Sample records for acidic metal-rich water

  1. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel

    2012-08-30

    As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Macroscopic Streamer Growths in Acidic, Metal-Rich Mine Waters in North Wales Consist of Novel and Remarkably Simple Bacterial Communities

    PubMed Central

    Hallberg, Kevin B.; Coupland, Kris; Kimura, Sakurako; Johnson, D. Barrie

    2006-01-01

    The microbial composition of acid streamers (macroscopic biofilms) in acidic, metal-rich waters in two locations (an abandoned copper mine and a chalybeate spa) in north Wales was studied using cultivation-based and biomolecular techniques. Known chemolithotrophic and heterotrophic acidophiles were readily isolated from disrupted streamers, but they accounted for only <1 to 7% of the total microorganisms present. Fluorescent in situ hybridization (FISH) revealed that 80 to 90% of the microbes in both types of streamers were β-Proteobacteria. Terminal restriction fragment length polymorphism analysis of the streamers suggested that a single bacterial species was dominant in the copper mine streamers, while two distinct bacteria (one of which was identical to the bacterium found in the copper mine streamers) accounted for about 90% of the streamers in the spa water. 16S rRNA gene clone libraries showed that the β-proteobacterium found in both locations was closely related to a clone detected previously in acid mine drainage in California and that its closest characterized relatives were neutrophilic ammonium oxidizers. Using a modified isolation technique, this bacterium was isolated from the copper mine streamers and shown to be a novel acidophilic autotrophic iron oxidizer. The β-proteobacterium found only in the spa streamers was closely related to the neutrophilic iron oxidizer Gallionella ferruginea. FISH analysis using oligonucleotide probes that targeted the two β-proteobacteria confirmed that the biodiversity of the streamers in both locations was very limited. The microbial compositions of the acid streamers found at the two north Wales sites are very different from the microbial compositions of the previously described acid streamers found at Iron Mountain, California, and the Rio Tinto, Spain. PMID:16517651

  3. Biogeochemical characterization of an undisturbed highly acidic, metal-rich bryophyte habitat, east-central Alaska, U.S.A.

    USGS Publications Warehouse

    Gough, L.P.; Eppinger, R.G.; Briggs, P.H.; Giles, S.

    2006-01-01

    We report on the geochemistry of soil and bryophyte-laden sediment and on the biogeochemistry of willows growing in an undisturbed volcanogenic massive sulfide deposit in the Alaska Range ecoregion of east-central Alaska. We also describe an unusual bryophyte assemblage found growing in the acidic metal-rich waters that drain the area. Ferricrete-cemented silty alluvial sediments within seeps and streams are covered with the liverwort Gymnocolea inflata whereas the mosses Polytrichum commune and P. juniperinum inhabit the area adjacent to the water and within the splash zone. Both the liverwort-encrusted sediment and Polytrichum thalli have high concentrations of major and trace metal cations (e.g., Al, As, Cu, Fe, Hg, La, Mn, Pb, and Zn). Soils in the area do not reflect the geochemical signature of the mineral deposit and we postulate they are influenced by the chemistry of eolian sediments derived from outside the deposit area. The willow, Salix pulchra, growing mostly within and adjacent to the larger streams, has much higher concentrations of Al, As, Cd, Cr, Fe, La, Pb, and Zn when compared to the same species collected in non-mineralized areas of Alaska. The Cd levels are especially high and are shown to exceed, by an order of magnitude, levels demonstrated to be toxic to ptarmigan in Colorado. Willow, growing in this naturally occurring metal-rich Red Mountain alteration zone, may adversely affect the health of browsing animals. ?? 2006 Regents of the University of Colorado.

  4. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    USDA-ARS?s Scientific Manuscript database

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  5. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments.

    PubMed

    Golyshina, Olga V; Timmis, Kenneth N

    2005-09-01

    For several decades, the bacterium Acidithiobacillus (previously Thiobacillus) has been considered to be the principal acidophilic sulfur- and iron-oxidizing microbe inhabiting acidic environments rich in ores of iron and other heavy metals, responsible for the metal solubilization and leaching from such ores, and has become the paradigm of such microbes. However, during the last few years, new studies of a number of acidic environments, particularly mining waste waters, acidic pools, etc., in diverse geographical locations have revealed the presence of new cell wall-lacking archaea related to the recently described, acidophilic, ferrous-iron oxidizing Ferroplasma acidiphilum. These mesophilic and moderately thermophilic microbes, representing the family Ferroplasmaceae, were numerically significant members of the microbial consortia of the habitats studied, are able to mobilize metals from sulfide ores, e.g. pyrite, arsenopyrite and copper-containing sulfides, and are more acid-resistant than iron and sulfur oxidizing bacteria exhibiting similar eco-physiological properties. Ferroplasma cell membranes contain novel caldarchaetidylglycerol tetraether lipids, which have extremely low proton permeabilities, as a result of the bulky isoprenoid core, and which are probably a major contributor to the extreme acid tolerance of these cell wall-less microbes. Surprisingly, several intracellular enzymes, including an ATP-dependent DNA ligase have pH optima close to that of the external environment rather than of the cytoplasm. Ferroplasma spp. are probably the major players in the biogeochemical cycling of sulfur and sulfide metals in highly acidic environments, and may have considerable potential for biotechnological applications such as biomining and biocatalysis under extreme conditions.

  6. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Aguilera, Angeles

    2016-10-01

    Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.

  7. Mechanisms of iron photoreduction in a metal-rich, acidic stream (St. Kevin Gulch, Colorado, U.S.A.)

    USGS Publications Warehouse

    Kimball, B.A.; McKnight, Diane M.; Wetherbee, G.A.; Harnish, R.A.

    1992-01-01

    Iron photoreduction in metal-rich, acidic streams affected by mine drainage accounts for some of the variability in metal chemistry of such streams, producing diel variations in Fe(II). Differentiation of the mechanisms of the Fe photoreduction reaction by a series of in-stream experiments at St. Kevin Gulch, Colorado, indicates that a homogeneous, solution-phase reaction can occur in the absence of suspended particulate Fe and bacteria, and the rate of reaction is increased by the presence of Fe colloids in the stream water. In-stream Fe photoreduction is limited during the diel cycle by the available Fe(III) in the water column and streambed. The quantum yield of Fe(II) was reproducible in diel measurements: the quantum yield, in mol E-1 (from 300 to 400 nm) was 1.4 ?? 10-3 in 1986, 0.8 ?? 10-3 in 1988 and 1.2 ?? 10-3 in 1989, at the same location and under similar streamflow and stream-chemistry conditions. In a photolysis control experiment, there was no detectable production of Fe(II) above background concentrations in stream-water samples that were experimentally excluded from sunlight. ?? 1992.

  8. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments.

    PubMed

    Simpson, Stuart L; Batley, Graeme E

    2003-02-01

    Metal partitioning is altered when suboxic estuarine sediments containing Fe(II)-rich pore waters are disturbed during collection, preparation, and toxicity testing. Experiments with model Fe(II)-rich pore waters demonstrated the rates at which adsorptive losses of Cd, Cu, Ni, Mn, Pb, and Zn occur upon exposure to air. Experiments with Zn-contaminated estuarine sediments demonstrated large and often unpredictable changes to metal partitioning during sediment storage, removal of organisms, and homogenization before testing. Small modifications to conditions, such as aeration of overlying waters, caused large changes to the metal partitioning. Disturbances caused by sediment collection required many weeks for reestablishment of equilibrium. Bioturbation by benthic organisms led to oxidation of pore-water Fe(II) and lower Zn fluxes because of the formation of Fe hydroxide precipitates that adsorb pore-water Zn. For five weeks after the addition of organisms to sediments, Zn fluxes increased slowly as the organisms established themselves in the sediments, indicating that the establishment of equilibrium was not rapid. The results are discussed in terms of the dynamic nature of suboxic, Fe(II)-rich estuarine sediments, how organisms perturb their environment, and the importance of understanding chemistry in toxicity testing with whole sediments or pore water. Recommendations are provided for the handling of sediments for toxicity testing.

  9. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  10. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River.

    PubMed

    Đorđievski, Stefan; Ishiyama, Daizo; Ogawa, Yasumasa; Stevanović, Zoran

    2018-06-22

    Bor, Krivelj, and Bela Rivers belong to the watershed of Timok River, which is a tributary of transboundary Danube River. These rivers receive metal-rich acidic wastewater from metallurgical facilities and acid mine drainage (AMD) from mine wastes around Bor copper mines. The aim of this study was to determine the mobility and natural attenuation of metals and arsenic in rivers from Bor copper mines to Danube River during the year 2015. The results showed that metallurgical facilities had the largest impact on Bor River by discharging about 400 t of Cu per year through highly acidic wastewater (pH = 2.6). The highest measured concentrations of Cu in river water and sediments were 40 mg L -1 and 1.6%, respectively. Dissolution of calcite from limestone bedrock and a high concentration of bicarbonate ions in natural river water (about 250 mg L -1 ) enhanced the neutralization of acidic river water and subsequent chemical precipitation of metals and arsenic. Decreases in the concentrations of Al, Fe, Cu, As, and Pb in river water were mainly due to precipitation on the river bed. On the other hand, dilution played an important role in the decreases in concentrations of Mn, Ni, Zn, and Cd. Chemically precipitated materials and flotation tailings containing Fe-rich minerals (fayalite, magnetite, and pyrite) were transported toward Danube River during the periods of high discharge. This study showed that processes of natural attenuation in catchments with limestone bedrock play an important role in reducing concentrations of metals and arsenic in AMD-bearing river water.

  11. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  12. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge

    USGS Publications Warehouse

    Fabisch, Maria; Freyer, Gina; Johnson, Carol A.; Buchel, Georg; Akob, Denise M.; Neu, Thomas R.; Kusel, Kirsten

    2016-01-01

    Heavy metal-contaminated, pH 6 mine water discharge created new streams and iron-rich terraces at a creek bank in a former uranium-mining area near Ronneburg, Germany. The transition from microoxic groundwater with ~5 mm Fe(II) to oxic surface water may provide a suitable habitat for microaerobic iron-oxidizing bacteria (FeOB). In this study, we investigated the potential contribution of these FeOB to iron oxidation and metal retention in this high-metal environment. We (i) identified and quantified FeOB in water and sediment at the outflow, terraces, and creek, (ii) studied the composition of biogenic iron oxides (Gallionella-like twisted stalks) with scanning and transmission electron microscopy (SEM, TEM) as well as confocal laser scanning microscopy (CLSM), and (iii) examined the metal distribution in sediments. Using quantitative PCR, a very high abundance of FeOB was demonstrated at all sites over a 6-month study period. Gallionella spp. clearly dominated the communities, accounting for up to 88% ofBacteria, with a minor contribution of other FeOB such as Sideroxydans spp. and ‘Ferrovum myxofaciens’. Classical 16S rRNA gene cloning showed that 96% of the Gallionella-related sequences had ≥97% identity to the putatively metal-tolerant ‘Gallionella capsiferriformans ES-2’, in addition to known stalk formers such as Gallionella ferruginea and Gallionellaceae strain R-1. Twisted stalks from glass slides incubated in water and sediment were composed of the Fe(III) oxyhydroxide ferrihydrite, as well as polysaccharides. SEM and scanning TEM-energy-dispersive X-ray spectroscopy revealed that stalk material contained Cu and Sn, demonstrating the association of heavy metals with biogenic iron oxides and the potential for metal retention by these stalks. Sequential extraction of sediments suggested that Cu (52–61% of total sediment Cu) and other heavy metals were primarily bound to the iron oxide fractions. These results show the importance of

  13. Extraterrestrial amino acids identified in metal-rich CH and CB carbonaceous chondrites from Antarctica

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-03-01

    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondrites but are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment (PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675 (CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratio mass spectrometry. The δ13C/12C ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (13-16 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.2-2 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of β-, γ-, and δ-amino acids compared to the corresponding α-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  14. Extraterrestrial Amino Acids Identified in Metal-Rich CH and CB Carbonaceous Chondrites from Antarctica

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondritesbut are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment(PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675(CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratiomass spectrometry. The (delta D, delta C-13, delta N-15) ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (1316 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.22 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of beta-, gamma-, and delta-amino acids compared to the corresponding alpha-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  15. Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.

    PubMed

    Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing

    2013-05-07

    Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.

  16. Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing.

    PubMed

    Mayes, W M; Davis, J; Silva, V; Jarvis, A P

    2011-10-15

    Bioreactors utilising bacterially mediated sulphate reduction (BSR) have been widely tested for treating metal-rich waters, but sustained treatment of mobile metals (e.g. Zn) can be difficult to achieve in short residence time systems. Data are presented providing an assessment of alkalinity generating media (shells or limestone) and modes of metal removal in bioreactors receiving a synthetic acidic metal mine discharge (pH 2.7, Zn 15 mg/L, SO(4)(2-) 200mg/L, net acidity 103 mg/L as CaCO(3)) subject to methanol dosing. In addition to alkalinity generating media (50%, v.v.), the columns comprised an organic matrix of softwood chippings (30%), manure (10%) and anaerobic digested sludge (10%). The column tests showed sustained alkalinity generation, which was significantly better in shell treatments. The first column in each treatment was effective throughout the 422 days in removing >99% of the dissolved Pb and Cu, and effective for four months in removing 99% of the dissolved Zn (residence time: 12-14 h). Methanol was added to the feedstock after Zn breakthrough and prompted almost complete removal of dissolved Zn alongside improved alkalinity generation and sulphate attenuation. While there was geochemical evidence for BSR, sequential extraction of substrates suggests that the bulk (67-80%) of removed Zn was associated with Fe-Mn oxide fractions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    PubMed

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    NASA Astrophysics Data System (ADS)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  19. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  20. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose.

    PubMed

    Venäläinen, Salla H; Hartikainen, Helinä

    2017-12-01

    We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO 4 2- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO 4 2- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO 4 2- . The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO 4 2- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic drainage water.

    PubMed

    Simpson, Stuart L; Vardanega, Christopher R; Jarolimek, Chad; Jolley, Dianne F; Angel, Brad M; Mosley, Luke M

    2014-05-01

    The discharge of acid drainage from the farm irrigation areas to the Murray River in South Australia represents a potential risk to water quality. The drainage waters have low pH (2.9-5.7), high acidity (up to 1190 mg L(-1) CaCO3), high dissolved organic carbon (10-40 mg L(-1)), and high dissolved Al, Co, Ni and Zn (up to 55, 1.25, 1.30 and 1.10 mg L(-1), respectively) that represent the greatest concern relative to water quality guidelines (WQGs). To provide information on bioavailability, changes in metal speciation were assessed during mixing experiments using filtration (colloidal metals) and Chelex-lability (free metal ions and weak inorganic metal complexes) methods. Following mixing of drainage and river water, much of the dissolved aluminium and iron precipitated. The concentrations of other metals generally decreased conservatively in proportion to the dilution initially, but longer mixing periods caused increased precipitation or adsorption to particulate phases. Dissolved Co, Mn and Zn were typically 95-100% present in Chelex-labile forms, whereas 40-70% of the dissolved nickel was Chelex-labile and the remaining non-labile fraction of dissolved nickel was associated with fine colloids or complexed by organic ligands that increased with time. Despite the different kinetics of precipitation, adsorption and complexation reactions, the dissolved metal concentrations were generally highly correlated for the pooled data sets, indicating that the major factors controlling the concentrations were similar for each metal (pH, dilution, and time following mixing). For dilutions of the drainage waters of less than 1% with Murray River water, none of the metals should exceed the WQGs. However, the high concentrations of metals associated with fine precipitates within the receiving waters may represent a risk to some aquatic organisms. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs.

    PubMed

    Hogsden, Kristy L; Harding, Jon S

    2012-03-01

    We compared food web structure in 20 streams with either anthropogenic or natural sources of acidity and metals or circumneutral water chemistry in New Zealand. Community and diet analysis indicated that mining streams receiving anthropogenic inputs of acidic and metal-rich drainage had much simpler food webs (fewer species, shorter food chains, less links) than those in naturally acidic, naturally high metal, and circumneutral streams. Food webs of naturally high metal streams were structurally similar to those in mining streams, lacking fish predators and having few species. Whereas, webs in naturally acidic streams differed very little from those in circumneutral streams due to strong similarities in community composition and diets of secondary and top consumers. The combined negative effects of acidity and metals on stream food webs are clear. However, elevated metal concentrations, regardless of source, appear to play a more important role than acidity in driving food web structure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Metal loading levels influence on REE distribution on humic acid: Experimental and Modelling approach

    NASA Astrophysics Data System (ADS)

    Marsac, R.; Davranche, M.; Gruau, G.; Dia, A.

    2009-04-01

    In natural organic-rich waters, rare earth elements (REE) speciation is mainly controlled by organic colloids such as humic acid (HA). Different series of REE-HA complexation experiments performed at several metal loading (REE/C) displayed two pattern shapes (i) at high metal loading, a middle-REE (MREE) downward concavity, and (ii) at low metal loading, a regular increase from La to Lu (e.g. Sonke and Salters, 2006; Pourret et al., 2007). Both REE patterns might be related to REE binding with different surface sites on HA. To understand REE-HA binding, REE-HA complexation experiments at various metals loading were carried out using ultrafiltration combined with ICP-MS measurements, for the 14 REE simultaneously. The patterns of the apparent coefficients of REE partition between HA and the inorganic solution (log Kd) evolved regularly according to the metal loading. The REE patterns presented a MREE downward concavity at low loading and a regular increase from La to Lu at high loading. The dataset was modelled with Model VI by adjusting two specific parameters, log KMA, the apparent complexation constant of HA low affinity sites and DLK2, the parameter increasing high affinity sites binding strength. Experiments and modelling provided evidence that HA high affinity sites controlled the REE binding with HA at low metal loading. The REE-HA complex could be as multidentate complexes with carboxylic or phenolic sites or potentially with sites constituted of N, P or S as donor atoms. Moreover, these high affinity sites could be different for light and heavy REE, because heavy REE have higher affinity for these sites, in low density, and could saturate them. These new Model VI parameter sets allowed the prediction of the REE-HA pattern shape evolution on a large range of pH and metal loading. According to the metal loading, the evolution of the calculated REE patterns was similar to the various REE pattern observed in natural acidic organic-rich waters (pH<7 and DOC>10

  4. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stan E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  5. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  6. Geologic and mineralogic controls on acid and metal-rich rock drainage in an alpine watershed, Handcart Gulch, Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Caine, Jonathan S.; Lowers, Heather

    2012-01-01

    The surface and subsurface geology, hydrothermal alteration, and mineralogy of the Handcart Gulch area was studied using map and drill core data as part of a multidisciplinary approach to understand the hydrology and affects of geology on acid-rock drainage in a mineralized alpine watershed. Handcart Gulch was the locus of intense hydrothermal alteration that affected an area of nearly 3 square kilometers. Hydrothermal alteration and accompanied weak mineralization are spatially and genetically associated with small dacite to low-silica rhyolite stocks and plugs emplaced about 37-36 Ma. Felsic lithologies are commonly altered to a quartz-sericite-pyrite mineral assemblage at the surface, but alteration is more variable in the subsurface, ranging from quartz-sericite-pyrite-dominant in upper core sections to a propylitic variant that is more typical in deeper drill core intervals. Late-stage, hydrothermal argillic alteration [kaolinite and(or) smectite] was superimposed over earlier-formed alteration assemblages in the felsic rocks. Smectite in this late stage assemblage is mostly neoformed resulting from dissolution of chlorite, plagioclase, and minor illite in more weakly altered rocks. Hydrothermally altered amphibolites are characterized by biotitic alteration of amphibole, and subsequent alteration of both primary and secondary biotite to chlorite. Whereas pyrite is present both as disseminations and in small veinlets in the felsic lithologies, it is mostly restricted to small veinlets in the amphibolites. Base-metal sulfides including molybdenite, chalcopyrite, sphalerite, and galena are present in minor to trace amounts in the altered rocks. However, geologic data in conjunction with water geochemical studies indicate that copper mineralization may be present in unknown abundance in two distinct areas. The altered rocks contain an average of 8 weight percent fine pyrite that is largely devoid of metals in the crystal structure, which can be a significant

  7. Demonstration of acid and water recovery systems: Applicability and operational challenges in Indian metal finishing SMEs.

    PubMed

    Balakrishnan, M; Batra, R; Batra, V S; Chandramouli, G; Choudhury, D; Hälbig, T; Ivashechkin, P; Jain, J; Mandava, K; Mense, N; Nehra, V; Rögener, F; Sartor, M; Singh, V; Srinivasan, M R; Tewari, P K

    2018-07-01

    Diffusion dialysis, acid retardation and nanofiltration plants were acquired from Europe and demonstrated in several Indian metal finishing companies over a three year period. These companies are primarily small and medium enterprises (SMEs). Free acid recovery rate from spent pickling baths using diffusion dialysis and retardation was in the range of 78-86% and 30-70% respectively. With nanofiltration, 80% recovery rate of rinse water was obtained. The demonstrations created awareness among the metal finishing companies to reuse resources (acid/water) from the effluent streams. However, lack of efficient oil separators, reliable chemical analysis and trained personnel as well as high investment cost limit the application of these technologies. Local manufacturing, plant customization and centralized treatment are likely to encourage the uptake of such technologies in the Indian metal finishing sector. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework hasmore » been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.« less

  9. BIORECOVERY OF METALS FROM ACID MINE DRAINAGE

    EPA Science Inventory

    Acid mine water is an acidic, metal-bearing wastewater generated by the oxidation of metallic sulfides by certain bacteria in both active and abandoned mining operations. The wastewaters contain substantial quantities of dissolved solids with the particular pollutants dependant u...

