    Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan

    2017-07-18

    Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.

  15. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  16. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells.

    PubMed

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-10-03

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca 2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca 2+ -dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.

  17. Inhibitors of acid secretion can benefit gastric wound repair independent of luminal pH effects on the site of damage

    PubMed Central

    Demitrack, Elise S; Aihara, Eitaro; Kenny, Susan; Varro, Andrea; Montrose, Marshall H

    2012-01-01

    Background and aims The authors’ goal was to measure pH at the gastric surface (pHo) to understand how acid secretion affects the repair of microscopic injury to the gastric epithelium. Methods Microscopic gastric damage was induced by laser light, during confocal/two-photon imaging of pH-sensitive dyes (Cl-NERF, BCECF) that were superfused over the mucosal surface of the exposed gastric corpus of anaesthetised mice. The progression of repair was measured in parallel with pHo. Experimental conditions included varying pH of luminal superfusates, and using omeprazole (60 mg/kg ip) or famotidine (30 mg/kg ip) to inhibit acid secretion. Results Similar rates of epithelial repair and resting pHo values (~pH 4) were reported in the presence of luminal pH 3 or pH 5. Epithelial repair was unreliable at luminal pH 2 and pHo was lower (2.5±0.2, P <0.05 vs pH 3). Epithelial repair was slower at luminal pH 7 and pHo was higher (6.4±0.1, P<0.001). In all conditions, pHo increased adjacent to damage. At luminal pH 3 or pH 7, omeprazole reduced maximal damage size and accelerated epithelial repair, although only at pH 3 did omeprazole further increase surface pH above the level caused by imposed damage. At luminal pH 7, famotidine also reduced maximal damage size and accelerated epithelial repair. Neither famotidine nor omeprazole raised plasma gastrin levels during the time course of the experiments. Conclusions Epithelial repair in vivo is affected by luminal pH variation, but the beneficial effects of acutely blocking acid secretion extend beyond simply raising luminal and/or surface pH. PMID:21997560

  18. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    contrast LVHP vs. LVLP). The k Val/Cr was faster under low pH, but decreasing digesta volume under high pH did not elicit such a response. The correlation between the absorptive surface area per square centimeter of rumen wall and the mean of the 3 k Val/Cr values of each cow was 0.90 (P < 0.01). Cows capable of maintaining a less-acidic rumen environment had greater inflow of water into the digestive cavity, had a more developed rumen mucosa, and were more efficient VFA absorbers.

  19. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  20. Models of Metabolic Community Structure in Martian Habitable Environments: Constraints from a Terrestrial Analog Acid-Sulfate Fumarole Environment, Cerro Negro Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rogers, K. L.; McCollom, T. M.; Hynek, B. M.

    2014-12-01

    Microbial habitability in extreme environments on Earth is described by microscale geochemical conditions that constrain metabolic niches in concert with long-term habitat stability that is governed by dynamic geologic processes. Using terrestrial analogs to identify habitable martian environments requires correlating microscale geochemical constraints with reconstructions of past martian environments that are based on global-scale observations. While past martian environments can be characterized by primary parameters (e.g. pH, redox, mineralogy, thermal history), microbial habitability on Earth is a complex function of both primary and derived parameters (e.g. metabolic reaction energetics, chemical & thermal gradients, flow dynamics). In recent years we have been investigating acid-sulfate fumaroles at the Mars analog site, Cerro Negro Volcano, Nicaragua, where habitability is constrained by steep thermal gradients, spatially- and temporally-variable vent dynamics, and limited water and nutrient availability. The most common niche identified thus far is found in fumaroles that host mixed photosynthetic and chemosynthetic endolithic microbial communities. One such endolith is dominated by acidic red algae (Cyanidiales), aerobic bacterial heterotrophs (Ktedonobacteria), and archaeal thermoacidophiles (Hyperthermus, Caldisphaera, and Thermofilum). An analysis of the metabolic structure suggests that primary production by the red algae supports the growth of heterotrophic thermoacidophiles. Diversification among the chemoheterotrophs with respect to temperature and oxygen tolerance suggests community adaptation to environmental gradients or variable venting dynamics. Furthermore, individual cells within the endolith are silica-encrusted, providing the possibility for biosignature formation and preservation. Putative hydrothermal environments on early Mars with similar conditions could have supported endolithic communities with comparable metabolic strategies. Even

  1. Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels

    NASA Astrophysics Data System (ADS)

    Wang, Congyan; Wu, Bingde; Jiang, Kun; Zhou, Jiawei

    2018-05-01

    Co-occurring invasive plant species (invaders hereafter) and natives receive similar or even the same environmental selection pressures. Thus, the differences in functional traits between natives and invaders have become widely recognized as a major driving force of the success of plant invasion. Meanwhile, increasing amounts of acid are deposited into ecosystems. Thus, it is important to elucidate the potential effects of acid deposition on the functional traits of invaders in order to better understand the potential mechanisms for the successful invasion. This study aims to address the differences in functional traits between native red amaranth (Amaranthus tricolor L.; amaranth hereafter) and invasive redroot pigweed (A. retroflexus L.; pigweed hereafter) under simulated acid deposition with a gradient of pH levels. Pigweed was significantly taller than amaranth under most treatments. The greater height of pigweed can lead to greater competitive ability for resource acquisition, particularly for sunlight. Leaf shape index of pigweed was also significantly greater than that of amaranth under all treatments. The greater leaf shape index of pigweed can enhance the efficiency of resource capture (especially sunlight capture) via adjustments to leaf shape and size. Thus, the greater height and leaf shape index of pigweed can significantly enhance its competitive ability, especially under acid deposition. Acid deposition of pH 5.6 significantly increased amaranth leaf width in the co-cultivation due to added nutrients. The pH 4.5 acid deposition treatment significantly increased the specific leaf area of amaranth in the monoculture compared with the pH 5.6 acid deposition treatment and the control. The main mechanism explaining this pattern may be due to acid deposition mediating a hormesis effect on plants, promoting plant growth. The values of the relative competition intensity between amaranth and pigweed for most functional traits were lower than zero under most

  2. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  3. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    PubMed

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH.

  4. Performance of high performance concrete (HPC) in low pH and sulfate environment.

    DOT National Transportation Integrated Search

    2013-05-01

    The goal of this research is to determine the impact of low pH and sulfate environment on high-performance concrete (HPC) and if the current structural and materials specifications provide adequate protections for concrete structures to meet the 75-y...

  5. HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli.

    PubMed

    Bi, Hongkai; Sun, Lianle; Fukamachi, Toshihiko; Saito, Hiromi; Kobayashi, Hiroshi

    2009-05-01

    The major histone-like Escherichia coli protein, HU, is composed of alpha and beta subunits respectively encoded by hupA and hupB in Escherichia coli. A mutant deficient in both hupA and hupB grew at a slightly slower rate than the wild type at pH 7.5. Growth of the mutant diminished with a decrease in pH, and no growth was observed at pH 4.6. Mutants of either hupA or hupB grew at all pH levels tested. The arginine-dependent survival at pH 2.5 was diminished approximately 60-fold by the deletion of both hupA and hupB, whereas the survival was slightly affected by the deletion of either hupA or hupB. The mRNA levels of adiA and adiC, which respectively encode arginine decarboxylase and arginine/agmatine antiporter, were low in the mutant deficient in both hupA and hupB. The deletion of both hupA and hupB had little effect on survival at pH 2.5 in the presence of glutamate or lysine, and expression of the genes for glutamate and lysine decarboxylases was not impaired by the deletion of the HU genes. These results suggest that HU regulates expression of the specific set of genes required for growth and survival in acidic environments.

  6. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    NASA Astrophysics Data System (ADS)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  7. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0.

  8. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments.

    PubMed

    Golyshina, Olga V; Timmis, Kenneth N

    2005-09-01

    For several decades, the bacterium Acidithiobacillus (previously Thiobacillus) has been considered to be the principal acidophilic sulfur- and iron-oxidizing microbe inhabiting acidic environments rich in ores of iron and other heavy metals, responsible for the metal solubilization and leaching from such ores, and has become the paradigm of such microbes. However, during the last few years, new studies of a number of acidic environments, particularly mining waste waters, acidic pools, etc., in diverse geographical locations have revealed the presence of new cell wall-lacking archaea related to the recently described, acidophilic, ferrous-iron oxidizing Ferroplasma acidiphilum. These mesophilic and moderately thermophilic microbes, representing the family Ferroplasmaceae, were numerically significant members of the microbial consortia of the habitats studied, are able to mobilize metals from sulfide ores, e.g. pyrite, arsenopyrite and copper-containing sulfides, and are more acid-resistant than iron and sulfur oxidizing bacteria exhibiting similar eco-physiological properties. Ferroplasma cell membranes contain novel caldarchaetidylglycerol tetraether lipids, which have extremely low proton permeabilities, as a result of the bulky isoprenoid core, and which are probably a major contributor to the extreme acid tolerance of these cell wall-less microbes. Surprisingly, several intracellular enzymes, including an ATP-dependent DNA ligase have pH optima close to that of the external environment rather than of the cytoplasm. Ferroplasma spp. are probably the major players in the biogeochemical cycling of sulfur and sulfide metals in highly acidic environments, and may have considerable potential for biotechnological applications such as biomining and biocatalysis under extreme conditions.

  9. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    USDA-ARS?s Scientific Manuscript database

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  10. Evaluation of Salivary Uric Acid and pH in Human Immunodeficiency Virus Infected Patients: A Historical Cohort Study.

    PubMed

    Ahmadi-Motamayel, Fatemeh; Amjad, Samaneh Vaziri; Goodarzi, Mohammad Taghi; Poorolajal, Jalal

    2018-01-01

    Antioxidants protect the body against cellular damage. Saliva has immunological, enzymatic and antioxidant defense systems. Uric acid is the main and predominant salivary antioxidant. The aim of this study was to evaluate salivary uric acid levels and pH in HIV-infected patients in the west of Iran. HIV-infected patients were selected from behavioral advisory centers of Hamadan and Kermanshah Provinces, west of Iran. Saliva was collected between 8 and10 in the morning. Five mL of whole unstimulated saliva was collected in 5 minutes by spitting into sterilized Falcon tubes based on Navazesh method; pH was measured with a pH meter and uric acid was assessed with spectrophotometric method. Data were analyzed with STATA 12. Salivary pH in the HIV-positive group was lower (6.99±0.46) than the healthy controls (7.14±1.03) but the difference was not statistically significant (P=380). Uric acid concentrations in HIV-infected patients (2.94±2.14) were significantly lower in comparison to the healthy controls (5.21±2.30). The results showed a statistically significant decrease in the case group (P=0.001). Mean age and DMFT index of the case group were higher than the control group. Uric acid, the main antioxidant of saliva, was significantly lower in HIVinfected individuals; pH also was lower in these patients. HIV can alter salivary antioxidant status, which can influence patients' oral health status. Diet with antioxidant properties might be helpful in these patients. More research is necessary to discover true antioxidant and salivary changes and their relation with HIV consequences in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Pd(II)/PhI(OAc)2 promoted direct cross coupling of glucals with aromatic acids.

    PubMed

    Begum, Zubeda; Shankar, G; Sirisha, K; Reddy, B V Subba

    2018-05-22

    A highly efficient oxidative C2-aroyloxylation of D-glucal with aromatic carboxylic acids has been achieved for the first time using 5 mol% Pd(OAc) 2 and 1 equiv of PhI(OAc) 2 to produce C2-aroyloxyglycals in good yields. The use of excess of PhI(OAc) 2 (2 equiv) provides C2-acyloxyglycal exclusively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide

    PubMed Central

    Ippolito, Joseph E.; Brandenburg, Matthew W.; Ge, Xia; Crowley, Jan R.; Kirmess, Kristopher M.; Som, Avik; D’Avignon, D. Andre; Arbeit, Jeffrey M.; Achilefu, Samuel; Yarasheski, Kevin E.; Milbrandt, Jeffrey

    2016-01-01

    Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5) on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG) mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS)-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer. PMID:27438712

  13. Evaluation of citric acid and GDL in the recovery at different pH levels of Clostridium sporogenes PA 3679 spores subjected to HTST treatment conditions.

    PubMed

    Silla Santos, M H; Torres Zarzo, J

    1996-04-01

    Spores of Clostridium sporogenes PA 3679 were treated at different temperatures (121, 126, 130 and 135 degrees C) in white asparagus purée (pH 5.8) and acidified with glucono-delta-lactone (GDL) and citric acid to pH levels of 5.5, 5.0 and 4.5. Afterwards, the spores were recovered in MPA3679 medium in various conditions: unacidified (pH 7.5), acidified with GDL (500 ppm) and acidified with citric acid (500 and 250 ppm) to pH levels of 6.5, 6.0 and 5.0. The results indicated that the pH levels, concentration and type of acid used act synergistically rather than independently. Citric acid has a stronger inhibiting effect than GDL on the recovery of C. sporogenes PA 3679 spores. At the higher heat treatments (130 and 135 degrees C) the major injury on the spores sensitize more than against the acids and low pH values.

  14. Biophysical implications of sphingosine accumulation in membrane properties at neutral and acidic pH.

    PubMed

    Zupancic, Eva; Carreira, Ana C; de Almeida, Rodrigo F M; Silva, Liana C

    2014-05-08

    Sphingosine (Sph) is a simple lipid involved in the regulation of several biological processes. When accumulated in the late endosomal/lysosomal compartments, Sph causes changes in ion signaling and membrane trafficking, leading to the development of Niemann-Pick disease type C. Little is known about Sph interaction with other lipids in biological membranes; however, understanding the effect of Sph in the physical state of membranes might provide insights into its mode of action. Using complementary established fluorescence approaches, we show that Sph accumulation leads to the formation of Sph-enriched gel domains in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/sphingomyelin (SM)/cholesterol (Chol) model membranes. These domains are more easily formed in membrane models mimicking the neutral pH plasma membrane environment (PM) as compared to the acidic lysosomal membrane environment (LM), where higher Sph concentrations (or lower temperatures) are required. Electrophoretic light scattering measurements further revealed that in PM-raft models (POPC/SM/Chol), Sph is mainly neutral, whereas in LM models, the positive charge of Sph leads to electrostatic repulsion, reducing the Sph ability to form gel domains. Thus, formation of Sph-enriched domains in cellular membranes might be strongly regulated by Sph charge.

  15. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.

    PubMed

    Li, Shuocong; Liu, Hong; Gao, Rui; Abdurahman, Abliz; Dai, Juan; Zeng, Feng

    2018-06-01

    Microplastics are an emerging contaminants of concern in aquatic environments. The aggregation behaviors of microplastics governing their fate and ecological risks in aquatic environments is in need of evaluation. In this study, the aggregation behavior of polystyrene microspheres (micro-PS) in aquatic environments was systematically investigated over a range of monovalent and divalent electrolytes with and without natural organic matter (i.e., Suwannee River humic acid (HA)), at pH 6.0, respectively. The zeta potentials and hydrodynamic diameters of micro-PS were measured and the subsequent aggregation kinetics and attachment efficiencies (α) were calculated. The aggregation kinetics of micro-PS exhibited reaction- and diffusion-limited regimes in the presence of monovalent or divalent electrolytes with distinct critical coagulation concentration (CCC) values, followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The CCC values of micro-PS were14.9, 13.7, 14.8, 2.95 and 3.20 mM for NaCl, NaNO 3 , KNO 3 , CaCl 2 and BaCl 2 , respectively. As expected, divalent electrolytes (i.e., CaCl 2 and BaCl 2 ) had stronger influence on the aggregation behaviors of micro-PS as compared to monovalent electrolytes (i.e., NaCl, NaNO 3 and KNO 3 ). HA enhanced micro-PS stability and shifted the CCC values to higher electrolyte concentrations for all types of electrolytes. The CCC values of micro-PS were lower than reported carbonaceous nanoparticles CCC values. The CCC[Ca 2+ ]/CCC [Na + ] ratios in the absence and presence of HA at pH 6.0 were proportional to Z -2.34 and Z -2.30 , respectively. These ratios were in accordance with the theoretical Schulze-Hardy rule, which considers that the CCC is proportional to z -6 -z -2 . These results indicate that the stability of micro-PS in the natural aquatic environment and the possibility of significant aqueous transport of micro-PS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Migration of 18 trace elements from ceramic food contact material: influence of pigment, pH, nature of acid and temperature.

    PubMed

    Demont, M; Boutakhrit, K; Fekete, V; Bolle, F; Van Loco, J

    2012-03-01

    The effect of pH, nature of acid and temperature on trace element migration from ceramic ware treated with 18 commercially available glazes was studied. Besides of the well-studied lead and cadmium, migration of other toxic and non toxic elements such as aluminum, boron, barium, cobalt, chrome, copper, iron, lithium, magnesium, manganese, nickel, antimony, tin, strontium, titanium, vanadium, zinc and zirconium was investigated in order to evaluate their potential health hazards. Trace element concentrations were determined with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This study suggests that there is indeed a health risk concerning the possible migration of other elements than lead and cadmium. At low pH (2<pH<3), the nature of the acid plays an important role. Citric and malic acid seem to be more aggressive to the glaze than acetic acid except for aluminum, barium, chromium, iron and magnesium. The migration kinetics between pH 2 and 3 in acetic acid of these exceptions also are more exponential while the other elements display a decreasing linear gradient. In ceramics used for this study (fired at 900 °C), a linear relationship between the migration and the temperature was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  18. A water-soluble rhodamine B-derived fluorescent probe for pH monitoring and imaging in acidic regions

    NASA Astrophysics Data System (ADS)

    Cui, Peng; Jiang, Xuekai; Sun, Junyong; Zhang, Qiang; Gao, Feng

    2017-06-01

    A structurally simple, water-soluble rhodamine-derivatived fluorescent probe, which is responsive to acidic pH, was conveniently synthesized via a one-step condensation reaction of rhodamine B hydrazide and 4-formybenzene-1,3-disulfonate. As a stable and highly sensitive pH sensor, the probe displays an approximately 50-fold fluorescence enhancement over the pH range of 7.16-4.89 as the structure of probe changes from spirocyclic (weak fluorescent) to ring-open (strong fluorescent) with decreasing pH. The synthesized fluorescent probe is applied to the detection of pH changes in vitro and in vivo bioimaging of immortalized gastric cancer cells, with satisfactory results.

  19. Metal/Metal Oxide Differential Electrode pH Sensors

    NASA Technical Reports Server (NTRS)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  20. pH feedback and phenotypic diversity within bacterial functional groups of the human gut.

    PubMed

    Kettle, Helen; Donnelly, Ruairi; Flint, Harry J; Marion, Glenn

    2014-02-07

    Microbial diversity in the human colon is very high with apparently large functional redundancy such that within each bacterial functional group there are many coexisting strains. Modelling this mathematically is problematic since strains within a functional group are often competing for the same limited number of resources and therefore competitive exclusion theory predicts a loss of diversity over time. Here we investigate, through computer simulation, a fluctuation dependent mechanism for the promotion of diversity. A variable pH environment caused by acidic by-products of bacterial growth on a fluctuating substrate coupled with small differences in acid tolerance between strains promotes diversity under both equilibrium and far-from-equilibrium conditions. Under equilibrium conditions pH fluctuations and relative nonlinearity in pH limitation among strains combine to prevent complete competitive exclusion. Under far-from-equilibrium conditions, loss of diversity through extinctions is made more difficult because pH cycling leads to fluctuations in the competitive ranking of strains, thereby helping to equalise fitness. We assume a trade-off between acid tolerance and maximum growth rate so that our microbial system consists of strains ranging from specialists to generalists. By altering the magnitude of the effect of the system on its pH environment (e.g. the buffering capacity of the colon) and the pattern of incoming resource we explore the conditions that promote diversity. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Identification of key amino acid residues responsible for internal and external pH sensitivity of Orai1/STIM1 channels.

    PubMed

    Tsujikawa, Hiroto; Yu, Albert S; Xie, Jia; Yue, Zhichao; Yang, Wenzhong; He, Yanlin; Yue, Lixia

    2015-11-18

    Changes of intracellular and extracellular pH are involved in a variety of physiological and pathological processes, in which regulation of the Ca(2+) release activated Ca(2+) channel (I CRAC) by pH has been implicated. Ca(2+) entry mediated by I CRAC has been shown to be regulated by acidic or alkaline pH. Whereas several amino acid residues have been shown to contribute to extracellular pH (pHo) sensitivity, the molecular mechanism for intracellular pH (pHi) sensitivity of Orai1/STIM1 is not fully understood. By investigating a series of mutations, we find that the previously identified residue E106 is responsible for pHo sensitivity when Ca(2+) is the charge carrier. Unexpectedly, we identify that the residue E190 is responsible for pHo sensitivity when Na(+) is the charge carrier. Furthermore, the intracellular mutant H155F markedly diminishes the response to acidic and alkaline pHi, suggesting that H155 is responsible for pHi sensitivity of Orai1/STIM1. Our results indicate that, whereas H155 is the intracellular pH sensor of Orai1/STIM1, the molecular mechanism of external pH sensitivity varies depending on the permeant cations. As changes of pH are involved in various physiological/pathological functions, Orai/STIM channels may be an important mediator for various physiological and pathological processes associated with acidosis and alkalinization.

  2. Cerro Negro, Nicaragua: A key Mars Analog Environment for Acid-Sulfate Weathering

    NASA Astrophysics Data System (ADS)

    Hynek, B. M.; Rogers, K. L.; McCollom, T. M.

    2008-12-01

    Sulfate-rich bedrock has been discovered in many locations on Mars and has been studied by both orbiting spacecraft and landers. It appears that in most cases these minerals are produced by acid-sulfate weathering of igneous rocks, which may have been a widespread process for the first billion years of Mars' history. The origin of life on Earth may have occurred in iron-sulfur hydrothermal settings and it is conceivable that early Mars had similar environmental conditions. An excellent terrestrial analog for acid- sulfate weathering of Mars-like basalts exists at Cerro Negro (CN), Nicaragua, where sulfur-bearing gases interact with recently erupted basaltic ash in numerous fumaroles. To date, we have made two expeditions to CN to assess the chemical, mineralogical, and biological conditions. At the fumaroles pH ranges from <1 to 5 and temperatures range from 40 to 400° C. Basalts with a chemical composition very similar to those on Mars are being chemically altered in the solfatara setting. In a few years, freshly erupted basalt can be converted into predominately Ca-, Mg-, and Fe-sulfates, Fe-hydroxides (including jarosite), clays, and free silica. Altered rocks have up to 30 wt% SO3 equivalent, which is similar to the Meridiani Planum bedrocks and inferred in other sulfate-bearing bedrock on Mars. Moreover, heavily weathered rocks have silica contents up to 80 wt%, similar to silica-rich soils at Gusev Crater that possibly formed in hydrothermal environments. Samples were collected for biological analysis including enrichment and isolation of novel thermophiles as well as molecular characterization of thermophile diversity. The low water and nutrient levels found in solfatara environments lead to less biomass when compared to hot springs with similar geochemical conditions. Nonetheless, microbes are thriving in these hot, acidic vent environments. At Cerro Negro solfatara, we are characterizing the metabolic and phylogenetic diversity of resident microbial

  3. Effects of the Urban Heat Island on Aerosol pH

    NASA Astrophysics Data System (ADS)

    Battaglia, M., Jr.; Douglas, S.; Hennigan, C. J.

