Sample records for acidic fens reveal

  1. Anaerobic consumers of monosaccharides in a moderately acidic fen.

    PubMed

    Hamberger, Alexandra; Horn, Marcus A; Dumont, Marc G; Murrell, J Colin; Drake, Harold L

    2008-05-01

    16S rRNA-based stable isotope probing identified active xylose- and glucose-fermenting Bacteria and active Archaea, including methanogens, in anoxic slurries of material obtained from a moderately acidic, CH(4)-emitting fen. Xylose and glucose were converted to fatty acids, CO(2), H(2), and CH(4) under moderately acidic, anoxic conditions, indicating that the fen harbors moderately acid-tolerant xylose- and glucose-using fermenters, as well as moderately acid-tolerant methanogens. Organisms of the families Acidaminococcaceae, Aeromonadaceae, Clostridiaceae, Enterobacteriaceae, and Pseudomonadaceae and the order Actinomycetales, including hitherto unknown organisms, utilized xylose- or glucose-derived carbon, suggesting that highly diverse facultative aerobes and obligate anaerobes contribute to the flow of carbon in the fen under anoxic conditions. Uncultured Euryarchaeota (i.e., Methanosarcinaceae and Methanobacteriaceae) and Crenarchaeota species were identified by 16S rRNA analysis of anoxic slurries, demonstrating that the acidic fen harbors novel methanogens and Crenarchaeota organisms capable of anaerobiosis. Fermentation-derived molecules are conceived to be the primary drivers of methanogenesis when electron acceptors other than CO(2) are absent, and the collective findings of this study indicate that fen soils harbor diverse, acid-tolerant, and novel xylose-utilizing as well as glucose-utilizing facultative aerobes and obligate anaerobes that form trophic links to novel moderately acid-tolerant methanogens.

  2. Early-onset lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice mutants.

    PubMed

    Larsen, Elisabeth; Kleppa, Liv; Meza, Trine J; Meza-Zepeda, Leonardo A; Rada, Christina; Castellanos, Cesilie G; Lien, Guro F; Nesse, Gaute J; Neuberger, Michael S; Laerdahl, Jon K; William Doughty, Richard; Klungland, Arne

    2008-06-15

    Flap endonuclease 1 (FEN1) processes Okazaki fragments in lagging strand DNA synthesis, and FEN1 is involved in several DNA repair pathways. The interaction of FEN1 with the proliferating cell nuclear antigen (PCNA) processivity factor is central to the function of FEN1 in both DNA replication and repair. Here we present two gene-targeted mice with mutations in FEN1. The first mutant mouse carries a single amino acid point mutation in the active site of the nuclease domain of FEN1 (Fen1(E160D/E160D)), and the second mutant mouse contains two amino acid substitutions in the highly conserved PCNA interaction domain of FEN1 (Fen1(DeltaPCNA/DeltaPCNA)). Fen1(E160D/E160D) mice develop a considerably elevated incidence of B-cell lymphomas beginning at 6 months of age, particularly in females. By 16 months of age, more than 90% of the Fen1(E160D/E160D) females have tumors, primarily lymphomas. By contrast, Fen1(DeltaPCNA/DeltaPCNA) mouse embryos show extensive apoptosis in the forebrain and vertebrae area and die around stage E9.5 to E11.5.

  3. Biodiversity management of fens and fen meadows by grazing, cutting and burning

    USGS Publications Warehouse

    Middleton, B.A.; Holsten, B.; Van Diggelen, R.

    2006-01-01

    Question: Can the biodiversity of fens in Europe and North America be maintained through the use of grazing (especially cattle grazing), fire, and/or cutting? Location: European and North American fens. Methods: This paper is a review of the literature on the effects of grazing, fire and cutting on fens, to explore the relationship between management and biodiversity in fens. Results: A reduction of cattle grazing, mowing and burning in fens has led to a reduction in biodiversity in fens. The vegetation of abandoned fens shifts to trees and shrubs after 10-15 years, which shade the smaller and rarer species of these wetlands. While careful use of fire is used to manage fens in North America, it is not widely used in European fens, perhaps because the peat of drained fens may catch fire. Cattle grazing cannot be considered a natural disturbance in North America, since cattle did not evolve on that continent. In Europe, cattle do not generally graze in unaltered fens, but they do use slightly drained fen meadows. Conclusions: Three approaches have been used to control the dominance of tall woody and herbaceous species in abandoned fens, including the re-introduction of cattle, mowing, and burning. Overgrazing results in a permanent reduction in biodiversity, therefore cattle re-introduction must be approached cautiously. In Europe, but not in North America, mowing has been an important management tool, and mowing has been successful in maintaining species richness, particularly in fens that have been mowed annually for centuries. Fire has been the most common and successful management tool in North America although it is not effective in removing shrubs that have become large. Because the problems and solutions are similar, the literature of both European and North American fen management can be analyzed to better assess the management of fens on both continents. Many management questions require further study and these are listed in the paper. ?? IAVS; Opulus Press.

  4. Seed dispersal in fens

    USGS Publications Warehouse

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  5. Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA

    USGS Publications Warehouse

    Komor, S.C.

    1994-01-01

    Savage Fen is a wetlands complex at the base of north-facing bluffs in the Minnesota River Valley. The complex includes 27.8 hectares of calcareous fen that host rare calciphile plants whose populations are declining in Minnesota. Water and sediment compositions in the calcareous fen were studied to gain a better understanding of the hydrologie System that sustains the rare vegetation. Groundwater in the fen is a calcium-magnesium-bicarbonate type with circumneutral pH values. The groundwater composition is the resuit of interactions among water, dissolved and gaseous carbon species, carbonates, and ion exchangers. Shallow groundwater is distinguished from deep groundwater by smaller concentrations of chloride, sulfate, magnesium, and sodium, and larger concentrations of calcium, bicarbonate, hydrogen sulfide, and ammonium. Magnesian calcite is the prevalent carbonate in unconsolidated sedimentary fill beneath the fen and is an important source and sink for dissolved calcium, magnesium, and inorganic carbon. Calcite concentrations just below the water table are small because aerobic and anaerobic oxidation of organic matter increase the partial pressure of carbon dioxide (PCO2), decrease pH, and cause calcite to dissolve. Thick calcite accumulations just above the water table, in the root zone of calciphile plants, result from water table fluctuations and attendant changes in PCO2. Groundwater beneath Savage Fen recharges in lakes and ponds south of the fen and upwells to the surface within the fen. Water at the water table is a mixture of upwelling groundwater and water near the surface that flows downslope from higher elevations in the fen. Changes in oxygen and hydrogen isotope compositions of shallow groundwater indicate that the proportion of upwelling groundwater in shallow groundwater decreases downgradient in the calcareous fen. Encroachment of reed grasses into the calcareous fen may reflect human-caused disturbances in the recharge area.

  6. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Interactions between the APOA5 -1131T>C and the FEN1 10154G>T polymorphisms on ω6 polyunsaturated fatty acids in serum phospholipids and coronary artery disease

    PubMed Central

    Park, Ju Yeon; Paik, Jean Kyung; Kim, Oh Yoen; Chae, Jey Sook; Jang, Yangsoo; Lee, Jong Ho

    2010-01-01

    We determined the contribution of the combination of FEN1 10154G>T with the most significant association in the analysis of plasma arachidonic acid (AA, 20:4ω6) and the APOA5-1131T>C on phospholipid ω6PUFA and coronary artery disease (CAD). Patients with CAD (n = 807, 27–81 years of age) and healthy controls (n = 1123) were genotyped for FEN1 10154G>T and APOA5-1131T>C. We found a significant interaction between these two genes for CAD risk (P = 0.007) adjusted for confounding factors. APOA5-1131C allele carriers had a higher CAD risk [odds ratio (OR):1.484, 95% confidence interval (CI):1.31–1.96; P = 0.005] compared with APOA5-1131TT individuals in the FEN1 10154GG genotype group but not in the FEN1 10154T allele group (OR:1.096, 95%CI:0.84–1.43; P = 0.504). Significant interactions between these two genes were also observed for the AA proportion (P = 0.04) and the ratio of AA/linoleic acid (LA, 18:2ω6) (P = 0.004) in serum phospholipids of controls. The APOA5-1131C allele was associated with lower AA (P = 0.027) and AA/LA (P = 0.014) only in controls carrying the FEN1 10154T allele. In conclusion, the interaction between these genes suggests that the FEN1 10154T variant allele decreases AA and AA/LA in the serum phospholipids of carriers of the APOA5-1131C allele, but contributes no significant increase in CAD risk for this population subset despite their increased triglylcerides and decreased apoA5. PMID:20802161

  8. Intrafen and interfen variation of Indiana fens: water chemistry

    USGS Publications Warehouse

    Stewart, Paul M.; Kessler, Katrina; Dunbar, Richard

    1993-01-01

    This study establishes a baseline of water chemistry information for selected Indiana fens over the course of one year. Fens are peatlands fed by groundwater seepage and are characterized by their dominant plant communities. Most of the fens discussed in this paper are located on property controlled and protected by the State of Indiana or the Federal government. Comparisons were made of variability in water chemistry data between fens located in the same area and those located some distance away. This survey indicated extensive variability in fen water chemistry with greater variability in water chemistry between fens in separate locations than in yearly variation within individual fens.

  9. Calcareous fens in Southeast Alaska.

    Treesearch

    Michael H. McClellan; Terry Brock; James F. Baichtal

    2003-01-01

    Calcareous fens have not been identified previously in southeast Alaska. A limited survey in southeast Alaska identified several wetlands that appear to be calcareous fens. These sites were located in low-elevation discharge zones that are below recharge zones in carbonate highlands and talus foot-slopes. Two of six surveyed sites partly met the Minnesota Department of...

  10. Fens as whole-ecosystem gauges of groundwater recharge under climate change

    USGS Publications Warehouse

    Drexler, Judith Z.; Knifong, Donna L.; JayLee Tuil,; Flint, Lorraine E.; Flint, Alan L.

    2013-01-01

    Currently, little is known about the impact of climate change on groundwater recharge in the Sierra Nevada and southern Cascade Range of California or other mountainous regions of the world. The purpose of this study was to determine whether small alpine peat lands called fens can be used as whole-ecosystem gauges of groundwater recharge through time. Fens are sustained by groundwater discharge and are highly sensitive to changes in groundwater flow due to hydrologic disturbance including climate change. Seven fens in the Sierra Nevada and southern Cascade Range were studied over a 50-80 year period using historic aerial photography. In each aerial photograph, fen areas were identified as open lawn and partially treed areas that exhibited (1) dark brownish-green coloring or various shades of gray and black in black and white imagery and (2) mottling of colors and clustering of vegetation, which signified a distinct moss canopy with overlying clumped sedge vegetation. In addition to the aerial photography study, a climate analysis for the study sites was carried out using both measured data (U.S. Department of Agriculture Natural Resources Conservation Service SNOwpack TELemetry system) and modeled data (a downscaled version of the Parameter-elevation Regressions on Independent Slopes Model) for the period from 1951 to 2010. Over the study period, the five fens in the Sierra Nevada were found to be decreasing between 10% and 16% in delineated area. The climate analysis revealed significant increases through time in annual mean minimum temperature (Tmin) between 1951-1980 and 1981-2010. In addition, April 1 snow water equivalent and snowpack longevity also decreased between 1951-1980 and 1981-2010. For the fens in the Cascade Range, there were no discernible changes in delineated area. At these sites, increases in Tmin occurred only within the past 20-25 years and decreases in snowpack longevity were more subtle. A conceptual model is presented, which illustrates

  11. Emissions of biogenic sulfur gases from northern bogs and fens

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  12. Interaction between APC and Fen1 during breast carcinogenesis

    PubMed Central

    Narayan, Satya; Jaiswal, Aruna S.; Law, Brian K.; Mohammed, Kamal A.; Sharma, Arun K.; Hromas, Robert A.

    2016-01-01

    Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER – adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) – promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new

  13. Interaction between APC and Fen1 during breast carcinogenesis.

    PubMed

    Narayan, Satya; Jaiswal, Aruna S; Law, Brian K; Kamal, Mohammad A; Sharma, Arun K; Hromas, Robert A

    2016-05-01

    Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER - adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) - promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new and

  14. Rate-determining Step of Flap Endonuclease 1 (FEN1) Reflects a Kinetic Bias against Long Flaps and Trinucleotide Repeat Sequences.

    PubMed

    Tarantino, Mary E; Bilotti, Katharina; Huang, Ji; Delaney, Sarah

    2015-08-21

    Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5'-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5'-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens

    PubMed Central

    Mettrop, Ivan S.; Cusell, Casper; Kooijman, Annemieke M.; Lamers, Leon P. M.

    2015-01-01

    In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens (‘rich fens’). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC) for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks) summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3 - concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3 - and NH4 + dynamics showed no considerable changes either. In conclusion, short-term summer

  16. A conserved loop-wedge motif moderates reaction site search and recognition by FEN1.

    PubMed

    Thompson, Mark J; Gotham, Victoria J B; Ciani, Barbara; Grasby, Jane A

    2018-06-07

    DNA replication and repair frequently involve intermediate two-way junction structures with overhangs, or flaps, that must be promptly removed; a task performed by the essential enzyme flap endonuclease 1 (FEN1). We demonstrate a functional relationship between two intrinsically disordered regions of the FEN1 protein, which recognize opposing sides of the junction and order in response to the requisite substrate. Our results inform a model in which short-range translocation of FEN1 on DNA facilitates search for the annealed 3'-terminus of a primer strand, which is recognized by breaking the terminal base pair to generate a substrate with a single nucleotide 3'-flap. This recognition event allosterically signals hydrolytic removal of the 5'-flap through reaction in the opposing junction duplex, by controlling access of the scissile phosphate diester to the active site. The recognition process relies on a highly-conserved 'wedge' residue located on a mobile loop that orders to bind the newly-unpaired base. The unanticipated 'loop-wedge' mechanism exerts control over substrate selection, rate of reaction and reaction site precision, and shares features with other enzymes that recognize irregular DNA structures. These new findings reveal how FEN1 precisely couples 3'-flap verification to function.

  17. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm < λ < 780 nm) irradiation is used to evaluate the photocatalytic activity of the composites. Compared with pure TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  18. Understanding Prairie Fen Hydrology - a Hierarchical Multi-Scale Groundwater Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sampath, P.; Liao, H.; Abbas, H.; Ma, L.; Li, S.

    2012-12-01

    Prairie fens provide critical habitat to more than 50 rare species and significantly contribute to the biodiversity of the upper Great Lakes region. The sustainability of these globally unique ecosystems, however, requires that they be fed by a steady supply of pristine, calcareous groundwater. Understanding the hydrology that supports the existence of such fens is essential in preserving these valuable habitats. This research uses process-based multi-scale groundwater modeling for this purpose. Two fen-sites, MacCready Fen and Ives Road Fen, in Southern Michigan were systematically studied. A hierarchy of nested steady-state models was built for each fen-site to capture the system's dynamics at spatial scales ranging from the regional groundwater-shed to the local fens. The models utilize high-resolution Digital Elevation Models (DEM), National Hydrologic Datasets (NHD), a recently-assembled water-well database, and results from a state-wide groundwater mapping project to represent the complex hydro-geological and stress framework. The modeling system simulates both shallow glacial and deep bedrock aquifers as well as the interaction between surface water and groundwater. Aquifer heterogeneities were explicitly simulated with multi-scale transition probability geo-statistics. A two-way hydraulic head feedback mechanism was set up between the nested models, such that the parent models provided boundary conditions to the child models, and in turn the child models provided local information to the parent models. A hierarchical mass budget analysis was performed to estimate the seepage fluxes at the surface water/groundwater interfaces and to assess the relative importance of the processes at multiple scales that contribute water to the fens. The models were calibrated using observed base-flows at stream gauging stations and/or static water levels at wells. Three-dimensional particle tracking was used to predict the sources of water to the fens. We observed from the

  19. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios

    PubMed Central

    Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2016-01-01

    ABSTRACT Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2. The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4. RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria. The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia. Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic

  20. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios.

    PubMed

    Juottonen, Heli; Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2017-02-15

    Northern peatlands in general have high methane (CH 4 ) emissions, but individual peatlands show considerable variation as CH 4 sources. Particularly in nutrient-poor peatlands, CH 4 production can be low and exceeded by carbon dioxide (CO 2 ) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO 2 to CH 4 produced. After [ 13 C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH 4 and CO 2 The oligotrophic fen had lower CH 4 production but produced 3 to 59 times more CO 2 than CH 4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH 4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO 2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH 4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO 2 production in peatlands. Peatlands are major sources of the greenhouse gas methane (CH 4 ), yet in many peatlands, CO 2 production from unresolved anaerobic processes exceeds CH 4 production. Anaerobic

  1. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    PubMed

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.

  2. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation

    PubMed Central

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J.; Herbert, Matthew E.; May, Christopher A.; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional “pipeline” consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens. PMID:26452279

  3. Synergistic increase of oxygen reduction favourable Fe-N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets.

    PubMed

    Zhang, Shiming; Liu, Bin; Chen, Shengli

    2013-11-14

    A Fe/N co-doped ternary nanocarbon hybrid, with uniform bamboo-like carbon nanotubes (CNTs) in situ grown on/between the single/few-layer graphene sheets interspaced by carbon nanosphere aggregates, was prepared through a one-pot heat treatment of a precursor mixture containing graphene oxide, Vulcan XC-72 carbon nanospheres, nitrogen rich melamine and small amounts of Fe ions. Physical characterization including electron microscopic images, N2 adsorption-desorption isotherms, pore size distribution, XPS, XRD, Mössbauer spectra, and EDX revealed that the 0-D/1-D/2-D ternary hybrid architecture not only offered an optimized morphology for high dispersion of each nanocarbon moiety, while the carbon nanosphere interspaced graphene sheets have provided a platform for efficient reaction between Fe ions and melamine molecules, resulting in uniform nucleation and growth of CNTs and formation of high density Fe-N coordination assemblies that have been believed to be the active centers for the oxygen reduction reaction (ORR) in carbon-based nonprecious metal electrocatalysts. In the absence of graphene oxides or carbon nanospheres, a similar heat treatment was found to result in large amounts of elemental Fe and Fe carbides and entangled CNTs with wide diameter distributions. As a result, the ternary Fe/N-doped nanocarbon hybrid exhibits ORR activity much higher than the Fe-N doped single or binary nanocarbon materials prepared under similar heat treatment conditions, and approaching that of the state-of-the-art carbon-supported platinum catalyst (Pt/C) in acidic media, as well as superior stability and methanol tolerance to Pt/C.

  4. Micropepsia pineolensis gen. nov., sp. nov., a mildly acidophilic alphaproteobacterium isolated from a poor fen, and proposal of Micropepsiaceae fam. nov. within Micropepsiales ord. nov.

    USDA-ARS?s Scientific Manuscript database

    A novel, obligately anaerobic, acid-tolerant, fermentative alphaproteobacterium, designated strain CS4T, was isolated from an acidic, oligotrophic (nutrient-poor) poor fen located near Pineola, NC, USA. Cultures contained Gram-negative, slightly curved, non-motile, non-spore forming, non-prosthecat...

  5. Charge-controlled switchable CO adsorption on FeN4 cluster embedded in graphene

    NASA Astrophysics Data System (ADS)

    Omidvar, Akbar

    2018-02-01

    Electrical charging of an FeN4 cluster embedded in graphene (FeN4G) is proposed as an approach for electrocatalytically switchable carbon monoxide (CO) adsorption. Using density functional theory (DFT), we found that the CO molecule is strongly adsorbed on the uncharged FeN4G cluster. Our results show that the adsorption energy of a CO molecule on the FeN4G cluster is dramatically decreased by introducing extra electrons into the cluster. Once the charges are removed, the CO molecule is spontaneously adsorbed on the FeN4G absorbent. In the framework of frontier molecular orbital (FMO) analysis, the enhanced sensitivity and reactivity of the FeN4G cluster towards the CO molecule can be interpreted in terms of interaction between the HOMO of CO molecule and the LUMO of FeN4G cluster. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Our study indicates that the FeN4G nanomaterial is an excellent absorbent for controllable and reversible capture and release of the CO.

  6. Human FEN1 Expression and Solubility Patterson in DNA Replication and Repair

    DTIC Science & Technology

    1999-11-03

    following DNA replication from the simian virus 40 (SV40) origin of replication in vitro. Human FEN1, and FEN1 homologues from yeast to mammals, are...also implicated in different forms of DNA repair. In this thesis, I provide additional evidence supporting human FEN1’s role in nuclear DNA replication in...coincident with S phase DNA replication in both primary and transformed cells. Using novel antibodies that recognize human FEN1, I further show that very

  7. Fens and their rare plants in the Beartooth Mountains, Shoshone National Forest, Wyoming

    Treesearch

    Bonnie Heidel; Walter Fertig; Sabine Mellmann-Brown; Kent E. Houston; Kathleen A. Dwire

    2017-01-01

    Fens are common wetlands in the Beartooth Mountains on the Shoshone National Forest, Clarks Fork Ranger District, in Park County, Wyoming. Fens harbor plant species found in no other habitats, and some rare plants occurring in Beartooth fens are found nowhere else in Wyoming. This report summarizes the studies on Beartooth fens from 1962 to 2009, which have contributed...

  8. View of the highway crossing Little Bear Lake Fen, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the highway crossing Little Bear Lake Fen, looking northeast. The fen bridge will be installed on the existing alignment - Beartooth Highway, Red Lodge, Montana to Cooke City, Montana, Cody, Park County, WY

  9. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P limitation among peatland types

    EPA Science Inventory

    We compared C, N, and P concentrations in atmospheric deposition, runoff, and soil standing stocks with microbial respiration (DHA) and ecoenzyme activity (EEA) in an ombrotrophic bog (S2) and a minerotrophic fen (S3) to investigate the environmental drivers of biogeochemical cyc...

  10. Determination of natural organic matter and iron binding capacity in fen samples

    NASA Astrophysics Data System (ADS)

    Kügler, Stefan; Cooper, Rebecca E.; Frieder Mohr, Jan; Wichard, Thomas; Küsel, Kirsten

    2017-04-01

    Natural organic matter (NOM) plays an important role in ecosystem processes such as soil carbon stabilization, nutrient availability and metal complexation. Iron-NOM-complexes, for example, are known to increase the solubility and, as a result, the bioavailability of iron in natural environments leading to several effects on the microbial community. Due to the various functions of NOM in natural environments, there is a high level of interest in the characterization of the molecular composition. The complexity of NOM presents a significant challenge in the elucidation of its composition. However, the development and utilization of high resolution mass spectrometry (HR-MS) as a tool to detect single compounds in complex samples has spearheaded the effort to elucidate the composition of NOM. Over the past years, the accuracy of ion cyclotron- or Orbitrap mass spectrometers has increased dramatically resulting in the possibility to obtain a mass differentiation of the large number of compounds in NOM. Together these tools provide significant and powerful insight into the molecular composition of NOM. In the current study, we aim to understand abiotic and biotic interactions between NOM and metals, such as iron, found in the Schlöppnerbrunnen fen (Fichtelgebirge, Germany) and how these interactions impact the microbial consortia. We characterized the dissolved organic matter (DOM) as well as basic chemical parameters in the iron-rich (up to 20 mg (g wt peat)-1), slightly acidic (pH 4.8) fen to gain more information about DOM-metal interactions. This minerotrophic peatland connected to the groundwater has received Fe(II) released from the surrounding soils in the Lehstenbach catchment. Absorption spectroscopy (AAS), differential pulse polarography (DPP) and high resolution electrospray ionization mass spectrometry (HR-ESI-Orbitrap-MS) was applied to characterize the molecular composition of DOM in the peat water extract (PWE). We identified typical patterns for DOM

  11. BOREAS TF-11 SSA-Fen Leaf Gas Exchange Data

    NASA Technical Reports Server (NTRS)

    Arkebauer, Timothy J.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. This data set contains single-leaf gas exchange data from the SSA-Fen site during 1994 and 1995. These leaf gas exchange properties were measured for the dominant vascular plants using portable gas exchange systems. The data are stored in tabular ASCII files.

  12. Novel fen ecosystems in western North Carolina

    NASA Astrophysics Data System (ADS)

    Wilcox, J. D.

    2012-12-01

    Western North Carolina is mountainous, and groundwater flows from hillslope recharge zones to valley stream and spring discharge zones. Depending on surface topography and geologic conditions, the water table may approach or intersect the ground surface to form seepage wetlands, or fens. Fen ecosystems can be very sensitive to changes in land use, groundwater pumping, and upslope development. This presentation will focus on two sites where historical land use and human activity played important roles in creating or preserving fen ecosystems. Both sites now support—and are being managed to protect—federally endangered flora and fauna. The first site is home to Sarracenia oreophilia, an endangered pitcher plant that thrives on saturated soils with low nutrient content. The site's early history includes tree clearing, drain tile installation, and cattle grazing, while more recent management activities have included drain tile excavation, manual invasive removal, and prescribed burns. A 15-year water-level record indicates seasonal artesian conditions wet a 3m clay unit (K=2E-5 cm/sec) beneath the site, which is able to retain moisture during drier periods. Shorter "clay wetting periods" during drought years (1999-2000; 2007-2008) correspond to reduced clump counts in pitcher-plant surveys. The second site is a former aggregate quarry that now supports over 60 bog turtles (Clemmys muhlenbergii). The biggest threat to this site is encroachment of non-native and invasive multiflora rose (Rosa multiflora) and other large woody species. Management activities include manual removal and prescribed goat herbivory. Current efforts to characterize the springs, water-table, and surface-water flows will be used to detect changes in the future to the hydrologic regime in the fen.

  13. BOREAS TF-10 NSA-Fen Tower Flux and Meteorological Data

    NASA Technical Reports Server (NTRS)

    McCaughey, J. Harry; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Jelinski, Dennis E.

    2000-01-01

    The BOREAS TF-10 team collected tower flux and meteorological data at two sites, a fen and a young jack pine forest, near Thompson, Manitoba, Canada, as part of BOREAS. A preliminary data set was assembled in August 1993 while field testing the instrument packages, and at both sites data were collected from 15-Aug to 31-Aug. The main experimental period was in 1994, when continuous data were collected from 08-Apr to 23-Sep at the fen site. A very limited experiment was run in the spring/ summer of 1995, when the fen site tower was operated from 08-Apr to 14-Jun in support of a hydrology experiment in an adjoining feeder basin. Upon examination of the 1994 data set, it became clear that the behavior of the heat, water, and carbon dioxide fluxes throughout the whole growing season was an important scientific question, and that the 1994 data record was not sufficiently long to capture the character of the seasonal behavior of the fluxes. Thus, the fen site was operated in 1996 in order to collect data from spring melt to autumn freeze-up. Data were collected from 29-Apr to 05-Nov at the fen site. All variables are presented as 30-minute averages. The data are stored in tabular ASCII files.

  14. Mechanisms controlling Cu, Fe, Mn, and Co profiles in peat of the Filson Creek Fen, northeastern Minnesota

    USGS Publications Warehouse

    Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.

    1990-01-01

    Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the

  15. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types

    Treesearch

    Brian H. Hill; Colleen M. Elonen; Terri M. Jicha; Randall K. Kolka; LaRae L.P. Lehto; Stephen D. Sebestyen; Lindsey R. Seifert-Monson

    2014-01-01

    We compared carbon (C), nitrogen (N), and phosphorus (P) concentrations in atmospheric deposition, runoff, and soils with microbial respiration [dehydrogenase (DHA)] and ecoenzyme activity (EEA) in an ombrotrophic bog and a minerotrophic fen to investigate the environmental drivers of biogeochemical cycling in peatlands at the Marcell Experimental Forest in northern...

  16. AmeriFlux CA-WP3 Alberta - Western Peatland - Rich Fen (Carex)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Lawrence B.

    This is the AmeriFlux version of the carbon flux data for the site CA-WP3 Alberta - Western Peatland - Rich Fen (Carex). Site Description - Peatland (rich fen) Alberta. 54.47°N, 113.32°W Southwest of the AB-WPL site.

  17. Fen ecohydrologic trajectories in response to groundwater drawdown with edaphic, floristic, and hydrologic feedbacks

    NASA Astrophysics Data System (ADS)

    Booth, E.; Steven, L. I.; Bart, D.

    2017-12-01

    Calcareous fens are unique and often isolated ecosystems of high conservation value worldwide because they provide habitat for many rare plant and animal species. Their identity is inextricably linked to an absolute dependence on a consistent discharge of groundwater that saturates the near surface for most of the growing season leading to the accumulation of carbon as peat or tufa and sequestration of nutrients. The stresses resulting from consistent saturation and low-nutrient availability result in high native plant diversity including very high rare species richness compared to other ecosystems. Decreases in the saturation stress by reduced groundwater inputs (e.g., from nearby pumping) can result in losses of native diversity, decreases in rare-species abundance, and increased invasion by non-native species. As such, fen ecosystems are particularly susceptible to changes in groundwater conditions including reduction in water levels due to nearby groundwater pumping. Trajectories of degradation are complex due to feedbacks between loss of soil organic carbon, changes in soil properties, and plant water use. We present a model of an archetype fen that couples a hydrological niche model with a variably-saturated groundwater flow model to predict changes in vegetation composition in response to different groundwater drawdown scenarios (step change, declining trend, and periodic drawdown during dry periods). The model also includes feedbacks among vegetation composition, plant water use, and soil properties. The hydrological niche models (using surface soil moisture as predictor) and relationships between vegetation composition, plant water use (via stomatal conductance and leaf-area index), and soil hydraulic properties (van Genuchten parameters) were determined based on data collected from six fens in Wisconsin under various states of degradation. Results reveal a complex response to drawdown and provide insight into other ecosystems with linkages between the

  18. Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient.

    PubMed

    Lamentowicz, Mariusz; Lamentowicz, Lukasz; van der Knaap, Willem O; Gabka, Maciej; Mitchell, Edward A D

    2010-04-01

    We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiation.

  19. The Dependence of Peat Soil Hydraulic Conductivity on Dominant Vegetation Type in Mountain Fens

    NASA Astrophysics Data System (ADS)

    Crockett, A. C.; Ronayne, M. J.; Cooper, D. J.

    2014-12-01

    The peat soil within fen wetlands provides water storage that can substantially influence the hydrology of mountain watersheds. In this study, we investigated the relationship between hydraulic conductivity and vegetation type for fens occurring in Rocky Mountain National Park (RMNP), Colorado, USA. Vegetation in RMNP fens can be dominated by woody plants and shrubs, such as willows; by mosses; or by herbaceous plants such as sedges. Fens dominated by each vegetation type were selected for study. Six fens were investigated, all of which are in the Colorado River watershed on the west side of RMNP. For each site, soil hydraulic conductivity was measured at multiple locations using a single-ring infiltrometer. As a result of the shallow water table in these fens (the water table was always within 10 cm of the surface), horizontal hydraulic gradients were produced during the field tests. The measured infiltration rates were analyzed using the numerical model HYDRUS. In order to determine the hydraulic conductivity, a parameter estimation problem was solved using HYDRUS as the forward simulator. Horizontal flow was explicitly accounted for in the model. This approach produced more accurate estimates of hydraulic conductivity than would be obtained using an analytical solution that assumes strictly vertical flow. Significant differences in hydraulic properties between fens appear to result at least in part from the effects of different dominant vegetation types on peat soil formation.

  20. Management effects on greenhouse gas dynamics in fen ditches.

    PubMed

    Peacock, Mike; Ridley, Luke M; Evans, Chris D; Gauci, Vincent

    2017-02-01

    Globally, large areas of peatland have been drained through the digging of ditches, generally to increase agricultural production. By lowering the water table it is often assumed that drainage reduces landscape-scale emissions of methane (CH 4 ) into the atmosphere to negligible levels. However, drainage ditches themselves are known to be sources of CH 4 and other greenhouse gases (GHGs), but emissions data are scarce, particularly for carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), and show high spatial and temporal variability. Here, we report dissolved GHGs and diffusive fluxes of CH 4 and CO 2 from ditches at three UK lowland fens under different management; semi-natural fen, cropland, and cropland restored to low-intensity grassland. Ditches at all three fens emitted GHGs to the atmosphere, but both fluxes and dissolved GHGs showed extensive variation both seasonally and within-site. CH 4 fluxes were particularly large, with medians peaking at all three sites in August at 120-230mgm -2 d -1 . Significant between site differences were detected between the cropland and the other two sites for CO 2 flux and all three dissolved GHGs, suggesting that intensive agriculture has major effects on ditch biogeochemistry. Multiple regression models using environmental and water chemistry data were able to explain 29-59% of observed variation in dissolved GHGs. Annual CH 4 fluxes from the ditches were 37.8, 18.3 and 27.2gCH 4 m -2 yr -1 for the semi-natural, grassland and cropland, and annual CO 2 fluxes were similar (1100 to 1440gCO 2 m -2 yr -1 ) among sites. We suggest that fen ditches are important contributors to landscape-scale GHG emissions, particularly for CH 4 . Ditch emissions should be included in GHG budgets of human modified fens, particularly where drainage has removed the original terrestrial CH 4 source, e.g. agricultural peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Impacts of oil sands process water on fen plants: implications for plant selection in required reclamation projects.

    PubMed

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D

    2012-08-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. AmeriFlux CA-WP2 Alberta - Western Peatland - Poor Fen (Sphagnum moss)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Lawrence B.

    This is the AmeriFlux version of the carbon flux data for the site CA-WP2 Alberta - Western Peatland - Poor Fen (Sphagnum moss). Site Description - Peatland (poor fen) Alberta. 55.5375°N, 112.3343°W North of the AB-WPL site.

  3. Microbial Community Structure and Activity Linked to Contrasting Biogeochemical Gradients in Bog and Fen Environments of the Glacial Lake Agassiz Peatland

    PubMed Central

    Lin, X.; Green, S.; Tfaily, M. M.; Prakash, O.; Konstantinidis, K. T.; Corbett, J. E.; Chanton, J. P.; Cooper, W. T.

    2012-01-01

    The abundances, compositions, and activities of microbial communities were investigated at bog and fen sites in the Glacial Lake Agassiz Peatland of northwestern Minnesota. These sites contrast in the reactivity of dissolved organic matter (DOM) and the presence or absence of groundwater inputs. Microbial community composition was characterized using pyrosequencing and clone library construction of phylogenetic marker genes. Microbial distribution patterns were linked to pH, concentrations of dissolved organic carbon and nitrogen, C/N ratios, optical properties of DOM, and activities of laccase and peroxidase enzymes. Both bacterial and archaeal richness and rRNA gene abundance were >2 times higher on average in the fen than in the bog, in agreement with a higher pH, labile DOM content, and enhanced enzyme activities in the fen. Fungi were equivalent to an average of 1.4% of total prokaryotes in gene abundance assayed by quantitative PCR. Results revealed statistically distinct spatial patterns between bacterial and fungal communities. Fungal distribution did not covary with pH and DOM optical properties and was vertically stratified, with a prevalence of Ascomycota and Basidiomycota near the surface and much higher representation of Zygomycota in the subsurface. In contrast, bacterial community composition largely varied between environments, with the bog dominated by Acidobacteria (61% of total sequences), while the Firmicutes (52%) dominated in the fen. Acetoclastic Methanosarcinales showed a much higher relative abundance in the bog, in contrast to the dominance of diverse hydrogenotrophic methanogens in the fen. This is the first quantitative and compositional analysis of three microbial domains in peatlands and demonstrates that the microbial abundance, diversity, and activity parallel with the pronounced differences in environmental variables between bog and fen sites. PMID:22843538

  4. Impact of urban development on the chemical composition of ground water in a fen-wetland complex

    USGS Publications Warehouse

    Panno, S.V.; Nuzzo, V.A.; Cartwright, K.; Hensel, B.R.; Krapac, I.G.

    1999-01-01

    A 15-month-long hydrogeologic investigation of a fen-wetland complex in northeastern Illinois, USA indicated the encroachment of ground-water-borne anthropogenic contaminants into two of three high quality fens. Ground-water flow directions and chemical evidence indicated that plumes of ground water with anomalously large concentrations of Na+ and Cl- originated from a private septic system and from rock salt spread on an adjacent road. The contamination, in turn, had an adverse effect on fen vegetation; within the plumes, diverse vegetation was replaced by the more salt-tolerant narrow-leaf cattail (Typha angustifolia). Ground water of the third fen contained large concentrations of SO42- as high as 516 mg/L. The SO42- anomaly was observed on a transient and/or seasonal basis in the fen ground water and in an adjacent marsh and pond. Isotopically light ??34S values in these waters indicated that the addition of SO42- resulted from the oxidation of pyrite within underlying peat and/or pyritic gravel. However, the large SO42- concentrations had no discernible effect on fen vegetation. The results of this investigation indicate how easily construction of houses with private septic systems and deicing agents from roadway maintenance can contaminate fen ground water with relatively large concentrations of Na+ and Cl-, resulting in a significant loss of biodiversity in fens.

  5. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge.

    PubMed

    Steinberg, Lisa M; Regan, John M

    2008-11-01

    Methanogens play a critical role in the decomposition of organics under anaerobic conditions. The methanogenic consortia in saturated wetland soils are often subjected to large temperature fluctuations and acidic conditions, imposing a selective pressure for psychro- and acidotolerant community members; however, methanogenic communities in engineered digesters are frequently maintained within a narrow range of mesophilic and circumneutral conditions to retain system stability. To investigate the hypothesis that these two disparate environments have distinct methanogenic communities, the methanogens in an oligotrophic acidic fen and a mesophilic anaerobic digester treating municipal wastewater sludge were characterized by creating clone libraries for the 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes. A quantitative framework was developed to assess the differences between these two communities by calculating the average sequence similarity for 16S rRNA genes and mcrA within a genus and family using sequences of isolated and characterized methanogens within the approved methanogen taxonomy. The average sequence similarities for 16S rRNA genes within a genus and family were 96.0 and 93.5%, respectively, and the average sequence similarities for mcrA within a genus and family were 88.9 and 79%, respectively. The clone libraries of the bog and digester environments showed no overlap at the species level and almost no overlap at the family level. Both libraries were dominated by clones related to uncultured methanogen groups within the Methanomicrobiales, although members of the Methanosarcinales and Methanobacteriales were also found in both libraries. Diversity indices for the 16S rRNA gene library of the bog and both mcrA libraries were similar, but these indices indicated much lower diversity in the 16S digester library than in the other three libraries.

  6. Human Fanconi Anemia Complementation Group A Protein Stimulates the 5’ Flap Endonuclease Activity of FEN1

    PubMed Central

    Qian, Liangyue; Yuan, Fenghua; Rodriguez-Tello, Paola; Padgaonkar, Suyog; Zhang, Yanbin

    2013-01-01

    In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5’ flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5’ flap structures and is involved in DNA repair and maintenance of replication forks, constantly stimulates FEN1-mediated incision of both DNA and RNA flaps. Kinetic analyses indicate that FANCA stimulates FEN1 by increasing the turnover rate of FEN1 and altering its substrate affinity. More importantly, six pathogenic FANCA mutants are significantly less efficient than the wild-type at stimulating FEN1 endonuclease activity, implicating that regulation of FEN1 by FANCA contributes to the maintenance of genomic stability. PMID:24349332

  7. Sphagnum establishment in alkaline fens: Importance of weather and water chemistry.

    PubMed

    Vicherová, Eliška; Hájek, Michal; Šmilauer, Petr; Hájek, Tomáš

    2017-02-15

    Sphagnum expansion to alkaline fens has accelerated during the last decades in Europe, leading to changes in diversity, habitat distributions and carbon storage. The causes are still not clearly understood and involve an interplay between climate change, hydrology, nutrient supply and Sphagnum physiology. We conducted a 4-year field experiment in eight fens in Central European highlands and assessed survival and establishment of individual apical shoot fragments of S. flexuosum, S. warnstorfii and S. squarrosum transplanted along the microtopographical gradient. In a laboratory experiment, we tested combined effects of desiccation and high calcium bicarbonate concentration on Sphagnum survival. We found that in unflooded positions, living shoots of Sphagnum and brown mosses lowered [Ca 2+ ] and pH in their capillary water, in contrast to dead fragments; yet without differences between species. Survival and expansion of Sphagnum fragments, which did not die of acute calcium toxicity during first weeks/months, was negatively affected by dry weather and alkaline water chemistry, reflecting Sphagnum intolerance to desiccation and to combined high [Ca 2+ ] and pH. Shoot fragments expanded to patches only when precipitation was high. Interestingly, non-toxic concentration of calcium bicarbonate reduced desiccation damage in Sphagnum, probably through protection of membranes or other cell components. This mechanism would facilitate Sphagnum survival in elevated, frequently desiccated microhabitats of calcareous fens such as brown-moss hummocks. However, since water-retaining capacity of few Sphagnum shoots is insufficient to change water chemistry in its surroundings, surface acidification may occur only once the environment (e.g. sufficient humidity) enabled expansion to larger mats. Then, the retained rainwater together with hardly decomposable Sphagnum litter would separate mire surface from groundwater, speeding up successional shift towards poor fens. Sphagnum

  8. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota

    EPA Science Inventory

    We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; an...

  9. CH4 emissions from two floodplain fens of differing nutrient status

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; Heppell, Catherine; Belyea, Lisa; Baird, Andrew

    2014-05-01

    Floodplain fens emit large amounts of CH4 in comparison with ombrotrophic bogs. Little is known about the effect of fluvial nitrogen (N) and phosphorus (P) on CH4 dynamics in fens, although N and P affect carbon (C) dynamics indirectly in other environments by controlling plant growth and root exudate release, as well as by altering microbial biomass and decomposition rates. This study aimed to compare CH4 emissions from two floodplain fen sites which differ in nutrient status, Sutton Fen (52°45'N 001°30'E) and Strumpshaw Fen (52°36'N 001°27'E), in the Norfolk Broadland of England. Sutton and Strumpshaw Fen are under conservation management and both sites have water levels that vary within a few decimetres above and below the surface. The sites are dominated by reed (Phragmites australis). Areas within the fens where the reed was cut in 2009 were chosen for this study. Average plant height and mean aboveground biomass were significantly greater at Strumpshaw (107.2 ± 7.8 cm and 1578 ± 169 g m-2, respectively) than Sutton (56.5 ± 5.1 cm and 435 ± 42 g m-2) as were mean foliar N and P contents (21.8 ± 1.5 g kg-1 and 2.0 ± 0.2 g kg-1 at Strumpshaw, versus 16.3 ± 1.5 g kg-1 and 1.1 ± 0.1 g kg-1 at Sutton). Foliar NPK ratios showed Strumpshaw to be N limited, whereas Sutton was both N and P limited, depending on microsite. Surface peat N and P contents were also greater at Strumpshaw (28.3 ± 0.35 g kg-1 and 0.78 ± 0.02 g kg-1, respectively) than Sutton (18.32 ± 0.87 g kg-1 and 0.43 ± 0.1 g kg-1). These results indicate clear differences in nutrient status between the two sites despite their geographical proximity and other similarities. CH4 emissions were monitored monthly between 19th June 2012 and 2nd September 2013 using tall static chambers and glass funnel-traps, the latter for ebullition. Steady fluxes did not follow a clear seasonal pattern; however, emission was greatest in the summer months. Strumpshaw had a greater range in efflux (0.25 to 134

  10. EVALUATING CUMULATIVE EFFECTS OF DISTURBANCE ON THE HYDROLOGIC FUNCTION OF BOGS, FENS, AND MIRES

    EPA Science Inventory

    Few quantitative studies have been done on the hydrology of fens, bogs and mires, and consequently any predictions of the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. or example, few data are available on the role of bogs and fens with ...

  11. Evidence for a Role of FEN1 in Maintaining Mitochondrial DNA Integrity

    PubMed Central

    Kalifa, Lidza; Beutner, Gisela; Phadnis, Naina; Sheu, Shey-Shing; Sia, Elaine A.

    2009-01-01

    Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle’s high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity. PMID:19699691

  12. Water flow and solute transport in floating fen root mats

    NASA Astrophysics Data System (ADS)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to

  13. Holocene Vegetation and Climate Shifts from Sutherland Fen, Black Rock Forest, New York - Plant Macrofossils, Charcoal, and Carbon

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Guilderson, T.

    2008-12-01

    Sutherland Fen formed about 12,600 C-14 years ago (15,000 calendar years), the same time as adjacent Sutherland Pond and regional deglaciation. High-resolution (2 cm) analysis of the 3.2 m fen core indicates three major macrofossils zones indicative of climate shifts. These climate shifts were defined over fifty years ago through pollen stratigraphy of the regional northeastern US, but macrofossils provide new details concerning hydrological and ecological shifts. The lowest (SUB-1) dated to the late-glacial, is indicative of a shallow pond characterized by Najas, Nuphar, and Potamogeton seeds and containing Salix (willow) buds, a Rubus (berry) seed, and Picea glauca (white spruce) needles and sterigmata from the surrounding upland. Sedimention rates are highest in this boreal environmental zone. The overlying zone (SUB-2) beginning at 11,500 years ago (Holocene) indicates a continuing pond environment with aquatics such as Najas, Nuphar, and Brasenia, but Picea disappears and Pinus strobus (white pine) dominates the lower section of the zone. A warmer, drier climate produces sustained charcoal in the record at the Holocene boundary. Pinus strobus needles and seeds subsequently disappear and are replaced from 9000 to 7500 years ago by Pinus rigida (pitch pine), Betula populifolia/papyrifera (grey/paper birch), and emergent wetland plants such as Decodon, Cladium, and Cephalanthus, as well as Dulichium, Eleocharis, and Carex, suggesting a shallowing pond and a drier climate. Chara oospores indicate probably groundwater influx into the fen. About 4000 years ago, charcoal again is present. In the subsequent late Holocene a more acidic, moist, fen environment is characterized by Sphagnum, Rubus, Hypericum, Viola, Chamaedaphne, and Carex, though Brasenia and Potamogeton (pond indicators) are occasionally present. The continued presence of Sphagnum led to high carbon accumulation because of less decomposition. This increase in Sphagnum in recent millennia with aquatics

  14. Modelling Seasonal Carbon Dynamics on Fen Peatlands

    NASA Astrophysics Data System (ADS)

    Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Roppel, Mario; Juszczak, Radoszlav; Serba, Tomasz

    2010-05-01

    In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges between soil and atmosphere on several fen peatland use areas at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements on our site of varying types of agricultural land use. There we found significant differences in the annual carbon balances depending on the genesis of the observed sites and the seasonal dynamics. Annual balances were constructed by applying single respiration and photosynthesis CO2 models for each measurement campaign. These models were based on LLOYD-TAYLOR (1994) and Michaelis-Menten-Kinetics respectively. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the

  15. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity.

    PubMed

    Jia, Qingying; Ramaswamy, Nagappan; Hafiz, Hasnain; Tylus, Urszula; Strickland, Kara; Wu, Gang; Barbiellini, Bernardo; Bansil, Arun; Holby, Edward F; Zelenay, Piotr; Mukerjee, Sanjeev

    2015-12-22

    The commercialization of electrochemical energy conversion and storage devices relies largely upon the development of highly active catalysts based on abundant and inexpensive materials. Despite recent achievements in this respect, further progress is hindered by the poor understanding of the nature of active sites and reaction mechanisms. Herein, by characterizing representative iron-based catalysts under reactive conditions, we identify three Fe-N4-like catalytic centers with distinctly different Fe-N switching behaviors (Fe moving toward or away from the N4-plane) during the oxygen reduction reaction (ORR), and show that their ORR activities are essentially governed by the dynamic structure associated with the Fe(2+/3+) redox transition, rather than the static structure of the bare sites. Our findings reveal the structural origin of the enhanced catalytic activity of pyrolyzed Fe-based catalysts compared to nonpyrolyzed Fe-macrocycle compounds. More generally, the fundamental insights into the dynamic nature of transition-metal compounds during electron-transfer reactions will potentially guide rational design of these materials for broad applications.

  16. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens

    PubMed Central

    Emsens, Willem-Jan; Aggenbach, Camiel J. S.; Schoutens, Ken; Smolders, Alfons J. P.; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  17. Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Borken, W.

    2012-05-01

    Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen, Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33% (2009) and 22% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A 1-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration. We conclude that the moderate decrease in rhizosphere respiration following flooding arises from a

  18. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens.

    PubMed

    Peltoniemi, Krista; Laiho, Raija; Juottonen, Heli; Kiikkilä, Oili; Mäkiranta, Päivi; Minkkinen, Kari; Pennanen, Taina; Penttilä, Timo; Sarjala, Tytti; Tuittila, Eeva-Stiina; Tuomivirta, Tero; Fritze, Hannu

    2015-07-01

    Impacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth. Fungal-specific PLFA increased in the surface peat in the drier regime and decreased in layers below 10 cm in the wet regime after warming. OTUs representing Tomentella and Lactarius were observed in drier regime and Mortierella in wet regime after warming in the northern fen. The ectomycorrhizal fungi responded only to WLD. Interestingly, warming together with WLD decreased archaeal 16S rRNA copy numbers in general, and fungal ITS copy numbers in the northern fen. Expectedly, many results indicated that microbial response on warming may be linked to the moisture regime. Results indicated that microbial community in the northern fen representing Arctic soils would be more sensitive to environmental changes. The response to future climate change clearly may vary even within a habitat type, exemplified here by boreal sedge fen. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Geologic and geomorphic controls on the occurrence of fens in the Oregon Cascades and implications for vulnerability and conservation

    USGS Publications Warehouse

    Aldous, A.; Gannett, Marshall W.; Keith, Mackenzie K.; O'Connor, James E.