  10. The biogeochemistry and occurrence of unusual plant species inhabiting acidic, metal-rich water, Red Mountain, Bonnifield district, Alaska Range: Chapter J in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Gough, Larry P.; Eppinger, Robert G.; Briggs, Paul H.

    2007-01-01

    This report presents results on the occurrence and biogeochemistry of unusual plant species, and of their supporting sediment, in an undisturbed volcanogenic massive sulfide deposit in the Tintina Gold Province (see fig. 1 of Editors’ Preface and Overview). The extraordinary plant assemblage found growing in the acidic metal-rich waters that drain the area is composed predominantly of bryophytes (liverworts and mosses). Ferricrete-cemented silty alluvial sediments within seeps and streams are covered with the liverwort Gymnocolea inflata, whereas the mosses Polytrichum commune and P. juniperinum inhabit the area adjacent to the water and within the splash zone. Both the liverwort-encrusted sediment and Polytrichum thalli have high concentrations of major- and trace-metal cations (for example, Al, As, Cu, Fe, Hg, La, Mn, Pb, and Zn). Soils in the area do not reflect the geochemical signature of the mineral deposit, and we suspect that they are most influenced by the chemistry of airborne dust (aeolian material) derived from outside the area.

  11. GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  12. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study.

    PubMed

    Nakao, Atsunori; Toyoda, Yoshiya; Sharma, Prachi; Evans, Malkanthi; Guthrie, Najla

    2010-03-01

    Metabolic syndrome is characterized by cardiometabolic risk factors that include obesity, insulin resistance, hypertension and dyslipidemia. Oxidative stress is known to play a major role in the pathogenesis of metabolic syndrome. The objective of this study was to examine the effectiveness of hydrogen rich water (1.5-2 L/day) in an open label, 8-week study on 20 subjects with potential metabolic syndrome. Hydrogen rich water was produced, by placing a metallic magnesium stick into drinking water (hydrogen concentration; 0.55-0.65 mM), by the following chemical reaction; Mg + 2H(2)O --> Mg (OH)(2) + H(2). The consumption of hydrogen rich water for 8 weeks resulted in a 39% increase (p<0.05) in antioxidant enzyme superoxide dismutase (SOD) and a 43% decrease (p<0.05) in thiobarbituric acid reactive substances (TBARS) in urine. Further, subjects demonstrated an 8% increase in high density lipoprotein (HDL)-cholesterol and a 13% decrease in total cholesterol/HDL-cholesterol from baseline to week 4. There was no change in fasting glucose levels during the 8 week study. In conclusion, drinking hydrogen rich water represents a potentially novel therapeutic and preventive strategy for metabolic syndrome. The portable magnesium stick was a safe, easy and effective method of delivering hydrogen rich water for daily consumption by participants in the study.

  13. Metal-Rich Transition Metal Diborides as Electrocatalysts for Hydrogen Evolution Reactions in a Wide Range of pH

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-09-23

    Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less

  14. Ionic Transport Through Metal-Rich Organic Coatings

    DTIC Science & Technology

    2016-08-19

    COVERED October 2013-Septermber 2015 4. TITLE AND SUBTITLE Ionic Transport Through Metal-Rich Organic Coatings 5a. CONTRACT NUMBER 5b. GRANT...NOTES 14. ABSTRACT Organic coatings are commonly used on aircraft and in the automotive industry to protect against corrosive environments. Although...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal-rich organic (MRO) coatings. Following design

  15. Ionic Transport Through Metal-Rich Organic Coatings

    DTIC Science & Technology

    2016-08-19

    COVERED October 2013-Septermber 2015 4. TITLE AND SUBTITLE Ionic Transport Through Metal-Rich Organic Coatings 5a. CONTRACT NUMBER 5b. GRANT...14. ABSTRACT Organic coatings are commonly used on aircraft and in the automotive industry to protect against corrosive environments. Although...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal-rich organic (MRO) coatings. Following design of

  16. Trace Metal Associations with Manganese-Rich Surface Coatings of Lead Service Lines

    EPA Science Inventory

    Analysis of lead service line samples from U. S. Environmental Protection Agency’s long-term research program to evaluate control and metal release from domestic drinking water service lines has revealed that Manganese-rich solids also contain Iron and sometimes Aluminum have fre...

  17. Applications of peat-based sorbents for removal of metals from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.D.; Stack, E.M.; Eltayeb, S.

    1995-12-31

    The results reported in this paper are derived from one part of an ongoing investigation of peat sorption properties, in particular, the capacities of acid-treated peats to adsorb chromium, nickel, zinc, copper, and cadmium from water. Acid treatment was done to remove as much previously adsorbed metal as possible before testing. Four peat types were selected for study, two highly decomposed types (a woody, Taxodium-dominated peat from the Okefenokee Swamp of Georgia and a sedge-dominated, charcoal-rich peat from the Tamiami Trail region of Florida) and two less decomposed ones (a Sphagnum moss-dominated peat from Maine and a Nymphaea-dominated peat frommore » the Okefenokee Swamp of Georgia). Single metal and mixed metal solutions were tested in slurry experiments with each peat type. Solutions were analyzed using a Perkin-Elmer model 305B Flame Atomic Absorption Spectrophotometer. In single metal tests, chromium and copper tended to be adsorbed to a greater extent than the other metals. Three of the peats were found to be capable of adsorbine more copper ions than zince ions, while a fourth type adsorbed approximately the same amounts of each. Degree of decomposition of the peats tended to affect sorption properties for certain metals. The results of batch studies revealed that chromium was always preferentially adsorbed regardless of the peat type tested. The results of these studies further confirm that remediation of metal-contaminated waters using peats will require selection of specific peats to match the contaminants.« less

  18. Thermal behavior of potato starch and water-vaporization behavior of its paste controlled with amino acid and peptide-rich food materials.

    PubMed

    Sakauchi, Satoshi; Hattori, Makoto; Yoshida, Tadashi; Yagishita, Takahiro; Ito, Koichi; Akemitsu, Shin-Ichi; Takahashi, Koji

    2010-03-01

    The particular effect of 4 kinds of amino acid and peptide-rich food material (APRM) containing different charged amino acid contents on the gelatinization and retrogradation behavior of potato starch granules and on the water-vaporization behavior was analyzed by differential scanning calorimetry, rapid viscoanalysis, x-ray diffractometry, thermal gravimetry-differential thermal analysis, and pulsed NMR. APRM with a high-charged amino acid content produced unique gelatinization and retrogradation behavior in terms of an elevated gelatinization temperature, reduced viscosity, higher setback, and lower retrograded starch melting enthalpy. The recovered x-ray diffraction intensity decreased with increasing charged amino acid content. APRM with high-charged amino acid content could provide an improved paste having easy vaporization of external water in the swollen starch granules due to the reduced swelling.

  19. Can acid volatile sulfides (AVS) influence metal concentrations in the macrophyte Myriophyllum aquaticum?

    PubMed

    Teuchies, Johannes; De Jonge, Maarten; Meire, Patrick; Blust, Ronny; Bervoets, Lieven

    2012-08-21

    The difference between the molar concentrations of simultaneously extracted metals (SEM) and acid volatile sulfides (AVS) is widely used to predict metal availability toward invertebrates in hypoxic sediments. However, this model is poorly investigated for macrophytes. The present study evaluates metal accumulation in roots and stems of the macrophyte Myriophyllum aquaticum during a 54 day lab experiment. The macrophytes, rooting in metal contaminated, hypoxic, and sulfide rich field sediments were exposed to surface water with 40% or 90% oxygen. High oxygen concentrations in the 90% treatment resulted in dissolution of the metal-sulfide complexes and a gradual increase in labile metal concentrations during the experiment. However, the general trend of increasing availability in the sediment with time was not translated in rising M. aquaticum metal concentrations. Processes at the root-sediment interface, e.g., radial oxygen loss (ROL) or the release of organic compounds by plant roots and their effect on metal availability in the rhizosphere may be of larger importance for metal accumulation than the bulk metal mobility predicted by the SEM-AVS model.

  20. Impact of effects of acid precipitation on toxicity of metals.

    PubMed Central

    Nordberg, G F; Goyer, R A; Clarkson, T W

    1985-01-01

    Acid precipitation may increase human exposure to several potentially toxic metals by increasing metal concentrations in major pathways to man, particularly food and water, and in some instances by enhancing the conversion of metal species to more toxic forms. Human exposures to methylmercury are almost entirely by way of consumption of fish and seafood. In some countries, intakes by this route may approach the levels that can give rise to adverse health effects for population groups with a high consumption of these food items. A possible increase in methylmercury concentrations in fish from lakes affected by acid precipitation may thus be of concern to selected population groups. Human exposures to lead reach levels that are near those associated with adverse health effects in certain sensitive segments of the general population in several countries. The possibility exists that increased exposures to lead may be caused by acid precipitation through a mobilization of lead from soils into crops. A route of exposure to lead that may possibly be influenced by acid precipitation is an increased deterioration of surface materials containing lead and a subsequent ingestion by small children. A similar situation with regard to uptake from food exists for cadmium (at least in some countries). Human metal exposures via drinking water may be increased by acid precipitation. Decreasing pH increases corrosiveness of water enhancing the mobilization of metal salts from soil; metallic compounds may be mobilized from minerals, which may eventually reach drinking water. Also, the dissolution of metals (Pb, Cd, Cu) from piping systems for drinking water by soft acidic waters of high corrosivity may increase metal concentrations in drinking water. Exposures have occasionally reached concentrations which are in the range where adverse health effects may be expected in otherwise healthy persons. Dissolution from piping systems can be prevented by neutralizing the water before

  1. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  2. Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters.

    PubMed

    Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina

    2018-05-01

    Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  3. Simultaneous immobilization of metals and arsenic in acidic polluted soils near a copper smelter in central Chile.

    PubMed

    Cárcamo, Valeska; Bustamante, Elena; Trangolao, Elizabeth; de la Fuente, Luz María; Mench, Michel; Neaman, Alexander; Ginocchio, Rosanna

    2012-05-01

    Acidic and metal(oid)-rich topsoils resulted after 34 years of continuous operations of a copper smelter in the Puchuncaví valley, central Chile. Currently, large-scale remediation actions for simultaneous in situ immobilization of metals and As are needed to reduce environmental risks of polluted soils. Aided phytostabilization is a cost-effective alternative, but adequate local available soil amendments have to be identified and management options have to be defined. Efficacy of seashell grit (SG), biosolids (B), natural zeolite (Z), and iron-activated zeolite (AZ), either alone or in mixtures, was evaluated for reducing metal (Cu and Zn) and As solubilization in polluted soils under laboratory conditions. Perennial ryegrass was used to test phytotoxicity of experimental substrates. Soil neutralization to a pH of 6.5 with SG, with or without incorporation of AZ, significantly reduces metal (Cu and Zn) solubilization without affecting As solubilization in soil pore water; furthermore, it eliminates phytotoxicity and excessive metal(oid) accumulation in aerial plant tissues. Addition of B or Z to SG-amended soil does not further reduce metal solubilization into soil pore water, but increase As solubilization due to excessive soil neutralization (pH > 6.5); however, no significant As increase occurs in aerial plant tissues. Simultaneous in situ immobilization of metal(oid) in acidic topsoils is possible through aided phytostabilization.

  4. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  6. Treatment of iron(II)-rich acid mine water with limestone and oxygen.

    PubMed

    Mohajane, G B; Maree, J P; Panichev, N

    2014-01-01

    The main components of acid mine water are free acid, sulphate, and Fe²⁺. Limestone is the most cost-effective alkali that can be used for neutralization. The purpose of this investigation was to identify conditions where Fe²⁺ is removed with limestone and simultaneously oxidized with oxygen to Fe³⁺, in a polyvinyl chloride pipe under pressure. Gypsum scaling is prevented by passing rubber balls through the pipe of the so-called Oxygen-Pipe-Neutralization (OPeN) process pilot plant. Two synthetic waters were treated: (A) acid mine water containing 123 mg L⁻¹ Fe²⁺ representing gold mine water, and (B) acid mine water containing 6,032 mg L⁻¹ Fe²⁺ representing coal mine water. Batch studies were carried out in a pipe reactor and showed that the rate of Fe²⁺ oxidation depended on the Fe²⁺ concentration, oxygen pressure, amount of recycled sludge, limestone dosage and the mixing rate. Continuous studies in an OPeN process pilot plant resulted in 100% removal of total acidity from synthetic coal mine water and a 98% removal from synthetic gold mine water. Fe²⁺ was removed completely as precipitated Fe(OH)₃ from both synthetic coal and gold mine water at around pH 7 at 200 and 100 kPa oxygen pressure, respectively.

  7. Mechanistic consideration of the photochemical transformation of domoic acid (algal toxin) in DOM-Rich brackish water.

    PubMed

    Jin, Hangxing; Lian, Lushi; Zhou, Huaxi; Yan, Shuwen; Song, Weihua

    2018-06-14

    Domoic acid (DA) is a neurotoxin generated by several diatom species in harmful algae blooms (HABs). We report the photo-induced transformation products (TPs) and degradation mechanisms of DA in dissolved organic matter (DOM)-rich freshwater and brackish water. High-resolution quadrupole time-of-flight mass spectrometry (QTOF-MS) and the multivariate statistical strategy orthogonal partial least-squares discriminant analysis (OPLS-DA) identified 36 and 23 potential TPs in DOM-rich freshwater and brackish water, respectively. The main reactive sites of DA are the conjugated double bond and proline ring. Isomerization is the predominant transformation pathway induced by excited-state triplet DOM ( 3 DOM ∗ ). The second-order rate constant of the isomerization reaction was measured as (3.8 ± 0.2) × 10 8  M -1  s -1 . The inverse correlation between the dissolved oxygen (DO) concentration and the rate of photo-induced DA isomerization was revealed. Furthermore, under halide-present conditions, halide radicals are mainly responsible for the differentiation of products by quenching hydroxyl radicals and generating unique organic peroxide products. Our results indicated that halide radicals could be important in the photochemical transformation of organic contaminants in high saline environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil.

    PubMed

    Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson

    2014-05-14

    Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  9. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.

    USGS Publications Warehouse

    Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.

    1987-01-01

    Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.

  10. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal).

    PubMed

    Durães, Nuno; Bobos, Iuliu; da Silva, Eduardo Ferreira

    2017-02-01

    Acid mine waters (AMW) collected during high- and low-flow water conditions from the Lousal, Aljustrel, and São Domingos mining areas (Iberian Pyrite Belt) were physicochemically analyzed. Speciation calculation using PHREEQC code confirms the predominance of Me n+ and Me-SO 4 species in AMW samples. Higher concentration of sulfate species (Me-SO 4 ) than free ion species (Me n+ , i.e., Al, Fe, and Pb) were found, whereas opposite behavior is verified for Mg, Cu, and Zn. A high mobility of Zn than Cu and Pb was identified. The sulfate species distribution shows that Fe 3+ -SO 4 2- , SO 4 2- , HSO 4 - , Al-SO 4 , MgSO 4 0 , and CaSO 4 0 are the dominant species, in agreement with the simple and mixed metal sulfates and oxy-hydroxysulphates precipitated from AMW. The saturation indices (SI) of melanterite and epsomite show a positive correlation with Cu and Zn concentrations in AMW, which are frequently retained in simple metal sulfates. Lead is well correlated with jarosite and alunite (at least in very acid conditions) than with simple metal sulfates. The Pb for K substitution in jarosite occurs as increasing Pb concentration in solution. Lead mobility is also controlled by anglesite precipitation (a fairly insoluble sulfate), where a positive correlation was ascertained when the SI approaches equilibrium. The zeta potential of AMW decreased as pH increased due to colloidal particles aggregation, where water species change from SO 4 2- to OH - species during acid to alkaline conditions, respectively. The AMW samples were supersaturated in schwertmannite and goethite, confirmed by the Me n+ -SO 4 , Me n+ -Fe-O-OH, or Me n+ -S-O-Fe-O complexes identified by attenuated total reflectance infrared spectroscopy (ATR-IR). The ATR-IR spectrum of an AMW sample with pH 3.5 (sample L1) shows well-defined vibration plans attributed to SO 4 tetrahedron bonded with Fe-(oxy)hydroxides and the Me n+ sorbed by either SO 4 or Fe-(oxy)hydroxides. For samples with lower pH values (p

  11. Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids.

    PubMed

    Jackson, Kim G; Wolstencroft, Emma J; Bateman, Paul A; Yaqoob, Parveen; Williams, Christine M

    2005-01-01

    Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Ten normolipidemic men received in random order a mixed meal containing 50 g of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)], or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48, B-100, E, C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S(f)) >400, S(f) 60-400, and S(f) 20-60. Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S(f) > 400 and S(f) 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (S(f) 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (S(f) > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Differences in the composition of S(f) > 400 and S(f) 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.

  12. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  13. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  14. Influence of Heavy Metal Stress On Water Regime of A Model Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Menon, M.; Abbaspour, K. C.; Schulin, R.

    Among various toxic substances that contaminate the soil, the effects of heavy metals are particularly severe on all aspects of soil-plant system. The Swiss Federal Institute for Forest Snow and Land Research (WSL) is addressing comprehensively the issue of heavy metal toxicity in a forest ecosystem in a project titled Sfrom cell to treeT. As & cedil; part of the above project an investigation is being carried out to evaluate the impact of heavy metal stress on water regime of a young forest ecosystem grown in sixteen open top lysimeters. The factorial treatments of the lysimeters include variations of rainwa- ter acidity (acidic, neutral), subsoil type (acidic, calcareous), and heavy metal con- centration (with and without heavy metals in the top 20 cm). Filling of lysimeters was completed in November 1999. Each model ecosystem was planted in spring 2000 with the same collection of trees and herbaceous plants. Each lysimeters is equipped with tensiometers for monitoring of pressure head, time domain reflectometry for moni- toring of water content, and sprinkler devices for application of controlled irrigation. Drainage water data are measured regularly from the canisters installed at the bot- tom of lysimeters and evapotranspiration is calculated through water balancing. Our preliminary analyses of the data shoed the following results. Weekly data collected from May to October 2001 indicated higher amount of percolating water in acidic soil compared to the neutral soil due to textural difference. At 12 cm depth in both soils, control and acidic rain showed lower water potential than heavy metal and combina- tion of acidic rain with heavy metal treatments. In lower depths, water potential did not show much difference between treatments. Water contents showed differences be- tween treatments in the upper part of the profile where the soil is contaminated with heavy metals. Higher water content was observed in heavy metal treatment at 0-25 cm depth than 25-50 cm

  15. Biomimetic mineral self-organization from silica-rich spring waters.

    PubMed

    García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver

    2017-03-01

    Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.

  16. Catalytic conversion of cellulose to levulinic acid by metal chlorides.

    PubMed

    Peng, Lincai; Lin, Lu; Zhang, Junhua; Zhuang, Junping; Zhang, Beixiao; Gong, Yan

    2010-08-02

    The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl(3), FeCl(3) and CuCl(2) and a group IIIA metal chloride (AlCl(3)), exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 degrees C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  17. Evaporation pathways and solubility of Fe-Ca-Mg-rich salts in acid sulfate waters. A model for Martian ancient surface waters

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Sansano, A.; Sanz, A.

    2011-12-01

    It has been suggested that Martian iron rich sulfate and oxyhydroxide deposits were precipitated from meltwaters[1], thought to have been acidic. Alternatively, iron(III)-rich hydrated sulfates from oxidized sulfides observed in the outcrops may occur as a result of long-term reactions[4]. Recent analysis of Martian materials support that they come from hydrothermal activity[5], which is highly consistent with the observation of enriched in iron, magnesium, silicon and calcium materials[2]. Independently of the nature of the sulfate formation paths on Mars, characterizing the interaction of saline mineral assemblages and the aqueous solutions necessary for their formation is significance in assessing Mars' hydrological and mineralogical evolution history. In this work we have characterized a layered deposit(Fig. 1) formed from the evaporation of stream water from Rio Tinto, Spain, a relevant Mars analog site[6]. The minerals detected in-situ, confirmed later via high resolution laser Raman spectroscopy in the laboratory, are, from bottom to top: (A) mixture of goethite and probably schwermannite; (B) goethite; (C) mixture of gypsum and highly hydrated ferric sulfates; (D) hexahydrite; and (E) mixture of hexahydrite and epsomite. What we observed in this deposit is the precipitation of relatively insoluble hydroxysulfates (schwermannite admixed with goethite), followed by the precipitation of other relatively insoluble ferric and gypsum, and finally the occurrence of the very soluble Mg-sulfates. We are currently investigating the correlation of this evaporite deposit with the hydrochemistry of the stream water from which it evaporated through dedicated laboratory analysis of natural mineral and aqueous samples. A solubility model including the minerals identified in this work will be reported at the conference. The study of this particular acid sulfate system (with analog mineralogy to that observed in Meridiani[3]) provides constraints on the evaporation pathways

  18. Water-soluble metal working fluids additives derived from the esters of acid anhydrides with higher alcohols for aluminum alloy materials.