    2017-12-01

    The urban heat island (UHI) is a widely observed phenomenon whereby urban environments have higher temperature (T) and lower relative humidity (RH) than surrounding suburban and rural areas. Both of these factors affect the partitioning of semi-volatile species found in the atmosphere, such as nitric acid and ammonia. These species are inherently tied to aerosol pH, which is a key parameter driving some atmospheric chemical processes and environmental effects of aerosols. In this study, we characterized the effect of the UHI on aerosol pH in Baltimore, MD and Chicago, IL. These cities were selected based on differences in climatology, source influences, and atmospheric composition. Meteorological and atmospheric composition data from the urban centers and surrounding rural locations were used as inputs to the ISORROPIA-II aerosol thermodynamic model to compute gas/particle partitioning, aerosol liquid water content, and aerosol pH. Dramatic differences in aerosol liquid water (ALW) content were found in both cities and were attributable to the T and RH differences (UHI effect). The urban-rural differences in ALW result in urban aerosol pH that is systematically lower (more acidic) than rural aerosol pH for identical atmospheric composition. The UHI in Baltimore is most intense during the summer and at night, with differences of up to 1 pH unit predicted during these times. Similarly, the UHI in Chicago is most intense during the summer and at night; however, the atmospheric composition in Chicago shows a mediating effect, with differences of up to 0.65 pH units predicted during these times. These results are likely to have broad implications for chemistry occurring in and around urban atmospheres globally, although the magnitude of the effect may differ based on the UHI characteristic of each urban environment.

  4. Cancer: fundamentals behind pH targeting and the double-edged approach

    PubMed Central

    Koltai, Tomas

    2016-01-01

    The highly regulated pH of cells and the less-regulated pH of the surrounding extracellular matrix (ECM) is the result of a delicate balance between metabolic processes and proton production, proton transportation, chemical buffering, and vascular removal of waste products. Malignant cells show a pronounced increase in metabolic processes where the 10- to 15-fold rise in glucose consumption is only the tip of the iceberg. Aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer metabolism that implies excessive production of protons, which if stayed inside the cells would result in fatal intracellular acidosis (maintaining a strict acid–base balance is essential for the survival of eukaryotic cells). Malignant cells solve this problem by increasing mechanisms of proton transportation which expel the excess acidity. This allows cancer cells to keep a normal intracellular pH, or even overshooting this mechanism permits a slightly alkaline intracellular tendency. The proton excess expelled from malignant cells accumulates in the ECM, where chronic hypoxia and relative lack of enough blood vessels impede adequate proton clearance, thus creating an acidic microenvironment. This microenvironment is quite heterogeneous due to the tumor’s metabolic heterogeneity and variable degrees of hypoxia inside the tumor mass. The acidic environment (plus other necessary cellular modifications) stimulates migration and invasion and finally intravasation of malignant cells which eventually may result in metastasis. Targeting tumor pH may go in two directions: 1) increasing extracellular pH which should result in less migration, invasion, and metastasis; and 2) decreasing intracellular pH which may result in acidic stress and apoptosis. Both objectives seem achievable at the present state of the art with repurposed drugs. This hypothesis analyzes the altered pH of tumors and its implications for progression and metastasis and also possible repurposed drug combinations

  5. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.

    PubMed

    Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K

    2013-05-17

    Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.

  6. The effect of antacid on salivary pH in patients with and without dental erosion after multiple acid challenges.

    PubMed

    Dhuhair, Sarah; Dennison, Joseph B; Yaman, Peter; Neiva, Gisele F

    2015-04-01

    To evaluate the effect of antacid swish in the salivary pH values and to monitor the pH changes in subjects with and without dental erosion after multiple acid challenge tests. 20 subjects with tooth erosion were matched in age and gender with 20 healthy controls according to specific inclusion/exclusion criteria. Baseline measures were taken of salivary pH, buffering capacity and salivary flow rate using the Saliva Check System. Subjects swished with Diet Pepsi three times at 10-minute intervals. Changes in pH were monitored using a digital pH meter at 0-, 5-, and 10- minute intervals and at every 5 minutes after the third swish until pH resumed baseline value or 45 minutes relapse. Swishing regimen was repeated on a second visit, followed by swishing with sugar-free liquid antacid (Mylanta Supreme). Recovery times were also recorded. Data was analyzed using independent t-tests, repeated measures ANOVA, and Fisher's exact test (α= 0.05). Baseline buffering capacity and flow rate were not significantly different between groups (P= 0.542; P= 0.2831, respectively). Baseline salivary pH values were similar between groups (P= 0.721). No significant differences in salivary pH values were found between erosion and non-erosion groups in response to multiple acid challenges (P= 0.695) or antacid neutralization (P= 0.861). Analysis of salivary pH recovery time revealed no significant differences between groups after acid challenges (P= 0.091) or after the use of antacid (P= 0.118). There was a highly significant difference in the survival curves of the two groups on Day 2, with the non-erosion group resolving significantly faster than the erosion group (P= 0.0086).

  7. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    PubMed

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries. © 2013 John Wiley & Sons Ltd.

  8. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects.

    PubMed

    Zhao, Yanping; Geng, Jinju; Wang, Xiaorong; Gu, Xueyuan; Gao, Shixiang

    2011-07-01

    Contamination of environmental matrixes by human and animal wastes containing antibiotics is a growing health concern. Because tetracycline is one of the most widely-used antibiotics in the world, it is important to understand the factors that influence its mobility in soils. This study investigated the effects of pH, background electrolyte cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), heavy metal Cu(2+) and humic acid (HA) on tetracycline adsorption onto kaolinite. Results showed that tetracycline was greatly adsorbed by kaolinite over pH 3-6, then decreased with the increase of pH, indicating that tetracycline adsorption mainly through ion exchange of cations species and complexation of zwitterions species. In the presence of five types of cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), tetracycline adsorption decreased in accordance with the increasing of atomic radius and valence of metal cations, which suggested that outer-sphere complexes formed between tetracycline and kaolinite, and the existence of competitor ions lead to the decreasing adsorption. The presence of Cu(2+) greatly enhanced the adsorption probably by acting as a bridge ion between tetracycline species and the edge sites of kaolinite. HA also showed a major effect on the adsorption: at pH < 6, the presence of HA increased the adsorption, while the addition of HA showed little effect on tetracycline adsorption at higher pH. The soil environmental conditions, like pH, metal cations and soil organic matter, strongly influence the adsorption behavior of tetracycline onto kaolinite and need to be considered when assessing the environmental toxicity of tetracycline.

  9. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. © 2016. Published by The Company of Biologists Ltd.

  10. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    PubMed

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  11. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study.

    PubMed

    Fenton, Tanis R; Eliasziw, Misha; Tough, Suzanne C; Lyon, Andrew W; Brown, Jacques P; Hanley, David A

    2010-05-10

    The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis.The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults. Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index. There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders. Urine pH and urine acid excretion do not predict osteoporosis risk.

  12. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor.

    PubMed

    Vieira, Bárbara F; Couto, Pâmela T; Sancinetti, Giselle P; Klein, Bernhard; van Zyl, Dirk; Rodriguez, Renata P

    2016-08-23

    The successful use of anaerobic reactors for bioremediation of acid mine drainage has been shown in systems with neutral pH. However, the choice of an efficient and suitable process for such wastewater must consider the capability of operating at acidic pH and in the presence of metals. This work studies the performance of an anaerobic batch reactor, under conditions of varying initial pH for its efficiencies in sulfate removal and metal precipitation from synthetic acid mine drainage. The chemical oxygen demand/sulfate (COD/SO4(2-)) ratio used was 1.00, with ethanol chosen as the only energy and carbon source. The initial pH of the synthetic drainage was progressively set from 7.0 to 4.0 to make it as close as possible to that of real acid mine drainage. Metals were also added starting with iron, zinc, and finally copper. The effectiveness of sulfate and COD removal from the synthetic acid mine drainage increased as the initial pH was reduced. The sulfate removal increased from 38.5 ± 3.7% to 52.2 ± 3%, while the removal of organic matter started at 91.7 ± 2.4% and ended at 99 ± 1%. These results indicate that the sulfate reducing bacteria (SRB) community adapted to lower pH values. The metal removal observed was 88 ± 7% for iron, 98.0 ± 0.5% for zinc and 99 ± 1% for copper. At this stage, an increase in the sulfate removal was observed, which reaches up to 82.2 ± 5.8%. The kinetic parameters for sulfate removal were 0.22 ± 0.04 h(-1) with Fe, 0.26 ± 0.04 h(-1) with Fe and Zn and 0.44 ± 0.04 h(-1) with Fe, Zn, and Cu.

  13. The pH sensibility of actin-bundling LIM proteins is governed by the acidic properties of their C-terminal domain.

    PubMed

    Moes, Danièle; Hoffmann, Céline; Dieterle, Monika; Moreau, Flora; Neumann, Katrin; Papuga, Jessica; Furtado, Angela Tavares; Steinmetz, André; Thomas, Clément

    2015-08-19

    Actin-bundling Arabidopsis LIM proteins are subdivided into two subfamilies differing in their pH sensitivity. Widely-expressed WLIMs are active under low and high physiologically-relevant pH conditions, whereas pollen-enriched PLIMs are inactivated by pH values above 6.8. By a domain swapping approach we identified the C-terminal (Ct) domain of PLIMs as the domain responsible for pH responsiveness. Remarkably, this domain conferred pH sensitivity to LIM proteins, when provided "in trans" (i.e., as a single, independent, peptide), indicating that it operates through the interaction with another domain. An acidic 6xc-Myc peptide functionally mimicked the Ct domain of PLIMs and efficiently inhibited LIM actin bundling activity under high pH conditions. Together, our data suggest a model where PLIMs are regulated by an intermolecular interaction between their acidic Ct domain and another, yet unidentified, domain. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Improving clarity and stability of skim milk powder dispersions by dissociation of casein micelles at pH 11.0 and acidification with citric acid.

    PubMed

    Pan, Kang; Zhong, Qixin

    2013-09-25

    Casein micelles in milk cause turbidity and have poor stability at acidic conditions. In this study, skim milk powder dispersions were alkalized to pH 10.0 or 11.0, corresponding to reduced particle mass. In the following acidification with hydrochloric or citric acid, the re-formation of casein particles was observed. The combination of treatment at pH 11.0 and acidification with citric acid resulted in dispersions with the lowest turbidity and smallest particles, which enabled translucent dispersions at pH 5.5-7.0, corresponding to discrete nanoparticles. The concentration of ionic calcium was lower when acidified with citric acid than hydrochloric acid, corresponding to smaller particles with less negative zeta potential. The pH 11.0 treatment followed by acidification with citric acid also resulted in smaller particles than the simple chelating effects (directly implementing sodium citrate). The produced casein nanoparticles with reduced dimensions can be used for beverage and other novel applications.

  15. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26more » forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.« less

  16. The Role of Citric Acid in the Stabilization of Nanoparticles and Colloidal Particles in the Environment: Measurement of Surface Forces between Hafnium Oxide Surfaces in the Presence of Citric Acid.

    PubMed

    Shinohara, Shuhei; Eom, Namsoon; Teh, E-Jen; Tamada, Kaoru; Parsons, Drew; Craig, Vincent S J

    2018-02-27

    The interactions between colloidal particles and nanoparticles determine solution stability and the structures formed when the particles are unstable to flocculation. Therefore, knowledge of the interparticle interactions is important for understanding the transport, dissolution, and fate of particles in the environment. The interactions between particles are governed by the surface properties of the particles, which are altered when species adsorb to the surface. The important interactions in the environment are almost never those between the bare particles but rather those between particles that have been modified by the adsorption of natural organic materials. Citric acid is important in this regard not only because it is present in soil but also as a model of humic and fulvic acids. Here we have studied the surface forces between the model metal oxide surface hafnia in the presence of citric acid in order to understand the stability of colloidal particles and nanoparticles. We find that citric acid stabilizes the particles over a wide range of pH at low to moderate ionic strength. At high ionic strength, colloidal particles will flocculate due to a secondary minimum, resulting in aggregates that are dense and easily redispersed. In contrast, nanoparticles stabilized by citric acid remain stable at high ionic strengths and therefore exist in solution as individual particles; this will contribute to their dispersion in the environment and the uptake of nanoparticles by mammalian cells.

  17. Intracellular pH regulation by acid-base transporters in mammalian neurons

    PubMed Central

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  18. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum

    PubMed Central

    2013-01-01

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h−1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production. PMID:23294525

  19. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum.

    PubMed

    Yang, Xuepeng; Tu, Maobing; Xie, Rui; Adhikari, Sushil; Tong, Zhaohui

    2013-01-07

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h-1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production.

  20. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.

    PubMed

    Yang, A S; Honig, B

    1994-04-15

    A recently developed approach to calculate the pH dependence of protein stability from three-dimensional structure information is applied to the analysis of acid denaturation of sperm whale apomyoglobin. The finite difference Poisson-Boltzmann method is used to calculate pKa values and these are used to obtain titration curves for the folded protein as well as for compact intermediates. The total electrostatic free energy change involved in apomyoglobin unfolding is then evaluated. Calculations are carried out of the unfolding free energy of the native (N) and the compact intermediate (I) of apomyoglobin relative to the unfolded state (U) over a range of pH at various ionic strengths. The contributions from key ionizable groups to the unfolding process are discussed. For the acid-induced partial unfolding of apomyoglobin near pH 5, the transition from N to I is found to be driven by three histidines that are exposed when the B, C, D and E helices unfold. Similarly, the unfolding of the compact intermediate I consisting of the A, G and H helices is driven primarily by a few carboxylic acids with low pKa values in the compact state. This picture is in contrast to the view which attributes acid denaturation to electrostatic repulsion resulting from the build up of positive charge. In fact, charge-charge interactions in myoglobin are found to be attractive at all pH values where the protein unfolds. pH-dependent changes in these interactions contribute to acid denaturation but other electrostatic effects, such as hydrogen bonding and solvation, are important as well. The effect of increasing ionic strength on unfolding is attributed to the decrease of attractive charge-charge interactions which destabilize the N state relative to I, but stabilize the I state relative to U by reducing the pKa shifts of a few critical carboxylic acids. The I state is found to be more stable than U at neutral pH thus accounting for its presence as an intermediate on the protein folding

  1. pH dependent growth of poly( L-lysine)/poly( L-glutamic) acid multilayer films and their cell adhesion properties

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Arntz, Youri; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2004-10-01

    The short-term interaction of chondrosarcoma cells with (PGA/PLL) polyelectrolyte multilayers was investigated in a serum-containing medium for films built at different pHs and subsequently exposed to the culture medium. The buildup of the films and their stability was first investigated by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, streaming potential measurements and atomic force microscopy. While film growth is linear at all pHs, after a few layers have been deposited the growth is much larger for the films built at basic pH and even more pronounced for those built at acidic pH. However, these latter films remain stable in the culture medium only if they have been crosslinked prior to the ionic strength and pH jumps. The films built at acidic pH were found to swell in water by about 200% whereas those built at other pHs did not swell in a physiological buffer. For thin films (≈20 nm) built at pH = 7.4, the detachment forces were dependent on the outermost layer, the forces being significantly higher on PLL-ending films than on PGA-ending ones. In contrast, for the thick films built at pH = 4.4 and at pH = 10.4 (thickness of the order of few hundred of nanometers), the detachment forces were independent of the outermost layer of the film. The films built at pH = 10.4, which shrink in contact with salt containing solutions, were highly cell adhesive whereas those built at acidic pH were highly cell resistant. Protein adsorption and film roughness (as measured by AFM) could not explain these striking differences. The high adhesion observed on the film built at pH 10.4 may rather be related to the secondary structure of the film and to its relatively low swellability in water, whereas the cell resistance of the films built at pH 4.4 may be linked to their high swellability. Therefore, for the PGA/PLL films, the cell adhesion properties can be tuned depending on the deposition pH of the polyelectrolyte solutions. This study

  2. Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen.

    PubMed

    Shabir, Farya; Erum, Alia; Tulain, Ume Ruqia; Hussain, Muhammad Ajaz; Ahmad, Mahmood; Akhter, Faiza

    2017-01-01

    Some pH responsive polymeric matrix of Linseed ( Linum usitatissimum ), L. hydrogel (LSH) was prepared by free radical polymerization using potassium persulfate (KPS) as an initiator, N,N -methylene bisacrylamide (MBA) as a crosslinker, acrylic acid (AA) and methacrylic acid (MAA) as monomers; while ketoprofen was used as a model drug. Different formulations of LSH-co-AA and LSH-co-MAA were formulated by varying the concentration of crosslinker and monomers. Structures obtained were thoroughly characterized using Fourier transforms infrared (FTIR) spectroscopy, XRD analysis and Scanning electron microscopy. Sol-gel fractions, porosity of the materials and ketoprofen loading capacity were also measured. Swelling and in vitro drug release studies were conducted at simulated gastric fluids, i.e., pH 1.2 and 7.4. FTIR evaluation confirmed successful grafting of AA and MAA to LSH backbone. XRD studies showed retention of crystalline structure of ketoprofen in LSH-co-AA and its amorphous dispersion in LSH-co-MAA. Gel content was increased by increasing MBA and monomer content; whereas porosity of hydrogel was increased by increasing monomer concentration and decreased by increasing MBA content. Swelling of copolymer hydrogels was high at pH 7.4 and low at pH 1.2. Ketoprofen release showed an increasing trend by increasing monomer content; however it was decreased with increasing MBA content. Sustained release of ketoprofen was noted from copolymers and release followed Korsmeyer-Peppas model.

  3. Effect of pH and chloroauric acid concentration on the geometry of gold nanoparticles obtained by photochemical synthesis

    NASA Astrophysics Data System (ADS)

    Conde Rodríguez, G. R.; Gauthier, G. H.; Ladeira, L. O.; Sanabria Cala, J. A.; Laverde Cataño, D.

    2017-12-01

    Due to their excellent surface properties, gold nanoparticles have been used in a wide range of applications from optics and catalysis to biology and cancer treatment by thermal therapy. Gold nanoparticles can absorb a large amount of radiation according to their geometry, such as nanospheres and nanorods. The importance of gold nanoparticles geometry is based on the electromagnetic spectrum wavelength where exists a greater absorption of radiation, which belongs to the visible region for nanospheres and ranges between visible and near infrared regions for nanorods, conferring greater biomedical applicability to the latter. When using photochemical synthesis method, which consists of reducing gold atoms to their metallic state with UV radiation, the geometry of gold nanoparticles depends on different variables such as: 1) pH, 2) concentration of chloroauric acid, 3) the surfactant, 4) concentration of silver nitrate, 5) temperature and 6) irradiation time. Therefore, in this study the geometry of the gold nanoparticles obtained by photochemical synthesis was determined as a function of solution pH and chloroauric acid concentration, using Spectrophotometry in the Ultraviolet Visible region (UV-vis) as characterization technique. From the analysis of the UV-vis spectra, it was determined that at an acidic pH the particles have two absorption bands corresponding to nanorods geometry, while at a basic pH only nanospheres are found and at a neutral pH the lower relative intensity of the second band indicates the simultaneous existence of the two geometries. The increase in the concentration of chloroauric acid produces a decrease in the amount of synthesized nanorods, seen as a decrease of the relative intensity of the second absorption band. Therefore, obtaining gold nanoparticles with nanorods geometry favours fields such as biomedicine, because they are capable of absorbing infrared radiation and can be used as photosensitive agents in localized thermal therapy

  4. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.

  5. Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.

    PubMed

    Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei

    2018-01-01

    In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dynamic Changes of Intracellular pH in Individual Lactic Acid Bacterium Cells in Response to a Rapid Drop in Extracellular pH

    PubMed Central

    Siegumfeldt, Henrik; Björn Rechinger, K.; Jakobsen, Mogens

    2000-01-01

    We describe the dynamics of changes in the intracellular pH (pHi) values of a number of lactic acid bacteria in response to a rapid drop in the extracellular pH (pHex). Strains of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis were investigated. Listeria innocua, a gram-positive, non-lactic acid bacterium, was included for comparison. The method which we used was based on fluorescence ratio imaging of single cells, and it was therefore possible to describe variations in pHi within a population. The bacteria were immobilized on a membrane filter, placed in a closed perfusion chamber, and analyzed during a rapid decrease in the pHex from 7.0 to 5.0. Under these conditions, the pHi of L. innocua remained neutral (between 7 and 8). In contrast, the pHi values of all of the strains of lactic acid bacteria investigated decreased to approximately 5.5 as the pHex was decreased. No pronounced differences were observed between cells of the same strain harvested from the exponential and stationary phases. Small differences between species were observed with regard to the initial pHi at pHex 7.0, while different kinetics of pHi regulation were observed in different species and also in different strains of S. thermophilus. PMID:10831407

  7. Sensitivity of greenback cutthroat trout to acidic pH and elevated aluminum

    USGS Publications Warehouse

    Woodward, D.F.; Farag, Aïda M.; Little, E.E.; Steadman, B. L.; Yancik, R.

    1991-01-01

    The greenback cutthroat trout Oncorhynchus clarki stomias is a threatened subspecies native to the upper South Platte and Arkansas rivers between Denver and Fort Collins, Colorado, an area also susceptible to acid deposition. In laboratory studies, we exposed this subspecies to nominal pHs of 4.5–6.5 and to nominal aluminum concentrations of 0, 50, 100, and 300 μg/L; the control was pH 6.5 treatment without Al. We used soft water that contained 1.3 mg Ca/L. Exposures of 7 d each were made for four early life stages: fertilized egg, eyed embryo, alevin, and swim-up larva. Effects were measured at the end of exposure and again after a recovery period lasting until 40 d posthatch. The alevin stage was the most sensitive: at pH 5.0 with no Al, survival was reduced by 68% and swimming duration by 76%; at pH 6.0 and 50 μg Al/L, swimming duration was reduced by 62%, but survival was not affected. Reductions in whole-body concentrations of Na, K, and Ca indicated organism stress. Sodium was reduced most—about 50% in alevins exposed to pH 5.0 without Al and to pH 6.0 with 50 μg Al/L. Growth and the ratio of RNA to DNA were not affected by any exposure. All responses that were affected during exposure returned to normal by 40 d posthatch. Overall, it appeared that pH 6.0 and 50 μg Al/L might be detrimental to greenback cutthroat trout populations.

  8. Sensitivity of greenback cutthroat trout to acidic pH and elevated aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, D.F.; Farag, A.M.; Little E.E.

    1991-01-01

    The greenback cutthroat trout Oncorhynchus clarki stomias is a threatened subspecies native to the upper South Platte and Arkansas rivers between Denver and Fort Collins, Colorado, an area also susceptible to acid deposition. In laboratory studies, the authors exposed this subspecies to nominal pHs of 4.5-6.5 and to nominal aluminum concentrations of 0, 50, 100, and 300 {mu}g/L; the control was pH 6.5 treatment without Al. The authors used soft water that contained 1.3 mg Ca/L. Exposures of 7 days each were made for four early life stages: fertilized egg, eyed embryo, alevin, and swim-up larva. Effects were measured atmore » the end of exposure and again after a recovery period lasting until 40 days posthatch. The alevin stage was the most sensitive: at pH 5.0 with no Al, survival was reduced by 68% and swimming duration by 76%, at pH 6.0 and 50 {mu}g Al/L, swimming duration was reduced by 62%, but survival was not affected. Reductions in whole-body concentrations of Na, K, and Ca indicated organism stress. Sodium was reduced most-about 50% in alevins exposed to pH 5.0 without Al and to pH 6.0 with 50 {mu}g Al/L. Growth and the ratio of RNA to DNA were not affected by any exposure. All responses that were affected during exposure returned to normal by 40 days posthatch. Overall, it appeared that pH 6.0 and 50 {mu}g Al/L might be detrimental to greenback cutthroat trout populations.« less

  9. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products.