    2015-01-01

    Montane fens are biologically diverse peat-forming wetlands that develop at points of groundwater discharge. To protect these ecosystems, it is critical to understand their locations on the landscape and the hydrogeologic systems that support them. The upper Deschutes Basin has a groundwater flow system that supports baseflow in many rivers, but little is known about the wetland types and groundwater dependence of the thousands of wetlands within the watershed. In 292 randomly selected wetlands, we quantified landscape metrics thought useful for discriminating montane fens from non-peat-forming wetlands. We inspected these wetlands and classified 67 of them as fens. Of the landscape metrics, only geology reliably differentiated fens from other types of wetlands. Nearly all fens develop in low-permeability glacial till found at approximately 1400–1800 m in elevation, and are concentrated in areas mantled by pumice deposits that originated primarily from the eruption of Mt. Mazama approximately 7700 years BP. Stratigraphic and hydrologic factors indicate the fens are supplied by perched aquifers in glacial till, instead of the deeper regional aquifer system. Their hydrogeologic setting makes the fens highly vulnerable to expected changes to recharge associated with climate change, but not to groundwater pumping from the regional aquifer.

  20. Peat characteristics and groundwater geochemistry of calcareous fens in the Minnesota River Basin, U.S.A

    USGS Publications Warehouse

    Almendinger, J.E.; Leete, J.H.

    1998-01-01

    . Calcareous fens in Minnesota are spring-seepage peatlands with a distinctive flora of rare calciphilic species. Peat characteristics and groundwater geochemistry were determined for six calcareous fens in the Minnesota River Basin to better understand the physical structure and chemical processes associated with stands of rare vegetation. Onset of peat accumulation in three of the fens ranged from about 4,700 to 11,000 14C yrs BP and probably resulted from a combination of climate change and local hydrogeologic conditions. Most peat cores had a carbonate-bearing surface zone with greater than 10% carbonates (average 27%, dry wt basis), an underlying carbonate-depleted zone with 10% or less carbonates (average 4%), and a carbonate-bearing lower zone again with greater than 10% carbonates (average 42%). This carbonate zonation was hypothesized to result from the effect of water-table level on carbonate equilibria: carbonate precipitation occurs when the water table is above a critical level, and carbonate dissolution occurs when the water table is lower. Other processes that changed the major ion concentrations in upwelling groundwater include dilution by rain water, sulfate reduction or sulfide oxidation, and ion adsorption or exchange. Geochemical modeling indicated that average shallow water in the calcareous fens during the study period was groundwater mixed with about 6 to 13% rain water. Carbonate precipitation in the surface zone of calcareous fens could be decreased by a number of human activities, especially those that lower the water table. Such changes in shallow water geochemistry could alter the growing conditions that apparently sustain rare fen vegetation.

  1. Impact of the water salinity on the hydraulic conductivity of fen peat

    NASA Astrophysics Data System (ADS)

    Gosch, Lennart; Janssen, Manon; Lennartz, Bernd

    2017-04-01

    Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this ongoing study, we are aiming at quantifying the impact of higher salinities (up to 3.5 %) on Ks of fen peat to get a better understanding of the water and solute exchange between coastal peatlands and the adjacent sea. Two approaches differing in measurement duration employing a constant-head upward-flow permeameter were conducted. At first, Ks was measured at an initial salinity for several hours before the salinity was abruptly increased and the measurement continued. In the second approach, Ks was measured for 15 min at the salt content observed during sampling. Then, samples were completely (de)salinized via diffusion for several days/weeks before a comparison measurement was carried out. The results for degraded fen peats show a decrease of Ks during long-term measurements which does not depend on the water salinity. A slow, diffusion-controlled change in salinity does not modify the overall outcome that the duration of measurements has a stronger impact on Ks than the salinity. Further experiments will show if fen peat soils differing in their state of degradation exhibit a different behavior. A preliminary conclusion is that salinity might have a less important effect on hydraulic properties of fen peat than it was observed for bog peat.

  2. BOREAS TF-11 SSA-Fen 1996 Water Surface Film Capping Data

    NASA Technical Reports Server (NTRS)

    Billesbach, David P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. The data described in this document were made by the TF-11 team at the SSA-Fen site to quantify the effect that the films observed to form on open water surfaces had on the transfer of carbon dioxide and methane from the water to the air. Measurements of fluxes of carbon dioxide and methane were made in 1994 and in 1996 using the chamber flux method. A gas chromatograph and a LI-COR LI-6200 were used to measure concentrations and to calculate the fluxes. The data are stored in tabular ASCII files.

  3. Design, construction and performance of an experimental watershed to support a fen peatland for mine landscape reclamation

    NASA Astrophysics Data System (ADS)

    Price, J. S.; Petrone, R. M.; Strack, M.; Cooper, D. J.

    2017-12-01

    In the Alberta oil sands region, fen peatlands comprised 50% of the boreal landscape. Oil sands mining has stripped over 800 km2 of land surface to access bitumen, necessitating landscape reclamation to re-establish functional wetlands. Fens are peat-dominated wetlands that commonly rely on groundwater to supplement their water budget and deliver dissolved solutes that impart a distinct geochemistry, hence vegetation community. A numerical model was used to test the concept and guide selection of earth materials and system geometry. The goal was to maintain the placed peat in a sufficiently wet condition to support wetland plants and become a net carbon sink, in this sub-humid climate. The 32.1 ha Nikanotee Fen Watershed comprises a 7.7 ha upland, that was designed to recharge sufficient water, and deliver it to the 2.9 ha fen via groundwater flow. These features are surrounded by other reclaimed slopes designed to store water, rather than deliver it downslope. Four years of monitoring since construction show the fen maintains a high water table, and the peatland has become a strong carbon sink, even though the hydrological performance of construction materials varied substantially from what was anticipated (lower hydraulic conductivity). However, solutes associated with the tailings sand used in construction are moving towards the fen, and are expected to influence the future vegetation community and system biogeochemistry. One of the biggest uncertainties is the changing performance of soils and vegetation as they develop.

  4. Fen Wetland Hydrology and Constraints on the Fate and Transport of Heavy Metals in the San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    McClenning, B. K.; Marcantonio, F.; Giardino, J. R.

    2009-12-01

    The interactions of a variety of geomorphic processes and a complex geology have produced spectacular landscapes throughout the San Juan Mountains. This complex geology abounds in mineral deposits that were mined from the mid 1800s through the 1990s. Unfortunately, much of this early mining impacted the streams, lakes, groundwater, and fens in this environment. Today, mining is waning and interest in restoration of this alpine environment is growing. Thus, sustainable restoration requires understanding dynamic interactions in this environment, which mandates an evaluation of the geomorphic and hydrologic processes that shape the present landscape. Fen wetlands, which have developed in geologic niches produced by the intense glaciation of the San Juans, occur throughout the area. The San Juans primarily exhibit a radial drainage pattern, which continue to feed the wetlands. The hydrology of these wetlands controls the chemical and biological processes and may be the most important factor regulating fen wetland function and development. Hydrological models can be used to simulate these processes and to evaluate management scenarios for fen restoration. Five fens, located along glaciated valley floors at elevations of greater than 3,000 m, range in area from 0.4 km2 to 0.7 km2. These fens were compared to determine the influence of their morphometry on runoff and evapotranspiration. The fen hydrology is dominated by irregularly located and poorly linked pools. We are attempting to combine saturated-unsaturated groundwater flow and transport models to study each fen. Hydrological conditions within the fens, which act as a sink or filter for heavy metals, also play a major role in determining the fate of transport of contaminants associated with prior mining activities. Indeed, preliminary studies have found higher than normal concentrations of aluminum, cadmium, copper, iron, manganese, and zinc occurring throughout the San Juan wetlands. Lead is also thought to occur

  5. Building a Testate Amoebae-Based Transfer Function in Mountain Fens for Paleohydrological Reconstruction Expansion

    NASA Astrophysics Data System (ADS)

    Lemos, A. L.; Von Ness, K.; Loisel, J.; Karran, D. J.

    2017-12-01

    Minerotrophic peatlands are widespread ecosystems that could be used more often as paleoecological and paleoclimatic archives. However, they have received much less attention than ombrotrophic peat bogs, resulting in very limited information pertaining to their microbial communities. In spite of this, a few studies from Europe have suggested that testate amoebae assemblages from fens could be used as proxies for soil moisture. Here we contribute to this effort by providing a new study from a mountain fen (beaver meadow) located in the Sibbald Research Wetlands in the Rocky Mountains of Kananaskis Provincial Park, Alberta, Canada. Our goals are to (1) quantify the relationships between testate amoebae communities, environmental parameters (pH, water table depth, soil moisture, conductivity, trace elements), and vegetation, (2) identify the key controls on testate amoebae distribution, and (3) develop a transfer function to be used in mountain fens of the region and potentially beyond, given the cosmopolitan nature of testate amoebae taxa. Fifty surface samples were extracted along a wide hydrological gradient in the beaver meadow during Summer 2017, including a current beaver meadow, an abandoned beaver meadow, and a site without apparent beaver activity. These sites were chosen with the hypothesis that distinct testate assemblages might colonize these different types of sites, which would be useful to reconstruct beaver activity downcore. The surface samples from these sites will be the main focus for the new transfer function and provide additional information about climate reconstruction from minerotrophic peatlands such as the mountain fen being studied here. Overall, the building of a testate amoebae-based transfer function in mountain fens is needed in order to expand and improve the use of paleohydrological reconstruction in locations of higher latitude, which are still sparse.

  6. The GAN Exonuclease or the Flap Endonuclease Fen1 and RNase HII Are Necessary for Viability of Thermococcus kodakarensis.

    PubMed

    Burkhart, Brett W; Cubonova, Lubomira; Heider, Margaret R; Kelman, Zvi; Reeve, John N; Santangelo, Thomas J

    2017-07-01

    Many aspects of and factors required for DNA replication are conserved across all three domains of life, but there are some significant differences surrounding lagging-strand synthesis. In Archaea , a 5'-to-3' exonuclease, related to both bacterial RecJ and eukaryotic Cdc45, that associates with the replisome specifically through interactions with GINS was identified and designated GAN (for G INS- a ssociated n uclease). Despite the presence of a well-characterized flap endonuclease (Fen1), it was hypothesized that GAN might participate in primer removal during Okazaki fragment maturation, and as a Cdc45 homologue, GAN might also be a structural component of an archaeal CMG (Cdc45, MCM, and GINS) replication complex. We demonstrate here that, individually, either Fen1 or GAN can be deleted, with no discernible effects on viability and growth. However, deletion of both Fen1 and GAN was not possible, consistent with both enzymes catalyzing the same step in primer removal from Okazaki fragments in vivo RNase HII has also been proposed to participate in primer processing during Okazaki fragment maturation. Strains with both Fen1 and RNase HII deleted grew well. GAN activity is therefore sufficient for viability in the absence of both RNase HII and Fen1, but it was not possible to construct a strain with both RNase HII and GAN deleted. Fen1 alone is therefore insufficient for viability in the absence of both RNase HII and GAN. The ability to delete GAN demonstrates that GAN is not required for the activation or stability of the archaeal MCM replicative helicase. IMPORTANCE The mechanisms used to remove primer sequences from Okazaki fragments during lagging-strand DNA replication differ in the biological domains. Bacteria use the exonuclease activity of DNA polymerase I, whereas eukaryotes and archaea encode a flap endonuclease (Fen1) that cleaves displaced primer sequences. RNase HII and the GINS-associated exonuclease GAN have also been hypothesized to assist in primer

  7. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun

    2017-06-01

    Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.

  8. Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Borken, W.

    2012-08-01

    Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen in Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4 ± 8%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33 ± 8% (2009) and 22 ± 9% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A one-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration.

  9. Structure of Zebrafish IRBP Reveals Fatty Acid Binding

    PubMed Central

    Ghosh, Debashis; Haswell, Karen M.; Sprada, Molly; Gonzalez-Fernandez, Federico

    2015-01-01

    Interphotoreceptor retinoid-binding protein (IRBP) has a remarkable role in targeting and protecting all-trans and 11-cis retinol, and 11-cis retinal during the rod and cone visual cycles. Little is known about how the correct retinoid is efficiently delivered and removed from the correct cell at the required time. It has been proposed that different fatty composition at that the outer-segments and retinal-pigmented epithelium could have an important role is regulating the delivery and uptake of the visual cycle retinoids at the cell-interphotoreceptor-matrix interface. Although this suggests intriguing mechanisms for the role of local fatty acids in visual-cycle retinoid trafficking, nothing is known about the structural basis of IRBP-fatty acid interactions. Such regulation may be mediated through IRBP’s unusual repeating homologous modules, each containing about 300 amino acids. We have been investigating structure-function relationships of Zebrafish IRBP (zIRBP), which has only two tandem modules (z1 and z2), as a model for the more complex four-module mammalian IRBP’s. Here we report the first X-ray crystal structure of a teleost IRBP, and the only structure with a bound ligand. The X-ray structure of z1, determined at 1.90Å resolution, reveals a two-domain organization of the module (domains A and B). A deep hydrophobic pocket was identified within the N-terminal domain A. In fluorescence titrations assays, oleic acid displaced all-trans retinol from zIRBP. Our study, which provides the first structure of an IRBP with bound ligand, supports a potential role for fatty acids in regulating retinoid binding. PMID:26344741

  10. Effect of N-fertilization on N2 and N2O flux rates in relation to the structure of the denitrifying bacterial community in fen soil

    NASA Astrophysics Data System (ADS)

    Augustin, J.; Behrendt, U.; Ulrich, A.

    2009-04-01

    Drained fen peatlands of north-east Europe managed by different agricultural regimes constitute an important source for emissions of nitrous oxide (N2O) into the atmosphere. The strength of N2O fluxes showed a high variability in time and space influenced by complex interactions of formation and transfer processes with environmental parameters which makes prediction of emissions uncertain. This applies particularly to the denitrification. This is one of the microbial processes with special interest for N2O production in the context of frequently varying soil-moisture content of fen soils that favouring anaerobic conditions. Moreover, denitrification may result in the production of both N2O and N2 in varying proportions. However, not only the knowledge about the effect of soil chemical and physical properties, climate, vegetation, and management on the actual N2O and N2 fluxes is very incomplete at fen soils. There are also no information about the role of structure and activity of denitrifying microbial communities in this context either. The experiments presented in this study aim at addressing this subject matter. Relatively undisturbed soil columns (250 cm3) from a long-term N-fertilization experiment on a fen grassland (over a period of 45 years) were used for measurement of the current N2 and N2O fluxes followed by processing the soil sample for microbiological analysis immediately to investigate the influence of N-fertilization on these parameters. The direct measurement of N2 and N2O fluxes was performed by a helium atmosphere incubation technique in the lab. Results showed a strong influence of N-fertilization and soil moisture on the emission of N2 and N2O. Shifts in the total microbial community were estimated by phospholipid fatty acid analysis, a fingerprint focused on active organisms. Results showed that seasonal effects interfered the influence of N-fertilization on shifts of the total microbial community composition. To characterise the denitrifying

  11. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota

    Treesearch

    Brian H. Hill; Terri M. Jicha; LaRae L.P. Lehto; Colleen M. Elonen; Stephen D. Sebestyen; Randy Kolka

    2016-01-01

    Wecompared nitrogen (N) storage and flux in soils froman ombrotrophic bogwith that of a minerotrophic fen to quantify the differences in N cycling between these two peatlands types in northernMinnesota (USA). Precipitation, atmospheric deposition, and bog and fen outflowswere analyzed for nitrogen species. Upland and peatland soil sampleswere analyzed for N content,...

  12. Seasonal and inter-annual variation in ecosystem scale methane emission from a boreal fen

    NASA Astrophysics Data System (ADS)

    Rinne, Janne; Li, Xuefei; Raivonen, Maarit; Peltola, Olli; Sallantaus, Tapani; Haapanala, Sami; Smolander, Sampo; Alekseychik, Pavel; Aurela, Mika; Korrensalo, Aino; Mammarella, Ivan; Tuittila, Eeva-Stiina; Vesala, Timo

    2016-04-01

    Northern wetlands are one of the major sources of atmospheric methane. We have measured ecosystem scale methane emissions from a boreal fen continuously since 2005. The site is an oligotrophic fen in boreal vegetation zone situated in Siikaneva wetland complex in Southern Finland. The mean annual temperature in the area is 3.3°C and total annual precipitation 710 mm. We have conducted the methane emission measurements by the eddy covariance method. Additionally we have measured fluxes of carbon dioxide, water vapor, and sensible heat together with a suite of other environmental parameters. We have analyzed this data alongside with a model run with University of Helsinki methane model. The measured fluxes show generally highest methane emission in late summers coinciding with the highest temperatures in saturated peat zone. During winters the fluxes show small but detectable emission despite the snow and ice cover on the fen. More than 90% of the annual methane emission occurs in snow-free period. The methane emission and peat temperature are connected in exponential manner in seasonal scales, but methane emission does not show the expected behavior with water table. The lack of water table position dependence also contrasts with the spatial variation across microtopography. There is no systematic variation in sub-diurnal time scale. The general seasonal cycle in methane emission is captured well with the methane model. We will show how well the model reproduces the temperature and water table position dependencies observed. The annual methane emission is typically around 10 gC m-2. This is a significant part of the total carbon exchange between the fen and the atmosphere and about twice the estimated carbon loss by leaching from the fen area. The inter-annual variability in the methane emission is modest. The June-September methane emissions from different years, comprising most of the annual emission, correlates positively with peat temperature, but not with

  13. Seasonal Trace Gas Dynamics on Minerotrophic Fen Peatlands in NE-Germany

    NASA Astrophysics Data System (ADS)

    Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz

    2010-05-01

    In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual trace gas balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest balances in both years. For implementing a

  14. Seasonal Carbon Dynamics on Selected Fen Peatland Sites in NE-Germany

    NASA Astrophysics Data System (ADS)

    Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz

    2010-05-01

    In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual carbon balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest CO2 balances in both years. For implementing a

  15. Changing Land Use: The Fens of England. A Case Study in Land Reclamation [And] Student Work Book.

    ERIC Educational Resources Information Center

    Laws, Kevin

    A social studies unit and student workbook explore changes in land use that have occurred in the Fenlands of England since the time it was first inhabited. Fens are lowlying land which is partially or completely covered with water. The English Fens are located on the eastern side of the British Isles and cover a total area of about 2,000 square…

  16. Proline Scanning Mutagenesis Reveals a Role for the Flap Endonuclease-1 Helical Cap in Substrate Unpairing*

    PubMed Central

    Patel, Nikesh; Exell, Jack C.; Jardine, Emma; Ombler, Ben; Finger, L. David; Ciani, Barbara; Grasby, Jane A.

    2013-01-01

    The prototypical 5′-nuclease, flap endonuclease-1 (FEN1), catalyzes the essential removal of single-stranded flaps during DNA replication and repair. FEN1 hydrolyzes a specific phosphodiester bond one nucleotide into double-stranded DNA. This specificity arises from double nucleotide unpairing that places the scissile phosphate diester on active site divalent metal ions. Also related to FEN1 specificity is the helical arch, through which 5′-flaps, but not continuous DNAs, can thread. The arch contains basic residues (Lys-93 and Arg-100 in human FEN1 (hFEN1)) that are conserved by all 5′-nucleases and a cap region only present in enzymes that process DNAs with 5′ termini. Proline mutations (L97P, L111P, L130P) were introduced into the hFEN1 helical arch. Each mutation was severely detrimental to reaction. However, all proteins were at least as stable as wild-type (WT) hFEN1 and bound substrate with comparable affinity. Moreover, all mutants produced complexes with 5′-biotinylated substrate that, when captured with streptavidin, were resistant to challenge with competitor DNA. Removal of both conserved basic residues (K93A/R100A) was no more detrimental to reaction than the single mutation R100A, but much less severe than L97P. The ability of protein-Ca2+ to rearrange 2-aminopurine-containing substrates was monitored by low energy CD. Although L97P and K93A/R100A retained the ability to unpair substrates, the cap mutants L111P and L130P did not. Taken together, these data challenge current assumptions related to 5′-nuclease family mechanism. Conserved basic amino acids are not required for double nucleotide unpairing and appear to act cooperatively, whereas the helical cap plays an unexpected role in hFEN1-substrate rearrangement. PMID:24126913

  17. Microbial Communities as Environmental Indicators of Ecological Disturbance in Restored Carbonate Fen-Results of 10 Years of Studies.

    PubMed

    Mieczan, Tomasz; Tarkowska-Kukuryk, Monika

    2017-08-01

    Interactions between bacteria and protists are essential to the ecosystem ecology of fens. Until now, however, there has been almost no information on how restoration procedures in carbonate fens affect the functioning of microbial food webs. Changes in vegetation patterns resulting from restoration may take years to be observed, whereas microbial processes display effects even after short-term exposure to changes in environmental conditions caused by restoration. Therefore, microbial processes and patterns can be used as sensitive indicators of changes in environmental conditions. The present study attempts to verify the hypothesis that the species richness and abundance of microbial loop components would differ substantially before and after restoration. The effect of restoration processes on the functioning of the food web was investigated for a 10 years in a carbonate-rich fen, before and after restoration. The restoration procedure (particularly the improvement in hydrological conditions) distinctly modified the taxonomic composition and functioning of microbial food webs. This is reflected in the increased abundance and diversity of testate amoeba, i.e. top predators, within the microbial food web and in the pronounced increase in the abundance of bacteria. This study suggests potential use of microbial loop components as bio-indicators and bio-monitoring tools for hydrological status of fens and concentrations of nutrients. Better understanding of what regulates microbial populations and activity in fens and unravelling of these fundamental mechanisms are particularly critical in order to more accurately predict how fens will respond to global change or anthropogenic disturbances.

  18. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change

    USGS Publications Warehouse

    Fan, Zhaosheng; McGuire, Anthony David; Turetsky, Merritt R.; Harden, Jennifer W.; Waddington, James Michael; Kane, Evan S.

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.

  19. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change.

    PubMed

    Fan, Zhaosheng; David McGuire, Anthony; Turetsky, Merritt R; Harden, Jennifer W; Michael Waddington, James; Kane, Evan S

    2013-02-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005-2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios. © 2012 Blackwell Publishing Ltd.

  20. The distribution and migration of sodium from a reclaimed upland to a constructed fen peatland in a post-mined oil sands landscape.

    PubMed

    Kessel, Eric D; Ketcheson, Scott J; Price, Jonathan S

    2018-07-15

    Post-mine landscape reclamation of the Athabasca Oil Sands Region requires the use of tailings sand, an abundant mine-waste material that often contains large amounts of sodium (Na + ). Due to the mobility of Na + in groundwater and its effects on vegetation, water quality is a concern when incorporating mine waste materials, especially when attempting to construct groundwater-fed peatlands. This research is the first published account of Na + redistribution in groundwater from a constructed tailings sand upland to an adjacent constructed fen peat deposit (Nikanotee Fen). A permeable petroleum coke layer underlying the fen, extending partway into the upland, was important in directing flow and Na + beneath the peat, as designed. Initially, Na + concentration was highest in the tailings sand (average of 232mgL -1 ) and lowest in fen peat (96mgL -1 ). Precipitation-driven recharge to the upland controlled the mass flux of Na from upland to fen, which ranged from 2 to 13tons Na + per year. The mass flux was highest in the driest summer, in part from dry-period flowpaths that direct groundwater with higher concentrations of Na + into the coke layer, and in part because of the high evapotranspiration loss from the fen in dry periods, which induces upward water flow. With the estimated flux rates of 336mmyr -1 , the Na + arrival time to the fen surface was estimated to be between 4 and 11years. Over the four-year study, average Na + concentrations within the fen rooting zone increased from 87 to 200mgL -1 , and in the tailings sand decreased to 196mgL -1 . The planting of more salt-tolerant vegetation in the fen is recommended, given the potential for Na + accumulation. This study shows reclamation designs can use layered flow system to control the rate, pattern, and timing of solute interactions with surface soil systems. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  1. Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration.

    PubMed

    Zak, Dominik; Wagner, Carola; Payer, Brian; Augustin, Jürgen; Gelbrecht, Jörg

    2010-07-01

    Rewetting of drained fens is necessary to stop further soil degradation and to reestablish important ecological functions. However, substantial changes of peat characteristics in the upper soil layers, due to drainage and land use, could counteract their recovery as nutrient-poor systems for an unknown period. We assessed the importance of altered peat properties, such as the degree of peat decomposition and the amount of redox-sensitive phosphorus (P) compounds, for P mobilization in different degraded fens. An experimental design involving 63 intact peat cores from fens with varying drainage and land-use histories was developed to quantify the mobilization of P, as well as that of iron (Fe), ammonium, carbon dioxide, and methane, all indicators of organic-matter decomposition and/or P-releasing processes. We found that net P release rates in peat cores with highly decomposed peat (range: 0.1-52.3 mg P x m(-2) x d(-1)) were significantly correlated to the amount of P bound to redox-sensitive compounds and the molar Fe:P as well as Al:P ratios of peat. We conclude that the following general rules apply for P mobilization in rewetted fens: (1) elevated levels of P release rates and P concentrations in pore water up to three orders of magnitude larger than under natural reference conditions can only be expected for rewetted fens whose surface soil layers consist of highly decomposed peat; (2) peat characteristics, such as the amount of P bound to redox-sensitive Fe(III) compounds (positive correlation) and molar ratios of Fe:P or Al:P (negative correlations), explain the high range of P release rates; and (3) a critical P export to adjacent lakes or rivers can only be expected if molar Fe:P ratios of highly decomposed peat are less than 10.

  2. The transport dynamics of chloride and sodium in a ladder fen during a continuous wastewater polishing experiment

    NASA Astrophysics Data System (ADS)

    McCarter, Colin P. R.; Price, Jonathan S.

    2017-06-01

    Ladder fen peatlands have excellent potential for wastewater polishing as they naturally contain both open water (pools) and subsurface (peat) treatment landforms; however, there is a poor understanding of solute transport in ladder fens with and without the increased hydrological load imposed by wastewater discharge. To better understand solute transport in ladder fens under wastewater polishing conditions a continuous solute (NaCl) tracer experiment (38 m3 day-1 of water, chloride - 47.2 mg L-1, and sodium - 25.3 mg L-1) was conducted during the summer of 2014 (day of year 192-243) in a small ladder fen in the James Bay Lowland. The transmissivity distribution and effective porosity (average 0.5) of the peat ribs were determined through repeated bail tests and the drainable porosity of 18 peat cores at -100 mb, respectively. Water samples were taken at least every 7 days to capture the solute (sodium and chloride) plumes. Both solute plumes never reached the site outflow (∼250 m downgradient) and displayed complex plume morphology, typically following the patterns of higher hydraulic conductivity within the upper 0.1 m of the saturated peat, rather than the microtopography. Based on the 50% breakthrough isotherms, sodium and chloride were transported at an average solute velocity of 1.9 and 1.1 m day-1, respectively (average linear groundwater velocity = 2.1 m day-1); thus, the solutes were retarded by a factor of 2.1 and 1.2 for sodium and chloride, respectively. Due to the inherent retardation of solutes into inactive pores and relatively high solute residence times, this study demonstrates the potential for wastewater polishing in ladder fens.

  3. Magnetization reversal of the domain structure in the anti-perovskite nitride Co{sub 3}FeN investigated by high-resolution X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajiri, T., E-mail: t.hajiri@numse.nagoya-u.ac.jp; Kuroki, Y.; Ando, H.

    2016-05-14

    We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co{sub 3}FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy,more » present in nanostructured thin films.« less

  4. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    PubMed

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland

  5. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    PubMed

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity--description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room.

    PubMed

    Behrendt, Undine; Schumann, Peter; Stieglmeier, Michaela; Pukall, Rüdiger; Augustin, Jürgen; Spröer, Cathrin; Schwendner, Petra; Moissl-Eichinger, Christine; Ulrich, Andreas

    2010-10-01

    In the course of studying the influence of N-fertilization on N(2) and N(2)O flux rates in relation to soil bacterial community composition of a long-term fertilization experiment in fen peat grassland, a strain group was isolated that was related to a strain isolated from a spacecraft assembly clean room during diversity studies of microorganisms, which withstood cleaning and bioburden reduction strategies. Both the fen soil isolates and the clean room strain revealed versatile physiological capacities in N-transformation processes by performing heterotrophic nitrification, respiratory ammonification and denitrification activity. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the investigated isolates belonged to the genus Paenibacillus. Sequence similarities lower than 97% in comparison to established species indicated a separate species position. Except for the peptidoglycan type (A4alpha L-Lys-D-Asp), chemotaxonomic features of the isolates matched the genus description, but differences in several physiological characteristics separated them from related species and supported their novel species status. Despite a high 16S rRNA gene sequence similarity between the clean room isolate ES_MS17(T) and the representative fen soil isolate N3/975(T), DNA-DNA hybridization studies revealed genetic differences at the species level. These differences were substantiated by MALDI-TOF MS analysis, ribotyping and several distinct physiological characteristics. On the basis of these results, it was concluded that the fen soil isolates and the clean room isolate ES_MS17(T) represented two novel species for which the names Paenibacillus uliginis sp. nov. (type strain N3/975(T)=DSM 21861(T)=LMG 24790(T)) and Paenibacillus purispatii sp. nov. (type strain ES_MS17(T)=DSM 22991(T)=CIP 110057(T)) are proposed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  7. Consolidation of Fe-N Magnets Using Equal Channel Angular Extrusion

    DTIC Science & Technology

    2016-03-23

    Consolidation of Fe-N Magnets Using Equal Channel Angular Extrusion SG Sankar Advanced Materials Corporation (AMC), Pittsburgh, PA LJ Kecskes Weapons and...at the US Army Research Laboratory (ARL), Weapons and Materials Research Directorate, at Aberdeen Proving Ground, Maryland. Unlike conventional...Widenmeyer M, Hansen TC, Niewa R. Formation and decomposition of metastable α’’-Fe16N2 from in-situ powder neutron diffraction and thermal analysis. Zeit

  8. BOREAS TF-11 SSA-Fen 1995 Leaf Area Index Data

    NASA Technical Reports Server (NTRS)

    Arkebauer, Timothy J.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. These data are LAI measurements made by the TF-11 team throughout the 1995 growing season. The data include the LAI of plants that fall into six categories: total, Carex spp., Betula pumila, Menyanthes trifoliata, Salix spp., and other vascular plants. The data are stored in tabular ASCII files.

  9. Nuevos fenómenos en erupciones cometarias

    NASA Astrophysics Data System (ADS)

    Silva, A.

    Se discuten aquí tres procesos físicos novedosos encontrados en la actividad de cometas: 1) El rol de una distribución de granos de hielo como fuente extendida de H2O en la coma, 2) El efecto de una discontinuidad en el plasma cometario, llamada Cometopausa, sobre la excitación del radical OH , y 3) La actividad por erupciones a grandes distancias heliocéntricas (r > 5 AU). Con respecto a 1) y 2), se presentan modelos que ajustan bien con las observaciones. En cuanto a 3), se presentan explicaciones posibles al fenómeno, y se trata el interesante caso de Chirón 2060, basándose en observaciones propias tomadas desde el CASLEO y datos anteriores.

  10. Greenhouse gas emissions from fen soils used for forage production in northern Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Reinsch, Thorsten; Kluß, Christof; Loges, Ralf; Taube, Friedhelm

    2016-09-01

    A large share of peatlands in northwestern Germany is drained for agricultural purposes, thereby emitting high amounts of greenhouse gases (GHGs). In order to quantify the climatic impact of fen soils in dairy farming systems of northern Germany, GHG exchange and forage yield were determined on four experimental sites which differed in terms of management and drainage intensity: (a) rewetted and unutilized grassland (UG), (b) intensive and wet grassland (GW), (c) intensive and moist grassland (GM) and (d) arable forage cropping (AR). Net ecosystem exchange (NEE) of CO2 and fluxes of CH4 and N2O were measured using closed manual chambers. CH4 fluxes were significantly affected by groundwater level (GWL) and soil temperature, whereas N2O fluxes showed a significant relation to the amount of nitrate in top soil. Annual balances of all three gases, as well as the global warming potential (GWP), were significantly correlated to mean annual GWL. A 2-year mean GWP, combined from CO2-C eq. of NEE, CH4 and N2O emissions, as well as C input (slurry) and C output (harvest), was 3.8, 11.7, 17.7 and 17.3 Mg CO2-C eq. ha-1 a-1 for sites UG, GW, GM and AR, respectively (standard error (SE) 2.8, 1.2, 1.8, 2.6). Yield-related emissions for the three agricultural sites were 201, 248 and 269 kg CO2-C eq. (GJ net energy lactation; NEL)-1 for sites GW, GM and AR, respectively (SE 17, 9, 19). The carbon footprint of agricultural commodities grown on fen soils depended on long-term drainage intensity rather than type of management, but management and climate strongly influenced interannual on-site variability. However, arable forage production revealed a high uncertainty of yield and therefore was an unsuitable land use option. Lowest yield-related GHG emissions were achieved by a three-cut system of productive grassland swards in combination with a high GWL (long-term mean ≤ 20 cm below the surface).

  11. BOREAS TF-11 Decomposition Data over the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains decomposition rates of a standard substrate (wheat straw) across treatments. The measurements were conducted in 1994 as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitrogen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. The data are stored in tabular ASCII files.

  12. Examination of mercury and organic carbon dynamics from a constructed fen in the Athabasca oil sands region, Alberta, Canada using in situ and laboratory fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Oswald, C.; Carey, S. K.

    2013-12-01

    In the Athabasca oil sands region, mined landscapes must be reclaimed to a functioning natural ecosystem as part of the mine closure process. To test wetland construction techniques on oil sands tailings, 55 ha of mined landscape on the Syncrude Canada Ltd. property is being reclaimed to a watershed containing a graminoid fen. The 18 ha constructed fen consists of an approximately 50 cm thick peat-mineral soil layer separated from underlying tailings sand by a thin layer of clay till. The water table in the fen is maintained by pumping water into the fen from a nearby lake and controlling outflow with under-drains. The objective of this study was to assess total mercury (THg) and methyl mercury (MeHg) concentration dynamics in water exported from the fen in relation to organic carbon quantity and composition. Water quality data from summer 2012 when the fen pumps were first turned on show that dissolved organic carbon (DOC) concentrations are on average twice as high in water flowing through the underlying tailings sand aquifer (median: 42.0 mg/L) compared to DOC concentrations in water flowing through the fen peat package (median: 20.3 mg/L). Given these DOC concentrations, filtered THg concentrations are very low (median values are 0.81 ng/L and 0.17 ng/L for water flowing through the fen peat and sand tailings, respectively) compared to concentrations reported for other boreal wetlands. Although a relationship was identified between filtered THg and DOC (r2=0.60), its slope (0.06 ng Hg/mg C) is an order-of-magnitude smaller than the typical range of slopes found at other wetland sites potentially suggesting a small pool of mercury in the peat and/or limited partitioning of mercury into solution. Filtered MeHg concentrations in all water samples are near the limit of detection and suggest that biogeochemical conditions conducive to methylation did not exist in the fen peat or tailings sand at the time of sampling. In addition to these baseline THg and Me

  13. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments.

    PubMed

    Fletcher, Eugene; Feizi, Amir; Bisschops, Markus M M; Hallström, Björn M; Khoomrung, Sakda; Siewers, Verena; Nielsen, Jens

    2017-01-01

    Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Net ecosystem exchange in a sedge-sphagnum fen at the South of West Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Dyukarev, Egor

    2017-04-01

    The model of net ecosystem exchange was used to study the influence of different environmental factors and to calculate daily and growing season carbon budget for minerotrophic fen at South of West Siberia, Russia. Minerotrophic sedge-sphagnum fen occupies the central part of the Bakcharskoe bog. The model uses air and soil temperature, incoming photosynthetically active radiation, and leaf area index as the explanatory factors for gross primary production, heterotrophic and autotrophic respiration. The model coefficients were calibrated using data collected by automated soil CO2 flux system with clear long-term chamber. The studied ecosystem is a sink of carbon according to modelling and observation results. This study was supported by Russian Foundation for Basic Researches (grant numbers 16-07-01205 and 16-45-700562.

  15. BOREAS TF-11 CO2 and CH4 Flux Data from the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains fluxes of methane and carbon dioxide at the SSA-Fen site measured using static chambers. The measurements were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitrogen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. In addition to siting and treatment variables, it reports air temperature and water table height relative to the average peat surface during each measurement. The data set covers the period from the first week of June 1994 through the second week of September 1994. The data are stored in tabular ASCII files.

  16. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    NASA Astrophysics Data System (ADS)

    Minke, Merten; Augustin, Jürgen; Burlo, Andrei; Yarmashuk, Tatsiana; Chuvashova, Hanna; Thiele, Annett; Freibauer, Annette; Tikhonov, Vitalij; Hoffmann, Mathias

    2016-07-01

    Peat extraction leaves a land surface with a strong relief of deep cutover areas and higher ridges. Rewetting inundates the deep parts, while less deeply extracted zones remain at or above the water level. In temperate fens the flooded areas are colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis dependent on water depth. Reeds of Typha and Phragmites are reported as large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. Here, we analyze the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse gas emissions were measured campaign-wise with manual chambers every 2 to 4 weeks for 2 years and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions generally increased with net ecosystem CO2 uptake. Mesotrophic small sedge reeds with water table around the land surface were small GHG sources in the range of 2.3 to 4.2 t CO2 eq. ha-1 yr-1. Eutrophic tall sedge - Typha latifolia reeds on newly formed floating mats were substantial net GHG emitters in the range of 25.1 to 39.1 t CO2 eq. ha-1 yr. They represent transient vegetation stages. Phragmites reeds ranged between -1.7 to 4.2 t CO2 eq. ha-1 yr-1 with an overall mean GHG emission of 1.3 t CO2 eq. ha-1 yr-1. The annual CO2 balance was best explained by vegetation biomass, which includes the role of vegetation composition and species. Methane emissions were obviously driven by biological activity of vegetation and soil organisms. Shallow flooding of cutover temperate fens is a suitable measure to arrive at low GHG emissions. Phragmites australis establishment should be promoted in deeper flooded areas and will lead to moderate, but

  17. Structure and specificity of FEN-1 from Methanopyrus kandleri

    DOE PAGES

    Shah, Santosh; Dunten, Pete; Stiteler, Amanda; ...

    2014-11-18

    DNA repair is fundamental to genome stability and is found in all three domains of life. However, many archaeal species, such as Methanopyrus kandleri, contain only a subset of the eukaryotic nucleotide excision repair (NER) homologues, and those present often contain significant differences compared to their eukaryotic homologues. To clarify the role of the NER XPG-like protein Mk0566 from M. kandleri, its biochemical activity and three dimensional structure were investigated. Ultimately, we found both to be more similar to human FEN-1 than human XPG, suggesting a biological role in replication and long-patch base excision repair rather than in NER.

  18. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability

    USGS Publications Warehouse

    Olefeldt, David; Euskirchen, Eugénie S.; Harden, Jennifer W.; Kane, Evan S.; McGuire, A. David; Waldrop, Mark P.; Turetsky, Merritt R.

    2017-01-01

    Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9-years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter-annual lag effects on ER in this rich fen, as has been observed in several nutrient-poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, FCH4 was linked to soil temperatures at 25 cm. Inter-annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher FCH4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short-term fluctuations in wetness caused significant lag effects on FCH4, but droughts caused no inter-annual lag effects on FCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.

  19. Recent rates of carbon accumulation in montane fens ofYosemite National Park, California, U.S.A.

    USGS Publications Warehouse

    Drexler, Judith; Fuller, Christopher C.; Orlando, James L.; Moore, Peggy E.

    2016-01-01

    Little is known about recent rates of carbon storage in montane peatlands, particularly in the western United States. Here we report on recent rates of carbon accumulation (past 50 to 100 years) in montane groundwater-fed peatlands (fens) of Yosemite National Park in central California, U.S.A. Peat cores were collected at three sites ranging in elevation from 2070 to 2500 m. Core sections were analyzed for bulk density, % organic carbon, and 210Pb activities for dating purposes. Organic carbon densities ranged from 0.026 to 0.065 g C cm-3. Mean vertical accretion rates estimated using210Pb over the 50-year period from ∼1960 to 2011 and the 100-year period from ∼1910 to 2011 were 0.28 (standard deviation = ±0.09) and 0.18 (±-0.04) cm yr-1, respectively. Mean carbon accumulation rates over the 50- and 100-year periods were 95.4 (±25.4) and 74.7 (±17.2) g C m-2 yr-1, respectively. Such rates are similar to recent rates of carbon accumulation in rich fens in western Canada, but more studies are needed to definitively establish both the similarities and differences in peat formation between boreal and temperate montane fens.

  20. Research of Ancient Architectures in Jin-Fen Area Based on GIS&BIM Technology

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Zheng, Qiuhong; Gao, Huiying; Sun, Hai

    2017-05-01

    The number of well-preserved ancient buildings located in Shanxi Province, enjoying the absolute maximum proportion of ancient architectures in China, is about 18418, among which, 9053 buildings have the structural style of wood frame. The value of the application of BIM (Building Information Modeling) and GIS (Geographic Information System) is gradually probed and testified in the corresponding fields of ancient architecture’s spatial distribution information management, routine maintenance and special conservation & restoration, the evaluation and simulation of related disasters, such as earthquake. The research objects are ancient architectures in JIN-FEN area, which were first investigated by Sicheng LIANG and recorded in his work of “Chinese ancient architectures survey report”. The research objects, i.e. the ancient architectures in Jin-Fen area include those in Sicheng LIANG’s investigation, and further adjustments were made through authors’ on-site investigation and literature searching & collection. During this research process, the spatial distributing Geodatabase of research objects is established utilizing GIS. The BIM components library for ancient buildings is formed combining on-site investigation data and precedent classic works, such as “Yingzao Fashi”, a treatise on architectural methods in Song Dynasty, “Yongle Encyclopedia” and “Gongcheng Zuofa Zeli”, case collections of engineering practice, by the Ministry of Construction of Qing Dynasty. A building of Guangsheng temple in Hongtong county is selected as an example to elaborate the BIM model construction process based on the BIM components library for ancient buildings. Based on the foregoing work results of spatial distribution data, attribute data of features, 3D graphic information and parametric building information model, the information management system for ancient architectures in Jin-Fen Area, utilizing GIS&BIM technology, could be constructed to support the

  1. Resistance and resilience of floating mat fens in interior Alaska following airboat disturbance

    Treesearch

    Amy Zacheis; Kate Doran

    2009-01-01

    The floating mat fens of the Tanana Flats in interior Alaska are productive wetlands near the urban center of Fairbanks. Airboat traffic has created a network of trails through the floating vegetation mats. We established protected areas along established trails, which allowed for measurement of plant community resistance to airboat traffic and resilience following...

  2. Environmental and Physiographic Controls on Inter-Growing Season Variability of Carbon Dioxide and Water Vapour Fluxes in a Minerotrophic Fen

    NASA Astrophysics Data System (ADS)

    van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.

    2008-12-01

    The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet

  3. Dietary intake and plasma metabolomic analysis of polyunsaturated fatty acids in bipolar subjects reveal dysregulation of linoleic acid metabolism.

    PubMed

    Evans, Simon J; Ringrose, Rachel N; Harrington, Gloria J; Mancuso, Peter; Burant, Charles F; McInnis, Melvin G

    2014-10-01

    Polyunsaturated fatty acids (PUFA) profiles associate with risk for mood disorders. This poses the hypothesis of metabolic differences between patients and unaffected healthy controls that relate to the primary illness or are secondary to medication use or dietary intake. However, dietary manipulation or supplementation studies show equivocal results improving mental health outcomes. This study investigates dietary patterns and metabolic profiles relevant to PUFA metabolism, in bipolar I individuals compared to non-psychiatric controls. We collected seven-day diet records and performed metabolomic analysis of fasted plasma collected immediately after diet recording. Regression analyses adjusted for age, gender and energy intake found that bipolar individuals had significantly lower intake of selenium and PUFAs, including eicosapentaenoic acid (EPA) (n-3), docosahexaenoic acid (DHA) (n-3), arachidonic acid (AA) (n-6) and docosapentaenoic acid (DPA) (n-3/n-6 mix); and significantly increased intake of the saturated fats, eicosanoic and docosanoic acid. Regression analysis of metabolomic data derived from plasma samples, correcting for age, gender, BMI, psychiatric medication use and dietary PUFA intake, revealed that bipolar individuals had reduced 13S-HpODE, a major peroxidation product of the n-6, linoleic acid (LA), reduced eicosadienoic acid (EDA), an elongation product of LA; reduced prostaglandins G2, F2 alpha and E1, synthesized from n-6 PUFA; and reduced EPA. These observations remained significant or near significant after Bonferroni correction and are consistent with metabolic variances between bipolar and control individuals with regard to PUFA metabolism. These findings suggest that specific dietary interventions aimed towards correcting these metabolic disparities may impact health outcomes for individuals with bipolar disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. BOREAS TF-11 Biomass Data over the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains plant cover, standing crop of plant biomass, and estimated net primary productivity at each chamber site at the end of the 1994 field season. The measurements were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitrogen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. The data are stored in tabular ASCII files.

  5. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    USGS Publications Warehouse

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  6. Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota.

    PubMed

    Horsák, Michal; Polášková, Vendula; Zhai, Marie; Bojková, Jindřiška; Syrovátka, Vít; Šorfová, Vanda; Schenková, Jana; Polášek, Marek; Peterka, Tomáš; Hájek, Michal

    2018-09-01

    Climate warming and associated environmental changes lead to compositional shifts and local extinctions in various ecosystems. Species closely associated with rare island-like habitats such as groundwater-dependent spring fens can be severely threatened by these changes due to a limited possibility to disperse. It is, however, largely unknown to what extent mesoclimate affects species composition in spring fens, where microclimate is buffered by groundwater supply. We assembled an original landscape-scale dataset on species composition of the most waterlogged parts of isolated temperate spring fens in the Western Carpathian Mountains along with continuously measured water temperature and hydrological, hydrochemical, and climatic conditions. We explored a set of hypotheses about the effects of mesoclimate air and local spring-water temperature on compositional variation of aquatic (macroinvertebrates), semi-terrestrial (plants) and terrestrial (land snails) components of spring-fen biota, categorized as habitat specialists and other species (i.e. matrix-derived). Water temperature did not show a high level of correlation with mesoclimate. For all components, fractions of compositional variation constrained to temperature were statistically significant and higher for habitat specialists than for other species. The importance of air temperature at the expense of water temperature and its fluctuation clearly increased with terrestriality, i.e. from aquatic macroinvertebrates via vegetation (bryophytes and vascular plants) to land snails, with January air temperature being the most important factor for land snails and plant specialists. Some calcareous-fen specialists with a clear distribution centre in temperate Europe showed a strong affinity to climatically cold sites in our study area and may hence be considered as threatened by climate warming. We conclude that prediction models solely based on air temperature may provide biased estimates of future changes in

  7. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Treesearch

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  8. BOREAS TGB-1/TGB-3 CH4 Chamber Flux Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bubier, Jill L.; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-3 team collected methane (CH4) chamber flux measurements at the NSA fen site during May-September 1994 and June-October 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  9. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells

    PubMed Central

    Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I.; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M.; Mukerjee, Sanjeev

    2013-01-01

    The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH3 is mostly imparted by acid-resistant FeN4-sites whose turnover frequency for the O2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN4-sites. These results are interpreted as an increased turnover frequency of FeN4-sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date. PMID:24179561

  10. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells.

    PubMed

    Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M; Mukerjee, Sanjeev

    2011-11-18

    The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH 3 is mostly imparted by acid-resistant FeN 4 -sites whose turnover frequency for the O 2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O 2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN 4 -sites. These results are interpreted as an increased turnover frequency of FeN 4 -sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date.

  11. Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.

    1992-01-01

    The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.

  12. BOREAS TGB-1/TGB-3 NEE Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bellisario, Lianne; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-1) and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains Net Ecosystem Exchange of CO2 (NEE) measurements collected with chambers at the NSA fen in 1994 and 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  13. Evaluation on the Efficiency of Subsurface Drainage in Chiu-Fen Landslide at Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Ying, L. Y.; Lin, D. G.

    2015-12-01

    For administrative district, the Chiu-Fen landslide is situated at northern Taiwan and comes within the jurisdiction of Ruei-Fang district, New Taipei City Government. Chiu-Fen village is a famous spot for sightseeing and tourism in Southeast Asia. In the last decade, for economic purpose, a vast area of slope land in Chiu-Fen area was reclaimed into business and commercial districts. However, due to the complicated geological and hydrological conditions, improper reclamation, and lack of appropriate soil and water conservation facilities, large scale landslides are frequently triggered by typhoon rainfall and causes damages to the transportation and residential building in the community. As a consequence, the government initiated a comprehensive field investigations and remediation plans to stabilize the landslide from 1997 and the remediation works were concentrated on subsurface drainages, namely the application of drainage well (a vertical shaft with multi-level horizontal drainage boreholes). To investigate the efficiency of drainage wells on the landslide, the A1-profile in the landslide which covers the drainage wells W2 and W4 was selected for a series of rainfall seepage and slope stability analyses. In addition, a 48-hrs design rainfall with return period of 25, 50 and 100 years based on the local meteorological data bank was adopted for the analyses. The numerical results indicate the factor safety FS of the three potential sliding surfaces within A1-profile are constantly keeping greater than one (FS > 1.0) and without decreasing with the elapsed time during rainfall. This implies that the subsurface drainage works can drain off the infiltrated rainwater from a high intensity and long duration rainfall and preserve the slope stability of landslides from deterioration. Finally, the efficiency of the drainage wells can be evaluated quantitatively in terms of the time-dependent factor of safety and the pore water pressure distribution on several potential

  14. Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil.