    PubMed

    Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.

  19. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  20. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    PubMed

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.

    1998-01-01

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that

  2. Mine waters: Acidic to circumneutral

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Acid mine waters, often containing toxic concentrations of Fe, Al, Cu, Zn, Cd, Pb, Ni, Co, and Cr, can be produced from the mining of coal and metallic deposits. Values of pH for acid mine waters can range from –3.5 to 5, but even circumneutral (pH ≈ 7) mine waters can have high concentrations of As, Sb, Mo, U, and F. When mine waters are discharged into streams, lakes, and the oceans, serious degradation of water quality and injury to aquatic life can ensue, especially when tailings impoundments break suddenly. The main acid-producing process is the exposure of pyrite to air and water, which promotes oxidative dissolution, a reaction catalyzed by microbes. Current and future mining should plan for the prevention and remediation of these contaminant discharges by the application of hydrogeochemical principles and available technologies, which might include remining and recycling of waste materials.

  3. Controlling mechanisms of metals release form cement-based waste form in acetic acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kuang Ye.

    1991-01-01

    The purpose of this dissertation is to identify the individual leaching mechanisms of metals by knowing the pH profile within the leached specimen and the physical and chemical properties of the leached material. Leaching of cement-based waste form in acetic acid solutions with different acidic strengths has been investigated in this work. The pH profile along the acid penetration route in the cement-based waste form was identified by various pH color indicators. The pH in the surface altered layer varies from 5.0 to 6.0, which is very close to the pH in the bulk leachate. A reacting zone, where themore » pH abruptly changes from 6 to 12, sharply divides the altered surface layer from the remaining unleached waste form or kernel. Leaching of metals is controlled by the acidity available in the leachant. Dissolution of alkaline materials leaves a silica-rich layer on the surface of the cement-based waste form. This surface layer exhibits different properties than those of the unleached material. The surface layer has a higher water content, is lighter weight, and is soft and friable. Furthermore, the abundant silicate content on the solid surface detains portion of the leached metals, while they are moving through the leached layer into bulk solution. The leaching of metals is a consequence of acid penetration. The distance from the solid/solution interface to the front of the leaching boundary can be regarded as the depth of leaching zone, where the metals dissolve and diffuse out of the waste form. The metal ions diffuse through the leached layer may be retarded on the solid surface by the pH-dependent adsorption reactions. It is found that the leaching process through the leached layer is diffusion-controlled for calcium and cadmium, whereas diffusion and adsorption occur simultaneously in the leached layer for lead and arsenic.« less

  4. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  5. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  6. Simultaneous recovery of benzene-rich oil and metals by steam pyrolysis of metal-poly(ethylene terephthalate) composite waste.

    PubMed

    Kumagai, Shogo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-03-18

    The possibility of simultaneous recovery of benzene and metals from the hydrolysis of poly(ethylene terephthalate) (PET)-based materials such as X-ray films, magnetic tape, and prepaid cards under a steam atmosphere at a temperature of 450 °C was evaluated. The hydrolysis resulted in metal-containing carbonaceous residue and volatile terephthalic acid (TPA). The effects of metals and additives on the recovery process were also investigated. All metals were quantitatively recovered, and silver, maghemite (γ-Fe2O3), and anatase (TiO2) were recovered without any changes in their crystal structures or compositions. In a second step, TPA was decarboxylized in the presence of calcium oxide (CaO) at 700 °C, producing benzene with an average yield of 34% and purity of 76%. Maghemite (γ-Fe2O3) incorporated in magnetic tape and prepaid cards could decarboxylate TPA. Aluminum present in the prepaid cards produced hydrogen by the reaction with steam. However, the presence of metals had no adverse influence on the recovery of benzene-rich oil in the presence of CaO. Therefore, this method can be applied to PET-based materials containing inorganic substances, which cannot be recycled effectively otherwise.

  7. In vitro genotoxicity of chlorinated drinking water processed from humus-rich surface water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liimatainen, A.; Grummt, T.

    Chlorination by-products of drinking waters are capable of inducing sister chromatid exchanges (SCE) and chromosome aberrations (CA) in vitro, in addition to their mutagenic activity in the Ames test. Finnish drinking waters, processed from humus-rich surface water using chlorine disinfection, have been found to be highly mutagenic in the Ames' test. The highest activities have been found in the acidic, non-volatile fraction of the water concentrates using tester strain TA100 without metabolic activation by S9mix. The mutagenicities have varied between 500 and 14,000 induced revertants per liter. These figures are one to two magnitudes higher than those reported elsewhere. Themore » authors studied five Finnish drinking water samples for their potency to exert genotoxic effects, SCEs and CAs, in mammalian cells in vitro (human peripheral lymphocytes and Chinese hamster lung fibroblasts).« less

  8. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    USGS Publications Warehouse

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  9. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    USGS Publications Warehouse

    Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.

    2009-01-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4.7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  10. Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin.

    PubMed

    Küsters, Markus; Gerhartz, Michael

    2010-04-01

    For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real-world drinking water samples of 98+/-9, 100+/-16 and 101+/-11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.

  11. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  12. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] < -0.5) selected from the Radial Velocity Experiment survey. The majority of the Li-rich giants in our sample are very metal-poor ([Fe/H] {approx}< -1.9), and have a Li abundance (in the form of {sup 7}Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) < 0.5, while two stars, with A(Li) {approx} 1.7-1.8, show similar lithium abundances to normal giants at the same gravity. We further includedmore » two metal-poor, Li-rich globular cluster giants in our sample, namely the previously discovered M3-IV101 and newly discovered (in this work) M68-A96. This comprises the largest sample of metal-poor Li-rich giants to date. We performed a detailed abundance analysis of all stars, finding that the majority of our sample stars have elemental abundances similar to that of Li-normal halo giants. Although the evolutionary phase of each Li-rich giant cannot be definitively determined, the Li-rich phase is likely connected to extra mixing at the RGB bump or early asymptotic giant branch that triggers cool bottom processing in which the bottom of the outer convective envelope is connected to the H-burning shell in the star. The surface of a star becomes Li-enhanced as {sup 7}Be (which burns to {sup 7}Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.« less

  13. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  14. Electron-rich triphenylamine-based sensors for picric acid detection.

    PubMed

    Chowdhury, Aniket; Mukherjee, Partha Sarathi

    2015-04-17

    This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.

  15. Relocation of net-acid-generating waste to improve post-mining water chemistry.

    PubMed

    Morin, K A; Hutt, N M

    2001-01-01

    Acidic drainage and metal leaching are long-term environmental liabilities that can persist for many decades to millennia. One technique to improve the water chemistry and ecology of post-mining landscapes is to relocate and submerge net-acid-generating mine materials in a lake or water-retaining impoundment. One example of a carefully executed relocation of waste rock took place at the Eskay Creek Mine in Canada. Pre-relocation studies included an empirical relationship that related (1) the amount of acidity retained by the waste rock during past oxidation to (2) the amount of lime needed in each truckload for neutralization of the acidity and for suppression of metal release. During relocation, thousands of rinse pH measurements indicated net acidity varied significantly over short distances within the waste rock and that acidic rock could not be reliably segregated from near-netural rock. After relocation, water from the watershed continued to be acidic for a few years, then returned to near-neutral pH and near-background concentrations of metals. The chemistry of the lake where the waste rock was submerged remains near background conditions. Therefore, with careful planning and implementation, the relocation and submergence of net-acid-generating materials can greatly improve post-mining water chemistry.

  16. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    PubMed

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable.

  17. Metal-rich RRc Stars in the Carnegie RR Lyrae Survey

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Preston, George W.; Kollmeier, Juna A.; Crane, Jeffrey D.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen A.; Skowron, Dorota M.; Thompson, Ian B.

    2018-01-01

    We describe and employ a stacking procedure to investigate abundances derived from the low signal-to-noise ratio spectra obtained in the Carnegie RR Lyrae Survey (CARRS). We find iron metallicities that extend from [Fe/H] ∼ ‑2.5 to values at least as large as [Fe/H] ∼ ‑0.5 in the 274-spectrum CARRS RRc data set. We consider RRc sample contamination by high amplitude solar metallicity δ Scuti stars (HADS) at periods less than 0.3 days, where photometric discrimination between RRc and δ Scuti stars has proven to be problematic. We offer a spectroscopic discriminant, the well-marked overabundance of heavy elements, principally [Ba/H], that is a common, if not universal, characteristic of HADS of all periods and axial rotations. No bona fide RRc stars known to us have verified heavy-element overabundances. Three out of 34 stars in our sample with [Fe/H] > ‑0.7 exhibit anomalously strong features of Sr, Y, Zr, Ba, and many rare earths. However, carbon is not enhanced in these three stars, and we conclude that their elevated n-capture abundances have not been generated in interior neutron-capture nucleosynthesis. Contamination by HADS appears to be unimportant, and metal-rich RRc stars occur in approximately the same proportion in the Galactic field as do metal-rich RRab stars. An apparent dearth of metal-rich RRc is probably a statistical fluke. Finally, we show that RRc stars have a similar inverse period–metallicity relationship as has been found for RRab stars.

  18. Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo

    NASA Astrophysics Data System (ADS)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dušan

    2017-08-01

    We use the first Gaia data release, combined with the RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ≲ 3 kpc from the Sun. We identify halo stars kinematically as moving at a relative speed of at least 220 km s-1 with respect to the local standard of rest. These stars are generally less metal-rich than the disk, but surprisingly, half of our halo sample is comprised of stars with [{Fe}/{{H}}]> -1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the intrinsically isotropic orbital distribution of the metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, whereas lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the solar neighborhood actually formed in situ within the Galactic disk, rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  19. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.

    PubMed

    Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew

    2014-07-16

    Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.

  20. Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes.

    PubMed

    Ginocchio, Rosanna; De la Fuente, Luz María; Sánchez, Pablo; Bustamante, Elena; Silva, Yasna; Urrestarazu, Paola; Rodríguez, Patricio H

    2009-10-01

    Pollution of soil with mine wastes results in both Cu enrichment and soil acidification. This confounding effect may be very important in terms of phytotoxicity, because pH is a key parameter influencing Cu solubility in soil solution. Laboratory toxicity tests were used to assess the effect of acidification by acidic mine wastes on Cu solubility and on root elongation of barley (Hordeum vulgare L.). Three contrasting substrates (two soils and a commercial sand) and two acidic, Cu-rich mine wastes (oxidized tailings [OxT] and smelter dust [SmD]) were selected as experimental materials. Substrates were spiked with a fixed amount of either SmD or OxT, and the pH of experimental mixtures was then modified in the range of 4.0 to 6.0 and 7.0 using PIPES (piperazine-1,4-bis(2-ethanesulfonic acid)), MES (2-(N-morpholino)ethanesulfonic acid), and MOPS (3-(N-Morpholino)-propanesulfonic acid) buffers. Chemical (pore-water Cu and pH) and toxicological (root length of barley plants) parameters were determined for experimental mixtures. Addition of SmD and OxT to substrates resulted in acidification (0.11-1.16 pH units) and high levels of soluble Cu and Zn. Neutralization of experimental mixtures with MES (pH 6.0) and MOPS (pH 7.0) buffers resulted in a marked decrease in soluble Cu and Zn, but the intensity of the effect was substrate-dependent. Adjustment of soil pH above the range normally considered to be toxic to plants (pH in water extract, > 5.5) significantly reduced metal toxicity in barley, but phytotoxicity was not completely eliminated. The present results stress the importance of considering confounding effects on derivation of toxicity thresholds to plants when using laboratory phytotoxicity tests.

  1. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  2. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  3. Leaching of Heavy Metals from Water Bottle Components into the Drinking Water of Rodents

    PubMed Central

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals. PMID:23562029

  4. Leaching of heavy metals from water bottle components into the drinking water of rodents.

    PubMed

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals.

  5. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  6. Metal mobilization from metallurgical wastes by soil organic acids.

    PubMed

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microbial control of silicate weathering in organic-rich ground water

    USGS Publications Warehouse

    Hiebert, Franz K.; Bennett, Philip C.

    1992-01-01

    An in situ microcosm study of the influence of surface-adhering bacteria on silicate diagenesis in a shallow petroleum-contaminated aquifer showed that minerals were colonized by indigenous bacteria and chemically weathered at a rate faster than theoretically predicted. Feldspar and quartz fragments were placed in anoxic, organic-rich ground water, left for 14 months, recovered, and compared to unreacted controls with scanning electron microscopy. Ground-water geochemistry was characterized before and after the experiment. Localized mineral etching probably occurred in a reaction zone at the bacteria-mineral interface where high concentrations of organic acids, formed by bacteria during metabolism of hydrocarbon, selectively mobilized silica and aluminum from the mineral surface.

  8. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    NASA Astrophysics Data System (ADS)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in

  9. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks.

    PubMed

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-03-30

    Adsorptive removal of naproxen and clofibric acid, two typical PPCPs (pharmaceuticals and personal care products), has been studied using metal-organic frameworks (MOFs) for the first time. The removal efficiency decreases in the order of MIL-101>MIL-100-Fe>activated carbon both in adsorption rate and adsorption capacity. The adsorption kinetics and capacity of PPCPs generally depend on the average pore size and surface area (or pore volume), respectively, of the adsorbents. The adsorption mechanism may be explained with a simple electrostatic interaction between PPCPs and the adsorbent. Finally, it can be suggested that MOFs having high porosity and large pore size can be potential adsorbents to remove harmful PPCPs in contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  11. Dynamic Stabilization of Metal Oxide–Water Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; von Rudorff, Guido Falk; Stubbs, Joanne E.

    2017-02-08

    The interaction of water with metal oxide surfaces plays a crucial role in the catalytic and geochemical behavior of metal oxides. In a vast majority of studies, the interfacial structure is assumed to arise from a relatively static lowest energy configuration of atoms, even at room temperature. Using hematite (α-Fe2O3) as a model oxide, we show through a direct comparison of in situ synchrotron X-ray scattering with density functional theory-based molecular dynamics simulations that the structure of the (1102) termination is dynamically stabilized by picosecond water exchange. Simulations show frequent exchanges between terminal aquo groups and adsorbed water in locationsmore » and with partial residence times consistent with experimentally determined atomic sites and fractional occupancies. Frequent water exchange occurs even for an ultrathin adsorbed water film persisting on the surface under a dry atmosphere. The resulting time-averaged interfacial structure consists of a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Surface pKa prediction based on bond valence analysis suggests that water exchange will influence the proton-transfer reactions underlying the acid/base reactivity at the interface. Our findings provide important new insights for understanding complex interfacial chemical processes at metal oxide–water interfaces.« less

  12. Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.

    PubMed

    Qian, Yiying; Dong, Huijuan; Geng, Yong; Zhong, Shaozhuo; Tian, Xu; Yu, Yanhong; Chen, Yihui; Moss, Dana Avery

    2018-03-30

    Rapid industrialization and urbanization pose pressure on water resources in China. Virtual water trade proves to be an increasingly useful tool in water stress alleviation for water-scarce regions, while bringing opportunities and challenges for less developed water-rich regions. In this study, Yunnan, a typical province in southwest China, was selected as the case study area to explore its potential in socio-economic development in the context of water sustainability. Both input-output analysis and structural decomposition analysis on Yunnan's water footprint for the period of 2002-2012 were performed at not only an aggregated level but also a sectoral level. Results show that although the virtual water content of all economic sectors decreased due to technological progress, Yunnan's total water footprint still increased as a result of economic scale expansion. From the sectoral perspective, sectors with large water footprints include construction sector, agriculture sector, food manufacturing & processing sector, and service sector, while metal products sector and food manufacturing & processing sector were the major virtual water exporters, and textile & clothing sector and construction sector were the major importers. Based on local conditions, policy suggestions were proposed, including economic structure and efficiency optimization, technology promotion and appropriate virtual water trade scheme. This study provides valuable insights for regions facing "resource curse" by exploring potential socio-economic progress while ensuring water security. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Conjugated linoleic acid-rich soy oil triacylglycerol identification.

    PubMed

    Lall, Rahul K; Proctor, Andrew; Jain, Vishal P; Lay, Jackson O

    2009-03-11

    Conjugated linoleic acid (CLA)-rich soy oil has been produced by soy oil linoleic acid (LA) photoisomerization, but CLA-rich oil triacylglycerol (TAG) characterization was not described. Therefore, the objectives were to identify and quantify new TAG fractions in CLA-rich oil by nonaqueous reversed-phase high-performance liquid chromatography (NARP-HPLC). Analytical NARP-HPLC with an acetonitrile/dichloromethane (ACN/DCM) gradient and an evaporating light scattering detector/ultraviolet (ELSD/UV) detector was used. New TAG peaks from LA-containing TAGs were observed. The LnLL, LLL, LLO, and LLP (Ln, linolenic; L, linoleic; O, oleic; and P, palmitic) peaks reduced after isomerization with an increase in adjacent peaks that coeluted with LnLnO, LnLO, LnOO, and LnPP. The newly formed peaks were wider than those of the original oil and absorbed at 233 nm, suggesting the possibility of various CLA containing TAGs. The HPLC profile showed five fractions of mixed TAGs, and fatty acid analysis showed that CLA isomers were found predominately in fractions 2 and 3, which originally contained most LA. The CLA isomers were 70-80% trans,trans and 20-30% cis,trans and trans,cis.

  14. Lysimeter Study of Plant Water Uptake in a Model Forest Ecosystem on Heavy Metal Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Menon, M.; Abbaspour, K.; Schulin, R.; Oswald, S.

    2003-04-01

    We have been investigating the impact of heavy metal stress on the water regime of young forest ecosystems grown in 32 open top lysimeters (3 m in diameter and 1 m deep). The factorial treatments of the lysimeters include variations of rainwater acidity (acidic, ambient rain), subsoil type (acidic, calcareous), and soil contamination (with and without copper, zinc and cadmium in the top 20 cm). Each lysimeter was planted in spring of 2000 with the same selection of trees and herbaceous plants. All lysimeters are equipped with tensiometers for monitoring of pressure head and time domain reflectometry for measuring of water content. Irrigation was applied equally to all lysimeters through sprinkler devices. Drainage water was collected by means of canisters installed at the bottom of the lysimeters, and thus evapotranspiration could be calculated through water balancing. We monitored the water regime for two years including an imposed drought period. Significantly more water was extracted from the calcareous than the acidic subsoil. The water potential measurements show that also the heavy metal polluted topsoil had a significant influence on the water regime. Metal stress was particularly evident under reduced irrigation. We suspect that the roots were damaged in the contaminated topsoil. In contrast to the subsoil type, heavy metal pollution did not produce a significant effect on evapotranspiration (ET) though, and neither did acidic rain. Pot experiments confirmed that in presence of clean subsoil plants compensated for metal stress in contaminated topsoil by shifting their root activity from contaminated to uncontaminated zones.

  15. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.

    PubMed

    Karikari-Yeboah, Ohene; Addai-Mensah, Jonas

    2017-02-01

    Pyrite-rich sediments would, invariably, undergo redox reactions which would lead to acidic aqueous environment containing solubilized toxic metal species. When such sediments are subjected to preload, a technique employed by geotechnical engineers to improve the load-bearing capacity of highly compressible formation, transient flow of pore water, accompanied by acidity transfer, would occur as a response. Despite the concomitant environmental and socio-economic significance, to date, there has been limited interdisciplinary research on the underpinning geotechnical engineering and geo-environmental science issues for pyrite-rich sediments under preload. In this study, we investigate the effect of pyrite-rich sediment pore water transfer under preload surcharge on the receiving environment and the impact on the groundwater speciation and quality. Sediment samples were obtained at close depth intervals from boreholes established within pristine areas and those subjected to the preload application. Soil and pore water samples were subjected to solid/solution speciation, moisture contents, soil pH and the Atterberg Limits' analyses using standard analytical techniques and methods. Standpipes were also installed in the boreholes for groundwater sampling and in situ monitoring of water quality parameters. It is shown that the imposition of preload surcharge over pyritic sediment created a reducing environment rich in SO 4 2- , iron oxide minerals and organic matter. This reducing environment fostered organic carbon catabolism to generate excess pyrite and bicarbonate alkalinity, which would invariably impact adversely on soil quality and plant growth. These were accompanied by increase in pH, dissolved Al, Ca, Mg and K species beneath the surcharge.

  16. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    PubMed

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.