    PubMed

    Ren, Xi-Dong; Chen, Xu-Sheng; Zeng, Xin; Wang, Liang; Tang, Lei; Mao, Zhong-Gui

    2015-06-01

    ε-Poly-L-lysine (ε-PL) is produced by Streptomyces as a secondary metabolite with wide industrial applications, but its production still needs to be further enhanced. Environmental stress is an important approach for the promotion of secondary metabolites production by Streptomyces. In this study, the effect of acidic pH shock on enhancing ε-PL production by Streptomyces sp. M-Z18 was investigated in a 5-L fermenter. Based on the evaluation of acidic pH shock on mycelia metabolic activity and shock parameters optimization, an integrated pH-shock strategy was developed as follows: pre-acid-shock adaption at pH 5.0 to alleviate the damage caused by the followed pH shock, and then acidic pH shock at 3.0 for 12 h (including pH decline from 4.0 to 3.0) to positively regulate mycelia metabolic activity, finally restoring pH to 4.0 to provide optimal condition for ε-PL production. After 192 h of fed-batch fermentation, the maximum ε-PL production and productivity reached 54.70 g/L and 6.84 g/L/day, respectively, which were 52.50 % higher than those of control without pH shock. These results demonstrated that acidic pH shock is an efficient approach for improving ε-PL production. The information obtained should be useful for ε-PL production by other Streptomyces.

  10. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study.

    PubMed

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo

    2017-04-01

    Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.

  11. Prolonged Laccase Production by a Cold and pH Tolerant Strain of Penicillium pinophilum (MCC 1049) Isolated from a Low Temperature Environment

    PubMed Central

    Jain, Rahul; Tamta, Sushma

    2014-01-01

    Production of laccase by a cold and pH tolerant strain of Penicillium pinophilum has been investigated under different cultural conditions for up to 35 days of incubation. The fungus was originally isolated from a low temperature environment under mountain ecosystem of Indian Himalaya. The estimations were conducted at 3 temperatures (15, 25, and 35°C), a range of pH (3.5–11.5), and in presence of supplements including carbon and nitrogen sources, vitamins, and antibiotics. Optimum production of laccase was recorded at 25°C (optimum temperature for fungal growth) and 7.5 pH. The production of enzyme was recorded maximum on day 28 (11.6 ± 0.52 U/L) following a slow decline at day 35 of incubation (10.6 ± 0.80 U/L). Fructose and potassium nitrate (0.2%) among nutritional supplements, chloramphenicol (0.1%) among antibiotics, and folic acid (0.1%) among vitamins were found to be the best enhancers for production of laccase. Relatively lower but consistent production of laccase for a longer period is likely to be an ecologically important phenomenon under low temperature environment. Further, enhancement in production of enzyme using various supplements will be useful for its use in specific biotechnological applications. PMID:24734172

  12. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied.more » The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.« less

  13. The pH of beverages in the United States.

    PubMed

    Reddy, Avanija; Norris, Don F; Momeni, Stephanie S; Waldo, Belinda; Ruby, John D

    2016-04-01

    Dental erosion is the chemical dissolution of tooth structure in the absence of bacteria when the environment is acidic (pH < 4.0). Research indicates that low pH is the primary determinant of a beverage's erosive potential. In addition, citrate chelation of calcium ions may contribute to erosion at higher pH. The authors of this study determined the erosive potential measured by the pH of commercially available beverages in the United States. The authors purchased 379 beverages from stores in Birmingham, Alabama, and categorized them (for example, juices, sodas, flavored waters, teas, and energy drinks) and assessed their pH. They used a pH meter to measure the pH of each beverage in triplicate immediately after it was opened at a temperature of 25°C. The authors recorded the pH data as mean (standard deviation). Most (93%, 354 of 379) beverages had a pH of less than 4.0, and 7% (25 of 379) had a pH of 4.0 or more. Relative beverage erosivity zones based on studies of apatite solubility in acid indicated that 39% (149 of 379) of the beverages tested in this study were considered extremely erosive (pH < 3.0), 54% (205 of 379) were considered erosive (pH 3.0 to 3.99), and 7% (25 of 379) were considered minimally erosive (pH ≥ 4.0). This comprehensive pH assessment of commercially available beverages in the United States found that most are potentially erosive to the dentition. This study's findings provide dental clinicians and auxiliaries with information regarding the erosive potential of commercially available beverages. Specific dietary recommendations for the prevention of dental erosion may now be developed based on the patient's history of beverage consumption. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  14. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp; Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara; Ishizuka, Tamotsu

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bonemore » marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.« less

  15. Acid-base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures.

    PubMed

    Catarino, Ana I; Bauwens, Mathieu; Dubois, Philippe

    2012-07-01

    In order to better understand if the metabolic responses of echinoids could be related to their acid-base status in an ocean acidification context, we studied the response of an intertidal sea urchin species, Paracentrotus lividus, submitted to low pH at two different temperatures. Individuals were submitted to control (8.0) and low pH (7.7 and 7.4) at 10°C and 16°C (19 days). The relation between the coelomic fluid acid-base status, the RNA/DNA ratio of gonads and the individual oxygen uptake were studied. The coelomic fluid pH decreased with the aquarium seawater, independently of temperature, but this explained only 13% of the pH variation. The coelomic fluid showed though a partial buffer capacity that was not related to skeleton dissolution ([Mg(2+)] and [Ca(2+)] did not differ between pH treatments). There was an interaction between temperature and pH on the oxygen uptake (V (O2)) which was increased at pH 7.7 and 7.4 at 10°C in comparison with controls, but not at 16°C, indicating an upregulation of the metabolism at low temperature and pH. However, gonad RNA/DNA ratios did not differ according to pH and temperature treatments, indicating that even if maintenance of physiological activities has an elevated metabolic cost when individuals are exposed to stress, they are not directly affected during short-term exposure. Long-term studies are needed in order to verify if gonad production/growth will be affected by low pH seawaters exposure.

  16. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    NASA Astrophysics Data System (ADS)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (< 240 °C), weight loss of specimens due to dissolution of iron in water occurred to a greater extent than weight gain due to oxide formation. With the increase in temperature, the extent of iron dissolution reduced and weight gain due to oxide formation increased. A similar trend was observed with the increase in pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  18. Enhanced α-ketoglutaric acid production and recovery in Yarrowia lipolytica yeast by effective pH controlling.

    PubMed

    Morgunov, Igor G; Kamzolova, Svetlana V; Samoilenko, Vladimir A

    2013-10-01

    The replacement of chemical synthesis by environmentally friendly energy-efficient technologies for production of valuable metabolites is a principal strategy of developing biotechnological industry all over the world. In the present study, we develop a method for α-ketoglutaric acid (KGA) production from rapeseed oil with the use of Yarrowia lipolytica yeast. Sixty strains of Y. lipolytica yeasts were tested for their ability to produce KGA, and the strain Y. lipolytica 212 (Y. lipolytica VKM Y-2412) was selected as a promising KGA producer. Using a three-stage pH controlling, in which pH was 4.5 in the growth phase, then since 72 to 144 h, pH was maintained at 3.5 and in the later phase of acid production, the titration by KOH was switch off, selected strain produced 106.5 g l(-1) of KGA with mass yield of 0.95 g g(-1). KGA in the form of monopotassium salt was isolated from the culture broth and purified. The isolation procedure involved separation of biomass, extraction of residual triglycerides, filtrate bleaching, and acidification with mineral acid (to pH 2.8-3.4), concentration, precipitation of mineral salts, and crystallization of the product. The purity of KGA isolated from the culture filtrate reached 99.1 %.

  19. Lipidic biosignatures in diagenetically stabilized ironstones terraces of Rio Tinto, an acidic environment with analogies to Mars

    NASA Astrophysics Data System (ADS)

    Sánchez-García, L.; Carrizo, D.; Fernández-Remolar, D.; Parro, V.

    2017-09-01

    The characterization of extreme environments with analogies to Mars is important for understanding if/how life may have thrived in the Red Planet. Río Tinto in SW Spain is an extreme environment with constant acidic waters (mean pH of 2.3) and high concentration of heavy metals, which are direct consequence of the active metabolism of chemolithotrophic microorganisms thriving in the rich polymetallic sulfides present in the massive Iberian Pyritic Belt. Abundant minerals rich in ferric iron and sulfates, which result from the pyrite metabolism (e.g. jarosite, goethite, hematites, etc.) are of special interest for their potential for organics preservation [1]. Here, we investigate the occurrence and preservation of biological signatures in diagenetically stabilized ironstone deposits in Río Tinto, by using geolipidic markers.

  20. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production.

    PubMed

    Hussain, Abid; Filiatrault, Mélissa; Guiot, Serge R

    2017-12-01

    The effect of pH control (4, 5, 6, 7) on volatile fatty acids (VFA) production from food waste was investigated in a leach bed reactor (LBR) operated at 50°C. Stabilisation of pH at 7 resulted in hydrolysis yield of 530g soluble chemical oxygen demand (sCOD)/kg total volatile solids (TVS) added and VFA yield of 247gCOD/kg TVS added, which were highest among all pH tested. Butyric acid dominated the VFA mix (49-54%) at pH of 7 and 6, while acetate composed the primary VFA (41-56%) at pH of 4 and 5. A metabolic shift towards lactic acid production was observed at pH of 5. Improving leachate recirculation rate further improved the hydrolysis and degradation efficiency by 10-16% and the acidification yield to 340gCOD/kgTVS added. The butyric acid concentration of 16.8g/L obtained at neutral pH conditions is among the highest reported in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Fucoxanthin from brown seaweed Sargassum cristaefolium tea in acid pH

    NASA Astrophysics Data System (ADS)

    Kartikaningsih, Hartati; Mufti, Eka Deviana; Nurhanief, Ardian Eko

    2017-05-01

    Dried tea Sargassum cristaefolium contains the pigment fucoxanthin, which is responsible for the red-orange color found in brown algae, and is a kind of photosynthetic pigment. Fucoxanthin can be used as an anti-obesity, anticancer, anti-cholesterol, and anti-diabetic agent and as a food colorant, but it is very unstable. The aim of this research was to determine the stability of fucoxanthin from dried tea brown algae at different pH (2, 6). This involved thin layer chromatography, peak absorption, wavelength analysis and reposition in FTIR. The research showed that fucoxanthin from fresh and dried tea Sargassum cristaefolium using chromatography columns had an orange color, Rf value of 0.26-0.28, and a spectral pattern in acetone solvent of 446.3-447.4 λmax. Fucoxanthin at pH 2 showed that there was no allenic group, as fucoxanthin solution had a pale yellow color. It is therefore shown that fucoxanthin is not stable in acid solution.

  2. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  3. pH dependence of the properties of waterborne pressure-sensitive adhesives containing acrylic acid.

    PubMed

    Wang, Tao; Canetta, Elisabetta; Weerakkody, Tecla G; Keddie, Joseph L; Rivas, Urko

    2009-03-01

    Polymer colloids are often copolymerized with acrylic acid monomers in order to impart colloidal stability. Here, the effects of the pH on the nanoscale and macroscopic adhesive properties of waterborne poly(butyl acrylate-co-acrylic acid) films are reported. In films cast from acidic colloidal dispersions, hydrogen bonding between carboxylic acid groups dominates the particle-particle interactions, whereas ionic dipolar interactions are dominant in films cast from basic dispersions. Force spectroscopy using an atomic force microscope and macroscale mechanical measurements show that latex films with hydrogen-bonding interactions have lower elastic moduli and are more deformable. They yield higher adhesion energies. On the other hand, in basic latex, ionic dipolar interactions increase the moduli of the dried films. These materials are stiffer and less deformable and, consequently, exhibit lower adhesion energies. The rate of water loss from acidic latex is slower, perhaps because of hydrogen bonding with the water. Therefore, although acid latex offers greater adhesion, there is a limitation in the film formation.

  4. Smectite Formation in Acid Sulfate Environments on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.

  5. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  6. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor

    PubMed Central

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.

    2013-01-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551

  7. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.

    PubMed

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy

    2013-06-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.

  8. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle.

    PubMed

    Goto, Hiroko; Qadis, Abdul Qadir; Kim, Yo-Han; Ikuta, Kentaro; Ichijo, Toshihiro; Sato, Shigeru

    2016-11-01

    Effects of a bacterial probiotic (BP) on ruminal fermentation and plasma metabolites were evaluated in four Holstein cattle (body weight, 645 ± 62 kg; mean ± SD) with induced subacute ruminal acidosis (SARA). SARA was induced by feeding a SARA-inducing diet, and thereafter, 20, 50 or 100 g per head of a commercial BP was administered for 7 consecutive days during the morning feeding. Cattle without BP served as the control. The 24-hr mean ruminal pH in the control was lower, whereas those in the BP groups administered 20 or 50 g were significantly higher compared to the control from days 2 to 7. Circadian patterns of the 1-hr mean ruminal pH were identical (6.4-6.8) among all cattle receiving BP. Although the mean minimum pH in the control on day -7 and day 0 was <5.8, the pH in the treatment groups on day 7 was >5.8 and significantly higher than that of the control group ( >5.2). Ruminal volatile fatty acid (VFA) concentrations were not affected by BP treatment; however, the BP groups had lower lactic acid levels compared with the control group at 20:00 on day 7. Additionally, non-esterified fatty acid levels decreased from 8:00 to 20:00 in all BP groups on day 7. These results suggest that administration of 20 to 50 g of a multi-strain BP for 7 days might improve the low pH and high lactic acid level of the ruminal fluid in SARA cattle.

  9. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle

    PubMed Central

    GOTO, Hiroko; QADIS, Abdul Qadir; KIM, Yo-Han; IKUTA, Kentaro; ICHIJO, Toshihiro; SATO, Shigeru

    2016-01-01

    Effects of a bacterial probiotic (BP) on ruminal fermentation and plasma metabolites were evaluated in four Holstein cattle (body weight, 645 ± 62 kg; mean ± SD) with induced subacute ruminal acidosis (SARA). SARA was induced by feeding a SARA-inducing diet, and thereafter, 20, 50 or 100 g per head of a commercial BP was administered for 7 consecutive days during the morning feeding. Cattle without BP served as the control. The 24-hr mean ruminal pH in the control was lower, whereas those in the BP groups administered 20 or 50 g were significantly higher compared to the control from days 2 to 7. Circadian patterns of the 1-hr mean ruminal pH were identical (6.4–6.8) among all cattle receiving BP. Although the mean minimum pH in the control on day –7 and day 0 was <5.8, the pH in the treatment groups on day 7 was >5.8 and significantly higher than that of the control group ( >5.2). Ruminal volatile fatty acid (VFA) concentrations were not affected by BP treatment; however, the BP groups had lower lactic acid levels compared with the control group at 20:00 on day 7. Additionally, non-esterified fatty acid levels decreased from 8:00 to 20:00 in all BP groups on day 7. These results suggest that administration of 20 to 50 g of a multi-strain BP for 7 days might improve the low pH and high lactic acid level of the ruminal fluid in SARA cattle. PMID:27430197

  10. Influence of Humic Acid on Stability and Attachment of nTiO2 Particles to Sand at Different pH

    NASA Astrophysics Data System (ADS)

    Cheng, T.

    2015-12-01

    Stability of nano-scale or micro-scale titanium dioxide particles (nTiO2) and their attachment to sediment grains have important implications to the fate and transport of nTiO2 in subsurface environments. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand, with special attention to low HA concentration ranges that are relevant to groundwater conditions. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand were experimentally measured under a range of low HA concentrations at pH 5 and 9. Results showed that HA can either promote or hinder nTiO2 stability, depending on pH and HA concentration. We also found that HA can either enhance or reduce nTiO2 attachment to Fe oxyhydroxide coating at pH 5, depending on HA concentration. Results further showed that at pH 5, Fe oxyhydroxide coating reduced nTiO2 attachment to sand in the absence of HA but increased nTiO2 attachment in the presence of low concentration of HA. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was invoked to analyze particle-to-particle and particle-to-sand interactions in order to elucidate the roles of pH, HA, quartz, and Fe coating in nTiO2 stability and attachment. Overall, this study showed that changes in zeta potential of nTiO2 and Fe coating due to pH changes and/or HA adsorption are the key factors that influence stability and attachment of nTiO2.

  11. Fast Hydrazone Reactants: Electronic and Acid/Base Effects Strongly Influence Rate at Biological pH

    PubMed Central

    Kool, Eric T.; Park, Do-Hyoung; Crisalli, Pete

    2013-01-01

    Kinetics studies with structurally varied aldehydes and ketones in aqueous buffer at pH 7.4 reveal that carbonyl compounds with neighboring acid/base groups form hydrazones at accelerated rates. Similarly, tests of a hydrazine with a neighboring carboxylic acid group show that it also reacts at an accelerated rate. Rate constants for the fastest carbonyl/hydrazine combinations are 2–20 M−1sec−1, which is faster than recent strain-promoted cycloaddition reactions. PMID:24224646

  12. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release.

    PubMed

    Zhang, Wei; Jin, Xin; Li, Heng; Zhang, Run-Run; Wu, Cheng-Wei

    2018-04-15

    Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Effects of pH and Iminosugar Pharmacological Chaperones on Lysosomal Glycosidase Structure and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Raquel L.; D’aquino, J. Alejandro; Ringe, Dagmar

    2009-06-05

    Human lysosomal enzymes acid-{beta}-glucosidase (GCase) and acid-{alpha}-galactosidase ({alpha}-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and {alpha}-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking.more » We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using {alpha}-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of {alpha}-Gal A with DGJ. Both GCase and {alpha}-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in {alpha}-Gal A are not seen. Thermodynamic parameters obtained from {alpha}-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and {alpha}-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological

  14. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.

    PubMed

    Noutsopoulos, Constantinos; Koumaki, Elena; Mamais, Daniel; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S

    2015-01-01

    Endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) are two groups of emerging pollutants the significance of which rests on their persistent detection in the aquatic environment and their possible adverse effects. Wastewater treatment plants are one of the major ways for transporting such chemicals in the aquatic environment. Chlorination is usually the last stage of treatment before wastewater being disposed to the aquatic environment. This work focuses on the evaluation of the effect of chlorine dose and specific wastewater characteristics (pH, total suspended solids and humic acids) on the removal of target EDCs and NSAIDs through chlorination. Another objective of this study is the identification of chlorination by-products of specific EDCs and NSAIDs and their dependence on contact time. Based on the results it is concluded that the effect of chlorine dose and humic acids concentration on the degradation of target compounds during chlorination is minimal. On the contrary, pH is a critical parameter which highly affects process performance. Moreover, it is concluded that not only the free available chlorine species, but also the properties of EDCs and NSAIDs under different pH conditions can affect chlorination process performance. The effect of TSS on the degradation of the target compounds during chlorination is more profound for chemicals with high Kow values and therefore higher affinity to partition to the particulate phase (i.e. nonylphenols, triclosan). Several degradation by-products were identified through chlorination of nonylphenol, bisphenol A and diclofenac. The dependence of these by-products on chlorination contact time is also demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Growth and mycotoxin production by Chaetomium globosum is favored in a neutral pH.

    PubMed

    Fogle, Matthew R; Douglas, David R; Jumper, Cynthia A; Straus, David C

    2008-12-01

    Chaetomium globosum is frequently isolated in water-damaged buildings and produces two mycotoxins called chaetoglobosins A and C when cultured on building material. In this study, the influence of ambient pH on the growth of C. globosum was examined on an artificial medium. This fungus was capable of growth on potato dextrose agar ranging in pH from 4.3 to 9.4 with optimal growth and chaetoglobosin C production occurring at a neutral pH. In addition, our results show that sporulation is favored in an acidic environment.

  16. Growth and Mycotoxin Production by Chaetomium globosum Is Favored in a Neutral pH

    PubMed Central

    Fogle, Matthew R.; Douglas, David R.; Jumper, Cynthia A.; Straus, David C.

    2008-01-01

    Chaetomium globosum is frequently isolated in water-damaged buildings and produces two mycotoxins called chaetoglobosins A and C when cultured on building material. In this study, the influence of ambient pH on the growth of C. globosum was examined on an artificial medium. This fungus was capable of growth on potato dextrose agar ranging in pH from 4.3 to 9.4 with optimal growth and chaetoglobosin C production occurring at a neutral pH. In addition, our results show that sporulation is favored in an acidic environment. PMID:19330080

  17. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material.

    PubMed

    Hari, Ajai C; Paruchuri, Rajiv A; Sabatini, David A; Kibbey, Tohren C G

    2005-04-15

    A wide range of pharmaceutical compounds have been identified in the environment, and their presence is a topic of growing concern, both for human and ecological health. Adsorption to aquifer materials and sediments is an important factor influencing the fate and transport of pharmaceutical compounds in the environment. Surfactants and other amphiphiles are known to influence the adsorption of many compounds and may be present in the environment from wastewaters or other sources. The work described here examines the adsorption of four pharmaceutical compounds, acetaminophen, carbamazepine, nalidixic acid, and norfloxacin, in the presence of a natural aquifer material. Adsorption was studied as a function of pH and in the presence and absence of two surfactants, cetylpyridinium chloride (CPC), a cationic surfactant, and Tergitol NP9, an ethoxylated nonionic surfactant. In the absence of surfactants, results indicate a 1-2 orders of magnitude variation in adsorption affinity with changing pH for each of the two quinolone pharmaceuticals (nalidixic acid and norfloxacin) but no measurable adsorption for carbamazepine or acetaminophen. In the presence of surfactants, adsorption of acetaminophen and carbamazepine was enhanced to extents consistent with compound hydrophobicity, while adsorption of nalidixic acid and norfloxacin was not. At high pH values, the anionic species of nalidixic acid exhibited enhanced adsorption in the presence of the cationic surfactant, CPC.

  18. Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone.

    PubMed

    Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H; Borhan, Babak

    2013-10-30

    Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor.

  19. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions.

    PubMed

    Wakita, Satoshi; Kimura, Masahiro; Kato, Naoki; Kashimura, Akinori; Kobayashi, Shunsuke; Kanayama, Naoto; Ohno, Misa; Honda, Shotaro; Sakaguchi, Masayoshi; Sugahara, Yasusato; Bauer, Peter O; Oyama, Fumitaka

    2017-05-15

    Acidic mammalian chitinase (AMCase) has been implicated in various pathophysiological conditions including asthma, allergic inflammation and food processing. AMCase is most active at pH 2.0, and its activity gradually decreases to up to pH 8. Here we analyzed chitin degradation by AMCase in weak acidic to neutral conditions by fluorophore-assisted carbohydrate electrophoresis established originally for oligosaccharides analysis. We found that specific fragments with slower-than-expected mobility as defined by chitin oligosaccharide markers were generated at pH 5.0∼8.0 as by-products of the reaction. We established an improved method for chitin oligosaccharides suppressing this side reaction by pre-acidification of the fluorophore-labeling reaction mixture. Our improved method specifically detects chitin oligosaccharides and warrants quantification of up to 50nmol of the material. Using this strategy, we found that AMCase produced dimer of N-acetyl-d-glucosamine (GlcNAc) at strong acidic to neutral condition. Moreover, we found that AMCase generates (GlcNAc) 2 as well as (GlcNAc) 3 under physiological conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid.

    PubMed

    Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William

    2012-01-15

    Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Novel Technique to improve the pH of Acidic Barren Soil using Electrokinetic-bioremediation with the application of Vetiver Grass

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Zahin, A. M. F.