    PubMed

    Hunger, Sindy; Schmidt, Oliver; Hilgarth, Maik; Horn, Marcus A; Kolb, Steffen; Conrad, Ralf; Drake, Harold L

    2011-06-01

    Methanogenesis in wetlands is dependent on intermediary substrates derived from the degradation of biopolymers. Formate is one such substrate and is stimulatory to methanogenesis and acetogenesis in anoxic microcosms of soil from the fen Schlöppnerbrunnen. Formate dissimilation also yields CO(2) as a potential secondary substrate. The objective of this study was to resolve potential differences between anaerobic formate- and CO(2)-utilizing prokaryotes of this fen by stable isotope probing. Anoxic soil microcosms were pulsed daily with low concentrations of [(13)C]formate or (13)CO(2) (i.e., [(13)C]bicarbonate). Taxa were evaluated by assessment of 16S rRNA genes, mcrA (encoding the alpha-subunit of methyl-coenzyme M reductase), and fhs (encoding formyltetrahydrofolate synthetase). Methanogens, acetogens, and formate-hydrogen lyase-containing taxa appeared to compete for formate. Genes affiliated with Methanocellaceae, Methanobacteriaceae, Acetobacteraceae, and Rhodospirillaceae were (13)C enriched (i.e., labeled) in [(13)C]formate treatments, whereas genes affiliated with Methanosarcinaceae, Conexibacteraceae, and Solirubrobacteraceae were labeled in (13)CO(2) treatments. [(13)C]acetate was enriched in [(13)C]formate treatments, but labeling of known acetogenic taxa was not detected. However, several phylotypes were affiliated with acetogen-containing taxa (e.g., Sporomusa). Methanosaetaceae-affiliated methanogens appeared to participate in the consumption of acetate. Twelve and 58 family-level archaeal and bacterial 16S rRNA phylotypes, respectively, were detected, approximately half of which had no isolated representatives. Crenarchaeota constituted half of the detected archaeal 16S rRNA phylotypes. The results highlight the unresolved microbial diversity of the fen Schlöppnerbrunnen, suggest that differing taxa competed for the same substrate, and indicate that Methanocellaceae, Methanobacteriaceae, Methanosarcinaceae, and Methanosaetaceae were linked to the

  15. Rich fen development in SE Poland and its response to climate changes and human impacts in the late Holocene

    NASA Astrophysics Data System (ADS)

    Gałka, Mariusz; Apolinarska, Karina; Aunina, Liene; Feurdean, Angelica; Hutchinson, Simon; Kołaczek, Piotr

    2016-04-01

    Rich fens are one of the most important wetland ecosystems due to their high species-richness and unique species composition. They are occupied by endangered, vulnerable and protected plants, such as Cladium mariscus and Schoenus ferrugineus. For this reason knowledge of the history of rich fens is important for the development of effective management strategies to protect or restore these widely threatened habitats. Our palaeoecological study reconstructs the development of Bagno Serebryskie rich fen (ca. 376 ha), a site with the largest population of Cladium mariscus in CE Europe, and its response to climate changes and human impacts during the last 3500 years. For this we analyse two peat profiles at this site, at a high resolution (1 and 2 cm) using multi-aspect palaeoecological analyses (plant macrofossils, pollen, molluscs, geochemistry, charcoal and AMS 14C radiocarbon) to assess the impact of climate changes, human activity, and fires on local vegetation. Local plant succession in our two coring points followed parallel trajectories; after a lake stage, ca. 1800 cal yr BP (core I) and 3300 cal yr BP (core II), fen species e.g. Menyanthes trifoliata, Mentha aquatic, Carex lasiocarpa appeared, followed at ca. 500 cal. yr BP by Cladium mariscus, which is currently the dominant plant species in the Bagno Serebryskie peatland. In one peat profile (core II) we found abundant macrocharcoal particles at 1050, 700, 400 cal yr BP and the present, but fires had no significant impact on the development of the mire. In the other peat profile (core I) we noted four stages (at 2300, 1350, 400, 100 cal yr BP) with an increasing diversity of mollusc species typical of overgrown, but permanent water bodies. Their increased abundance and diversity can be linked to a rise in mire water table at these times. Our studies indicate that rich fens can provide reliable sites for palaeoecological reconstruction of the late Holocene providing valuable information that can be applied

  16. Lipidomic profiling reveals protective function of fatty acid oxidation in cocaine-induced hepatotoxicity[S

    PubMed Central

    Shi, Xiaolei; Yao, Dan; Gosnell, Blake A.; Chen, Chi

    2012-01-01

    During cocaine-induced hepatotoxicity, lipid accumulation occurs prior to necrotic cell death in the liver. However, the exact influences of cocaine on the homeostasis of lipid metabolism remain largely unknown. In this study, the progression of subacute hepatotoxicity, including centrilobular necrosis in the liver and elevation of transaminase activity in serum, was observed in a three-day cocaine treatment, accompanying the disruption of triacylglycerol (TAG) turnover. Serum TAG level increased on day 1 of cocaine treatment but remained unchanged afterwards. In contrast, hepatic TAG level was elevated continuously during three days of cocaine treatment and was better correlated with the development of hepatotoxicity. Lipidomic analyses of serum and liver samples revealed time-dependent separation of the control and cocaine-treated mice in multivariate models, which was due to the accumulation of long-chain acylcarnitines together with the disturbances of many bioactive phospholipid species in the cocaine-treated mice. An in vitro function assay confirmed the progressive inhibition of mitochondrial fatty acid oxidation after the cocaine treatment. Cotreatment of fenofibrate significantly increased the expression of peroxisome proliferator-activated receptor α (PPARα)-targeted genes and the mitochondrial fatty acid oxidation activity in the cocaine-treated mice, resulting in the inhibition of cocaine-induced acylcarnitine accumulation and other hepatotoxic effects. Overall, the results from this lipidomics-guided study revealed that the inhibition of fatty acid oxidation plays an important role in cocaine-induced liver injury. PMID:22904346

  17. Comparison of Gravel Substrate vs Soil Substrate for the Construction of an Experimental Fen.

    DTIC Science & Technology

    1995-12-01

    1993). "Bog fens" contain many plants of northern distribution such as pitcher-plant ( Sarracenia purpurea L), tamarack (Larix lancina [DuRoi] K. Koch...Mint) SOIL 25 Carex cristatella (Crested Sedge) Sanguisorba canadensis 26 (Canadian Goldenrod) SOIL No difference Phytosegia purpurea 27...Carex cristatella (Crested Sedge) 26 Sanguisorba canadensis (Canada Buraet) 27 Physostegia purpurea (Purple Dragon-head) 28 Scirpus pendula (Drooping

  18. Competing Formate- and Carbon Dioxide-Utilizing Prokaryotes in an Anoxic Methane-Emitting Fen Soil▿†

    PubMed Central

    Hunger, Sindy; Schmidt, Oliver; Hilgarth, Maik; Horn, Marcus A.; Kolb, Steffen; Conrad, Ralf; Drake, Harold L.

    2011-01-01

    Methanogenesis in wetlands is dependent on intermediary substrates derived from the degradation of biopolymers. Formate is one such substrate and is stimulatory to methanogenesis and acetogenesis in anoxic microcosms of soil from the fen Schlöppnerbrunnen. Formate dissimilation also yields CO2 as a potential secondary substrate. The objective of this study was to resolve potential differences between anaerobic formate- and CO2-utilizing prokaryotes of this fen by stable isotope probing. Anoxic soil microcosms were pulsed daily with low concentrations of [13C]formate or 13CO2 (i.e., [13C]bicarbonate). Taxa were evaluated by assessment of 16S rRNA genes, mcrA (encoding the alpha-subunit of methyl-coenzyme M reductase), and fhs (encoding formyltetrahydrofolate synthetase). Methanogens, acetogens, and formate-hydrogen lyase-containing taxa appeared to compete for formate. Genes affiliated with Methanocellaceae, Methanobacteriaceae, Acetobacteraceae, and Rhodospirillaceae were 13C enriched (i.e., labeled) in [13C]formate treatments, whereas genes affiliated with Methanosarcinaceae, Conexibacteraceae, and Solirubrobacteraceae were labeled in 13CO2 treatments. [13C]acetate was enriched in [13C]formate treatments, but labeling of known acetogenic taxa was not detected. However, several phylotypes were affiliated with acetogen-containing taxa (e.g., Sporomusa). Methanosaetaceae-affiliated methanogens appeared to participate in the consumption of acetate. Twelve and 58 family-level archaeal and bacterial 16S rRNA phylotypes, respectively, were detected, approximately half of which had no isolated representatives. Crenarchaeota constituted half of the detected archaeal 16S rRNA phylotypes. The results highlight the unresolved microbial diversity of the fen Schlöppnerbrunnen, suggest that differing taxa competed for the same substrate, and indicate that Methanocellaceae, Methanobacteriaceae, Methanosarcinaceae, and Methanosaetaceae were linked to the production of methane

  19. Thermal neutron capture cross section for 56Fe(n ,γ )

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Belgya, T.; Krtička, M.; Bečvář, F.; Szentmikloṡi, L.; Tomandl, I.

    2017-01-01

    The 56Fe(n ,γ ) thermal neutron capture cross section and the 57Fe level scheme populated by this reaction have been investigated in this work. Singles γ -ray spectra were measured with an isotopically enriched 56Fe target using the guided cold neutron beam at the Budapest Reactor, and γ γ -coincidence data were measured with a natural Fe target at the LWR-15 research reactor in Řež, Czech Republic. A detailed level scheme consisting of 448 γ rays populating/depopulating 97 levels and the capture state in 57Fe has been constructed, and ≈99 % of the total transition intensity has been placed. The transition probability of the 352-keV γ ray was determined to be Pγ(352 ) =11.90 ±0.07 per 100 neutron captures. The 57Fe level scheme is substantially revised from earlier work and ≈33 previously assigned levels could not be confirmed while a comparable number of new levels were added. The 57Feγ -ray cross sections were internally calibrated with respect to 1H and 32Sγ -ray cross section standards using iron(III) acetylacetonate (C15H21FeO6) and iron pyrite (FeS2) targets. The thermal neutron cross section for production of the 352-keV γ -ray cross section was determined to be σγ(352 ) =0.2849 ±0.015 b. The total 56Fe(n ,γ ) thermal radiative neutron cross section is derived from the 352-keV γ -ray cross section and transition probability as σ0=2.394 ±0.019 b. A least-squares fit of the γ rays to the level scheme gives the 57Fe neutron separation energy Sn=7646.183 ±0.018 keV.

  20. BOREAS TGB-3 Plant Species Composition Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.

  1. Hydrometeorological conditions preceding wildfire, and the subsequent burning of a fen watershed in Fort McMurray, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Elmes, Matthew C.; Thompson, Dan K.; Sherwood, James H.; Price, Jonathan S.

    2018-01-01

    The destructive nature of the ˜ 590 000 ha Horse river wildfire in the Western Boreal Plain (WBP), northern Alberta, in May of 2016 motivated the investigation of the hydrometeorological conditions that preceded the fire. Historical climate and field hydrometeorological data from a moderate-rich fen watershed were used to (a) identify whether the spring 2016 conditions were outside the range of natural variability for WBP climate cycles, (b) explain the observed patterns in burn severity across the watershed, and (c) identify whether fall and winter moisture signals observed in peatlands and lowland forests in the region are indicative of wildfire. Field hydrometeorological data from the fen watershed confirmed the presence of cumulative moisture deficits prior to the fire. Hydrogeological investigations highlighted the susceptibility of fen and upland areas to water table and soil moisture decline over rain-free periods (including winter), due to the watershed's reliance on supply from localized flow systems originating in topographic highs. Subtle changes in topographic position led to large changes in groundwater connectivity, leading to greater organic soil consumption by fire in wetland margins and at high elevations. The 2016 spring moisture conditions measured prior to the ignition of the fen watershed were not illustrated well by the Drought Code (DC) when standard overwintering procedures were applied. However, close agreement was found when default assumptions were replaced with measured duff soil moisture recharge and incorporated into the overwintering DC procedure. We conclude that accumulated moisture deficits dating back to the summer of 2015 led to the dry conditions that preceded the fire. The infrequent coinciding of several hydrometeorological conditions, including low autumn soil moisture, a modest snowpack, lack of spring precipitation, and high spring air temperatures and winds, ultimately led to the Horse river wildfire spreading widely and

  2. Fire History of a Forest, Savanna, and Fen Mosaic at White Ranch State Forest

    Treesearch

    Daniel C. Dey; Ricahrd P. Guyette; Michael C. Stambaugh

    2004-01-01

    We present the fire history of a 1-km2 area that is a mosaic of oak forest, savanna, and fen on the White Ranch State Forest, Howell County, Missouri. We dated 135 fire scars on 35 cross-sections of post oak ( Quercus stellata) trees and constructed a fire chronology dating from 1705 to 1997. Mean fire return intervals by periods were 3.7 years (...

  3. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism

    PubMed Central

    Wang, Lijie; Zhang, Tong; Watson, David G.; Silva, Ana Marta; Coombs, Graham H.

    2015-01-01

    Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts. PMID:26368322

  4. Comparison and evaluation on image fusion methods for GaoFen-1 imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Zhao, Junqing; Zhang, Ling

    2016-10-01

    Currently, there are many research works focusing on the best fusion method suitable for satellite images of SPOT, QuickBird, Landsat and so on, but only a few of them discuss the application of GaoFen-1 satellite images. This paper proposes a novel idea by using four fusion methods, such as principal component analysis transform, Brovey transform, hue-saturation-value transform, and Gram-Schmidt transform, from the perspective of keeping the original image spectral information. The experimental results showed that the transformed images by the four fusion methods not only retain high spatial resolution on panchromatic band but also have the abundant spectral information. Through comparison and evaluation, the integration of Brovey transform is better, but the color fidelity is not the premium. The brightness and color distortion in hue saturation-value transformed image is the largest. Principal component analysis transform did a good job in color fidelity, but its clarity still need improvement. Gram-Schmidt transform works best in color fidelity, and the edge of the vegetation is the most obvious, the fused image sharpness is higher than that of principal component analysis. Brovey transform, is suitable for distinguishing the Gram-Schmidt transform, and the most appropriate for GaoFen-1 satellite image in vegetation and non-vegetation area. In brief, different fusion methods have different advantages in image quality and class extraction, and should be used according to the actual application information and image fusion algorithm.

  5. Fens, seasonal wetlands, and the unconfined pumice aquifer east of the Cascade Range, south-central Oregon

    NASA Astrophysics Data System (ADS)

    Cummings, M. L.; Large, A.; Mowbray, A.; Weatherford, J.; Webb, B.

    2013-12-01

    Fens and seasonal wetlands in the headwaters of the Klamath and Deschutes river basins in south-central Oregon are present in an area blanketed by 2 to 3 m of pumice during the Holocene eruption of Mount Mazama. The lower pumice unit, moderately sorted coarse pumice lapilli to blocks (0.3 to 0.7 cm), phenocrysts, and lithics is 1.5 to 2 m thick; the upper pumice unit, poorly sorted lapilli to blocks (0.2 to 6 cm), minor phenocrysts, and lithics is 1 m thick. Pumice is a perched, unconfined aquifer over low permeability bedrock or pre-eruption fine-grained sediment. Early landscape response included partial erosion of pumice from pre-eruption valleys followed by partial filling by alluvium: phenocryst- and lithic-rich sand grading upward to glassy silt with rounded pumice pebbles. Groundwater-fed wetlands, fens, associated with the unconfined pumice aquifer occur as areas of diffuse groundwater discharge through gently sloping, convex surfaces underlain by up to 1.4 m of peat. Locally, focused discharge through the confining peat layer feeds low discharge streams. Carnivorous plants (sundews and pitcher plants) may be present. The sharp contact between peat and underlying pumice is an erosion surface that cuts progressively deeper into the upper and lower pumice units downslope. At the base of the slope peat with fen discharge feeding surface flow, alluvium with no surface flow, or a subtle berm separating the slope underlain by peat from the valley bottom underlain by alluvium may be present. Distinct vegetation changes take place at this transition. The erosion surface that underlies the peat layer in the fen is at the surface on the opposing valley wall and progressively rises up through the lower and upper pumice units: iron staining and cementation of pumice is locally prominent. Up to 1.5 m difference in water table occurs between the fen and opposing valley wall. Water table in piezometers screened in peat is at the surface. Locally, water table screened in

  6. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes.

    PubMed

    Abu-Remaileh, Monther; Wyant, Gregory A; Kim, Choah; Laqtom, Nouf N; Abbasi, Maria; Chan, Sze Ham; Freinkman, Elizaveta; Sabatini, David M

    2017-11-10

    The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-replete conditions, many lysosomal amino acids are in rapid exchange with those in the cytosol. Loss of lysosomal acidification through inhibition of the vacuolar H + -adenosine triphosphatase (V-ATPase) increased the luminal concentrations of most metabolites but had no effect on those of the majority of essential amino acids. Instead, nutrient starvation regulates the lysosomal concentrations of these amino acids, an effect we traced to regulation of the mechanistic target of rapamycin (mTOR) pathway. Inhibition of mTOR strongly reduced the lysosomal efflux of most essential amino acids, converting the lysosome into a cellular depot for them. These results reveal the dynamic nature of lysosomal metabolites and that V-ATPase- and mTOR-dependent mechanisms exist for controlling lysosomal amino acid efflux. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Omics approaches on fresh-cut lettuce reveal global molecular responses to sodium hypochlorite and peracetic acid treatment.

    PubMed

    Daddiego, Loretta; Bianco, Linda; Capodicasa, Cristina; Carbone, Fabrizio; Dalmastri, Claudia; Daroda, Lorenza; Del Fiore, Antonella; De Rossi, Patrizia; Di Carli, Mariasole; Donini, Marcello; Lopez, Loredana; Mengoni, Alessio; Paganin, Patrizia; Perrotta, Gaetano; Bevivino, Annamaria

    2018-01-01

    Lettuce is a leafy vegetable that is extensively commercialized as a ready-to-eat product because of its widespread use in human nutrition as salad. It is well known that washing treatments can severely affect the quality and shelf-life of ready-to-eat vegetables. The study presented here evaluated the effect of two washing procedures on fresh-cut lettuce during storage. An omics approach was applied to reveal global changes at molecular level induced by peracetic acid washing in comparison with sodium hypochlorite treatment. Microbiological analyses were also performed to quantify total bacterial abundance and composition. The study revealed wide metabolic alterations induced by the two sanitizers. In particular, transcriptomic and proteomic analyses pointed out a number of transcripts and proteins differentially accumulated in response to peracetic acid washing, mainly occurring on the first day of storage. In parallel, different microbiota composition and significant reduction in total bacterial load following washing were also observed. The results provide useful information for the fresh-cut industry to select an appropriate washing procedure preserving fresh-like attributes as much as possible during storage of the end product. Molecular evidence indicated peracetic acid to be a valid alternative to sodium hypochlorite as sanitizer solution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    DOE PAGES

    Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; ...

    2016-02-04

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels weremore » observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.« less

  9. Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state.

    PubMed

    Aslan, İbrahim; Özcan, Filiz; Karaarslan, Taner; Kıraç, Ebru; Aslan, Mutay

    2017-01-01

    This study aimed to determine circulating levels of polyunsaturated fatty acids (PUFAs), secretory phospholipase A2 (sPLA2), lipoprotein lipase (LPL) and measure circulating protein levels of angiopoietin-like protein 3 (ANGPTL3), ANGPTL4, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in patients with acne vulgaris. Serum from 21 control subjects and 31 acne vulgaris patients were evaluated for levels of arachidonic acid (AA, C20:4n- 6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). PUFA levels were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Lipid profile, routine biochemical and hormone parameters were assayed by standard kit methods Serum EPA levels were significantly decreased while AA/EPA and DGLA/EPA ratio were significantly increased in acne vulgaris patients compared to controls. Serum levels of AA, DGLA and DHA showed no significant difference while activity of sPLA2 and LPL were significantly increased in acne vulgaris compared to controls. Results of this study reveal the presence of a proinflammatory state in acne vulgaris as shown by significantly decreased serum EPA levels and increased activity of sPLA2, AA/EPA and DGLA/EPA ratio. Increased LPL activity in the serum of acne vulgaris patients can be protective through its anti-dyslipidemic actions. This is the first study reporting altered EPA levels and increased sPLA2 activity in acne vulgaris and supports the use of omega-3 fatty acids as adjuvant treatment for acne patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Atmospheric methane sources - Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Grice, S. S.; Bartlett, K. B.; Sebacher, S. M.

    1986-01-01

    Methane (CH4) flux measurements from Alaska tundra bogs, an alpine fen, and a subarctic boreal marsh were obtained at field sites ranging from Prudhoe Bay on the coast of the Arctic Ocean to the Alaskan Range south of Fairbanks during August 1984. In the tundra, average CH4 emission rates varied from 4.9 mg CH4 per sq m per day (moist tundra) to 119 mg CH4 per sq m per day (waterlogged tundra). Fluxes averaged 40 mg CH4 per sq m per day from wet tussock meadows in the Brooks Range and 289 mg Ch4 per sq m per day from an alpine fen in the Alaskan Range. The boreal marsh had an average CH4 emission rate of 106 mg CH4 per sq m per day. Significant emissions were detected in tundra areas where peat temperatures were as low as 4 C, and permafrost was only 25 cm below the ground surface. Emission rates from the 17 sites sampled were found to be logarithmically related to water levels at the sites. Extrapolation of the data to an estimate of the total annual CH4 emission from all arctic and boreal wetlands suggests that these ecosystems are a major source of atmospheric CH4 and could account for up to 23 percent of global CH4 emissions from wetlands.

  11. Comparative uptake of ¹⁸F-FEN-DPAZn2, ¹⁸F-FECH, ¹⁸F-fluoride, and ¹⁸F-FDG in fibrosarcoma and aseptic inflammation.

    PubMed

    Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting

    2014-08-01

    The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Water stress index for alkaline fen habitat based on UAV and continuous tower measurements of canopy infrared temperature

    NASA Astrophysics Data System (ADS)

    Ciężkowski, Wojciech; Jóźwiak, Jacek; Chormański, Jarosław; Szporak-Wasilewska, Sylwia; Kleniewska, Małgorzata

    2017-04-01

    This study is focused on developing water stress index for alkaline fen, to evaluate water stress impact on habitat protected within Natura 2000 network: alkaline fens (habitat code:7230). It is calculated based on continuous measurements of air temperature, relative humidity and canopy temperature from meteorological tower and several UAV flights for canopy temperature registration. Measurements were taken during the growing season in 2016 in the Upper Biebrza Basin in north-east Poland. Firstly methodology of the crop water stress index (CWSI) determination was used to obtained non-water stress base line based on continuous measurements (NWSBtower). Parameters of NWSBtower were directly used to calculate spatial variability of CWSI for UAV thermal infrared (TIR) images. Then for each UAV flight day at least 3 acquisition were performed to define NWSBUAV. NWSBUAV was used to calculate canopy waters stress for whole image relative to the less stressed areas. The spatial distribution of developed index was verified using remotely sensed indices of vegetation health. Results showed that in analysed area covered by sedge-moss vegetation NWSB cannot be used directly. The proposed modification of CWSI allows identifying water stress in alkaline fen habitats and was called as Sedge-Moss Water Stress Index (SMWSI). The study shows possibility of usage remotely sensed canopy temperature data to detect areas exposed to the water stress on wetlands. This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).

  13. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis

    PubMed Central

    Halter, David; Goulhen-Chollet, Florence; Gallien, Sébastien; Casiot, Corinne; Hamelin, Jérôme; Gilard, Françoise; Heintz, Dimitri; Schaeffer, Christine; Carapito, Christine; Van Dorsselaer, Alain; Tcherkez, Guillaume; Arsène-Ploetze, Florence; Bertin, Philippe N

    2012-01-01

    Euglena mutabilis is a photosynthetic protist found in acidic aquatic environments such as peat bogs, volcanic lakes and acid mine drainages (AMDs). Through its photosynthetic metabolism, this protist is supposed to have an important role in primary production in such oligotrophic ecosystems. Nevertheless, the exact contribution of E. mutabilis in organic matter synthesis remains unclear and no evidence of metabolite secretion by this protist has been established so far. Here we combined in situ proteo-metabolomic approaches to determine the nature of the metabolites accumulated by this protist or potentially secreted into an AMD. Our results revealed that the secreted metabolites are represented by a large number of amino acids, polyamine compounds, urea and some sugars but no fatty acids, suggesting a selective organic matter contribution in this ecosystem. Such a production may have a crucial impact on the bacterial community present on the study site, as it has been suggested previously that prokaryotes transport and recycle in situ most of the metabolites secreted by E. mutabilis. Consequently, this protist may have an indirect but important role in AMD ecosystems but also in other ecological niches often described as nitrogen-limited. PMID:22237547

  14. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. High School Student's Alternative Conceptions About the Phenomenon of the Formation of the Moon Phases. (Spanish Title: Concepciones Alternativas de Alumnos de Educación Media Sobre el Fenómeno de Formación de las Fases de La Luna.) Concepções Alternativas de Alunos do Ensino Médio Sobre o Fenômeno de Formação das Fases da Lua

    NASA Astrophysics Data System (ADS)

    Iachel, Gustavo; Langhi, Rodolfo; Fernandes Scalvi, Rosa Maria

    2008-07-01

    Forty students, at ages between 14 and 18 years old, from three schools in Bauru city, were questioned about their alternative conceptions concerning the phenomenon of formation of the Moon Phases. It was observed that some of the pupils confound the phenomenon of the formation of the Moon Phases with the phenomenon of the formation of the lunar eclipses, others are unaware of the reason of the phenomenon, they present incoherent alternative conceptions of the reality or incomplete conceptions. The results found here are aimed at the teachers of Elementary Education and can be used as a subsidy for future development of new pedagogical methods. Cuarenta estudiantes, con edad entre 14 y 18 años, pertenecientes a tres escuelas de la ciudad de Bauru, fueron cuestionados sobre sus concepciones alternativas acerca del fenómeno de la formación de las fases de la Luna. Fue observado que algunos alumnos confunden el fenómeno de formación de las fases de la Luna con el fenómeno de formación de los eclipses lunares, otros desconocen el motivo delfenómeno, presentan concepciones alternativas incoherentes con la realidad o bien presentan concepciones incompletas. Los resultados aquí encontrados son destinados a los profesores de la Enseñanza Básica y podrán ser usados como ayuda para el futuro desarrollo de nuevos métodos pedagógicos. Quarenta estudantes, com idades entre 14 e 18 anos, pertencentes a três escolas da cidade de Bauru, foram questionados sobre suas concepções alternativas acerca do fenômeno de formação das fases da Lua. Foi observado que alguns dos alunos confundem o fenômeno da formação das fases da Lua com o fenômeno da formação dos eclipses lunares, outros desconhecem o motivo do fenômeno, apresentam concepções alternativas incoerentes com a realidade ou então concepções incompletas. Os resultados aqui encontrados são destinados aos professores do Ensino Básico e poderão ser usados como subsídio parafuturo desenvolvimento de

  16. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer.

    PubMed

    Shao, Yaping; Ye, Guozhu; Ren, Shancheng; Piao, Hai-Long; Zhao, Xinjie; Lu, Xin; Wang, Fubo; Ma, Wang; Li, Jia; Yin, Peiyuan; Xia, Tian; Xu, Chuanliang; Yu, Jane J; Sun, Yinghao; Xu, Guowang

    2018-07-15

    Genetic alterations drive metabolic reprograming to meet increased biosynthetic precursor and energy demands for cancer cell proliferation and survival in unfavorable environments. A systematic study of gene-metabolite regulatory networks and metabolic dysregulation should reveal the molecular mechanisms underlying prostate cancer (PCa) pathogenesis. Herein, we performed gas chromatography-mass spectrometry (GC-MS)-based metabolomics and RNA-seq analyses in prostate tumors and matched adjacent normal tissues (ANTs) to elucidate the molecular alterations and potential underlying regulatory mechanisms in PCa. Significant accumulation of metabolic intermediates and enrichment of genes in the tricarboxylic acid (TCA) cycle were observed in tumor tissues, indicating TCA cycle hyperactivation in PCa tissues. In addition, the levels of fumarate and malate were highly correlated with the Gleason score, tumor stage and expression of genes encoding related enzymes and were significantly related to the expression of genes involved in branched chain amino acid degradation. Using an integrated omics approach, we further revealed the potential anaplerotic routes from pyruvate, glutamine catabolism and branched chain amino acid (BCAA) degradation contributing to replenishing metabolites for TCA cycle. Integrated omics techniques enable the performance of network-based analyses to gain a comprehensive and in-depth understanding of PCa pathophysiology and may facilitate the development of new and effective therapeutic strategies. © 2018 UICC.

  17. Connectivity and storage functions of channel fens and flat bogs in northern basins

    NASA Astrophysics Data System (ADS)

    Quinton, W. L.; Hayashi, M.; Pietroniro, A.

    2003-12-01

    The hydrological response of low relief, wetland-dominated zones of discontinuous permafrost is poorly understood. This poses a major obstacle to the development of a physically meaningful meso-scale hydrological model for the Mackenzie basin, one of the world's largest northern basins. The present study examines the runoff response of five representative study basins (Scotty Creek, and the Jean-Marie, Birch, Blackstone and Martin Rivers) in the lower Liard River valley as a function of their major biophysical characteristics. High-resolution (4 m × 4 m) IKONOS satellite imagery was used in combination with aerial and ground verification surveys to classify the land cover, and to delineate the wetland area connected to the drainage system. Analysis of the annual hydrographs of each basin for the 4 year period 1997 to 2000, demonstrated that runoff was positively correlated with the drainage density, basin slope, and the percentage of the basin covered by channel fens, and was negatively correlated with the percentage of the basin covered by flat bogs. The detailed analysis of the water-level response to summer rainstorms at several nodes along the main drainage network in the Scotty Creek basin showed that the storm water was slowly routed through channel fens with an average flood-wave velocity of 0·23 km h-1. The flood-wave velocity appears to be controlled by channel slope and hydraulic roughness in a manner consistent with the Manning formula, suggesting that a roughness-based routing algorithm might be useful in large-scale hydrological models. Copyright

  18. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  19. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose.

    PubMed

    Pan, Xinrong; Liu, Huanhuan; Liu, Jiao; Wang, Cheng; Wen, Jianping

    2016-12-01

    In order to relieve the toxicity of furfural on Rhizopus oryzae fermentation, the molecular mechanism of R. oryzae responding to furfural stress for fumaric acid-production was investigated by omics-based approaches. In metabolomics analysis, 29 metabolites including amino acid, sugars, polyols and fatty acids showed significant changes for maintaining the basic cell metabolism at the cost of lowering fumaric acid production. To further uncover the survival mechanism, lipidomics was carried out, revealing that phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and polyunsaturated acyl chains might be closely correlated with R. oryzae's adapting to furfural stress. Based on the above omics analysis, lecithin, inositol and soybean oil were exogenously supplemented separately with an optimized concentration in the presence of furfural, which increased fumaric acid titer from 5.78g/L to 10.03g/L, 10.05g/L and 12.13g/L (increased by 73.5%, 73.8% and 110%, respectively). These findings provide a methodological guidance for hemicellulose-fumaric acid development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2013-04-01

    acids. The high concentrations in summer could lead to the conclusion that these acids are mostly formed during photochemical processes in the atmosphere. However, the concentrations in autumn were often exceeded by the ones in winter. Therefore probably other sources beside photochemical processes have to be considered. The second group consists of aromatic compounds. Because of the high concentrations in winter it can be concluded that photochemical formation plays a minor role and primary emission sources e.g., wood combustion are likely. Further evidence in determining sources of the carboxylic acids could be obtained from the air mass origin. In general, air masses transported from East have a more anthropogenic influence than the air mass inflow from West. For all aromatic carboxylic acids higher concentrations were determined during eastern inflow, indicating anthropogenic sources. This presumption is supported by high correlations with the elemental carbon (EC). Regarding the aliphatic carboxylic there is one group with higher concentrations when the air mass is transported from West and one with higher concentrations when air mass is transported from East. In summary the findings of this study reveal a clear difference in the seasonal trends of the single target acids indicating a variety of different sources.

  1. Effects of N and P fertilisation on greenhouse gas (GHG) production in floodplain fen peat: A microcosm fertilisation experiment.

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; Heppell, Catherine; Belyea, Lisa; Baird, Andrew

    2016-04-01

    Biogeochemical and hydrological cycles are being significantly perturbed by anthropic activities altering atmospheric mole fractions of greenhouse gases (GHG) and increasing global temperatures. With the intensification of the hydrological cycle, lowland areas, such as floodplain fens, may be inundated more frequently. Rivers in agricultural catchments have the potential to pollute floodplain fens with significant amounts of nitrogen (N) and phosphorus (P); however, the effects of short-term (< 15 days) N and P fertilisation via fluvial inundation on GHG emissions from floodplain fens are poorly understood. The aim of this research was to determine how N (51 mg L-1 NO3-N) and P (1.4 mg L-1 PO43--P) additions may alter GHG (CO2, CH4, and N2O) production in floodplain fens of contrasting nutrient status under anaerobic conditions. A five-level (control, glucose (G), N+G, P+G, and N+P+G), fully-factorial microcosm experiment was designed and undertaken in Spring 2013 with peat from two floodplain fens under conservation management with similar vegetation (from Norfolk, United Kingdom). One site receives a higher nutrient load than the other and has a historical legacy of higher N and P contents within the peat. Results from the experiment showed no significant difference in CO2 production between the control and fertilised treatments from 0 to 96 hours, but a significant difference between treatments (ANCOVA, between factors: treatment and site; covariate: time; F4,419 = 11.844, p < 0.001) and site (F1,149 = 5.721, p = 0.017) from 96 hours to in the end of the experiment due to fermentation. N2O production only occurred in samples fertilised with N (N+G and N+P+G) due to denitrification. Rates of N2O production were significantly greater in samples from the lower-nutrient site in comparison to the nutrient-rich site (t12= 6.539, p < 0.001 and t12= 7.273, p < 0.001 for N+G and N+P+G fertilised samples, respectively). Fertilisation with N and P had different effects on

  2. BOREAS TE-1 SSA-Fen Soil Profile Nutrient Data

    NASA Technical Reports Server (NTRS)

    Papagno, Andrea; Anderson, Darwin; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall traniect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains soil profile measurements of various nutrients at the SSA-Fen site. The data were collected from 23-May to 21-Oct- 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    PubMed Central

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  4. Conversion of a moderately rewetted fen to a shallow lake - implications for net CO2 exchange

    NASA Astrophysics Data System (ADS)

    Koebsch, Franziska; Glatzel, Stephan; Hofmann, Joachim; Forbrich, Inke; Jurasinski, Gerald

    2013-04-01

    Extensive rewetting projects to re-establish the natural carbon (C) sequestration function of degraded peatlands are currently taking place in Europe and North-America. Year-round flooding provides a robust measure to prevent periods of drought that are associated with ongoing peat mineralization and to initiate the accumulation of new organic matter. Here, we present measurements of net carbon dioxide (CO2) exchange during the gradual conversion of a moderately rewetted fen to a shallow lake. When we started our measurements in 2009, mean growing season water level (MWGL) was 0 cm. In 2010 the site was flooded throughout the year with MWGL of 36 cm. Extraordinary strong rainfalls in July 2011 resulted in a further increase of MWGL to 56 cm. Measurements of net ecosystem exchange (NEE) were conducted during growing seasons (May-October) using the Eddy Covariance method. Information about vegetation vitality was deduced from the enhanced vegetation index (EVI) based on MODIS data. Ecosystem respiration (Reco) and gross ecosystem production (GEP) were high during vegetation period 2009 (1273.4 and -1572.1 g CO2-C m-2), but decreased by 61 and 46% respectively when the fen was flooded throughout 2010. Under water-logged conditions, heterotrophic respiration declines and gas exchange is limited. Moreover, flooding is a severe stress factor for plants and decreases autotrophic respiration and photosynthesis. However, in comparison to 2010, rates of Reco and GEP doubled during the beginning of growing season 2011, indicating plastic response strategies of wetland plants to flooding. Presumably, plants were not able to cope with the further increase of water levels to up to 120 cm in June/July 2011, resulting in another drop of GEP and Reco. The effects of plant vitality on GEP were confirmed by the remote sensed vegetation index. Throughout all three growing seasons, the fen was a distinct net CO2 sink (2009: -333.3±12.3, 2010: -294.1±8.4, -352.4±5.1 g CO2-C m-2

  5. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    PubMed Central

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  6. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

    PubMed Central

    2010-01-01

    Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should

  7. Free energy landscape of electrocatalytic CO2 reduction to CO on aqueous FeN4 center embedded graphene studied by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sheng, Tian; Sun, Shi-Gang

    2017-11-01

    Experiments have found that the porphyrin-like FeN4 site in Fe-N-C materials is highly efficient for the electrochemical reduction of CO2 into CO. In this work, we investigated the reduction mechanisms on FeN4 embedded graphene layer catalyst with some explicit water molecules by combining the constrained ab initio molecular dynamics simulations and thermodynamic integrations. The reaction free energy and electron transfer in each elementary step were identified. The initial CO2 activation was identified to go through the first electron transfer to form adsorbed CO2- anion and the CO desorption was the rate limiting step in the overall catalytic cycle.

  8. Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens

    NASA Astrophysics Data System (ADS)

    Wu, Jianghua; Roulet, Nigel T.

    2014-10-01

    The carbon (C) storage of northern peatlands is equivalent to ~34-46% of the ~795 T g C currently held in the atmosphere as CO2. Most studies report that northern peatlands are a sink of between 20 and 60 g CO2-C m-2 yr-1. Since peatland hydrology and biogeochemistry are very closely related to climate, there is concern whether northern peatlands will continue to function as C sinks with climate change. We used a coupled land surface scheme and peatland C model, called CLASS3W-MWM, to examine the sensitivity of peatland C to climate change. Based on the data available to constrain our model, we simulated the C dynamics of the Mer Bleue (MB) bog in eastern Canada and the Degerö Stormyr (DS) poor fen in northern Sweden for four Intergovernmental Panel on Climate Change (IPCC) climate change scenarios, i.e., A1B, A2, B1, and Commit, over four time periods, i.e., present day, 2030, 2060, and 2100. When the simulated future C fluxes were compared to the baseline fluxes under the present climate conditions, we found that fens were much more sensitive to climate change than bogs. Gross primary production (GPP) at MB significantly increased by 4-44% up to 2100 for all scenarios except Commit. GPP at DS significantly decreased by 34-39% for A1B and A2, and slightly increased by 6-10% for B1 and Commit. Total ecosystem respiration (TER) significantly increased by 7-57% for MB and 4-34% for DS up to 2100 for all scenarios except Commit. Net ecosystem production (NEP), therefore, significantly decreased. The bog, however, was still a C sink up to 2100, though much reduced, but the fen switched to a C source for A1B and A2 scenarios. Additional experiments where we climatically transplanted the study peatlands or forced vegetation changes when the fen became too dry showed similar but less dramatic results as the standard runs. Our results indicate that northern peatlands should be included in the C-coupled climate model to fully understand the response of C cycling in

  9. Mapeamento do fenômeno de pulsações não-radiais no DHR

    NASA Astrophysics Data System (ADS)

    Waelkens, A. H.; Janot Pacheco, E.

    2003-08-01

    Neste trabalho de IC, pretende-se estabelecer um mapa das características do fenômeno das pulsações não-radiais (PNR) no diagrama HR (DHR). Trata-se de oscilações que não mantém a homotecia radial. O fenômeno foi inicialmente descoberto no Sol nos anos 60 e hoje é detectado num grande número de objetos. Sua grande importância reside em que as pulsações descrevem a física da cavidade em que se propagam. As PNR são classificadas basicamente por suas frequências, amplitudes e certos números quânticos associados. Com o objetivo de descrever a variação desses parâmetros no DHR, procedeu-se a um extenso levantamento bibliográfico (artigos de revistas e outras fontes) cobrindo o tema. Compôs-se assim uma tabela, que será apresentada nesta comunicação, contendo os parâmetros físicos das estrelas (T, L, logg, M) e suas características de PNR, deduzidas a partir de observações fotométricas e/ou espectroscópicas. No momento, completamos os dados sobre as Anãs Brancas e Beta Cep. Apresentaremos no trabalho diagramas L-T com os últimos resultados obtidos, eventualmente com uma terceira dimensão que descreva características pulsacionais.

  10. Inflammatory Effects of the Plant Protection Product Stifenia (FEN560) on Vertebrates.

    PubMed

    Teyssier, Lény; Colussi, Julie; Delemasure, Stéphanie; Chluba, Johanna; Wendehenne, David; Lamotte, Olivier; Connat, Jean-Louis

    2017-01-01

    Plant defense stimulators (PDSs) rely on the activation of plant innate immunity in order to protect crops against various pests. These molecules are thought to be a safer alternative to classical plant protection products. Given that innate immune systems share common features in plants and vertebrates, PDS can potentially cross-react with innate immunity of non-target organisms. To test this hypothesis, we studied effects of the commercial PDS Stifenia (FEN560), which is composed of crushed fenugreek seeds. We tested various concentrations of Stifenia (0.03-1 mg mL -1 ) on human peripheral blood mononuclear cells and checked, 20 h later, cell metabolic activity (MA) using XTT assay, cell death by flow cytometry analysis, and IL-1β inflammatory cytokine released in the culture medium using ELISA. Stifenia induced a general decrease of the cell MA, which was concomitant with a dose-dependent release of IL-1β. Our results highlight the activation of human immune cells. The inflammatory effect of Stifenia was partially inhibited by pan-caspase inhibitor. Accordingly, Stifenia induced the release of p20 caspase-1 fragment into the culture medium suggesting the involvement of the NLRP3 inflammasome. Furthermore, we observed that Stifenia can induce cell death. We also tested the effect of Stifenia on Zebrafish larvae. After 24 h of exposure, Stifenia induced a dose-dependent IL-1β and TNFα gene expression. The human-cell-based approach developed in this work revealed a high sensitivity concerning inflammatory properties of a plant protection product. These tests could be routinely used to screen the potential adverse effects of this type of compounds. Finally, our results suggest a potential danger of using extensively certain PDS for crop protection.

  11. Inflammatory Effects of the Plant Protection Product Stifenia (FEN560) on Vertebrates

    PubMed Central

    Teyssier, Lény; Colussi, Julie; Delemasure, Stéphanie; Chluba, Johanna; Wendehenne, David; Lamotte, Olivier; Connat, Jean-Louis

    2017-01-01

    Plant defense stimulators (PDSs) rely on the activation of plant innate immunity in order to protect crops against various pests. These molecules are thought to be a safer alternative to classical plant protection products. Given that innate immune systems share common features in plants and vertebrates, PDS can potentially cross-react with innate immunity of non-target organisms. To test this hypothesis, we studied effects of the commercial PDS Stifenia (FEN560), which is composed of crushed fenugreek seeds. We tested various concentrations of Stifenia (0.03–1 mg mL−1) on human peripheral blood mononuclear cells and checked, 20 h later, cell metabolic activity (MA) using XTT assay, cell death by flow cytometry analysis, and IL-1β inflammatory cytokine released in the culture medium using ELISA. Stifenia induced a general decrease of the cell MA, which was concomitant with a dose-dependent release of IL-1β. Our results highlight the activation of human immune cells. The inflammatory effect of Stifenia was partially inhibited by pan-caspase inhibitor. Accordingly, Stifenia induced the release of p20 caspase-1 fragment into the culture medium suggesting the involvement of the NLRP3 inflammasome. Furthermore, we observed that Stifenia can induce cell death. We also tested the effect of Stifenia on Zebrafish larvae. After 24 h of exposure, Stifenia induced a dose-dependent IL-1β and TNFα gene expression. The human-cell-based approach developed in this work revealed a high sensitivity concerning inflammatory properties of a plant protection product. These tests could be routinely used to screen the potential adverse effects of this type of compounds. Finally, our results suggest a potential danger of using extensively certain PDS for crop protection. PMID:28484691

  12. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    PubMed

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  13. Saturated and unsaturated salt transport in peat from a constructed fen

    NASA Astrophysics Data System (ADS)

    Simhayov, Reuven B.; Weber, Tobias K. D.; Price, Jonathan S.

    2018-02-01

    The underlying processes governing solute transport in peat from an experimentally constructed fen peatland were analyzed by performing saturated and unsaturated solute breakthrough experiments using Na+ and Cl- as reactive and non-reactive solutes, respectively. We tested the performance of three solute transport models, including the classical equilibrium convection-dispersion equation (CDE), a chemical non-equilibrium one-site adsorption model (OSA) and a model to account for physical non-equilibrium, the mobile-immobile (MIM) phases. The selection was motivated by the fact that the applicability of the MIM in peat soils finds a wide consensus. However, results from inverse modeling and a robust statistical evaluation of this peat provide evidence that the measured breakthrough of the conservative tracer, Cl-, could be simulated well using the CDE. Furthermore, the very high Damköhler number (which approaches infinity) suggests instantaneous equilibration between the mobile and immobile phases underscoring the redundancy of the MIM approach for this particular peat. Scanning electron microscope images of the peat show the typical multi-pore size distribution structures have been homogenized sufficiently by decomposition, such that physical non-equilibrium solute transport no longer governs the transport process. This result is corroborated by the fact the soil hydraulic properties were adequately described using a unimodal van Genuchten-Mualem model between saturation and a pressure head of ˜ -1000 cm of water. Hence, MIM was not the most suitable choice, and the long tailing of the Na+ breakthrough curve was caused by chemical non-equilibrium. Successful description was possible using the OSA model. To test our results for the unsaturated case, we conducted an unsaturated steady-state evaporation experiment to drive Na+ and Cl- transport. Using the parameterized transport models from the saturated experiments, we could numerically simulate the unsaturated

  14. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.

    2016-08-01

    The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered frommore » various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens were indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnumdominated

  15. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland

    NASA Astrophysics Data System (ADS)

    Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.; McCalley, Carmody K.; Saleska, Scott R.; Crill, Patrick M.; Rich, Virginia I.; Chanton, Jeffrey P.; Cooper, William T.

    2016-08-01

    The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered from various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnum-dominated bogs

  16. Transcriptional Profiling of Sorghum Induced by Methyl Jasmonate, Salicylic Acid, and Aminocyclopropane Carboxylic Acid Reveals Cooperative Regulation and Novel Gene Responses1[w

    PubMed Central

    Salzman, Ron A.; Brady, Jeff A.; Finlayson, Scott A.; Buchanan, Christina D.; Summer, Elizabeth J.; Sun, Feng; Klein, Patricia E.; Klein, Robert R.; Pratt, Lee H.; Cordonnier-Pratt, Marie-Michèle; Mullet, John E.

    2005-01-01

    We have conducted a large-scale study of gene expression in the C4 monocot sorghum (Sorghum bicolor) L. Moench cv BTx623 in response to the signaling compounds salicylic acid (SA), methyl jasmonate (MeJA), and the ethylene precursor aminocyclopropane carboxylic acid. Expression profiles were generated from seedling root and shoot tissue at 3 and 27 h, using a microarray containing 12,982 nonredundant elements. Data from 102 slides and quantitative reverse transcription-PCR data on mRNA abundance from 171 genes were collected and analyzed and are here made publicly available. Numerous gene clusters were identified in which expression was correlated with particular signaling compound and tissue combinations. Many genes previously implicated in defense responded to the treatments, including numerous pathogenesis-related genes and most members of the phenylpropanoid pathway, and several other genes that may represent novel activities or pathways. Genes of the octadecanoic acid pathway of jasmonic acid (JA) synthesis were induced by SA as well as by MeJA. The resulting hypothesis that increased SA could lead to increased endogenous JA production was confirmed by measurement of JA content. Comparison of responses to SA, MeJA, and combined SA+MeJA revealed patterns of one-way and mutual antagonisms, as well as synergistic effects on regulation of some genes. These experiments thus help further define the transcriptional results of cross talk between the SA and JA pathways and suggest that a subset of genes coregulated by SA and JA may comprise a uniquely evolved sector of plant signaling responsive cascades. PMID:15863699

  17. PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling

    EPA Science Inventory

    Perfluoroalkyl acids (PFAAs) are ubiquitous and persistent environmental contaminants. Compounds such as perfluoroocanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) are readily found in the tissues of humans...

  18. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis

    NASA Astrophysics Data System (ADS)

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.

    2016-03-01

    Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See

  19. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.

    PubMed

    Muniyan, Rajiniraja; Gurunathan, Jayaraman

    2016-12-01

    The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.

  20. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  1. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding thatmore » cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.« less

  2. AmeriFlux CA-WP1 Alberta - Western Peatland - LaBiche River,Black Spruce/Larch Fen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Lawrence B.

    This is the AmeriFlux version of the carbon flux data for the site CA-WP1 Alberta - Western Peatland - LaBiche River,Black Spruce/Larch Fen. Site Description - Latitude: 54.9538359° N Longitude: 112.4669767° W, the site is dominated by stunted trees of Larix laricina and Picea mariana, with Betula pumila, Ledum groenlandicum and Salix sp. (shrubs) and a wide range of moss species. There is also an abundant dwarf-shrub and herb layer including: Andromeda polifolia, Carex sp., Empetrum nigrum, Menyanthese trifoliata, Oxycoccus microcarpus, Potentilla palustris, Rubus acaulis, Smilacina trifolia, Vaccinium vitis-idea.

  3. Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment.