  17. Generation of copper rich metallic phases from waste printed circuit boards.

    PubMed

    Cayumil, R; Khanna, R; Ikram-Ul-Haq, M; Rajarao, R; Hill, A; Sahajwalla, V

    2014-10-01

    The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally

  18. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada)

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Mercadier, Julien; Banks, David A.; Cuney, Michel

    2016-02-01

    alteration. Finally, the metal concentrations in the NaCl-rich and CaCl2-rich brines are among the highest recorded compared to present-day sedimentary formation waters and fluid inclusions from basin-hosted base metal deposits (up to 600 ppm U, 3000 ppm Mn, 4000 ppm Zn, 6000 ppm Cu, 8000 ppm Pb, and 10,000 ppm Fe). The CaCl2-rich brine carries up to one order of magnitude more metal than the NaCl-rich brine. Though the exact origin of major cations and metals of the two brines remains uncertain, their contrasting compositions indicate that the two brines had distinct flow paths and fluid-rock interactions. Large-scale circulation of the brines in the Athabasca Basin and Basement was therefore a key parameter for metal mobility (including U) and formation of unconformity-related U deposits.

  19. Effect Of Organic Substrate Composition On Microbial Community Structure Of Pilot-Scale Biochemical Reactors Treating Mining Influenced Water

    EPA Science Inventory

    Mining-influenced water (MIW) is acidic, metal rich water formed when sulfide minerals react with oxygen and water. There are various options for the treatment of MIW; however, passive biological systems such as biochemical reactors (BCRs) have shown promise because of their low...

  20. Production of conjugated linoleic acid-rich potato chips.

    PubMed

    Jain, Vishal P; Proctor, Andrew

    2007-01-01

    Conjugated linoleic acid (CLA) is found primarily in diary and beef products, but the health benefits of CLA can only be realized if they are consumed at much greater levels than a normal healthy dietary intake. We have recently shown that a CLA-rich soy oil can be produced by simple isomerization of linoleic acid in soy oil by photoirradiation. This oil may allow greatly increased dietary CLA without significantly elevating fat intake. The objective of this study was to prepare CLA-rich potato chips by frying in CLA-rich soy oil. Soy oil was photoisomerized in the presence of iodine catalyst with UV/visible light. The irradiated oil was clay processed to remove the residual iodine and this oil was then used to fry potato chips. Oil was extracted from fried chips and analyzed for its CLA content with gas chromatography. A 1-oz serving of CLA-rich potato chips contained approximately 2.4 g CLA as compared to 0.1 g CLA in 3-oz serving of steak fillet and 0.06 g CLA in 8-oz serving of whole milk. The peroxide value of the oil extracted from potato chips was found to be 1 meq/1000 g sample, which was within the acceptable commercial standards. This study may lead to the commercialization of CLA-rich food products.

  1. Effects of acid mine effluent on sediment and water geochemistry, Ruttan Cu-Zn mine

    USGS Publications Warehouse

    Shilts, W.W.

    1996-01-01

    Waters were collected from the surface and bottom of four lakes as well as from the Churchill River and approximately 20 small ponds beside the Leaf Rapids-Ruttan mine-South Indian Lake road to determine geochemical variations related to tailings and waste rock disposal from the Ruttan Cu-Zn VHMS deposit. Using sonar profiling as a guide, grab samples and cores of sediments were also collected in Ruttan, Brehaut, Rusty, and Alto lakes to investigate the geochemical and sedimentological effects of liming the acid (pH 2.5) outflow from Ruttan Lake. Preliminary results indicate that metals anthropogenically enriched in Ruttan Lake (Zn, Cd, and Hg in particular) are scavenged and precipitated at the inflow end of Brehaut Lake as a result of adding lime solutions to the Vermilion River, midway through the 500 m reach that connects Ruttan Lake and Brehaut Lake. Zn in Ruttan Lake water (up to 17 ppm) is precipitated in the limey sediment. Zn is not enriched in waters of Rusty Lake, the next lake downstream from Brehaut Lake. Rusty Lake has Zn concentrations comparable to background water from Alto Lake (<10 ppb Zn). At present, liming appears to be controlling metal migration effectively, but a body of Zn-Cd-Hg-rich carbonate precipitate occupies the south end of Brehaut Lake which, without liming, would be receiving water of pH 2.5 from Ruttan Lake, resulting in a remobilization of metals. The related study also showed that Zn concentrations are elevated in water in contact with waste rock used to upgrade sections of the Leaf Rapids-South Indian Lake and Brehaut Lake roads.

  2. Effect Of Organic Substrate Composition On Microbial Community Structure Of Pilot-Scale Biochemical Reactors Treating Mining Influenced Water - (Presentation)

    EPA Science Inventory

    Mining-influenced water (MIW) is acidic, metal rich water formed when sulfide minerals react with oxygen and water. There are various options for the treatment of MIW; however, passive biological systems such as biochemical reactors (BCRs) have shown promise because of their low...

  3. Hg and Pt-metals in meteorite carbon-rich residues - Suggestions for possible host phase for Hg

    NASA Technical Reports Server (NTRS)

    Jovanovic, S.; Reed, G. W., Jr.

    1980-01-01

    Carbon-rich and oxide residual phases have been isolated from Allende and Murchison by acid demineralization for the determination of their Hg, Pt-metal, Cr, Sc, Co, and Fe contents. Experimental procedures used eliminated the possibility of exogenous and endogenous contaminant trace elements from coprecipitating with the residues. Large enrichments of Hg and Pt-metals were found in Allende but not in Murchison residues. Hg-release profiles from stepwise heating experiments suggest a sulfide as the host for Hg. Diffusion calculations for Hg based on these experiments indicate an activation energy of 7-8 kcal/mol, the same as that for Hg in troilite from an iron meteorite. This is further support for a sulfide host phase for Hg. Equilibration of Hg with this phase at approximately 900 K is indicated. Reasons for the presence of Pt-metals in noncosmic relative abundances are explored.

  4. Gaia reveals a metal-rich in-situ component of the local stellar halo

    NASA Astrophysics Data System (ADS)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip; Keres, Dusan

    2018-01-01

    We use the first Gaia data release, combined with RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ~3 kpc from the Sun. We identify halo stars kinematically, as moving with a relative speed of at least 220 km/s with respect to the local standard of rest. These stars are in general more metal-poor than the disk, but surprisingly, half of our halo sample is comprised of stars with [Fe/H]>-1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the isotropic orbital distribution of the more metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, while lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the Solar neighborhood in fact formed in situ within the Galactic disk rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  5. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon.

    PubMed

    Sounthararajah, Danious P; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-08-27

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals.

  6. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    PubMed

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  7. Habitability constraints on water-rich exoplanets

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan

    2016-04-01

    This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still

  8. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    NASA Astrophysics Data System (ADS)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2017-01-01

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications.

  9. Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria

    PubMed Central

    Bitencourt, José A. P.; Sahoo, Prafulla K.; Alves, Joner Oliveira; Siqueira, José O.

    2017-01-01

    Acidic mine drainage (AMD) is regarded as a pollutant and considered as potential source of valuable metals. With diminishing metal resources and ever-increasing demand on industry, recovering AMD metals is a sustainable initiative, despite facing major challenges. AMD refers to effluents draining from abandoned mines and mine wastes usually highly acidic that contain a variety of dissolved metals (Fe, Mn, Cu, Ni, and Zn) in much greater concentration than what is found in natural water bodies. There are numerous remediation treatments including chemical (lime treatment) or biological methods (aerobic wetlands and compost bioreactors) used for metal precipitation and removal from AMD. However, controlled biomineralization and selective recovering of metals using sulfidogenic bacteria are advantageous, reducing costs and environmental risks of sludge disposal. The increased understanding of the microbiology of acid-tolerant sulfidogenic bacteria will lead to the development of novel approaches to AMD treatment. We present and discuss several important recent approaches using low sulfidogenic bioreactors to both remediate and selectively recover metal sulfides from AMD. This work also highlights the efficiency and drawbacks of these types of treatments for metal recovery and points to future research for enhancing the use of novel acidophilic and acid-tolerant sulfidogenic microorganisms in AMD treatment. PMID:29119111

  10. Heavy metals content in acid mine drainage at abandoned and active mining area

    NASA Astrophysics Data System (ADS)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD

  11. Explosive decomposition of a melamine-cyanuric acid supramolecular assembly for fabricating defect-rich nitrogen-doped carbon nanotubes with significantly promoted catalysis.

    PubMed

    Zhao, Zhongkui; Dai, Yitao; Ge, Guifang; Wang, Guiru

    2015-05-26

    A facile and scalable approach for fabricating structural defect-rich nitrogen-doped carbon nanotubes (MCSA-CNTs) through explosive decomposition of melamine-cyanuric acid supramolecular assembly is presented. In comparison to pristine carbon nanotubes, MCSA-CNT exhibits significantly enhanced catalytic performance in oxidant- and steam-free direct dehydrogenation of ethylbenzene, demonstrating the potential for metal-free clean and energy-saving styrene production. This finding also opens a new horizon for preparing highly-efficient carbocatalysts rich in structural defect sites for diverse transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    USGS Publications Warehouse

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  13. Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment

    PubMed Central

    Hernández, Sebastián; Papp, Joseph K.; Bhattacharyya, Dibakar

    2014-01-01

    Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30–60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed. PMID:24954975

  14. Hydrogen-rich water attenuates experimental periodontitis in a rat model.

    PubMed

    Kasuyama, Kenta; Tomofuji, Takaaki; Ekuni, Daisuke; Tamaki, Naofumi; Azuma, Tetsuji; Irie, Koichiro; Endo, Yasumasa; Morita, Manabu

    2011-12-01

    Reactive oxygen species (ROS) contribute to the development of periodontitis. As molecular hydrogen can act as a scavenger of ROS, we examined the effects of treatment with hydrogen-rich water on a rat model of periodontitis. A ligature was placed around the maxillary molars for 4 weeks to induce periodontitis, and the animals were given drinking water with or without hydrogen-rich water. The rats with periodontitis which were treated with pure water showed a time-dependent increase in serum ROS level. Compared with the rats without periodontitis, the periodontitis-induced rats which were given pure water also showed polymorphonuclear leucocyte infiltration and alveolar bone loss at 4 weeks. Hydrogen-rich water intake inhibited an increase in serum ROS level and lowered expression of 8-hydroxydeoxyguanosine and nitrotyrosine in the periodontal tissue at 4 weeks. Such conditions prevented polymorphonuclear leucocyte infiltration and osteoclast differentiation following periodontitis progression. Furthermore, inflammatory signalling pathways, such as mitogen-activated protein kinases, were less activated in periodontal lesions from hydrogen-rich water-treated rats as compared with pure water-treated rats. Consuming hydrogen-rich water might be beneficial in suppressing periodontitis progression by decreasing gingival oxidative stress. © 2011 John Wiley & Sons A/S.

  15. Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the coastal plain of New Jersey

    USGS Publications Warehouse

    Kish, G.R.; Macy, J.A.; Mueller, R.T.

    1987-01-01

    The U.S. Geological Survey analyzed trace metal concentrations in tap water from domestic wells in newly constructed homes in Berkeley Township, Ocean County and Galloway Township, Atlantic County, N. J. The potable water distribution systems in all of the homes sampled are constructed primarily of copper with lead-based solder points. Home water treatment is used in Berkeley Township but not in Galloway Township. Tap water was collected after the water had been standing in the pipes overnight. In Berkeley, 6 to 11 samples exceeded both the U.S. Environmental Protection Agency 's primary drinking water regulation (DWR) for lead (50 microgram/L) and the secondary drinking water regulation (SDWR) for copper (1,000 microgram/L). In Galloway, 12 of 14 samples exceeded the DWR for lead and 13 of 14 exceeded the SDWR for copper. After collecting the standing-water samples, the water was left running for 15 minutes and a second sample was collected. None of the running-water samples exceeded the regulations for lead or copper. Available data suggest a correlation between the residence time of soft, acidic groundwater in new home plumbing systems and elevated trace-metal concentrations in drinking water derived from domestic wells within the New Jersey Coastal Plain. (USGS)

  16. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    PubMed

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  17. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marking, Gregory Allen

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf 10Ta 3S 3 was found to crystallize in a new-structure type similar to the knownmore » gamma brasses. This structure is unique in that it is the only reported "stuffed" gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo Kα X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co 2Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.« less

  18. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  19. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial polar regions is reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  20. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    PubMed Central

    Sounthararajah, Danious P.; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-01-01

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals. PMID:26343692

  1. Effects of hydrogen-rich water on aging periodontal tissues in rats

    PubMed Central

    Tomofuji, Takaaki; Kawabata, Yuya; Kasuyama, Kenta; Endo, Yasumasa; Yoneda, Toshiki; Yamane, Mayu; Azuma, Tetsuji; Ekuni, Daisuke; Morita, Manabu

    2014-01-01

    Oxidative damage is involved in age-related inflammatory reactions. The anti-oxidative effects of hydrogen-rich water suppress oxidative damage, which may aid in inhibiting age-related inflammatory reactions. We investigated the effects of drinking hydrogen-rich water on aging periodontal tissues in healthy rats. Four-month-old male Fischer 344 rats (n = 12) were divided into two groups: the experimental group (hydrogen-rich water treatment) and the control group (distilled water treatment). The rats consumed hydrogen-rich water or distilled water until 16 months of age. The experimental group exhibited lower periodontal oxidative damage at 16 months of age than the control group. Although protein expression of interleukin-1β did not differ, gene expression of Nod-like receptor protein 3 inflammasomes was activated in periodontal tissues from the experimental group as compared with the control group. Drinking hydrogen-rich water is proposed to have anti-aging effects on periodontal oxidative damage, but not on inflammatory reactions in healthy rats. PMID:24985521

  2. Naturally acidic surface and ground waters draining porphyry-related mineralized areas of the Southern Rocky Mountains, Colorado and New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D. Kirk; Bove, D.J.; Plumlee, G.S.; Runkel, R.L.

    2009-01-01

    Acidic, metal-rich waters produced by the oxidative weathering and resulting leaching of major and trace elements from pyritic rocks can adversely affect water quality in receiving streams and riparian ecosystems. Five study areas in the southern Rocky Mountains with naturally acidic waters associated with porphyry mineralization were studied to document variations in water chemistry and processes that control the chemical variations. Study areas include the Upper Animas River watershed, East Alpine Gulch, Mount Emmons, and Handcart Gulch in Colorado and the Red River in New Mexico. Although host-rock lithologies in all these areas range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, the mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous, ranging from ???1 to >5 vol.%. Springs and headwater streams have pH values as low as 2.6, SO4 up to 3700 mg/L and high dissolved metal concentrations (for example: Fe up to 400 mg/L; Cu up to 3.5 mg/L; and Zn up to 14.4 mg/L). Intensity of hydrothermal alteration and presence of sulfides are the primary controls of water chemistry of these naturally acidic waters. Subbasins underlain by intensely hydrothermally altered lithologies are poorly vegetated and quite susceptible to storm-induced surface runoff. Within the Red River study area, results from a storm runoff study documented downstream changes in river chemistry: pH decreased from 7.80 to 4.83, alkalinity decreased from 49.4 to <1 mg/L, SO4 increased from 162 to 314 mg/L, dissolved Fe increased from to 0.011 to 0.596 mg/L, and dissolved Zn increased from 0.056 to 0.607 mg/L. Compared to mine drainage in the same study areas, the chemistry of naturally acidic waters tends to overlap but not reach the extreme concentrations of metals and acidity as some mine waters. The chemistry of waters draining these mineralized but unmined areas can be used to

  3. Adsorption of acid-extractable organics from oil sands process-affected water onto biomass-based biochar: Metal content matters.

    PubMed

    Bhuiyan, Tazul I; Tak, Jin K; Sessarego, Sebastian; Harfield, Don; Hill, Josephine M

    2017-02-01

    The impact of biochar properties on acid-extractable organics (AEO) adsorption from oil sands process-affected water (OSPW) was studied. Biochar from wheat straw with the highest ash content (14%) had the highest adsorption capacity (0.59 mg/g) followed by biochar from pulp mill sludge, switchgrass, mountain pine, hemp shives, and aspen wood. The adsorption capacity had no obvious trend with surface area, total pore volume, bulk polarity and aromaticity. The large impact of metal content was consistent with the carboxylates (i.e., naphthenate species) in the OSPW binding to the metals (mainly Al and Fe) on the carbon substrate. Although the capacity of biochar is still approximately two orders of magnitude lower than that of a commercial activated carbon, confirming the property (i.e., metal content) that most influenced AEO adsorption, may allow biochar to become competitive with activated carbon after normalizing for cost, especially if this cost includes environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, U.S.A.

    PubMed

    Tucci, Nicholas J; Gammons, Christopher H

    2015-04-07

    The Berkeley Pit lake in Butte, Montana, formed by flooding of an open-pit copper mine, is one of the world's largest accumulations of acidic, metal-rich water. Between 2003 and 2012, approximately 2 × 10(11) L of pit water, representing 1.3 lake volumes, were pumped from the bottom of the lake to a copper recovery plant, where dissolved Cu(2+) was precipitated on scrap iron, releasing Fe(2+) back to solution and thence back to the pit. Artificial mixing caused by this continuous pumping changed the lake from a meromictic to holomictic state, induced oxidation of dissolved Fe(2+), and caused subsequent precipitation of more than 2 × 10(8) kg of secondary ferric compounds, mainly schwertmannite and jarosite, which settled to the bottom of the lake. A large mass of As, P, and sulfate was also lost from solution. These unforeseen changes in chemistry resulted in a roughly 25-30% reduction in the lake's calculated and measured total acidity, which represents a significant potential savings in the cost of lime treatment, which is not expected to commence until 2023. Future monitoring is needed to verify that schwertmannite and jarosite in the pit sediment do not convert to goethite, a process which would release stored acidity back to the water column.

  5. Metal-rich meteorites from the aubrite parent body

    NASA Technical Reports Server (NTRS)

    Casanova, I.; Mccoy, T. J.; Keil, K.

    1993-01-01

    Three metal-rich meteorites - Mt. Egerton, Horse Creek, and LEW 88055 - were studied and it is suggested that they formed in the aubrite parent body. LEW 85369 and 88631 may also have a common origin, but these rocks have not yet been studied in detail. This body was probably heated to about 1600 C by a very strong heat source. While molten, metal agglomerated into sizeable nodules which never segregated efficiently to form a core, but were trapped in the silicate mantle. Different clasts and lithologies in aubrites solidified and cooled under local equilibrium conditions of oxygen fugacity, and with different thermal histories. Impacts mixed clasts from throughout the parent body, creating the typical aubrite breccias.

  6. Tidally driven water column hydro-geochemistry in a remediating acidic wetland

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Keene, Annabelle F.; Bush, Richard T.; Sullivan, Leigh A.; Wong, Vanessa N. L.

    2011-10-01

    SummaryManaged tidal inundation is a newly evolved technique for remediating coastal acid sulphate soil (CASS) wetlands. However, there remains considerable uncertainty regarding the hydro-geochemical pathways and spatiotemporal dynamics of residual H + and metal(loid) mobilisation into the tidal fringe surface waters of these uniquely iron-rich landscapes. Here, we examine the hydrology and water column chemistry across the intertidal slope of a remediating CASS wetland during several tide cycles. There was extreme spatial and temporal dynamism in water column chemistry, with pH fluctuating by ˜3 units (˜3.5-6.5) during a single tide cycle. Acute acidity was spatially confined to the upper intertidal slope, reflecting surface sediment properties, and tidal overtopping is an important pathway for mobilisation of residual H + and Al 3+ to the water column. Marine derived HCO3- was depleted from surface waters migrating across the intertidal slope and a strong gradient in HCO3- was observed from the tidal fringe to the adjacent tributary channel and nearby estuary. Tidal forcing generated oscillating hydraulic gradients in the shallow fringing aquifer, favouring ebb-tide seepage and driving rapid, heterogeneous advection of groundwater on the lower intertidal slope via surface connected macropores. A combination of diffusive and advective flux across the sediment-water interface led to persistent, elevated surface water Fe 2+ (˜10-1000 μM). The geochemical processes associated with Fe 2+ mobilisation displayed distinct spatial zonation, with low pH, proton-promoted desorption occurring on the upper intertidal slope, whilst circum-neutral pH, Fe(III)-reducing processes dominated the lower intertidal slope. Arsenic was also mobilised into surface waters on the lower intertidal slope under moderate pH (˜6.0) conditions and was strongly positively correlated with Fe 2+. Saturation index values for aragonite were substantially depressed (-1 to -5) and significantly

  7. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps.