    2016-11-01

    Residual acidic slopes which are not covered by vegetation greatly increases the risk of soil erosion. In addition, low soil pH can bring numerous problems such as Al and Fe toxicity, land degradation issues and some problems related to vegetation. In this research, a series of electrokinetic bioremediation (EK-Bio) treatments using Bacillus sphaericus, Bacillus subtilis and Pseudomonas putida with a combination of Vetiver grass were performed in the laboratory. Investigations were conducted for 14 days and included the observation of changes in the soil pH and the mobilization of microorganism cells through an electrical gradient of 50 V/m under low pH. Based on the results obtained, this study has successfully proven that the pH of soil increases after going through electrokinetic bioremediation (EK-Bio). The treatment using Bacillus sphaericus increases the pH from 2.95 up to 4.80, followed by Bacillus subtilis with a value of 4.66. Based on the overall performance, Bacillus sphaericus show the highest number of bacterial cells in acidic soil with a value of 6.6 × 102 cfu/g, followed by Bacillus subtilis with a value of 5.7 × 102 cfu/g. In conclusion, Bacillus sphaericus and Bacillus subtilis show high survivability and is suitable to be used in the remediation of acidic soil.

  3. Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.

    PubMed

    Whittingham, Jean L; Scott, David J; Chance, Karen; Wilson, Ashley; Finch, John; Brange, Jens; Guy Dodson, G

    2002-04-26

    When insulin solutions are subjected to acid, heat and agitation, the normal pattern of insulin assembly (dimers-->tetramers-->hexamers) is disrupted; the molecule undergoes conformational changes allowing it to follow an alternative aggregation pathway (via a monomeric species) leading to the formation of insoluble amyloid fibres. To investigate the effect of acid pH on the conformation and aggregation state of the protein, the crystal structure of human insulin at pH 2.1 has been determined to 1.6 A resolution. The structure reveals that the native fold is maintained at low pH, and that the molecule is still capable of forming dimers similar to those found in hexameric insulin structures at higher pH. Sulphate ions are incorporated into the molecule and the crystal lattice where they neutralise positive charges on the protein, stabilising its structure and facilitating crystallisation. The sulphate interactions are associated with local deformations in the protein, which may indicate that the structure is more plastic at low pH. Transmission electron microscopy analysis of insulin fibres reveals that the appearance of the fibres is greatly influenced by the type of acid employed. Sulphuric acid produces distinctive highly bunched, truncated fibres, suggesting that the sulphate ions have a sophisticated role to play in fibre formation, rather as they do in the crystal structure. Analytical ultracentrifugation studies show that in the absence of heating, insulin is predominantly dimeric in mineral acids, whereas in acetic acid the equilibrium is shifted towards the monomer. Hence, the effect of acid on the aggregation state of insulin is also complex. These results suggest that acid conditions increase the susceptibility of the molecule to conformational change and dissociation, and enhance the rate of fibrillation by providing a charged environment in which the attractive forces between the protein molecules is increased. (c) 2002 Elsevier Science Ltd.

  4. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    PubMed

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effect of different pH conditions on the in vitro digestibility and physicochemical properties of citric acid-treated potato starch.

    PubMed

    Lee, Soo Yoon; Lee, Kwang Yeon; Lee, Hyeon Gyu

    2018-02-01

    The objective of this study was to investigate the influence of citric acid (CA) treatment (10, 20, and 30% of dry starch weight) under different pH conditions (3.5, 4.5, and 5.5) on the physicochemical properties, in vitro digestibility and prebiotic effects of potato starch. With the CA content increased, the degree of substitution of CA-starch treated at pH 3.5 and 4.5 wad significantly increased i.e. from 0.125 to 0.418 and from 0.078 to 0.167, respectively (p<0.05), except for starch treated at pH 5.5 (from 0.023 to 0.030). The resistant starch (RS) content of CA-starch was effectively increased compared to pH control made by changing pH from 3.5 to 5.5 with hydrochloric acid alone. The results of X-ray diffraction and swelling power were affected by pH condition, whereas they were less affected by the percentage of CA. Swelling power of treated starch also significantly decreased as the pH level decreased (p<0.05). Probiotic bacteria B. bifidum and L. acidophilus grown in medium with citrate starch showed substantial viability. These results suggest that pH conditions of CA modification substantially affect the degree of CA substitution, physicochemical properties, and nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrochemically-driven large amplitude pH cycling for acid-base driven DNA denaturation and renaturation.

    PubMed

    Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu

    2011-06-15

    In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.

  7. Inhibitory effects of acidic pH and confounding effects of moisture content on methane biofiltration.

    PubMed

    Barzgar, Sonya; Hettiaratchi, Joseph Patrick; Pearse, Lauretta; Kumar, Sunil

    2017-12-01

    This study focussed on evaluating the effect of hydrogen sulfide (H 2 S) on biological oxidation of waste methane (CH 4 ) gas in compost biofilters, Batch experiments were conducted to determine the dependency of maximum methane oxidation rate (V max ) on two main factors; pH and moisture content, as well as their interaction effects. The maximum V max was observed at a pH of 7.2 with decreasing V max values observed with decreasing pH, irrespective of moisture content. Flow-through columns operated at a pH of 4.5 oxidized CH 4 at a flux rate of 53g/m 2 /d compared to 146g/m 2 /d in columns operated at neutral pH. No oxidation activity was observed for columns operated at pH 2.5, and DNA sequencing analysis of samples led to the conclusion that highly acidic conditions were responsible for inhibiting the ability of methanotrophs to oxidize CH 4 . Biofilter columns operated at pH 2.5 contained only 2% methanotrophs (type I) out of the total microbial population, compared to 55% in columns operated at pH 7.5. Overall, changes in the population of methanotrophs with acidification within the biofilters compromised its capacity to oxidize CH 4 which demonstrated that a compost biofilter could not operate efficiently in the presence of high levels of H 2 S. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Influence of levels of information as presented by different technologies on students' understanding of acid, base, and ph concepts

    NASA Astrophysics Data System (ADS)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    We investigated how different levels of information presented by various technologies affected secondary students' understanding of acid, base, and pH concepts. Secondary students who were selected for the study had just completed their study of acid-base chemistry. No attempt was made to provide further instruction. We analyzed changes in the understanding of individual students by constructing concept maps from the propositions that the students used in interviews conducted before and after a series of acid-base titrations. After the initial interview, students were divided into three groups. Within each group, students individually performed the same set of titrations using different technologies: chemical indicators, pH meters, and microcomputer-based laboratories (MBL). After the titrations were completed, all students were interviewed again. We found that students using MBL exhibited a larger positive shift in their concept map scores, which indicates a greater differentiation and integration of their knowledge of acids and bases. The chemical indicator students exhibited a more moderate positive shift in their concept map scores, and the pH meter students exhibited a smaller positive shift. We also found that the MBL students constructed more inappropriate links in their concept maps than the chemical indicator or pH meter students. However, we speculate that this increased number of inappropriate links indicates a high level of involvement with the technology. We therefore argue that the level of information offered by the technology affected students' understanding of the chemical concepts.Received: 24 February 1993; Revised: 21 February 1994;

  9. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    PubMed Central

    Bohu, Tsing; Santelli, Cara M.; Akob, Denise M.; Neu, Thomas R.; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling. PMID:26236307

  10. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    USGS Publications Warehouse

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  11. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1.

    PubMed

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  12. Effects of Micro-environmental pH of Liposome on Chemical Stability of Loaded Drug

    NASA Astrophysics Data System (ADS)

    Shao, Xiao-Ru; Wei, Xue-Qin; Zhang, Shu; Fu, Na; Lin, Yun-Feng; Cai, Xiao-Xiao; Peng, Qiang

    2017-08-01

    Liposome is a promising carrier system for delivering bioactive molecules. However, the successful delivery of pH-sensitive molecules is still limited by the intrinsic instability of payloads in physiological environment. Herein, we developed a special liposome system that possesses an acidic micro-environment in the internal aqueous chamber to improve the chemical stability of pH-sensitive payloads. Curcumin-loaded liposomes (Cur-LPs) with varied internal pH values (pH 2.5, 5.0, or 7.4) were prepared. These Cur-LPs have similar particle size of 300 nm, comparable physical stabilities and analogous in vitro release profiles. Interestingly, the chemical stability of liposomal curcumin in 50% fetal bovine serum and its anticancer efficacy in vitro are both micro-environmental pH-dependent (Cur-LP-2.5 > Cur-LP-5.0 > Cur-LP-7.4). This serum stability still has space to be further enhanced to improve the applicability of Cur-LP. In conclusion, creating an acidic micro-environment in the internal chamber of liposome is feasible and efficient to improve the chemical stability of pH-sensitive payloads.

  13. Orthorhombic lysozyme crystallization at acidic pH values driven by phosphate binding.

    PubMed

    Plaza-Garrido, Marina; Salinas-Garcia, M Carmen; Camara-Artigas, Ana

    2018-05-01

    The structure of orthorhombic lysozyme has been obtained at 298 K and pH 4.5 using sodium chloride as the precipitant and in the presence of sodium phosphate at a concentration as low as 5 mM. Crystals belonging to space group P2 1 2 1 2 1 (unit-cell parameters a = 30, b = 56, c = 73 Å, α = β = γ = 90.00°) diffracted to a resolution higher than 1 Å, and the high quality of these crystals permitted the identification of a phosphate ion bound to Arg14 and His15. The binding of this ion produces long-range conformational changes affecting the loop containing Ser60-Asn74. The negatively charged phosphate ion shields the electrostatic repulsion of the positively charged arginine and histidine residues, resulting in higher stability of the phosphate-bound lysozyme. Additionally, a low-humidity orthorhombic variant was obtained at pH 4.5, and comparison with those previously obtained at pH 6.5 and 9.5 shows a 1.5 Å displacement of the fifth α-helix towards the active-site cavity, which might be relevant to protein function. Since lysozyme is broadly used as a model protein in studies related to protein crystallization and amyloid formation, these results indicate that the interaction of some anions must be considered when analysing experiments performed at acidic pH values.

  14. Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source.

    PubMed

    Walaszczyk, Ewa; Podgórski, Waldemar; Janczar-Smuga, Małgorzata; Dymarska, Ewelina

    2018-01-01

    The pH of the medium is the key environmental parameter of chemical selectivity of oxalic acid biosynthesis by Aspergillus niger . The activity of the enzyme oxaloacetate hydrolase, which is responsible for decomposition of oxaloacetate to oxalate and acetate inside the cell of the fungus, is highest at pH 6. In the present study, the influence of pH in the range of 3-7 on oxalic acid secretion by A. niger W78C from sucrose was investigated. The highest oxalic acid concentration, 64.3 g dm -3 , was reached in the medium with pH 6. The chemical selectivity of the process was 58.6% because of the presence of citric and gluconic acids in the cultivation broth in the amount of 15.3 and 30.2 g dm -3 , respectively. Both an increase and a decrease of medium pH caused a decrease of oxalic acid concentration. The obtained results confirm that pH 6 of the carbohydrate medium is appropriate for oxalic acid synthesis by A. niger , but the chemical selectivity of the process described in this paper was high in comparison to values reported previously in the literature.

  15. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells[S

    PubMed Central

    Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.

    2012-01-01

    HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736

  16. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  17. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH.

    PubMed

    Sànchez i Nogué, Violeta; Narayanan, Venkatachalam; Gorwa-Grauslund, Marie F

    2013-08-01

    The release of acetic acid due to deacetylation of the hemicellulose fraction during the treatment of lignocellulosic biomass contributes to the inhibitory character of the generated hydrolysates. In the present study, we identified a strain-independent adaptation protocol consisting of pre-cultivating the strain at pH 5.0 in the presence of at least 4 g L⁻¹ acetic acid that enabled aerobic growth and improved fermentation performance of Saccharomyces cerevisiae cells at low pH (3.7) and in the presence of inhibitory levels of acetic acid (6 g L⁻¹). During anaerobic cultivation with adapted cells of strain TMB3500, the specific ethanol production rate was increased, reducing the fermentation time to 48 %.

  18. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  19. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    PubMed

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Amino Acid Synthesis in Seafloor Environments on Icy Worlds

    NASA Astrophysics Data System (ADS)

    Flores, Erika; Barge, Laura; VanderVelde, David; Kallas, Kayo; Baum, Marc M.; Russell, Michael J.; Kanik, Isik

    2016-10-01

    In 2005, the Cassini mission detected plumes erupting from Enceladus' surface, containing carbon dioxide, methane, silica, and possibly ammonia. Subsequent laboratory experiments indicated that the silica particles in the plumes were generated under alkaline conditions and at moderate temperatures of ~90°C (Hsu et al., 2015); one scenario for such conditions would be the existence of alkaline (serpentinization-driven) hydrothermal activity within Enceladus. Alkaline vents are significant since they have been proposed as a likely environment for the emergence of metabolism on the early Earth (Russell et al. 2014) and thus could also provide a mechanism for origin of life on ocean worlds with a water-rock interface. Alkaline vents in an acidic, iron-containing ocean could produce mineral precipitates that could act as primitive enzymes or catalysts mediating organic reactions; for example, metal sulfides can catalyze the reductive amination of pyruvate to alanine (Novikov and Copley 2013). We have conducted experiments testing the synthesis of amino acids catalyzed by other iron minerals that might be expected to precipitate on the seafloor of early Earth or Enceladus. Preliminary results indicate that amino acids as well as other organic products can be synthesized in 1-3 days under alkaline hydrothermal conditions. We also find that the yield and type of organic products is highly dependent on pH and temperature, implying that understanding the specifics of the geochemical hydrothermal gradients on Enceladus (or other ocean worlds) will be significant in determining their potential for synthesizing building blocks for life.Hsu, H.-W. et al. (2015), Nature 519, 207-210.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Novikov Y. and Copley S. D. (2013) PNAS 110, 33, 13283-13288.

  1. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.

    PubMed

    Bonnefoy, Violaine; Holmes, David S

    2012-07-01

    This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up

  2. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.

    PubMed

    Evans, Tyler G; Chan, Francis; Menge, Bruce A; Hofmann, Gretchen E

    2013-03-01

    Some marine ecosystems already experience natural declines in pH approximating those predicted with future anthropogenic ocean acidification (OA), the decline in seawater pH caused by the absorption of atmospheric CO2 . The molecular mechanisms that allow organisms to inhabit these low pH environments, particularly those building calcium carbonate skeletons, are unknown. Also uncertain is whether an enhanced capacity to cope with present day pH variation will confer resistance to future OA. To address these issues, we monitored natural pH dynamics within an intertidal habitat in the Northeast Pacific, demonstrating that upwelling exposes resident species to pH regimes not predicted to occur elsewhere until 2100. Next, we cultured the progeny of adult purple sea urchins (Strongylocentrotus purpuratus) collected from this region in CO2 -acidified seawater representing present day and near future ocean scenarios and monitored gene expression using transcriptomics. We hypothesized that persistent exposure to upwelling during evolutionary history will have selected for increased pH tolerance in this population and that their transcriptomic response to low pH seawater would provide insight into mechanisms underlying pH tolerance in a calcifying species. Resulting expression patterns revealed two important trends. Firstly, S. purpuratus larvae may alter the bioavailability of calcium and adjust skeletogenic pathways to sustain calcification in a low pH ocean. Secondly, larvae use different strategies for coping with different magnitudes of pH stress: initiating a robust transcriptional response to present day pH regimes but a muted response to near future conditions. Thus, an enhanced capacity to cope with present day pH variation may not translate into success in future oceans. © 2013 Blackwell Publishing Ltd.

  3. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  4. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems.

    PubMed

    Yuan, Yue; Wang, Shuying; Liu, Ye; Li, Baikun; Wang, Bo; Peng, Yongzhen

    2015-12-01

    Long-term effect of pH (4, 10, and uncontrolled) on short-chain fatty acid (SCFA) accumulation, microbial community and sludge reduction were investigated in waste activated sludge (WAS) fermentors for over 90days. The average SCFAs accumulation was 1721.4 (at pH 10), 114.2 (at pH 4), and 58.1 (at uncontrolled pH) mg chemical oxygen demand (COD)/L. About 31.65mgCOD/L was produced at pH 10, accounting for 20% of the influent COD. Illumina MiSeq sequencing revealed that Alcaligenes (hydrolic bacteria) and Erysipelothrix (acidogenic bacteria) were enriched at pH 10, while less acidogenic bacteria existed at pH 4 than pH 10, and no acidogenic bacteria were detected at the uncontrolled pH. The ratios of archaea to bacteria were 1:41, 1:16, and 1:9 at the pH of 10, 4, and uncontrolled. This study elucidated the effects of pH on WAS fermentation, and established the correlation of microbial structure with SCFAs accumulations and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of pH on structure, function, and stability of mitochondrial carbonic anhydrase VA.

    PubMed

    Idrees, Danish; Shahbaaz, Mohd; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-02-01

    Mitochondrial carbonic anhydrase VA (CAVA) catalyzes the hydration of carbon dioxide to produce proton and bicarbonate which is primarily expressed in the mitochondrial matrix of liver, and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis, and neuronal transmission. To understand the effect of pH on the structure, function, and stability of CAVA, we employed spectroscopic techniques such as circular dichroism, fluorescence, and absorbance measurements in wide range of pH (from pH 2.0 to pH 11.5). CAVA showed an aggregation at acidic pH range from pH 2.0 to pH 5.0. However, it remains stable and maintains its secondary structure in the pH range, pH 7.0-pH 11.5. Furthermore, this enzyme has an appreciable activity at more than pH 7.0 (7.0 < pH ≤ 11.5) with maximum activity at pH 9.0. The maximal values of k cat and k cat /K m at pH 9.0 are 3.7 × 10 6  s -1 and 5.5 × 10 7  M -1  s -1 , respectively. However, this enzyme loses its activity in the acidic pH range. We further performed 20-ns molecular dynamics simulation of CAVA to see the dynamics at different pH values. An excellent agreement was observed between in silico and in vitro studies. This study provides an insight into the activity of CAVA in the pH range of subcellular environment.

  6. Effects of low pH stress on shell traits and proteomes of the dove snail, Anachis misera inhabiting shallow vent environments off Kueishan Islet, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Wu, J. Y.; Chen, C. T. A.; Liu, L. L.

    2014-12-01

    The effects of naturally acidified seawater on a snail species, Anachis misera (Family: Columbellidae) were quantified in five shallow vent-based environments off Kueishan Islet, Taiwan. An absence of Anachis snails was observed in the most acidic North site (pH 7.22), and the size structure differed among the remaining East, South, Southwest and Northwest sites. If a positive correlation between shell length and shell width or total weight existed, the coefficient of determination (R2) of the equations was low, i.e., 0.207-0.444. Snails from the Northwest site (pH 7.33) exhibited a more globular shape than those of the South ones (pH 7.80). Standardized shell thickness T1 (thickness of body whorl : shell length) and T2 (thickness of penultimate whorl : shell length) from the Northwest site showed a decrease of 6.3 and 9.4%, respectively, compared to the South ones. In a similar vein, based on the 16 examined protein spots, protein expression profiles of snails in the South were distinct. With further characterization by principle component analysis, the separation was mainly contributed by the first (i.e., spots 8, 1, 15, and 12) and second (i.e., spots 15, 13, 12, 1, and 11) principal-components. As a whole, the shallow vent-based findings provide new information from subtropics on the effects of ocean acidification on gastropod snails in natural environments.

  7. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  8. Targeting diseased tissues by pHLIP insertion at low cell surface pH.

    PubMed

    Andreev, Oleg A; Engelman, Donald M; Reshetnyak, Yana K

    2014-01-01

    The discovery of the pH Low Insertion Peptides (pHLIPs®) provides an opportunity to develop imaging and drug delivery agents targeting extracellular acidity. Extracellular acidity is associated with many pathological states, such as those in cancer, ischemic stroke, neurotrauma, infection, lacerations, and others. The metabolism of cells in injured or diseased tissues often results in the acidification of the extracellular environment, so acidosis might be useful as a general marker for the imaging and treatment of diseased states if an effective targeting method can be developed. The molecular mechanism of a pHLIP peptide is based on pH-dependent membrane-associated folding. pHLIPs, being moderately hydrophobic peptides, have high affinities for cellular membranes at normal pH, but fold and insert across membranes at low pH, allowing them to sense pH at the surfaces of cells in diseased tissues, where it is the lowest. Here we discuss the main principles of pHLIP interactions with membrane lipid bilayers at neutral and low pHs, the possibility of tuning the folding and insertion pH by peptide sequence variation, and potential applications of pHLIPs for imaging, therapy and image-guided interventions.

  9. A tropical sediment toxicity test using the dipteran Chironomus crassiforceps to test metal bioavailability with sediment pH change in tropical acid-sulfate sediments.

    PubMed

    Peck, Mika R; Klessa, David A; Baird, Donald J

    2002-04-01

    The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.

  10. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  11. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and beta-cyclodextrin.

    PubMed

    Rajendiran, N; Balasubramanian, T

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with beta-CD is analysed by UV-vis, fluorimetry, FT-IR, (1)H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with beta-CD and COOH group present in the beta-CD cavity. A mechanism is proposed to explain the inclusion process.

  12. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and β-cyclodextrin (β-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with β-CD is analysed by UV-vis, fluorimetry, FT-IR, 1H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with β-CD and COOH group present in the β-CD cavity. A mechanism is proposed to explain the inclusion process.

  13. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel.

    PubMed

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups.

  14. Ligand accessibility and bioactivity of a hormone–dendrimer conjugate depend on pH and pH history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells in this paper. In response to pH changes, however, these estrogen–dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR–PAMAM revealed high ligand shielding abovemore » pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand–PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol– and diphenolic acid–PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen–dendrimer conjugates appears to be metastable. Finally, this pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.« less

  15. Ligand accessibility and bioactivity of a hormone–dendrimer conjugate depend on pH and pH history

    DOE PAGES

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; ...

    2015-07-17

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells in this paper. In response to pH changes, however, these estrogen–dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR–PAMAM revealed high ligand shielding abovemore » pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand–PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol– and diphenolic acid–PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen–dendrimer conjugates appears to be metastable. Finally, this pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.« less

  16. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression.

    PubMed

    Yúfera, Manuel; Moyano, Francisco J; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo

    2012-01-01

    Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.

  17. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  18. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  19. PhD Students' Work Conditions and Study Environment in University- and Industry-Based PhD Programmes

    ERIC Educational Resources Information Center

    Kolmos, A.; Kofoed, L. B.; Du, X. Y.

    2008-01-01

    During the last 10 years, new models of funding and training PhD students have been established in Denmark in order to integrate industry into the entire PhD education. Several programmes have been conducted where it is possible to co-finance PhD scholarships or to become an employee as an industrial PhD in a company. An important question is what…

  20. Effects of pH on nitrogen transformations in media-based aquaponics.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Guimbaud, Christophe; Fang, Yingke

    2016-06-01

    To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.

    PubMed

    Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P

    2003-01-01

    Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.

  2. pH dominates variation in tropical soil archaeal diversity and community structure.

    PubMed

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Effects of the pH and Concentration on the Stability of Standard Solutions of Proteinogenic Amino Acid Mixtures.

    PubMed

    Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide

    2017-01-01

    To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.

  4. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment.

    PubMed

    Xu, Xiao-Yu; Yan, Bing

    2016-04-28

    A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.

  5. pH shift assembly of adenoviral serotype 5 capsid protein nanosystems for enhanced delivery of nanoparticles, proteins and nucleic acids.