    PubMed

    Tull, Samantha P; Yates, Clara M; Maskrey, Benjamin H; O'Donnell, Valerie B; Madden, Jackie; Grimble, Robert F; Calder, Philip C; Nash, Gerard B; Rainger, G Ed

    2009-08-01

    Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-alpha, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D(2) (PGD(2)) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD(3). This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD(2) receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD(2) signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only

  4. Metabolic profiling of PPARalpha-/- mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation.

    PubMed

    Makowski, Liza; Noland, Robert C; Koves, Timothy R; Xing, Weibing; Ilkayeva, Olga R; Muehlbauer, Michael J; Stevens, Robert D; Muoio, Deborah M

    2009-02-01

    Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a master transcriptional regulator of beta-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARalpha(+/+) and PPARalpha(-/-) mice. Compared to PPARalpha(+/+) animals, acylcarnitine profiles of PPARalpha(-/-) mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in beta-oxidation. Organic and amino acid profiles of starved PPARalpha(-/-) mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARalpha(-/-) mice had 40-50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARalpha(-/-) mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.

  5. Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation

    PubMed Central

    Makowski, Liza; Noland, Robert C.; Koves, Timothy R.; Xing, Weibing; Ilkayeva, Olga R.; Muehlbauer, Michael J.; Stevens, Robert D.; Muoio, Deborah M.

    2009-01-01

    Peroxisome proliferator-activated receptor-α (PPARα) is a master transcriptional regulator of β-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARα+/+ and PPARα−/− mice. Compared to PPARα+/+ animals, acylcarnitine profiles of PPARα−/− mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in β-oxidation. Organic and amino acid profiles of starved PPARα−/− mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARα−/− mice had 40–50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARα−/− mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.—Makowski, L., Noland, R. C., Koves, T. R., Xing, W., Ilkayeva, O. R., Muehlbauer, M. J., Stevens, R. D., Muoio, D. M. Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation. PMID:18945875

  6. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses.

    PubMed

    King, Thea; Lucchini, Sacha; Hinton, Jay C D; Gobius, Kari

    2010-10-01

    The food-borne pathogen Escherichia coli O157:H7 is commonly exposed to organic acid in processed and preserved foods, allowing adaptation and the development of tolerance to pH levels otherwise lethal. Since little is known about the molecular basis of adaptation of E. coli to organic acids, we studied K-12 MG1655 and O157:H7 Sakai during exposure to acetic, lactic, and hydrochloric acid at pH 5.5. This is the first analysis of the pH-dependent transcriptomic response of stationary-phase E. coli. Thirty-four genes and three intergenic regions were upregulated by both strains during exposure to all acids. This universal acid response included genes involved in oxidative, envelope, and cold stress resistance and iron and manganese uptake, as well as 10 genes of unknown function. Acidulant- and strain-specific responses were also revealed. The acidulant-specific response reflects differences in the modes of microbial inactivation, even between weak organic acids. The two strains exhibited similar responses to lactic and hydrochloric acid, while the response to acetic acid was distinct. Acidulant-dependent differences between the strains involved induction of genes involved in the heat shock response, osmoregulation, inorganic ion and nucleotide transport and metabolism, translation, and energy production. E. coli O157:H7-specific acid-inducible genes were identified, suggesting that the enterohemorrhagic E. coli strain possesses additional molecular mechanisms contributing to acid resistance that are absent in K-12. While E. coli K-12 was most resistant to lactic and hydrochloric acid, O157:H7 may have a greater ability to survive in more complex acidic environments, such as those encountered in the host and during food processing.

  7. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling

    PubMed Central

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-01-01

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system. PMID:26370138

  8. Efficient spin-filter and negative differential resistance behaviors in FeN4 embedded graphene nanoribbon device

    NASA Astrophysics Data System (ADS)

    Liu, N.; Liu, J. B.; Yao, K. L.; Ni, Y.; Wang, S. L.

    2016-03-01

    In this paper, we propose a new device of spintronics by embedding two FeN4 molecules into armchair graphene nanoribbon and sandwiching them between N-doped graphene nanoribbon electrodes. Our first-principle quantum transport calculations show that the device is a perfect spin filter with high spin-polarizations both in parallel configuration (PC) and antiparallel configuration (APC). Moreover, negative differential resistance phenomena are obtained for the spin-down current in PC, and the spin-up and spin-down currents in APC. These transport properties are explained by the bias-dependent evolution of molecular orbitals and the transmission spectra.

  9. BOREAS TGB-6 Soil Methane Oxidation and Production from NSA BP and Fen Sites

    NASA Technical Reports Server (NTRS)

    Deck, Bruce; Wahlen, Martin; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-6) team collected soil methane measurements at several sites in the Southern Study Area (SSA) and Northern Study Area (NSA). This data set contains soil methane consumption (bacterial CH4 oxidation) and associated C-13 fractionation effects in samples that were collected at various sites in 1994 and 1996 from enclosures (chambers). Methane C-13 data in soil gas samples from the NSA Young Jack Pine (YJP) and Old Jack Pine (OJP) sites for 1994 and 1996 are also given. Additional data on the isotopic composition of methane (carbon and hydrogen isotopes) produced in the NSA beaver ponds and fen bog in 1993 and 1994 are given as well. The data are stored in tabular ASCII files.

  10. BOREAS TF-11 CO2 and CH4 Concentration Data from the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara (Editor); Valentine, David W.

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains temperature, pH, and concentration profiles of methane and carbon dioxide within the surface 50 cm of peat. The measurements were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitro-gen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. The data set covers the period from the first week of June 1994 through the second week of September 1994. The data are stored in tabular ASCII files.

  11. Metabolomic analysis reveals altered skeletal muscle amino acid and fatty acid handling in obese humans.

    PubMed

    Baker, Peter R; Boyle, Kristen E; Koves, Timothy R; Ilkayeva, Olga R; Muoio, Deborah M; Houmard, Joseph A; Friedman, Jacob E

    2015-05-01

    Investigate the effects of obesity and high-fat diet (HFD) exposure on fatty acid oxidation and TCA cycle intermediates and amino acids in skeletal muscle to better characterize energy metabolism. Plasma and skeletal muscle metabolomic profiles were measured from lean and obese males before and after a 5-day HFD in the 4 h postprandial condition. At both time points, plasma short-chain acylcarnitine species (SCAC) were higher in the obese subjects, while the amino acids glycine, histidine, methionine, and citrulline were lower in skeletal muscle of obese subjects. Skeletal muscle medium-chain acylcarnitines (MCAC) C6, C8, C10:2, C10:1, C10, and C12:1 increased in obese subjects, but decreased in lean subjects, from pre- to post-HFD. Plasma content of C10:1 was also decreased in the lean but increased in the obese subjects from pre- to post-HFD. CD36 increased from pre- to post-HFD in obese but not lean subjects. Lower skeletal muscle amino acid content and accumulation of plasma SCAC in obese subjects could reflect increased anaplerosis for TCA cycle intermediates, while accumulation of MCAC suggests limitations in β-oxidation. These measures may be important markers of or contributors to dysregulated metabolism observed in skeletal muscle of obese humans. © 2015 The Obesity Society.

  12. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis.

    PubMed

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D

    2016-03-14

    Nanoparticles entering the human body instantly become coated with a "protein corona" that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an "organic corona" containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.

  13. Metabolic profiling of murine plasma reveals eicosapentaenoic acid metabolites protecting against endothelial activation and atherosclerosis.

    PubMed

    Liu, Yajin; Fang, Xuan; Zhang, Xu; Huang, Jing; He, Jinlong; Peng, Liyuan; Ye, Chenji; Wang, Yingmei; Xue, Fengxia; Ai, Ding; Li, Dan; Zhu, Yi

    2018-04-01

    Atherosclerosis results from a maladaptive inflammatory response initiated by the intramural retention of LDL in susceptible areas of the arterial vasculature. The ω-3 polyunsaturated fatty acids (ω-3) have protective effects in atherosclerosis; however, their molecular mechanism is still largely unknown. The present study used a metabolomic approach to reveal the atheroprotective metabolites of ω-3 and investigate the underlying mechanisms. We evaluated the development of atherosclerosis in LDL receptor-deficient mice (LDLR -/- ) fed a Western-type diet (WTD) plus ω-3 and also LDLR -/- and fat-1 transgenic (LDLR -/- -fat-1 tg ) mice fed a WTD. The profiles of ω-3 in the plasma were screened by LC-MS/MS using unbiased systematic metabolomics analysis. We also studied the effect of metabolites of eicosapentaenoic acid (EPA) on endothelial activation in vitro. The ω-3 diet and fat-1 transgene decreased monocyte infiltration, inhibited the expression of pro-inflammatory genes and significantly attenuated atherosclerotic plaque formation and enhanced plaque stability in LDLR -/- mice. The content of 18-hydroxy-eicosapentaenoic acid (18-HEPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EEQ), from the cytochrome P450 pathway of EPA, was significantly higher in plasma from both ω-3-treated LDLR -/- and LDLR -/- -fat-1 tg mice as compared with WTD-fed LDLR -/- mice. In vitro in endothelial cells, 18-HEPE or 17,18-EEQ decreased inflammatory gene expression induced by TNFα via NF-κB signalling and thereby inhibited monocyte adhesion to endothelial cells. EPA protected against the development of atherosclerosis in atheroprone mice via the metabolites 18-HEPE and/or 17,18-EEQ, which reduced endothelial activation. These compounds may have therapeutic implications in atherosclerosis. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10

  14. Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress

    PubMed Central

    Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  15. Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1.

    PubMed

    Gloor, Jason W; Balakrishnan, Lata; Campbell, Judith L; Bambara, Robert A

    2012-08-01

    In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis. Using biochemical techniques, binding and cleavage assays presented here indicate that when the flap is ∼ 30 nt long the nuclease Dna2 can bind with high affinity to the flap and downstream double strand and begin cleavage. When the polymerase idles or dissociates the Dna2 can reorient for additional contacts with the upstream primer region, allowing the nuclease to remain stably bound as the flap is further shortened. The DNA can then equilibrate to a double flap that can bind Dna2 and flap endonuclease (FEN1) simultaneously. When Dna2 shortens the flap even more, FEN1 can displace the Dna2 and cleave at the flap base to make a nick for ligation.

  16. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid.

    PubMed

    Zoeller, Maria; Stingl, Nadja; Krischke, Markus; Fekete, Agnes; Waller, Frank; Berger, Susanne; Mueller, Martin J

    2012-09-01

    Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radical-catalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radical-catalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids.

  17. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    NASA Astrophysics Data System (ADS)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  18. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas themore » two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.« less

  19. High-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane

    PubMed Central

    Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra

    2013-01-01

    Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117

  20. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes

    PubMed Central

    Junager, Nina P. L.; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  1. The Effects of Graded Levels of Calorie Restriction: XIII. Global Metabolomics Screen Reveals Graded Changes in Circulating Amino Acids, Vitamins, and Bile Acids in the Plasma of C57BL/6 Mice.

    PubMed

    Green, Cara L; Soltow, Quinlyn A; Mitchell, Sharon E; Derous, Davina; Wang, Yingchun; Chen, Luonan; Han, Jing-Dong J; Promislow, Daniel E L; Lusseau, David; Douglas, Alex; Jones, Dean P; Speakman, John R

    2018-04-30

    Calorie restriction (CR) remains the most robust intervention to extend life span and improve health span. Using a global mass spectrometry-based metabolomics approach, we identified metabolites that were significantly differentially expressed in the plasma of C57BL/6 mice, fed graded levels of calorie restriction (10% CR, 20% CR, 30% CR, and 40% CR) compared with mice fed ad libitum for 12 hours a day. The differential expression of metabolites increased with the severity of CR. Pathway analysis revealed that graded CR had an impact on vitamin E and vitamin B levels, branched chain amino acids, aromatic amino acids, and fatty acid pathways. The majority of amino acids correlated positively with fat-free mass and visceral fat mass, indicating a strong relationship with body composition and vitamin E metabolites correlated with stomach and colon size, which may allude to the beneficial effects of investing in gastrointestinal organs with CR. In addition, metabolites that showed a graded effect, such as the sphinganines, carnitines, and bile acids, match our previous study on liver, which suggests not only that CR remodels the metabolome in a way that promotes energy efficiency, but also that some changes are conserved across tissues.

  2. Long-term CO2 flux dynamics and soil C stock changes of a drained fen mire under different grassland management practices in Northeast Germany

    NASA Astrophysics Data System (ADS)

    Augustin, Juergen; Giebels, Michael; Albiac Borraz, Elisa; Hoffmann, Mathias; Sommer, Michael

    2014-05-01

    Fen mires, widely distributed in Germany and Northern Europe, contain extreme high amounts of carbon (up to 5000 t C per hectare). For this reason, they play an important role in the global cycle of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Currently more than 95% of all fen mires in central Europe are drained. Therefore, they are assumed to represent extremely strong sources for CO2,accompanied by a fast reduction of the peat carbon stocks. For a number of reasons it is not possible to overcome this problem by restoration measures like flooding at the most drained fen sites. Moreover, there are till now just few and contradictory information about the contribution of alternative land use forms like grassland extensification on the reduction of the CO2 source function of these organic soils. As a contribution to clearing this deficit, we have ongoingly measured the CO2 and CH4 exchange as well as the changes in C stock on a deeply drained fen mire near the village of Paulinenaue from 2007 till 2012. The measurement sites is located within the so-called Rhin-Havelluch, an 80000 ha shallow paludification mire complex in the northwest of Berlin. The investigation included extensively and intensively used meadows (one cut vs. three cuts) on two soil types with different C stocks (Hemic Rheic Histosol vs. Mollic Gleysol). We used transparent chambers for measuring the CO2 flux net ecosystem exchange (difference between gross primary production and ecosystem respiration) and non-transparent chambers for measuring the CO2 flux ecosystem respiration and the CH4 exchange. Determined soil stock changes based on a C budget approach, including cumulated annual net ecosystem exchange, cumulated CH4 exchange, C export by harvest, and C import by fertilization. All current C fluxes were influenced in a complex way by ground-water level, plant development, land use intensity (cut frequency) and current weather conditions. Averaged over the whole investigation

  3. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    NASA Astrophysics Data System (ADS)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  4. Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis.

    PubMed

    Kong, Chuixing; Huang, Hezhou; Xue, Ying; Liu, Yiqi; Peng, Qiangqiang; Liu, Qi; Xu, Qin; Zhu, Qiaoyun; Yin, Ying; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2018-02-01

    Terreic acid is a potential anticancer drug as it inhibits Bruton's tyrosine kinase; however, its biosynthetic molecular steps remain unclear. In this work, the individual reactions of terreic acid biosynthesis were determined by stepwise pathway assembly in a heterologous host, Pichia pastoris, on the basis of previous knockout studies in a native host, Aspergillus terreus. Polyketide synthase AtX was found to catalyze the formation of partially reduced polyketide 6-methylsalicylic acid, followed by 3-methylcatechol synthesis by salicylate 1-monooxygenase AtA-mediated decarboxylative hydroxylation of 6-methylsalicylic acid. Our results show that cytochrome P450 monooxygenase AtE hydroxylates 3-methylcatechol, thus producing the next product, 3-methyl-1,2,4-benzenetriol. A smaller putative cytochrome P450 monooxygenase, AtG, assists with this step. Then, AtD causes epoxidation and hydroxyl oxidation of 3-methyl-1,2,4-benzenetriol and produces a compound terremutin, via which the previously unknown function of AtD was identified as cyclooxygenation. The final step involves an oxidation reaction of a hydroxyl group by a glucose-methanol-choline oxidoreductase, AtC, which leads to the final product: terreic acid. Functions of AtD and AtG were determined for the first time. All the genes were reanalyzed and all intermediates and final products were isolated and identified. Our model fully defines the molecular steps and corrects previous results from the literature.

  5. Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Humphreys, E. R.; Lafleur, P. M.

    2015-07-01

    CO2 and CH4 exchange are strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for these effects in the model ecosys were tested by comparing modeled CO2 and CH4 exchange with CO2 fluxes measured by eddy covariance from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008, along a topographic gradient at Daring Lake, NWT. In an upland tundra, rises in net CO2 uptake in warmer years were constrained by declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa and by rises in CO2 effluxes with greater active layer depth. Consequently, net CO2 uptake rose little with warming. In a lowland fen, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake were greater than those in the tundra. Greater declines in CO2 influxes with warming in the tundra were modeled from greater soil-plant-atmosphere water potential gradients that developed under higher D in drained upland soil, and smaller rises in CO2 effluxes with warming in the fen were modeled from O2 constraints to heterotrophic and belowground autotrophic respiration from a shallow water table in poorly drained lowland soil. CH4 exchange modeled during July and August indicated very small influxes in the tundra and larger effluxes characterized by afternoon emission events caused by degassing of warming soil in the fen. Emissions of CH4 modeled from degassing during soil freezing in October-November contributed about one third of the annual total.

  6. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    PubMed Central

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  7. Structure-activity relationship investigation of tertiary amine derivatives of cinnamic acid as acetylcholinesterase and butyrylcholinesterase inhibitors: compared with that of phenylpropionic acid, sorbic acid and hexanoic acid.

    PubMed

    Gao, Xiaohui; Tang, Jingjing; Liu, Haoran; Liu, Linbo; Kang, Lu; Chen, Wen

    2018-12-01

    In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d-6g, 10d-12g, 16d-18g and 22d-24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC 50 value: 3.64 µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.

  8. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking*

    PubMed Central

    Wong, Shenq-Huey; King, Chih-Yen

    2015-01-01

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1–61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1–61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1–61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of 14N- and 15N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains. PMID:26265470

  9. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen

    USGS Publications Warehouse

    Chivers, M.R.; Turetsky, M.R.; Waddington, J.M.; Harden, J.W.; McGuire, A.D.

    2009-01-01

    Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth. ?? 2009 Springer Science+Business Media, LLC.

  10. Methane Exchange in a Coastal Fen in the First Year after Flooding - A Systems Shift

    PubMed Central

    Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald

    2015-01-01

    Background Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Methods Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Results Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Conclusions Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should

  11. Methane Exchange in a Coastal Fen in the First Year after Flooding--A Systems Shift.

    PubMed

    Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald

    2015-01-01

    Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should be considered when forecasting the

  12. Solute movement in drained fen peat: a field tracer study in a Somerset (UK) wetland

    NASA Astrophysics Data System (ADS)

    Baird, Andrew J.; Gaffney, Simon W.

    2000-10-01

    Little is known about solute transport in peats, despite the obvious importance of solute transport on eco-hydrological processes in both managed and natural peatlands. To address this lack of knowledge, we investigated solute transport processes in an agricultural fen peat using a conservative KBr tracer. The main aim of the study was to elucidate solute transport behaviour in general in this peat, with a more specific aim of investigating whether preferential or bypassing flow occurred. The tracer moved through the peat more rapidly than expected, and the pattern of movement showed clear evidence of plot-scale bypassing flow. The data also provide evidence that bypassing flow occurs in pores at smaller scales. The implications of this study for management of wetland pastures in the Somerset Moors in south-west England are discussed.

  13. Mutation of the NADH Oxidase Gene (nox) Reveals an Overlap of the Oxygen- and Acid-Mediated Stress Responses in Streptococcus mutans

    PubMed Central

    Derr, Adam M.; Faustoferri, Roberta C.; Betzenhauser, Matthew J.; Gonzalez, Kaisha; Marquis, Robert E.

    2012-01-01

    NADH oxidase (Nox) is a flavin-containing enzyme used by Streptococcus mutans to reduce dissolved oxygen encountered during growth in the oral cavity. In this study, we characterized the role of the NADH oxidase in the oxidative and acid stress responses of S. mutans. A nox-defective mutant strain of S. mutans and its parental strain, the genomic type strain UA159, were exposed to various oxygen concentrations at pH values of 5 and 7 to better understand the adaptive mechanisms used by the organism to withstand environmental pressures. With the loss of nox, the activities of oxygen stress response enzymes such as superoxide dismutase and glutathione oxidoreductase were elevated compared to those in controls, resulting in a greater adaptation to oxygen stress. In contrast, the loss of nox led to a decreased ability to grow in a low-pH environment despite an increased resistance to severe acid challenge. Analysis of the membrane fatty acid composition revealed that for both the nox mutant and UA159 parent strain, growth in an oxygen-rich environment resulted in high proportions of unsaturated membrane fatty acids, independent of external pH. The data indicate that S. mutans membrane fatty acid composition is responsive to oxidative stress, as well as changes in environmental pH, as previously reported (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929–936, 2004). The heightened ability of the nox strain to survive acidic and oxidative environmental stress suggests a multifaceted response system that is partially dependent on oxygen metabolites. PMID:22179247

  14. Revealing the Influence of Silver in Ni-Ag Catalysts on the Selectivity of Higher Olefin Synthesis from Stearic Acid

    NASA Astrophysics Data System (ADS)

    Danyushevsky, V. Ya.; Murzin, V. Yu.; Kuznetsov, P. S.; Shamsiev, R. S.; Katsman, E. A.; Khramov, E. V.; Zubavichus, Y. V.; Berenblyum, A. S.

    2018-01-01

    Results on the conversion of stearic acid to olefins over Ni-Ag/γ-Al2O3 catalysts are presented. XANES and EXAFS experiments in situ and DFT calculations were applied to reveal the structure of active sites therein. It is shown that the introduction of Ag to Ni catalysts leads to an increase in the olefin yield. After a reduction in hydrogen (350°C, 3 h) alumina-supported nanoparticles of nickel sulfides and metallic Ag are formed. The role of metal hydrides formed during the reaction is extensively discussed.

  15. Greenhouse gas emissions of drained fen peatlands in Belarus are controlled by water table, land use, and annual weather conditions

    NASA Astrophysics Data System (ADS)

    Burlo, Andrei; Minke, Merten; Chuvashova, Hanna; Augustin, Jürgen; Hoffmann, Mathias; Narkevitch, Ivan

    2014-05-01

    Drainage of peatlands causes strong emission of the greenhouse gases (GHG) CO2 and N2O, sometimes combined with a weak CH4 uptake. In Belarus drained peatlands occupy about 1505000 ha or more than 7.2 % of the country area. Joosten (2009) estimates CO2 emission from degraded peatlands in Belarus as 41.3 Mt yr-1 what equals to 47 % of total anthropogenic greenhouse gases (GHGs) emission of country in 2011. However, it could not be checked if these numbers are correct since there are no GHG measurements on these sites up to now. Therefore we studied the GHG emissions with the closed chamber approach in four peatlands situated in central and southern Belarus over a period from August 2010 to August 2012. The measurements comprised eight site types representing different water level conditions, and ranging from grassland and arable land over abandoned fields and peat cuts to near-natural sedge fens. Fluxes of CH4 and N2O were determined using the close-chamber approach every second week in snow free periods and every fourth week during winter time. The annual emissions were calculated based on linear interpolation. Carbon dioxide exchange was measured with transparent and opaque chambers every 3-4 weeks and the annual net ecosystem exchange (NEE) was modeled according to Drösler (2005). Most of the drained sites were sources of CO2 in both years. NEE increased with lower mean annual water table level. The highest NEE value (1263.5 g CO2-C m-1yr-1) was observed at the driest site of the study; an abandoned fen formerly used for agriculture. In contrast, a former peat extraction site with moist peat and small Pinus sylvestris tress were sinks of CO2 with uptake to 389.6 g CO2-C m-1yr-1. The highest N2O emissions were recorded at a drained agricultural fen with mean annual rates of up to 2347 mg N2O-N m-2 yr-1. Significant fluxes of CH4 (15 g CH4C m-2 h-1) were observed only at the near-natural site in the first year of investigation when precipitation and the mean water

  16. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage.

    PubMed

    Peng, Tangjian; Ma, Liyuan; Feng, Xue; Tao, Jiemeng; Nan, Meihua; Liu, Yuandong; Li, Jiaokun; Shen, Li; Wu, Xueling; Yu, Runlan; Liu, Xueduan; Qiu, Guanzhou; Zeng, Weimin

    2017-01-01

    Acidithiobacillus ferrivorans is an acidophile that often occurs in low temperature acid mine drainage, e.g., that located at high altitude. Being able to inhabit the extreme environment, the bacterium must possess strategies to copy with the survival stress. Nonetheless, information on the strategies is in demand. Here, genomic and transcriptomic assays were performed to illuminate the adaptation mechanisms of an A. ferrivorans strain YL15, to the alpine acid mine drainage environment in Yulong copper mine in southwest China. Genomic analysis revealed that strain has a gene repertoire for metal-resistance, e.g., genes coding for the mer operon and a variety of transporters/efflux proteins, and for low pH adaptation, such as genes for hopanoid-synthesis and the sodium:proton antiporter. Genes for various DNA repair enzymes and synthesis of UV-absorbing mycosporine-like amino acids precursor indicated hypothetical UV radiation-resistance mechanisms in strain YL15. In addition, it has two types of the acquired immune system-type III-B and type I-F CRISPR/Cas modules against invasion of foreign genetic elements. RNA-seq based analysis uncovered that strain YL15 uses a set of mechanisms to adapt to low temperature. Genes involved in protein synthesis, transmembrane transport, energy metabolism and chemotaxis showed increased levels of RNA transcripts. Furthermore, a bacterioferritin Dps gene had higher RNA transcript counts at 6°C, possibly implicated in protecting DNA against oxidative stress at low temperature. The study represents the first to comprehensively unveil the adaptation mechanisms of an acidophilic bacterium to the acid mine drainage in alpine regions.

  17. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage

    PubMed Central

    Ma, Liyuan; Feng, Xue; Tao, Jiemeng; Nan, Meihua; Liu, Yuandong; Li, Jiaokun; Shen, Li; Wu, Xueling; Yu, Runlan; Liu, Xueduan; Qiu, Guanzhou; Zeng, Weimin

    2017-01-01

    Acidithiobacillus ferrivorans is an acidophile that often occurs in low temperature acid mine drainage, e.g., that located at high altitude. Being able to inhabit the extreme environment, the bacterium must possess strategies to copy with the survival stress. Nonetheless, information on the strategies is in demand. Here, genomic and transcriptomic assays were performed to illuminate the adaptation mechanisms of an A. ferrivorans strain YL15, to the alpine acid mine drainage environment in Yulong copper mine in southwest China. Genomic analysis revealed that strain has a gene repertoire for metal-resistance, e.g., genes coding for the mer operon and a variety of transporters/efflux proteins, and for low pH adaptation, such as genes for hopanoid-synthesis and the sodium:proton antiporter. Genes for various DNA repair enzymes and synthesis of UV-absorbing mycosporine-like amino acids precursor indicated hypothetical UV radiation—resistance mechanisms in strain YL15. In addition, it has two types of the acquired immune system–type III-B and type I-F CRISPR/Cas modules against invasion of foreign genetic elements. RNA-seq based analysis uncovered that strain YL15 uses a set of mechanisms to adapt to low temperature. Genes involved in protein synthesis, transmembrane transport, energy metabolism and chemotaxis showed increased levels of RNA transcripts. Furthermore, a bacterioferritin Dps gene had higher RNA transcript counts at 6°C, possibly implicated in protecting DNA against oxidative stress at low temperature. The study represents the first to comprehensively unveil the adaptation mechanisms of an acidophilic bacterium to the acid mine drainage in alpine regions. PMID:28542527

  18. Analysis of Draft Genome Sequence of Pseudomonas sp. QTF5 Reveals Its Benzoic Acid Degradation Ability and Heavy Metal Tolerance

    PubMed Central

    Li, Yang; Ren, Yi

    2017-01-01

    Pseudomonas sp. QTF5 was isolated from the continuous permafrost near the bitumen layers in the Qiangtang basin of Qinghai-Tibetan Plateau in China (5,111 m above sea level). It is psychrotolerant and highly and widely tolerant to heavy metals and has the ability to metabolize benzoic acid and salicylic acid. To gain insight into the genetic basis for its adaptation, we performed whole genome sequencing and analyzed the resistant genes and metabolic pathways. Based on 120 published and annotated genomes representing 31 species in the genus Pseudomonas, in silico genomic DNA-DNA hybridization (<54%) and average nucleotide identity calculation (<94%) revealed that QTF5 is closest to Pseudomonas lini and should be classified into a novel species. This study provides the genetic basis to identify the genes linked to its specific mechanisms for adaptation to extreme environment and application of this microorganism in environmental conservation. PMID:29270429

  19. Membrane Disordering by Eicosapentaenoic Acid in B Lymphomas Is Reduced by Elongation to Docosapentaenoic Acid as Revealed with Solid-State Nuclear Magnetic Resonance Spectroscopy of Model Membranes.

    PubMed

    Harris, Mitchell; Kinnun, Jacob J; Kosaraju, Rasagna; Leng, Xiaoling; Wassall, Stephen R; Shaikh, Saame Raza

    2016-07-01

    Plasma membrane organization is a mechanistic target of n-3 (ω-3) polyunsaturated fatty acids. Previous studies show that eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) differentially disrupt plasma membrane molecular order to enhance the frequency and function of B lymphocytes. However, it is not known whether EPA and DHA affect the plasma membrane organization of B lymphomas differently to influence their function. We tested whether EPA and DHA had different effects on membrane order in B lymphomas and liposomes and studied their effects on B-lymphoma growth. B lymphomas were treated with 25 μmol EPA, DHA, or serum albumin control/L for 24 h. Membrane order was measured with fluorescence polarization, and cellular fatty acids (FAs) were analyzed with GC. Growth was quantified with a viability assay. (2)H nuclear magnetic resonance (NMR) studies were conducted on deuterated phospholipid bilayers. Treating Raji, Ramos, and RPMI lymphomas for 24 h with 25 μmol EPA or DHA/L lowered plasma membrane order by 10-40% relative to the control. There were no differences between EPA and DHA on membrane order for the 3 cell lines. FA analyses revealed complex changes in response to EPA or DHA treatment and a large fraction of EPA was converted to docosapentaenoic acid (DPA; 22:5n-3). NMR studies, which were used to understand why EPA and DHA had similiar membrane effects, showed that phospholipids containing DPA, similar to DHA, were more ordered than those containing EPA. Finally, treating B lymphomas with 25 μmol EPA or DHA/L did not increase the frequency of B lymphomas compared with controls. The results establish that 25 μmol EPA and DHA/L equally disrupt membrane order and do not promote B lymphoma growth. The data open a new area of investigation, which is how EPA's conversion to DPA substantially moderates its influence on membrane properties. © 2016 American Society for Nutrition.

  20. Metabolomics Reveals that Dietary Ferulic Acid and Quercetin Modulate Metabolic Homeostasis in Rats.

    PubMed

    Zhang, Limin; Dong, Manyuan; Guangyong Xu; Yuan Tian; Tang, Huiru; Wang, Yulan

    2018-02-21

    Phenolic compounds ingestion has been shown to have potential preventive and therapeutic effects against various metabolic diseases such as obesity and cancer. To provide a better understanding of these potential benefit effects, we investigated the metabolic alterations in urine and feces of rat ingested ferulic acid (FA) and quercetin (Qu) using NMR-based metabolomics approach. Our results suggested that dietary FA and/or Qu significantly decreased short chain fatty acids and elevated oligosaccharides in the feces, implying that dietary FA and Qu may modulate gut microbial community with inhibition of bacterial fermentation of dietary fibers. We also found that dietary FA and/or Qu regulated several host metabolic pathways including TCA cycle and energy metabolism, bile acid, amino acid, and nucleic acid metabolism. These biological effects suggest that FA and Qu display outstanding bioavailability and bioactivity and could be used for treatment of some metabolic syndromes, such as inflammatory bowel diseases and obesity.

  1. Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Shixin; Yang, Baolin; Zhou, Yi; Wang, Futao; Zhang, Rui; Zhao, Qing

    2018-05-01

    To more efficiently use GaoFen-1 (GF-1) satellite images for landslide emergency monitoring, a Digital Surface Model (DSM) can be generated from GF-1 across-track stereo image pairs to build a terrain dataset. This study proposes a landslide 3D information extraction method based on the terrain changes of slope objects. The slope objects are mergences of segmented image objects which have similar aspects; and the terrain changes are calculated from the post-disaster Digital Elevation Model (DEM) from GF-1 and the pre-disaster DEM from GDEM V2. A high mountain landslide that occurred in Wenchuan County, Sichuan Province is used to conduct a 3D information extraction test. The extracted total area of the landslide is 22.58 ha; the displaced earth volume is 652,100 m3; and the average sliding direction is 263.83°. The accuracies of them are 0.89, 0.87 and 0.95, respectively. Thus, the proposed method expands the application of GF-1 satellite images to the field of landslide emergency monitoring.

  2. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis

    PubMed Central

    Eijkelkamp, Bart A.; Begg, Stephanie L.; Pederick, Victoria G.; Trapetti, Claudia; Gregory, Melissa K.; Whittall, Jonathan J.; Paton, James C.; McDevitt, Christopher A.

    2018-01-01

    Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections. PMID:29867785

  3. U.S.-based recruitment of foreign-educated nurses: implications of an emerging industry.

    PubMed

    Pittman, Patricia M; Folsom, Amanda J; Bass, Emily

    2010-06-01

    Despite an increase in the number of foreign-educated nurses (FENs) working in U.S. hospitals and nursing homes, very little is known about the industry that brought them here. Our objectives were to learn more about the size and scope of the international nurse recruitment industry, its business models, and the range of countries where companies actively recruit. Based on reports from focus groups of FENs in New York City, we also sought to identify some of the problems that have occurred in the areas of contracting and clinical orientation. We used a combination of qualitative methods and secondary data sources, which included U.S.-based international nurse recruitment company Web sites, interviews with 20 executives from international nurse recruitment companies, two focus groups with FENs in New York City, and letters sent to the Philippine Nurses Association of America by FENs seeking legal advice. Through a July 2007 Internet search, we found that at least 273 U.S. companies were actively recruiting FENs. While most such companies focused on the Philippines and India, about 20 companies were active in Africa. (A second search revealed that, as of January, at least 211 U.S. companies were actively recruiting FENs abroad.) Within the industry there is growing use of the staffing-agency model, which typically requires nurses to sign 18-to-36-month contracts and imposes high breach-of-contract fees. The focus group discussions with FENs in New York City revealed inadequate orientation programs and several types of labor abuses. Concerns about recruitment practices, which were expressed by many industry executives and FENs, reveal the need for accountability within the industry.

  4. Impacts of road construction and removal on the hydrologic and geochemical function of a fen peatland

    NASA Astrophysics Data System (ADS)

    Wells, C. M.; Petrone, R. M.; Sutherland, G.; Price, J. S.

    2015-12-01

    Linear disturbances such as roads cover vast swaths of northeastern Alberta, the majority of which are wetlands with shallow and local hydrologic connections. Thus, the effects of road construction on wetland hydrological pathways can have significant implications on water movement within the region, and by extension the productivity of vegetation communities and carbon sequestration. However, little is known about the effect that roads have on wetland hydrology. In 2013, a gravel road built within a fen peatland was reclaimed to evaluate hydrologic impacts post removal. Prior to removal, ground and surface water flow was obstructed leading to surface ponding, and vegetation mortality was observed on the up-gradient (wet) side of the road. Rebounding of the peat column was observed throughout the fen immediately following road removal in 2013 (maximum of 12 cm, mean of 2 cm), with modest but slightly smaller expansion in 2014. For both years, peat rebound was greatest in areas where the road was removed. Peat physical properties contrasted sharply between the reclaimed road (RR) peat and the adjacent, unimpacted peatland (UP). Surface bulk densities (pb, 0-10 cm) ranged from 0.1-0.25 g cm-3 along the RR compared to 0.02-0.07 g cm-3 for the UP and on average, pb for all depths were lower at the RR compared to the UP. Similar spatial patterns were observed for peat porosity. Correspondingly low horizontal saturated hydraulic conductivities (Kh) were observed along the RR compared to the UP, averaging 5.7x10-4 m s-1 and 1.7x10-3 m s-1, respectively. The local flow system across the RR and thus subsurface flow was impeded by almost half (0.4 m d-1) compared to flow observed within the UP (0.8 m d-1), leading to ponding on the upgradient side. A marked change in hydrophysical properties and ground and surface water flow patterns post road removal has implications for plant reestablishment and restoration and will form the basis of further study.

  5. Metabolic Patterns in Spirodela polyrhiza Revealed by 15N Stable Isotope Labeling of Amino Acids in Photoautotrophic, Heterotrophic, and Mixotrophic Growth Conditions

    PubMed Central

    Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.

    2018-01-01

    In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies. PMID:29904627

  6. Metabolic Patterns in Spirodela polyrhiza Revealed by 15N Stable Isotope Labeling of Amino Acids in Photoautotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    PubMed

    Evans, Erin M; Freund, Dana M; Sondervan, Veronica M; Cohen, Jerry D; Hegeman, Adrian D

    2018-01-01

    In this study we describe a [ 15 N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [ 15 N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.

  7. Metabolic patterns in Spirodela polyrhiza revealed by 15N stable isotope labeling of amino acids in photoautotrophic, heterotrophic, and mixotrophic growth conditions

    NASA Astrophysics Data System (ADS)

    Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.

    2018-05-01

    In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for fifteen of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of less than 100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.

  8. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity.

    PubMed

    Wang, Qiao; Du, Xiuxiu; Ma, Ke; Shi, Ping; Liu, Wenbin; Sun, Jing; Peng, Min; Huang, Zhiwei

    2018-03-01

    Elongases FEN1/ELO2 and SUR4/ELO3 are important enzymes involved in the elongation of long-chain fatty acids (LCFAs) to very long-chain fatty acids (VLCFAs) in Saccharomyces cerevisiae. The molecular mechanism of the involvement of these elongases in lipotoxicity is unclear. In the present study, we investigated the role of VLCFA elongases in oleic acid-mediated yeast cytotoxicity. The spot test showed that yeast strains with the deletion of ELO2 or ELO3 were strikingly sensitive to oleic acid, while there was no change on the growth of strain with deleted ELO1 which was involved in the elongation of C 14 fatty acid (FA) to C 16 FA. By using GC-MS, the unsaturation index was increased in elo2△ and elo3△ mutants after treatment with oleic acid (OLA). However, the proportion of VLCFAs was increased in response to OLA in the wild-type strain. The growth inhibition of elo2△ and elo3△ could be partially rescued by two commonly used antioxidant agents N-acetyl cysteine (NAC) and Ascorbic acid (VC). The further study showed that exposure to excess OLA led to an increase in the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), and a decline in the quantity of reduced glutathione (GSH) in both the wild type and mutant strains. However, the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) were increased in the wild type and elo1△ strains, while they were significantly decreased in the mutants of elo2△ and elo3△ after treated with excess OLA. Thus, oxidative damage mainly contributed to the cell death induced by OLA in ole2△ and ole3△. Taken together, although disruption of ELO2 or ELO3 did not affect the cellular lipid unsaturation, they altered the distribution and propotion of cellular VLCFAs, leading to the cell membrane impairment, which augmented the ability of OLA to permeabilize the plasma membrane. The data suggest that the very long-chain fatty acids elongases ELO2 and ELO3

  9. Spatial hydrological flow processes, water quality, sediment and vegetation community distributions in a natural floodplain fen - implication for the Flood Pulse Concept

    NASA Astrophysics Data System (ADS)

    Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz

    2017-04-01

    We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river

  10. 1H NMR-based metabolic profiling reveals the effects of fluoxetine on lipid and amino acid metabolism in astrocytes.

    PubMed

    Bai, Shunjie; Zhou, Chanjuan; Cheng, Pengfei; Fu, Yuying; Fang, Liang; Huang, Wen; Yu, Jia; Shao, Weihua; Wang, Xinfa; Liu, Meiling; Zhou, Jingjing; Xie, Peng

    2015-04-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), is a prescribed and effective antidepressant and generally used for the treatment of depression. Previous studies have revealed that the antidepressant mechanism of fluoxetine was related to astrocytes. However, the therapeutic mechanism underlying its mode of action in astrocytes remains largely unclear. In this study, primary astrocytes were exposed to 10 µM fluoxetine; 24 h post-treatment, a high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic approach coupled with multivariate statistical analysis was used to characterize the metabolic variations of intracellular metabolites. The orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots of the spectra demonstrated that the fluoxetine-treated astrocytes were significantly distinguished from the untreated controls. In total, 17 differential metabolites were identified to discriminate the two groups. These key metabolites were mainly involved in lipids, lipid metabolism-related molecules and amino acids. This is the first study to indicate that fluoxetine may exert antidepressant action by regulating the astrocyte's lipid and amino acid metabolism. These findings should aid our understanding of the biological mechanisms underlying fluoxetine therapy.

  11. Lipid Profiling of the Arabidopsis Hypersensitive Response Reveals Specific Lipid Peroxidation and Fragmentation Processes: Biogenesis of Pimelic and Azelaic Acid1[C][W

    PubMed Central

    Zoeller, Maria; Stingl, Nadja; Krischke, Markus; Fekete, Agnes; Waller, Frank; Berger, Susanne; Mueller, Martin J.

    2012-01-01

    Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radical-catalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radical-catalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids. PMID:22822212

  12. Turn on, fade out - methane exchange in a coastal fen over a period of six years after rewetting

    NASA Astrophysics Data System (ADS)

    Jurasinski, Gerald; Glatzel, Stephan; Hahn, Juliane; Koch, Stefan; Koch, Marian; Koebsch, Franziska

    2016-04-01

    The rewetting of drained peatlands is widely regarded as an adequate measure for the mitigation of greenhouse gas emissions. Therefore, especially in NE Germany, many peatlands are being rewetted. Our knowledge about greenhouse gas exchange associated with rewetting is mainly based on short-term experiments or space-for-time substitutions. These approaches do not consider the transient character of ecosystem acclimatization to flooding by rewetting. Moreover data in this regard on coastal peatland ecosystems are sparse. Here, we present 7 years of data on CH4-exchange in a coastal fen after rewetting by flooding. On the site „Rodewiese", which is located within the NSG "Hütelmoor und Heiligensee" in the Northeast of Rostock, NE Germany, we have established a long term research observatory addressing atmospheric C-exchange. The site is part of the TERENO network. Since summer 2009 we determine CH4 fluxes with closed chambers distributed widely across the study site and CO2-exchange with eddy covariance as well as ancillary data on vegetation, hydrology, and biogeochemistry. This talk addresses the CH4-exchange over time whereas CO2-exchange data are presented by Koebsch et al. in the same session. Rewetting turned the site from a summer dry fen with mean annual water levels of around -0.08m into a shallow lake with water levels up to 0.60m. In the first year after flooding, we observed a substantial die-back of vegetation, especially in stands of Carex acutiformis. Flooding increased methane release rates to extremely high levels of up to 4.3 t ha-1 a-1 for sedge stands and 2.7 t ha-1 a-1 on average, which amounts to 75.6 t ha-1 a-1 in CO2-equivalents. Thereafter, the averaged annual CH4 emissions decreased asymptotically and where at an average of 0.5 t ha-1 a-1 (14 t ha-1 a-1 in CO2-equivalents) in 2015. Factoring in the NEE of the growing season (from Eddy measurements) suggests that the system may be slightly above neutral with respect to the greenhouse

  13. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    PubMed

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  14. New developments in super-resolution for GaoFen-4

    NASA Astrophysics Data System (ADS)

    Li, Feng; Fu, Jie; Xin, Lei; Liu, Yuhong; Liu, Zhijia

    2017-10-01

    In this paper, the application of super resolution (SR, restoring a high spatial resolution image from a series of low resolution images of the same scene) techniques to GaoFen(GF)-4, which is the most advanced geostationaryorbit earth observing satellite in China, remote sensing images is investigated and tested. SR has been a hot research area for decades, but one of the barriers of applying SR in remote sensing community is the time slot between those low resolution (LR) images acquisition. In general, the longer the time slot, the less reliable the reconstruction. GF-4 has the unique advantage of capturing a sequence of LR of the same region in minutes, i.e. working as a staring camera from the point view of SR. This is the first experiment of applying super resolution to a sequence of low resolution images captured by GF-4 within a short time period. In this paper, we use Maximum a Posteriori (MAP) to solve the ill-conditioned problem of SR. Both the wavelet transform and the curvelet transform are used to setup a sparse prior for remote sensing images. By combining several images of both the BeiJing and DunHuang regions captured by GF-4 our method can improve spatial resolution both visually and numerically. Experimental tests show that lots of detail cannot be observed in the captured LR images, but can be seen in the super resolved high resolution (HR) images. To help the evaluation, Google Earth image can also be referenced. Moreover, our experimental tests also show that the higher the temporal resolution, the better the HR images can be resolved. The study illustrates that the application for SR to geostationary-orbit based earth observation data is very feasible and worthwhile, and it holds the potential application for all other geostationary-orbit based earth observing systems.

  15. A Comparative Proteomic Analysis of the Simple Amino Acid Repeat Distributions in Plasmodia Reveals Lineage Specific Amino Acid Selection

    PubMed Central

    Dalby, Andrew R.

    2009-01-01

    Background Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species. Results The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A–T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure. Conclusions The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A–T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism. PMID:19597555

  16. A More Comprehensive Community of Ammonia-Oxidizing Archaea (AOA) Revealed by Genomic DNA and RNA Analyses of amoA Gene in Subtropical Acidic Forest Soils.

    PubMed

    Wu, Ruo-Nan; Meng, Han; Wang, Yong-Feng; Lan, Wensheng; Gu, Ji-Dong

    2017-11-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are the main nitrifiers which are well studied in natural environments, and AOA frequently outnumber AOB by orders especially in acidic conditions, making AOA the most promising ammonia oxidizers. The phylogeny of AOA revealed in related studies, however, often varied and hardly reach a consensus on functional phylotypes. The objective of this study was to compare ammonia-oxidizing communities by amoA gene and transcript based on both genomic DNA and RNA in extremely acidic forest soils (pH <4.5). Our results support the numerical and functional dominance of AOA over AOB in acidic soils as bacterial amoA gene and transcript were both under detection limits and archaeal amoA, in contrast, were abundant and responded to the fluctuations of environmental factors. Organic matter from tree residues was proposed as the main source of microbial available nitrogen, and the potential co-precipitation of dissolved organic matter (DOM) with soluble Al 3+ species in acidic soil matrix may further restrict the amount of nitrogen sources required by AOB besides NH 3 /NH 4 + equilibrium. Although AOA were better adapted to oligotrophic environments, they were susceptible to the toxicity of exchangeable Al 3+ . Phylotypes affiliated to Nitrososphaera, Nitrososphaera sister group, and Nitrosotalea were detected by amoA gene and transcript. Nitrosotalea devantaerra and Nitrososphaera sister group were the major AOA. Compared to the genomic DNA data, higher relative abundances of Nitrososphaera and Nitrososphaera sister group were recognized in amoA transcript inferred AOA communities, where Nitrosotalea relative abundance was found lower, implying the functional activities of Nitrososphaera sister group and Nitrososphaera were easily underestimated and Nitrosotalea did not attribute proportionally to nitrification in extremely acidic soils. Further comparison of the different AOA community compositions and relative abundance of each

  17. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis.

    PubMed

    Zhang, Lin; Xiao, Jianfeng; Xu, Jianrong; Fu, Tianran; Cao, Zhiwei; Zhu, Liang; Chen, Hong-Zhuan; Shen, Xu; Jiang, Hualiang; Zhang, Liang

    2016-12-01

    Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP 3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.

  19. Temporal variation of ecosystem scale methane emission from a boreal fen in relation to common model drivers

    NASA Astrophysics Data System (ADS)

    Rinne, J.; Tuittila, E. S.; Peltola, O.; Li, X.; Raivonen, M.; Alekseychik, P.; Haapanala, S.; Pihlatie, M.; Aurela, M.; Mammarella, I.; Vesala, T.

    2017-12-01

    Models for calculating methane emission from wetland ecosystems typically relate the methane emission to carbon dioxide assimilation. Other parameters that control emission in these models are e.g. peat temperature and water table position. Many of these relations are derived from spatial variation between chamber measurements by space-for-time approach. Continuous longer term ecosystem scale methane emission measurements by eddy covariance method provide us independent data to assess the validity of the relations derived by space-for-time approach.We have analyzed eleven-year methane flux data-set, measured at a boreal fen, together with data on environmental parameters and carbon dioxide exchange to assess the relations to typical model drivers. The data was obtained by the eddy covariance method at Siikaneva mire complex, Southern Finland, during 2005-2015. The methane flux showed seasonal cycles in methane emission, with strongest correlation with peat temperature at 35 cm depth. The temperature relation was exponential throughout the whole peat temperature range of 0-16°C. The methane emission normalized to remove temperature dependence showed a non-monotonous relation on water table and positive correlation with gross primary production (GPP). However, inclusion of these as explaining variables improved algorithm-measurement correlation only slightly, with r2=0.74 for exponential temperature dependent algorithm, r2=0.76 for temperature - water table algorithm, and r2=0.79 for temperature - GPP algorithm. The methane emission lagged behind net ecosystem exchange (NEE) and GPP by two to three weeks. Annual methane emission ranged from 8.3 to 14 gC m-2, and was 20 % of NEE and 2.8 % of GPP. The inter-annual variation of methane emission was of similar magnitude as that of GPP and ecosystem respiration (Reco), but much smaller than that of NEE. The interannual variability of June-September average methane emission correlated significantly with that of GPP

  20. Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols.