    PubMed

    Gomes, Patrícia; Valente, Teresa; Pamplona, Jorge; Braga, Maria Amália Sequeira; Pissarra, José; Gil, José António Grande; de la Torre, Maria Luisa

    2014-01-01

    Waste dumps resulting from metal exploitation create serious environmental damage, providing soil and water degradation over long distances. Phytostabilization can be used to remediate these mining sites. The present study aims to evaluate the behavior of selected plant species (Erica arborea, Ulex europaeus, Agrostis delicatula, and Cytisus multiflorus) that grow spontaneously in three sulfide-rich waste-dumps (Lapa Grande, Cerdeirinha, and Penedono, Portugal). These sites represent different geological, climatic and floristic settings. The results indicate distinctive levels and types of metal contamination: Penedono presents highest sulfate and metal contents, especially As, with low levels of Fe. In contrast, at Lapa Grande and Cerdeirinha Fe, Mn, and Zn are the dominant metals. In accordance, each waste dump develops a typical plant community, providing a specific vegetation inventory. At Penedono, Agrostis delicatula accumulates As, Pb, Cu, Mn, and Zn, showing higher bioaccumulation factors (BF) for Mn (32.1) and As (24.4). At Cerdeirinha, Ulex europaeus has the highest BF for Pb (984), while at Lapa Grande, Erica arborea presents high BF for Mn (9.8) and Pb (8.1). Regarding TF, low values were obtained for most of the metals, especially As (TF < 1). Therefore, the results obtained from representative plant species suggest appropriate behavior for phytostabilization measures.

  8. Metal concentrations in water and sediments from tourist beaches of Acapulco, Mexico.

    PubMed

    Jonathan, M P; Roy, P D; Thangadurai, N; Srinivasalu, S; Rodríguez-Espinosa, P F; Sarkar, S K; Lakshumanan, C; Navarrete-López, M; Muñoz-Sevilla, N P

    2011-04-01

    A survey on the metal concentrations (As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V, Zn) in beach water and sediments is reported from the tourist destination of Acapulco city on the Pacific coast of Mexico. The concentration of dissolved trace metals (DTMs) in beach water and acid leachable trace metals (ALTMs) in sediments indicated that they are anthropogenic in nature due to the increased tourist activities in the crowded beach locations. The statistical analysis indicates Fe and Mn play a major role as metal scavengers in both the medium (water and sediment) and the higher value of other metals is site specific in the study area, indicating that they are transported from the local area. Comparison results suggest that the beach water quality has deteriorated more than the sediments and special care needs to be taken to restore the beach quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Metal transports and enrichments in iron depositions hosted in basaltic rocks. II: Metal rich fluids and Fe origin

    NASA Astrophysics Data System (ADS)

    Zhang, Ronghua; Zhang, Xuetong; Hu, Shumin

    2015-12-01

    This study focuses on revealing the mechanism of metal transport, enrichment and Fe origin of iron deposition during water basalt interactions occurred in basaltic rocks. Observations of the iron deposits (anhydrite-magnetite-pyroxene type deposits) hosted in K-rich basaltic rocks in the Mesozoic volcanic area of the Middle-Lower Yangtze River valley, China, indicate that the mechanism of metal transport and enrichment for those deposits are significant objective to scientists, and the Fe origin problem is not well resolved. Here the metal transport, enrichment and iron origin have been investigated in high temperature experiments of water basaltic interactions. These deposits were accompanying a wide zone with metal alteration. The effects of hydrothermal alteration on major rock-forming element concentrations in basaltic rock were investigated by systematically comparing the chemical compositions of altered rocks with those of fresh rocks. In the deposits, these metals are distributed throughout altered rocks that exhibit vertical zoning from the deeper to the shallow. Then, combined with the investigations of the metal-alterations, we performed kinetic experiments of water-basaltic rock interactions using flow-through reactors in open systems at temperatures from 20 °C to 550 °C, 23-34 MPa. Release rates for the rock-forming elements from the rocks have been measured. Experiments provide the release rates for various elements at a large temperature range, and indicate that the dissolution rates (release rates) for various elements vary with temperature. Si, Al, and K have high release rates at temperatures from 300 °C to 500 °C; the maximum release rates (RMX) for Si are reached at temperatures from 300 °C to 400 °C. The RMXs for Ca, Mg, and Fe are at low temperatures from 20 °C to 300 °C. Results demonstrate that Fe is not released from 400 °C to 550 °C, and indicate that when deep circling fluids passed through basaltic rocks, Fe was not mobile, and

  10. Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes.

    PubMed

    Bohlin, Jon; Brynildsrud, Ola; Vesth, Tammi; Skjerve, Eystein; Ussery, David W

    2013-01-01

    Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study.

  11. Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes

    PubMed Central

    Bohlin, Jon; Brynildsrud, Ola; Vesth, Tammi; Skjerve, Eystein; Ussery, David W.

    2013-01-01

    Introduction Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. Results We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. Conclusion Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study. PMID:23922837

  12. A new morphological approach for removing acid dye from leather waste water: preparation and characterization of metal-chelated spherical particulated membranes (SPMs).

    PubMed

    Şenay, Raziye Hilal; Gökalp, Safiye Meriç; Türker, Evren; Feyzioğlu, Esra; Aslan, Ahmet; Akgöl, Sinan

    2015-03-15

    In this study, p(HEMA-GMA) poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) spherical particulated membranes (SPMs) were produced by UV-photopolymerization and the synthesized SPMs were coupled with iminodiacetic acid (IDA). Finally the novel SPMs were chelated with Cr(III) ions as ligand and used for removing acid black 210 dye. Characterizations of the metal-chelated SPMs were made by SEM, FTIR and swelling test. The water absorption capacities and acid dye adsorption properties of the SPMs were investigated and the results were 245.0, 50.0, 55.0 and 51.9% for p(HEMA), p(HEMA-GMA), p(HEMA-GMA)-IDA and p(HEMA-GMA)-IDA-Cr(III) SPMs respectively. Adsorption properties of the p(HEMA-GMA)-IDA-Cr(III) SPMs were investigated under different conditions such as different initial dye concentrations and pH. The optimum pH was observed at 4.3 and the maximum adsorption capacity was determined as 885.14 mg/g at about 8000 ppm initial dye concentration. The concentrations of the dyes were determined using a UV/Vis Spectrophotometer at a wavelength of 435 nm. Reusability of p(HEMA-GMA)-IDA-Cr(III) SPMs was also shown for five adsorption-desorption cycles without considerable decrease in its adsorption capacity. Finally, the results showed that the metal-chelated p(HEMA-GMA)-IDA SPMs were effective sorbent systems removing acid dye from leather waste water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Metal-rich SX Phe stars in the Kepler field

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Balona, Luis A.; Murphy, Simon J.; Kinemuchi, Karen; Jeon, Young-Beom

    2017-04-01

    A spectroscopic and photometric analysis has been carried out for 32 candidate SX Phe variable blue straggler stars in the Kepler field. Radial velocities (RVs), space motions (U, V, W), projected rotation velocities (vsin I), spectral types and atmospheric characteristics (Teff, log g, [Fe/H], ξt, ζRT, etc.) are presented for 30 of the 32 stars. Although several stars are metal-weak with extreme halo orbits, the mean [Fe/H] of the sample is near-solar, thus the stars are more metal-rich than expected for a typical sample of Pop. II stars and more like halo metal-rich A-type stars. Two-thirds of the stars are fast rotators with vsin I > 50 km s-1, including four stars with vsin I > 200 km s-1. Three of the stars have (negative) RVs > 250 km s-1, five have retrograde space motions and 21 have total speeds (relative to the Local Standard of Rest) >400 km s-1. All but one of the 30 stars have positions in a Toomre diagram consistent with the kinematics of bona fide halo stars (the exception being a thick-disc star). Observed Rømer time delays, pulsation frequency modulations and light curves suggest that at least one-third of the stars are in binary (or triple) systems with orbital periods ranging from 2.3 d to more than four years.

  14. Interactions of metallic substances and acidic ground water in the New Jersey Coastal Plan

    USGS Publications Warehouse

    Barringer, J.L.

    1994-01-01

    Four ancillary studies were undertaken in support of an investigation into the extent and distribution of corrosive ground water in the Kirkwood- Cohansey aquifer system of southern New Jersey.The ancillary studies were (1) analysis of tap-water samples for metals and the acquisition of metal data from a county study, (2) leaching experiments in which copper pipe with various types of solder were exposed to a variety of ground-water types, (3) analysis of pipe-scale deposits on plumbing from houses with wells that tap the Kirkwood-Cohansey aquifer system, and (4) measurement of corrosion rates for carbon steel and copper exposed to shallow ground water from the Kirkwood-Cohansey aquifer system. The results studies indicate that substantial concentrations of lead, copper, and zinc can leach from plumbing materials exposed to corrosive water from the Kirkwood-Cohansey aquifer system, and that leaching appears more pronounced during the summer than during the winter. The leaching experiments indicate that the corrosiveness of water, as estimated by the calculation of a corrosion index (the Aggressive Index), is related to the concentration of trace metals in the leachate.Further, although the leaching of lead-bearing solders produced lead concentrations in leachate above the Primary Drinking Water Criterion in effect at the time of the study (50 micrograms per liter), no potentially toxic levels of metals were leached from lead-free solders, although copper concentrations in some leachate samples were in excess of the Secondary Drinking Water Criterion of 1,000 micrograms per liter. Analyses of pipe-scale deposits indicate the formation of iron oxide coatings on some copper-pipe interiors exposed to untreated well water. Treated water from a public-supply system precipitated copper carbonate and copper chloride minerals. Corrosion rates measured for copper exposed to corrosive water from the Kirkwood-Cohansey aquifer system were slow (less than 0.0254 millimeters per

  15. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    NASA Astrophysics Data System (ADS)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  16. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2016-12-15

    The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multidrug and heavy metal-resistant Raoultella planticola isolated from surface water.

    PubMed

    Koc, Serkan; Kabatas, Burak; Icgen, Bulent

    2013-08-01

    A surface water isolate of Raoultella sp. having both multidrug- and multimetal-resistant ability was isolated and identified as Raoultella planticola. R. planticola displayed resistance to 15 drugs like ampicillin, amoxicillin/clavulanic acid, aztreonam, erythromycin, imipenem, oxacillin, pefloxacin, penicillin, piperacillin, piperacillin/tazobactam, rifampin, sulbactam/cefoperazone, ticarsillin, ticarsillin/clavulanic acid, vancomycin, and to 11 heavy metals like aluminum, barium, copper, iron, lead, lithium, manganese, nickel, silver, strontium, and tin. The multidrug and multi-metal-resistant R. planticola may remain present in the environment for a long time. Due to a possible health risk of these pathogenic bacteria, a need exists for an accurate assessment of their acquired resistance to multiple drugs and metals.

  18. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    DOE PAGES

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; ...

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi 2MnO 3·(1-x)LiMO 2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopymore » is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less

  19. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties.

    PubMed

    Thompson, David; Kranbuehl, David; Espuche, Eliane

    2016-10-18

    This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

  20. DISSOLVED ORGANIC CARBON CHARACTERISTICS IN METAL-RICH WATERS AND THE IMPLICATIONS FOR COPPER AQUATIC TOXICITY

    EPA Science Inventory

    This research will aim to quantify the effects of fractionation between DOC, HFO, HAO, free copper and the behavior of resultant free DOC in the water column on the toxicological effects of copper. Fractionation between DOC, free metals and iron (Fe) and aluminum (Al) hydro...

  1. The use of nutshell carbons in drinking water filters for removal of trace metals.

    PubMed

    Ahmedna, Mohamed; Marshall, Wayne E; Husseiny, Abdo A; Rao, Ramu M; Goktepe, Ipek

    2004-02-01

    Filtration of drinking water by point-of-use (POU) or point-of-entry (POE) systems is becoming increasingly popular in the United States. Drinking water is filtered to remove both organic and inorganic contaminants. The objective of this study was to evaluate the use of granular activated carbon from nutshells (almond, English walnut, pecan) in a POU water filtration system to determine its effectiveness in removing select, potentially toxic metal ions, namely, copper (Cu2+), lead (Pb2+) or zinc (Zn2+) found in drinking water. The nutshell-based carbon system was designated "Envirofilter" and was compared to four commercial POU systems with brand names of BRITA, Omni Filter, PUR and Teledyne Water Pik. Eight prototype "Envirofilters", consisting of individual or binary mixtures of carbons made from acid-activated almond or pecan shells and steam-activated pecan or walnut shells were constructed and evaluated for adsorption of the three metal ions. The results indicated that a binary mixture of carbons from acid-activated almond and either steam-activated pecan or walnut shells were the most effective in removing these metals from drinking water of all the POU systems evaluated. Binary mixtures of acid-activated almond shell-based carbon with either steam-activated pecan shell- or walnut shell-based carbon removed nearly 100% of lead ion, 90-95% of copper ion and 80-90% of zinc ion. Overall the performance data on the "Envirofilters" suggest that these prototypes require less carbon than commercial filters to achieve the same metal adsorption efficiency and may also be a less expensive product.

  2. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    PubMed

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (p<0.0001; α=0.05) among NA treatments (10, 20, 40, 60, and 80mg NA/L) and an untreated control (no NAs). Extent of AVS production was sufficient in all NA treatments to achieve ∑SEM:AVS <1, indicating that conditions were conducive for treatment of metals, with sulfide ligands in excess of SEM (Cu, Ni, and Zn). In addition, no adverse effects to SRB (in terms of density, relative abundance, and diversity) were measured following exposures of a commercial NA. In this bench-scale study, dissimilatory sulfate reduction and subsequent metal precipitation were not vulnerable to NAs, indicating passive treatment systems utilizing sulfide production (AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    PubMed

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  4. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    USGS Publications Warehouse

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (<5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  5. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    USGS Publications Warehouse

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  6. Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic-organic pillared clay fixed beds.

    PubMed

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2015-01-23

    Fixed-beds of transition metal (Co(2+), Ni(2+) or Cu(2+)) inorganic-organic pillared clays (IOCs) were prepared to study single- and multi-component non-equilibrium adsorption of a set of pharmaceutical and personal care products (PPCPs: salicylic acid, clofibric acid, carbamazepine and caffeine) from water. Adsorption capacities for single components revealed that the copper(II) IOCs have better affinity toward salicylic and clofibric acid. However, multi-component adsorption tests showed a considerable decrease in adsorption capacity for the acids and an unusual selectivity toward carbamazepine depending on the transition metal. This was attributed to a combination of competition between PPCPs for adsorption sites, adsorbate-adsorbate interactions, and plausible pore blocking caused by carbamazepine. The cobalt(II) IOC bed that was partially calcined to fractionate the surfactant moiety showcased the best selectivity toward caffeine, even during multi-component adsorption. This was due to a combination of a mildly hydrophobic surface and interaction between the PPCP and cobalt(II). In general, the tests suggest that these IOCs may be a potential solution for the removal of PPCPs if employed in a layered-bed configuration, to take care of families of adsorbates in a sequence that would produce sharpened concentration wavefronts. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Proteins in Load-Bearing Junctions: The Histidine-Rich Metal-Binding Protein of Mussel Byssus†,‡

    PubMed Central

    Zhao, Hua; Waite, J. Herbert

    2007-01-01

    Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of ∼93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-L-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including ∼36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQTA) in the C-terminal half. Incubation of a synthetic peptide based on the His-rich decapeptide with Fe3+, Co2+, Ni2+, Zn2+, and Cu2+ indicates that only Cu is strongly bound. MALDI-TOF mass spectrometry of the peptide modified with diethyl pyrocarbonate before and after Cu binding suggests that histidine residues dominate Cu binding. In contrast, the aspartate-rich undecapeptides preferentially bind Ca2+. mcfp-4 is strategically positioned to function as a macromolecular bifunctional linker by using metal ions to couple its own His-rich domains to the His-rich termini of the preCOLs. Ca2+ may mediate coupling of the C-terminus to other calcium-binding plaque proteins. PMID:17115717

  8. Nucleic acid-functionalized transition metal nanosheets for biosensing applications

    PubMed Central

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-01-01

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. PMID:27020066

  9. MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)

    EPA Science Inventory

    A sulfide identification protocol was developed to quantify specific metal
    sulfides that could exist in river water. Using a series of acid additions,
    nitrogen purges, and voltammetric analyses, metal sulfides were identified and
    semiquantified in three specific gr...

  10. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    PubMed Central

    Kay, Catherine M.; Rowe, Owen F.; Rocchetti, Laura; Coupland, Kris; Hallberg, Kevin B.; Johnson, D. Barrie

    2013-01-01

    A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis). Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2) and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans). The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes. PMID:25371339

  11. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  12. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  13. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  14. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    PubMed

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of mining activities on the release of heavy metals(HMs) in the head water regions of the Heihe River.

    NASA Astrophysics Data System (ADS)

    Wei, W., Sr.; Ma, R.; Sun, Z.; Bu, J.; Chang, Q.

    2017-12-01

    The head water regions of Heihe River were located in the Qilian orogenic belt, where belongs to the Qilian Mountains National Ecological Nature Protection and has fragile ecosystem. Previous surveys show that the regions were rich in various metal ores, and the mining activities have been intense.The environmental effect of mining activities will be going on several years, while Our field investigation show that there were 23 mines, of which 18 have been historical. This study collected water samples in main Heihe river and its tributaries, groundwaters and soil water, and the sediment samples near the ores. The concentration of HMs in both waters and sediments was measured for characterizing the spatial distribution of HMs, and determining the origin of the HMs in the river waters. Results of water quality assessment show that 67% of water samples failed to reach the Grade II environmental quality standard for surface water in China (GB3838-2002).The spatial distribution of HMs (Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) is highly correlated with the geographical distribution of local mines, suggesting that various heavy metals(HMs) were released into the Heihe River via mining activities. The Be, Co, Sn, Bi, Th, U were mainly derived from aluminosilicate weathering crusts. And the acid mine wastewater was the main source for Cu, Zn, Pb, Cd. The Serpentine wreathing was the main source for Cr and Ni. Mn and Cs were enriched by agricultural activities.

  16. Analysis of the world distribution of metal-rich subsea manganese nodules

    USGS Publications Warehouse

    McKelvey, Vincent Ellis; Wright, Nancy A.; Bowen, Roger W.

    1983-01-01

    Publicly available data on the composition of subsea manganese nodules extend previous reports of differences in average metal contents from ocean to ocean and of variations related to latitude and depth. Pacific Ocean nodules have the highest average manganese, nickel, and copper contents, and Atlantic Ocean nodules have the highest average iron content. The average manganese, nickel, and copper contents generally increase toward the equator in both hemispheres, and iron content generally decreases. The variation of metal content with water depth is not linear; instead, there appears to be a threshold depth of about 2,900 to 3,000 m, above which combined nickel and copper contents are generally less than 1 percent and below which cobalt content is generally less than about 0.6 percent. The composition of the nodules varies widely, but three rarely overlapping types that are of possible economic interest can be recognized. (1) Nodules containing more than about 1 percent combined nickel and copper only exceptionally contain more than 0.5 percent cobalt and 35 percent manganese. (2) Nodules containing more than 0.5 percent cobalt rarely contain more than 1 percent combined nickel and copper and 35 percent manganese. (3) Nodules containing more than 35 percent manganese only exceptionally contain more than 0.5 percent cobalt, although they average nearly 1.1 percent combined nickel and copper. Current economic interest in nodule mining is focused on the Clarion-Clipperton zone in the northeastern equatorial Pacific Ocean, the largest known area in which nodules average 1.8 percent or more combined nickel and copper. Several other areas in which nodules are rich in these metals are found in the Pacific and Indian Oceans and may be viewed as targets for exploration. Nearly 60 chemical elements have been found in manganese nodules, many in concentrations far exceeding their crustal abundances. The amounts in which many minor elements are present vary with the amounts of

  17. Fluorine and Sodium in C-rich Low-metallicity Stars

    NASA Astrophysics Data System (ADS)

    Lucatello, Sara; Masseron, Thomas; Johnson, Jennifer A.; Pignatari, Marco; Herwig, Falk

    2011-03-01

    We present the N, O, F, and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars: 8 enhanced in s-process (CEMP-s) elements and 2 poor in n-capture elements (CEMP-no). The abundances are derived from IR, K-band, high-resolution CRIRES@VLT obtained spectra. The metallicity of our sample ranges from [Fe/H] = -3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe] = 0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe] = 1.44. For the remaining eight objects, including both CEMP-no stars in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in the [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity asymptotic giant branch (AGB) stars account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25-1.75 M sun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constrain the models. Based on observations made with ESO Telescopes at Paranal Observatories under program ID 080.D-0606A. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation.

  18. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  19. Lithium-rich very metal-poor stars discovered with LAMOST and Subaru

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-04-01

    Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.

  20. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.

    PubMed

    Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Larsen, Kirsten K; Olsen, Mia B; Nordlund, Åke; Krot, Alexander N; Bizzarro, Martin

    2016-02-23

    The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.

  1. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    PubMed Central

    Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin

    2016-01-01

    The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438

  2. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage - column study.

    PubMed

    Shabalala, Ayanda N; Ekolu, Stephen O; Diop, Souleymane; Solomon, Fitsum

    2017-02-05

    This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber's salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Contribution of eukaryotic microbial communities to the formation of Fe-rich accretions in an extreme acidic environment

    NASA Astrophysics Data System (ADS)

    Rodrigues, L.; Valente, T.; Correia, A.; Alves, A.; Foing, B.; Davies, G. R.