    PubMed

    Rao, Vidhya R; Upadhyay, Arun K; Kompella, Uday B

    2013-11-28

    Empty adenovirus serotype 5 (Ad5) capsids devoid of viral genome were developed as a novel delivery system for nanoparticles, proteins, and nucleic acids. Ad5 capsids of 110 nm diameter undergo an increase in particle size to 1637 nm in 1mM acetic acid at pH4.0 and then shrink to 60 nm, following pH reversal to 7.4. These pH shifts induced reversible changes in capsid zeta potential and secondary structure and irreversible changes in tertiary structure of capsid proteins. Using pH shift dependent changes in capsid size and structure, 20 nm fluorescent nanoparticles, FITC-BSA, and Alexa Fluor® 488 conjugated siRNA were encapsulated with high efficiency in Ad5 capsids, as confirmed by electron microscopy and/or flow cytometry. HEK cell uptake with capsid delivery system was 7.8-, 7.4-, and 2.9-fold greater for nanoparticles, FITC-BSA, and Alexa-siRNA, respectively, when compared to plain solutes. Physical mixtures of capsids and fluorescent solutes exhibited less capsid associated fluorescence intensity and cell uptake. Further, unlike physical mixture, pH shift assembled Ad5 capsids protected siRNA from RNase degradation. Ad5 capsids before and after pH shift exhibited endolysosomal escape. Thus, empty Ad5 capsids can encapsulate a variety of solutes based on pH shift assembly, resulting in enhanced cellular delivery. © 2013. Published by Elsevier B.V. All rights reserved.

  6. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    PubMed

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  7. pH induced contrast in viscoelasticity imaging of biopolymers

    PubMed Central

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This report focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced, however the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability. PMID:19174599

  8. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  9. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution. The KB‧ in DS was estimated from TB, TA, DIC and pH data measured in this study and early empirical data on artificial DS brines containing just carbonic acid. The KB‧ value was corroborated by Pitzer ion interaction model calculations using PHREEQC thermodynamic code applied to the chemical composition of the DS. Our results show that KB‧ increases considerably with the brine's ionic strength, reaching in the DS to a factor of 100 higher than in ;mean; seawater. Based on theoretical calculations and analyses of other natural brines it is suggested that brines' composition is a major factor in determining the KB‧ value and in turn the pH of such brines. We show that the higher the proportion of divalent cations in the brine the higher the dissociation constants of the weak acids (presumably due to formation of complexes). The low pH of the Dead Sea is accordingly explained by its extremely

  10. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.

    PubMed

    Casey, Elizabeth; Sedlak, Miroslav; Ho, Nancy W Y; Mosier, Nathan S

    2010-06-01

    A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L(-1), representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.

  11. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    USDA-ARS?s Scientific Manuscript database

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  12. [Effect of citric acid stimulation on salivary alpha-amylase, total protein, salivary flow rate and pH value in Pi deficiency children].

    PubMed

    Yang, Ze-min; Chen, Long-hui; Lin, Jing; Zhang, Min; Yang, Xiao-rong; Chen, Wei-wen

    2015-02-01

    To compare the effect of citric acid stimulation on salivary alpha-amylase (sAA), total protein (TP), salivary flow rate, and pH value between Pi deficiency (PD) children and healthy children, thereby providing evidence for Pi controlling saliva theory. Twenty PD children were recruited, and 29 healthy children were also recruited at the same time. Saliva samples from all subjects were collected before and after citric acid stimulation. The sAA activity and amount, TP contents, salivary flow rate, and pH value were determined and compared. (1) Citric acid stimulation was able to significantly increase salivary flow rate, pH value, sAA activities, sAA specific activity and sAA amount (including glycosylated and non-glycosylated sAA amount) in healthy children (P<0.05), while it could markedly increase salivary flow rate, pH value, and glycosylated sAA levels in PD children (P<0.05); (2) Although there was no statistical difference in determined salivary indices between the two groups (P>0.05), salivary indices except salivary flow rate and glycosylated sAA levels decreased more in PD children. There was statistical difference in sAA activity ratio, sAA specific activity ratio, and the ratio of glycosylated sAA levels between PD children and healthy children (P<0.05). PD children had decreased response to citric acid stimulation.

  13. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH.

    PubMed

    Chahinian, Henri; Snabe, Torben; Attias, Coralie; Fojan, Peter; Petersen, Steffen B; Carrière, Frédéric

    2006-01-24

    Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.

  14. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  15. A Non-Invasive Deep Tissue PH Monitor.

    DTIC Science & Technology

    1995-08-11

    disturbances in acid-base regulation may have serious effects on metabolic activity, circulation, and the central nervous system. Currently, acid-base...to tissue ischemia than is arterial pH. Consequently, a non-invasive deep tissue pH monitor has enormous value as a mechanism for rapid and effective ...achieved, and improve our understanding of what physical effects are important to successful non-invasive deep tissue pH monitoring. This last statement

  16. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  17. Acid-rain induced changes in streamwater quality during storms on Catoctin Mountain, Maryland

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, O.P.

    1992-01-01

    Catoctin Mountain receives some of the most acidic (lowest pH) rain in the United States. In 1990, the U.S. Geological Survey (USGS), in cooperation with the Maryland Department of the Environment (MDE) and the Maryland Department of Natural Resources (DNR), began a study of the effects of acid rain on the quality of streamwater on the part of Catoctin Mountain within Cunningham Falls State Park, Maryland (fig. 1). Samples of precipitation collected on the mountain by the USGS since 1982 have been analyzed for acidity and concentration of chemical constituents. During 1982-91, the volume-weighted average pH of precipitation was 4.2. (Volume weighting corrects for the effect of acids being washed out of the atmosphere at the beginning of rainfall). The pH value is measured on a logarithmic scale, which means that for each whole number change, the acidity changes by a factor of 10. Thus rain with a pH of 4.2 is more than 10 times as acidic as uncontaminated rain, which has a pH of about 5.6. The acidity of rain during several rainstorms on Catoctin Mountain was more than 100 times more acidic than uncontaminated rain.

  18. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Tang, J., Sr.; Chen, H.

    2017-12-01

    High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pH<4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation

  20. Marine bivalve geochemistry and shell ultrastructure from modern low pH environments

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Rodolfo-Metalpa, R.; Griesshaber, E.; Schmahl, W. W.; Buhl, D.; Hall-Spencer, J. M.; Baggini, C.; Fehr, K. T.; Immenhauser, A.

    2011-10-01

    Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis (from the Mediterranean) and M. edulis (from the Wadden Sea) combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island of Ischia. The shells of transplanted mussels were compared with M. edulis collected at pH ~8.2 from Sylt (German Wadden Sea). Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.

  1. The Branched-Chain Amino Acid Aminotransferase Encoded by ilvE Is Involved in Acid Tolerance in Streptococcus mutans

    PubMed Central

    Santiago, Brendaliz; MacGilvray, Matthew; Faustoferri, Roberta C.

    2012-01-01

    The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353–1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638–641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007–4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414–419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F1-Fo ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans. PMID:22328677

  2. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effects of a Bacteria-Based Probiotic on Ruminal pH, Volatile Fatty Acids and Bacterial Flora of Holstein Calves

    PubMed Central

    QADIS, Abdul Qadir; GOYA, Satoru; IKUTA, Kentaro; YATSU, Minoru; KIMURA, Atsushi; NAKANISHI, Shusuke; SATO, Shigeru

    2014-01-01

    ABSTRACT Twelve ruminally cannulated Holstein calves (age, 12 ± 3 weeks) were used to identify the effect of a probiotic comprised of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum on ruminal components. The calves were adapted to a diet containing a 50% high-concentrate (standard diet) for 1 week, and then, the probiotic was given once daily for 5 days (day 1–5) at 1.5 or 3.0 g/100 kg body weight to groups of four calves each. Four additional calves fed the standard diet without probiotic served as the corresponding control. Ruminal pH was measured continuously throughout the 15-day experimental period. Ruminal fluid was collected via a fistula at a defined time predose and on days 7 and 14 to assess volatile fatty acid (VFA), lactic acid and ammonia-nitrogen concentrations, as well as the bacterial community. The probiotic at either dose improved the reduced 24-hr mean ruminal pH in calves. The circadian patterns of the 1 hr mean ruminal pH were identical between the probiotic doses. In both probiotic groups, ruminal lactic acid concentrations remained significantly lower than that of the control. Probiotic did not affect ruminal VFA concentrations. L. plantarum and C. butyricum were not detected in the rumen of calves given the high-dose probiotic, whereas Enterococcus spp. remained unchanged. These results suggest that calves given a probiotic had stable ruminal pH levels (6.6–6.8), presumably due to the effects of the probiotic on stabilizing rumen-predominant bacteria, which consume greater lactate in the rumen. PMID:24614603

  4. Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves.

    PubMed

    Qadis, Abdul Qadir; Goya, Satoru; Ikuta, Kentaro; Yatsu, Minoru; Kimura, Atsushi; Nakanishi, Shusuke; Sato, Shigeru

    2014-06-01

    Twelve ruminally cannulated Holstein calves (age, 12 ± 3 weeks) were used to identify the effect of a probiotic comprised of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum on ruminal components. The calves were adapted to a diet containing a 50% high-concentrate (standard diet) for 1 week, and then, the probiotic was given once daily for 5 days (day 1-5) at 1.5 or 3.0 g/100 kg body weight to groups of four calves each. Four additional calves fed the standard diet without probiotic served as the corresponding control. Ruminal pH was measured continuously throughout the 15-day experimental period. Ruminal fluid was collected via a fistula at a defined time predose and on days 7 and 14 to assess volatile fatty acid (VFA), lactic acid and ammonia-nitrogen concentrations, as well as the bacterial community. The probiotic at either dose improved the reduced 24-hr mean ruminal pH in calves. The circadian patterns of the 1 hr mean ruminal pH were identical between the probiotic doses. In both probiotic groups, ruminal lactic acid concentrations remained significantly lower than that of the control. Probiotic did not affect ruminal VFA concentrations. L. plantarum and C. butyricum were not detected in the rumen of calves given the high-dose probiotic, whereas Enterococcus spp. remained unchanged. These results suggest that calves given a probiotic had stable ruminal pH levels (6.6-6.8), presumably due to the effects of the probiotic on stabilizing rumen-predominant bacteria, which consume greater lactate in the rumen.

  5. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation.

    PubMed

    Andersen, Stephen J; Candry, Pieter; Basadre, Thais; Khor, Way Cern; Roume, Hugo; Hernandez-Sanabria, Emma; Coma, Marta; Rabaey, Korneel

    2015-01-01

    Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e(-) → ½ H2 + OH(-)) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e(-) + 2 H(+) + O2). In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation. VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH(-) is used for pH control without added chemicals, and H2 is

  6. Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts.

    PubMed

    Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan

    2015-10-01

    The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value < 0.003, p-value < 0.0002) compared to pH 7 and 8 (p-value > 0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    PubMed

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  8. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli

    PubMed Central

    Yang, Maiyun; Jalloh, Abubakar S.; Wei, Wei

    2014-01-01

    Bioorthogonal reactions, especially the Cu(I)-catalyzed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labeling within the cytoplasm of E. coli, here we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site-specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions. PMID:25236616

  9. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.

    PubMed

    Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R

    2014-09-19

    Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.

  10. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    PubMed

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling

  13. Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Aiken, G.R.; Ryan, J.N.

    2003-01-01

    Conditional distribution coefficients (KDOM???) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that KDOM??? values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (1022.5??1.0-1023.5??1.0 L kg-1), suggesting similar Hg(II) binding environments, presumably involving thiol groups, for the different isolates. KDOM??? values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pKa = 10.3) and one other group (pKa = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).

  14. Synergetic effect of pH and biochemical components on bacterial diversity during mesophilic anaerobic fermentation of biomass-origin waste.

    PubMed

    Lü, F; Shao, L M; Bru, V; Godon, J J; He, P J

    2009-02-01

    To investigate the synergetic effect of pH and biochemical components on bacterial community structure during mesophilic anaerobic degradation of solid wastes with different origins, and under acidic or neutral conditions. The bacterial community in 16 samples of solid wastes with different biochemical compositions and origins was evaluated during mesophilic anaerobic degradation at acidic and neutral pH. Denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP) were used to compare the communities. Multivariate analysis of the DGGE and SSCP results revealed that most of the dominant microbes were dependent on the content of easily degradable carbohydrates in the samples. Furthermore, the dominant microbes were divided into two types, those that preferred an acid environment and those that preferred a neutral environment. A shift in pH was found to change their preference for medium substrates. Although most of the substrates with similar origin and biochemical composition had similar microbial diversity during fermentation, some microbes were found only in substrates with specific origins. For example, two microbes were only found in substrate that contained lignocellulose and animal protein without starch. These microbes were related to micro-organisms that are found in swine manure, as well as in other intestinal or oral niches. In addition, the distribution of fermentation products was less sensitive to the changes in pH and biochemical components than the microbial community. Bacterial diversity during anaerobic degradation of organic wastes was affected by both pH and biochemical components; however, pH exerted a greater effect. The results of this study reveal that control of pH may be an effective method to produce a stable bacterial community and relatively similar product distribution during anaerobic digestion of waste, regardless of variation in the waste feedstocks.

  15. The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori

    PubMed Central

    Marcus, Elizabeth A.; Sachs, George; Scott, David R.

    2013-01-01

    Background Helicobacter pylori, a neutralophile, colonizes the acidic environment of the human stomach by employing acid acclimation mechanisms that regulate periplasmic and cytoplasmic pH. The regulation of urease activity is central to acid acclimation. Inactive urease apoenzyme, UreA/B, requires nickel for activation. Accessory proteins UreE, F, G and H are required for nickel insertion into apoenzyme. The ExbB/ExbD/TonB complex transfers energy from the inner to outer membrane, providing the driving force for nickel uptake. Therefore, the aim of this study was to determine the contribution of ExbD to pH homeostasis. Materials and Methods A nonpolar exbD knockout was constructed and survival, growth, urease activity, and membrane potential were determined in comparison to wildtype. Results Survival of the ΔexbD strain was significantly reduced at pH 3.0. Urease activity as a function of pH and UreI activation were similar to the wildtype strain, showing normal function of the proton-gated urea channel, UreI. The increase in total urease activity over time in acid seen in the wildtype strain was abolished in the ΔexbD strain, but recovered in the presence of supra-physiologic nickel concentrations, demonstrating that the effect of the ΔexbD mutant is due to loss of a necessary constant supply of nickel. In acid, ΔexbD also decreased its ability to maintain membrane potential and periplasmic buffering in the presence of urea. Conclusions ExbD is essential for maintenance of periplasmic buffering and membrane potential by transferring energy required for nickel uptake, making it a potential non-antibiotic target for H. pylori eradication. PMID:23600974

  16. Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes.

    PubMed

    He, Shoukui; Cui, Yan; Qin, Xiaojie; Zhang, Fen; Shi, Chunlei; Paoli, George C; Shi, Xianming

    2018-06-01

    Cross-protection to environmental stresses by ethanol adaptation in Salmonella poses a great threat to food safety because it can undermine food processing interventions. The ability of Salmonella enterica serovar Enteritidis (S. Enteritidis) to develop acid resistance following ethanol adaptation (5% ethanol for 1 h) was evaluated in this study. Ethanol-adapted S. Enteritidis mounted cross-tolerance to malic acid (a two-fold increase in minimum bactericidal concentration), but not to acetic, ascorbic, lactic, citric and hydrochloric acids. The population of S. Enteritidis in orange juice (pH 3.77) over a 48-h period was not significantly (p > 0.05) influenced by ethanol adaptation. However, an increased survival by 0.09-1.02 log CFU/ml was noted with ethanol-adapted cells of S. Enteritidis compared to non-adapted cells in apple juice (pH 3.57) stored at 25 °C (p < 0.05), but not at 4 °C. RT-qPCR revealed upregulation of two acid tolerance-related genes, rpoS (encoding σ S ) and SEN1564A (encoding an acid shock protein), following ethanol adaptation. The relative expression level of the acid resistance gene hdeB did not change. The resistance phenotypes and transcriptional profiles of S. Enteritidis suggest some involvement of rpoS and SEN1564A in the ethanol-induced acid tolerance mechanism. Copyright © 2017. Published by Elsevier Ltd.

  17. Unusual Fluorescent Responses of Morpholine-functionalized Fluorescent Probes to pH via Manipulation of BODIPY’s HOMO and LUMO Energy Orbitals for Intracellular pH Detection

    PubMed Central

    Zhang, Jingtuo; Yang, Mu; Mazi, Wafa; Adhikari, Kapil; Fang, Mingxi; Xie, Fei; Valenzano, Loredana; Tiwari, Ashutosh; Luo, Fen-Tair; Liu, Haiying

    2016-01-01

    Three uncommon morpholine-based fluorescent probes (A, B and C) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4’- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells. PMID:27547822

  18. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium.

    PubMed

    Lu, Zhongyan; Yao, Lei; Jiang, Zhengqian; Aschenbach, Jörg R; Martens, Holger; Shen, Zanming

    2016-01-01

    Low sodium content in feed and large amounts of salivary sodium secretion are essential requirements to efficient sodium reabsorption in the dairy cow. It is already known that Na(+)/H(+) exchange (NHE) of the ruminal epithelium plays a key role in Na(+) absorption, and its function is influenced by the presence of short-chain fatty acids (SCFA) and mucosal pH. By contrast, the functional role and regulation of NHE in omasal epithelium have not been completely understood. In the present study, we used model studies in small ruminants (sheep and goats) to investigate NHE-mediated Na(+) transport and the effects of pH and SCFA on NHE activity in omasal epithelium and on the expression of NHE isoform in omasal epithelial cells. Conventional Ussing chamber technique, primary cell culture, quantitative PCR, and Western blot were used. In native omasal epithelium of sheep, the Na(+) transport was electroneutral, and it was inhibited by the specific NHE3 inhibitor 3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopropylidene-2-methyl-acrylamide dihydrochloride, which decreased mucosal-to-serosal, serosal-to-mucosal, and net flux rates of Na(+) by 80% each. The application of low mucosal pH (6.4 or 5.8) in the presence of SCFA activated the Na(+) transport across omasal epithelium of sheep compared with that at pH 7.4. In cultured omasal epithelial cells of goats, mRNA and protein of NHE1, NHE2, and NHE3 were detected. The application of SCFA increased NHE1 mRNA and protein expression, which was most prominent when the culture medium pH decreased from 7.4 to 6.8. At variance, the mRNA and protein expression of NHE2 and NHE3 were decreased with low pH and SCFA, which was contrary to the published data from ruminal epithelial studies. In conclusion, this paper shows that (1) NHE1, NHE2, and NHE3 are expressed in omasal epithelium; (2) NHE3 mediates the major portion of transepithelial Na(+) transport in omasal epithelium; and (3) SCFA and acidic pH acutely

  19. Effect of acidity upon attrition-corrosion of human dental enamel.

    PubMed

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of Manufacturing Methods on Dissolution and Absorption of Ketoconazole in the Presence of Organic Acid as a pH Modifier.

    PubMed

    Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira

    2017-05-01

    Poorly water-soluble compounds have a potential risk of low and variable bioavailability caused by incomplete dissolution. Incorporation of organic acids as pH modifiers is effective method for solubility enhancement of basic compounds and requires no special technique and equipment. The purpose of this study was to evaluate the effect of manufacturing method on the extent of drug solubility enhancement. We successfully prepared the granules and tablets containing ketoconazole (KZ), which is weakly basic, as a model compound and citric acid as a pH modifier using conventional wet and dry granulations. KZ solubility under non-sink condition was enhanced with supersaturation using both wet and dry granulations. High-shear granulation was the most effective method in terms of KZ dissolution enhancement, because both an intimate contact and strong bonding between KZ and incorporated acid were achieved. KZ dissolved amount from the granules prepared by high-shear granulation was about eight times higher than that from the granules without the acid. The granulation involved to suppress a diffusion of acid dissolved, leading to the effectively maintained supersaturation state. The bioavailability of KZ after oral administration to rats was improved by applying high-shear granulation with citric acid independent of gastrointestinal pH. The granules prepared by high-shear granulation showed the bioavailability about 1.7-fold higher than that of the physical mixture in rats with and without neutralization of stomach. As a result, both the dissolution and absorption rates of KZ after oral administration were enhanced using conventional manufacturing technology.

  1. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1.

    PubMed

    Al-Shorgani, Najeeb Kaid Nasser; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul

    2018-02-01

    The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield ( Y P / S ) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.

  2. What Is a pH Probe Study?

    MedlinePlus

    What is a pH Probe Study ? What is pH a probe study? M easuring the pH in the esophagus helps determine whether or not acid is coming up from the stomach. A pH probe study is usually done in patients where ...

  3. A comparative review of cutaneous pH.

    PubMed

    Matousek, Jennifer L; Campbell, Karen L

    2002-12-01

    This review describes the role of pH in cutaneous structure and function. We first describe the molecules that contribute to the acidity or alkalinity of the skin. Next, differences in cutaneous pH among species, among individuals of the same species and within individuals are described. The potential functions of cutaneous pH in normal and diseased skin are analysed. For example, cutaneous pH has a role in the selection and maintenance of the normal cutaneous microbiota. In addition, cutaneous acidity may protect the skin against infection by microbes. Finally, there is evidence that a cutaneous pH gradient activates pH-dependent enzymes involved in the process of keratinization.

  4. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  5. Key role of pH in the photochemical conversion of NO2 to HONO on humic acid

    NASA Astrophysics Data System (ADS)

    Han, Chong; Yang, Wangjin; Wu, Qianqian; Yang, He; Xue, Xiangxin

    2016-10-01

    The heterogeneous photochemical reactions of NO2 with humic acid (HA) were performed using a flow tube reactor coupled to a NOx analyzer. The effects of the pH on the uptake coefficient (γ) of NO2 and HONO and NO yields were investigated in detail. With increasing the pH in the range of 2-12, γ was almost constant with an average value of (4.21 ± 0.46) × 10-6, whereas the HONO yield and NO yield linearly decreased from (81.07 ± 4.07)% and (10.35 ± 3.86)% to (13.87 ± 9.15)% and (1.51 ± 0.94)%, respectively. According to the characterization of HA compositions and possible reaction paths, it can be concluded that the pH may influence the transfer of protons and the equilibrium of HONO with NO2- by varying the contents of carboxyl and phenol groups in HA, which should primarily contribute to the change in the HONO yield with the pH.

  6. Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH.

    PubMed

    Perugini, Luisa; Cinelli, Giuseppe; Cofelice, Martina; Ceglie, Andrea; Lopez, Francesco; Cuomo, Francesca

    2018-02-05

    In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  8. Control of Diapause by Acidic pH and Ammonium Accumulation in the Hemolymph of Antarctic Copepods

    PubMed Central

    Schründer, Sabine; Schnack-Schiel, Sigrid B.; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 +) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 +). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  9. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  10. pH landscapes in a novel five-species model of early dental biofilm.

    PubMed

    Schlafer, Sebastian; Raarup, Merete K; Meyer, Rikke L; Sutherland, Duncan S; Dige, Irene; Nyengaard, Jens R; Nyvad, Bente

    2011-01-01

    Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed

  11. RTEMIS: Real-time Tumoroid and Environment Monitoring Using Impedance Spectroscopy and pH Sensing

    NASA Astrophysics Data System (ADS)

    Alexander, Frank A., Jr.

    This research utilizes Electrical Impedance Spectroscopy, a technique classically used for electrochemical analysis and material characterization, as the basis for a non-destructive, label-free assay platform for three dimensional (3D) cellular spheroids. In this work, a linear array of microelectrodes is optimized to rapidly respond to changes located within a 3D multicellular model. In addition, this technique is coupled with an on chip micro-pH sensor for monitoring the environment around the cells. Finally, the responses of both impedance and pH are correlated with physical changes within the cellular model. The impedance analysis system realized through this work provides a foundation for the development of high-throughput drug screening systems that utilize multiple parallel sensing modalities including pH and impedance sensing in order to quickly assess the efficacy of specific drug candidates. The slow development of new drugs is mainly attributed to poor predictability of current chemosensitivity and resistivity assays, as well as genetic differences between the animal models used for tests and humans. In addition, monolayer cultures used in early experimentation are fundamentally different from the complex structure of organs in vivo. This requires the study of smaller 3D models (spheroids) that more efficiently replicate the conditions within the body. The main objective of this research was to develop a microfluidic system on a chip that is capable of deducing viability and morphology of 3D tumor spheroids by monitoring both the impedance of the cellular model and the pH of their local environment. This would provide a fast and reliable method for screening pharmaceutical compounds in a high-throughput system.