    PubMed

    Morreel, Kris; Ralph, John; Lu, Fachuang; Goeminne, Geert; Busson, Roger; Herdewijn, Piet; Goeman, Jan L; Van der Eycken, Johan; Boerjan, Wout; Messens, Eric

    2004-12-01

    Caffeic acid O-methyltransferase (COMT) catalyzes preferentially the methylation of 5-hydroxyconiferaldehyde to sinapaldehyde in monolignol biosynthesis. Here, we have compared HPLC profiles of the methanol-soluble phenolics fraction of xylem tissue from COMT-deficient and control poplars (Populus spp.), using statistical analysis of the peak heights. COMT down-regulation results in significant concentration differences for 25 of the 91 analyzed peaks. Eight peaks were exclusively detected in COMT-deficient poplar, of which four could be purified for further identification using mass spectrometry/mass spectrometry, nuclear magnetic resonance, and spiking of synthesized reference compounds. These new compounds were derived from 5-hydroxyconiferyl alcohol or 5-hydroxyconiferaldehyde and were characterized by benzodioxane moieties, a structural type that is also increased in the lignins of COMT-deficient plants. One of these four benzodioxanes amounted to the most abundant oligolignol in the HPLC profile. Furthermore, all of the differentially accumulating oligolignols involving sinapyl units were either reduced in abundance or undetectable. The concentration levels of all identified oligolignols were in agreement with the relative supply of monolignols and with their chemical coupling propensities, which supports the random coupling hypothesis. Chiral HPLC analysis of the most abundant benzodioxane dimer revealed the presence of both enantiomers in equal amounts, indicating that they were formed by radical coupling reactions under simple chemical control rather than guided by dirigent proteins.

  1. 1H NMR-Based Metabolic Profiling Reveals the Effects of Fluoxetine on Lipid and Amino Acid Metabolism in Astrocytes

    PubMed Central

    Bai, Shunjie; Zhou, Chanjuan; Cheng, Pengfei; Fu, Yuying; Fang, Liang; Huang, Wen; Yu, Jia; Shao, Weihua; Wang, Xinfa; Liu, Meiling; Zhou, Jingjing; Xie, Peng

    2015-01-01

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), is a prescribed and effective antidepressant and generally used for the treatment of depression. Previous studies have revealed that the antidepressant mechanism of fluoxetine was related to astrocytes. However, the therapeutic mechanism underlying its mode of action in astrocytes remains largely unclear. In this study, primary astrocytes were exposed to 10 µM fluoxetine; 24 h post-treatment, a high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic approach coupled with multivariate statistical analysis was used to characterize the metabolic variations of intracellular metabolites. The orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots of the spectra demonstrated that the fluoxetine-treated astrocytes were significantly distinguished from the untreated controls. In total, 17 differential metabolites were identified to discriminate the two groups. These key metabolites were mainly involved in lipids, lipid metabolism-related molecules and amino acids. This is the first study to indicate that fluoxetine may exert antidepressant action by regulating the astrocyte’s lipid and amino acid metabolism. These findings should aid our understanding of the biological mechanisms underlying fluoxetine therapy. PMID:25884334

  2. On the acid-base properties of humic acid in soil.

    PubMed

    Cooke, James D; Hamilton-Taylor, John; Tipping, Edward

    2007-01-15

    Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.

  3. Amino Acids from a Comet

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  4. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments.

    PubMed

    Sharp, Christine E; Smirnova, Angela V; Graham, Jaime M; Stott, Matthew B; Khadka, Roshan; Moore, Tim R; Grasby, Stephen E; Strack, Maria; Dunfield, Peter F

    2014-06-01

    Recently, methanotrophic members of the phylum Verrucomicrobia have been described, but little is known about their distribution in nature. We surveyed methanotrophic bacteria in geothermal springs and acidic wetlands via pyrosequencing of 16S rRNA gene amplicons. Putative methanotrophic Verrucomicrobia were found in samples covering a broad temperature range (22.5-81.6°C), but only in acidic conditions (pH 1.8-5.0) and only in geothermal environments, not in acidic bogs or fens. Phylogenetically, three 16S rRNA gene sequence clusters of putative methanotrophic Verrucomicrobia were observed. Those detected in high-temperature geothermal samples (44.1-81.6°C) grouped with known thermoacidiphilic 'Methylacidiphilum' isolates. A second group dominated in moderate-temperature geothermal samples (22.5-40.1°C) and a representative mesophilic methanotroph from this group was isolated (strain LP2A). Genome sequencing verified that strain LP2A possessed particulate methane monooxygenase, but its 16S rRNA gene sequence identity to 'Methylacidiphilum infernorum' strain V4 was only 90.6%. A third group clustered distantly with known methanotrophic Verrucomicrobia. Using pmoA-gene targeted quantitative polymerase chain reaction, two geothermal soil profiles showed a dominance of LP2A-like pmoA sequences in the cooler surface layers and 'Methylacidiphilum'-like pmoA sequences in deeper, hotter layers. Based on these results, there appears to be a thermophilic group and a mesophilic group of methanotrophic Verrucomicrobia. However, both were detected only in acidic geothermal environments. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Exogenous Indole Regulates Lipopeptide Biosynthesis in Antarctic Bacillus amyloliquefaciens Pc3.

    PubMed

    Ding, Lianshuai; Zhang, Song; Guo, Wenbin; Chen, Xinhua

    2018-05-28

    Bacillus amyloliquefaciens Pc3 was isolated from Antarctic seawater with antifungal activity. In order to investigate the metabolic regulation mechanism in the biosynthesis of lipopeptides in B. amyloliquefaciens Pc3, GC/MS-based metabolomics was used when exogenous indole was added. The intracellular metabolite profiles showed decreased asparagine, aspartic acid, glutamine, glutamic acid, threonine, valine, isoleucine, hexadecanoic acid, and octadecanoic acid in the indole-treated groups, which were involved in the biosynthesis of lipopeptides. B. amyloliquefaciens Pc3 exhibited a growth promotion, bacterial total protein increase, and lipopeptide biosynthesis inhibition upon the addition of indole. Besides this, real-time PCR analysis further revealed that the transcription of lipopeptide biosynthesis genes ituD, fenA , and srfA-A were downregulated by indole with 22.4-, 21.98-, and 26.0-fold, respectively. It therefore was speculated that as the metabolic flux of most of the amino acids and fatty acids were transferred to the synthesis of proteins and biomass, lipopeptide biosynthesis was weakened owing to the lack of precursor amino acids and fatty acids.

  7. Visualisation of insect tracheal systems by lactic acid immersion.

    PubMed

    Ruan, Y; Li, Y; Zhang, M; Chen, X; Liu, Z; Wang, S; Jiang, S

    2018-05-15

    The endeavours to reveal the tracheal system of insects and some arachnids has a long history. The traditional way to observe a tracheal system in an insect body is by utilising the glycerin immersion method. In this study, we developed the lactic acid immersion method, which reveals a more complete tracheal system. By mounting various types of live specimens or body parts directly into lactic acid, multiple intact and complex tracheal systems were clearly visualised. The lactic acid immersion contributed to revealing tracheal systems by penetrating body tissue while reserving enough time for observation before the penetration of the tracheae. Preliminary comparisons were conducted between lactic acid and other mediae, including glycerin. It turned out that lactic acid immersion provides better details and more distinct structures. In our test, the optimal time for observing the tracheal system was 10-25 min after the organism was immersed in lactic acid. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  8. Investigating on the fermentation behavior of six lactic acid bacteria strains in barley malt wort reveals limitation in key amino acids and buffer capacity.

    PubMed

    Nsogning, Sorelle Dongmo; Fischer, Susann; Becker, Thomas

    2018-08-01

    Understanding lactic acid bacteria (LAB) fermentation behavior in malt wort is a milestone towards flavor improvement of lactic acid fermented malt beverages. Therefore, this study aims to outline deficiencies that may exist in malt wort fermentation. First, based on six LAB strains, cell viability and vitality were evaluated. Second, sugars, organic acids, amino acids, pH value and buffering capacity (BC) were monitored. Finally, the implication of key amino acids, fructose and wort BC on LAB growth was determined. Short growth phase coupled with prompt cell death and a decrease in metabolic activity was observed. Low wort BC caused rapid pH drop with lactic acid accumulation, which conversely increased the BC leading to less pH change at late-stage fermentation. Lactic acid content (≤3.9 g/L) was higher than the reported inhibitory concentration (1.8 g/L). Furthermore, sugars were still available but fructose and key amino acids lysine, arginine and glutamic acid were considerably exhausted (≤98%). Wort supplementations improved cell growth and viability leading to conclude that key amino acid depletion coupled with low BC limits LAB growth in malt wort. Then, a further increase in organic acid reduces LAB viability. This knowledge opens doors for LAB fermentation process optimization in malt wort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Conditional knock-out of lipoic acid protein ligase 1 reveals redundancy pathway for lipoic acid metabolism in Plasmodium berghei malaria parasite.

    PubMed

    Wang, Min; Wang, Qiong; Gao, Xiang; Su, Zhong

    2017-06-27

    Lipoic acid is a cofactor for α-keto acid dehydrogenase system that is involved in the central energy metabolism. In the apicomplexan parasite, Plasmodium, lipoic acid protein ligase 1 (LplA1) and LplA2 catalyse the ligation of acquired lipoic acid to the dehydrogenase complexes in the mitochondrion. The enzymes LipB and LipA mediate lipoic acid synthesis and ligation to the enzymes in the apicoplast. These enzymes in the lipoic acid metabolism machinery have been shown to play important roles in the biology of Plasmodium parasites, but the relationship between the enzymes is not fully elucidated. We used an anhydrotetracycline (ATc)-inducible transcription system to generate transgenic P. berghei parasites in which the lplA1 gene was conditionally knocked out (LplA1-cKO). Phenotypic changes and the lplA1 and lplA2 gene expression profiles of cloned LplA1-cKO parasites were analysed. LplA1-cKO parasites showed severely impaired growth in vivo in the first 8 days of infection, and retarded blood-stage development in vitro, in the absence of ATc. However, these parasites resumed viability in the late stage of infection and mounted high levels of parasitemia leading to the death of the hosts. Although lplA1 mRNA expression was regulated tightly by ATc during the whole course of infection, lplA2 mRNA expression was significantly increased in the late stage of infection only in the LplA1-cKO parasites that were not exposed to ATc. The lplA2 gene can be activated as an alternative pathway to compensate for the loss of LplA1 activity and to maintain lipoic acid metabolism.

  10. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats.

    PubMed

    Abdel-Moneim, Adel; Yousef, Ahmed I; Abd El-Twab, Sanaa M; Abdel Reheim, Eman S; Ashour, Mohamed B

    2017-08-01

    The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.

  11. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis

    NASA Astrophysics Data System (ADS)

    Niu, Yanli; Huang, Xiaoqin; Hu, Weihua

    2016-11-01

    Oxygen reduction reaction (ORR) electrocatalysts with high activity, low cost and good durability are crucial to promote the large-scale practical application of fuel cells. Particularly, iron carbide (Fe3C) supported on nitrogen-doped carbon has recently demonstrated compelling promise for ORR electrocatalysis. In this paper, we report the facile synthesis of mesoporous Fe/N-doped graphene with encapsulated Fe3C nanoparticles (Fe3C@Fe/N-graphene) and its superior ORR catalytic activity. This hybrid material was synthesized by the spontaneous oxidative polymerization of dopamine on graphene oxide (GO) sheets in the presence of iron ion, followed by thermal annealing in Argon (Ar) atmosphere. As-prepared material shows high ORR catalytic activity with overwhelming four-electron reduction pathway, long-term durability and high methanol tolerance in alkaline media. This work reports a facile method to synthesize promising ORR electrocatalysis with multiple components and hierarchical architecture, and may offer valuable insight into the underlying mechanism of Fe3C-boosted ORR activity of Fe/N doped carbon.

  12. Molecular dynamic simulations reveal the structural determinants of fatty acid binding to oxy-myoglobin

    USDA-ARS?s Scientific Manuscript database

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolite...

  13. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA.

    PubMed

    Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng

    2017-08-01

    Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.

  14. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    PubMed

    Wei, Yongyue; Wang, Zhaoxi; Chang, Chiung-yu; Fan, Tianteng; Su, Li; Chen, Feng; Christiani, David C

    2013-01-01

    Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5) exposure (p<0.05). The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI) = -0.013(-0.022 ≈ -0.004); p = 0.005], docosapentaenoic acid n3 [β(95% CI) = -0.010(-0.018 ≈ -0.002); p = 0.017], and docosapentaenoic acid n6 [β(95% CI) = -0.007(-0.013 ≈ -0.001); p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009). The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  15. Sulfur and carbon isotope biogeochemistry of a rewetted brackish fen

    NASA Astrophysics Data System (ADS)

    Koebsch, Franziska; Gehre, Matthias; Winkel, Matthias; Koehler, Stefan; Koch, Marian; Jurasinski, Gerald; Spitzy, Alejandro; Liebner, Susanne; Sachs, Torsten; Schmiedinger, Iris; Kretzschmann, Lisett; Saborowski, Anke; Böttcher, Michael E.

    2015-04-01

    Coastal wetlands are at the interface between terrestrial freshwater and marine and exhibit very specific biogeochemical conditions. Intermittent sea water intrusion affects metabolic pathways, i. e. anaerobic carbon metabolism is progressively dominated by sulfate reduction with lower contribution of methanogenesis whilst methane production is increasingly shifted from acetoclastic to hydrogenotrophic. Due to expanding anthropogenic impact a large proportion of coastal ecosystems is degraded with severe implications for the biogeochemical processes. We use concentration patterns and stable isotope signatures of water, sulfate, dissolved carbonate, and methane (δ2H, δ13C, δ18O, δ34S) to investigate the S and C metabolic cycle in a rewetted fen close to the southern Baltic Sea border. Such studies are crucial to better predict dynamic ecosystem feedback to global change like organic matter (OM) decomposition or greenhouse gas emissions. Yet, little is known about the metabolic pathways in such environments. The study site is part of the TERENO Observatory "Northeastern German Lowlands' and measurements of methane emissions have run since 2009. High methane fluxes up to 800 mg m-2 hr-1 indicate that methanogenesis is the dominant C metabolism pathway despite of high sulfate concentrations (up to 37 mM). The presented data are part of a comprehensive biogeochemical investigation that we conducted in autumn 2014 and that comprises 4 pore water profiles and sediment samples within a transect of 300-1500 m distance to the Baltic Sea. Depth of organic layers ranged from 25 to 140 cm with high OM contents (up to 90 dwt.%). Sulfate/chloride ratios in the pore waters were lower than in the Baltic Sea for most sites and sediment depths indicated a substantial net sulfate loss. Sulfide concentrations were negligible at the top and increased parallel to the sulfate concentrations with depth to values of up to 0.3 mM. One pore water profiles situated 1150 m from the Baltic

  16. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo.

    PubMed

    Tu, Hongbin; Wang, Yu; Li, Hongyan; Brinster, Lauren R; Levine, Mark

    2017-09-01

    Despite its transport by glucose transporters (GLUTs) in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA) has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo -/- ) unable to synthesize ascorbate (vitamin C) were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC) ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo. Published by Elsevier B.V.

  17. Novel pathway of 3-hydroxyanthranilic acid formation in limazepine biosynthesis reveals evolutionary relation between phenazines and pyrrolobenzodiazepines.

    PubMed

    Pavlikova, Magdalena; Kamenik, Zdenek; Janata, Jiri; Kadlcik, Stanislav; Kuzma, Marek; Najmanova, Lucie

    2018-05-17

    Natural pyrrolobenzodiazepines (PBDs) form a large and structurally diverse group of antitumour microbial metabolites produced through complex pathways, which are encoded within biosynthetic gene clusters. We sequenced the gene cluster of limazepines and proposed their biosynthetic pathway based on comparison with five available gene clusters for the biosynthesis of other PBDs. Furthermore, we tested two recombinant proteins from limazepine biosynthesis, Lim5 and Lim6, with the expected substrates in vitro. The reactions monitored by LC-MS revealed that limazepine biosynthesis involves a new way of 3-hydroxyanthranilic acid formation, which we refer to as the chorismate/DHHA pathway and which represents an alternative to the kynurenine pathway employed for the formation of the same precursor in the biosynthesis of other PBDs. The chorismate/DHHA pathway is presumably also involved in the biosynthesis of PBD tilivalline, several natural products unrelated to PBDs, and its part is shared also with phenazine biosynthesis. The similarities between limazepine and phenazine biosynthesis indicate tight evolutionary links between these groups of compounds.

  18. Metabolic Analysis Reveals Altered Long-Chain Fatty Acid Metabolism in the Host by Huanglongbing Disease.

    PubMed

    Suh, Joon Hyuk; Niu, Yue S; Wang, Zhibin; Gmitter, Frederick G; Wang, Yu

    2018-02-07

    Candidatus Liberibacter asiaticus (CLas) is the presumed causal agent of Huanglongbing, one of the most destructive diseases in citrus. However, the lipid metabolism component of host response to this pathogen has not been investigated well. Here, metabolic profiling of a variety of long-chain fatty acids and their oxidation products was first performed to elucidate altered host metabolic responses of disease. Fatty acid signals were found to decrease obviously in response to disease regardless of cultivar. Several lipid oxidation products strongly correlated with those fatty acids were also consistently reduced in the diseased group. Using a series of statistical methods and metabolic pathway mapping, we found significant markers contributing to the pathological symptoms and identified their internal relationships and metabolic network. Our findings suggest that the infection of CLas may cause the altered metabolism of long-chain fatty acids, possibly leading to manipulation of the host's defense derived from fatty acids.

  19. A Holocene record of endogenic iron and manganese precipitation and vegetation history in a lake-fen complex in northwestern Minnesota

    USGS Publications Warehouse

    Dean, W.E.; Doner, L.A.

    2012-01-01

    Little Shingobee Lake and Fen are part of the extensive network of lakes and wetlands in the Shingobee River headwaters of northwestern Minnesota, designed to study the interactions between surface and ground waters. Prior to about 11. 2 cal. ka, most of these lakes and wetlands were interconnected to form glacial Lake Willobee, which apparently formed when a debris flow dammed the Shingobee River. Between 11. 2 and 8. 5 cal. ka, the level of Lake Willobee fell as a result of breaching of the dam, transforming the deep lake into the existing lakes and wetlands. Analyses of a 9-m core from Little Shingobee Lake (LSL-B), and lacustrine sediments under 3. 3 m of peat in a 17-m core from Little Shingobee Fen (LSF-10), show that the dominant components are allogenic clastic material, and endogenic CaCO3 and organic matter. In both cores almost all of the iron (Fe) and manganese (Mn) are incorporated in endogenic minerals, presumed to be X-ray amorphous oxyhydroxide minerals, that occur in significant quantities throughout the cores; almost no Fe and Mn are contributed from detrital aluminosilicate minerals. This suggests that, for most of the Holocene, the allogenic watershed contributions to lake chemistry were minor compared to the dissolved mineral load. In addition, prior to 3. 5 cal. ka, pollen zone boundaries coincide with large changes in lake-sediment mineralogy, indicating that both landscape and climate processes were linked to early- and mid-Holocene lake chemistry. The pollen time series, with sequential domination by spruce, pine, sagebrush-oak, birch-oak and, finally, white pine is typical of the region and reflects the changing location of the prairie-forest transition zone over time. These changes in vegetation had some profound effects on the geochemistry of the lake waters. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  20. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; ...

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  1. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-02-26

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  2. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  3. An Integrated Proteomics and Bioinformatics Approach Reveals the Anti-inflammatory Mechanism of Carnosic Acid

    PubMed Central

    Wang, Li-Chao; Wei, Wen-Hui; Zhang, Xiao-Wen; Liu, Dan; Zeng, Ke-Wu; Tu, Peng-Fei

    2018-01-01

    Drastic macrophages activation triggered by exogenous infection or endogenous stresses is thought to be implicated in the pathogenesis of various inflammatory diseases. Carnosic acid (CA), a natural phenolic diterpene extracted from Salvia officinalis plant, has been reported to possess anti-inflammatory activity. However, its role in macrophages activation as well as potential molecular mechanism is largely unexplored. In the current study, we sought to elucidate the anti-inflammatory property of CA using an integrated approach based on unbiased proteomics and bioinformatics analysis. CA significantly inhibited the robust increase of nitric oxide and TNF-α, downregulated COX2 protein expression, and lowered the transcriptional level of inflammatory genes including Nos2, Tnfα, Cox2, and Mcp1 in LPS-stimulated RAW264.7 cells, a murine model of peritoneal macrophage cell line. The LC-MS/MS-based shotgun proteomics analysis showed CA negatively regulated 217 LPS-elicited proteins which were involved in multiple inflammatory processes including MAPK, nuclear factor (NF)-κB, and FoxO signaling pathways. A further molecular biology analysis revealed that CA effectually inactivated IKKβ/IκB-α/NF-κB, ERK/JNK/p38 MAPKs, and FoxO1/3 signaling pathways. Collectively, our findings demonstrated the role of CA in regulating inflammation response and provide some insights into the proteomics-guided pharmacological mechanism study of natural products. PMID:29713284

  4. Phenolic Profiling of Caffeic Acid O-Methyltransferase-Deficient Poplar Reveals Novel Benzodioxane Oligolignols1

    PubMed Central

    Morreel, Kris; Ralph, John; Lu, Fachuang; Goeminne, Geert; Busson, Roger; Herdewijn, Piet; Goeman, Jan L.; Van der Eycken, Johan; Boerjan, Wout; Messens, Eric

    2004-01-01

    Caffeic acid O-methyltransferase (COMT) catalyzes preferentially the methylation of 5-hydroxyconiferaldehyde to sinapaldehyde in monolignol biosynthesis. Here, we have compared HPLC profiles of the methanol-soluble phenolics fraction of xylem tissue from COMT-deficient and control poplars (Populus spp.), using statistical analysis of the peak heights. COMT down-regulation results in significant concentration differences for 25 of the 91 analyzed peaks. Eight peaks were exclusively detected in COMT-deficient poplar, of which four could be purified for further identification using mass spectrometry/mass spectrometry, nuclear magnetic resonance, and spiking of synthesized reference compounds. These new compounds were derived from 5-hydroxyconiferyl alcohol or 5-hydroxyconiferaldehyde and were characterized by benzodioxane moieties, a structural type that is also increased in the lignins of COMT-deficient plants. One of these four benzodioxanes amounted to the most abundant oligolignol in the HPLC profile. Furthermore, all of the differentially accumulating oligolignols involving sinapyl units were either reduced in abundance or undetectable. The concentration levels of all identified oligolignols were in agreement with the relative supply of monolignols and with their chemical coupling propensities, which supports the random coupling hypothesis. Chiral HPLC analysis of the most abundant benzodioxane dimer revealed the presence of both enantiomers in equal amounts, indicating that they were formed by radical coupling reactions under simple chemical control rather than guided by dirigent proteins. PMID:15563622

  5. Global Metabolomic Profiling Reveals an Association of Metal Fume Exposure and Plasma Unsaturated Fatty Acids

    PubMed Central

    Chang, Chiung-yu; Fan, Tianteng; Su, Li; Chen, Feng; Christiani, David C.

    2013-01-01

    Background Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. Objectives To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. Methods The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. Results Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5) exposure (p<0.05). The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [(95% CI) = −0.013(−0.022∼−0.004); p = 0.005], docosapentaenoic acid n3 [(95% CI) = −0.010(−0.018∼−0.002); p = 0.017], and docosapentaenoic acid n6 [(95% CI) = −0.007(−0.013∼−0.001); p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study−2011 = 0.025; p Study−2012 = 0.021; p Combined = 0.009). The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. Conclusions High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders. PMID:24143234

  6. Phenylpropanoid profiling reveals a class of hydroxycinnamoyl glucaric acid conjugates in Isatis tinctoria leaves.

    PubMed

    Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Grand, Eric; Morreel, Kris; Marcelo, Paulo; Gontier, Eric; Dauwe, Rebecca

    2017-12-01

    The brassicaceous herb, Isatis tinctoria, is an ancient medicinal plant whose rosette leaf extracts have anti-inflammatory and anti-allergic activity. Brassicaceae are known to accumulate a variety of phenylpropanoids in their rosette leaves acting as antioxidants and a UV-B shield, and these compounds often have pharmacological potential. Nevertheless, knowledge about the phenylpropanoid content of I. tinctoria leaves remains limited to the characterization of a number of flavonoids. In this research, we profiled the methanol extracts of I. tinctoria fresh leaf extracts by liquid chromatography - mass spectrometry (LC-MS) and focused on the phenylpropanoid derivatives. We report the structural characterization of 99 compounds including 18 flavonoids, 21 mono- or oligolignols, 2 benzenoids, and a wide spectrum of 58 hydroxycinnamic acid esters. Besides the sinapate esters of malate, glucose and gentiobiose, which are typical of brassicaceous plants, these conjugates comprised a large variety of glucaric acid esters that have not previously been reported in plants. Feeding with 13 C 6 -glucaric acid showed that glucaric acid is an acyl acceptor of an as yet unknown acyltransferase activity in I. tinctoria rosette leaves. The large amount of hydroxycinnamic acid derivatives changes radically our view of the woad metabolite profile and potentially contributes to the pharmacological activity of I. tinctoria leaf extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Carbon and Nitrogen Isotopes from Top Predator Amino Acids Reveal Rapidly Shifting Ocean Biochemistry in the Outer California Current

    PubMed Central

    Ruiz-Cooley, Rocio I.; Koch, Paul L.; Fiedler, Paul C.; McCarthy, Matthew D.

    2014-01-01

    Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure. PMID:25329915

  8. Carbon and nitrogen isotopes from top predator amino acids reveal rapidly shifting ocean biochemistry in the outer California Current.

    PubMed

    Ruiz-Cooley, Rocio I; Koch, Paul L; Fiedler, Paul C; McCarthy, Matthew D

    2014-01-01

    Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure.

  9. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.

    PubMed

    Yin, Haisong; Zhang, Renkuan; Xia, Menglei; Bai, Xiaolei; Mou, Jun; Zheng, Yu; Wang, Min

    2017-06-15

    Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane

  10. Genetic effects of FASN, PPARGC1A, ABCG2 and IGF1 revealing the association with milk fatty acids in a Chinese Holstein cattle population based on a post genome-wide association study.

    PubMed

    Li, Cong; Sun, Dongxiao; Zhang, Shengli; Yang, Shaohua; Alim, M A; Zhang, Qin; Li, Yanhua; Liu, Lin

    2016-07-28

    A previous genome-wide association study deduced that one (ARS-BFGL-NGS-39328), two (Hapmap26001-BTC-038813 and Hapmap31284-BTC-039204), two (Hapmap26001-BTC-038813 and BTB-00246150), and one (Hapmap50366-BTA-46960) genome-wide significant single nucleotide polymorphisms (SNPs) associated with milk fatty acids were close to or within the fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PPARGC1A), ATP-binding cassette, sub-family G, member 2 (ABCG2) and insulin-like growth factor 1 (IGF1) genes. To further confirm the linkage and reveal the genetic effects of these four candidate genes on milk fatty acid composition, genetic polymorphisms were identified and genotype-phenotype associations were performed in a Chinese Holstein cattle population. Nine SNPs were identified in FASN, among which SNP rs41919985 was predicted to result in an amino acid substitution from threonine (ACC) to alanine (GCC), five SNPs (rs136947640, rs134340637, rs41919992, rs41919984 and rs41919986) were synonymous mutations, and the remaining three (rs41919999, rs132865003 and rs133498277) were found in FASN introns. Only one SNP each was identified for PPARGC1A, ABCG2 and IGF1. Association studies revealed that FASN, PPARGC1A, ABCG2 and IGF1 were mainly associated with medium-chain saturated fatty acids and long-chain unsaturated fatty acids, especially FASN for C10:0, C12:0 and C14:0. Strong linkage disequilibrium was observed among ARS-BFGL-NGS-39328 and rs132865003 and rs134340637 in FASN (D´ > 0.9), and among Hapmap26001-BTC-038813 and Hapmap31284-BTC-039204 and rs109579682 in PPARGC1A (D´ > 0.9). Subsequently, haplotype-based analysis revealed significant associations of the haplotypes encompassing eight FASN SNPs (rs41919999, rs132865003, rs134340637, rs41919992, rs133498277, rs41919984, rs41919985 and rs41919986) with C10:0, C12:0, C14:0, C18:1n9c, saturated fatty acids (SFA) and unsaturated fatty acids (UFA) (P = 0

  11. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference.

    PubMed

    Louie, Gordon V; Bowman, Marianne E; Tu, Yi; Mouradov, Aidyn; Spangenberg, German; Noel, Joseph P

    2010-12-01

    Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-L-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT's catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde.

  12. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  13. Control of iron nitride layers growth kinetics in the binary Fe-N system

    NASA Astrophysics Data System (ADS)

    Torchane, L.; Bilger, P.; Dulcy, J.; Gantois, M.

    1996-07-01

    This study is within the framework of a research program dedicated to defining the optimal conditions for the nitriding of iron and steels at atmospheric pressure by using various mixtures, NH3-N2-H2 and NH3-Ar. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the nitride layer growth rate, and the nitrogen concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses, and metallurgical observations (X-ray diffraction, optical microscopy, and electron microprobe anal-ysis). The results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions. By applying the model to the iron-nitrogen binary system, when the ɛ/γ/α configuration referred to the Fe-N phase diagram is formed, we have experimentally determined the effective diffusion coefficient of nitrogen in the ɛ phase. The latter is constant for a composition of the ɛ nitride between 8 and 9.5 wt pct nitrogen. All the results obtained show that it is possible, by means of dynamic gas flow regulation, to eliminate the incubation period and to control the thickness, composition, and structure of the compound layer at the beginning of the treatment.

  14. Amino acids of Diclidophora merlangi (Monogenea).

    PubMed

    Arme, C; Whyte, A

    1975-02-01

    The level of free amino acids in Diclidophora merlangi is high, comprising over 500 mu moles/g ethanol extracted dry weight. A single amino acid, proline, constitutes some 70% of the total pool. Analysis of parasite protein and host blood and mucus revealed low proline levels, suggesting that the high free pool content was not related to a requirement for protein systhesis or to its abundance in the diet of the worm. Experiments revealed that proline was not involved specifically in osmoregulation, and the reasons for the large amounts present in Diclidophora remain unknown.

  15. Tissue-Specific Inactivation of Type 2 Deiodinase Reveals Multilevel Control of Fatty Acid Oxidation by Thyroid Hormone in the Mouse

    PubMed Central

    Fonseca, Tatiana L.; Werneck-De-Castro, Joao Pedro; Castillo, Melany; Bocco, Barbara M.L.C.; Fernandes, Gustavo W.; McAninch, Elizabeth A.; Ignacio, Daniele L.; Moises, Caio C.S.; Ferreira, Alexandre; Gereben, Balázs

    2014-01-01

    Type 2 deiodinase (D2) converts the prohormone thyroxine (T4) to the metabolically active molecule 3,5,3′-triiodothyronine (T3), but its global inactivation unexpectedly lowers the respiratory exchange rate (respiratory quotient [RQ]) and decreases food intake. Here we used FloxD2 mice to generate systemically euthyroid fat-specific (FAT), astrocyte-specific (ASTRO), or skeletal-muscle-specific (SKM) D2 knockout (D2KO) mice that were monitored continuously. The ASTRO-D2KO mice also exhibited lower diurnal RQ and greater contribution of fatty acid oxidation to energy expenditure, but no differences in food intake were observed. In contrast, the FAT-D2KO mouse exhibited sustained (24 h) increase in RQ values, increased food intake, tolerance to glucose, and sensitivity to insulin, all supporting greater contribution of carbohydrate oxidation to energy expenditure. Furthermore, FAT-D2KO animals that were kept on a high-fat diet for 8 weeks gained more body weight and fat, indicating impaired brown adipose tissue (BAT) thermogenesis and/or inability to oxidize the fat excess. Acclimatization of FAT-D2KO mice at thermoneutrality dissipated both features of this phenotype. Muscle D2 does not seem to play a significant metabolic role given that SKM-D2KO animals exhibited no phenotype. The present findings are unique in that they were obtained in systemically euthyroid animals, revealing that brain D2 plays a dominant albeit indirect role in fatty acid oxidation via its sympathetic control of BAT activity. D2-generated T3 in BAT accelerates fatty acid oxidation and protects against diet-induced obesity. PMID:24487027

  16. Tissue-specific inactivation of type 2 deiodinase reveals multilevel control of fatty acid oxidation by thyroid hormone in the mouse.

    PubMed

    Fonseca, Tatiana L; Werneck-De-Castro, Joao Pedro; Castillo, Melany; Bocco, Barbara M L C; Fernandes, Gustavo W; McAninch, Elizabeth A; Ignacio, Daniele L; Moises, Caio C S; Ferreira, Alexander R; Ferreira, Alexandre; Gereben, Balázs; Bianco, Antonio C

    2014-05-01

    Type 2 deiodinase (D2) converts the prohormone thyroxine (T4) to the metabolically active molecule 3,5,3'-triiodothyronine (T3), but its global inactivation unexpectedly lowers the respiratory exchange rate (respiratory quotient [RQ]) and decreases food intake. Here we used FloxD2 mice to generate systemically euthyroid fat-specific (FAT), astrocyte-specific (ASTRO), or skeletal-muscle-specific (SKM) D2 knockout (D2KO) mice that were monitored continuously. The ASTRO-D2KO mice also exhibited lower diurnal RQ and greater contribution of fatty acid oxidation to energy expenditure, but no differences in food intake were observed. In contrast, the FAT-D2KO mouse exhibited sustained (24 h) increase in RQ values, increased food intake, tolerance to glucose, and sensitivity to insulin, all supporting greater contribution of carbohydrate oxidation to energy expenditure. Furthermore, FAT-D2KO animals that were kept on a high-fat diet for 8 weeks gained more body weight and fat, indicating impaired brown adipose tissue (BAT) thermogenesis and/or inability to oxidize the fat excess. Acclimatization of FAT-D2KO mice at thermoneutrality dissipated both features of this phenotype. Muscle D2 does not seem to play a significant metabolic role given that SKM-D2KO animals exhibited no phenotype. The present findings are unique in that they were obtained in systemically euthyroid animals, revealing that brain D2 plays a dominant albeit indirect role in fatty acid oxidation via its sympathetic control of BAT activity. D2-generated T3 in BAT accelerates fatty acid oxidation and protects against diet-induced obesity.

  17. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    NASA Astrophysics Data System (ADS)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  18. Microbial Response to Soil Liming of Damaged Ecosystems Revealed by Pyrosequencing and Phospholipid Fatty Acid Analyses

    PubMed Central

    Narendrula-Kotha, Ramya; Nkongolo, Kabwe K.

    2017-01-01

    Aims To assess the effects of dolomitic limestone applications on soil microbial communities’ dynamics and bacterial and fungal biomass, relative abundance, and diversity in metal reclaimed regions. Methods and Results The study was conducted in reclaimed mining sites and metal uncontaminated areas. The limestone applications were performed over 35 years ago. Total microbial biomass was determined by Phospholipid fatty acids. Bacterial and fungal relative abundance and diversity were assessed using 454 pyrosequencing. There was a significant increase of total microbial biomass in limed sites (342 ng/g) compared to unlimed areas (149 ng/g). Chao1 estimates followed the same trend. But the total number of OTUs (Operational Taxonomic Units) in limed (463 OTUs) and unlimed (473 OTUs) soil samples for bacteria were similar. For fungi, OTUs were 96 and 81 for limed and unlimed soil samples, respectively. Likewise, Simpson and Shannon diversity indices revealed no significant differences between limed and unlimed sites. Bacterial and fungal groups specific to either limed or unlimed sites were identified. Five major bacterial phyla including Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, and Proteobacteria were found. The latter was the most prevalent phylum in all the samples with a relative abundance of 50%. Bradyrhizobiaceae family with 12 genera including the nitrogen fixing Bradirhizobium genus was more abundant in limed sites compared to unlimed areas. For fungi, Ascomycota was the most predominant phylum in unlimed soils (46%) while Basidiomycota phylum represented 86% of all fungi in the limed areas. Conclusion Detailed analysis of the data revealed that although soil liming increases significantly the amount of microbial biomass, the level of species diversity remain statistically unchanged even though the microbial compositions of the damaged and restored sites are different. Significance and Impact of the study Soil liming still have a significant

  19. Seasonal dynamics of methane emissions from a subarctic fen in the Hudson Bay Lowlands

    NASA Astrophysics Data System (ADS)

    Hanis, K. L.; Tenuta, M.; Amiro, B. D.; Papakyriakou, T. N.

    2013-03-01

    Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyzer in four years (2008-2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m-2 yr-1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m-2 yr-1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near surface soil temperature at 5 cm most correlated across spring, fall, and the whole season. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but water table also exerted influence with FCH4 highest when water was 2-13 cm below and least when it was at or above the mean peat surface.

  20. An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling*

    PubMed Central

    Schreiber, Thiemo B.; Mäusbacher, Nina; Kéri, György; Cox, Jürgen; Daub, Henrik

    2010-01-01

    Lysophosphatidic acid (LPA) induces a variety of cellular signaling pathways through the activation of its cognate G protein-coupled receptors. To investigate early LPA responses and assess the contribution of epidermal growth factor (EGF) receptor transactivation in LPA signaling, we performed phosphoproteomics analyses of both total cell lysate and protein kinase-enriched fractions as complementary strategies to monitor phosphorylation changes in A498 kidney carcinoma cells. Our integrated work flow enabled the identification and quantification of more than 5,300 phosphorylation sites of which 224 were consistently regulated by LPA. In addition to induced phosphorylation events, we also obtained evidence for early dephosphorylation reactions due to rapid phosphatase regulation upon LPA treatment. Phosphorylation changes induced by direct heparin-binding EGF-like growth factor-mediated EGF receptor activation were typically weaker and only detected on a subset of LPA-regulated sites, indicating signal integration among EGF receptor transactivation and other LPA-triggered pathways. Our results reveal rapid phosphoregulation of many proteins not yet implicated in G protein-coupled receptor signaling and point to various additional mechanisms by which LPA might regulate cell survival and migration as well as gene transcription on the molecular level. Moreover, our phosphoproteomics analysis of both total lysate and kinase-enriched fractions provided highly complementary parts of the LPA-regulated signaling network and thus represents a useful and generic strategy toward comprehensive signaling studies on a system-wide level. PMID:20071362

  1. Metabolomics reveals metabolic biomarkers of Crohn's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, J.K.; Willing, B.; Lucio, M.

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonicmore » acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.« less

  2. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  3. Interfacial assembly structures and nanotribological properties of saccharic acids.

    PubMed

    Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun

    2017-01-04

    Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.

  4. A Simplified Model of Local Structure in Aqueous Proline Amino Acid Revealed by First-Principles Molecular Dynamics Simulations

    PubMed Central

    Troitzsch, Raphael Z.; Tulip, Paul R.; Crain, Jason; Martyna, Glenn J.

    2008-01-01

    Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data. PMID:18790850

  5. A simplified model of local structure in aqueous proline amino acid revealed by first-principles molecular dynamics simulations.

    PubMed

    Troitzsch, Raphael Z; Tulip, Paul R; Crain, Jason; Martyna, Glenn J

    2008-12-01

    Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data.

  6. Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters

    PubMed Central

    Sapriel, Guillaume; Quinet, Michelle; Heijde, Marc; Jourdren, Laurent; Tanty, Véronique; Luo, Guangzuo; Le Crom, Stéphane; Lopez, Pascal Jean

    2009-01-01

    Background Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)4 can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles. Methodology/Principal Findings Using whole genome expression analyses we evaluated the transcriptional response to Si availability for the model species Phaeodactylum tricornutum. Among the differentially regulated genes we found genes involved in glutamine-nitrogen pathways, encoding putative extracellular matrix components, or involved in iron regulation. Some of these compounds may be good candidates for intracellular intermediates involved in silicic acid storage and/or intracellular transport, which are very important processes that remain mysterious in diatoms. Expression analyses and localization studies gave the first picture of the spatial distribution of a silicic acid transporter in a diatom model species, and support the existence of transcriptional and post-transcriptional regulations. Conclusions/Significance Our global analyses revealed that about one fourth of the differentially expressed genes are organized in clusters, underlying a possible evolution of P. tricornutum genome, and perhaps other pennate diatoms, toward a better optimization of its response to variable environmental stimuli. High fitness and adaptation of diatoms to various Si levels in marine environments might arise in part by global regulations from gene (expression level) to genomic (organization in clusters, dosage compensation by gene duplication), and by post-transcriptional regulation and spatial distribution of SIT proteins. PMID:19829693

  7. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment.

    PubMed

    Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang

    2018-01-01

    Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Cometary Amino Acids from the STARDUST Mission

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  9. Comparative Transcriptomics Reveals Discrete Survival Responses of S. aureus and S. epidermidis to Sapienic Acid

    PubMed Central

    Moran, Josephine C.; Alorabi, Jamal A.; Horsburgh, Malcolm J.

    2017-01-01

    Staphylococcal colonization of human skin is ubiquitous, with particular species more frequent at different body sites. Whereas Staphylococcus epidermidis can be isolated from the skin of every individual tested, Staphylococcus aureus is isolated from <5% of healthy individuals. The factors that drive staphylococcal speciation and niche selection on skin are incompletely defined. Here we show that S. aureus is inhibited to a greater extent than S. epidermidis by the sebaceous lipid sapienic acid, supporting a role for this skin antimicrobial in selection of skin staphylococci. We used RNA-Seq and comparative transcriptomics to identify the sapienic acid survival responses of S. aureus and S. epidermidis. Consistent with the membrane depolarization mode of action of sapienic acid, both species shared a common transcriptional response to counteract disruption of metabolism and transport. The species differed in their regulation of SaeRS and VraRS regulons. While S. aureus upregulated urease operon transcription, S. epidermidis upregulated arginine deiminase, the oxygen-responsive NreABC nitrogen regulation system and the nitrate and nitrite reduction pathways. The role of S. aureus ACME and chromosomal arginine deiminase pathways in sapienic acid resistance was determined through mutational studies. We speculate that ammonia production could contribute to sapienic acid resistance in staphylococci. PMID:28179897

  10. Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells.

    PubMed

    Mhlongo, M I; Tugizimana, F; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A

    2017-01-22

    To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Transcriptome mining and in silico structural and functional analysis of ascorbic acid and tartaric acid biosynthesis pathway enzymes in rose-scanted geranium.

    PubMed

    Narnoliya, Lokesh K; Sangwan, Rajender S; Singh, Sudhir P

    2018-06-01

    Rose-scented geranium (Pelargonium sp.) is widely known as aromatic and medicinal herb, accumulating specialized metabolites of high economic importance, such as essential oils, ascorbic acid, and tartaric acid. Ascorbic acid and tartaric acid are multifunctional metabolites of human value to be used as vital antioxidants and flavor enhancing agents in food products. No information is available related to the structural and functional properties of the enzymes involved in ascorbic acid and tartaric acid biosynthesis in rose-scented geranium. In the present study, transcriptome mining was done to identify full-length genes, followed by their bioinformatic and molecular modeling investigations and understanding of in silico structural and functional properties of these enzymes. Evolutionary conserved domains were identified in the pathway enzymes. In silico physicochemical characterization of the catalytic enzymes revealed isoelectric point (pI), instability index, aliphatic index, and grand average hydropathy (GRAVY) values of the enzymes. Secondary structural prediction revealed abundant proportion of alpha helix and random coil confirmations in the pathway enzymes. Three-dimensional homology models were developed for these enzymes. The predicted structures showed significant structural similarity with their respective templates in root mean square deviation analysis. Ramachandran plot analysis of the modeled enzymes revealed that more than 84% of the amino acid residues were within the favored regions. Further, functionally important residues were identified corresponding to catalytic sites located in the enzymes. To, our best knowledge, this is the first report which provides a foundation on functional annotation and structural determination of ascorbic acid and tartaric acid pathway enzymes in rose-scanted geranium.

  12. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. History of retinoic acid receptors.

    PubMed

    Benbrook, Doris M; Chambon, Pierre; Rochette-Egly, Cécile; Asson-Batres, Mary Ann

    2014-01-01

    The discovery of retinoic acid receptors arose from research into how vitamins are essential for life. Early studies indicated that Vitamin A was metabolized into an active factor, retinoic acid (RA), which regulates RNA and protein expression in cells. Each step forward in our understanding of retinoic acid in human health was accomplished by the development and application of new technologies. Development cDNA cloning techniques and discovery of nuclear receptors for steroid hormones provided the basis for identification of two classes of retinoic acid receptors, RARs and RXRs, each of which has three isoforms, α, β and ɣ. DNA manipulation and crystallographic studies revealed that the receptors contain discrete functional domains responsible for binding to DNA, ligands and cofactors. Ligand binding was shown to induce conformational changes in the receptors that cause release of corepressors and recruitment of coactivators to create functional complexes that are bound to consensus promoter DNA sequences called retinoic acid response elements (RAREs) and that cause opening of chromatin and transcription of adjacent genes. Homologous recombination technology allowed the development of mice lacking expression of retinoic acid receptors, individually or in various combinations, which demonstrated that the receptors exhibit vital, but redundant, functions in fetal development and in vision, reproduction, and other functions required for maintenance of adult life. More recent advancements in sequencing and proteomic technologies reveal the complexity of retinoic acid receptor involvement in cellular function through regulation of gene expression and kinase activity. Future directions will require systems biology approaches to decipher how these integrated networks affect human stem cells, health, and disease.

  14. MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries

    PubMed Central

    Uzbekova, Svetlana; Elis, Sebastien; Teixeira-Gomes, Ana-Paula; Desmarchais, Alice; Maillard, Virginie; Labas, Valerie

    2015-01-01

    In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs). Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus) and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments. PMID:25756245

  15. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    PubMed

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  16. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3

    PubMed Central

    Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902

  17. Amino acids of the Murchison meteorite. II - Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1985-01-01

    The five-carbon acyclic primary beta, gamma, and delta amino alkanoic acids of the Murchison meteorite are studied using gas chromatography-mass spectrometry and ion exchange chromatography. The chromatograms reveal that alpha is the most abundant monoamino alkanoic acid followed by gamma and beta, and an exponential increase in the amount of amino acid is observed as the carbon number increases in the homologous series. The influence of frictional heating, spontaneous thermal decomposition, and radiation of the synthesis of amino acids is examined. The data obtained support an amino acid synthesis process involving random combination of single-carbon precursors.

  18. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  19. Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds1

    PubMed Central

    González-Guzmán, Miguel; Abia, David; Salinas, Julio; Serrano, Ramón; Rodríguez, Pedro L.

    2004-01-01

    The abscisic aldehyde oxidase 3 (AAO3) gene product of Arabidopsis catalyzes the final step in abscisic acid (ABA) biosynthesis. An aao3-1 mutant in a Landsberg erecta genetic background exhibited a wilty phenotype in rosette leaves, whereas seed dormancy was not affected (Seo et al., 2000a). Therefore, it was speculated that a different aldehyde oxidase would be the major contributor to ABA biosynthesis in seeds (Seo et al., 2000a). Through a screening based on germination under high-salt concentration, we isolated two mutants in a Columbia genetic background, initially named sre2-1 and sre2-2 (for salt resistant). Complementation tests with different ABA-deficient mutants indicated that sre2-1 and sre2-2 mutants were allelic to aao3-1, and therefore they were renamed as aao3-2 and aao3-3, respectively. Indeed, molecular characterization of the aao3-2 mutant revealed a T-DNA insertional mutation that abolished the transcription of AAO3 gene, while sequence analysis of AAO3 in aao3-3 mutant revealed a deletion of three nucleotides and several missense mutations. Physiological characterization of aao3-2 and aao3-3 mutants revealed a wilty phenotype and osmotolerance in germination assays. In contrast to aao3-1, both aao3-2 and aao3-3 mutants showed a reduced dormancy. Accordingly, ABA levels were reduced in dry seeds and rosette leaves of both aao3-2 and aao3-3. Taken together, these results indicate that AAO3 gene product plays a major role in seed ABA biosynthesis. PMID:15122034

  20. Seasonal dynamics of methane emissions from a subarctic fen in the Hudson Bay Lowlands

    NASA Astrophysics Data System (ADS)

    Hanis, K. L.; Tenuta, M.; Amiro, B. D.; Papakyriakou, T. N.

    2013-07-01

    Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyser in four years (2008-2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m-2 yr-1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m-2 yr-1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near-surface soil temperature at 5 cm most correlated across spring, fall, and the shoulder and growing seasons. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but the water table also exerted influence, with FCH4 highest when water was 2-13 cm below and lowest when it was at or above the mean peat surface.

  1. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  2. The stable carbon isotope composition of methane produced and emitted from northern peatlands

    NASA Astrophysics Data System (ADS)

    Hornibrook, Edward R. C.

    Stable carbon isotope values, pore water concentration, and flux data for methane (CH4) were compiled for 26 peatlands situated in the northern hemisphere to explore relationships between trophic status and CH4 cycling. Methane produced in ombrotrophic bogs has δ13C values that are significantly more negative than CH4 formed in fens apparently because of poor dissociation of acetic acid or an absence of methanogenic archaea capable of metabolizing acetic acid under low pH conditions. The δ 13C values of CH4 in pore water of ombrotrophic and minerotrophic peatlands exhibit the opposite trend: δ13C(CH4) values become more positive with depth in rain-fed bogs and more negative with depth in fens. The key zone for methanogenesis occurs at shallow depths in both types of peatland and consequently, δ13C values of CH4 emitted from ombrotrophic bogs (-74.9 ± 9.8‰ n = 42) are more negative than from fens (-64.8 ± 4.0‰ n = 38). An abundance of graminoids in fens contributes to more positive δ13C(CH4) values in pore water through (1) release of root exudates which promotes aceticlastic methanogenesis, (2) rhizosphere oxidization of CH4 causing localized enrichment of 13CH4, and (3) preferential export of 12CH4 through aerenchyma, which also enriches pore water in 13CH4. Emissions from blanket bogs and raised bogs should be attributed more negative δ13C(CH4) values relative to fens in isotope-weighted mass balance budgets. Further study is needed of bogs that have an apparently low nutrient status but exhibit a pore water distribution of δ13C(CH4) values similar to fens.

  3. Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability

    DOE PAGES

    Tsutakawa, Susan E.; Thompson, Mark J.; Arvai, Andrew S.; ...

    2017-06-27

    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA formore » catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.« less

  4. Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutakawa, Susan E.; Thompson, Mark J.; Arvai, Andrew S.