    2012-04-01

    In the acid mine drainage of Valdarcas, northern Portugal, Fe-rich tubular and spherical macroaccretions are directly associated with the presence of eukaryotic microorganisms. This raises the question whether they are biogenically-derived or the result of an abiotic process mediated by microeukaryotic phototrophs. The drainage water at Valdarcas is characterized by very low pH values (pH<3.5), high metal solubility and presence of iron colloids. Mineralogical analysis (XRD and SEM) of the precipitates indicates a mixture of goethite, schwertmannite and jarosite. Euglenophyta and Chlorophyta acidophilic algal were previously identified in this site. The spatial distribution of Euglena mutabilis indicated that it has a preference to grow up on schwertmannite-rich precipitates. Field observations demonstrate the existence of oxygenated microenvironments created by algal activity suggesting that algae influence iron minerals precipitation, especially schwertmannite. The mineral-microorganism interactions are relevant to understanding this unique and extreme environment. Further investigations regarding the mineralogical and chemical characterization of these deposits, and the identification of microorganisms involved in the process could be helpful to enhance our knowledge of past Fe formations throughout Earth's primordial environment. It is expectable that this information will contribute to establish a framework for recognition of biosignatures on other planets and extraterrestrial bodies. In this study, results on the chemical and mineralogical composition of the structures are presented. The biological context is characterised based on observations made by optical microscopy complemented with molecular data on the microbial communities obtained by culture independent methods. The results are discussed within the context of two models: the studied Fe-rich stromatolites are microeukaryotic-mediated as described by previous workers from similar environments or are

  4. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  5. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    PubMed

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.

  6. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control

    PubMed Central

    Murakami, Shinnosuke; Goto, Yasuaki; Ito, Kyo; Hayasaka, Shinya; Kurihara, Shigeo; Soga, Tomoyoshi; Tomita, Masaru; Fukuda, Shinji

    2015-01-01

    Hot spring water and natural mineral water have been therapeutically used to prevent or improve various diseases. Specifically, consumption of bicarbonate-rich mineral water (BMW) has been reported to prevent or improve type 2 diabetes (T2D) in humans. However, the molecular mechanisms of the beneficial effects behind mineral water consumption remain unclear. To elucidate the molecular level effects of BMW consumption on glycemic control, blood metabolome analysis and fecal microbiome analysis were applied to the BMW consumption test. During the study, 19 healthy volunteers drank 500 mL of commercially available tap water (TW) or BMW daily. TW consumption periods and BMW consumption periods lasted for a week each and this cycle was repeated twice. Biochemical tests indicated that serum glycoalbumin levels, one of the indexes of glycemic controls, decreased significantly after BMW consumption. Metabolome analysis of blood samples revealed that 19 metabolites including glycolysis-related metabolites and 3 amino acids were significantly different between TW and BMW consumption periods. Additionally, microbiome analysis demonstrated that composition of lean-inducible bacteria was increased after BMW consumption. Our results suggested that consumption of BMW has the possible potential to prevent and/or improve T2D through the alterations of host metabolism and gut microbiota composition. PMID:26798400

  7. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties.

    PubMed

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo; Hajfathalian, Mona; Jacobsen, Charlotte

    2018-03-01

    Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. The solid fat content of stearic acid-rich fats determines their postprandial effects.

    PubMed

    Berry, Sarah E E; Miller, George J; Sanders, Thomas A B

    2007-06-01

    The process of randomization is used commercially to harden fats as an alternative to partial hydrogenation, but its effects on cardiovascular disease risk factors are uncertain. The objective was to compare the chronic and acute effects of randomization of a fat rich in 1,3-distearyl, 2-oleyl glycerol on fasting and postprandial lipids, glucose, insulin, and activated clotting factor VII (FVIIa) concentrations. A crossover design study in 16 men compared fasting and postprandial lipid, glucose, insulin, and FVIIa concentrations at baseline and after a 3-wk diet providing 30 g unrandomized or randomized shea butter and sunflower oil blends (SSOBs), both of which contained approximately 50% stearic acid. Fecal fat excretion was measured during each dietary period. Postprandial changes were assessed after the consumption of meals providing 50 g test fat. A subsequent study compared postprandial changes after the consumption of an oleic acid-rich sunflower oil meal and an unrandomized SSOB meal. Both SSOBs were well digested and absorbed. Randomization did not affect fasting or postprandial lipid, glucose, insulin, or FVIIa concentrations. Compared with the oleic acid-rich meal, the unrandomized SSOB resulted in 53% lower postprandial lipemia, 23% higher hepatic lipase activity, and a 25% lower postprandial increase in FVIIa concentration. The solid fat contents at 37 degrees C were 22%, 41%, and 0% with the unrandomized SSOB, randomized SSOB, and oleic acid-rich meals, respectively. Stearic acid-rich triacylglycerol in both unrandomized and randomized forms does not adversely affect lipid risk factors for cardiovascular disease. The high proportion of solid fat at 37 degrees C may explain the decreased postprandial lipemic response.

  9. Species richness patterns and water-energy dynamics in the drylands of Northwest China.

    PubMed

    Li, Liping; Wang, Zhiheng; Zerbe, Stefan; Abdusalih, Nurbay; Tang, Zhiyao; Ma, Ming; Yin, Linke; Mohammat, Anwar; Han, Wenxuan; Fang, Jingyun

    2013-01-01

    Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning.

  10. Species Richness Patterns and Water-Energy Dynamics in the Drylands of Northwest China

    PubMed Central

    Zerbe, Stefan; Abdusalih, Nurbay; Tang, Zhiyao; Ma, Ming; Yin, Linke; Mohammat, Anwar; Han, Wenxuan; Fang, Jingyun

    2013-01-01

    Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning. PMID:23840472

  11. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity.

    PubMed

    Fang, Ting; Guo, Hongyu; Zeng, Linghan; Verma, Vishal; Nenes, Athanasios; Weber, Rodney J

    2017-03-07

    Soluble transition metals in particulate matter (PM) can generate reactive oxygen species in vivo by redox cycling, leading to oxidative stress and adverse health effects. Most metals, such as those from roadway traffic, are emitted in an insoluble form, but must be soluble for redox cycling. Here we present the mechanism of metals dissolution by highly acidic sulfate aerosol and the effect on particle oxidative potential (OP) through analysis of size distributions. Size-segregated ambient PM were collected from a road-side and representative urban site in Atlanta, GA. Elemental and organic carbon, ions, total and water-soluble metals, and water-soluble OP were measured. Particle pH was determined with a thermodynamic model using measured ionic species. Sulfate was spatially uniform and found mainly in the fine mode, whereas total metals and mineral dust cations were highest at the road-side site and in the coarse mode, resulting in a fine mode pH < 2 and near neutral coarse mode. Soluble metals and OP peaked at the intersection of these modes demonstrating that sulfate plays a key role in producing highly acidic fine aerosols capable of dissolving primary transition metals that contribute to aerosol OP. Sulfate-driven metals dissolution may account for sulfate-health associations reported in past studies.

  12. Diaromatic sulphur-containing 'naphthenic' acids in process waters.

    PubMed

    West, Charles E; Scarlett, Alan G; Tonkin, Andrew; O'Carroll-Fitzpatrick, Devon; Pureveen, Jos; Tegelaar, Erik; Gieleciak, Rafal; Hager, Darcy; Petersen, Karina; Tollefsen, Knut-Erik; Rowland, Steven J

    2014-03-15

    Polar organic compounds found in industrial process waters, particularly those originating from biodegraded petroleum residues, include 'naphthenic acids' (NA). Some NA have been shown to have acute toxicity to fish and also to produce sub-lethal effects. Whilst some of these toxic effects are produced by identifiable carboxylic acids, acids such as sulphur-containing acids, which have been detected, but not yet identified, may produce others. Therefore, in the present study, the sulphur-containing acids in oil sands process water were studied. A fraction (ca 12% by weight of the total NA containing ca 1.5% weight sulphur) was obtained by elution of methylated NA through an argentation solid phase extraction column with diethyl ether. This was examined by multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) in both nominal and high resolution mass accuracy modes and by GCxGC-sulphur chemiluminescence detection (GCxGC-SCD). Interpretation of the mass spectra and retention behaviour of methyl esters of several synthesised sulphur acids and the unknowns allowed delimitation of the structures, but not complete identification. Diaromatic sulphur-containing alkanoic acids were suggested. Computer modelling of the toxicities of some of the possible acids suggested they would have similar toxicities to one another and to dehydroabietic acid. However, the sulphur-rich fraction was not toxic or estrogenic to trout hepatocytes, suggesting the concentrations of sulphur acids in this sample were too low to produce any such effects in vitro. Further samples should probably be examined for these compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin

    2013-05-20

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced bymore » observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.« less

  14. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    PubMed

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi

    2008-04-01

    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  15. Water-rich planets: How habitable is a water layer deeper than on Earth?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.

    2016-10-01

    Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.

  16. Cerebral microvascular changes induced by rich cholesterol and saturated fatty acid diet in Wistar rats.

    PubMed

    Stănescu, R; Stănescu, M R; Bold, Adriana; Mateescu, Garofiţa Olivia

    2013-01-01

    The impact of an excess of fatty acids in the diet on cardiovascular diseases has been studied and discussed both in human and animal studies. Generally, excessive saturated fats increase the risk, while unsaturated fats are considered less harmful. Our aim was to perform an experimental study in order to analyze how fatty diet quality (unsaturated vs. saturated fatty acids) influences atherogenesis. In our experimental study, 18 adult Wistar rats were randomly divided into two equal groups. One group was subjected to a rich unsaturated fatty acid diet (untar) and the other group to a rich saturated one (palm oil). Three animals from each group were sacrificed after 12, 18, and 48 weeks. The brain was removed and microscopically examined after Hematoxylin-Eosin, Orcein and Masson's trichrome classical staining, and after immunohistochemical marking using the anti-alpha smooth muscle actin antibody. Rats sacrificed after 12 weeks revealed modicum lesions, as intimal vacuoles or minute intraluminal thrombosis, and cerebral parenchymal edema. After 18 weeks, some of rats subjected to a rich saturated fatty acid diet presented vacuoles found in all arteriolar wall layers, and a tendency towards parietal thrombosis. In rats subjected to a rich unsaturated fatty acid diet, the subintimal arteriolar vacuolization was associated with an intramural and adventitial fibrosis. In rats sacrificed after 48 weeks, lesional polymorphism was pronounced, but in rats subjected to a rich unsaturated fatty acid diet complete luminal thrombosis was followed by a an organized thrombus with multiple capillary channels. Although in Wistar rats atherosclerosis appeared only after intensive changes in diet, different experimental studies showed that, in transgenic rats, rich saturated fatty acid diet induced progressive atherosclerotic lesions, resembling those observed by us, but also some aspects described in human pathology. Our experimental study reveals differences in atherogenesis

  17. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  18. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  19. [Heavy metals distribution characteristics and risk assessment of water below an electroplating factory].

    PubMed

    Hang, Xiao-Shuai; Wang, Huo-Yan; Zhou, Jian-Min

    2008-10-01

    Surface water and shallow groundwater within the flow of an electroplating factory was analyzed in order to study the resulting impact. The analysis method of ICP-AES was used to analyze content of zinc, manganese, chromium, copper and nickel in surface water and groundwater samples. The results indicate acidic pollutants of zinc, manganese, chromium, copper and nickel were discharged from the factory with concentrations of 1.34, 3.77, 28.1, 6.40 and 9.37 mg x L(-1), respectively; and pH was 2.32. They all exceeded permissible levels according to Integrated Wastewater Discharge Standard except zinc. Factory discharge is responsible for the longitudinal distribution characteristics of heavy metals in the stream water downstream from the factory. Heavy metals variations in the well water do not suggest they were affected by heavy metals in the stream, indicating that the migration rates of heavy metals in soils were relatively low. Risk assessment shows surface water quality significantly deteriorated. Nickel and manganese in the stream water exceeded the standard levels seriously, and chromium and copper in some samples were also above Grade III standard levels according to Environmental Quality Standard for Surface Water. Moreover, all studied heavy metals in 14 groundwater samples measured within drinking water standard, except manganese in 4 groundwater samples, which were Grade IV according to Quality Standard for Ground water.

  20. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Comte, S; Joussein, E; Lens, P N L; Van Hullebusch, E D

    2016-01-01

    This study investigated the leaching yields of Mo, Ni and Co from a mineral sludge of a metal recycling plant generated by rainfalls. The investigated mineral sludge had a complex heterogeneous composition, consisting of particles of settled soil combined with metal-bearing particles (produced by catalysts, metallic oxides and battery recycling). The leaching potential of different leaching reagents (stand-alone strong acids (HNO3 (68%), H2SO4 (98%) and HCl (36%)) and acid mixtures (aqua regia (nitric + hydrochloric (1:3)), nitric + sulphuric (1:1) and nitric + sulphuric + hydrochloric (2:1:1)) was investigated at changing operational parameters (solid-liquid (S/L) ratio, leaching time and temperature), in order to select the leaching reagent which achieves the highest metal leaching yields. Sulphuric acid (98% H2SO4) was found to be the leachant with the highest metal leaching potential. The optimal leaching conditions were a three-stage successive leaching at 80 °C with a leaching time of 2 h and S/L ratio of 0.25 g L(-1). Under these conditions, the achieved mineral sludge sample leaching yields were 85.5%, 40.5% and 93.8% for Mo, Ni and Co, respectively. The higher metal leaching potential of H2SO4 in comparison with the other strong acids/acid mixtures is attributed to the fact that H2SO4 is a diacidic compound, thus it has more H(+) ions, resulting in its stronger oxidizing power and corrosiveness.

  1. Inner Edges of Compact Debris Disks around Metal-rich White Dwarfs

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.; Garmilla, José A.

    2012-12-01

    A number of metal-rich white dwarfs (WDs) are known to host compact, dense particle disks, which are thought to be responsible for metal pollution of these stars. In many such systems, the inner radii of disks inferred from their spectra are so close to the WD that particles directly exposed to starlight must be heated above 1500 K and are expected to be unstable against sublimation. To reconcile this expectation with observations, we explore particle sublimation in H-poor debris disks around WDs. We show that because of the high metal vapor pressure the characteristic sublimation temperature in these disks is 300-400 K higher than in their protoplanetary analogs, allowing particles to survive at higher temperatures. We then look at the structure of the inner edges of debris disks and show that they should generically feature superheated inner rims directly exposed to starlight with temperatures reaching 2500-3500 K. Particles migrating through the rim toward the WD (and rapidly sublimating) shield the disk behind them from strong stellar heating, making the survival of solids possible close to the WD. Our model agrees well with observations of WD+disk systems provided that disk particles are composed of Si-rich material such as olivine, and have sizes in the range ~0.03-30 cm.

  2. Metal-rich or misclassified? The case of four RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Molnar, L.; Juhasz, A. L.; Plachy, E.; Szabo, R.

    2016-06-01

    We analysed the light curve of four, apparently extremely metal-rich fundamenta-mode RR Lyrae stars. We identified two stars, MT Tel and ASAS J091803-3022.6 as RRc (first-overtone) pulsators that were misclassified as RRab ones in the ASAS survey. In the case of the other two stars, V397 Gem and ASAS J075127-4136.3, we could not decide conclusively, as they are outliers in the period-Fourier-coefficient space from the loci of both classes, but their photometric metallicities also favour the RRc classification.

  3. Microbicidal effects of weakly acidified chlorous acid water against feline calicivirus and Clostridium difficile spores under protein-rich conditions

    PubMed Central

    Goda, Hisataka; Yamaoka, Hitoshi; Nakayama-Imaohji, Haruyuki; Kawata, Hiroyuki; Horiuchi, Isanori; Fujita, Yatsuka; Nagao, Tamiko; Tada, Ayano; Terada, Atsushi; Kuwahara, Tomomi

    2017-01-01

    Sanitation of environmental surfaces with chlorine based-disinfectants is a principal measure to control outbreaks of norovirus or Clostridium difficile. The microbicidal activity of chlorine-based disinfectants depends on the free available chlorine (FAC), but their oxidative potential is rapidly eliminated by organic matter. In this study, the microbicidal activities of weakly acidified chlorous acid water (WACAW) and sodium hypochlorite solution (NaClO) against feline calcivirus (FCV) and C. difficile spores were compared in protein-rich conditions. WACAW inactivated FCV and C. difficile spores better than NaClO under all experimental conditions used in this study. WACAW above 100 ppm FAC decreased FCV >4 log10 within 30 sec in the presence of 0.5% each of bovine serum albumin (BSA), polypeptone or meat extract. Even in the presence of 5% BSA, WACAW at 600 ppm FAC reduced FCV >4 log10 within 30 sec. Polypeptone inhibited the virucidal activity of WACAW against FCV more so than BSA or meat extract. WACAW at 200 ppm FAC decreased C. difficile spores >3 log10 within 1 min in the presence of 0.5% polypeptone. The microbicidal activity of NaClO was extensively diminished in the presence of organic matter. WACAW recovered its FAC to the initial level after partial neutralization by sodium thiosulfate, while no restoration of the FAC was observed in NaClO. These results indicate that WACAW is relatively stable under organic matter-rich conditions and therefore may be useful for treating environmental surfaces contaminated by human excretions. PMID:28472060

  4. Passive bioremediation technology incorporating lignocellulosic spent mushroom compost and limestone for metal- and sulfate-rich acid mine drainage.

    PubMed

    Muhammad, Siti Nurjaliah; Kusin, Faradiella Mohd; Md Zahar, Mohd Syakirin; Mohamat Yusuff, Ferdaus; Halimoon, Normala

    2017-08-01

    Passive bioremediation of metal- and sulfate-containing acid mine drainage (AMD) has been investigated in a batch study. Multiple substrates were used in the AMD remediation using spent mushroom compost (SMC), limestone, activated sludge (AS), and woodchips (WC) under anoxic conditions suitable for bacterial sulfate reduction (BSR). Limestones used were of crushed limestone (CLS) and uncrushed limestone, provided at two different ratios in mixed substrates treatment and varied by the proportion of SMC and limestone. The SMC greatly assisted the removals of sulfate and metals and also acted as an essential carbon source for BSR. The mixed substrate composed of 40% CLS, 30% SMC, 20% AS, and 10% WC was found to be effective for metal removal. Mn, Cu, Pb, and Zn were greatly removed (89-100%) in the mixed substrates treatment, while Fe was only removed at 65%. Mn was found to be removed at a greatly higher rate than Fe, suggesting important Mn adsorption onto organic materials, that is, greater sorption affinity to the SMC. Complementary with multiple treatment media was the main mechanism assisting the AMD treatment through microbial metal reduction reactions.

  5. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    NASA Astrophysics Data System (ADS)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  6. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  7. Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater

    USGS Publications Warehouse

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten

    2016-01-01

    The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

  8. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    PubMed

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to <15% of initial values. A flushing treatment to remove excess salts was therefore not necessary. Irrigation had an impact on biosolids attributes such as salinity and pH, and that this had an influence on metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a

  9. Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.; Brown, C.L.

    2000-01-01

    The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kd(pw) (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing

  10. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks.

    PubMed

    Khan, Nazmul Abedin; Jung, Beom K; Hasan, Zubair; Jhung, Sung Hwa

    2015-01-23

    ZIF-8 (zinc-methylimidazolate framework-8), one of the zeolitic imidazolate frameworks (ZIFs), has been used for the removal of phthalic acid (H2-PA) and diethyl phthalate (DEP) from aqueous solutions via adsorption. The adsorption capacity of the ZIF-8 for H2-PA was much higher than that of a commercial activated carbon or other typical metal-organic frameworks (MOFs). Because the surface area and pore volume of the adsorbents showed no favorable effect on the adsorption of H2-PA, the remarkable adsorption with ZIF-8 suggests a specific favorable interaction (electrostatic interaction) between the positively charged surface of ZIF-8 and the negatively charged PA anions. In addition, acid-base interactions also have a favorable contribution in the adsorption of H2-PA, based on the adsorptive performances of pristine and amino-functionalized MOFs and adsorption over ZIF-8 at acidic condition (pH=3.5). The reusability of ZIF-8 was also demonstrated after simple washing with methanol. On the other hand, ZIF-8 was not effective in adsorbing DEP probably because of little charge of DEP in a water solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  12. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  13. Depuration Study of Heavy Metal Lead (Pb) and Copper (Cu) in Green Mussels Perna viridis through Continues-discontinues and Acid Extraction Methods

    NASA Astrophysics Data System (ADS)

    Budiawan; Bakri, Ridla; Cahaya Dani, Intan; Handayani, Sri; Ade Kurnia Putri, Rizki; Tamala, Riska

    2018-01-01

    Green mussel or Perna viridis is filter feeder, which is very susceptible to heavy metals. It takes an effort to release heavy metal contents on the green shell, one of method that can be used to release heavy metal from green shell is depuration proccess. In this research, the depuration process was conducted by continues method of depuration, discontinues method by using various kind of water and acid extraction. The optimum time of continues depuration method is 1.5 hours, with circulation speed 250 L/h and result of Pb metal content decreased is equal to 30.048% and 29.748% for Cu. In the discontinues method, the optimum result was reached at 100oC by using PAM water as the media at 3 h immersion period with decrease of Pb metal content 35.001% and Cu metal content 39.015%. In the acid extraction method, the optimum condition was achieved by 11% acetic acid solvent with decreasing of Pb and Cu levels are 88.224% and 76.298%. For the determination of protein content, the decrease of protein content obtained by treatment with 11% acetic acid extract showed decrease of protein content 36.656% with Kjeldahl method.