  12. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation.

    PubMed

    Souza, T P; Zanette, D; Kawanami, A E; de Rezende, L; Ishiki, H M; do Amaral, A T; Chaimovich, H; Agostinho-Neto, A; Cuccovia, I M

    2006-05-01

    The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.

  13. The chemistry, physiology and pathology of pH in cancer.

    PubMed

    Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L; Hulikova, Alzbeta

    2014-03-19

    Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.

  14. Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type.

    PubMed

    Chen, Changlun; Wang, Xiangke

    2007-02-01

    The removal behavior of thorium (Th(IV)) has been investigated in multicomponent systems containing silica (SiO2) as the model of inorganic particles because of its widespread presence in the earth's crust and soil humic acid (HA)/fulvic acid (FA) by batch experiments. The influence of pH from 2 to 12, ionic strength from 0.02 to 0.2 M KNO3, soil HA/FA concentration from 8.3 to 22.5 mg/L, and foreign cations (Li+, Na+, K+) and anions (NO3(-), Cl-) on the sorption of Th(IV) onto SiO2 was also tested. The sorption isotherms of Th(IV) at approximately constant pH (3.50+/-0.02) were determined and analyzed regressively with three kinds of sorption isotherm models, i.e., linear, Langmuir, and Freundlich models. The results demonstrated that the sorption of Th(IV) onto SiO2 increased steeply with increasing pH from 2 to 4. Generally, humic substances (HSs) were shown to enhance Th(IV) sorption at low pH, but to reduce Th(IV) sorption at intermediate and high pH. It was a hypothesis that the significantly positive influence of HA/FA at pH from 2 to 4 on the sorption of Th(IV) onto SiO2 was attributed to strong surface binding of HA/FA on SiO2 and subsequently the formation of ternary surface complexes such as [triple bond]MO-O-HA-Th or [triple bond]MO-O-FA-Th. The results also demonstrated that the sorption was strongly dependent on the concentration of HA/FA, and independent of ionic strength and foreign ions under our experimental conditions.

  15. Effects of pH and cation adsorption on colloidal stability of graphene oxide in aquatic environments

    NASA Astrophysics Data System (ADS)

    Terracciano, Amalia

    The presented doctoral research aims to improve the current understanding of the chemistry of Graphene Oxide Nanoparticles (GONPs) in common water systems. The widespread demand and future use of this nanomaterial in a broad range of different applications (i.e. biomedical, electronic, environmental) will certainly lead to its release in the environment with consequent exposure of ecosystems to graphene oxide (GO) toxicity. The described scenario demand a careful investigation and deep understanding of the environmental behavior and fate of GONPs, especially in water systems. Therefore this study focused on the investigation the effects of pH some of the most common water electrolytes (monovalent and divalent) and on GO colloidal stability. The interactions between the selected ions and the GO functional groups was also studied. The mobility of GO in porous media was first studied through filtrations tests that determine influence of ionic strength (IS) and solution composition on GO mobility. The GONPs showed to be completely retained in the porous media in presence of 3.5 mM of CaCl2 and in tap water while no retention was found for 10 mM of NaCl solution. The results indicated significant impact of divalent cations on the mobility of GO. Serial experiments were performed to quantify the adsorption of several cations (Na+, Ca2+ and Ba2+) on GO. The divalent cations showed to be strongly adsorbed on the GO surface with increasing pH and cation concentrations, while no significant sodium adsorption was detected. Raman spectroscopy and XPS analysis also showed strong differences in the typical spectra of GO, before and after adsorption of Ca2+ and Ba2+ which suggest chemical bond formation with the GO functional groups. The aggregation regime and the colloidal stability of the GO suspension in presence of selected electrolytes (Na+, Mg2+, Ca2+ and Ba2+) as function of pH was also extensively studied. The zeta potential, which is index of the stability of a colloidal

  16. Alkaline and Acid Phosphatase Activity, pH and Osmotic Pressure of Boar Semen***

    PubMed Central

    King, G. J.; Macpherson, J. W.

    1966-01-01

    Alkaline phosphatase activity was recorded in forty ejaculates of the sperm rich fraction of boar semen as 9,790 ± 5,250 Klein-Babson-Read units per 100 ml. of seminal plasma. Acid phosphatase activity in the same ejaculates was 681 ± 304 Babson-Read units per 100 ml. of seminal plasma. No alkaline phosphatase activity was detected in the seminal plasma of vasectomized boars. The pH of the sperm rich fractions was 7.69 ± 0.33 and the osmotic pressure was 313.56 ± 7.98 milliosmols. PMID:4226380

  17. A rhodamine 6G derived Schiff base as a fluorescent and colorimetric probe for pH detection and its crystal structure

    NASA Astrophysics Data System (ADS)

    Guo, Ping; Liu, Lijuan; Shi, Qian; Yin, Chunyan; Shi, Xuefang

    2017-02-01

    A fluorescent and colorimetric pH probe based on a rhodamine 6G derivative, RP1, was designed and synthesized. The probe was based on the pH induced change in the structure between the spirocyclic (non-fluorescent, colorless) and quinoid (fluorescent, pink) forms of rhodamine 6G. The effect of the acid concentration on the fluorescence "off-on" behaviors of RP1 was investigated. RP1 was fluorescent in the pH range of 1.1-3.1 and has a pKa value of 2.08 (±0.07). Thus RP1 should be useful for studies in strongly acidic environments. Possible interferences from fourteen common metal ions were tested and excluded showing the excellent selectivity of the probe. Finally, the probe exhibits an intense color change at pH values lower than 3.1 which makes it useful for naked-eye pH detection.

  18. Acid and alkaline solubilization (pH shift) process: a better approach for the utilization of fish processing waste and by-products.

    PubMed

    Surasani, Vijay Kumar Reddy

    2018-05-22

    Several technologies and methods have been developed over the years to address the environmental pollution and nutritional losses associated with the dumping of fish processing waste and low-cost fish and by-products. Despite the continuous efforts put in this field, none of the developed technologies was successful in addressing the issues due to various technical problems. To solve the problems associated with the fish processing waste and low-value fish and by-products, a process called pH shift/acid and alkaline solubilization process was developed. In this process, proteins are first solubilized using acid and alkali followed by precipitating them at their isoelectric pH to recover functional and stable protein isolates from underutilized fish species and by-products. Many studies were conducted using pH shift process to recover proteins from fish and fish by-products and found to be most successful in recovering proteins with increased yields than conventional surimi (three cycle washing) process and with good functional properties. In this paper, problems associated with conventional processing, advantages and principle of pH shift processing, effect of pH shift process on the quality and storage stability of recovered isolates, applications protein isolates, etc. are discussed in detail for better understanding.

  19. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment.

    PubMed

    Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting

    2017-05-01

    High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH <4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment

  20. An in vitro assessment of the effect of load and pH on wear between opposing enamel and dentine surfaces.

    PubMed

    Ranjitkar, Sarbin; Kaidonis, John A; Townsend, Grant C; Vu, Anh M; Richards, Lindsay C

    2008-11-01

    Previous in vitro studies have described the wear characteristics of specimens in which enamel has been opposed to enamel and dentine opposed to dentine. The aim of this study was to assess the characteristics of wear between specimens in which enamel was opposed to dentine at loads simulating attrition and at pH values simulating different erosive environments. It was hypothesized that enamel would wear more slowly than dentine under all conditions. Opposing enamel and dentine specimens from 57 human third molar teeth were worn in electromechanical machines with various loads (32, 62 and 100 N) and lubricants (pH 1.2, 3.0 and 6.1). Tooth wear was quantified by measuring reduction in dentine volume over time using a 3D profilometer. Qualitative assessment was also carried out using scanning electron microscopy. Dentine wear increased with increasing load, and dentine wear was faster at pH 1.2 than at pH 3.0 or 6.1 for all loads tested. Interestingly, enamel wore more rapidly than dentine at pH 1.2 under all loads. At pH values of 3.0 and 6.1, enamel wear rates were not measurably different from zero and they were less than wear rates for opposing dentine specimens at all loads. Micrographic assessment showed extensive surface destruction of dentine wear facets due to erosion at pH 1.2. Dentine wear facets were smoother at pH 3.0 that at pH 6.1. When enamel wears against dentine in an acidic environment enamel will wear more rapidly at very low pH, while under less acid conditions dentine will wear faster than enamel.

  1. Sphagnan--a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH.

    PubMed

    Stalheim, T; Ballance, S; Christensen, B E; Granum, P E

    2009-03-01

    Investigate if the antibacterial effect of sphagnan, a pectin-like carbohydrate polymer extracted from Sphagnum moss, can be accounted for by its ability to lower the pH. Antibacterial activity of sphagnan was assessed and compared to that of three other acids. Sphagnan in its acid form was able to inhibit growth of various food poisoning and spoilage bacteria on low-buffering solid growth medium, whereas sphagnan in its sodium form at neutral pH had no antibacterial activity. At similar acidic pH, sphagnan had comparable antibacterial activity to that of hydrochloric acid and a control rhamnogalacturonan pectin in its acid form. Sphagnan in its acid form is a weak macromolecular acid that can inhibit bacterial growth by lowering the pH of environments with a low buffering capacity. It has previously been suggested that sphagnan is an antimicrobial polysaccharide in the leaves of Sphagnum moss with a broad range of potential practical applications. Our results now show that sphagnan in its acid form can indeed inhibit bacterial growth, but only of acid-sensitive species. These findings represent increased knowledge towards our understanding on how sphagnan or Sphagnum moss might be used in practical applications.

  2. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  3. Floc Formation Reduces the pH Stress Experienced by Microorganisms Living in Alkaline Environments

    PubMed Central

    Charles, C. J.; Rout, S. P.; Patel, K. A.; Akbar, S.; Laws, A. P.; Jackson, B. R.; Boxall, S. A.

    2017-01-01

    ABSTRACT The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes heavily depends on their ability to survive the calcium-dominated, hyperalkaline conditions resulting from the dissolution of the cementitious materials. The results from this study show that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to 13.0. The flocs were dominated by Alishewanella and Dietzia spp., producing a mannose-rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca2+ sequestration. EPS provided a ∼10-μm thick layer around the cells within the center of the flocs, which were capable of growth at pH values of 11.0 and 11.5, maintaining internal pH values of 10.4 and 10.7, respectively. Microorganisms survived at a pH of 12.0, where an internal floc pH of 11.6 was observed, as was a reduced associated biomass. We observed limited floc survival (<2 weeks) at a pH of 13.0. This study demonstrates that flocs maintain lower internal pHs in response to the hyperalkaline conditions expected to occur within a cementitious geological disposal facility for radioactive wastes and indicates that floc communities within such a facility can survive at pHs up to 12.0. IMPORTANCE The role of extracellular polymeric substances (EPS) in the survival of microorganisms in hyperalkaline conditions is poorly understood. Here, we present the taxonomy, morphology, and chemical characteristics of an EPS-based microbial floc, formed by a consortium isolated from an anthropogenic hyperalkaline site. Short-term (<2 weeks) survival of the flocs at a pH of 13 was observed, with indefinite survival observed at a pH of 12.0. Measurements from micro-pH electrodes (10-μm-diameter tip) demonstrated that flocs maintain lower internal pHs in response to hyperalkaline conditions (pH 11.0, 11.5, and 12.0), demonstrating that floc formation and EPS

  4. Floc Formation Reduces the pH Stress Experienced by Microorganisms Living in Alkaline Environments.

    PubMed

    Charles, C J; Rout, S P; Patel, K A; Akbar, S; Laws, A P; Jackson, B R; Boxall, S A; Humphreys, P N

    2017-03-15

    The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes heavily depends on their ability to survive the calcium-dominated, hyperalkaline conditions resulting from the dissolution of the cementitious materials. The results from this study show that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to 13.0. The flocs were dominated by Alishewanella and Dietzia spp., producing a mannose-rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca 2+ sequestration. EPS provided a ∼10-μm thick layer around the cells within the center of the flocs, which were capable of growth at pH values of 11.0 and 11.5, maintaining internal pH values of 10.4 and 10.7, respectively. Microorganisms survived at a pH of 12.0, where an internal floc pH of 11.6 was observed, as was a reduced associated biomass. We observed limited floc survival (<2 weeks) at a pH of 13.0. This study demonstrates that flocs maintain lower internal pHs in response to the hyperalkaline conditions expected to occur within a cementitious geological disposal facility for radioactive wastes and indicates that floc communities within such a facility can survive at pHs up to 12.0. IMPORTANCE The role of extracellular polymeric substances (EPS) in the survival of microorganisms in hyperalkaline conditions is poorly understood. Here, we present the taxonomy, morphology, and chemical characteristics of an EPS-based microbial floc, formed by a consortium isolated from an anthropogenic hyperalkaline site. Short-term (<2 weeks) survival of the flocs at a pH of 13 was observed, with indefinite survival observed at a pH of 12.0. Measurements from micro-pH electrodes (10-μm-diameter tip) demonstrated that flocs maintain lower internal pHs in response to hyperalkaline conditions (pH 11.0, 11.5, and 12.0), demonstrating that floc formation and EPS production are

  5. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolyticmore » product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.« less

  6. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  7. Effects of Two Traditional Chinese Cooking Oils, Canola and Pork, on pH and Cholic Acid Content of Faeces and Colon Tumorigenesis in Kunming Mice.

    PubMed

    He, Xiao-Qiong; Duan, Jia-Li; Zhou, Jin; Song, Zhong-Yu; Cichello, Simon Angelo

    2015-01-01

    Faecal pH and cholate are two important factors that can affect colon tumorigenesis, and can be modified by diet. In this study, the effects of two Chinese traditional cooking oils (pork oil and canola/rapeseed oil) on the pH and the cholic acid content in feces, in addition to colon tumorigenesis, were studied in mice. Kunming mice were randomized into various groups; negative control group (NCG), azoxymethane control group (ACG), pork oil group (POG), and canola oil Ggroup (COG). Mice in the ACG were fed a basic rodent chow; mice in POG and COG were given 10% cooking oil rodent chow with the respective oil type. All mice were given four weekly AOM (azoxymethane) i.p. injections (10 mg/kg). The pH and cholic acid of the feces were examined every two weeks. Colon tumors, aberrant crypt foci and organ weights were examined 32 weeks following the final AOM injection. The results showed that canola oil significantly decreased faecal pH in female mice (P<0.05), but had no influence on feces pH in male mice (P>0.05). Pork oil significantly increased the feces pH in both male and female mice (P<0.05). No significant change was found in feces cholic acid content when mice were fed 10% pork oil or canola oil compared with the ACG. Although Kunming mice were not susceptible to AOM-induced tumorigenesis in terms of colon tumor incidence, pork oil significantly increased the ACF number in male mice. Canola oil showed no influence on ACF in either male or female mice. Our results indicate that cooking oil effects faecal pH, but does not affect the faecal cholic acid content and thus AOM-induced colon neoplastic ACF is modified by dietary fat.

  8. Comparative study of buffered 50% glycolic acid (pH 3.0) + 0.5% salicylic acid solution vs Jessner's solution in patients with acne vulgaris.

    PubMed

    In Jae, Jeong; Dong Ju, Hyun; Dong Hyun, Kim; Yoon, Moon Soo; Lee, Hee Jung

    2017-11-21

    Superficial chemical peels are frequently used in acne vulgaris treatment. Although glycolic acid (GA) has been widely used in clinical practice, its pH ranges from 0.08-2.75 and thus should be neutralized after application to avoid burns. To evaluate treatment efficacy and safety of chemical peeling using buffered 50% GA (pH 3.0) + 0.5% salicylic acid (SA) solution that does not need to be neutralized in the treatment of acne vulgaris compared to the conventional peeling using Jessner's solution. We performed a prospective, randomized, evaluator-blind, split-face clinical trial. Twenty patients were randomized by assigning one side of each patient's face to receive a 50% GA (pH 3.0) + 0.5% SA peel (GA side) and the other side to receive the Jessner's solution (Jessner's solution side). All patients underwent 2 sessions of treatment spaced 2 weeks apart. Lesion count, acne severity, subjective efficacy assessment, and side effects were evaluated. The total lesion count was significantly reduced for the GA and Jessner's solution sides (P < .001). However, there was no significant difference in the total lesion count, acne severity, or subjective efficacy assessment between the 2 sides (P > .05). The GA side had fewer side effects than the Jessner's solution side. The results of this study suggest that chemical peeling using the 50% GA (pH 3.0) + 0.5% SA solution can be as effective and convenient as the conventional peeling using Jessner's solution in the treatment of acne vulgaris and may show fewer adverse events than the conventional peeling. © 2017 Wiley Periodicals, Inc.

  9. Effect of air breathing on acid-base and ion regulation after exhaustive exercise and during low pH exposure in the bowfin, Amia calva.

    PubMed

    Gonzalez, R J; Milligan, L; Pagnotta, A; McDonald, D G

    2001-01-01

    To explore a potential conflict between air breathing and acid-base regulation in the bowfin (Amia calva), we examined how individuals with access to air differed from fish without air access in their response to acidosis. After exhaustive exercise, bowfin with access to air recovered significantly more slowly from the acidosis than fish without air access. While arterial blood pH (pH(a)) of fish without air access recovered to resting levels by 8 h, pH(a) was still significantly depressed in fish having access to air. In addition, Pco(2) was slightly more elevated in fish having air access than those without it. Fish with access to air still had a significant metabolic acid load after 8-h recovery, while those without air access completely cleared the load within 4 h. These results suggest that bowfin with access to air were breathing air and, consequently, were less able to excrete CO(2) and H(+) and experienced a delayed recovery. In contrast, during exposure to low pH, air breathing seemed to have a protective effect on acid-base status in bowfin. During exposure to low pH water, bowfin with access to air developed a much milder acidosis than bowfin without air access. The more severe acidosis in fish without air access was caused by an increased rate of lactic acid production. It appears that enhanced O(2) delivery allowed air-breathing bowfin to avoid acidosis-induced anaerobic metabolism and lactic acid production. In addition, during low pH exposure, plasma Na(+) and Cl(-) concentrations of fish without air access fell slightly more rapidly than those in fish with air access, indicating that the branchial ventilatory changes associated with air breathing limited, to some degree, ion losses associated with low pH exposure.

  10. Effect of pH and aging time on the kinetic dissociation of 243Am(III) from humic acid-coated gamma-Al2O3: a chelating resin exchange study.

    PubMed

    Wang, Xiangke; Chen, Changlun; Du, Jinzhou; Tan, Xiaoli; Di, Xu; Yu, Shaoming

    2005-09-15

    The chelating resin was studied to assess its influence on metal availability and mobility in the environment. The association of organic-inorganic colloid-borne trace elements was investigated in this work. The radionuclide 243Am(III) was chosen as the representative and chemical homologue for trivalent lanthanide and actinide ions present in radioactive nuclear waste. The kinetic dissociation behavior of 243Am(III) from humic acid-coated gamma-Al2O3 was studied at pH values of 4.0 +/- 0.1, 5.0 +/- 0.2, and 6.0 +/- 0.2 with a contact time of 2 days after the addition of a chelating cation exchanger resin. The concentrations of the components were: 243Am(III) 3.0 x 10(-7) mol/L, gamma-Al2O3 0.5 g/L, HA 10 mg/L (pH 4.0 +/- 0.1, 5.0 +/- 0.2, and 6.0 +/- 0.2) and 50 mg/L (pH 6.0 +/- 0.2), respectively. The kinetics of dissociation of 243Am(III) after different equilibration time with humic acid-coated gamma-Al2O3 was also investigated at pH 5.0 +/- 0.2. The experiments were carried out in air and at ambient temperature. The results suggest that the fraction of irreversible bonding of radionuclides to HA-coated Al2O3 increases with increasing pH and is independent of aging time. The assumption of two different 243Am(III)-HA-Al2O3 species, with "fast" and "slow" dissociation kinetics, is required to explain the experimental results. 243Am(III) species present on HA-Al2O3 colloids moves from the "fast" to the "slow" dissociating sites with the increase of aging time.

  11. Effects of the calcium channel blockers Phα1β and ω-conotoxin MVIIA on capsaicin and acetic acid-induced visceral nociception in mice.

    PubMed

    Diniz, Danuza Montijo; de Souza, Alessandra Hubner; Pereira, Elizete Maria Rita; da Silva, Juliana Figueira; Rigo, Flavia Karine; Romano-Silva, Marco Aurélio; Binda, Nancy; Castro, Célio J; Cordeiro, Marta Nascimento; Ferreira, Juliano; Gomez, Marcus Vinicius

    2014-11-01

    The effects of intrathecal administration of the toxins Phα1β and ω-conotoxin MVIIA were investigated in visceral nociception induced by an intraperitoneal injection of acetic acid and an intracolonic application of capsaicin. The pretreatments for 2h with the toxins reduced the number of writhes or nociceptive behaviors compared with the control mice. Phα1β administration resulted in an Imax of 84±6 and an ID50 of 12 (5-27), and ω-conotoxin MVIIA resulted in an Imax of 82±9 and an ID50 of 11 (4-35) in the contortions induced by the intraperitoneal injection of acetic acid. The administration of Phα1β resulted in an Imax of 64±4 and an ID50 of 18 (9-38), and ω-conotoxin MVIIA resulted in an Imax of 71±9 and an ID50 of 9 (1-83) in the contortions induced by intracolonic capsaicin administration. Phα1β (100/site) or ω-conotoxin MVIIA (30pmol/site) pretreatments caused a reduction in CSF glutamate release in mice intraperitoneally injected with acetic acid or treated with intracolonic capsaicin. The toxin pretreatments reduced the ROS levels induced by intraperitoneal acetic acid injection. Phα1β, but not ω-conotoxin MVIIA, reduced significantly the ROS levels induced by intracolonic capsaicin administration. Phα1β is a ω-toxin with high therapeutic index and a broader action on calcium channels. It shows analgesic effect in several rodents' models of pain, including visceral pain, suggesting that this toxin has the potential to be used in clinical setting as a drug in the control of persistent pathological pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A wearable fingernail chemical sensing platform: pH sensing at your fingertips.

    PubMed

    Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph

    2016-04-01

    This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix.

    PubMed

    Kaplan, Anne R; Brady, Megan R; Maciejewski, Mark W; Kammerer, Richard A; Alexandrescu, Andrei T

    2017-03-21

    To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1 H- 15 N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13 C rotating frame T 1 relaxation (T 1ρ ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.

  14. pH sensitive quantum dot-anthraquinone nanoconjugates

    NASA Astrophysics Data System (ADS)

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A. H.

    2014-05-01

    Semiconductor quantum dots (QDs) have been shown to be highly sensitive to electron or charge transfer processes, which may alter their optical properties. This feature can be exploited for different sensing applications. Here, we demonstrate that QD-anthraquinone conjugates can function as electron transfer-based pH nanosensors. The attachment of the anthraquinones on the surface of QDs results in the reduction of electron hole recombination, and therefore a quenching of the photoluminescence intensity. For some anthraquinone derivatives tested, the quenching mechanism is simply caused by an electron transfer process from QDs to the anthraquinone, functioning as an electron acceptor. For others, electron transfer and energy transfer (FRET) processes were found. A detailed analysis of the quenching processes for CdSe/ZnS QD of two different sizes is presented. The photoluminescence quenching phenomenon of QDs is consistent with the pH sensitive anthraquinone redox chemistry. The resultant family of pH nanosensors shows pKa ranging ˜5-8, being ideal for applications of pH determination in physiological samples like blood or serum, for intracellular pH determination, and for more acidic cellular compartments such as endosomes and lysosomes. The nanosensors showed high selectivity towards many metal cations, including the most physiologically important cations which exist at high concentration in living cells. The reversibility of the proposed systems was also demonstrated. The nanosensors were applied in the determination of pH in samples mimicking the intracellular environment. Finally, the possibility of incorporating a reference QD to achieve quantitative ratiometric measurements was investigated.