    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA formore » catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.« less

  5. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    PubMed Central

    2011-01-01

    after perturbation with PEG8000. Conclusions A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation. PMID:22082453

  6. Carbonaceous thin film coating with Fe-N4 site for enhancement of dioxovanadium ion reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Jun; Hasegawa, Takahiro; Iwasaki, Satoshi; Fukuhara, Tomoko; Orikasa, Yuki; Uchimoto, Yoshiharu

    2016-08-01

    It has been found that carbonaceous materials containing a transition metal coordinated by 4 nitrogens in the square-planar configuration (metal-N4 site) on the surface possessed a catalytic activity for various electrochemical reactions related to energy conversion and storage; i.e., oxygen reduction, hydrogen evolution, and quite recently, the electrode reactions in vanadium redox flow batteries (VRFB). The catalyst for the VRFB positive electrode discharge reaction, i.e., the dioxovanadium ion reduction, was formed by coating the surface of cup-stack carbon nanotubes with a carbonaceous thin film with the Fe-N4 site generated by the sublimation, deposition, and pyrolysis of iron phthalocyanine. In this study, the influence of the physical properties of the catalyst on the electrochemical reactions was investigated to optimize the coating. With an increase in the coating, the specific surface area increased, whereas the pore size decreased. The surface Fe concentration was increased in spite of the Fe aggregation inside the carbon matrix. The catalytic activity enhancement was achieved due to the increase in the specific surface area and the surface Fe concentration, but was lowered due to the decrease in the pore size, which was disadvantageous for the penetration of the electrolyte and the mass transfer.

  7. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    PubMed Central

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening. PMID:29324867

  8. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    PubMed

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling; Liu, Wenge

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL) 'SW' (in the '203Z' background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  9. Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain.

    PubMed

    Chen, Wei-Nan; Chen, Chih-Cheng

    2014-05-21

    Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. Here we show that acid could induce antinociceptive signaling via substance P release in muscle. We prevented the intramuscular acid-induced hyperalgesia by pharmacological inhibition of ASIC3 and transient receptor potential V1 (TRPV1). The antinociceptive effect of non-ASIC3, non-TRPV1 acid signaling lasted for 2 days. The non-ASIC3, non-TRPV1 acid antinociception was largely abolished in mice lacking substance P. Moreover, pretreatment with substance P in muscle mimicked the acid antinociceptive effect and prevented the hyperalgesia induced by next-day acid injection. Acid could mediate a prolonged antinociceptive signaling via the release of substance P from muscle afferent neurons in a non-ASIC3, non-TRPV1 manner.

  10. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  11. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  12. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.

    PubMed

    Vazquez Reyes, Carolina; Tangprasertchai, Narin S; Yogesha, S D; Nguyen, Richard H; Zhang, Xiaojun; Rajan, Rakhi; Qin, Peter Z

    2017-06-01

    In a type II clustered regularly interspaced short palindromic repeats (CRISPR) system, RNAs that are encoded at the CRISPR locus complex with the CRISPR-associated (Cas) protein Cas9 to form an RNA-guided nuclease that cleaves double-stranded DNAs at specific sites. In recent years, the CRISPR-Cas9 system has been successfully adapted for genome engineering in a wide range of organisms. Studies have indicated that a series of conformational changes in Cas9, coordinated by the RNA and the target DNA, direct the protein into its active conformation, yet details on these conformational changes, as well as their roles in the mechanism of function of Cas9, remain to be elucidated. Here, nucleic acid-dependent conformational changes in Streptococcus pyogenes Cas9 (SpyCas9) were investigated using the method of site-directed spin labeling (SDSL). Single nitroxide spin labels were attached, one at a time, at one of the two native cysteine residues (Cys80 and Cys574) of SpyCas9, and the spin-labeled proteins were shown to maintain their function. X-band continuous-wave electron paramagnetic resonance spectra of the nitroxide attached at Cys80 revealed conformational changes of SpyCas9 that are consistent with a large-scale domain re-arrangement upon binding to its RNA partner. The results demonstrate the use of SDSL to monitor conformational changes in CRISPR-Cas9, which will provide key information for understanding the mechanism of CRISPR function.

  13. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition.

    PubMed

    Corominas, Jordi; Ramayo-Caldas, Yuliaxis; Puig-Oliveras, Anna; Estellé, Jordi; Castelló, Anna; Alves, Estefania; Pena, Ramona N; Ballester, Maria; Folch, Josep M

    2013-12-01

    In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particularly involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group). High-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes. These results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.

  14. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    PubMed

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    PubMed

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Study of the acid-base properties of mineral soil horizons using pK spectroscopy

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Vanchikova, E. V.; Ryazanov, M. A.

    2007-11-01

    The presence of groups 4 and 5 participating in acid-base equilibria was revealed in samples from mineral horizons of the gley-podzolic soil of the Komi Republic using pK spectroscopy (the mathematical processing of potentiometric titration curves for plotting the distribution of acid groups according to their pK values). The specific quantity of acid-base sites in soil samples was calculated. The contribution of organic and mineral soil components to the groups of acid-base sites was estimated. The pK values of groups determining the potential, exchangeable, and unexchangeable acidities were found. The heterogeneity of acid components determining different types of soil acidity was revealed.

  17. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    PubMed

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J; Vassallo, David A; Vega, Irving E; Arold, Stefan T; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  18. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    PubMed Central

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J.; Vassallo, David A.; Vega, Irving E.; Arold, Stefan T.; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  19. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses. Published by Elsevier B.V.

  20. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    USDA-ARS?s Scientific Manuscript database

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  1. Characterization of acid-tolerant H/CO-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State.

    PubMed

    Bräuer, Suzanna L; Yashiro, Erika; Ueno, Norikiyo G; Yavitt, Joseph B; Zinder, Stephen H

    2006-08-01

    Two methanogenic cultures were enriched from acidic peat soil using a growth medium buffered to c. pH 5. One culture, 6A, was obtained from peat after incubation with H(2)/CO(2), whereas culture NTA was derived from a 10(-4) dilution of untreated peat into a modified medium. 16S rRNA gene clone libraries from each culture contained one methanogen and two bacterial sequences. The methanogen 16S rRNA gene sequences were 99% identical with each other and belonged to the novel "R-10/Fen cluster" family of the Methanomicrobiales, whereas their mcrA sequences were 96% identical. One bacterial 16S rRNA gene sequence from culture 6A belonged to the Bacteroidetes and showed 99% identity with sequences from methanogenic enrichments from German and Russian bogs. The other sequence belonged to the Firmicutes and was identical to a thick rod-shaped citrate-utilizing organism isolated from culture 6A, the numbers of which decreased when the Ti (III) chelator was switched from citrate to nitrilotriacetate. Bacterial clones from the NTA culture clustered in the Delta- and Betaproteobacteria. Both cultures contained thin rods, presumably the methanogens, as the predominant morphotype, and represent a significant advance in characterization of the novel acidiphilic R-10 family methanogens.

  2. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects.

    PubMed

    Liu, Liyan; Feng, Rennan; Guo, Fuchuan; Li, Ying; Jiao, Jundong; Sun, Changhao

    2015-04-01

    Obesity is the result of a positive energy balance and often leads to difficulties in maintaining normal postprandial metabolism. The changes in postprandial metabolites after an oral glucose tolerance test (OGTT) in young obese Chinese men are unclear. In this work, the aim is to investigate the complex metabolic alterations in obesity provoked by an OGTT using targeted metabolomics. We used gas chromatography-mass spectrometry and ultra high performance liquid chromatography-triple quadrupole mass spectrometry to analyze serum fatty acids, amino acids and biogenic amines profiles from 15 control and 15 obese subjects at 0, 30, 60, 90 and 120 min during an OGTT. Metabolite profiles from 30 obese subjects as independent samples were detected in order to validate the change of metabolites. There were the decreased levels of fatty acid, amino acids and biogenic amines after OGTT in obesity. At 120 min, percent change of 20 metabolites in obesity has statistical significance when comparing with the controls. The obese parameters was positively associated with changes in arginine and histidine (P<0.05) and the postprandial change in palmitic acid (PA), branched-chain amino acids (BCAAs) and phenylalanine between 1 and 120 min were positively associated with fasting insulin and HOMA-IR (all P<0.05) in the obese group. The postprandial metabolite of PA and BCAAs may play important role in the development and onset of insulin resistance in obesity. Our findings offer new insights in the complex physiological regulation of the metabolism during an OGTT in obesity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Structure-Function Analyses of a Caffeic Acid O-Methyltransferase from Perennial Ryegrass Reveal the Molecular Basis for Substrate Preference[W][OA

    PubMed Central

    Louie, Gordon V.; Bowman, Marianne E.; Tu, Yi; Mouradov, Aidyn; Spangenberg, German; Noel, Joseph P.

    2010-01-01

    Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-l-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT’s catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde. PMID:21177481

  4. Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultivar

    PubMed Central

    Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun

    2017-01-01

    The chlorotic tea variety Huangjinya, a natural mutant, contains enhanced levels of free amino acids in its leaves, which improves the drinking quality of its brewed tea. Consequently, this chlorotic mutant has a higher economic value than the non-chlorotic varieties. However, the molecular mechanisms behind the increased levels of free amino acids in this mutant are mostly unknown, as are the possible effects of this mutation on the overall metabolome and biosynthetic pathways in tea leaves. To gain further insight into the effects of chlorosis on the global metabolome and biosynthetic pathways in this mutant, Huangjinya plants were grown under normal and reduced sunlight, resulting in chlorotic and non-chlorotic leaves, respectively; their leaves were analyzed using transcriptomics as well as targeted and untargeted metabolomics. Approximately 5,000 genes (8.5% of the total analyzed) and ca. 300 metabolites (14.5% of the total detected) were significantly differentially regulated, thus indicating the occurrence of marked effects of light on the biosynthetic pathways in this mutant plant. Considering primary metabolism, including that of sugars, amino acids, and organic acids, significant changes were observed in the expression of genes involved in both nitrogen (N) and carbon metabolism. The suite of changes not only generated an increase in amino acids, including glutamic acid, glutamine, and theanine, but it also elevated the levels of free ammonium, citrate, and α-ketoglutarate, and lowered the levels of mono- and di-saccharides and of caffeine as compared with the non-chlorotic leaves. Taken together, our results suggest that the increased levels of amino acids in the chlorotic vs. non-chlorotic leaves are likely due to increased protein catabolism and/or decreased glycolysis and diminished biosynthesis of nitrogen-containing compounds other than amino acids, including chlorophyll, purines, nucleotides, and alkaloids. PMID:28321230

  5. On the molecular basis of the activity of the antimalarial drug chloroquine: EXAFS-assisted DFT evidence of a direct Fe-N bond with free heme in solution

    NASA Astrophysics Data System (ADS)

    Macetti, Giovanni; Rizzato, Silvia; Beghi, Fabio; Silvestrini, Lucia; Lo Presti, Leonardo

    2016-02-01

    4-aminoquinoline antiplasmodials interfere with the biocrystallization of the malaria pigment, a key step of the malaria parasite metabolism. It is commonly believed that these drugs set stacking π···π interactions with the Fe-protoporphyrin scaffold of the free heme, even though the details of the heme:drug recognition process remain elusive. In this work, the local coordination of Fe(III) ions in acidic solutions of hematin at room temperature was investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy in the 4.0-5.5 pH range, both in the presence and in the absence of the antimalarial drug chloroquine. EXAFS results were complemented by DFT simulations in polarizable continuum media to model solvent effects. We found evidence that a complex where the drug quinoline nitrogen is coordinated with the iron center might coexist with formerly proposed adduct geometries, based on stacking interactions. Charge-assisted hydrogen bonds among lateral chains of the two molecules play a crucial role in stabilizing this complex, whose formation is favored by the presence of lipid micelles. The direct Fe-N bond could reversibly block the axial position in the Fe 1st coordination shell in free heme, acting as an inhibitor for the crystallization of the malaria pigment without permanently hampering the catalytic activity of the redox center. These findings are discussed in the light of possible implications on the engineering of drugs able to thwart the adaptability of the malaria parasite against classical aminoquinoline-based therapies.

  6. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  7. Two Co(II) compound constructed by phthalic acid and 3-Cl-phthalic acid: Synthesis, structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Meng, Jun-Rong; Yao, Peng-Fei; Cui, Lian-Sheng; Gan, Yong-Le; Li, Hai-Ye; Liu, Han-Fu; Huang, Fu-Ping

    2018-03-01

    In this paper, we obtained two novel 2D layered cobalt coordination polymers, namely [(Co(o-BDC)]n (1) and (Co(3-Cl-o-BDC)]n (2), through solvothermal method with acetone as solvent based on phthalic acid (o-H2BDC) and 3-chloro-phthalic acid (3-Cl-o-H2BDC) respectively. Due to the steric hindrance effect of chloric substituent, the two ligands revealed different coordination modes. And cobalt centers of 1 and 2 showed CoO6 octahedral and CoO4 tetrahedral configurations respectively. As a result, 1 and 2 revealed different layered constructions: a 5-connected topology with 48.62 Schläfli symbol for 1, and a 4-connected topology with 44.62 Schläfli symbol for 2, respectively. Besides, Compound 1 and 2 reveal ferromagnetic and antiferromagnetic behaviors, respectively.

  8. C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christl,I.; Kretzschmar, R.

    2007-01-01

    The influence of cation-induced coagulation on the chemical composition of dissolved and coagulated fractions of humic acid was investigated in batch coagulation experiments for additions of aluminum at pH 4 and 5, iron at pH 4, and calcium and lead at pH 6. The partitioning of organic carbon and metals was determined by analyzing total organic carbon and total metal contents of the dissolved phase. Both the dissolved and the coagulated humic acid fractions were characterized using synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Intensities of {pi}* transitions of carboxyl carbon andmore » {sigma}* transitions of alkyl, O-alkyl, and carboxyl carbon decreased with increasing metal concentration for the dissolved humic acid fractions. This decrease was accompanied by an increase of the respective intensities in the coagulated fraction as shown for lead. Intensities of aromatic and phenolic carbon were affected to a larger extent only by aluminum and iron additions. The changes observed in the C-1s NEXAFS spectra coincided with an increasing removal of organic carbon from the dissolved phase with increasing total metal concentrations. We conclude that humic acid was chemically fractionated by cation-induced coagulation, which preferentially removed functional groups involved in metal-cation binding from solution.« less

  9. Synthesis, characterization and corrosion inhibition properties of benzamide-2-chloro-4-nitrobenzoic acid and anthranilic acid-2-chloro-4-nitrobenzoic acid for mild steel corrosion in acidic medium

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Verma, Chandrabhan; Singh, B.; Ebenso, Eno E.

    2018-03-01

    The present study deals with the synthesis of two new compounds namely, benzamide - 2-chloro-4-nitrobenzoic acid (BENCNBA) and anthranilic acid-2-chloro-4-nitrobenzoic acid (AACNBA) using solid phase reactions. The phase diagram studies revealed that formation of the investigated compounds occurs in 1:1 molar ratio. The synthesized compounds were characterized using several spectral techniques such as FT-IR, 1H and 13C NMR, UV-Vis, powder X-ray diffraction (PXRD). Single crystal XRD (SCXRD) study showed that both BENCNBA and AACNBA compounds crystallize in triclinic crystal system with P-1 space group. Further, the presence of intermolecular hydrogen bonding between the constituent components was also supported by single crystal X-ray diffraction (SCXRD) method. Heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions have also been computed using the enthalpy of fusion values derived from differential scanning calorimeter (DSC) study. The inhibition effect of BENCNBA and AACNBA on the mild steel corrosion in hydrochloric acid solution was tested using electrochemical methods. Electrochemical impedance spectroscopy (EIS) study revealed that both BENCNBA and AACNBA behaved as interface corrosion inhibitors and showed maximum inhibition efficiencies of 95.71% and 96.42%, respectively at 400 ppm (1.23 × 10-3 M) concentration. Potentiodynamic polarization (PDP) measurements suggested that BENCNBA and AACNBA acted as mixed type corrosion inhibitors. EIS and PDP results showed that BENCNBA and AACNBA act as efficient corrosion inhibitors for mild steel and their inhibition efficiencies enhances on increasing their concentrations.

  10. Highly exposed Fe-N4 active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode.

    PubMed

    Anandhababu, Ganesan; Abbas, Syed Comail; Lv, Jiangquan; Ding, Kui; Liu, Qin; Babu, Dickson D; Huang, Yiyin; Xie, Jiafang; Wu, Maoxiang; Wang, Yaobing

    2017-02-14

    Progress in the development of efficient electrocatalysts for oxygen reduction reactions is imperative for various energy systems such as metal-air batteries and fuel cells. In this paper, an innovative porous two-dimensional (2D) poly-iron-phthalocyanine (PFe-Pc) based oxygen reduction electrocatalyst created with a simple solid-state chemical reaction without pyrolysis is reported. In this strategy, silicon dioxide nanoparticles play a pivotal role in preserving the Fe-N 4 structure during the polymerization process and thereby assist in the development of a porous structure. The new polymerized phthalocyanine electrocatalyst with tuned porous structure, improved specific surface area and more exposed catalytic active sites via the 2D structure shows an excellent performance towards an oxygen reduction reaction in alkaline media. The onset potential (E = 1.033 V) and limiting current density (I = 5.58 mA cm -2 ) are much better than those obtained with the commercial 20% platinum/carbon electrocatalyst (1.046 V and 4.89 mA cm -2 ) and also show better stability and tolerance to methanol crossover. For practical applications, a zinc-air (Zn-air) battery and methanol fuel cell equipped with the PFe-Pc electrocatalyst as an air cathode reveal a high open circuit voltage and maximum power output (1.0 V and 23.6 mW cm -2 for a methanol fuel cell, and 1.6 V and 192 mW cm -2 for the liquid Zn-air battery). In addition, using the PFe-Pc electrocatalyst as an air cathode in a flexible cable-type Zn-air battery exhibits excellent performance with an open-circuit voltage of 1.409 V. This novel porous 2D PFe-Pc has been designed logically using a new, simple strategy with ultrahigh electrochemical performances in Zn-air batteries and methanol fuel cell applications.

  11. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    PubMed Central

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface. PMID:25254114

  12. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    PubMed

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  13. Characterizing Early Succession Following Wildfires at Different Severities in Boreal Bog and Fen Peatlands

    NASA Astrophysics Data System (ADS)

    Ernst, E. J.; Bourgeau-Chavez, L. L.; Kane, E. S.; Wagenbrenner, J. W.; Endres, S.

    2016-12-01

    The Arctic-boreal region is experiencing changes in climate, trending toward warmer summers, resulting in a greater occurrence of wildfires with longer burning periods and higher intensities. Drought-like conditions have dried surface fuels, leading to a higher probability of ignition, even in lowland peatlands. Previous work has been done to characterize post-fire succession rates in Arctic-boreal upland sites, but much less is known of fire effects and early successional dynamics in lowlands. Wildland fires are the number one disturbance in Canada's Northwest Territories (NWT), which characteristically burn at high intensities with large flame fronts, and result in some of the biggest wildfires in the world. Areas surrounding the Great Slave Lake, NWT—including parts of the Taiga Plains, Taiga Shield, and Boreal Plains ecozones—experienced exceptional wildfire activity in 2014 and 2015. We characterized burn severity of the bog and fen peat surface and canopy layers at several burned sites. To determine if the severe ground or crown wildfires were stand-replacing events, we characterized post-fire vegetation in peatlands in 2015 and 2016 based on seedling regeneration. We stratified sites according to estimated water residence times across the three ecozones and made comparisons between data collected at the same sites across years. This work adds much needed context for post-fire succession in boreal peatland ecosystems, as the susceptibility of these systems to burning will continue to increase with a warming climate.

  14. Microscopie par rayons X dans la fenêtre de l'eau : faisabilité et intérêt pour la biologie d'un instrument de laboratoire

    NASA Astrophysics Data System (ADS)

    Adam, J. F.; Moy, J. P.

    2005-06-01

    La biologie étudie des structures ou des phénomènes sub-cellulaires. Pour cela la microscopie est la technique d'observation privilégiée. La résolution spatiale de la microscopie optique s'avère bien souvent insuffisante pour de telles observations. Les techniques plus résolvantes, comme la microscopie électronique par transmission sont souvent destructrices et d'une complexité peu adaptée aux besoins des biologistes. La microscopie par rayons X dans la fenêtre de l'eau permet l'imagerie rapide de cellules dans leur milieu naturel, nécessite peu de préparation et offre des résolutions de quelques dizaines de nanomètres. De plus, il existe un bon contraste naturel entre les structures carbonées (protéines, lipides) et l'eau. Actuellement cette technique est limitée aux centres de rayonnement synchrotron, ce qui impose une planification et des déplacements incompatibles avec les besoins de la biologie. Un tel microscope fonctionnant avec uns source de laboratoire serait d'une grande utilité. Ce document présente un état de l'art de la microscopie par rayons X dans la fenêtre de l'eau. Un cahier des charges détaillé pour un appareil de laboratoire ayant les performances optiques requises par les biologistes est présenté et confronté aux microscopes X de laboratoire déjà existants. Des solutions concernant la source et les optiques sont également discutées.

  15. Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption.

    PubMed

    Wang, Haina; Fang, Zhong-Ze; Meng, Ran; Cao, Yun-Feng; Tanaka, Naoki; Krausz, Kristopher W; Gonzalez, Frank J

    2017-07-01

    Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans. Published by Elsevier B.V.

  16. Four Structures of Tartaric Acid Revealed in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Cortijo, Vanessa; Díez, Verónica; Alonso, Elena R.; Mata, Santiago; Alonso, José L.

    2017-06-01

    The tartaric acid, one of the most important organic compounds, has been transferred into the gas phase by laser ablation of its natural crystalline form (m.p.174°C) and probed in a supersonic expansion by chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW). Four stable structures, two with an extended (trans) disposition of the carbon chain and two with a bent (gauche) disposition, have been unequivocally identified on the basis of the experimental rotational constants in conjunction with ab initio predictions. The intramolecular interactions that govern the conformational preferences are dominated by cooperative O-H...O=C type and O-H?O hydrogen bonds extended along the entire molecule. The observation of only μc- type spectra for one "trans" and one "gauche" conformers, support the existence of a C2 symmetry for each structure.

  17. Intramolecular interactions of L-phenylalanine revealed by inner shell chemical shift

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Wang, Feng

    2009-07-01

    Intramolecular interactions of the functional groups, carboxylic acid, amino, and phenyl in L-phenylalanine have been revealed through inner shell chemical shift. The chemical shift and electronic structures are studied using its derivatives, 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA), through substitutions of the functional groups on the chiral carbon Cα, i.e., carboxylic acid (-COOH) and amino (-NH2) groups. Inner shell ionization spectra of L-phenylalanine are simulated using density functional theory based B3LYP/TZVP and LB94/et-pVQZ models, which achieve excellent agreement with the most recently available synchrotron sourced x-ray photoemission spectroscopy of L-phenylalanine (Elettra, Italy). The present study reveals insight into behavior of the peptide bond (CO-NH) through chemical shift of the C1-Cα-Cβ(-Cγ) chain and intramolecular interactions with phenyl. It is found that the chemical shift of the carbonyl C1(=O) site exhibits an apparently redshift (smaller energy) when interacting with the phenyl aromatic group. Removal of the amino group (-NH2) from L-phenylalanine (which forms PPA) brings this energy on C1 close to that in L-alanine (δ <0.01 eV). Chemical environment of Cα and Cβ exhibits more significant differences in L-alanine than in the aromatic species, indicating that the phenyl group indeed affects the peptide bond in the amino acid fragment. No direct evidences are found that the carbonyl acid and amino group interact with the phenyl ring through conventional hydrogen bonds.

  18. Diffusion of uncharged probe reveals structural changes in polyacids initiated by their neutralization: poly(acrylic acids).

    PubMed

    Hyk, Wojciech; Masiak, Michal; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2005-03-17

    The diffusion studies of the uncharged probe (1,1'-ferrocenedimethanol) have been successfully applied for the evaluation of the changes in the three-dimensional structure of poly(acrylic acids) of various molecular weights (ranging from 2000 to 4,000,000 g/mol) during their neutralization with a strong base. The qualitative picture of the macromolecule arrangement during the titration of the polyacids has been obtained from the conductometric measurements. The characteristic changes in the poly(acrylic acid) conductivity are practically the same for all polyacids examined and are in a very good agreement with the predictions of our theoretical model of the polyelectrolyte conductance. The transformation of the polyelectrolyte solution into the gel-like or gel phase has been investigated more quantitatively by tracing the changes in the diffusion coefficient of the uncharged probe redox system. The probe diffusivities, D, were determined using steady-state voltammetry at microelectrodes for a wide range of neutralization degree, alpha, of the polyacids tested. The dependencies of D versus alpha are of similar shape for all poly(acrylic acids). The first parts of the dependencies reflect a rapid increase in D (up to neutralization degree of either 45% for the lowest molecular-weight poly(acrylic acid) or 75-80% for other polyacids). They are followed by the parts of a slight drop in the diffusion coefficient. The changes in the probe diffusivity become stronger as the molecular weight of poly(acrylic acid) increases. The maximum probe diffusion coefficients are greater than the initial values in the pure polyacid solutions by 14, 24, 19, 30, and 28% for poly(acrylic acid) of molecular weights of 2000, 450,000, 1,250,000, 3,000,000, and 4,000,000 g/mol, respectively. The variation in the probe diffusion coefficient qualitatively follows the line of the changes in the macroscopic viscosity of the polyelectrolyte system. This is in contrast to the predictions of the

  19. Thermal, dielectric studies on pure and amino acid ( L-glutamic acid, L-histidine, L-valine) doped KDP single crystals

    NASA Astrophysics Data System (ADS)

    Kumaresan, P.; Moorthy Babu, S.; Anbarasan, P. M.

    2008-05-01

    Amino acids ( L-glutamic acid, L-histidine, L-valine) doped potassium dihydrogen phospate crystals are grown by solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mol% to 10 mol%. The solubility data for all dopants concentration were determined. There is variation in pH value and hence, there is habit modification of the grown crystals were characterized with UV-VIS, FT-IR studies, SHG trace elements and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. UV-Visible spectra confirm the improvement in the transparency of these crystals on doping metal ions. FT-IR spectra reveal strong absorption band between 1400 and 1600 cm -1 for metal ion doped crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material and it also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  20. Incorporation of Extracellular Fatty Acids by a Fatty Acid Kinase-Dependent Pathway in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884

  1. Fluorescence spectroscopy reveals accompanying occurrence of ammonium with fulvic acid-like organic matter in a fluvio-lacustrine aquifer of Jianhan Plain.

    PubMed

    Huang, Shuangbing; Wang, Yanxin; Ma, Teng; Wang, Yanyan; Zhao, Long

    2016-05-01

    This study is the first to investigate the simultaneous presence of NH4 (+) and fluorescent organic matter components (FOCs) from a fluvio-lacustrine aquifer in Central Jianghan Plain. Sediment, groundwater, and surface water samples were collected for the sediment organic matter extraction, 3D fluorescence spectroscopy characterization, and/or hydrochemical analysis. NH4 (+) and dissolved organic carbon was ubiquitous in the groundwater. The fluorescence spectroscopy revealed good relationships between NH4 (+) and fulvic acid-like components (FALCs) in the groundwater and sediment-extracted organic matter (SEOM) solutions. NH4 (+) also exhibited significant positive correlation with protein-like component (PLC) (p < 0.001), with the stronger in the SEOM solutions than that in groundwater. Comparisons of spectroscopic indices [e.g., humification index (HIX), biological index (BIX), spectra slope (S275-295), and specific UV absorbance (SUVA254)] between the groundwater and SEOM solutions revealed more labile properties of SEOM. This result indicates that the decreasing NH4 (+)-FOCs correlations of groundwater relative to sediments may be attributed to microbial degradation. Factor analysis identifies important factors that cause NH4 (+) occurrence in the groundwater. The accompanying increase of FALC (C1) and NH4-N with the mole concentration of the normalized HCO3 (-)/(Ca(2+)+Mg(2+)) and [H(+)] suggests that couple effects of various biodegradations simultaneously occur in the aquifer, promoting the occurrence of NH4-DOMs.

  2. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    PubMed

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap <60 μmol/g was an independent risk factor for postoperative infectious complications with an odds ratio of 15.6; 95% confidence interval 1.8-384.1. The preoperative fecal organic acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  3. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid

    NASA Astrophysics Data System (ADS)

    Suganuma, Satoshi; Nakajima, Kiyotaka; Kitano, Masaaki; Yamaguchi, Daizo; Kato, Hideki; Hayashi, Shigenobu; Hara, Michikazu

    2010-06-01

    SO 3H-bearing amorphous carbon, prepared by partial carbonization of cellulose followed by sulfonation in fuming H 2SO 4, was applied as a solid catalyst for the acid-catalyzed hydrolysis of β-1,4 glucan, including cellobiose and crystalline cellulose. Structural analyses revealed that the resulting carbon material consists of graphene sheets with 1.5 mmol g -1 of SO 3H groups, 0.4 mmol g -1 of COOH, and 5.6 mmol g -1 of phenolic OH groups. The carbon catalyst showed high catalytic activity for the hydrolysis of β-1,4 glycosidic bonds in both cellobiose and crystalline cellulose. Pure crystalline cellulose was not hydrolyzed by conventional strong solid Brønsted acid catalysts such as niobic acid, Nafion ® NR-50, and Amberlyst-15, whereas the carbon catalyst efficiently hydrolyzes cellulose into water-soluble saccharides. The catalytic performance of the carbon catalyst is due to the large adsorption capacity for hydrophilic reactants and the adsorption ability of β-1,4 glucan, which is not adsorbed to other solid acids.

  4. Evaluating governance for sustainable development - Insights from experiences in the Dutch fen landscape.

    PubMed

    den Uyl, Roos M; Driessen, Peter P J

    2015-11-01

    Prominent strands of discussion in the literature on governance for sustainable development debate how change can be induced to enhance sustainability, and how to evaluate the interventions aimed at prompting such change. Strikingly, there are few contributions about how prominent ideas of inducing change deal with multiple governance criteria for pursuing sustainable development. Moreover, the way ideas about inducing change relate to criteria of governance for sustainable development is not yet studied in an empirical context. This paper therefore comparatively analyses how three prominent modes of sustainable development governance - adaptive management, transition management and payments for environmental services - relate to a set of five prominent criteria reported in the literature, namely: equity, democracy, legitimacy, the handling of scale issues and the handling of uncertainty issues. It finds that the academic debates on these three modes address these criteria with varying attention and rather fragmented, while in the empirical setting of the Dutch fen landscape several aspects relating to the studied criteria were present and substantially influenced the functioning of the three modes of sustainable development. Together, the analysis of the literature debate and the empirical data are able to show that a narrow evaluation perspective may fail to diagnose and capture relevant struggles and complexities coming along with governance for sustainable development relevant issues. The study shows that in order to advance our understanding of governance for sustainable development, it is indeed important to include multiple criteria in studying these modes. Moreover, the study shows the importance of including empirical experiences which manifest when different modes for sustainable development are applied in real-world settings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    PubMed

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  6. 13 C Flux Analysis Reveals that Rebalancing Medium Amino Acid Composition can Reduce Ammonia Production while Preserving Central Carbon Metabolism of CHO Cell Cultures.

    PubMed

    McAtee Pereira, Allison G; Walther, Jason L; Hollenbach, Myles; Young, Jamey D

    2018-02-06

    13 C metabolic flux analysis (MFA) provides a rigorous approach to quantify intracellular metabolism of industrial cell lines. In this study, 13 C MFA was used to characterize the metabolic response of Chinese hamster ovary (CHO) cells to a novel medium variant designed to reduce ammonia production. Ammonia inhibits growth and viability of CHO cell cultures, alters glycosylation of recombinant proteins, and enhances product degradation. Ammonia production was reduced by manipulating the amino acid composition of the culture medium; specifically, glutamine, glutamate, asparagine, aspartate, and serine levels were adjusted. Parallel 13 C flux analysis experiments determined that, while ammonia production decreased by roughly 40%, CHO cell metabolic phenotype, growth, viability, and monoclonal antibody (mAb) titer were not significantly altered by the changes in media composition. This study illustrates how 13 C flux analysis can be applied to assess the metabolic effects of media manipulations on mammalian cell cultures. The analysis revealed that adjusting the amino acid composition of CHO cell culture media can effectively reduce ammonia production while preserving fluxes throughout central carbon metabolism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Elaina M.; Center for Cardiovascular Sciences, Albany Medical College, Albany, NY; Cerny, Ronald L.

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4,more » for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  8. The Cardioprotective Effects of Citric Acid and L-Malic Acid on Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Tang, Xilan; Liu, Jianxun; Dong, Wei; Li, Peng; Li, Lei; Lin, Chengren; Zheng, Yongqiu; Hou, Jincai; Li, Dan

    2013-01-01

    Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease. PMID:23737849

  9. Overexpression of Human Fatty Acid Transport Protein 2/Very Long Chain Acyl-CoA Synthetase 1 (FATP2/Acsvl1) Reveals Distinct Patterns of Trafficking of Exogenous Fatty Acids

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2014-01-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4hr. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  10. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  11. A kinetic study of the reactions FeO+ + O, Fe+.N2 + O, Fe+.O2 + O and FeO+ + CO: implications for sporadic E layers in the upper atmosphere.

    PubMed

    Woodcock, K R S; Vondrak, T; Meech, S R; Plane, J M C

    2006-04-21

    These gas-phase reactions were studied by pulsed laser ablation of an iron target to produce Fe(+) in a fast flow tube, with detection of the ions by quadrupole mass spectrometry. Fe(+).N(2) and Fe(+).O(2) were produced by injecting N(2) and O(2), respectively, into the flow tube. FeO(+) was produced from Fe(+) by addition of N(2)O, or by ligand-switching from Fe(+).N(2) following the addition of atomic O. The following rate coefficients were measured: k(FeO(+) + O --> Fe(+) + O(2), 186-294 K) = (3.2 +/- 1.5) x 10(-11); k(Fe(+).N(2) + O --> FeO(+)+ N(2), 294 K) = (4.6 +/- 2.5) x 10(-10); k(Fe(+).O(2) + O --> FeO(+) + O(2), 294 K) = (6.3 +/- 2.7) x 10(-11); and k(FeO(+) + CO --> Fe(+) + CO(2), 294 K) = (1.59 +/- 0.34) x 10(-10) cm(3) molecule(-1) s(-1), where the quoted uncertainties are a combination of the 1sigma standard errors in the kinetic data and the systematic experimental errors. The surprisingly slow reaction between FeO(+) and O is examined using ab initio quantum calculations of the relevant potential energy surfaces. The importance of this reaction for controlling the lifetime of sporadic E layers is then demonstrated using a model of the upper mesosphere and lower thermosphere.

  12. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    PubMed

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  13. Increased 13-hydroxyoctadecadienoic acid content in lipopolysaccharide stimulated macrophages.

    PubMed

    Schade, U F; Burmeister, I; Engel, R

    1987-09-15

    Endotoxin-stimulated mouse peritoneal macrophages were found to contain 13-hydroxyoctadecadienoic acid, which was released upon alkaline hydrolysis of the cells. Compared to untreated cells, incubation with LPS increased the content of 13-hydroxyoctadecadienoic acid in macrophage hydrolysates to about 8-fold. Analysis of the material on chiralphase HPLC revealed that it consisted prevalently of 13(S)-hydroxyoctadecadienoic acid. This indicates its enzymatic origine.

  14. Pharmacokinetics and Metabolism of (R,R)-Methoxyfenoterol in Rat

    PubMed Central

    Siluk, Danuta; Mager, Donald E.; Kim, Hee Seung; Wang, Yan; Furimsky, Anna M.; Ta, Amy; Iyer, Lalitha V.; Green, Carol E.; Wainer, Irving W.

    2010-01-01

    (R,R)-Fenoterol (Fen), a β2-adrenoceptor agonist, is under clinical investigation in the treatment of congestive heart disease. The pharmacokinetics and metabolism of the 4-methoxyphenyl derivative of (R,R)-Fen, (R,R)-MFen, have been determined following intravenous and oral administration to the rat and compared with corresponding results obtained with (R,R)-Fen. Results of the study suggest that (R,R)-MFen can offer pharmacokinetic and metabolic advantages in comparison to an earlier (R,R)-Fen.The oral administration revealed that the net exposure of (R,R)-MFen was about three-fold higher than that of (R,R)-Fen (7.2 versus 2.3 min × nmol ml-1), while intravenous administration proved that the clearance was significantly reduced, 48 versus 146 ml min-1 kg-1, the T1/2 was significantly longer, 152.9 versus 108.9 min and the area under the curve (AUC) was significantly increased, 300 versus 119 min × nmol ml-1.(R,R)-MFen was primarily cleared by glucuronidation associated with significant presystemic glucuronidation of the compound. After intravenous and oral administration of (R,R)-MFen, (R,R)-Fen and (R,R)-Fen-G were detected in the urine samples indicating that (R,R)-MFen was O-demethylated and subsequently conjugated to (R,R)-Fen-G. The total (R,R)-Fen and (R,R)-Fen-G as a percentage of the dose after intravenous administration was 3.6% while after oral administration was 0.3%, indicating that only a small fraction of the drug escaped presystemic glucuronidation and was available for O-demethylation.The glucuronidation pattern was confirmed by the results from in vitro studies where incubation of (R,R)-MFen with rat hepatocytes produced (R,R)-MFen-G, (R,R)-Fen and (R,R)-Fen-G, while incubation with rat intestinal microsomes only resulted in the formation of (R,R)-MFen-G. PMID:20039779

  15. Pharmacokinetics and metabolism of (R,R)-methoxyfenoterol in rat.

    PubMed

    Siluk, D; Mager, D E; Kim, H S; Wang, Y; Furimsky, A M; Ta, A; Iyer, L V; Green, C E; Wainer, I W

    2010-03-01

    (R,R)-fenoterol (Fen), a beta(2)-adrenoceptor agonist, is under clinical investigation in the treatment of congestive heart disease. The pharmacokinetics and metabolism of the 4-methoxyphenyl derivative of (R,R)-Fen, (R,R)-MFen, have been determined following intravenous and oral administration to the rat and compared with corresponding results obtained with (R,R)-Fen. Results from the study suggest that (R,R)-MFen can offer pharmacokinetic and metabolic advantages in comparison to an earlier (R,R)-Fen. The oral administration revealed that the net exposure of (R,R)-MFen was about three-fold higher than that of (R,R)-Fen (7.2 versus 2.3 min x nmol ml(-1)), while intravenous administration proved that the clearance was significantly reduced, 48 versus 146 ml min(-1) kg(-1), the T(1/2) was significantly longer, 152.9 versus 108.9 min, and the area under the curve (AUC) was significantly increased, 300 versus 119 min x nmol ml(-1). (R,R)-MFen was primarily cleared by glucuronidation associated with significant presystemic glucuronidation of the compound. After intravenous and oral administration of (R,R)-MFen, (R,R)-Fen and (R,R)-Fen-G were detected in the urine samples indicating that (R,R)-MFen was O-demethylated and subsequently conjugated to (R,R)-Fen-G. The total (R,R)-Fen and (R,R)-Fen-G as a percentage of the dose after intravenous administration was 3.6%, while after oral administration was 0.3%, indicating that only a small fraction of the drug escaped presystemic glucuronidation and was available for O-demethylation. The glucuronidation pattern was confirmed by the results from in vitro studies where incubation of (R,R)-MFen with rat hepatocytes produced (R,R)-MFen-G, (R,R)-Fen and (R,R)-Fen-G, while incubation with rat intestinal microsomes only resulted in the formation of (R,R)-MFen-G.

  16. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse.

    PubMed

    O'Callaghan, J P; Miller, D B

    1994-08-01

    Dopaminergic (DA) and serotonergic (5-HT) projections to striatum and cortex have been implicated as the primary targets of substituted amphetamine (AMP)-induced neurotoxicity, largely on the basis of the propensity of these compounds to cause protracted decrements in DA and 5-HT rather than on the basis of AMP-induced alterations of indices linked to neural damage. Moreover, most studies of AMP-induced neurotoxicity, regardless of the endpoints assessed, have been conducted using a rat model; relatively little attention has been focused on the effects of these compounds in the mouse. Here, we evaluated the potential neurotoxic effects of d-methamphetamine (d-METH), d-methylenedioxyamphetamine (d-MDA), d-methylene-dioxymethamphetamine (d-MDMA) and d-fenfluramine (d-FEN) in the C57BL6/J mouse. Astrogliosis, assessed by quantification of glial fibrillary acidic protein (GFAP), was taken as the main index of AMP-induced neural damage. A silver degeneration stain also was used to obtain direct evidence of AMP-induced neuronal damage. Assays of tyrosine hydroxylase (TH), DA and 5-HT were used to assess effects on DA and 5-HT systems. Mice received d-METH (10 mg/kg), d-MDA (20 mg/kg), d-MDMA (20 mg/kg) or d-FEN (25 mg/kg) every 2 hr for a total of four s.c. injections. d-METH, d-MDA and d-MDMA caused a large (300%) increase in striatal GFAP that resolved by 3 weeks and a 50 to 75% decrease in TH and DA that did not resolve. d-METH, d-MDA and d-MDMA also caused fiber and terminal degeneration in striatum as revealed by silver staining. d-FEN did not affect any parameters in striatum. d-METH, d-MDA and d-MDMA also increased GFAP in cortex, effects that were associated with small (10-25%) and transient decrements in cortical 5-HT. d-FEN caused prolonged (weeks) decrements (20%) in cortical 5-HT but did not affect cortical GFAP. The effects of d-METH, d-MDA and d-MDMA were stereoselective and were blocked by pretreatment with MK-801. Core temperature was slightly elevated by

  17. Comparison of clinical characteristics of chronic cough due to non-acid and acid gastroesophageal reflux.

    PubMed

    Xu, Xianghuai; Yang, Zhongmin; Chen, Qiang; Yu, Li; Liang, Siwei; Lü, Hanjing; Qiu, Zhongmin

    2015-04-01

    Little is known about non-acid gastroesophageal reflux-induced chronic cough (GERC). The purpose of the study is to explore the clinical characteristics of non-acid GERC. Clinical symptoms, cough symptom score, capsaicin cough sensitivity, gastroesophageal reflux diagnostic questionnaire (GerdQ) score, findings of multichannel intraluminal impedance-pH monitoring (MII-pH) and response to pharmacological anti-reflux therapy were retrospectively reviewed in 38 patients with non-acid GERC and compared with those of 49 patients with acid GERC. Non-acid GERC had the similar cough character, cough symptom score, and capsaicin cough sensitivity to acid GERC. However, non-acid GERC had less frequent regurgitation (15.8% vs 57.1%, χ(2)  = 13.346, P = 0.000) and heartburn (7.9% vs 32.7%, χ(2)  = 7.686, P  = 0.006), and lower GerdQ score (7.4 ± 1.4 vs 10.6 ± 2.1, t = -6.700, P = 0.003) than acid GERC. Moreover, MII-pH revealed more weakly acidic reflux episodes, gas reflux episodes and a higher symptom association probability (SAP) for non-acid reflux but lower DeMeester score, acidic reflux episodes and SAP for acid reflux in non-acid GERC than in acid GERC. Non-acid GERC usually responded to the standard anti-reflux therapy but with delayed cough resolution or attenuation when compared with acid GERC. Fewer patients with non-acid GERC needed an augmented acid suppressive therapy or treatment with baclofen. There are some differences in the clinical manifestations between non-acid and acid GERC, but MII-pH is essential to diagnose non-acid GERC. © 2014 John Wiley & Sons Ltd.

  18. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    USDA-ARS?s Scientific Manuscript database

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  19. Re-establishment of hummock topography promotes tree regeneration on highly disturbed moderate-rich fens.

    PubMed

    Lieffers, Victor J; Caners, Richard T; Ge, Hangfei

    2017-07-15

    Winter exploration of oil sands deposits underlying wooded fens mostly eliminates the hummock-hollow topography on drilling pads and the ice roads leading to them, after their abandonment in spring. Recovery of black spruce (Picea mariana (P. Mill.) B.S.P.) and tamarack (Larix laricina (Du Roi) K. Koch) on these disturbed peatlands is thought to depend on the recovery of hummock topography. In late winter, numerous large blocks of frozen peat (1.5 × 1.5 m) were lifted out of the flattened drilling pads and positioned beside their excavated hollows; this was done on six temporary pads. Four years later, the condition of the mounds and the regeneration of conifers from natural seed dispersal were assessed on these elevated mounds compared to adjacent flattened areas of the pads. Then, conifer seedling density was more than five times higher on elevated spots than the mostly flat, flood-prone areas between them, and seedling density was positively related to mound height and strength of seed source. Higher mounds tended to have larger seedlings. Mounds on some of the pads were heavily eroded down; these pads had peat with higher humification, and operationally these pads were also treated in late winter when peat was thawing and fractured into pieces during mound construction. Developing a large volume of elevated substrate that persists until natural hummock-forming mosses can establish is thought necessary for tree recruitment and the recovery of the habitat for the threatened woodland caribou of this region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.

    PubMed

    Ozdemir, Ayse; Gursaclı, Refiye Tekiner; Tekinay, Turgay

    2014-05-01

    The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54 × 10(4) M(-1). FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.

  1. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less

  2. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    DOE PAGES

    Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.; ...

    2017-02-23

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less

  3. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    PubMed Central

    Rashid, Fahad; Harris, Paul D; Zaher, Manal S; Sobhy, Mohamed A; Joudeh, Luay I; Yan, Chunli; Piwonski, Hubert; Tsutakawa, Susan E; Ivanov, Ivaylo; Tainer, John A; Habuchi, Satoshi; Hamdan, Samir M

    2017-01-01

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability. DOI: http://dx.doi.org/10.7554/eLife.21884.001 PMID:28230529

  4. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes.

    PubMed Central

    Zolman, B K; Yoder, A; Bartel, B

    2000-01-01

    Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA. PMID:11063705

  5. Methane emissions from boreal peatlands in a changing climate: Quantifying the sensitivity of methane fluxes to experimental manipulations of water table and soil temperature regimes in an Alaskan boreal fen

    NASA Astrophysics Data System (ADS)

    Treat, C. C.; Turetsky, M.; Harden, J.; McGuire, A.

    2006-12-01

    Peatlands cover only 3-5 % of the world's land surface but store 30 % of the world's soil carbon (C) pool. Peatlands currently are thought to function globally as a net sink for atmospheric CO2, sequestering approximately 76 Tg (1012 g) C yr-1. However, peatlands also function as a net source of atmospheric CH4. Approximately 25% of the 270 Tg CH4 yr-1 emitted from natural sources are emitted from northern wetlands. Methane production (methanogenesis) and consumption (methane oxidation) in peatlands are sensitive to both fluctuations in soil moisture and temperature. Boreal regions already are experiencing rapid changes in climate, including longer and drier growing seasons and the degradation of permafrost. Changes in peat environments in response to these climate changes could have significant implications for CH4 emissions to the atmosphere, and thus the radiative forcing of high latitude regions. In 2005, we initiated a large scale in situ climate experiment in a moderately rich fen near the Bonanza Creek LTER site in central Alaska (APEX: www.apex.msu.edu). The goal of our project is to understand vegetation and C cycling processes under altered water table and soil thermal regimes. We established three water table plots (control, raised, lowered), each about 120 m2 in area, using drainage ditches to lower the water table by 5-10 cm and solar powered pumps to raise the water table by about 5-15 cm. Within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. We used static chambers and gas chromatography to quantify methane fluxes at each water table x soil warming plot through the growing seasons of 2005 and 2006. Additionally, we quantified seasonal CH4 fluxes along an adjacent moisture gradient that included four distinct soil moisture and vegetation zones, including a moderately rich fen (APEX site), an emergent macrophyte marsh, a shrubby permafrost fen, and a black spruce

  6. Full GHG balance of a drained fen peatland cropped to spring barley and reed canary grass using comparative assessment of CO2 fluxes.

    PubMed

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka P; Lærke, Poul Erik

    2015-03-01

    Empirical greenhouse gas (GHG) flux estimates from diverse peatlands are required in order to derive emission factors for managed peatlands. This study on a drained fen peatland quantified the annual GHG balance (Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and C exported in crop yield) from spring barley (SB) and reed canary grass (RCG) using static opaque chambers for GHG flux measurements and biomass yield for indirectly estimating gross primary production (GPP). Estimates of ecosystem respiration (ER) and GPP were compared with more advanced but costly and labor-intensive dynamic chamber studies. Annual GHG balance for the two cropping systems was 4.0 ± 0.7 and 8.1 ± 0.2 Mg CO2-Ceq ha(-1) from SB and RCG, respectively (mean ± standard error, n = 3). Annual CH4 emissions were negligible (<0.006 Mg CO2-Ceq ha(-1)), and N2O emissions contributed only 4-13 % of the full GHG balance (0.5 and 0.3 Mg CO2-Ceq ha(-1) for SB and RCG, respectively). The statistical significance of low CH4 and N2O fluxes was evaluated by a simulation procedure which showed that most of CH4 fluxes were within the range that could arise from random variation associated with actual zero-flux situations. ER measured by static chamber and dynamic chamber methods was similar, particularly when using nonlinear regression techniques for flux calculations. A comparison of GPP derived from aboveground biomass and from measuring net ecosystem exchange (NEE) showed that GPP estimation from biomass might be useful, or serve as validation, for more advanced flux measurement methods. In conclusion, combining static opaque chambers for measuring ER of CO2 and CH4 and N2O fluxes with biomass yield for GPP estimation worked well in the drained fen peatland cropped to SB and RCG and presented a valid alternative to estimating the full GHG balance by dynamic chambers.