  14. Time-Dependent ATR-FTIR Spectroscopic Studies on Fatty Acid Diffusion and the Formation of Metal Soaps in Oil Paint Model Systems.

    PubMed

    Baij, Lambert; Hermans, Joen J; Keune, Katrien; Iedema, Piet

    2018-06-18

    The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Nucleic acids encoding metal uptake transporters and their uses

    DOEpatents

    Schroeder, Julian I.; Antosiewicz, Danuta M.; Schachtman, Daniel P.; Clemens, Stephan

    1999-01-01

    The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.

  16. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release.

    PubMed

    Dang, Tan; Mosley, Luke M; Fitzpatrick, Rob; Marschner, Petra

    2016-12-01

    When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L -1 and Fe 48 mg L -1 ) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05-0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals.

  18. A GIS and statistical approach to identify variables that control water quality in hydrothermally altered and mineralized watersheds, Silverton, Colorado, USA

    USGS Publications Warehouse

    Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.

    2013-01-01

    Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.

  19. Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen-Rich Graphene-Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst.

    PubMed

    Zhu, Yanping; Chen, Gao; Zhong, Yijun; Zhou, Wei; Shao, Zongping

    2018-02-01

    Practical application of hydrogen production from water splitting relies strongly on the development of low-cost and high-performance electrocatalysts for hydrogen evolution reaction (HER). The previous researches mainly focused on transition metal nitrides as HER catalysts due to their electrical conductivity and corrosion stability under acidic electrolyte, while tungsten nitrides have reported poorer activity for HER. Here the activity of tungsten nitride is optimized through rational design of a tungsten nitride-carbon composite. More specifically, tungsten nitride (WN x ) coupled with nitrogen-rich porous graphene-like carbon is prepared through a low-cost ion-exchange/molten-salt strategy. Benefiting from the nanostructured WN x , the highly porous structure and rich nitrogen dopant (9.5 at%) of the carbon phase with high percentage of pyridinic-N (54.3%), and more importantly, their synergistic effect, the composite catalyst displays remarkably high catalytic activity while maintaining good stability. This work highlights a powerful way to design more efficient metal-carbon composites catalysts for HER.

  20. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India.

    PubMed

    Ayyamperumal, T; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Ram-Mohan, V

    2006-09-01

    An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar.

  1. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity

  2. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  3. Deuterium-rich Water in Meteorites

    NASA Astrophysics Data System (ADS)

    Deloule, E.; Robert, F.

    1995-09-01

    D/H ratios of 2 meteorites (Renazzo CR and Semarkona LL3), which are known to exhibit the largest departures from the terrestrial hydrogen isotopic ratios, have been determined with the CRPG Nancy ion-microprobe. Correlations between the D/H ratios and the chemical compositions (H2O, K, Si, C/H) of plausible hydrogen carriers were observed. From these correlations, it is possible to show that, contrary to previous interpretations, phyllosilicates are the carriers of the deuterium-rich hydrogen in Semarkona and Renazzo : 870 x10-6 D/H 670 x106 (+4600 dD 3300) and 320 x10-6 (dD 1050), respectively. Hydrogen is also present in the chondrules of these two deuterium-rich meteorites. Isotopic equilibrium between the deuterium depleted phases and the deuterium-rich phyllosilicates was never attained. This is illustrated at a micron scale by the D/H ratios obtained continuously during a 3 hours measurement on a same position (see figure below). It can be seen that water-rich mineral(s) having D/H up to 550 x10-6 (dD = +2500) are in contact with a mineral having D/H = 234 x10-6 (dD = +500). The thickness of the boundary where the diffusion of hydrogen took place is restricted to less than 0.2 mm. Such isotopic heterogeneity is quite spectacular if one remembers that the isotopic variations that we can see within these 0.2 mm are an order of magnitude larger than the total observed variations on Earth. The large differences in D/H ratios between matrix (up to 700 x 10-6, dD up to +3500) and chondrules (from 120 x10-6 (dD = -230) to 230 x10-6 (dD = +475)) show that hydrogen in chondrules cannot originate from the matrix by simple contamination or diffusion processes. The high D/H ratios measured in water bearing minerals could not have been produced thermally within a dense solar nebula. Chemical reactions (i.e. involving ions or radicals), taking place in interstellar space or in the outer regions of the nebula at 110-140K are presently the only conceivable mechanisms

  4. Process for removing metals from water

    DOEpatents

    Napier, John M.; Hancher, Charles M.; Hackett, Gail D.

    1989-01-01

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.

  5. Process for removing metals from water

    DOEpatents

    Napier, J.M.; Hancher, C.M.; Hackett, G.D.

    1987-06-29

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

  6. The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology.

    PubMed

    De Jonge, Maarten; Blust, Ronny; Bervoets, Lieven

    2010-05-01

    The present study evaluates the relationship between Acid Volatile Sulfides (AVS) and metal accumulation in invertebrates with different feeding behavior and ecological preferences. Natural sediments, pore water and surface water, together with benthic and epibenthic invertebrates were sampled at 28 Flemish lowland rivers. Different metals as well as metal binding sediment characteristics including AVS were measured and multiple regression was used to study their relationship with accumulated metals in the invertebrates taxa. Bioaccumulation in the benthic taxa was primarily influenced by total metal concentrations in the sediment. Regarding the epibenthic taxa metal accumulation was mostly explained by the more bioavailable metal fractions in both the sediment and the water. AVS concentrations were generally better correlated with metal accumulation in the epibenthic invertebrates, rather than with the benthic taxa. Our results indicated that the relation between AVS and metal accumulation in aquatic invertebrates is highly dependent on feeding behavior and ecology. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Effect of composition on the structure of lithium- and manganese-rich transition metal oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin

    In this work, we establish a definitive structural model for lithium- and manganese-rich transition metal oxides and demonstrate the effect of composition on their bulk as well as the surface structure.

  8. Effect of composition on the structure of lithium- and manganese-rich transition metal oxides

    DOE PAGES

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; ...

    2018-01-01

    In this work, we establish a definitive structural model for lithium- and manganese-rich transition metal oxides and demonstrate the effect of composition on their bulk as well as the surface structure.

  9. Biological Low-pH Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater

    PubMed Central

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.

    2016-01-01

    ABSTRACT The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems. IMPORTANCE This study provides multiple lines of evidence to show that microbes are the main drivers of Mn(II) oxidation even at acidic pH, offering new insights into Mn biogeochemical cycling. A distinct, highly adapted microbial community inhabits acidic, oligotrophic Mn deposits and mediates biological Mn oxidation. These data highlight the importance of biological processes for Mn biogeochemical cycling

  10. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water.

    PubMed

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2012-11-15

    Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Sulfide oxidation and distribution of metals near abandoned copper mines in coastal environments, Prince William Sound, Alaska, USA

    USGS Publications Warehouse

    Koski, R.A.; Munk, L.; Foster, A.L.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    The oxidation of sulfide-rich rocks, mostly leftover debris from Cu mining in the early 20th century, is contributing to metal contamination of local coastal environments in Prince William Sound, Alaska. Analyses of sulfide, water, sediment, precipitate and biological samples from the Beatson, Ellamar, and Threeman mine sites show that acidic surface waters generated from sulfide weathering are pathways for redistribution of environmentally important elements into and beyond the intertidal zone at each site. Volcanogenic massive sulfide deposits composed of pyrrhotite and (or) pyrite + chalcopyrite + sphalerite with subordinate galena, arsenopyrite, and cobaltite represent potent sources of Cu, Zn, Pb, As, Co, Cd, and Hg. The resistance to oxidation among the major sulfides increases in the order pyrrhotite ??? sphalerite < chalcopyrite ??? pyrite; thus, pyrrhotite-rich rocks are typically more oxidized than those dominated by pyrite. The pervasive alteration of pyrrhotite begins with rim replacement by marcasite followed by replacement of the core by sulfur, Fe sulfate, and Fe-Al sulfate. The oxidation of chalcopyrite and pyrite involves an encroachment by colloform Fe oxyhydroxides at grain margins and along crosscutting cracks that gradually consumes the entire grain. The complete oxidation of sulfide-rich samples results in a porous aggregate of goethite, lepidocrocite and amorphous Fe-oxyhydroxide enclosing hydrothermal and sedimentary silicates. An inverse correlation between pH and metal concentrations is evident in water data from all three sites. Among all waters sampled, pore waters from Ellamar beach gravels have the lowest pH (???3) and highest concentrations of base metals (to ???25,000 ??g/L), which result from oxidation of abundant sulfide-rich debris in the sediment. High levels of dissolved Hg (to 4100 ng/L) in the pore waters probably result from oxidation of sphalerite-rich rocks. The low-pH and high concentrations of dissolved Fe, Al, and SO4

  12. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...

  13. Trace Metal Characterization and Ion Exchange Capacity of Devonian to Pennsylvanian Age Bedrock in New York and Pennsylvania in Relation to Drinking Water Quality

    NASA Astrophysics Data System (ADS)

    Spradlin, J.; Fiorentino, A. J., II; Siegel, D. I.

    2014-12-01

    We report the results of an evaluation of the trace and major metal composition of shallow sedimentary rock formations in the Appalachian Basin that control the quality of potable water produced in domestic and other wells. In particular, we quantify the mobile and total metals for which there are health concerns related to unconventional gas exploitation; Fe, Mn, Sr, Ba, As, and Pb. To do this, we sampled the upper 400 feet of Devonian to Pennsylvanian aged bedrock from Marcellus, NY to State College, PA. We used a variation of the U.S. Geological Survey Field Leach Test to assess water reactivity and leaching potential. Al, Zn, and U potentially can be leached from aquifer rocks naturally under acidic conditions, such as where pyrite might oxidize, to above current allowable regulatory values for these metals (2 mg/L, 5 mg/L, and 0.03 mg/L respectively) from some of the clay-rich formations. Groundwater analyses from both New York and Pennsylvania show that natural ion exchange occurs along flow paths from ridges to valleys. We find the laboratory cation exchange capacity (CEC) spans what might be expected for illite and chlorite commonly found in these rocks. Given the low surface area of the mineral surfaces of the fractures through which most of the water moves, the observed ion exchange in these rocks is not well understood. Along with this broad scale study area we investigated a Devonian outcrop 4 miles North of Cortland, NY to evaluate small-scale trace metal heterogeneity within a single stratigraphic section. Together these two studies provide important information to determine the extent to which ground water might be naturally high in trace metal composition, either because of geochemical conditions or entrainment of suspended material not removed prior to sampling.

  14. Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water.

    PubMed

    Zhang, Xiaolin; Zhang, Lu; Li, Zhixian; Jiang, Zhao; Zheng, Qi; Lin, Bin; Pan, Bingcai

    2017-11-21

    The presence of natural organic matter (NOM) exerts adverse effects on adsorptive removal of various pollutants including fluoride from water. Herein, we designed a novel nanocomposite adsorbent for preferable and sustainable defluoridation from NOM-rich water. The nanocomposite (HZO@HCA) is obtained by encapsulating hydrous zirconium oxide nanoparticles (HZO NPs) inside hyper-cross-linked polystyrene anion exchanger (HCA) binding tertiary amine groups. Another commercially available nanocomposite HZO@D201, with the host of a cross-linked polystyrene anion exchanger (D201) binding ammonium groups, was involved for comparison. HZO@HCA features with abundant micropores instead of meso-/macropores of HZO@D201, resulting in the inaccessible sites for NOM due to the size exclusion. Also, the tertiary amine groups of HCA favor an efficient desorption of the slightly loaded NOM from HZO@HCA. As expected, Sigma-Aldrich humic acid even at 20 mg of DOC/L did not exert any observable effect on fluoride sequestration by HZO@HCA, whereas a significant inhibition was observed for HZO@D201. Cyclic adsorption runs further verified the superior reusability of HZO@HCA for defluoridation from NOM-rich water. In addition, the HZO@HCA column could generate ∼80 bed volume (BV) effluent from a synthetic fluoride-containing groundwater to meet the drinking water standard (<1.5 mg F/L), whereas HCA and HZO@D201 columns could only generate <5 and ∼40 BV effluents, respectively. This study is believed to shed new light on how to rationally design antifouling nanocomposites for water remediation.

  15. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.

  16. Corchorus Olitorius Linn: A Rich Source of Ω3-Fatty Acids.

    PubMed

    Mahmoud, A S; Thao, N; Mario, A

    2016-06-01

    Fatty acids composition of Corchorus olitorius Linn were identified as their methyl esters using accurate mass gas chromatography quadrupole time of flight mass spectrometry (GCQTOF) in chemical ionization (CI) and electron ionization (EI) modes. The leaves which are the edible part of the plant were found to be very rich in ω3-octadecatriene fatty acid reaching up to more than 49 % of the total fatty acids contents. This is the first report to unequivocally detect ω-3 fatty acid in Corchorus olitorius Linn with a much higher concentration than any other reported vegetable and further investigation into its health effects are clearly warranted.

  17. Corchorus Olitorius Linn: A Rich Source of Ω3-Fatty Acids

    PubMed Central

    Mahmoud, AS; Thao, N; Mario, A

    2016-01-01

    Fatty acids composition of Corchorus olitorius Linn were identified as their methyl esters using accurate mass gas chromatography quadrupole time of flight mass spectrometry (GCQTOF) in chemical ionization (CI) and electron ionization (EI) modes. The leaves which are the edible part of the plant were found to be very rich in ω3-octadecatriene fatty acid reaching up to more than 49 % of the total fatty acids contents. This is the first report to unequivocally detect ω-3 fatty acid in Corchorus olitorius Linn with a much higher concentration than any other reported vegetable and further investigation into its health effects are clearly warranted. PMID:27722021

  18. Effect of aluminum, zinc, copper, and lead on the acid-base properties of water extracts from soils

    NASA Astrophysics Data System (ADS)

    Motuzova, G. V.; Makarychev, I. P.; Petrov, M. I.

    2013-01-01

    The potentiometric titration of water extracts from the upper horizons of taiga-zone soils by salt solutions of heavy metals (Pb, Cu, and Zn) showed that their addition is an additional source of the extract acidity because of the involvement of the metal ions in complexation with water-soluble organic substances (WSOSs). At the addition of 0.01 M water solutions of Al(NO3)3 to water extracts from soils, Al3+ ions are also involved in complexes with WSOSs, which is accompanied by stronger acidification of the extracts from the upper horizon of soddy soils (with a near-neutral reaction) than from the litter of bog-podzolic soil (with a strongly acid reaction). The effect of the Al3+ hydrolysis on the acidity of the extracts is insignificantly low in both cases. A quantitative relationship was revealed between the release of protons and the ratio of free Cu2+ ions to those complexed with WSOSs at the titration of water extracts from soils by a solution of copper salt.

  19. Observing HNO3 release dependent upon metal complexes in malonic acid/nitrate droplets.

    PubMed

    Shao, Xu; Wu, Feng-Min; Yang, Hui; Pang, Shu-Feng; Zhang, Yun-Hong

    2018-05-09

    Although the dicarboxylic acid has been reported to react with nitrate for aged internally mixed aerosols in atmosphere, the quantitative nitrate depletion dependent upon composition in particles is still not well constrained. The chemical composition evolutions for malonic acid/sodium nitrate (MA/SN), malonic acid/magnesium nitrate (MA/MN) and malonic acid/calcium nitrate (MA/CN) particles with the organic to inorganic molar ratio (OIR) of 1:1 are investigated by vacuum Fourier transform infrared spectroscopy (FTIR). Upon dehydration, the intensity of the asymmetric stretching mode of COO - group (ν as -COO - ) increases, accompanying the decrease in OH feather band and COOH band and NO 3 - band. These band changes suggest malonate salts formation and HNO 3 release. The quantitative NO 3 - depletion data shows that the reactivity of MA-MN is most and that of MA-SN is least. Analysis of the stretching mode of COO - indicates the different bond type between metal cation and carboxylate anion. In addition, water content in particles decreases at the constant RH, implying water loss with the chemical reaction. When the RH changes very quickly, water uptake delay during the humidification process reveals that water mass transport is limited below 37% RH. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  1. A comparison of Eichhornia crassipes (Pontederiaceae) and Sphagnum quinquefarium (Sphagnaceae) in treatment of acid mine water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falbo, M.B.; Weaks, T.E.

    Tests were conducted under greenhouse conditions to evaluate the ability of Eichhornia crassipes (Pontederiaceae) and Sphagnum quinquefarium (Sphagnaceae) to ameliorate acid mine water discharged from coal operations. In addition, the survivorship and growth rate of E. crassipes (water-hyacinth), cultured in toxic acid mine water, were determined. The results of both short- and long-term studies indicated that E. crassipes readily reduced levels of heavy metals in acid mine water while the plants exhibited few signs of toxicity. Patterns of reduction of pollutants, for both E. crassipes and S. quinquefarium indicated that treatment efficiency could be improved by the periodic harvesting ofmore » plants. It is suggested that the ease with which water-hyacinths can be introduced into wetlands and harvested cannot be economically duplicated with other plants currently in use in treating acid mine water.« less

  2. Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong

    2018-01-01

    Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.

  3. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  4. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    NASA Astrophysics Data System (ADS)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  5. Enzymatic synthesis of capric acid-rich structured lipids (MUM type) using Candida antarctica lipase.

    PubMed

    SilRoy, Sumita; Ghosh, Mahua

    2011-01-01

    The objective of the work was to produce capric acid rich structured lipids starting from various Indian indigenous vegetable oils, such as rice bran, ground nut and mustard oils. Acidolysis reaction between individual vegetable oils and capric acid in one is to three molar ratios at 45 degree centigrade temperature was carried out using position specific Candida antarctica lipase so as to protect the Sn-2 position of the oils which are rich in unsaturated fatty acids. The incorporation of capric acid depended on the reaction time showing 6 % within 6 h and 30.8 % in 72 h with rice bran oil. Similarly, in ground nut oil incorporation of capric acid was 34.2 % in 72 h compared to 5.3 % in 6 h. Thus mustard oil showed much lower incorporation than the other two oils, with 3.3 % and 19.5 % in 6 and 72 h respectively. The incorporation of capric acid was influenced by the nature of the fatty acids present in the original oil. The fatty acid composition of Sn-2 position of the structured triacylglycerols of the three oils revealed that capric acid was mainly replacing the fatty acids occupying the Sn-1 and 3 positions of the triglyceride molecule.

  6. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+, F-, Cl-, SO42- and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% < V, Mn, Cu, Zn and Sr ≤ 50%; others ≤20%. Most metals, water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO42-, K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals show

  7. Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products.

    PubMed

    Azhar, Muhammad Rizwan; Vijay, Periasamy; Tadé, Moses O; Sun, Hongqi; Wang, Shaobin

    2018-04-01

    Water-stable and active metal organic frameworks (MOFs) are important materials for mitigation of water contaminants via adsorption and catalytic reactions. In this study, a highly water-stable Co-based MOF, namely bio-MOF-11-Co, was synthesized by a simplified benign method. Moreover, it was used as a catalyst in successful activation of peroxymonsulfate for catalytic degradation of sulfachloropyradazine (SCP) and para-hydroxybenzoic acid (p-HBA) as representatives of pharmaceuticals and personal care products, respectively. The bio-MOF-11-Co showed rapid degradation of both p-HBA and SCP and could be reused multiple times without losing the activity by simply water washing. The effects of catalyst and PMS loadings as well as temperature were further studied, showing that high catalyst and PMS loadings as well as temperature produced faster kinetic degradation of p-HBA and SCP. The generation of highly reactive and HO radicals during the degradation was investigated by quenching tests and electron paramagnetic resonance. A plausible degradation mechanism was proposed based on the functionalities in the bio-MOF-11-Co. The availability of electron rich nucleobase adenine reinforced the reaction kinetics by electron donation along with cobalt atoms in the bio-MOF-11-Co structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Growth and survival of cowpea rhizobia in acid, aluminum-rich soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartel, P.G.; Alexander, M.

    1983-01-01

    A study was undertaken to determine whether Al-sensitive cowpea Rhizobium survives in acid, Al-rich soils. The lower pH limit for growth of 20 strains in a defined liquid medium varied from pH 4.2 to less than pH 3.6. The mean lower limit for growth was pH 3.9. Several of the strains clumped in this medium at pH 4.5. Of 11 strains that were tested for tolerance to high levels of Al in a defined liquid medium at pH 4.5, nine tolerated 75 ..mu..M Al, and the other two were sensitive to levels above 15 ..mu..M. Three strains, one Al-tolerant, onemore » Al-sensitive, and one Al-tolerant or Al-sensitive depending on the presence of vitamins in the medium, were selected for studies in Al-rich sterile and nonsterile soils. These rhizobia did not survive in soils of less than pH 4.7 sterilized by /sup 60/Co irradiation. When inoculated into sterile soil at pH 4.7, the consistently sensitive strain initially failed to proliferate and then grew slowly, but populations of the other two rhizobia increased rapidly. No consistent relationship was found between the Al tolerance of these three rhizobia and their growth and survival in four acid, Al-rich soils. The data suggest that Al is of minor importance to growth and survival of cowpea Rhizobium strains in acid soils. 16 references, 4 figures, 1 table.« less

  9. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  10. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions?