  15. Physiological mechanism of the overproduction of ε-poly-L-lysine by acidic pH shock in fed-batch fermentation.

    PubMed

    Ren, Xi-Dong; Chen, Xu-Sheng; Tang, Lei; Zeng, Xin; Wang, Liang; Mao, Zhong-Gui

    2015-11-01

    The introduction of an environmental stress of acidic pH shock had successfully solved the common deficiency existed in ε-PL production, viz. the distinct decline of ε-PL productivity in the feeding phase of the fed-batch fermentation. To unravel the underlying mechanism, we comparatively studied the physiological changes of Streptomyces sp. M-Z18 during fed-batch fermentations with the pH shock strategy (PS) and pH non-shock strategy (PNS). Morphology investigation showed that pellet-shape change was negligible throughout both fermentations. In addition, the distribution of pellet size rarely changed in the PS, whereas pellet size and number decreased substantially with time in the PNS. This was consistent with the performances of ε-PL productivity in both strategies, demonstrating that morphology could be used as a predictor of ε-PL productivity during fed-batch fermentation. Furthermore, a second growth phase happened in the PS after pH shock, followed by the re-appearance of live mycelia in the dead core of the pellets. Meanwhile, mycelia respiration and key enzymes in the central metabolic and ε-PL biosynthetic pathways were overall strengthened until the end of the fed-batch fermentation. As a result, the physiological changes induced by the acidic pH shock have synergistically and permanently contributed to the stimulation of ε-PL productivity. However, this second growth phase and re-appearance of live mycelia were absent in the PNS. These results indicated that the introduction of a short-term suppression on mycelia physiological metabolism would guarantee the long-term high ε-PL productivity.

  16. Glutamic acid leaching of synthetic covellite - A model system combining experimental data and geochemical modeling.

    PubMed

    Barthen, R; Karimzadeh, L; Gründig, M; Grenzer, J; Lippold, H; Franke, K; Lippmann-Pipke, J

    2018-04-01

    For Kupferschiefer mining established pyrometallurgical and acidic bioleaching methods face numerous problems. This is due to the finely grained and dispersed distribution of the copper minerals, the complex mineralogy, comparably low copper content, and the possibly high carbonate and organic content in this ore. Leaching at neutral pH seemed worth a try: At neutral pH the abundant carbonates do not need to be dissolved and therewith would not consume excessive amounts of provided acids. Certainly, copper solubility at neutral pH is reduced compared to an acidic environment; however, if copper complexing ligands would be supplied abundantly, copper contents in the mobile phase could easily reach the required economic level. We set up a model system to study the effect of parameters such as pH, microorganisms, microbial metabolites, and organic ligands on covellite leaching to get a better understanding of the processes in copper leaching at pH ≥ 6. With this model system we could show that glutamic acid and the microbial siderophore desferrioxamine B promote covellite dissolution. Both experimental and modeling data showed that pH is an important parameter in covellite dissolution. An increase of pH from 6 to 9 could elevate copper extraction in the presence of glutamic acid by a factor of five. These results have implications for both development of a biotechnological process regarding metal extraction from Kupferschiefer, and for the interaction of bacterial metabolites with the lithosphere and potential mobilization of heavy metals in alkaline environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.

  18. Dual-Modal Colorimetric/Fluorescence Molecular Probe for Ratiometric Sensing of pH and Its Application.

    PubMed

    Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin

    2016-08-16

    As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.

  19. Antibacterial protection by enterocin AS-48 in sport and energy drinks with less acidic pH values.

    PubMed

    Viedma, Pilar Martinez; Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Valdivia, Eva; Gálvez, Antonio

    2009-04-01

    The low pH and acid content found in sports and energy drinks are a matter of concern in dental health. Raising the pH may solve this problem, but at the same time increase the risks of spoilage or presence of pathogenic bacteria. In the present study, commercial energy drinks were adjusted to pH 5.0 and challenged with Listeria monocytogenes (drinks A to F), Staphylococcus aureus, Bacillus cereus, and Bacillus licheniformis (drink A) during storage at 37 degrees C. L. monocytogenes was able to grow in drink A and survived in drinks D and F for at least 2 days. Addition of enterocin AS-48 (1 microg/ml final concentration) rapidly inactivated L. monocytogenes in all drinks tested. S. aureus and B. cereus also survived quite well in drink A, and were completely inactivated by 12.5 microg/ml enterocin AS-48 after 2 days of storage or by 25 microg/ml bacteriocin after 1 day. B. licheniformis was able to multiply in drink A, but it was completely inactivated by 5 microg/ml enterocin AS-48 after 2 days of storage or by 12.5 microg/ml bacteriocin after 1 day. Results from the present study suggest that enterocin AS-48 could be used as a natural preservative against these target bacteria in less acidic sport and energy drinks.

  20. Microbiological profiles, pH, and titratable acidity of chorizo and salchichón (two Spanish dry fermented sausages) manufactured with ostrich, deer, or pork meat.

    PubMed

    Capita, Rosa; Llorente-Marigómez, Sandra; Prieto, Miguel; Alonso-Calleja, Carlos

    2006-05-01

    Microbial counts, pH, and titratable acidity were determined in 102 Spanish dry fermented sausages (chorizo and salchichón) made with ostrich, deer, or pork meat. Average microbial counts (log CFU per gram) varied from 5.46 +/- 0.24 to 8.25 +/- 0.80 (total viable counts), from 4.79 +/- 0.36 to 7.99 +/- 0.20 (psychrotrophs), from 0.00 +/- 0.00 to 0.99 +/- 1.10 (undetectable values were assumed to be zero) (Enterobacteriaceae), from 0.00 +/- 0.00 to 4.27 +/- 1.47 (enterococci), from 5.15 +/- 1.15 to 8.46 +/- 0.49 (lactic acid bacteria), from 3.08 +/- 0.44 to 6.59 +/- 1.76 (Micrococcaceae), from 2.27 +/- 1.53 to 5.11 +/- 1.81 (molds and yeasts), from 0.00 +/- 0.00 to 2.25 +/- 0.81 (pseudomonads), and from 0.00 +/- 0.00 to 2.78 +/- 0.46 (Brochothrix thermosphacta). Average pH and titratable acidity varied from 5.07 +/- 0.25 to 5.63 +/- 0.51 (pH units) and from 0.30 +/- 0.01 to 0.86 +/- 0.19 (% lactic acid). Both type of sausage (P < 0.05) and species of meat (P < 0.001) influenced microbial counts. Salchich6n samples showed lower average values than chorizo samples for most microbial groups (significant for Enterobacteriaceae, lactic acid bacteria, and B. thermosphacta) and titratable acidity. Sausages made from pork showed the highest microbial loads for total viable counts, psychrotrophs, Enterobacteriaceae, enterococci, lactic acid bacteria, and yeasts and molds. Higher counts were observed only for pseudomonads in ostrich sausages. B. thermosphacta levels were similar for all species of meat. The highest average pH value was observed in sausages made from ostrich meat, and the lowest titratable acidity level was found in pork sausages.

  1. The Semen pH Affects Sperm Motility and Capacitation.

    PubMed

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  2. Coping with low pH: molecular strategies in neutralophilic bacteria.

    PubMed

    Lund, Peter; Tramonti, Angela; De Biase, Daniela

    2014-11-01

    As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Constant pH simulations of pH responsive polymers

    NASA Astrophysics Data System (ADS)

    Sharma, Arjun; Smith, J. D.; Walters, Keisha B.; Rick, Steven W.

    2016-12-01

    Polyacidic polymers can change structure over a narrow range of pH in a competition between the hydrophobic effect, which favors a compact state, and electrostatic repulsion, which favors an extended state. Constant pH molecular dynamics computer simulations of poly(methacrylic acid) reveal that there are two types of structural changes, one local and one global, which make up the overall response. The local structural response depends on the tacticity of the polymer and leads to different cooperative effects for polymers with different stereochemistries, demonstrating both positive and negative cooperativities.

  4. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase*

    PubMed Central

    Stojanovski, Bosko M.; Breydo, Leonid; Hunter, Gregory A.; Uversky, Vladimir N.; Ferreira, Gloria C.

    2014-01-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5′phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0–3.0 and 7.5–10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphtalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  5. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  7. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  8. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment.

    PubMed

    Pillarisetti, Shameer; Maya, S; Sathianarayanan, S; Jayakumar, R

    2017-11-01

    Tunable pH and redox responsive polymer was prepared using γ-polyglutamic acid (γ-PGA) with linker 3-mercaptopropionic acid (3-MPA) (γ-PGA_SH) via oxidation to obtain redox responsive disulfide (γ-PGA_SS) backbone and adipic acid dihydrazide (ADH) (γ-PGA_SS_ADH) with hydrazide functional group for pH responsiveness. Further curcumin (Cur) was conjugated through hydrazone bond of the γ-PGA_SS_ADH via Schiff base reaction to obtain (γ-PGA_SS_ADH_Cur). The prepared systems were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Qq-TOF-MS/MS) and Solid state nuclear magnetic resonance (SS NMR) techniques. γ-PGA_SS_ADH_Cur formed self-assembled core shell nanoparticles (NPs) in existence of stabilized aqueous medium. γ-PGA_SS_ADH_Cur NPs maintained its stability in physiological condition. NPs tunable Cur release and cytotoxicity were observed for γ-PGA_SS_ADH_Cur NPs in both acidic and redox conditions mimicking the cancer microenvironment. γ-PGA_SS_ADH_Cur NPs uptake study showed via endocytosis mechanism resulted in the lysosomal entrapment of these NPs within the cell. γ-PGA_SS_ADH_Cur NPs exhibited a dual stimuli responsive drug delivery and can be used as a smart and potential drug delivery system in cancer microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  10. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    PubMed

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of pH and temperature on alunite dissolution rates and products

    NASA Astrophysics Data System (ADS)

    Acero, Patricia; Hudson-Edwards, Karen

    2015-04-01

    Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al

  12. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  13. Review article: pH, healing and symptom relief with rabeprazole treatment in acid-related disorders.

    PubMed

    Robinson, M

    2004-11-01

    Control of gastric acid secretion by antisecretory agents has been the cornerstone of therapy in the successful management of all acid-related disorders, including gastro-oesophageal reflux disease (GERD), and duodenal and gastric ulcer. Treatment efficacy has been strongly correlated with degree and duration of acid suppression within the 24-h period and with total duration of therapy. All proton pump inhibitors are highly effective for the healing of ulcers and erosive oesophagitis. All have closely similar mechanisms of action, yet important pharmacological differences exist, which can significantly impact certain aspects of their clinical efficacy. Rabeprazole's rapid activation over a wide pH range may be the explanation for its early onset of effective acid inhibition compared with other proton pump inhibitors such as omeprazole, lansoprazole and pantoprazole. Like rabeprazole, esomeprazole is also a potent inhibitor of gastric acid at steady state, although it is thought that rabeprazole may provide enhanced first-day acid suppression compared with esomeprazole. First-day antisecretory efficacy should produce faster symptom relief, a hypothesis supported by clinical data. Moreover, drugs with pharmacological profiles that include both rapid onset and potent antisecretory effects should help control healthcare costs by reducing the need for otherwise commonly used twice-daily proton pump inhibitor administration.

  14. Characterization of pH-fractionated humic acids with respect to their dissociation behaviour.

    PubMed

    Klučáková, Martina

    2016-04-01

    Humic acids were divided into several fractions using buffer solutions as extraction agents with different pH values. Two methods of fractionation were used. The first one was subsequent dissolution of bulk humic acids in buffers adjusted to different pH. The second one was sequential dissolution in buffers with increasing pH values. Experimental data were compared with hypothesis of partial solubility of humic acids in aqueous solutions. Behaviour of humic fractions obtained by sequential dissolution, original bulk sample and residual fractions obtained by subsequent dissolution at pH 10 and 12 agrees with the hypothesis. Results demonstrated that regardless the common mechanism, solubility and dissociation degree of various humic fractions may be very different and can be estimated using parameters of the model based on the proposed mechanism. Presented results suggest that dissolving of solid humic acids in water environment is more complex than conventional solubility behaviour of sparingly soluble solids.

  15. Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles.

    PubMed

    Tan, Xiaoli; Wang, Xiangke; Chen, Changlun; Sun, Aihua

    2007-04-01

    Thorium is considered as a chemical analog of other tetravalent actinides. Herein, the sorption of Th(IV) on TiO(2) in the presence or absence of soil fulvic acid (FA)/humic acid (HA) as a function of pH, ionic strength and FA/HA concentration has been studied by a batch method. The morphology was characterized by scanning electron microscopy (SEM). The results indicate that sorption of Th(IV) on TiO(2) increases from 0% to approximately 94% at pH 1 approximately 4, and then maintains level with increasing pH values. Both FA and HA have a positive effect on Th(IV) sorption at low pH values and the contribution of FA on Th(IV) sorption is rather higher than that of HA at pH<4. The sorption is weakly dependent on the concentration of KNO(3) in solution, but the cations K(+), Na(+) and Li(+) influence Th(IV) sorption more obviously. The batch results indicate that the inner sphere complex formation is formed at bare surfaces or FA/HA-bound TiO(2) particle surfaces. Results of SEM analysis show that the particle sizes of TiO(2), Th-TiO(2) and Th-HA-TiO(2) colloids are quite different. Surface complexation may be considered as the main sorption mechanism.

  16. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    PubMed Central

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  17. Effect of systemic acid-base disorders on colonic intracellular pH and ion transport.

    PubMed

    Wagner, J D; Kurtin, P; Charney, A N

    1985-07-01

    We have previously reported that changes in colonic net Na and Cl absorption correlate with arterial CO2 partial pressure (PCO2) and that changes in colonic net Cl absorption and HCO3 secretion correlate with the plasma HCO3 concentration during the systemic acid-base disorders. To determine whether changes in intracellular pH (pHi) and HCO3 concentration [( HCO3]i) mediate these effects, we measured pHi and calculated [HCO3] in the distal colonic mucosa of anesthetized, mechanically ventilated Sprague-Dawley rats using 5,5-[14C]dimethyloxazolidine-2,4-dione and [3H]inulin. Rats were studied during normocapnia, acute respiratory acidosis and alkalosis, and uncompensated and pH-compensated acute metabolic acidosis and alkalosis. When animals in all groups were considered, there were strong correlations between mucosal pHi and both arterial PCO2 (r = -0.76) and pH (r = 0.82) and between mucosal [HCO3]i and both arterial PCO2 (r = 0.98) and HCO3 concentration (r = 0.77). When we considered the rates of colonic electrolyte transport that characterized these acid-base disorders [A. N. Charney and L. P. Haskell. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G159-G165, 1984], we found strong correlations between mucosal pHi and net Na absorption (r = -0.86) and between mucosal [HCO3]i and both net Cl absorption (r = 0.98) and net HCO3 secretion (r = 0.83). These findings suggest that the systemic acid-base disorders cause changes in colonic mucosal pHi and [HCO3]i as a consequence of altered arterial PCO2 and HCO3 concentration. In addition, the effects of these disorders on colonic electrolyte transport may be mediated by changes in mucosal pHi and [HCO3]i.

  18. An in-situ Mobile pH Calibrator for application with HOV and ROV platform in deep sea environments

    NASA Astrophysics Data System (ADS)

    Tan, C.; Ding, K.; Seyfried, W. E., Jr.

    2014-12-01

    Recently, a novel in-situ sensor calibration instrument, Mobile pH Calibrator (MpHC), was developed for application with HOV Alvin. It was specifically designed to conduct in-situ pH measurement in deep sea hydrothermal diffuse fluids with in-situ calibration function. In general, the sensor calibrator involves three integrated electrodes (pH, dissolved H2 and H2S) and a temperature sensor, all of which are installed in a cell with a volume of ~ 1 ml. A PEEK check valve cartridge is installed at the inlet end of the cell to guide the flow path during the measurement and calibration processes. Two PEEK tubes are connected at outlet end of the cell for drawing out hydrothermal fluid and delivering pH buffer fluids. During its measurement operation, the pump draws in hydrothermal fluid, which then passes through the check valve directly into the sensing cell. When in calibration mode, the pump delivers pH buffers into the cell, while automatically closing the check valve to the outside environment. This probe has two advantages compared to our previous unit used during KNOX18RR MAR cruise in 2008 and MARS cabled observatory deployment in 2012. First, in the former design, a 5 cm solenoid valve was equipped with the probe. This enlarged size prevented its application in specific point or small area. In this version, the probe has only a dimension of 1.6 cm for an easy access to hydrothermal biological environments. Secondly, the maximum temperature condition of the earlier system was limited by the solenoid valve precluding operation in excess of 50 ºC. The new design avoids this problem, which improves its temperature tolerance. The upper limit of temperature condition is now up to 100oC, therefore enabling broader application in hydrothermal diffuse flow system on the seafloor. During SVC cruise (AT26-12) in the Gulf of Mexico this year, the MpHC was successfully tested with Alvin dives at the depth up to 2600 m for measuring pH with in-situ calibration in seafloor

  19. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    PubMed

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. Copyright © 2016. Published by Elsevier B.V.

  20. Afforestation neutralizes soil pH.

    PubMed

    Hong, Songbai; Piao, Shilong; Chen, Anping; Liu, Yongwen; Liu, Lingli; Peng, Shushi; Sardans, Jordi; Sun, Yan; Peñuelas, Josep; Zeng, Hui

    2018-02-06

    Soil pH regulates soil biogeochemical processes and has cascading effects on terrestrial ecosystem structure and functions. Afforestation has been widely adopted to increase terrestrial carbon sequestration and enhance water and soil preservation. However, the effect of afforestation on soil pH is still poorly understood and inconclusive. Here we investigate the afforestation-caused soil pH changes with pairwise samplings from 549 afforested and 148 control plots in northern China. We find significant soil pH neutralization by afforestation-afforestation lowers pH in relatively alkaline soil but raises pH in relatively acid soil. The soil pH thresholds (T pH ), the point when afforestation changes from increasing to decreasing soil pH, are species-specific, ranging from 5.5 (Pinus koraiensis) to 7.3 (Populus spp.) with a mean of 6.3. These findings indicate that afforestation can modify soil pH if tree species and initial pH are properly matched, which may potentially improve soil fertility and promote ecosystem productivity.

  1. Probing effects of pH change on dynamic response of Claudin-2 mediated adhesion using single molecule force spectroscopy.

    PubMed

    Lim, Tong Seng; Vedula, Sri Ram Krishna; Hui, Shi; Kausalya, P Jaya; Hunziker, Walter; Lim, Chwee Teck

    2008-08-15

    Claudins belong to a large family of transmembrane proteins that localize at tight junctions (TJs) where they play a central role in regulating paracellular transport of solutes and nutrients across epithelial monolayers. Their ability to regulate the paracellular pathway is highly influenced by changes in extracellular pH. However, the effect of changes in pH on the strength and kinetics of claudin mediated adhesion is poorly understood. Using atomic force microscopy, we characterized the kinetic properties of homophilic trans-interactions between full length recombinant GST tagged Claudin-2 (Cldn2) under different pH conditions. In measurements covering three orders of magnitude change in force loading rate of 10(2)-10(4) pN/s, the Cldn2/Cldn2 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier throughout pH range of 4.5-8. Comparing to the neutral condition (pH 6.9), differences in the inner energy barriers for the dissociation of Cldn2/Cldn2 mediated interactions at acidic and alkaline environments were found to be <0.65 k(B)T, which is much lower than the outer dissociation energy barrier (>1.37 k(B)T). The relatively stable interaction of Cldn2/Cldn2 in neutral environment suggests that electrostatic interactions may contribute to the overall adhesion strength of Cldn2 interactions. Our results provide an insight into the changes in the inter-molecular forces and adhesion kinetics of Cldn2 mediated interactions in acidic, neutral and alkaline environments.

  2. Gum arabic and Fe²⁺ synergistically improve the heat and acid stability of norbixin at pH 3.0-5.0.

    PubMed

    Guan, Yongguang; Zhong, Qixin

    2014-12-31

    Thermal and acid stabilities of norbixin are challenges for its application as a food colorant. In this work, gum arabic and Fe(2+) were studied for the possibility to improve the thermal and acid stabilities of norbixin. Norbixin was dissolved at 0.004% w/v in deionized water with and without 0.2% w/v gum arabic and/or 0.15 mM ferrous chloride, adjusted to pH 3.0-5.0, and heated at 90 or 126 °C for 30 min. Before heating, norbixin precipitated at pH 3.0-4.0, which was prevented by gum arabic. The thermal stability of norbixin was improved by the combination of gum arabic and Fe(2+). Fluorescence analyses indicated the complex formation between norbixin and gum arabic with and without Fe(2+). Particle size and atomic force microscopy results suggested Fe(2+) and gum arabic synergistically prevented the aggregation of norbixin at acidic pH and during heating. It was hypothesized that the core of gum arabic-norbixin complexes was strengthened by Fe(2+) to enable the synergy.

  3. Aggregation and metal-complexation behaviour of THPP porphyrin in ethanol/water solutions as function of pH

    NASA Astrophysics Data System (ADS)

    Zannotti, Marco; Giovannetti, Rita; Minofar, Babak; Řeha, David; Plačková, Lydie; D'Amato, Chiara A.; Rommozzi, Elena; Dudko, Hanna V.; Kari, Nuerguli; Minicucci, Marco

    2018-03-01

    The effect of pH change on 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (THPP) with its aggregation as function of water-ethanol mixture was studied with UV-vis, fluorescence, Raman and computational analysis. In neutral pH, THPP was present as free-base and, increasing the water amount, aggregation occurred with the formation of H- and J-aggregates. The aggregation constant and the concentration of dimers were calculated, other information about the dimer aggregation were evaluated by computational study. In acidic pH, by the insertions of two hydrogens in the porphyrin rings, the porphyrin changed its geometry with a ring deformation confirmed by red-shifted spectrum and quenching in fluorescence; at this low pH, increasing the water amount, the acidic form (THPPH2)2 + resulted more stable due to a polar environment with stronger interaction by hydrogen bonding. In basic pH, reached by NH4OH, THPP porphyrin was able to react with alkali metals in order to form sitting-atop complex (M2THPP) confirmed by the typical absorption spectrum of metallo-porphyrin, Raman spectroscopy and by computational analysis.

  4. Intracellular pH regulation in rat round spermatids.

    PubMed

    Osses, N; Pancetti, F; Benos, D J; Reyes, J G

    1997-07-01

    Intracellular pH has been shown to be an important physiological parameter in cell cycle control and differentiation, aspects that are central to the spermatogenic process. However, the pH regulatory mechanisms in spermatogenic cells have not been systematically explored. In this work, measuring intracellular pH (pHi) with a fluorescent probe (BCECF), membrane potential with a fluorescent lipophilic anion (bisoxonol), and net movement of acid using a pH-stat system, we have found that rat round spermatids regulate pHi by means of a V-type H(+)-ATPase, a HCO3- entry pathway, a Na+/HCO3- dependent transport system, and a putative proton conductive pathway. Rat spermatids do not have functional base extruder transport systems. These pH regulatory characteristics seem specially designed to withstand acid challenges, and can generate sustained alkalinization upon acid exit stimulation.