  7. Why is hydrofluoric acid a weak acid?

    PubMed

    Ayotte, Patrick; Hébert, Martin; Marchand, Patrick

    2005-11-08

    The infrared vibrational spectra of amorphous solid water thin films doped with HF at 40 K reveal a strong continuous absorbance in the 1000-3275 cm(-1) range. This so-called Zundel continuum is the spectroscopic hallmark for aqueous protons. The extensive ionic dissociation of HF at such low temperature suggests that the reaction enthalpy remains negative down to 40 K. These observations support the interpretation that dilute HF aqueous solutions behave as weak acids largely due to the large positive reaction entropy resulting from the structure making character of the hydrated fluoride ion.

  8. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  9. FTMS studies of sputtered metal cluster ions (IV): size-selective effects in the chemistry of Fe{/n +} with NH3 and Pd{/n +} with D2 or C2H4

    NASA Astrophysics Data System (ADS)

    Irion, M. P.; Selinger, A.; Schnabel, P.

    1991-03-01

    Fe{/n +} and Pd{/n +} clusters up to n=19 and n=25, respectively, are produced in an external ion source by sputtering of the respective metal foils with Xe+ primary ions at 20 keV. They are transferred to the ICR cell of a home-built Fourier transform mass spectrometer, where they are thermalized to nearly room temperature and stored for several tens of seconds. During this time, their reactions with a gas leaked in at low level are studied. Thus in the presence of ammonia, most Fe{/n +} clusters react by simply adsorbing intact NH3 molecules. Only Fe{4/+} ions show dehydrogenation/adsorption to Fe4(NH){/m +} intermediates ( m=1, 2) that in a complex scheme go on adsorbing complete NH3 units. To clarify the reaction scheme, one has to isolate each species in the ion cell, which often requires the ejection of ions very close in mass. This led to the development of a special isolation technique that avoids the use of isotopically pure metal samples. Pd{n/+} cluster ions ( n=2...9) dehydrogenate C2H4 in general to yield Pd n (C2H2)+, yet Pd{6/+} appear totally unreactive. Towards D2, Pd{7/+} ions seem inert, whereas Pd{8/+} adsorb up to two molecules.

  10. Hydrogen bonds in betaine-acid (1:1) crystals revealed by Raman and 13C chemical shift tensors

    NASA Astrophysics Data System (ADS)

    Ilczyszyn, Marek; Ilczyszyn, Maria M.

    2017-06-01

    H-bonds of five betaine-acid (1:1) crystals are considered by analysis of tensors based on the Raman scissoring mode and 13C chemical shift of the betaine -CO1O2- carboxylate group. The leading structural factor in these systems is the strongest H-bond linking the betaine and the acidic moieties, (O1⋯H-O)com. The Raman and NMR tensors are strongly related to its character and to the R(O1⋯O)com distance. Very high molecular polarizability variation due to the scissoring vibration was found for the betaine-selenious acid crystal. The probable reason is modest network of H-bonds in this case and relatively high proton polarizability of these bonds.

  11. Potentiation of substance p by lysergic acid diethylamide in vivo

    PubMed Central

    Krivoy, W. A.

    1961-01-01

    In doses of 10 μg/kg or more, lysergic acid diethylamide enhanced the fourth potential (DR IV) of the dorsal root potential complex in the cat. Smaller doses of lysergic acid diethylamide did not in themselves alter the DR IV, but revealed an enhancement of the potential by substance P, which by itself had no effect. 2-Bromolysergic acid diethylamide had no action on the dorsal root potentials, but prevented the actions of lysergic acid diethylamide. PMID:13754427

  12. Eutrophication triggers contrasting multilevel feedbacks on litter accumulation and decomposition in fens.

    PubMed

    Emsens, W-J; Aggenbach, C J S; Grootjans, A P; Nfor, E E; Schoelynck, J; Struyf, E; van Diggelen, R

    2016-10-01

    Eutrophication is a major threat for the persistence of nutrient-poor fens, as multilevel feedbacks on decomposition rates could trigger carbon loss and increase nutrient cycling. Here, we experimentally investigate the effects of macronutrient (NPK) enrichment on litter quality of six species of sedge (Carex sp.), which we relate to litter decomposition rates in a nutrient-poor and nutrient-rich environment. Our research focused on four levels: we examined how eutrophication alters (1) fresh litter production ("productivity shift"), (2) litter stoichiometry within the same species ("intraspecific shift"), (3) overall litter stoichiometry of the vegetation under the prediction that low-competitive species are outcompeted by fast-growing competitors ("interspecific shift"), and (4) litter decomposition rates due to an altered external environment (e.g., shifts in microbial activity; "exogenous shift"). Eutrophication triggered a strong increase in fresh litter production. Moreover, individuals of the same species produced litter with lower C:N and C:P ratios, higher K contents, and lower lignin, Ca and Mg contents (intraspecific shift), which increased litter decomposability. In addition, species typical for eutrophic conditions produced more easily degradable litter than did species typical for nutrient-poor conditions (interspecific shift). However, the effects of nutrient loading of the external environment (exogenous shift) were contradictory. Here, interactions between litter type and ambient nutrient level indicate that the (exogenous) effects of eutrophication on litter decomposition rates are strongly dependent of litter quality. Moreover, parameters of litter quality only correlated with decomposition rates for litter incubated in nutrient-poor environments, but not in eutrophic environments. This suggests that rates of litter decomposition can be uncoupled from litter stoichiometry under eutrophic conditions. In conclusion, our results show that

  13. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults.

    PubMed

    Stark, Ken D; Van Elswyk, Mary E; Higgins, M Roberta; Weatherford, Charli A; Salem, Norman

    2016-07-01

    Studies reporting blood levels of the omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were systematically identified in order to create a global map identifying countries and regions with different blood levels. Included studies were those of healthy adults, published in 1980 or later. A total of 298 studies met all inclusion criteria. Studies reported fatty acids in various blood fractions including plasma total lipids (33%), plasma phospholipid (32%), erythrocytes (32%) and whole blood (3.0%). Fatty acid data from each blood fraction were converted to relative weight percentages (wt.%) and then assigned to one of four discrete ranges (high, moderate, low, very low) corresponding to wt.% EPA+DHA in erythrocyte equivalents. Regions with high EPA+DHA blood levels (>8%) included the Sea of Japan, Scandinavia, and areas with indigenous populations or populations not fully adapted to Westernized food habits. Very low blood levels (≤4%) were observed in North America, Central and South America, Europe, the Middle East, Southeast Asia, and Africa. The present review reveals considerable variability in blood levels of EPA+DHA and the very low to low range of blood EPA+DHA for most of the world may increase global risk for chronic disease. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  15. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  16. Thermal, Dielectric Studies on Pure and Amino Acid L-Glutamic Acid, L-Histidine L-Valine Doped Potassium Dihydrogen Phosphate Single Crystals

    NASA Astrophysics Data System (ADS)

    Kumaresan, P.; Babu, S. Moorthy; Anbarasan, P. M.

    Amino acids (L-Glutamic acid, L-Histidine, L-Valine) doped potassium dihydrogen phosphate crystals were grown by the solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mole % to 10 mole %. The solubility data for all dopant concentrations were determined. The variation in pH and the corresponding habit modification of the grown crystals were characterized with UV - VIS, FT-IR and SHG trace elements, and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material, which also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  17. Proteomic-based stable isotope probing reveals taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less

  18. Proteomic-based stable isotope probing reveals taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    DOE PAGES

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; ...

    2016-04-26

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less

  19. Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Broussard, Tyler C.; Bose, Jeffrey L.; Rosch, Jason W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus. PMID:25002480

  20. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.

    1998-01-01

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that

  1. Response of plant community structure and primary productivity to experimental drought and flooding in an Alaskan fen

    USGS Publications Warehouse

    Churchill, A.C.; Turetsky, Merritt R.; McGuire, A. David; Hollingsworth, Teresa N.

    2014-01-01

    Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on plant species abundance and ecosystem primary production in an Alaskan fen by manipulating the water table in field treatments to mimic either sustained flooding (raised water table) or drought (lowered water table) conditions for 6 years. We found that water table treatments altered plant species abundance by increasing sedge and grass cover in the raised water table treatment and reducing moss cover while increasing vascular green area in the lowered water table treatment. Gross primary productivity was lower in the lowered treatment than in the other plots, although there were no differences in total biomass or vascular net primary productivity among the treatments. Overall, our results indicate that vegetation abundance was more sensitive to variation in water table than total biomass and vascular biomass accrual. Finally, in our experimental peatland, drought had stronger consequences for change in vegetation abundance and ecosystem function than sustained flooding.

  2. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches

    PubMed Central

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-01-01

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  3. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics.

    PubMed

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; Liu, Jun; Hu, Min; Li, Sheng-Jin; Kuang, Jia-Liang; Chain, Patrick S G; Huang, Li-Nan; Shu, Wen-Sheng

    2015-06-01

    High-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a 'divide and conquer' strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We report the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Our study demonstrates the potential of the 'divide and conquer' strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.

  4. A rapid NMR-based method for discrimination of strain-specific cell wall teichoic acid structures reveals a third backbone type in Lactobacillus plantarum.

    PubMed

    Tomita, Satoru; Tanaka, Naoto; Okada, Sanae

    2017-03-01

    The lactic acid bacterium Lactobacillus plantarum is capable of producing strain-specific structures of cell wall teichoic acid (WTA), an anionic polysaccharide found in the Gram-positive bacterial cell wall. In this study, we established a rapid, NMR-based procedure to discriminate WTA structures in this species, and applied it to 94 strains of L. plantarum. Six previously reported glycerol- and ribitol-containing WTA subtypes were successfully identified from 78 strains, suggesting that these were the dominant structures. However, the level of structural variety differed markedly among bacterial sources, possibly reflecting differences in strain-level microbial diversity. WTAs from eight strains were not identified based on NMR spectra and were classified into three groups. Structural analysis of a partial degradation product of an unidentified WTA produced by strain TUA 1496L revealed that the WTA was 1-O-β-d-glucosylglycerol. Two-dimensional NMR analysis of the polymer structure showed phosphodiester bonds between C-3 and C-6 of the glycerol and glucose residues, suggesting a polymer structure of 3,6΄-linked poly(1-O-β-d-glucosyl-sn-glycerol phosphate). This is the third WTA backbone structure in L. plantarum, following 3,6΄-linked poly(1-O-α-d-glucosyl-sn-glycerol phosphate) and 1,5-linked poly(ribitol phosphate). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A comparative study on the effects of amphiphilic and hydrophilic polymers on the release profiles of a poorly water-soluble drug.

    PubMed

    Irwan, Anastasia W; Berania, Jacqueline E; Liu, Xueming

    2016-03-01

    This paper reports the use of two crystalline polymers, an amphiphilic Pluronic® F-127 (PF-127) and a hydrophilic poly(ethylene glycol) (PEG6000) as drug delivery carriers for improving the drug release of a poorly water-soluble drug, fenofibrate (FEN), via micelle formation and formation of a solid dispersion (SD). In 10% PF-127 (aq.), FEN showed an equilibrium solubility of ca. 0.6 mg/mL, due to micelle formation. In contrast, in 10% PEG6000 (aq.), FEN only exhibited an equilibrium solubility of 0.0037 mg/mL. FEN-loaded micelles in PF-127 were prepared by direct dissolution and membrane dialysis. Both methods only yielded a highest drug loading (DL) of 0.5%. SDs of FEN in PF-127 and PEG6000, at DLs of 5-80%, were prepared by solvent evaporation. In-vitro dissolution testing showed that both micelles and SDs significantly improved FEN's release rate. The SDs of FEN in PF-127 showed significantly faster release than crystalline FEN, when the DL was as high as 50%, whereas SDs of PEG6000 showed similar enhancement in the release rate when the DL was not more than 20%. The DSC thermograms of SDs of PF-127 exhibited a single phase transition peak at ca. 55-57 °C when the DL was not more than 50%, whereas those in PEG6000 exhibited a similar peak at ca. 61-63 °C when the DL was not more than 35%. When the DL exceeded 50% for SDs of PF-127 and 35% for SDs of PEG6000, DSC thermograms showed two melting peaks for the carrier polymer and FEN, respectively. FT-IR studies revealed that PF-127 has a stronger hydrophobic-hydrophobic interaction with FEN than PEG6000. It is likely that both dispersion and micelle formation contributed to the stronger effect of PF-127 on enhancing the release rate of FEN in its SDs.

  6. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  7. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  8. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.

    PubMed

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery.

  9. Biosynthesis of Lipoic Acid in Arabidopsis: Cloning and Characterization of the cDNA for Lipoic Acid Synthase1

    PubMed Central

    Yasuno, Rie; Wada, Hajime

    1998-01-01

    Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide. PMID:9808738

  10. Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis.

    PubMed

    Wagner, Alexander J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán; Blackmond, Donna G

    2017-04-26

    Chiral pentose sugars mediate the enantioselective synthesis of amino acid precursors, with the magnitude of the chiral induction dictated by a subtle cooperativity between sugar hydroxyl groups. Ribose and lyxose give opposite chiral preferences, and theoretical calculations reveal the pseudoenantiomeric nature of transition state structures from the two sugars. Prebiotically plausible mixtures of natural d-sugars lead to enantioenrichment of natural l-amino acid precursors. Temporal monitoring and kinetic modeling of the reaction reveal an unusual dynamic kinetic resolution that shifts toward an enantioselective pathway over time, providing an amplification mechanism for the transfer of chiral information. This work adds to growing evidence for synergy in the etiology of the single chirality of the two most important classes of biological molecules, the sugars that make up DNA and RNA and the amino acids that form proteins.

  11. Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis

    PubMed Central

    2017-01-01

    Chiral pentose sugars mediate the enantioselective synthesis of amino acid precursors, with the magnitude of the chiral induction dictated by a subtle cooperativity between sugar hydroxyl groups. Ribose and lyxose give opposite chiral preferences, and theoretical calculations reveal the pseudoenantiomeric nature of transition state structures from the two sugars. Prebiotically plausible mixtures of natural d-sugars lead to enantioenrichment of natural l-amino acid precursors. Temporal monitoring and kinetic modeling of the reaction reveal an unusual dynamic kinetic resolution that shifts toward an enantioselective pathway over time, providing an amplification mechanism for the transfer of chiral information. This work adds to growing evidence for synergy in the etiology of the single chirality of the two most important classes of biological molecules, the sugars that make up DNA and RNA and the amino acids that form proteins. PMID:28470050

  12. [Relationship between the culture medium and the fatty acid composition of diphtheria and non-pathogenic corynebacteria].

    PubMed

    Vasiurenko, Z P; Siniak, K M

    1977-04-01

    The gasochromatic method was applied to the study of the cellular fatty acids composition in diphtheria and nonpathogenic corynebacteria (diphtheroids and psendo diptheria bacillus). Marked differences in the content of unsaturated fatty acids were revealed in them. Thus, palmito leic acid served the preponderant unsaturated fatty acid in Corynebacteria diphtheriae, and unsaturated fatty acids with 18 carbon atoms (octadeconoic and linoleic)--in nonpathogenic corynebacteria. The mentioned changes permit use this sign as differential. When grown on Loeffler's medium all the corynebacteria under study had a similar fatty acid composition characterized by the prevalence of unsaturated fatty acids with 18 carbon atoms. On the basis of studying the fatty acid spectrum of the nutrient media used it is supposed that one of the factors determining the revealed dependence of the corynebacterial fatty acid composition on the culture medium was the fatty acid composition of the latter.

  13. Solubility limits of dibutyl phosphoric acid in uranium-nitric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    2000-01-04

    The Savannah River Site has enriched uranium (EU) solution that has been stored since being purified in its solvent extraction processes. The concentrations in solution are approximately 6 g/L U and 0.1 M nitric acid. Residual tributylphosphate in solution has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 30--50 mg/L. Dibutyl phosphoric acid, in turn, is in equilibrium with (HDBP){sub 2} and DBP{sup {minus}}. Uranium can form compounds with the dibutylphosphate ion (DBP{sup {minus}}) which have limited solubility, thereby creating a nuclear criticality safety issue. Literature reports and earlier SRTC tests have shown that it is feasiblemore » to precipitate U-DBP solid during the storage and processing of EU solutions. As a result, a series of solubility experiments were run at nitric acid concentrations from 0--4.0 M HNO{sub 3}, uranium at 0--90 g/L, and temperatures from 0--30 C. The data shows temperature and nitric acid concentration dependence consistent with what would be expected. With respect to uranium concentration, U-DBP solubility passes through a minimum between 6 and 12 g/L U at the acid concentrations and temperatures studied. However, the minimum shows a slight shift toward lower uranium concentrations at lower nitric acid concentrations. The shifts in solubility are strongly dependent upon the overall ionic strength of the solution. The data also reveal a shift to higher DBP solubility above 0.5 M HNO{sub 3} for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified distinct differences between precipitates from less than 0.5 M solutions and those from greater than 4 M acid. Analyses identified UO{sub 2}(DBP){sub 2} as the dominant compound present at low acid concentrations in accordance with literature reports. As the acid concentration increases, the crystalline UO{sub 2}(DBP){sub 2} shows molecular substitutions and an increase in amorphous content.« less

  14. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  15. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    PubMed

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  16. Water table depth regulates evapotranspiration and methane flux of a near-pristine temperate lowland fen measured by eddy covariance and static chambers

    NASA Astrophysics Data System (ADS)

    Kaduk, Jörg; Pan, Gong; Cumming, Alex; Evans, Jon; Kelvin, Jon; Peacock, Mike; Gauci, Vincent; Hughes, John; Page, Susan; Balzter, Heiko

    2015-04-01

    Methane is the second most important greenhouse gas after carbon dioxide, although the current atmospheric concentration is only about two parts per million. This results from a radiative forcing of 0.48 +/-0.05 Wm-2, about 26 times that of carbon dioxide. Atmospheric concentrations as well as emissions to the atmosphere have been increasing strongly over the last decades. Emissions are to a large extent biogenic where the largest biogenic source, wetlands, has the largest uncertainty. This precludes the construction of a reliable global methane budget, as well as meaningful predictions, as results from wetland models are uncertain and there are insufficient data for model improvement. We measured evapotranspiration and methane flux of a near-pristine temperate lowland fen in East Anglia in the United Kingdom from July 2013 to June 2014 by eddy covariance, which represents the first annual cycle of eddy covariance measurements of methane flux in this category of wetland. Methane fluxes from vegetation and ditches were additionally measured separately with static chambers. Annual evapotranspiration was 720.4 to 732.6 mm yr-1. Annual methane release was 3.77 to 4.03 g CH4 m-2 yr-1. Water table and methane fluxes were very different in the two half years: an average of -0.63 nmol CH4 m-2s-1 (a net uptake) for July-December 2013 and 16.2 nmol CH4 m-2s-1 (a net release) for January-June 2014 with a data range of -99 to 410 nmol CH4 m-2s-1 over the full year. Water table has the dominant role in determining methane flux and, under a very low water table, methane uptake was observed. Temperature has a clear impact on fluxes at high water tables. Eddy covariance and chamber measurements show the same annual pattern flux magnitude throughout the year. The fen can switch from being a source to a sink if the water table changes over a small critical depth range. Our measurements have implications for large scale wetland restoration plans in the eastern UK and potential

  17. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties.

    PubMed

    Gupta, Poulami; De, Bratati

    2017-07-03

    A GC-MS based analytical approach was undertaken to understand the metabolomic responses of seedlings of 2 salt sensitive (Sujala and MTU 7029) and 2 tolerant varieties (Bhutnath, and Nonabokra) of indica rice (Oryza sativa L.) to NaCl induced stress. The 4 varieties responded differently to NaCl treatment with respect to the conserved primary metabolites (sugars, polyols, amino acids, organic acids and certain purine derivatives) of the leaf of rice seedlings. However, there were significant differences in salt induced production of chorismic acid derivatives. Serotonin level was increased in both the salt tolerant varieties in response to NaCl induced stress. In both the salt tolerant varieties, increased production of the signaling molecule gentisic acid in response to NaCl treatment was noticed. Salt tolerant varieties also produced increased level of ferulic acid and vanillic acid. In the salt sensitive varieties, cinnamic acid derivatives, 4-hydroxycinnamic acid (in Sujala) and 4-hydroxybenzoic acid (in MTU 7029), were elevated in the leaves. So increased production of the 2 signaling molecules serotonin and gentisic acid may be considered as 2 important biomarker compounds produced in tolerant varieties contributing toward NaCl tolerance.

  18. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2016-08-01

    Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4)  M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Free amino acids in spider hemolymph.

    PubMed

    Tillinghast, Edward K; Townley, Mark A

    2008-11-01

    We examined the free amino acid composition of hemolymph from representatives of five spider families with an interest in knowing if the amino acid profile in the hemolymph of orb-web-building spiders reflects the high demands for small organic compounds in the sticky droplets of their webs. In nearly all analyses, on both orb and non-orb builders, glutamine was the most abundant free amino acid. Glycine, taurine, proline, histidine, and alanine also tended to be well-represented in orb and non-orb builders. While indications of taxon-specific differences in amino acid composition were observed, it was not apparent that two presumptive precursors (glutamine, taurine) of orb web sticky droplet compounds were uniquely enriched in araneids (orb builders). However, total amino acid concentrations were invariably highest in the araneids and especially so in overwintering juveniles, even as several of the essential amino acids declined during this winter diapause. Comparing the data from this study with those from earlier studies revealed a number of discrepancies. The possible origins of these differences are discussed.

  20. Metabonomics reveals metabolite changes in biliary atresia infants.

    PubMed

    Zhou, Kejun; Xie, Guoxiang; Wang, Jun; Zhao, Aihua; Liu, Jiajian; Su, Mingming; Ni, Yan; Zhou, Ying; Pan, Weihua; Che, Yanran; Zhang, Ting; Xiao, Yongtao; Wang, Yang; Wen, Jie; Jia, Wei; Cai, Wei

    2015-06-05

    Biliary atresia (BA) is a rare neonatal cholestatic disorder caused by obstruction of extra- and intra-hepatic bile ducts. If untreated, progressive liver cirrhosis will lead to death within 2 years. Early diagnosis and operation improve the outcome significantly. Infants with neonatal hepatitis syndrome (NHS) present similar symptoms, confounding the early diagnosis of BA. The lack of noninvasive diagnostic methods to differentiate BA from NHS greatly delays the surgery of BA infants, thus deteriorating the outcome. Here we performed a metabolomics study in plasma of BA, NHS, and healthy infants using gas chromatography-time-of-flight mass spectrometry. Scores plots of orthogonal partial least-squares discriminant analysis clearly separated BA from NHS and healthy infants. Eighteen metabolites were found to be differentially expressed between BA and NHS, among which seven (l-glutamic acid, l-ornithine, l-isoleucine, l-lysine, l-valine, l-tryptophan, and l-serine) were amino acids. The altered amino acids were quantitatively verified using ultraperformance liquid chromatography-tandem mass spectrometry. Ingenuity pathway analysis revealed the network of "Cellular Function and Maintenance, Hepatic System Development and Function, Neurological Disease" was altered most significantly. This study suggests that plasma metabolic profiling has great potential in differentiating BA from NHS, and amino acid metabolism is significantly different between the two diseases.

  1. Photochemical reaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen) with basic amino acids and dipeptides.

    PubMed

    Suzuki, Tadashi; Shinoda, Mio; Osanai, Yohei; Isozaki, Tasuku

    2013-08-22

    Photoreaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen, KP) with basic amino acids (histidine, lysine, and arginine) and dipeptides (carnosine and anserine) including a histidine moiety in phosphate buffer solution (pH 7.4) has been investigated with transient absorption spectroscopy. With UV irradiation KP(-) gave rise to a carbanion through a decarboxylation reaction, and the carbanion easily abstracted a proton from the surrounding molecule to yield a 3-ethylbenzophenone ketyl biradical (EBPH). The dipeptides as well as the basic amino acids were found to accelerate the proton transfer reaction whereas alanine and glycine had no effect on the reaction, revealing that these amino acids having a protonated side chain act as a proton donor. The formation quantum yield of EBPH was estimated to be fairly large by means of an actinometrical method with benzophenone, and the bimolecular reaction rate constant for the proton transfer between the carbanion and the protonated basic amino acids or the protonated dipeptides was successfully determined. It has become apparent that the bimolecular reaction rate constant for the proton transfer depended on the acid dissociation constant for the side chain of the amino acids for the first time. This reaction mechanism was interpreted by difference of the heat of reaction for each basic amino acid based on the thermodynamical consideration. These results strongly suggest that the side chain of the basic amino acid residue in protein should play an important role for photochemistry of KP in vivo.

  2. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  3. New effective azelaic acid liposomal gel formulation of enhanced pharmaceutical bioavailability.

    PubMed

    Burchacka, E; Potaczek, P; Paduszyński, P; Karłowicz-Bodalska, K; Han, T; Han, S

    2016-10-01

    Azelaic acid is a naturally occurring saturated C9-dicarboxylic acid which has been shown to be effective in the treatment of comedonal acne and inflammatory acne, as well as hiperpigmentary skin disorders. The aim of the present study is to compare new developed liposomal hydrogel (lipogel) and commercially available product in terms of the active substance-azelaic acid bioavailability. Topical formulations were evaluated for physical parameters, such as pH measurement, organoleptic evaluation and liposome size analysis in lipogel formulation. In addition, studies were performed on in vitro antimicrobial preservation, stability and accumulation in the stratum corneum according to guidelines established by European Pharmacopoeia and International Conferences on Harmonisation. The new formula for liposomal gel with azelaic acid has the stability required for pharmaceutical preparations. Moreover, presented formulation F2 reveals a very high accumulation (187.5μg/cm 2 ) of an active substance in the stratum corneum, which results in opportunity to decrease of the API content to 10% in comparison to a reference formula: commercially available cream with 20% of azelaic acid. The study reveals that the final formula of lipogel F2 with azelaic acid had acceptable physical parameters that showed that they were compatible with the skin and in addition this formulation passed stability studies. In vitro antimicrobial preservation studies showed that the formulated lipogel F2 showed strong antibacterial activity; thus, no preservatives were added to the final composition of the preparation. The present study concludes that the formulated lipogel F2 with azelaic acid is stable, efficient in antimicrobial preservation and reveals improved active substance bioavailability. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid*

    PubMed Central

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-01-01

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems. PMID:24928516

  5. Fetal ascites and oligohydramnios: prenatal diagnosis of a sialic acid storage disease (index case).

    PubMed

    Poulain, P; Odent, S; Maire, I; Milon, J; Proudhon, J F; Jouan, H; Le Marec, B

    1995-09-01

    In a 20-year-old primiparous patient, a routine ultrasound scan performed at 28 weeks revealed fetal ascites, bilateral talipes, and oligohydramnios. This woman, married to possibly her first cousin, was at risk for an autosomal recessive disease, a metabolic disorder. At 29 weeks, an amniotic fluid biochemical study revealed the presence of an abnormal band of free sialic acid, leading to a diagnosis of a congenital form of sialic acid storage disease. Termination of pregnancy was performed at 30 weeks. Measurement of free sialic acid in cultured fetal skin fibroblasts confirmed the diagnosis.

  6. Intra-specific diet shift in manila clams (Ruditapes philippinarum) as revealed by carbon and nitrogen stable isotopes and fatty acid biomarker

    NASA Astrophysics Data System (ADS)

    Suh, Y.; Shin, K.

    2011-12-01

    Manila clams sampled in Seonjae Island, Korea with shell lengths (SL) below 19.76 mm in average showed a significantly depleted carbon and nitrogen isotope values (P<0.05) by 0.80~1.41 %. This size related variation can be caused by either altered carbon and nutrient source or by affected isotopic incorporation rates and discrimination factors. In order to examine size-related diet shift in manila clams, R. philippinarum with different sizes that were constantly fed on known mixed microalgae for several months were sampled from Incheon Fisheries Hacheries Research Institute (IFRI). These manila clams have shown a high intra-species variation in growth rate with a maximum difference of more or less 2.30 cm. The smallest size groups (3.68±0.17 mm and 6.88±0.21 mm) obtained their nutrition from both P. tricornutum and aggregated organic matter that consists of dead or decomposed microalgae or other detritus. Bigger size groups (10.92±0.34 mm and 14.81±0.25 mm) obtained most of their energy from P.tricorutum and also from other phytoplankton unlike the biggest size group (21.15±1.02 mm) that feeds mainly on fresh microalgae of all diets fed. This variation in diet reveals that smaller clams mostly inhale dead or decomposed microalgae that sinks on the bottom while the bigger clams uptake more fresh ones that are still alive. This variation in feeding behavior could have been caused by morphological constraints such as limited siphon length. The results suggest that manila clams greater than and below 19.76 mm in average have different feeding behavior and P. tricornutum and I. galbana were the two most preferred diets for manila clams cultured in IFHRI. The result of fatty acid composition of manila clams in relation to size or growth rate suggests that fast growing clams would have rapid metabolism of fatty acids not required by the animals and an accumulation of the essential fatty acids (PUFA). In addition, their higher energy requirement and more active state

  7. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity.

    PubMed

    Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R

    2018-07-01

    Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.

  8. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    PubMed

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  9. Biochemical Characterization of Ferulic Acid and Caffeic Acid Which Effectively Inhibit Melanin Synthesis via Different Mechanisms in B16 Melanoma Cells.

    PubMed

    Maruyama, Hiroko; Kawakami, Fumitaka; Lwin, Thet-Thet; Imai, Motoki; Shamsa, Fazel

    2018-01-01

    In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.

  10. Effect of age on the concentrations of amino acids in the plasma of healthy foals.

    PubMed

    Zicker, S C; Spensley, M S; Rogers, Q R; Willits, N H

    1991-07-01

    The concentrations of 23 amino acids in the plasma of 13 healthy foals were determined before suckling, when foals were 1 to 2 days old, 5 to 7 days old, 12 to 14 days old, and 26 to 28 days old. The ratio of the branched chain amino acids to the aromatic amino acids was also calculated at the 5 time points. Analysis of the concentrations at the 5 ages revealed a significant temporal relationship for each amino acid ranging from a polynomial order of 1 to 4 inclusively. There were significant differences between several concentrations of amino acids in plasma at specific sample times; however, no consistent patterns were revealed. The concentrations of amino acids in healthy foals were markedly different from previously determined values in adult horses. The significant differences in the concentrations of amino acids in plasma of healthy foals at the 5 ages may represent developmental aspects of amino acid metabolism or nutrition.

  11. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  12. Comparative Proteomic Analysis Reveals the Effects of Exogenous Calcium against Acid Rain Stress in Liquidambar formosana Hance Leaves.

    PubMed

    Hu, Wen-Jun; Wu, Qian; Liu, Xiang; Shen, Zhi-Jun; Chen, Juan; Liu, Ting-Wu; Chen, Juan; Zhu, Chun-Quan; Wu, Fei-Hua; Chen, Lin; Wei, Jia; Qiu, Xiao-Yun; Shen, Guo-Xin; Zheng, Hai-Lei

    2016-01-04

    Acid rain (AR) impacts forest health by leaching calcium (Ca) away from soils and plants. Ca is an essential element and participates in various plant physiological responses. In the present study, the protective role of exogenous Ca in alleviating AR stress in Liquidambar formosana Hance at the physiological and proteomic levels was examined. Our results showed that low Ca condition resulted in the chlorophyll content and photosynthesis decreasing significantly in L. formosana leaves; however, these effects could be reversed by high Ca supplementation. Further proteomic analyses successfully identified 81 differentially expressed proteins in AR-treated L. formosana under different Ca levels. In particular, some of the proteins are involved in primary metabolism, photosynthesis, energy production, antioxidant defense, transcription, and translation. Moreover, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that low Ca significantly increased the expression level of the investigated Ca-related genes, which can be reversed by high Ca supplementation under AR stress. Further, Western blotting analysis revealed that exogenous Ca supply reduced AR damage by elevating the expression of proteins involved in the Calvin cycle, reactive oxygen species (ROS) scavenging system. These findings allowed us to better understand how woody plants respond to AR stress at various Ca levels and the protective role of exogenous Ca against AR stress in forest tree species.

  13. Restoration of a mined peat bog in Delafield Township, Waukesha County, Wisconsin: Field and computer model studies of the hydrogeology and the growth of fen buckthorn (Rhamnus frangula)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolidis, N.R.

    1988-01-01

    In order to plan for the restoration of native wetland plant communities at a 105 ha mined peatbog in southeastern Wisconsin, studies of the hydrogeology and of the ecology of an invading exotic shrub species, fen buckthorn (Rhamnus frangula) were undertaken. A network of shallow wells, piezometers, and surface water gages were monitored monthly between September 1985 and September 1987 to delineate lateral and vertical directions of groundwater flow, fluctuations and depths of water table, and groundwater flow rates. Results indicate that groundwater recharge occurred in the active mining area and groundwater discharge occurred in most of the other areasmore » of the site. Summer depth to water table was more than 50cm in some areas suggesting that water levels should be raised to crease favorable sedge meadow habitat. In order to test the proposal of installing water control berms in the drainage ditches to raise water levels at the site, a groundwater flow model was constructed for low flow conditions which typically occur in late summer. The results of the steady state simulations indicated that water levels will be raised an average of approximately 12 cm. This values is at least 40 cm less than the proposed increases in the mined areas. Although the increase in water table elevation would enhance soil moisture conditions, other alternatives such as landscaping and natural modifications may also raise water levels and therefore need to be investigated. The rates of aboveground growth of fen buckthorn stems were estimated for the 1986 and 1987 growing season using regression equations based on measurements of biomass and stem diameter.« less

  14. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing

    Here we report that high-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We reportmore » the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Finally, our study demonstrates the potential of the ‘divide and conquer’ strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.« less

  15. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics

    DOE PAGES

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; ...

    2014-11-07

    Here we report that high-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We reportmore » the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Finally, our study demonstrates the potential of the ‘divide and conquer’ strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.« less

  16. Solid-state NMR Study Reveals Collagen I Structural Modifications of Amino Acid Side Chains upon Fibrillogenesis*

    PubMed Central

    De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise

    2013-01-01

    In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452

  17. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    PubMed

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.

  18. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    PubMed

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  19. Preparation and Optimization of Amorphous Ursodeoxycholic Acid Nano-suspensions by Nanoprecipitation based on Acid-base Neutralization for Enhanced Dissolution.

    PubMed

    Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi

    2017-01-01

    Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    PubMed

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P < 0.05, respectively). Symptom association probability analysis revealed a positive association between GER and cough in three CC patients. Proton pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P < 0.05). Most patients with CC responding to PPI therapy had weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  1. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    NASA Astrophysics Data System (ADS)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.

  2. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream.

    PubMed

    Liljeqvist, Maria; Ossandon, Francisco J; González, Carolina; Rajan, Sukithar; Stell, Adam; Valdes, Jorge; Holmes, David S; Dopson, Mark

    2015-04-01

    An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    PubMed

    Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang

    2017-08-29

    Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.

  4. A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.

    PubMed Central

    Pereira, Suzette L; Huang, Yung-Sheng; Bobik, Emil G; Kinney, Anthony J; Stecca, Kevin L; Packer, Jeremy C L; Mukerji, Pradip

    2004-01-01

    Long-chain n-3 PUFAs (polyunsaturated fatty acids) such as EPA (eicosapentaenoic acid; 20:5 n-3) have important therapeutic and nutritional benefits in humans. In plants, cyanobacteria and nematodes, omega3-desaturases catalyse the formation of these n-3 fatty acids from n-6 fatty acid precursors. Here we describe the isolation and characterization of a gene ( sdd17 ) derived from an EPA-rich fungus, Saprolegnia diclina, that encodes a novel omega3-desaturase. This gene was isolated by PCR amplification of an S. diclina cDNA library using oligonucleotide primers corresponding to conserved regions of known omega3-desaturases. Expression of this gene in Saccharomyces cerevisiae, in the presence of various fatty acid substrates, revealed that the recombinant protein could exclusively desaturate 20-carbon n-6 fatty acid substrates with a distinct preference for ARA (arachidonic acid; 20:4 n-6), converting it into EPA. This activity differs from that of the known omega3-desaturases from any organism. Plant and cyanobacterial omega3-desaturases exclusively desaturate 18-carbon n-6 PUFAs, and a Caenorhabditis elegans omega3-desaturase preferentially desaturated 18-carbon PUFAs over 20-carbon substrates, and could not convert ARA into EPA when expressed in yeast. The sdd17 -encoded desaturase was also functional in transgenic somatic soya bean embryos, resulting in the production of EPA from exogenously supplied ARA, thus demonstrating its potential for use in the production of EPA in transgenic oilseed crops. PMID:14651475

  5. Composition of Fatty Acids and Carbohydrates in Leptospira1

    PubMed Central

    Kondo, Eiko; Ueta, Nobuo

    1972-01-01

    The fatty acid and monosaccharide composition of four pathogenic and two saprophytic strains of Leptospira was analyzed by gas chromatography (GC) and GC-mass spectrometry. Among the fatty acids, palmitic acid was most abundant and constituted 30 to 50% of the total fatty acids. Even-numbered unsaturated acids including octadecenoic, hexadecenoic, octadecadienoic, and tetradecadienoic acids comprised 40 to 60% of the total fatty acids. Tetradecanoic acid was about 5% in saprophytic strains, but 1% or less in pathogenic strains. The amount of chloroform-methanol extract of L. biflexa strain Ancona was 14 to 20% of the dry weight of the cell. Tetradecadienoic acid was found in the chloroform-methanol insoluble fraction, suggesting the presence of the acid in a bound form. GC analysis of monosaccharides revealed the existence of arabinose, xylose, rhamnose, mannose, galactose, glucose, glucosamine, and muramic acid in the cells. Among the neutral sugars, glucose was a minor component and was especially low in pathogenic strains. Total pentose content was about two to three times greater than total hexose. PMID:5022167

  6. Evidence for Avt6 as a vacuolar exporter of acidic amino acids in Saccharomyces cerevisiae cells.

    PubMed

    Chahomchuen, Thippayarat; Hondo, Kana; Ohsaki, Mariko; Sekito, Takayuki; Kakinuma, Yoshimi

    2009-12-01

    Here we examined the significance of Avt6, a vacuolar exporter of glutamate and aspartate suggested by the in vitro membrane vesicle experiment, in vacuolar compartmentalization of amino acids in Saccharomyces cerevisiae cells. Fluorescent microscopic observation of GFP-fused Avt6 revealed it to be exclusively localized to the vacuolar membrane, with the amount of Myc-tagged Avt6 significantly increased under nitrogen starvation. Glutamate uptake by cells was enhanced by deletion of the AVT6 gene, indicating indirect involvement of Avt6 in cellular glutamate accumulation. Differences in acidic amino acid content of both total and vacuolar fractions were insignificant between the parent and avt6Delta cells when cultured in nutrient-rich conditions. However, in nitrogen-starved conditions, the amount of glutamate and aspartate in the vacuolar fraction was notably increased in the avt6Delta cells. Avt6 is thus involved in vacuolar amino acid compartmentalization in S. cerevisiae cells, especially under conditions of nitrogen starvation.

  7. Tung tree (Vernicia fordii, Hemsl.) genome and transcriptome sequencing reveals coordinate upregulation of fatty acid beta-oxidation and triacylglycerol biosynthesis pathways during eleostearic acid accumulation in seeds

    USDA-ARS?s Scientific Manuscript database

    The tung tree (Vernicia fordii) is one of only a few plant species that produces high oil-yielding seeds rich in a-eleostearic acid (a-ESA, 18:3'9cis,11trans,13trans), a conjugated trienoic fatty acid with valuable industrial and medical properties. Previous attempts have been made to engineer tung...

  8. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  9. Revealing the molecular structural transformation of hardwood and softwood in dilute acid flowthrough pretreatment

    DOE PAGES

    Zhang, Libing; Pu, Yunqiao; Univ. of Tennessee, Knoxville, TN; ...

    2016-10-03

    To understand better the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g., poplar wood) and softwood (e.g., lodgepole pine wood) were investigated at temperatures of 200 to 270 °C and a flow rate of 25 mL/min with 0.05% (w/w) H 2SO 4. Results suggested that the softwood cellulose was more readily degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, ~30% of themore » softwood lignin remained as solid residues under identical conditions, which was plausibly caused by vigorous C5-active recondensation reactions (C–C5). As a result, effects of molecular structural features (i.e., lignin molecular weight, cellulose crystallinity, and condensed lignin structures) on the recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment.« less

  10. Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase.

    PubMed

    Bakke, Siril S; Moro, Cedric; Nikolić, Nataša; Hessvik, Nina P; Badin, Pierre-Marie; Lauvhaug, Line; Fredriksson, Katarina; Hesselink, Matthijs K C; Boekschoten, Mark V; Kersten, Sander; Gaster, Michael; Thoresen, G Hege; Rustan, Arild C

    2012-10-01

    Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100μM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid β-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Large CO2 and CH4 release from a flooded formerly drained fen

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Franz, D.; Koebsch, F.; Larmanou, E.; Augustin, J.

    2016-12-01

    Drained peatlands are usually strong carbon dioxide (CO2) sources. In Germany, up to 4.5 % of the national CO2 emissions are estimated to be released from agriculturally used peatlands and for some peatland-rich northern states, such as Mecklenburg-Western Pomerania, this share increases to about 20%. Reducing this CO2 source and restoring the peatlands' natural carbon sink is one objective of large-scale nature protection and restoration measures, in which 37.000 ha of drained and degraded peatlands in Mecklenburg-Western Pomerania are slated for rewetting. It is well known, however, that in the initial phase of rewetting, a reduction of the CO2 source strength is usually accompanied by an increase in CH4 emissions. Thus, whether and when the intended effects of rewetting with regard to greenhouse gases are achieved, depends on the balance of CO2 and CH4 fluxes and on the duration of the initial CH4 emission phase. In 2013, a new Fluxnet site went online at a flooded formerly drained river valley fen site near Zarnekow, NE Germany (DE-Zrk), to investigate the combined CO2 and CH4 dynamics at such a heavily degraded and rewetted peatland. The site is dominated by open water with submerged and floating vegetation and surrounding Typha latifolia.Nine year after rewetting, we found large CH4 emissions of 53 g CH4 m-2 a-1 from the open water area, which are 4-fold higher than from the surrounding vegetation zone (13 g CH4 m-2 a-1). Surprisingly, both the open water and the vegetated area were net CO2 sources of 158 and 750 g CO2 m-2 a-1, respectively. Unusual meteorological conditions with a warm and dry summer and a mild winter might have facilitated high respiration rates, particularly from temporally non-inundated organic mud in the vegetation zone.

  12. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    PubMed

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  13. Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

    PubMed Central

    Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778

  14. Pyrogenicity of polyadenylic.polyuridylic acid in rabbits.

    PubMed

    Won, S J; Lin, M T

    1991-05-01

    Polyadenylic.polyuridylic acid injected intravenously into rabbits produced a rapid-onset, monophasic fever. Pyrogenic tolerance occurred in rabbits following daily injections of polyadenylic.polyuridylic acid. However, direct injection of the agent into the preoptic anterior hypothalamic region of rabbit's brain produced a markedly different fever. After an intrahypothalamic injection of polyadenylic.polyuridylic acid, fever was delayed in onset and persisted for a longer period. At room temperature, the fever was due to both increased metabolism and cutaneous vasoconstriction. In a colder atmosphere the fever was due solely to increased metabolism, whereas in the heat the fever was due to reduction in cutaneous blood flow and respiratory evaporative heat loss. In addition, the fever induced by intravenous polyadenylic.polyuridylic acid injection was reversed by a cyclooxygenase inhibitor, but not by a protein synthesis inhibitor. Polyadenylic.polyuridylic acid was shown to stimulate PGE2 production from rabbit's hypothalamus in vitro. The results reveal that this agent is a prostaglandin-dependent pyrogen.

  15. Perfluoroalkyl phosphonic and phosphinic acids as proton conductors for anhydrous proton-exchange membranes.

    PubMed

    Herath, Mahesha B; Creager, Stephen E; Kitaygorodskiy, Alex; DesMarteau, Darryl D

    2010-09-10

    A study of proton-transport rates and mechanisms under anhydrous conditions using a series of acid model compounds, analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, sulfonic, and carboxylic acid protogenic groups, is reported. Model compounds are characterized with respect to proton conductivity, viscosity, proton, and anion (conjugate base) self-diffusion coefficients, and Hammett acidity. The highest conductivities, and also the highest viscosities, are observed for the phosphonic and phosphinic acid model compounds. Arrhenius analysis of conductivity and viscosity for these two acids reveals much lower activation energies for ion transport than for viscous flow. Additionally, the proton self-diffusion coefficients are much higher than the conjugate-base self-diffusion coefficients for these two acids. Taken together, these data suggest that anhydrous proton transport in the phosphonic and phosphinic acid model compounds occurs primarily by a structure-diffusion, hopping-based mechanism rather than a vehicle mechanism. Further analysis of ionic conductivity and ion self-diffusion rates by using the Nernst-Einstein equation reveals that the phosphonic and phosphinic acid model compounds are relatively highly dissociated even under anhydrous conditions. In contrast, sulfonic and carboxylic acid-based systems exhibit relatively low degrees of dissociation under anhydrous conditions. These findings suggest that fluoroalkyl phosphonic and phosphinic acids are good candidates for further development as anhydrous, high-temperature proton conductors.

  16. Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain.

    PubMed

    Ma, Yuping; Wang, Xiaoyu; Nie, Xueling; Zhang, Zhan; Yang, Zongcan; Nie, Cong; Tang, Hongzhi

    2016-08-01

    In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.

  17. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    PubMed Central

    Zhukova, Natalia V.

    2014-01-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731

  18. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    PubMed

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  19. The acidic pH-induced structural changes in Pin1 as revealed by spectral methodologies

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Zhang; Xi, Lei; Zhu, Guo-Fei; Han, Yong-Guang; Luo, Yue; Wang, Mei; Du, Lin-Fang

    2012-12-01

    Pin1 is closely associated with the pathogenesis of cancers and Alzheimer's disease (AD). Previously, we have shown the characteristics of the thermal denaturation of Pin1. Herein, the acid-induced denaturation of Pin1 was determined by means of fluorescence emission, synchronous fluorescence, far-UV CD, ANS fluorescence and RLS spectroscopies. The fluorescence emission spectra and the synchronous fluorescence spectra suggested the partially reversible unfolding (approximately from pH 7.0 to 4.0) and refolding (approximately from pH 4.0 to 1.0) of the structures around the chromophores in Pin1, apparently with an intermediate state at about pH 4.0-4.5. The far-UV CD spectra indicated that acidic pH (below pH 4.0) induced the structural transition from α-helix and random coils to β-sheet in Pin1. The ANS fluorescence and the RLS spectra further suggested the exposure of the hydrophobic side-chains of Pin1 and the aggregation of it especially below pH 2.3, and the aggregation possibly resulted in the formation of extra intermolecular β-sheet. The present work primarily shows that acidic pH can induce kinds of irreversible structural changes in Pin1, such as the exposure of the hydrophobic side-chains, the transition from α-helix to β-sheet and the aggregation of Pin1, and also explains why Pin1 loses most of its activity below pH 5.0. The results emphasize the important role of decreased pH in the pathogenesis of some Pin1-related diseases, and support the therapeutic approach for them by targeting acidosis and modifying the intracellular pH gradients.

  20. Chronic sucrose intake decreases concentrations of n6 fatty acids, but not docosahexaenoic acid in the rat brain phospholipids.

    PubMed

    Mašek, Tomislav; Starčević, Kristina

    2017-07-13

    We investigated the influence of high sucrose intake, administered in drinking water, on the lipid profile of the brain and on the expression of SREBP1c and Δ-desaturase genes. Adult male rats received 30% sucrose solution for 20 weeks (Sucrose group), or plain water (Control group). After the 20th week of sucrose treatment, the Sucrose group showed permanent hyperglycemia. Sucrose treatment also increased the amount of total lipids and fatty acids in the brain. The brain fatty acid profile of total lipids as well as phosphatidylethanolamine, phosphatidylcholine and cardiolipin of the Sucrose group was extensively changed. The most interesting change was a significant decrease in n6 fatty acids, including the important arachidonic acid, whereas the content of oleic and docosahexaenoic acid remained unchanged. RT-qPCR revealed an increase in Δ-5-desaturase and SREBP1c gene expression. In conclusion, high sucrose intake via drinking water extensively changes rat brain fatty acid profile by decreasing n6 fatty acids, including arachidonic acid. In contrast, the content of docosahexaenoic acid remains constant in the brain total lipids as well as in phospholipids. Changes in the brain fatty acid profile reflect changes in the lipid metabolism of the rat lipogenic tissues and concentrations in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats.

    PubMed

    Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao

    2016-08-01

    Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti

  2. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck).

    PubMed

    Huang, Dingquan; Zhao, Yihong; Cao, Minghao; Qiao, Liang; Zheng, Zhi-Liang

    2016-01-01

    Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control.