  5. Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent.

    PubMed

    Choi, Gyucheol; Kim, Jaai; Lee, Changsoo

    2016-12-01

    Mixed-culture fermentation that does not require an energy-intensive sterilization process is a viable approach for the economically feasible production of lactic acid (LA) due to the potential use of organic waste as feedstock. This study investigated mixed-culture LA fermentation of whey, a high-strength organic wastewater, in continuous mode. Variations in the hydraulic retention time (HRT) from 120 to 8 h under different pH regimes in two thermophilic reactors (55 °C) were compared for their fermentation performance. One reactor was maintained at a low pH (pH 3.0) during operation at HRTs of 120 to 24 h and then adjusted to pH 5.5 in the later phases of fermentation at HRTs of 24 to 8 h (R1), while the second reactor was maintained at pH 5.5 throughout the experiment (R2). Although the LA production in R1 was negligible at low pH, it increased dramatically after the pH was raised to 5.5 and exceeded that in R2 when stabilized at HRTs of 8 and 12 h. The maximum yield (0.62 g LA/g substrate fed as the chemical oxygen demand (COD) equivalent), the production rate (11.5 g/L day), and the selectivity (95 %) of LA were all determined at a 12-h HRT in R1. Additionally, molecular and statistical analyses revealed that changes in the HRT and the pH significantly affected the bacterial community structure and thus the fermentation characteristics of the experimental reactors. Bacillus coagulans was likely the predominant LA producer in both reactors. The overall results suggest that low pH start-up has a positive effect on yield and selectivity in mixed-culture LA fermentation.

  6. Aspirin is associated with low oral pH levels and antacid helps to increase oral pH.

    PubMed

    Ediriweera, Dileepa Senajith; Dilina, Nuwani; Saparamadu, Vipula; Fernando, Inoka; Kurukulasuriya, Buddhika; Fernando, Deepika; Kurera, Janakie

    2018-02-20

    Aspirin is a commonly used medicine for primary and secondary prevention of cardiovascular diseases. It is an acidic medicine associated with gastric irritation and acid reflux, which in turn can lead to low oral pH levels. Therefore, it is important to understand the association between aspirin and oral pH levels in order to achieve an optimum oral health condition among patients who take aspirin on prescription. Out of 373 patients, 162 (44%) were males and 245 (66%) were on aspirin. 71% of aspirin taking patients and 29% of non-aspirin taking patients had oral pH less than 6.5 (P < 0.01). Aspirin showed a significant association with low oral pH levels (odds ratio = 1.91, 95% CI 1.23-2.99, P < 0.01). 78 patients were given antacids and followed up for 4 weeks, 63 of them (81%) showed an improvement in oral pH and the improvement was marked in the group who had oral pH between 5.5-6.0 compared to the group who had oral pH between 6.0-6.5 (P = 0.03). The results show that aspirin therapy is associated with low oral pH and administration of an antacid with aspirin helps to increase the oral pH level.

  7. Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages.

    PubMed

    Kasper, Lydia; Seider, Katja; Gerwien, Franziska; Allert, Stefanie; Brunke, Sascha; Schwarzmüller, Tobias; Ames, Lauren; Zubiria-Barrera, Cristina; Mansour, Michael K; Becken, Ulrike; Barz, Dagmar; Vyas, Jatin M; Reiling, Norbert; Haas, Albert; Haynes, Ken; Kuchler, Karl; Hube, Bernhard

    2014-01-01

    Candida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NFκB signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NFκB signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein

  8. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.

    PubMed

    Ho, L; Ho, G

    2012-09-15

    High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite

  9. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  10. Indications of 24-h esophageal pH monitoring, capsule pH monitoring, combined pH monitoring with multichannel impedance, esophageal manometry, radiology and scintigraphy in gastroesophageal reflux disease?

    PubMed

    Vardar, Rukiye; Keskin, Muharrem

    2017-12-01

    Ambulatory esophageal pH monitoring is an essential method in patients exhibiting signs of non-erosive reflux disease (NERD) to make an objective diagnosis. Intra-esophageal pH monitoring is important in patients who are non-responsive to medications and in those with extraesophageal symptoms, particularly in NERD, before surgical interventions. With the help of the wireless capsule pH monitoring, measurements can be made under more physiological conditions as well as longer recordings can be performed because the investigation can be better tolerated by patients. Ambulatory esophageal pH monitoring can be detected within normal limits in 17%-31.4% of the patients with endoscopic esophagitis; therefore, normal pH monitoring cannot exclude the diagnosis of gastroesophageal reflux disease (GERD). Multi-channel intraluminal impedance pH (MII-pH) technology have been developed and currently the most sensitive tool to evaluate patients with both typical and atypical reflux symptoms. The sensitivity of a pH catheter test is 58% for the detection of acid reflux compared with MII-pH monitoring; further, its sensitivity is 28% for the detection of weak acid reflux compared with MII-pH monitoring. By adding impedance to pH catheter in patients with reflux symptoms, particularly in those receiving PPIs, it has been demonstrated that higher rates of diagnoses and symptom analyses can be obtained than those using only pH catheter. Esophageal manometry is used in the evaluation of patients with functional dysphagia and unexplained noncardiac chest pain and prior to antireflux surgery. The use of esophageal manometry is suitable for the detection of esophageal motor patterns and extreme motor abnormalities (e.g., achalasia and extreme hypomotility). Esophageal manometry and ambulatory pH monitoring are often used in assessments prior to laparoscopic antireflux surgery and in patients with reflux symptoms refractory to medical treatment. Although the esophageal motility is

  11. Evaluation of buffers toxicity in tobacco cells: Homopiperazine-1,4-bis (2-ethanesulfonic acid) is a suitable buffer for plant cells studies at low pH.

    PubMed

    Borgo, Lucélia

    2017-06-01

    Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pK a values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pK a1 4.4), 3,3-dimethylglutaric acid (pK a1 3.73), β-alanine (pK a1 3.70) and potassium biphthalate (pK a1 2.95; pK a2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H 2 A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Ecogeochemistry of the subsurface food web at pH 0-2.5 in Iron Mountain, California, U.S.A.

    USGS Publications Warehouse

    Robbins, E.I.; Rodgers, T.M.; Alpers, Charles N.; Nordstrom, D. Kirk

    2000-01-01

    Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l-1 and iron as high as 27 600 mg l-1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values < 1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment - people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.

  13. Structure of acidic pH dengue virus showing the fusogenic glycoprotein trimers.

    PubMed

    Zhang, Xinzheng; Sheng, Ju; Austin, S Kyle; Hoornweg, Tabitha E; Smit, Jolanda M; Kuhn, Richard J; Diamond, Michael S; Rossmann, Michael G

    2015-01-01

    Flaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However, the dynamic nature of the fusogenic trimer has made the determination of its structure a challenge. Here we have used Fab fragments of the neutralizing antibody DV2-E104 to stop the conformational change of dengue virus at an intermediate stage of the fusion process. Using cryo-electron microscopy, we show that in this intermediate stage, the E glycoproteins form 60 trimers that are similar to the predicted "open" fusogenic trimer. The structure of a dengue virus has been captured during the formation of fusogenic trimers. This was accomplished by binding Fab fragments of the neutralizing antibody DV2-E104 to the virus at neutral pH and then decreasing the pH to 5.5. These trimers had an "open" conformation, which is distinct from the "closed" conformation of postfusion trimers. Only two of the three E proteins within each spike are bound by a Fab molecule at domain III. Steric hindrance around the icosahedral 3-fold axes prevents binding of a Fab to the third domain III of each E protein spike. Binding of the DV2-E104 Fab fragments prevents domain III from rotating by about 130° to the postfusion orientation and thus precludes the stem region from "zipping" together the three E proteins along the domain II boundaries into the "closed" postfusion conformation, thus inhibiting fusion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid - Case Study of GDC-0810.

    PubMed

    Hou, Hao Helen; Jia, Wei; Liu, Lichuan; Cheeti, Sravanthi; Li, Jane; Nauka, Ewa; Nagapudi, Karthik

    2018-01-29

    The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human. The pH-solubility profile of GDC-0810 free acid and pH max of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food. Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pH max of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of C max and AUC 0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant. Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.

  15. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-04-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.

  16. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    PubMed Central

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  17. Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite.

    PubMed

    Wang, Suowei; Hu, Jun; Li, Jiaxing; Dong, Yunhui

    2009-08-15

    This work contributed to the adsorption of Pb(II) onto GMZ bentonite in the absence and presence of soil humic acid (HA)/fulvic acid (FA) using a batch technique. The influences of pH from 2 to 12, ionic strengths from 0.004M to 0.05M NaNO(3), soil HA/FA concentrations from 1.6 mg/L to 20mg/L, foreign cations (Li+, Na+, K+), anions (Cl(-), NO(3)(-)), and addition sequences on the adsorption of Pb(II) onto GMZ bentonite were tested. The adsorption isotherms of Pb(II) were determined at pH 3.6+/-0.1 and simulated with the Langmuir, Freundlich, and D-R adsorption models, respectively. The results demonstrated that the adsorption of Pb(II) onto GMZ bentonite increased with increasing pH from 2 to 6. HA was shown to enhance Pb(II) adsorption at low pH, but to reduce Pb(II) adsorption at high pH, whereas FA was shown to decrease Pb(II) adsorption at pH from 2 to 11. The results also demonstrated that the adsorption was strongly dependent on ionic strength and slightly dependent on the concentration of HA/FA. The adsorption of Pb(II) onto GMZ bentonite was dependent on foreign ions in solution. The addition sequences of bentonite/Pb(II)/HA had no effect on the adsorption of Pb(II).

  18. Milk and acid-base balance: proposed hypothesis versus scientific evidence.

    PubMed

    Fenton, Tanis R; Lyon, Andrew W

    2011-10-01

    Recently the lay press has claimed a hypothetical association among dairy product consumption, generation of dietary acid, and harm to human health. This theoretical association is based on the idea that the protein and phosphate in milk and dairy products make them acid-producing foods, which cause our bodies to become acidified, promoting diseases of modern civilization. Some authors have suggested that dairy products are not helpful and perhaps detrimental to bone health because higher osteoporotic fracture incidence is observed in countries with higher dairy product consumption. However, scientific evidence does not support any of these claims. Milk and dairy products neither produce acid upon metabolism nor cause metabolic acidosis, and systemic pH is not influenced by diet. Observations of higher dairy product intake in countries with prevalent osteoporosis do not hold when urban environments are compared, likely due to physical labor in rural locations. Milk and other dairy products continue to be a good source of dietary protein and other nutrients. Key teaching points: Measurement of an acidic pH urine does not reflect metabolic acidosis or an adverse health condition. The modern diet, and dairy product consumption, does not make the body acidic. Alkaline diets alter urine pH but do not change systemic pH. Net acid excretion is not an important influence of calcium metabolism. Milk is not acid producing. Dietary phosphate does not have a negative impact on calcium metabolism, which is contrary to the acid-ash hypothesis.

  19. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier.

    PubMed

    Liang, Ju; Wu, Wen-Lan; Xu, Xiao-Ding; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-02-01

    An acid-responsive amphiphilic peptide that contains KKGRGDS sequence in hydrophilic head and VVVVVV sequence in hydrophobic tail was designed and prepared. In neutral or basic medium, this amphiphilic peptide can self-assemble into micelles through hydrogen bonding and hydrophobic interactions. If changing the solution pH to an acidic environment, the electrostatic repulsion interaction among the ionized lysine (K) residues will prevent the self-assembly of the amphiphilic peptide, leading to the dissociation of micelles. The anti-tumor drug of doxorubicin (DOX) was chosen and loaded into the self-assembled micelles of the amphiphilic peptide to investigate the influence of external pH change on the drug release behavior. As expected, the micelles show a sustained DOX release in neutral medium (pH 7.0) but fast release behavior in acidic medium (pH 5.0). When incubating these DOX-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD sequence to deliver the drug into HeLa cells. Combined with the low cytotoxicity of the amphiphilic peptide against both HeLa and COS7 cells, the amphiphilic peptide reported in this work may be promising in clinical application for targeted drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis.

    PubMed

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M; Mora, Diego; Compagno, Concetta

    2016-08-01

    The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  2. Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.

    PubMed

    Wu, Yang; Cheng, Tao

    2016-01-15

    The fate and transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by the stability of nTiO2 and their attachment to sediment grains. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively-charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand at HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in natural systems can be elucidated. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at pH5 and 9. Results show that at pH5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in nTiO2 aggregation and attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in stable nTiO2 suspension and low nTiO2 attachment. At pH9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the stability and attachment of nTiO2. Overall, this study shows that changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption is a key factor that influences the stability and attachment of nTiO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. ORP and pH measurements to detect redox and acid-base anomalies from hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.

    2017-12-01

    The Tagoro submarine volcano is located 1.8 km south of the Island of El Hierro at 350 m depth and rises up to 88 m below sea level. It was erupting melting material for five months, from October 2011 to March 2012, changing drastically the physical-chemical properties of the water column in the area. After this eruption, the system evolved to a hydrothermal system. The character of both reduced and acid of the hydrothermal emissions in the Tagoro submarine volcano allowed us to detect anomalies related with changes in the chemical potential and the proton concentration using ORP and pH sensors, respectively. Tow-yos using a CTD-rosette with these two sensors provided the locations of the emissions plotting δ(ORP)/δt and ΔpH versus the latitude or longitude. The ORP sensor responds very quickly to the presence of reduced chemicals in the water column. Changes in potential are proportional to the amount of reduced chemical species present in the water. The magnitude of these changes are examined by the time derivative of ORP, δ(ORP)/δt. To detect changes in the pH, the mean pH for each depth at a reference station in an area not affected by the vent emission is subtracted from each point measured near the volcanic edifice, defining in this way ΔpH. Detailed surveys of the volcanic edifice were carried out between 2014 and 2016 using several CTD-pH-ORP tow-yo studies, localizing the ORP and pH changes, which were used to obtain surface maps of anomalies. Moreover, meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which increases the acidity above the volcano by 20%. Sites like the Tagoro submarine volcano, in its degasification stage, provide an excellent opportunity to study the carbonate system in a high CO2 world, the volcanic contribution to the global

  4. Theoretical study on the interactions between chlordecone hydrate and acidic surface groups of activated carbon under basic pH conditions.

    PubMed

    Melchor-Rodríguez, Kenia; Gamboa-Carballo, Juan José; Ferino-Pérez, Anthuan; Passé-Coutrin, Nady; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2018-05-01

    A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO - and O - ), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO - and O - groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O - ⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Optimizing buffering chemistry to maintain near neutral pH of broiler feed during pre-enrichment for Salmonella.

    PubMed

    Berrang, M E; Cosby, D E; Cox, N A; Cason, J A; Richardson, K E

    2015-12-01

    Salmonella is a human pathogen that can accompany live broilers to the slaughter plant, contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practice. The first step in culturing feed for Salmonella (which may be at low numbers and sub-lethally stressed) is to add it to a pre-enrichment broth which is incubated for 24 h. During the course of pre-enrichment, extraneous bacteria metabolize carbohydrates in some feed and excrete acidic byproducts, causing the pH to drop dramatically. An acidic pre-enrichment pH can injure or kill Salmonella resulting in a failure to detect, even if it is present and available to infect chickens. The objective of this study was to test an array of buffering chemistries to prevent formation of an injurious acidic environment during pre-enrichment of feed in peptone water. Five grams of feed were added to 45 mL of peptone water buffered with carbonate, Tris pH 8, and phosphate buffering ingredients individually and in combination. Feed was subjected to a pre-enrichment at 35°C for 24 h; pH was measured at 0, 18, and 24 h. Standard phosphate buffering ingredients at concentrations up to 4 times the normal formulation were unable to fully prevent acidic conditions. Likewise, carbonate and Tris pH 8 were not fully effective. The combination of phosphate, carbonate, and Tris pH 8 was the most effective buffer tested. It is recommended that a highly buffered pre-enrichment broth be used to examine feed for the presence of Salmonella. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chia-wei; Spike, Thomas; Klingeman, Dawn M.

    Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pHmore » 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Here, recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.« less

  7. Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85

    DOE PAGES

    Wu, Chia-wei; Spike, Thomas; Klingeman, Dawn M.; ...

    2017-05-23

    Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pHmore » 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Here, recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.« less

  8. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    NASA Astrophysics Data System (ADS)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  9. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  10. Effect of rapid cooling and acidic pH on cellular homeostasis of Pectinatus frisingensis, a strictly anaerobic beer-spoilage bacterium.

    PubMed

    Chihib, N E; Tholozan, J L

    1999-06-01

    Pectinatus frisingensis is a strictly anaerobic mesophilic bacterium involved in bottled beer spoilage. Cellular volume, adenylate energy charge, intracellular pH and intracellular potassium concentration measurements were performed in late exponential-phase cell suspensions placed in different physiological conditions, to evaluate the capability of this bacterium to maintain cellular homeostasis. The intracellular pH was calculated from the intracellular accumulation of a [carboxyl-14C]benzoic acid. Optimum physiological conditions were the presence of a carbon source and pH of 6.2, hostile conditions were a pH 4.5, absence of a carbon source, and rapid cooling treatment. The cell was able to maintain a higher intracellular pH than the external pH under all conditions. Intracellular volume was lower at pH 4.5 than at pH 6.2. A low net potassium efflux rate was routinely measured in starving cells, while glucose addition promoted immediate net potassium uptake from the medium. Cooling treatment resulted in sudden net potassium efflux from the cell, a decrease of the intracellular pH, and low modifications of the adenylate energy charge in metabolizing-glucose cell suspensions. Thus, cold treatment perturbs the P. frisingensis homeostasis but the bacteria were able to restore their homeostasis in the presence of a carbon source, and under warm conditions.

  11. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  12. Genomes in Turmoil: Frugality Drives Microbial Community Structure in Extremely Acidic Environments

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2016-12-01

    Extremely acidic environments (To gain insight into these issues, we have conducted deep bioinformatic analyses, including metabolic reconstruction of key assimilatory pathways, phylogenomics and network scrutiny of >160 genomes of acidophiles, including representatives from Archaea, Bacteria and Eukarya and at least ten metagenomes of acidic environments [Cardenas JP, et al. pp 179-197 in Acidophiles, eds R. Quatrini and D. B. Johnson, Caister Academic Press, UK (2016)]. Results yielded valuable insights into cellular processes, including carbon and nitrogen management and energy production, linking biogeochemical processes to organismal physiology. They also provided insight into the evolutionary forces that shape the genomic structure of members of acidophile communities. Niche partitioning can explain diversity patterns in rapidly changing acidic environments such as bioleaching heaps. However, in spatially and temporally homogeneous acidic environments genome flux appears to provide deeper insight into the composition and evolution of acidic consortia. Acidophiles have undergone genome streamlining by gene loss promoting mutual coexistence of species that exploit complementarity use of scarce resources consistent with the Black Queen hypothesis [Morris JJ et al. mBio 3: e00036-12 (2012)]. Acidophiles also have a large pool of accessory genes (the microbial super-genome) that can be accessed by horizontal gene transfer. This further promotes dependency relationships as drivers of community structure and the evolution of keystone species. Acknowledgements: Fondecyt 1130683; Basal CCTE PFB16

  13. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.

    PubMed

    Percak-Dennett, E; He, S; Converse, B; Konishi, H; Xu, H; Corcoran, A; Noguera, D; Chan, C; Bhattacharyya, A; Borch, T; Boyd, E; Roden, E E

    2017-09-01

    Pyrite (FeS 2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO 2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite

  14. Diffusion of Eu(III) in compacted bentonite-effect of pH, solution concentration and humic acid.

    PubMed

    Wang, Xiangke; Chen, Yixue; Wu, Yican

    2004-06-01

    The effect of pH, Eu(III) solution concentration and humic acid on the diffusion of Eu(III) in compacted bentonite (rho(b) = 1000 +/- 30 kg/m(3)) was studied with "in-diffusion" method at an ionic strength of 0.1M NaClO(4). The results (K(d) values from the first slice and theoretical calculation, apparent and effective diffusion coefficients) derived from the new capillary method are in good agreement with the literature data under similar conditions, and fit the Fick's second law very well. The results suggest that the diffusion of Eu(III) is dependent on pH values and independent on solution concentration in our experimental conditions. Humic acid forms precipitation/complexation with Eu(III) at the surface of compacted bentonite and thus deduces the diffusion/transport of Eu(III) in compacted bentonite. The K(d) values in compacted bentonite are in most cases lower than those in powdered bentonite obtained from batch experiments. The difference between the K(d) values from powdered and compacted bentonite is a strong function of the bulk density of the bentonite. The results suggest that the content of interlaminary space plays a very important role to the diffusion, sorption and migration of Eu(III) in compacted bentonite.

  15. Morphology and pH changes in leached solidified/stabilized waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.Y.; Bishop, P.L.

    1996-12-31

    Leaching of cement-based waste forms in acetic acid solutions with different acidic strengths has been investigated in this work. The examination of the morphology and pH profile along the acid penetration route by an optical microscope and various pH color indicators is reported. A clear-cut leaching boundary, where the pH changes from below 6 in the leached surface layers to above 12 in the unleached waste form, was observed in every leached sample.

  16. Update: Assessment of gastric pH in the critically ill.

    PubMed

    Neill, K M; Rice, K T; Ahern, H L

    1998-04-27

    The purpose of this manuscript is to update a review of the measurement of intraluminal gastric pH in the critically ill. Intraluminal gastric pH is readily measured by aspirates tested with litmus paper or a nasogastric tube with an antimony or glass electrode tip. Significant variations of intragastric pH have been shown in different stomach locations. Significant variations in the accuracy of pH readings have also been demonstrated. Prophylactic therapy in the critically ill is aimed at maintaining a gastric pH greater than 4.0 by drug therapy that 1) neutralizes acid, 2) interrupts the signal to produce acid, 3) reduces the amount of acid produced, or 4) enhances the mucosal barrier of the stomach lining. The critically ill patients at risk of respiratory failure or coagulopathy are the patients most at risk of gastrointestinal bleeding and are, therefore, the ones most likely to benefit from prophylactic therapy. Multiple pH readings are more reliable indicators of gastric pH than are individual readings. Continuous prophylaxis is more effective than intermittent.

  17. Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, U.S.A.

    USGS Publications Warehouse

    Robbins, Eleanora I.; Rodgers , Teresa M.; Alpers, Charles N.; Nordstrom, D. Kirk

    2000-01-01

    Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l−1 and iron as high as 27 600 mg l−1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values <1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment – people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.

  18. Metal mobilization from metallurgical wastes by soil organic acids.

    PubMed

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  20. New Photochrome Probe Allows Simultaneous pH and Microviscosity Sensing.

    PubMed

    Wu, Yuanyuan; Papper, Vladislav; Pokholenko, Oleksandr; Kharlanov, Vladimir; Zhou, Yubin; Steele, Terry W J; Marks, Robert S

    2015-07-01

    4-N,N'-dimethylamino-4'-N'-stilbenemaleamic acid (DASMA), a unique molecular photochrome probe that exhibits solubility and retains trans-cis photoisomerisation in a wide range of organic solvents and aqueous pH environments, was prepared, purified and chemically characterised. Absorption, fluorescence excitation and emission spectra and constant-illumination fluorescence decay were measured in acetonitrile, dimethyl sulfoxide, ethanol, propylene carbonate, and aqueous glycerol mixtures. The pseudo-first-order fluorescence decay rates were found to be strongly dependent on the medium viscosity. In addition, the molecule exhibited the pH-dependent fluorescence and photoisomerisation kinetics.