  3. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck)

    PubMed Central

    Huang, Dingquan; Zhao, Yihong; Cao, Minghao; Qiao, Liang; Zheng, Zhi-Liang

    2016-01-01

    Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control. PMID:27092171

  4. Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals Role of Cox-2 in Palmitate-induced Insulin Resistance

    PubMed Central

    Chen, Xiulan; Xu, Shimeng; Wei, Shasha; Deng, Yaqin; Li, Yiran; Yang, Fuquan; Liu, Pingsheng

    2016-01-01

    Accumulated studies demonstrate that saturated fatty acids (FAs) such as palmitic acid (PA) inhibit insulin signaling in skeletal muscle cells and monounsaturated fatty acids such as oleic acid (OA) reverse the effect of PA on insulin signaling. The detailed molecular mechanism of these opposite effects remains elusive. Here we provide a comparative proteomic study of skeletal myoblast cell line C2C12 that were untreated or treated with PA, and PA plus OA. A total of 3437 proteins were quantified using SILAC in this study and 29 proteins fall into the pattern that OA reverses PA effect. Expression of some these proteins were verified using qRT-PCR and Western blot. The most significant change was cyclooxygenase-2 (Cox-2). In addition to whole cell comparative proteomic study, we also compared lipid droplet (LD)-associated proteins and identified that Cox-2 was one of three major altered proteins under the FA treatment. This finding was then confirmed using immunofluorescence. Finally, Cox-2 selective inhibitor, celecoxib protected cells from PA-reduced insulin signaling Akt phosphorylation. Together, these results not only provide a dataset of protein expression change in FA treatment but also suggest that Cox-2 and lipid droplets (LDs) are potential players in PA- and OA-mediated cellular processes. PMID:26899878

  5. Ionic Ckonductivity and Glass Transition of Phosphoric Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  6. Ionic conductivity and glass transition of phosphoric acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  7. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.

    PubMed

    Unno, Yusuke; Shinano, Takuro

    2013-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil.

  8. Interaction of Gut Microbiota with Bile Acid Metabolism and its Influence on Disease States

    PubMed Central

    Staley, Christopher; Weingarden, Alexa R.

    2016-01-01

    Primary bile acids serve important roles in cholesterol metabolism, lipid digestion, host-microbe interactions, and regulatory pathways in the human host. While most bile acids are reabsorbed and recycled via enterohepatic cycling, ~5% serve as substrates for bacterial biotransformation in the colon. Enzymes involved in various transformations have been characterized from cultured gut bacteria and reveal taxa-specific distribution. More recently, bioinformatic approaches have revealed greater diversity in isoforms of these enzymes, and the microbial species in which they are found. Thus, the functional roles played by the bile acid-transforming gut microbiota and the distribution of resulting secondary bile acids, in the bile acid pool, may be profoundly affected by microbial community structure and function. Bile acids and the composition of the bile acid pool have historically been hypothesized to be associated with several disease states, including recurrent Clostridium difficile infection, inflammatory bowel diseases, metabolic syndrome, and several cancers. Recently, however, emphasis has been placed on how microbial communities in the dysbiotic gut may alter the bile acid pool to potentially cause or mitigate disease onset. This review highlights the current understanding of the interactions between the gut microbial community, bile acid biotransformation, and disease states, and addresses future directions to better understand these complex associations. PMID:27888332

  9. Relative content of gallic acid over 5-galloylquinic acid as an index for the baking intensity of oolong teas.

    PubMed

    Wang, Miki Mei-Chi; Yeh, Yun; Shih, Yu-En; Tzen, Jason Tze-Cheng

    2018-04-01

    Phenolic compounds in a series of old oolong teas prepared by baking annually were monitored and compared. The results showed that the relative content of gallic acid over 5-galloylquinic acid was subsequently elevated during this preparatory process. To reveal the effect was mainly resulted from baking or aging, two sets of oolong teas were collected and examined; one set was generated from fresh oolong tea via continually daily baking and the other set was composed of aged oolong teas with no or light baking in the storage period. The relative content of gallic acid over 5-galloylquinic acid was observed to be subsequently elevated when oolong tea was continually baked at 90, 100, 110, and 120 °C for 8 h day after day. In contrast, the relative contents of gallic acid over 5-galloylquinic acid in aged oolong teas with no or light baking were found to be similar to or slightly higher than that in fresh oolong tea. The results suggest that the relative content of gallic acid over 5-galloylquinic acid seems to be a suitable index for the baking intensity of oolong tea in different preparations. Copyright © 2017. Published by Elsevier B.V.

  10. Distribution and enantiomeric composition of amino acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Engel, M. H.; Nagy, B.

    1982-01-01

    Studies of the amino acid contents and enantiomeric compositions of a single stone from the Murchison meteorite are reported. Water-extracted and 6M HCl-extracted samples from the meteorite interior of meteorite fragments were analyzed by gas chromatography and combined gas chromatography-chemical ionization mass spectrometry. Examination of the D/L ratios of glutamic acid, aspartic acid, proline, leucine and alanine reveals those amino acids extractable by water to be partially racemized, whereas the acid-extracted amino acids were less racemized. The amino acid composition of the stone is similar to those previously reported, including the absence of serine, threonine, tyrosine phenylalanine and methionine and the presence of unusual amino acids including such as isovaline, alpha-aminoisobutyric acid and pseudoleucine. It is concluded that the most likely mechanism accounting for the occurrence of nonracemic amino acid mixtures in the Murchison meteorite is by extraterrestrial stereoselective synthesis or decomposition reactions.

  11. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P.

    2018-01-01

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR).

  12. Pantothenic acid deficiency may increase the urinary excretion of 2-oxo acids and nicotinamide catabolites in rats.

    PubMed

    Shibata, Katsumi; Inomoto, Kasumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Pantothenic acid (PaA) is involved in the metabolism of amino acids as well as fatty acid. We investigated the systemic metabolism of amino acids in PaA-deficient rats. For this purpose, urine samples were collected and 2-oxo acids and L-tryptophan (L-Trp) and its metabolites including nicotinamide were measured. Group 1 was freely fed a conventional chemically-defined complete diet and used as an ad lib-fed control, which group was used for showing reference values. Group 2 was freely fed the complete diet without PaA (PaA-free diet) and used as a PaA-deficient group. Group 3 was fed the complete diet, but the daily food amount was equal to the amount of the PaA-deficient group and used as a pair-fed control group. All rats were orally administered 100 mg of L-Trp/kg body weight at 09:00 on day 34 of the experiment and the following 24-h urine samples were collected. The urinary excretion of the sum of pyruvic acid and oxaloacetic acid was higher in rats fed the PaA-free diets than in the rats fed pair-fed the complete diet. PaA deficiency elicited the increased urinary excretion of anthranilic acid and kynurenic acid, while the urinary excretion of xanthurenic acid decreased. The urinary excretion of L-Trp itself, 3-hydroxyanthranilic acid, and quinolinic acid revealed no differences between the rats fed the PaA-free and pair-fed the complete diets. PaA deficiency elicited the increased excretion of N(1)-methylnicotinamide, N(1)-methyl-2-pyridone-5-carboxamide, and N(1)-methyl-4-pyridone-3-carboxamide. These findings suggest that PaA deficiency disturbs the amino acid catabolism.

  13. Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean.

    PubMed

    Ali, Norlaily Mohd; Yeap, Swee-Keong; Yusof, Hamidah Mohd; Beh, Boon-Kee; Ho, Wan-Yong; Koh, Soo-Peng; Abdullah, Mohd Puad; Alitheen, Noorjahan Banu; Long, Kamariah

    2016-03-30

    Mung bean and soybean have been individually reported previously to have antioxidant, cytotoxic and immunomodulatory effects, while fermentation is a well-known process to enhance the bioactive compounds that contribute to higher antioxidant, cytotoxic and immunomodulation effects. In this study, the free amino acids profile, soluble phenolic acids content, antioxidants, cytotoxic and immunomodulatory effects of fermented and non-fermented mung bean and soybean were compared. Fermented mung bean was recorded to have the highest level of free amino acids, soluble phenolic acids (especially protocatechuic acid) and antioxidant activities among all the tested products. Both fermented mung bean and soybean possessed cytotoxicity activities against breast cancer MCF-7 cells by arresting the G0/G1 phase followed by apoptosis. Moreover, fermented mung bean and soybean also induced splenocyte proliferation and enhanced the levels of serum interleukin-2 and interferon-γ. Augmented amounts of free amino acids and phenolic acids content after fermentation enhanced the antioxidants, cytotoxicity and immunomodulation effects of mung bean and soybean. More specifically, fermented mung bean showed the best effects among all the tested products. This study revealed the potential of fermented mung bean and soybean as functional foods for maintenance of good health. © 2015 Society of Chemical Industry.

  14. Enhancing charge storage of conjugated polymer electrodes with phenolic acids

    NASA Astrophysics Data System (ADS)

    Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle

    2016-01-01

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.

  15. Matrix-assisted laser desorption/ionization-mass spectrometry of hydrophobic proteins in mixtures using formic acid, perfluorooctanoic acid, and sorbitol.

    PubMed

    Loo, Rachel R Ogorzalek; Loo, Joseph A

    2007-02-01

    Three MALDI-MS sample/matrix preparation approaches were evaluated for their ability to enhance hydrophobic protein detection from complex mixtures: (1) formic acid-based formulations, (2) perfluorooctanoic acid (PFOA) surfactant addition, and (3) sorbitol addition. While MALDI-MS of Escherichia coli cells desorbed from a standard sinapinic acid matrix displayed 94 (M + H)+ ions, 119 were observed from a formic acid-based matrix with no more than 10 common to both. Formic acid matrix revealed many lipoproteins and an 8282 m/z ion proposed to be the abundant, water-insoluble ATPase proteolipid. Among the formic acid-based cocktails examined, the slowest rate of serine/threonine formylation was found for 50% H2O/33% 2-propanol/17% formic acid. Faster formylation was observed from cocktails containing more formic acid and from mixtures including CH3CN. Sinapinic, ferulic, DHB, 4-hydroxybenzylidene malononitrile, and 2-mercaptobenzothiazole matrixes performed well in formic acid formulations. Dramatic differences in mixture spectra were also observed from PFOA/sinapinic acid, at detergent concentrations exceeding the critical micelle concentration, although these matrix cocktails proved difficult to crystallize. E. coli ions observed from these matrix conditions are listed in Tables S-1 and S-3 (Supporting Information). Similar complementarity was observed for M. acetivorans whole-cell mixtures. Including sorbitol in the sinapinic acid matrix was found to promote homogeneous crystallization and to enhance medium and higher m/z ion detection from dilute E. coli cellular mixtures.

  16. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  17. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  18. Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer.

    PubMed

    You, Sixian; Tu, Haohua; Zhao, Youbo; Liu, Yuan; Chaney, Eric J; Marjanovic, Marina; Boppart, Stephen A

    2016-09-06

    Fatty acids play essential roles in the growth and metastasis of cancer cells. To facilitate their avid growth and proliferation, cancer cells not only alter the fatty acid synthesis and metabolism intracellularly and extracellularly, but also in the macroenvironment via direct or indirect pathways. We report here, using Raman micro-spectroscopy, that an increase in the production of polyunsaturated fatty acids (PUFAs) was identified in both cancerous and normal appearing breast tissue obtained from breast cancer patients and tumor-bearing rats. By minimizing confounding effects from mixed chemicals and optimizing the signal-to-noise ratio of Raman spectra, we observed a large-scale transition from monounsaturated fatty acids to PUFAs in the tumor while only a small subset of fatty acids transitioned to PUFAs in the tumor micro- and macroenvironment. These data have important implications for further clarifying the macroenvironmental effect of cancer progression and provide new potential approaches for characterizing the tumor micro- and macroenvironment of breast cancer in both pre-clinical animal studies and clinical applications.

  19. Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer

    PubMed Central

    You, Sixian; Tu, Haohua; Zhao, Youbo; Liu, Yuan; Chaney, Eric J.; Marjanovic, Marina; Boppart, Stephen A.

    2016-01-01

    Fatty acids play essential roles in the growth and metastasis of cancer cells. To facilitate their avid growth and proliferation, cancer cells not only alter the fatty acid synthesis and metabolism intracellularly and extracellularly, but also in the macroenvironment via direct or indirect pathways. We report here, using Raman micro-spectroscopy, that an increase in the production of polyunsaturated fatty acids (PUFAs) was identified in both cancerous and normal appearing breast tissue obtained from breast cancer patients and tumor-bearing rats. By minimizing confounding effects from mixed chemicals and optimizing the signal-to-noise ratio of Raman spectra, we observed a large-scale transition from monounsaturated fatty acids to PUFAs in the tumor while only a small subset of fatty acids transitioned to PUFAs in the tumor micro- and macroenvironment. These data have important implications for further clarifying the macroenvironmental effect of cancer progression and provide new potential approaches for characterizing the tumor micro- and macroenvironment of breast cancer in both pre-clinical animal studies and clinical applications. PMID:27596041

  20. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    PubMed Central

    Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614

  1. In Silico and Wet Lab Studies Reveal the Cholesterol Lowering Efficacy of Lauric Acid, a Medium Chain Fat of Coconut Oil.

    PubMed

    Lekshmi Sheela, Devi; Nazeem, Puthiyaveetil Abdulla; Narayanankutty, Arunaksharan; Manalil, Jeksy Jos; Raghavamenon, Achuthan C

    2016-12-01

    The coconut oil (CO) contains 91 % of saturated fatty acids in which 72 % are medium chain fatty acids (MCFAs) like lauric, capric and caprylic acids. In contrast to animal fat, coconut oil has no cholesterol. Despite this fact, CO is sidelined among other vegetable oils due to the health hazards attributed to the saturated fatty acids. Though various medicinal effects of CO have been reported including the hypolipidemic activity, people are still confused in the consumption of this natural oil. In silico analyses and wet lab experiments have been carried out to identify the hypolipidemic properties of MCFAs and phenolic acids in CO by using different protein targets involved in cholesterol synthesis. The molecular docking studies were carried out using CDOCKER protocol in Accelery's Discovery Studio, by taking different proteins like HMG- CoA reductase and cholesterol esterase as targets and the different phytocompounds in coconut as ligands. Molecular docking highlighted the potential of lauric acid in inhibiting the protein targets involved in hyperlipidemics. Further, validation of in silico results was carried out through in vivo studies. The activity of key enzymes HMG- CoA reductase and lipoprotein lipase were found reduced in animals fed with lauric acid and CO.

  2. Lactic acid and methane: improved exploitation of biowaste potential.

    PubMed

    Dreschke, G; Probst, M; Walter, A; Pümpel, T; Walde, J; Insam, H

    2015-01-01

    This feasibility study investigated a two-step biorefining approach to increase the value gained by recycling of organic municipal solid waste. Firstly, lactic acid was produced via batch fermentation at 37°C using the indigenous microbiome. Experiments revealed an optimal fermentation period of 24h resulting in high yields of lactic acid (up to 37gkg(-1)). The lactic acid proportion of total volatile fatty acid content reached up to 83%. Lactobacilli were selectively enriched to up to 75% of the bacterial community. Additionally conversion of organic matter to lactic acid was increased from 22% to 30% through counteracting end product inhibition by continuous lactic acid extraction. Secondly, fermentation residues were used as co-substrate in biomethane production yielding up to 618±41Nmlbiomethaneg(-1) volatile solids. Digestate, the only end product of this process can be used as organic fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Differences in acid tolerance between Bifidobacterium breve BB8 and its acid-resistant derivative B. breve BB8dpH, revealed by RNA-sequencing and physiological analysis.

    PubMed

    Yang, Xu; Hang, Xiaomin; Tan, Jing; Yang, Hong

    2015-06-01

    Bifidobacteria are common inhabitants of the human gastrointestinal tract, and their application has increased dramatically in recent years due to their health-promoting effects. The ability of bifidobacteria to tolerate acidic environments is particularly important for their function as probiotics because they encounter such environments in food products and during passage through the gastrointestinal tract. In this study, we generated a derivative, Bifidobacterium breve BB8dpH, which displayed a stable, acid-resistant phenotype. To investigate the possible reasons for the higher acid tolerance of B. breve BB8dpH, as compared with its parental strain B. breve BB8, a combined transcriptome and physiological approach was used to characterize differences between the two strains. An analysis of the transcriptome by RNA-sequencing indicated that the expression of 121 genes was increased by more than 2-fold, while the expression of 146 genes was reduced more than 2-fold, in B. breve BB8dpH. Validation of the RNA-sequencing data using real-time quantitative PCR analysis demonstrated that the RNA-sequencing results were highly reliable. The comparison analysis, based on differentially expressed genes, suggested that the acid tolerance of B. breve BB8dpH was enhanced by regulating the expression of genes involved in carbohydrate transport and metabolism, energy production, synthesis of cell envelope components (peptidoglycan and exopolysaccharide), synthesis and transport of glutamate and glutamine, and histidine synthesis. Furthermore, an analysis of physiological data showed that B. breve BB8dpH displayed higher production of exopolysaccharide and lower H(+)-ATPase activity than B. breve BB8. The results presented here will improve our understanding of acid tolerance in bifidobacteria, and they will lead to the development of new strategies to enhance the acid tolerance of bifidobacterial strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by 13C breath testing.

    PubMed

    Rosner, Elisabeth; Voigt, Christian C

    2018-02-19

    Mammals fuel hibernation by oxidizing saturated and unsaturated fatty acids from triacylglycerols in adipocytes, yet the relative importance of these two categories as an oxidative fuel may change during hibernation. We studied the selective use of fatty acids as an oxidative fuel in noctule bats ( Nyctalus noctula ). Pre-hibernating noctule bats that were fed 13 C-enriched linoleic acid (LA) showed 12 times higher tracer oxidation rates compared with conspecifics fed 13 C-enriched palmitic acid (PA). After this experiment, we supplemented the diet of bats with the same fatty acids on five subsequent days to enrich their fat depots with the respective tracer. We then compared the excess 13 C enrichment (excess atom percentage, APE) in breath of bats for torpor and arousal events during early and late hibernation. We observed higher APE values in breath of bats fed 13 C-enriched LA than in bats fed 13 C-enriched PA for both states (torpor and arousal), and also for both periods. Thus, hibernating bats selectively oxidized endogenous LA instead of PA, probably because of faster transportation rates of polyunsaturated fatty acids compared with saturated fatty acids. We did not observe changes in APE values in the breath of torpid animals between early and late hibernation. Skin temperature of torpid animals increased by 0.7°C between early and late hibernation in bats fed PA, whereas it decreased by -0.8°C in bats fed LA, highlighting that endogenous LA may fulfil two functions when available in excess: serving as an oxidative fuel and supporting cell membrane functionality. © 2018. Published by The Company of Biologists Ltd.

  5. Proteomic study reveals a co-occurrence of gallic acid-induced apoptosis and glycolysis in B16F10 melanoma cells.

    PubMed

    Liu, Cheng; Lin, Jen-Jie; Yang, Zih-Yan; Tsai, Chi-Chu; Hsu, Jue-Liang; Wu, Yu-Jen

    2014-12-03

    Gallic acid (GA) has long been associated with a wide range of biological activities. In this study, its antitumor effect against B16F10 melanoma cells was demonstrated by MTT assay, cell migration assay, wound-healing assay, and flow cytometric analysis. GA with a concentration >200 μM shows apoptotic activity toward B16F10 cells. According to Western blotting data, overexpressions of cleaved forms of caspase-9, caspase-3, and PARP-1 and pro-apoptotic Bax and Bad, accompanied by underexpressed anti-apoptotic Bcl-2 and Bcl-xL indicate that GA induces B16F10 cell apoptosis via mitochondrial pathway. The 2-DE based comparative proteomics was further employed in B16F10 cells with and without GA treatment for a large-scale protein expression profiling. A total of 41 differential protein spots were quantified, and their identities were characterized using LC-MS/MS analysis and database matching. In addition to some regulated proteins that were associated with apoptosis, interestingly, some identified proteins involved in glycolysis such as glucokinase, α-enolase, aldolase, pyruvate kinase, and GAPDH were simultaneously up-regulated, which reveals that the GA-induced cellular apoptosis in B16 melanoma cells is associated with metabolic glycolysis.

  6. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau

    2016-08-01

    Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm-1) and lipid (~2845 cm-1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.

  7. Water level, vegetation composition and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    NASA Astrophysics Data System (ADS)

    Minke, M.; Augustin, J.; Burlo, A.; Yarmashuk, T.; Chuvashova, H.; Thiele, A.; Freibauer, A.; Tikhonov, V.; Hoffmann, M.

    2015-10-01

    Rewetting of temperate continental cutover peatlands generally implies the creation of flooded areas, which are - dependent on water depth - colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis. Reeds of Typha and Phragmites are reported to be large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. This paper describes the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse emissions were measured with manual chambers in weekly to few - weekly intervals over a two years period and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions were generally associated with net ecosystem CO2 uptake. Small sedges were minor methane emitters and net CO2 sinks, while Phragmites australis sites released large amounts of methane and sequestered very much CO2. Variability of both fluxes increased with site productivity. Floating mats composed of Carex tussocks and Typha latifolia were a source for both methane and CO2. We conclude that shallow, stable flooding is a better measure to arrive at low GHG emissions than deep flooding, and that the risk of high GHG emissions consequent on rewetting is larger for eutrophic than for mesotrophic peatlands.

  8. Interactions between stepwise-eluted sub-fractions of fulvic acids and protons revealed by fluorescence titration combined with EEM-PARAFAC.

    PubMed

    Song, Fanhao; Wu, Fengchang; Guo, Fei; Wang, Hao; Feng, Weiying; Zhou, Min; Deng, Yanghui; Bai, Yingchen; Xing, Baoshan; Giesy, John P

    2017-12-15

    In aquatic environments, pH can control environmental behaviors of fulvic acid (FA) via regulating hydrolysis of functional groups. Sub-fractions of FA, eluted using pyrophosphate buffers with initial pHs of 3.0 (FA 3 ), 5.0 (FA 5 ), 7.0 (FA 7 ), 9.0 (FA 9 ) and 13.0 (FA 13 ), were used to explore interactions between the various, operationally defined, FA fractions and protons, by use of EEM-PARAFAC analysis. Splitting of peaks (FA 3 and FA 13 ), merging of peaks (FA 7 ), disappearance of peaks (FA 9 and FA 13 ), and red/blue-shifting of peaks were observed during fluorescence titration. Fulvic-like components were identified from FA 3 -FA 13 , and protein-like components were observed in fractions FA 9 and FA 13 . There primary compounds (carboxylic-like, phenolic-like, and protein-like chromophores) in PARAFAC components were distinguished based on acid-base properties. Dissociation constants (pK a ) for fulvic-like components with proton ranged from 2.43 to 4.13 in an acidic pH and from 9.95 to 11.27 at basic pH. These results might be due to protonation of di-carboxylate and phenolic functional groups. At basic pH, pK a values of protein-like components (9.77-10.13) were similar to those of amino acids. However, at acidic pH, pK a values of protein-like components, which ranged from 3.33 to 4.22, were 1-2units greater than those of amino acids. Results presented here, will benefit understanding of environmental behaviors of FA, as well as interactions of FA with environmental contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Surface characterization of acidic ceria-zirconia prepared by direct sulfation

    NASA Astrophysics Data System (ADS)

    Azambre, B.; Zenboury, L.; Weber, J. V.; Burg, P.

    2010-05-01

    Acidic ceria-zirconia (SCZ) solid acid catalysts with a nominal surface density of ca 2 SO 42-/nm 2 were prepared by a simple route consisting in soaking high specific surface area Ce xZr 1- xO 2 (with x = 0.21 and 0.69) mixed oxides solutions in 0.5 M sulphuric acid. Characterizations by TPD-MS, TP-DRIFTS and FT-Raman revealed that most of surface structures generated by sulfation are stable at least up to 700 °C under inert atmosphere and consist mainly as isolated sulfates located on defects or crystal planes and to a lesser extent as polysulfates. Investigations by pyridine adsorption/desorption have stated that: SCZ possess both strong Brønsted (B) and Lewis (L) acid sites, some of them being presumably superacidic; the B/L site ratio was found to be more dependent on the temperature and hydration degree than on the composition of the ceria-zirconia. By contrast, the reactivity of the parent Ce xZr 1- xO 2 materials towards pyridine is mostly driven by redox properties resulting in the formation of Py-oxide with the participation of Lewis acid sites of moderate strength ( cus Ce x+ and Zr x+ cations). Basicity studies by CO 2 adsorption/desorption reveal that SCZ surfaces are solely acidic whereas the number and strength of Lewis basic sites increases with the Ce content for the parent Ce xZr 1- xO 2 materials.

  10. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides.

    PubMed

    Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E

    2012-07-31

    Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.

  11. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    PubMed

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  12. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  13. Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.

    PubMed

    Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar

    2013-11-07

    It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.

  14. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression

    PubMed Central

    Kang, Nam Joo; Lee, Ki Won; Shin, Bong Jik; Jung, Sung Keun; Hwang, Mun Kyung; Bode, Ann M.; Heo, Yong-Seok; Dong, Zigang

    2009-01-01

    Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in many foods, including coffee. Recent studies suggested that caffeic acid exerts anticarcinogenic effects, but little is known about the underlying molecular mechanisms and specific target proteins. In this study, we found that Fyn, one of the members of the non-receptor protein tyrosine kinase family, was required for ultraviolet (UV) B-induced cyclooxygenase-2 (COX-2) expression, and caffeic acid suppressed UVB-induced skin carcinogenesis by directly inhibiting Fyn kinase activity. Caffeic acid more effectively suppressed UVB-induced COX-2 expression and subsequent prostaglandin E2 production in JB6 P+ mouse skin epidermal (JB6 P+) cells compared with chlorogenic acid (5-O-caffeoylquinic acid), an ester of caffeic acid with quinic acid. Data also revealed that caffeic acid more effectively induced the downregulation of COX-2 expression at the transcriptional level mediated through the inhibition of activator protein-1 (AP-1) and nuclear factor-κB transcription activity compared with chlorogenic acid. Fyn kinase activity was suppressed more effectively by caffeic acid than by chlorogenic acid, and downstream mitogen-activated protein kinases (MAPKs) were subsequently blocked. Pharmacological Fyn kinase inhibitor (3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and leflunomide) data also revealed that Fyn is involved in UVB-induced COX-2 expression mediated through the phosphorylation of MAPKs in JB6 P+ cells. Pull-down assays revealed that caffeic acid directly bound with Fyn and non-competitively with adenosine triphosphate. In vivo data from mouse skin also supported the idea that caffeic acid suppressed UVB-induced COX-2 expression by blocking Fyn kinase activity. These results suggested that this compound could act as a potent chemopreventive agent against skin cancer. PMID:19073879

  16. Determination of the acid value of instant noodles: interlaboratory study.

    PubMed

    Hakoda, Akiko; Sakaida, Kenichi; Suzuki, Tadanao; Yasui, Akemi

    2006-01-01

    An interlaboratory study was performed to evaluate the method for determining the acid value of instant noodles, based on the Japanese Agricultural Standard (JAS), with extraction of lipid using petroleum ether at a volume of 100 mL to the test portion of 25 g. Thirteen laboratories participated and analyzed 5 test samples as blind duplicates. Statistical treatment revealed that the repeatability (RSDr) of acid value was <6.5%, and the reproducibility (RSDR) of acid value was <9.6%. The HorRat values (RSDR/predicted RSDR) were 1.2-1.8, where the RSDR and the predicted RSDR were obtained in terms of free fatty acids in the noodles per unit weight, using the equation [acid value = percent free fatty acids (as oleic) x 1.99] and the extracted lipid contents. This method was shown to have acceptable precision by the present study.

  17. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria.

    PubMed

    Papalexandratou, Zoi; Vrancken, Gino; De Bruyne, Katrien; Vandamme, Peter; De Vuyst, Luc

    2011-10-01

    Spontaneous organic cocoa bean box fermentations were carried out on two different farms in Brazil. Physical parameters, microbial growth, bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the fermented dry cocoa beans. The main end-products of the catabolism of the pulp substrates (glucose, fructose, and citric acid) by yeasts, LAB, and AAB were ethanol, lactic acid, mannitol, and/or acetic acid. Lactobacillus fermentum and Acetobacter pasteurianus were the predominating bacterial species of the fermentations as revealed through (GTG)(5)-PCR fingerprinting of isolates and PCR-DGGE of 16S rRNA gene PCR amplicons of DNA directly extracted from fermentation samples. Fructobacillus pseudoficulneus, Lactobacillus plantarum, and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Also, three novel LAB species were found. This study emphasized the possible participation of Enterobacteriaceae in the cocoa bean fermentation process. Tatumella ptyseos and Tatumella citrea were the prevailing enterobacterial species in the beginning of the fermentations as revealed by 16S rRNA gene-PCR-DGGE. Finally, it turned out that control over a restricted bacterial species diversity during fermentation through an ideal post-harvest handling of the cocoa beans will allow the production of high-quality cocoa and chocolates produced thereof, independent of the fermentation method or farm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Analysis of the Cytotoxic Potential of Anisomelic Acid Isolated from Anisomeles malabarica

    PubMed Central

    Preethy, Christo Paul; Alshatwi, Ali Abdullah; Gunasekaran, Muthukumaran; Akbarsha, Mohammad Abdulkadher

    2013-01-01

    Anisomelic acid (AA), one of the major compounds in Anisomeles malabarica, was tested for its cytotoxicity and apoptosis-inducing potential in breast and cervical cancer cells. The MTT assay for cell viability indicated that AA is cytotoxic to all of the four cell lines tested in a dose- and duration-dependent manner. Acridine Orange & Ethidium Bromide (AO & EB) and Hoechst 33258 staining of AA-treated cells revealed typical apoptotic morphology such as condensed chromatin and formation of apoptotic bodies. The comet assay revealed DNA strand break(s), indicating that AA induces DNA damage which culminates in apoptosis. Thus, the study revealed the anti-proliferative and apoptosis-inducing properties of AA in both breast and cervical cancer cells. Therefore, anisomelic acid offers potential for application in breast and cervical cancer therapy. PMID:23833721

  19. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    PubMed

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  20. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    PubMed

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  1. Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid.

    PubMed

    Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie J M; Caillaud, Marie-Cécile; Furzer, Oliver J; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D G

    2014-10-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.

  2. Multiparametric Analyses Reveal the pH-Dependence of Silicon Biomineralization in Diatoms

    PubMed Central

    Hervé, Vincent; Derr, Julien; Douady, Stéphane; Quinet, Michelle; Moisan, Lionel; Lopez, Pascal Jean

    2012-01-01

    Diatoms, the major contributors of the global biogenic silica cycle in modern oceans, account for about 40% of global marine primary productivity. They are an important component of the biological pump in the ocean, and their assemblage can be used as useful climate proxies; it is therefore critical to better understand the changes induced by environmental pH on their physiology, silicification capability and morphology. Here, we show that external pH influences cell growth of the ubiquitous diatom Thalassiosira weissflogii, and modifies intracellular silicic acid and biogenic silica contents per cell. Measurements at the single-cell level reveal that extracellular pH modifications lead to intracellular acidosis. To further understand how variations of the acid-base balance affect silicon metabolism and theca formation, we developed novel imaging techniques to measure the dynamics of valve formation. We demonstrate that the kinetics of valve morphogenesis, at least in the early stages, depends on pH. Analytical modeling results suggest that acidic conditions alter the dynamics of the expansion of the vesicles within which silica polymerization occurs, and probably its internal pH. Morphological analysis of valve patterns reveals that acidification also reduces the dimension of the nanometric pores present on the valves, and concurrently overall valve porosity. Variations in the valve silica network seem to be more correlated to the dynamics and the regulation of the morphogenesis process than the silicon incorporation rate. These multiparametric analyses from single-cell to cell-population levels demonstrate that several higher-level processes are sensitive to the acid-base balance in diatoms, and its regulation is a key factor for the control of pattern formation and silicon metabolism. PMID:23144697

  3. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    NASA Astrophysics Data System (ADS)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free

  4. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis.

    PubMed Central

    Slayden, R A; Lee, R E; Armour, J W; Cooper, A M; Orme, I M; Brennan, P J; Besra, G S

    1996-01-01

    Thiolactomycin (TLM) possesses in vivo antimycobacterial activity against the saprophytic strain Mycobacterium smegmatis mc2155 and the virulent strain M. tuberculosis Erdman, resulting in complete inhibition of growth on solid media at 75 and 25 micrograms/ml, respectively. Use of an in vitro murine macrophage model also demonstrated the killing of viable intracellular M. tuberculosis in a dose-dependent manner. Through the use of in vivo [1,2-14C]acetate labeling of M. smegmatis, TLM was shown to inhibit the synthesis of both fatty acids and mycolic acids. However, synthesis of the shorter-chain alpha'-mycolates of M. smegmatis was not inhibited by TLM, whereas synthesis of the characteristic longer-chain alpha-mycolates and epoxymycolates was almost completely inhibited at 75 micrograms/ml. The use of M. smegmatis cell extracts demonstrated that TLM specifically inhibited the mycobacterial acyl carrier protein-dependent type II fatty acid synthase (FAS-II) but not the multifunctional type I fatty acid synthase (FAS-I). In addition, selective inhibition of long-chain mycolate synthesis by TLM was demonstrated in a dose-response manner in purified, cell wall-containing extracts of M. smegmatis cells. The in vivo and in vitro data and knowledge of the mechanism of TLM resistance in Escherichia coli suggest that two distinct TLM targets exist in mycobacteria, the beta-ketoacyl-acyl carrier protein synthases involved in FAS-II and the elongation steps leading to the synthesis of the alpha-mycolates and oxygenated mycolates. The efficacy of TLM against M. smegmatis and M. tuberculosis provides the prospects of identifying fatty acid and mycolic acid biosynthetic genes and revealing a novel range of chemotherapeutic agents directed against M. tuberculosis. PMID:9124847

  5. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage.

    PubMed

    Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng

    2015-07-01

    The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.

  6. Metagenomics reveals flavour metabolic network of cereal vinegar microbiota.

    PubMed

    Wu, Lin-Huan; Lu, Zhen-Ming; Zhang, Xiao-Juan; Wang, Zong-Min; Yu, Yong-Jian; Shi, Jin-Song; Xu, Zheng-Hong

    2017-04-01

    Multispecies microbial community formed through centuries of repeated batch acetic acid fermentation (AAF) is crucial for the flavour quality of traditional vinegar produced from cereals. However, the metabolism to generate and/or formulate the essential flavours by the multispecies microbial community is hardly understood. Here we used metagenomic approach to clarify in situ metabolic network of key microbes responsible for flavour synthesis of a typical cereal vinegar, Zhenjiang aromatic vinegar, produced by solid-state fermentation. First, we identified 3 organic acids, 7 amino acids, and 20 volatiles as dominant vinegar metabolites. Second, we revealed taxonomic and functional composition of the microbiota by metagenomic shotgun sequencing. A total of 86 201 predicted protein-coding genes from 35 phyla (951 genera) were involved in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of Metabolism (42.3%), Genetic Information Processing (28.3%), and Environmental Information Processing (10.1%). Furthermore, a metabolic network for substrate breakdown and dominant flavour formation in vinegar microbiota was constructed, and microbial distribution discrepancy in different metabolic pathways was charted. This study helps elucidating different metabolic roles of microbes during flavour formation in vinegar microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A water-budget approach to restoring a sedge fen affected by diking and ditching

    USGS Publications Warehouse

    Wilcox, Douglas A.; Sweat, Michael J.; Carlson, Martha L.; Kowalski, Kurt P.

    2006-01-01

    A vast, ground-water-supported sedge fen in the Upper Peninsula of Michigan, USA was ditched in the early 1900s in a failed attempt to promote agriculture. Dikes were later constructed to impound seasonal sheet surface flows for waterfowl management. The US Fish and Wildlife Service, which now manages the wetland as part of Seney National Wildlife Refuge, sought to redirect water flows from impounded C-3 Pool to reduce erosion in downstream Walsh Ditch, reduce ground-water losses into the ditch, and restore sheet flows of surface water to the peatland. A water budget was developed for C-3 Pool, which serves as the central receiving and distribution body for water in the affected wetland. Surface-water inflows and outflows were measured in associated ditches and natural creeks, ground-water flows were estimated using a network of wells and piezometers, and precipitation and evaporation/evapotranspiration components were estimated using local meteorological data. Water budgets for the 1999 springtime peak flow period and the 1999 water year were used to estimate required releases of water from C-3 Pool via outlets other than Walsh Ditch and to guide other restoration activities. Refuge managers subsequently used these results to guide restoration efforts, including construction of earthen dams in Walsh Ditch upslope from the pool to stop surface flow, installation of new water-control structures to redirect surface water to sheet flow and natural creek channels, planning seasonal releases from C-3 Pool to avoid erosion in natural channels, stopping flow in downslope Walsh Ditch to reduce erosion, and using constructed earthen dams and natural beaver dams to flood the ditch channel below C-3 Pool. Interactions between ground water and surface water are critical for maintaining ecosystem processes in many wetlands, and management actions directed at restoring either ground- or surface-water flow patterns often affect both of these components of the water budget. This

  8. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae.

    PubMed

    Chandrasekaran, Manivachagam; Kannathasan, Krishnan; Venkatesalu, Venugopalan

    2008-01-01

    Fatty acid methyl ester (FAME) extracts of four halophytic plants, viz. Arthrocnemum indicum, Salicornia brachiata, Suaeda maritima and Suaeda monoica belonging to the family Chenopodiaceae, were prepared and their composition was analyzed by GC-MS. The FAME extracts were also screened for antibacterial and antifungal activities. The GC-MS analysis revealed the presence of more saturated fatty acids than unsaturated fatty acids. Among the fatty acids analyzed, the relative percentage of lauric acid was high in S. brachiata (61.85%). The FAME extract of S. brachiata showed the highest antibacterial and antifungal activities among the extracts tested. The other three extracts showed potent antibacterial and moderate anticandidal activities.

  9. Carbodithioic acid esters of fluoxetine, a novel class of dual-function spermicides.

    PubMed

    Kiran Kumar, S T V S; Kumar, Lalit; Sharma, Vishnu L; Jain, Ashish; Jain, Rajeev K; Maikhuri, Jagdamba P; Kumar, Manish; Shukla, Praveen K; Gupta, Gopal

    2008-10-01

    Carbodithioic acid esters of fluoxetine have been prepared by replacing the methylamino function in aminopropane chain with carbodithioic acid ester group and by adding various S-2-hydroxypropyl ester of dialkyl carbodithioic acid at 3-methylamino group. Some of these compounds showed spermicidal, antifungal and anti-Trichomonas activities. The study revealed that incorporation of carbodithioic acid residue directly into fluoxetine structure leads to compounds with better antifungal and anti-Trichomonas activities, and N-methyl-[3-phenyl-3-(4-trifluoromethyl-phenoxy)-propyl]carbodithioic acid S-(2-pyrrolidino-ethyl) ester (14) has shown better profile than both fluoxetine and nonoxynol-9. Further lead optimization may yield a potent dual-function spermicide.

  10. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  11. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    PubMed

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  12. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ian, Ridley W.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L.

    2009-01-01

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, ??56Fe and ??66Zn isotopic signatures of filtered stream water samples varied by ???3.5??? and 0.4???, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in ??56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in ??66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0???) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4???). Acidic drainage from mine wastes contributed heavier dissolved Fe (???+0.5???) and lighter Zn (???+0.2???) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (??56Fe ??? 0???) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds. ?? 2009 Elsevier Ltd.

  13. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    PubMed

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  15. Eicosapentaenoic Acid Modulates Trichomonas vaginalis Activity.

    PubMed

    Korosh, Travis; Jordan, Kelsey D; Wu, Ja-Shin; Yarlett, Nigel; Upmacis, Rita K

    2016-01-01

    Trichomonas vaginalis is a sexually transmitted parasite and, while it is often asymptomatic in males, the parasite is associated with disease in both sexes. Metronidazole is an effective treatment for trichomoniasis, but resistant strains have evolved and, thus, it has become necessary to investigate other possible therapies. In this study, we examined the effects of native and oxidized forms of the sodium salts of eicosapentaenoic, docosahexaenoic, and arachidonic acids on T. vaginalis activity. Eicosapentaenoic acid was the most toxic with 190 and 380 μM causing approximately 90% cell death in Casu2 and ATCC 50142 strains, respectively. In contrast, oxidized eicosapentaenoic acid was the least toxic, requiring > 3 mM to inhibit activity, while low levels (10 μM) were associated with increased parasite density. Mass spectrometric analysis of oxidized eicosapentaenoic acid revealed C20 products containing one to six additional oxygen atoms and various degrees of bond saturation. These results indicate that eicosapentaenoic acid has different effects on T. vaginalis survival, depending on whether it is present in the native or oxidized form. A better understanding of lipid metabolism in T. vaginalis may facilitate the design of synthetic fatty acids that are effective for the treatment of metronidazole-resistant T. vaginalis. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  16. The Branched-Chain Amino Acid Aminotransferase Encoded by ilvE Is Involved in Acid Tolerance in Streptococcus mutans

    PubMed Central

    Santiago, Brendaliz; MacGilvray, Matthew; Faustoferri, Roberta C.

    2012-01-01

    The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353–1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638–641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007–4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414–419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F1-Fo ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans. PMID:22328677

  17. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, Ana; Hai, Tran; Tchigvintsev, Anatoly

    Metagenomics has made accessible an enormous reserve of global biochemical diversity. In order to tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. Here, we validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalyticmore » residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools.« less

  18. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families

    DOE PAGES

    Popovic, Ana; Hai, Tran; Tchigvintsev, Anatoly; ...

    2017-03-08

    Metagenomics has made accessible an enormous reserve of global biochemical diversity. In order to tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. Here, we validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalyticmore » residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools.« less

  19. Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in plants.

    PubMed

    Zhang, Feng Juan; Jin, You Ju; Xu, Xing You; Lu, Rong Chun; Chen, Hua Jun

    2008-01-01

    Jasmonic acid (JA), abscisic acid (ABA) and indole-3-acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C(18) cartridges. The final extracts were derivatised with diazomethane and then measured by GC-MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Sequential elution of the assimilates from the C(18 )cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue.

  20. A Previously Unknown Path to Corpuscularism in the Seventeenth Century: Santorio’s Marginalia to the Commentaria in Primam Fen Primi Libri Canonis Avicennae (1625)

    PubMed Central

    Bigotti, Fabrizio

    2017-01-01

    This paper presents some of Santorio's marginalia to his Commentaria in primam fen primi libri Canonis Avicennae (Venice, 1625), which I identified in the Sloane Collection of the British Library in 2016, as well as the evidence for their authorship. The name of the Venetian physician Santorio Santori (1561–1636) is linked with the introduction of quantification in medicine and with the invention of precision instruments that, displayed for the first time in this work, laid down the foundations for what we today understand as evidence-based medicine. But Santorio's monumentale opus also contains evidence of many quantified experiments and displays his ideas on mixtures, structure of matter and corpuscles, which are in many cases clarified and completed by the new marginalia. These ideas testify to an early interest in chemistry within the Medical School of Padua which predates both Galileo and Sennert and which has hitherto been unknown. PMID:28350287

  1. The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification.

    PubMed

    Plumridge, Andrew; Hesse, Stephan J A; Watson, Adrian J; Lowe, Kenneth C; Stratford, Malcolm; Archer, David B

    2004-06-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 10(5)/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using (31)P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pH(cyt)) by more than 1 pH unit and a depression of vacuolar pH (pH(vac)) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pH(cyt). NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth.

  2. Trapping proton transfer intermediates in the disordered hydrogen-bonded network of cryogenic hydrofluoric acid solutions.

    PubMed

    Ayotte, Patrick; Plessis, Sylvain; Marchand, Patrick

    2008-08-28

    A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

  3. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  4. Characteristics of aerosol acidity in Hong Kong

    NASA Astrophysics Data System (ADS)

    Pathak, Ravi Kant; Louie, Peter K. K.; Chan, Chak K.

    The ammonium-to-sulfate ratio ([NH 4+]/[SO 42-]) and the strong acidity have been generally used as parameters to describe the acidic nature of atmospheric aerosols. However, both parameters do not provide the in situ acidic characteristics of atmospheric aerosols, which are more relevant to the reactivity and the environmental impacts of the aerosols. In this study, the in situ free acid concentrations and the in situ pH of aerosols are investigated to understand the acidic characteristics of atmospheric aerosols in Hong Kong (HK). Over 182 datasets on 24 h Respirable Suspended Particles (RSP) samples collected in 2001 from seven air-quality-monitoring sites run by the Hong Kong Environmental Protection Department are analyzed. Simulations using the Aerosol Inorganic Model (AIM2) reveal that the in situ acidity, i.e., the free acid concentration ([H +] free), is only a minor fraction (˜23%) of the estimated strong acidity in the fine particles because of the presence of bisulfate ions. The acidity characteristics of fine particles are a function of mainly RH and ammonium to sulfate ratio. The in situ free acid concentration, the normalized water content ([H 2O] AIM2/[SO 42-]), and the dissociation of bisulfate to free acid in the aerosols decrease as the [NH 4+]/[SO 42-] ratio increases and the Relative Humidity (RH) decreases. The acidic fine mode particles have average molar [NH 4+]/[SO 42-] ratio of 1.42, strong acidity of 51 nmol m -3, in situ acidity of 11 nmol m -3, and in situ pH of 0.25 on average. Our findings suggest that even the more neutralized ([NH 4+]/[SO 42-] >1.5) particles, such as those found when HK is under the influence of continental air masses from the Chinese mainland, can have high in situ acidity and low pH when the RH is low. This study calls for more investigation of the acidity of aerosols in HK, incorporating the concepts of in situ acidity and pH.

  5. Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins.

    PubMed

    Sethupathy, Sivasamy; Ananthi, Sivagnanam; Selvaraj, Anthonymuthu; Shanmuganathan, Balakrishnan; Vigneshwari, Loganathan; Balamurugan, Krishnaswamy; Mahalingam, Sundarasamy; Pandian, Shunmugiah Karutha

    2017-11-27

    Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.

  6. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  7. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    PubMed Central

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  8. Synthesis and structure identification of 2-amino-4, 6- dimethyl pyrimidine with gallic acid and pimelic acid

    NASA Astrophysics Data System (ADS)

    Mekala, R.; Jagdish, P.; Mathammal, R.

    2018-07-01

    Reaction of 2-amino-4, 6- dimethyl pyrimidine with carboxylic acid such as gallic acid and pimelic acid, yielded a salt and co-crystal, respectively. The new crystal forms were obtained from slow evaporation technique. The crystal structure and hydrogen bond interaction of the two crystals were determined by single X-ray diffraction analysis. Inter molecular interactions of the compounds were investigated using the 3D Hirshfeld surfaces and the associated 2D fingerprint plots. The functional groups were identified by the FTIR, FT-Raman spectral studies. The presence of carbon and hydrogen in the two samples were identified by the 1H and 13C NMR analysis. The excited energy was observed using UV-Visible spectral analysis. The fluorescence spectra revealed the emission state of the two samples. The thermal behaviour and stability of the two compounds were evaluated by the TGA-DSC analysis.

  9. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses.

    PubMed

    Azizan, Kamalrul Azlan; Ressom, Habtom W; Mendoza, Eduardo R; Baharum, Syarul Nataqain

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13 C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis ( r ) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis , in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis . Overall, the

  10. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis

    PubMed Central

    Nair, Ramesh B.; Bastress, Kristen L.; Ruegger, Max O.; Denault, Jeff W.; Chapple, Clint

    2004-01-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP+-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall–esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes. PMID:14729911

  11. Natural Humic-Acid-Based Phototheranostic Agent.

    PubMed

    Miao, Zhao-Hua; Li, Kai; Liu, Pei-Ying; Li, Zhenglin; Yang, Huanjie; Zhao, Qingliang; Chang, Manli; Yang, Qingzhu; Zhen, Liang; Xu, Cheng-Yan

    2018-04-01

    Humic acids, a major constituent of natural organic carbon resources, are naturally formed through the microbial biodegradation of animal and plant residues. Due to numerous physiologically active groups (phenol, carboxyl, and quinone), the biomedical applications of humic acid have been already investigated across different cultures for several centuries or even longer. In this work, sodium humate, the sodium salt of humic acid, is explored as phototheranostic agent for light-induced photoacoustic imaging and photothermal therapy based on intrinsic absorption in the near-infrared region. The purified colloidal sodium humate exhibits a high photothermal conversion efficiency up to 76.3%, much higher than that of the majority of state-of-the-art photothermal agents including gold nanorods, Cu 9 S 5 nanoparticles, antimonene quantum dots, and black phosphorus quantum dots, leading to obvious photoacoustic enhancement in vitro and in vivo. Besides, highly effective photothermal ablation of HeLa tumor is achieved through intratumoral injection. Impressively, sodium humate reveals ultralow toxicity at the cellular and animal levels. This work promises the great potential of humic acids as light-mediated theranostic agents, thus expanding the application scope of traditional humic acids in biomedical field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk

    PubMed Central

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-zheng; Hicks, Derrick; de Souza, Amancio; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-01-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. PMID:26733689

  13. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    PubMed

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  15. D-Galacturonic acid as a highly reactive compound in nonenzymatic browning. 1. Formation of browning active degradation products.

    PubMed

    Bornik, Maria-Anna; Kroh, Lothar W

    2013-04-10

    Thermal treatment of an aqueous solution of D-galacturonic acid at pH 3, 5, and 8 led to rapid browning of the solution and to the formation of carbocyclic compounds such as reductic acid (2,3-dihydroxy-2-cyclopenten-1-one), DHCP (4,5-dihydroxy-2-cyclopenten-1-one), and furan-2-carbaldehyde, as degradation products in weak acidic solution. Studies on their formation revealed 2-ketoglutaraldehyde as their common key intermediate. Norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) is a typical alkaline degradation product and formed after isomerization. Further model studies revealed reductic acid as an important and more browning active compound than furan-2-carbaldehyde, which led to a red color of the model solution. This red-brown color is also characteristic of thermally treated uronic acid solutions.

  16. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-03-31

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.

  17. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    PubMed

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  18. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus

    PubMed Central

    Hirata, Akiko; Kishino, Shigenobu; Park, Si-Bum; Takeuchi, Michiki; Kitamura, Nahoko; Ogawa, Jun

    2015-01-01

    Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs. PMID:25966711

  19. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). Copyright © 2011 Elsevier Ltd. All rights reserved.