    PubMed

    De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven

    2009-06-15

    The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS.

  11. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    PubMed

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  12. Water characterization and seasonal heavy metal distribution in the Odiel River (Huelva, Spain) by means of principal component analysis.

    PubMed

    Montes-Botella, C; Tenorio, M D

    2003-11-01

    The Iberian Pyrite Belt is the largest mass of sulfide and manganese ores in Western Europe. Its sulfide oxidation is the origin of a heavily acidic drainage that affects the Odiel River in southwestern Huelva (Spain). To assess physicochemical, contamination parameters, heavy metal distribution and its seasonal variation in the upper Odiel River and in El Lomero mines, three water samplings were undertaken and analyzed between July 1998 and November 1999. Water from the Odiel River in the polluted zone showed low pH values (2.76-3.51), high heavy metal content, and high values of conductivity (1410-3648 microS/cm) and dissolved solids (1484-5602 mg/L). Principal Component Analysis (PCA) showed that variables related with the products of the pyrite oxidation and the salts that are solubilized by the high acidity generated in the oxidation of sulfides, grouped in the first component, accounted for 40.88% of total variance, and were the main influential factor in physicochemical water sample properties. The second influential factor was minority metals (nickel, cobalt, cadmium). Heavy metals showed three different seasonal patterns, closely related with saline efflorescences formed next to the river bed: majority metals (iron, copper, manganese, zinc); minority metals (lead, nickel, cobalt, cadmium); and chromium, which had a distinctive behavior.

  13. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  14. Heavy metal-binding proteins from metal-stimulated bacteria as a novel adsorbent for metal removal technology.

    PubMed

    Sano, D; Myojo, K; Omura, T

    2006-01-01

    Water pollution with toxic heavy metals is of growing concern because heavy metals could bring about serious problems for not only ecosystems in the water environment but also human health. Some metal removal technologies have been in practical use, but much energy and troublesome treatments for chemical wastes are required to operate these conventional technologies. In this study, heavy metal-binding proteins (HMBPs) were obtained from metal-stimulated activated sludge culture with affinity chromatography using copper ion as a ligand. Two-dimensional electrophoresis revealed that a number of proteins in activated sludge culture were recovered as HMBPs for copper ion. N-termini of five HMBPs were determined, and two of them were found to be newly discovered proteins for which no amino acid sequences in protein databases were retrieved at more than 80% identities. Metal-coordinating amino acids occupied 38% of residues in one of the N-terminal sequences of the newly discovered HMBPs. Since these HMBPs were expected to be stable under conditions of water and wastewater treatments, it would be possible to utilize HMBPs as novel adsorbents for heavy metal removal if mass volume of HMBPs can be obtained with protein cloning techniques.

  15. n-hydrocarbons conversions over metal-modified solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Zarubica, A.; Ranđelović, M.; Momčilović, M.; Radulović, N.; Putanov, P.

    2013-12-01

    The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.

  16. Assessment of radionuclide and metal contamination in a thorium rich area in Norway.

    PubMed

    Popic, Jelena Mrdakovic; Salbu, Brit; Strand, Terje; Skipperud, Lindis

    2011-06-01

    The Fen Central Complex in southern Norway, a geologically well investigated area of magmatic carbonatite rocks, is assumed to be among the world largest natural reservoirs of thorium ((232)Th). These rocks, also rich in iron (Fe), niobium (Nb), uranium ((238)U) and rare earth elements (REE), were mined in several past centuries. Waste locations, giving rise to enhanced levels of both radionuclides and metals, are now situated in the area. Estimation of radionuclide and metal contamination of the environment and radiological risk assessment were done in this study. The average outdoor gamma dose rate measured in Fen, 2.71 μGy h(-1), was significantly higher than the world average dose rate of 0.059 μGy h(-1). The annual exposure dose from terrestrial gamma radiation, related to outdoor occupancy, was in the range 0.18-9.82 mSv. The total activity concentrations of (232)Th and (238)U in soil ranged from 69 to 6581 and from 49 to 130 Bq kg(-1), respectively. Enhanced concentrations were also identified for metals, arsenic (As), lead (Pb), chromium (Cr) and zinc (Zn), in the vicinity of former mining sites. Both radionuclide and heavy metal concentrations suggested leaching, mobilization and distribution from rocks into the soil. Correlation analysis indicated different origins for (232)Th and (238)U, but same or similar for (232)Th and metals As, Cr, Zn, nickel (Ni) and cadmium (Cd). The results from in situ size fractionation of water demonstrated radionuclides predominately present as colloids and low molecular mass (LMM) species, being potentially mobile and available for uptake in aquatic organisms of Norsjø Lake. Transfer factors, calculated for different plant species, showed the highest radionuclide accumulation in mosses and lichens. Uptake in trees was, as expected, lower. Relationship analysis of (232)Th and (238)U concentrations in moss and soil samples showed a significant positive linear correlation.

  17. Concentration-Discharge Behavior of Contaminants in a Stream Impacted by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Shaw, M. E.; Klein, M.; Herndon, E.

    2017-12-01

    Acid mine drainage (AMD) has severely degraded streams throughout the Appalachian coal region of the United States. AMD occurs when pyrite contained in coal is exposed to water and air during mining activities and oxidized to release high concentrations of sulfate, metals, and acidity into water bodies. Little is known about the concentration-discharge (CQ) relationships of solutes in AMD-impacted streams due to the complicated nature of acid mine drainage systems. For example, streams may receive inputs from multiple sources that include runoff, constructed treatment systems, and abandoned mines that bypass these systems to continue to contaminate the streams. It is important to understand the CQ relationships of contaminants in AMD-impacted streams in order to elucidate contaminant sources and to predict effects on aquatic ecosystems. Here, we study the CQ behaviors of acid and metals in a contaminated watershed in northeastern Ohio where limestone channels have been installed to remediate water draining from a mine pool into the stream. Stream chemistry was measured in samples collected once per day or once per hour during storm events, and stream flow was measured continuously at the watershed outlet. Increases in stream velocity during storm events resulted in an increase in pH (from 3 to 6) that subsequently decreased back to 3 as flow decreased. Additionally, Fe and Mn concentrations in the stream were high during baseflow (7 and 15 mg/L, respectively) and decreased with increasing discharge during storm events. These results indicate that the treatment system is only effective at neutralizing stream acidity and removing metals when water flow through the limestone channel is continuous. We infer that the acidic and metal-rich baseflow derives from upwelling of contaminated groundwater or subsurface flow from a mine pool. Ongoing studies aim to isolate the source of this baseflow contamination and evaluate the geochemical transformations that occur as it

  18. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...

  19. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...

  20. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  1. The fate of carbon dioxide in water-rich fluids under extreme conditions

    PubMed Central

    Pan, Ding; Galli, Giulia

    2016-01-01

    Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures (P) and temperatures (T) approximating the conditions of Earth’s upper mantle. Contrary to popular geochemical models assuming that molecular CO2(aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate (CO32−) and bicarbonate (HCO3−) ions and that even carbonic acid [H2CO3(aq)] is more abundant than CO2(aq). Furthermore, our simulations revealed that ion pairing between Na+ and CO32−/HCO3− is greatly affected by P-T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth’s upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting CO32− and HCO3− ions, not solvated CO2(aq) molecules. PMID:27757424

  2. The fate of carbon dioxide in water-rich fluids under extreme conditions.

    PubMed

    Pan, Ding; Galli, Giulia

    2016-10-01

    Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures ( P ) and temperatures ( T ) approximating the conditions of Earth's upper mantle. Contrary to popular geochemical models assuming that molecular CO 2 (aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate ([Formula: see text]) and bicarbonate ([Formula: see text]) ions and that even carbonic acid [H 2 CO 3 (aq)] is more abundant than CO 2 (aq). Furthermore, our simulations revealed that ion pairing between Na + and [Formula: see text]/[Formula: see text] is greatly affected by P - T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth's upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting [Formula: see text] and [Formula: see text] ions, not solvated CO 2 (aq) molecules.

  3. Metal concentration in the gill, gastrointestinal tract, and carcass of white suckers (Catostomus commersoni) in relation to lake acidity

    USGS Publications Warehouse

    Haines, T.A.; Brumbaugh, W.G.

    1994-01-01

    Adult white suckers were collected from four lakes in Maine that ranged in pH from 7.0 to 5.4. The gastrointestinal tract and remainder of the carcass of fishes of similar age and size from each lake, and gills from additional fishes of similar size, were analyzed for Al, Cd, Pb, and Zn. Carcasses were also analyzed for Hg. Concentrations of Al, Cd, and Pb were highest in the gastrointestinal tract and lowest in the carcass; Zn concentration was highest in the gill. For carcass, all metals except Al differed significantly among lakes, for gill tissue Cd and Pb differed, and for gastrointestinal tract, only Cd differed among lakes. Where differences were significant, patterns among lakes were similar in each tissue analyzed. Concentrations of Cd, Hg, and Pb were negatively correlated with lake water pH, acid neutralizing capacity (ANC), Ca, and lake:watershed area, and positively correlated with lake water SO4, indicating that concentrations were higher in fish from more acidic lakes. Zinc concentrations in gills were unrelated to lake acidity, and carcass concentrations were higher in the less acidic lakes, which is the opposite of the pattern for the other metals studied. Zinc in gastrointestinal tract did not differ among lakes. Although the lakes we studied were located in undisturbed watersheds and did not receive any point source discharges, fish metal concentrations were comparable to or higher than those reported from waters receiving industrial discharges.

  4. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.

    2000-01-01

    allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.Microcosms were used to simulate environmentally realistic metal, acid volatile sulfide (AVS), and geochemical gradients in sediments to evaluate effects of metal bioavailability. The 18-d study involved five test species: two bivalves and three polychaetes. Two series of experiments were designed to evaluate the effects of metal concentration and AVS on bioaccumulation, respectively. The metals of interest were cadmium, nickel, and zinc. Results showed that the concentrations of pore-water Cd, Ni, and Zn were controlled by the concentration of AVS. Organisms bioaccumulated significant amounts of metals from the sediments when the simultaneously extracted metal was only a small fraction of the AVS. Bioavailability increased linearly with the sediment metal concentration irrespective of AVS or pore-w

  5. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Kornfeld, J.M.

    2005-01-01

    spells. Despite the relatively humid climate of the eastern United States, where precipitation typically exceeds evaporation, salts form intermittently in open areas, persist in protected areas when temperature and relative humidity are appropriate, and contribute to metal loadings and acidity in surface waters upon dissolution, thereby causing short-term perturbations in water quality.

  6. Morphological changes of olivine grains reacted with amino acid solutions by impact process

    NASA Astrophysics Data System (ADS)

    Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2017-03-01

    Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.

  7. METAL-RICH PLANETARY NEBULAE IN THE OUTER REACHES OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, B.; Kwitter, K. B.; Corradi, R. L. M.

    2013-09-01

    Spectroscopic data of two relatively [O III]-luminous planetary nebulae (PNe) have been obtained with the 10.4 m Gran Telescopio Canarias. M174 and M2496 are each {approx}1 Degree-Sign from the center of M31 along opposite sides of its minor axis. The ensemble of these 2 distant PNe plus 16 similarly luminous outer-disk PNe published previously by Kwitter et al. forms a homogeneous group in luminosity, metal content, progenitor mass, age, and kinematics. The main factual findings of our work are (1) O/H (and other low-mass {alpha} elements and their ratios to O) is uniformly solar-like in all 18 PNe ((12 +more » log(O/H)) = 8.62 {+-} 0.14); (2) the general sky distribution and kinematics of the ensemble much more closely resemble the rotation pattern of the classical disk of M31 than its halo or bulge; (3) the O/H gradient is surprisingly flat beyond R{sub g} {approx} 20 kpc. The PNe are too metal-rich to be bona fide members of M31's disk or halo, and (4) the abundance patterns of the sample are distinct from those in the spiral galaxies M33, M81, and NGC 300. Using standard PN age diagnostic methods, we suggest that all of the PNe formed {approx}2 Gyr ago in a starburst of metal-rich interstellar medium that followed an M31-M33 encounter about 3 Gyr ago. We review supporting evidence from stellar studies. Other more prosaic explanations, such as dwarf galaxy assimilation, are unlikely.« less

  8. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    PubMed

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15).

  9. Mineralogy and geochemistry of efflorescent minerals on mine tailings and their potential impact on water chemistry.

    PubMed

    Grover, B P C; Johnson, R H; Billing, D G; Weiersbye, I M G; Tutu, H

    2016-04-01

    In the gold mining Witwatersrand Basin of South Africa, efflorescent mineral crusts are a common occurrence on and nearby tailings dumps during the dry season. The crusts are readily soluble and generate acidic, metal- and sulphate-rich solutions on dissolution. In this study, the metal content of efflorescent crusts at an abandoned gold mine tailings dump was used to characterise surface and groundwater discharges from the site. Geochemical modelling of the pH of the solution resulting from the dissolution of the crusts was used to better understand the crusts' potential impact on water chemistry. The study involved two approaches: (i) conducting leaching experiments on oxidised and unoxidised tailings using artificial rainwater and dilute sulphuric acid and correlating the composition of crusts to these leachates and (ii) modelling the dissolution of the crusts in order to gain insight into their mineralogy and their potential impact on receiving waters. The findings suggested that there were two chemically distinct discharges from the site, namely an aluminium- and magnesium-rich surface water plume and an iron-rich groundwater plume. The first plume was observed to originate from the oxidised tailings following leaching with rainwater while the second plume originated from the underlying unoxidised tailings with leaching by sulphuric acid. Both groups of minerals forming from the respective plumes were found to significantly lower the pH of the receiving water with simulations of their dissolution found to be within 0.2 pH units of experimental values. It was observed that metals in a low abundance within the crust (for example, iron) had a stronger influence on the pH of the resulting solutions than metals in a greater abundance (aluminium or magnesium). Techniques such as powder X-ray diffraction (PXRD) and in situ mineral determination techniques such as remote sensing can effectively determine the dominant mineralogy. However, the minerals or metals

  10. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  11. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  12. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.

    PubMed

    Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling

    2017-08-22

    Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.

  13. Determination of boron in produced water using the carminic acid assay.

    PubMed

    Floquet, Cedric F A; Sieben, Vincent J; MacKay, Bruce A; Mostowfi, Farshid

    2016-04-01

    Using the carminic acid assay, we determined the concentration of boron in oilfield waters. We investigated the effect of high concentrations of salts and dissolved metals on the assay performance. The influence of temperature, development time, reagent concentration, and water volume was studied. Ten produced and flowback water samples of different origins were measured, and the method was successfully validated against ICP-MS measurements. In water-stressed regions, produced water is a potential source of fresh water for irrigation, industrial applications, or consumption. Therefore, boron concentration must be determined and controlled to match the envisaged waste water reuse. Fast, precise, and onsite measurements are needed to minimize errors introduced by sample transportation to laboratories. We found that the optimum conditions for our application were a 5:1 mixing volume ratio (reagent to sample), a 1 g L(-1) carminic acid concentration in 99.99% sulfuric acid, and a 30 min reaction time at ambient temperature (20 °C to 23 °C). Absorption values were best measured at 610 nm and 630 nm and baseline corrected at 865 nm. Under these conditions, the sensitivity of the assay to boron was maximized while its cross-sensitivity to dissolved titanium, iron, barium and zirconium was minimized, alleviating the need for masking agents and extraction methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. [Impact of acid mining drainage on the quality of superficial waters and sediments in the Marrakesh region, Morocco].

    PubMed

    El Gharmali, A; Rada, A; El Adnani, M; Tahlil, N; El Meray, M; Nejmeddine, A

    2004-12-01

    The aim of the present study is the evaluation of the effects of the acid drainage of three abandoned mining sites: SB-Othmane, Kettara and Draâ-sfar, on water and sediment quality of the Tensift River and its two temporary tributaries, the Kettara and El-Coudia Oueds. These mining sites located near Marrakesh contain mining residues abandoned for ten to twenty years. They are presently in an agricultural region of the Haouz district. In each site, these uncontrolled mining residues present a high level of metallic sulphide and generate, during rainy periods, leaching products which have physical and chemical characteristics of acid mine drainage (AMD). These percolates display an acidic pH ranging from 2.5 to 5.2, a high electric conductivity, large amounts of sulphate and heavy metals, especially under dissolved form (e.g. Cd: 17.34 mg l(-1); Fe: 1734 mg l(-1); Zn: 3935 mg l(-1)). Except for Pb, the free ionic form is the most abundant metallic form, as showed by calculations using the speciation GEOCHEM program. The analysis of water and sediments of the surrounding superficial aquatic ecosystems shows a modification of water chemical facies and an enrichment in heavy metals, mainly under the solid phase for Fe, Pb, Cu, Co, Cr and Ni, and under dissolved fraction for Cd and Zn. The dissolved fraction of these metals is dominated by the free ionic form, considered as available for organisms. Furthermore, sediments contain important quantities of heavy metals (Pb: 1450 microg g(-1), Zn: 1562 microg g(-1)) with an available fraction which is higher than 40% for the Cd and Zn. The abundance of trace elements (free ionic and available forms) in water and sediment presents a durable risk of their transfer to food chains.

  15. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water

    Treesearch

    Miyoung Oh; Mandla A. Tshabalala

    2007-01-01

    Bark flour from ponderosa pine (Pinus ponderosa) was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(ll), Zn(ll), Cd(ll). and Ni(ll) under both equilibrium...

  16. Acid-neutralizing potential of minerals in intrusive rocks of the Boulder batholith in northern Jefferson County, Montana

    USGS Publications Warehouse

    Desborough, George A.; Briggs, Paul H.; Mazza, Nilah; Driscoll, Rhonda

    1998-01-01

    Experimental studies show that fresh granitic rocks of the Boulder batholith in the Boulder River headwaters near Basin, Montana have significant acid-neutralizing potential and are capable of neutralizing acidic water derived from metal-mining related wastes or mine workings. Laboratory studies show that in addition to the acidneutralizing potential (ANP) of minor amounts of calcite in these rocks, biotite, tremolite, and feldspars will contribute significantly to long-term ANP. We produced 0.45 micrometer-filtered acidic (pH = 2.95) leachate for use in these ANP experiments by exposing metal-mining related wastes to deionized water in a waste:leachate ratio of 1:20. We then exposed these leachates to finely-ground and sized fractions of batholith rocks, and some of their mineral fractions for extended and repeated periods, for which results are reported here. The intent was to understand what reactions of metal-rich acidic water and fresh igneous rocks would produce. The reactions between the acidic leachates and the bulk rocks and mineral fractions are complex. Factors such as precipitation of phases like Fe-hydroxides and Alhydroxides and the balance between dissolved cations and anions that are sulfate dominated complicate analysis of the results. Research by others of acid neutralization by biotite and tremolite attributed a rise in pH to proton (H+) adsorption in sites vacated by K, Mg, and Ca. Destruction of the silicate framework and liberation of associated structural hydroxyl ions may contribute to ANP. Studies by others have indicated that the conversion of biotite to a vermiculite-type structure by removal of K at a pH of 4 consumes about six protons for every mole of biotite, but at a pH of 3 there is pronounced dissolution of the tetrahedral lattice. The ANP of fresh granitic rocks is much higher than anticipated. The three bulk Boulder igneous rock samples studied have minimum ANP equivalent to about 10-14 weight percent calcite. This ANP is in

  17. The thermal evolution of large water-rich asteroids

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Castillo, J. C.

    2009-12-01

    Water and heat played a significant role in the formation and evolution of large main belt asteroids, including 1 Ceres, 2 Pallas, and 24 Themis, for which there is now evidence of surficial water ice (Rivkin & Emery, ACM 2008). Shape measurements indicate some differentiation of Ceres’ interior, which, in combination with geophysical modeling, may indicate compositional layering in a core made up of anhydrous and hydrated silicate and a water ice mantle (Castillo-Rogez & McCord, in press, Icarus). We extend these interior models now to other large, possibly water-rich main belt asteroids, namely Pallas, at mean radius 272 km, and the Themis family parent body, at mean radius 150 km. The purpose of this study is to compare geophysical models against available constraints on the physical properties of these objects and to offer constraints on the origin of these objects. Pallas is the largest B-type asteroid. Its surface of hydrated minerals and recent constraint on its density, 2.4-2.8 g/cm3, seems to imply that water strongly affected its evolution (Schmidt et al., in press, Science). 24 Themis is the largest member of the Themis family that now counts about 580 members, including some of the main belt comets. The large member 90 Antiope has a density of about 1.2 g/cm3, while 24 Themis has a density of about 2.7 +/-1.3 g/cm3. The apparent contrast in the densities and spectral properties of the Themis family members may reflect a compositional layering in the original parent body. In the absence of tidal heating and with little accretional heat, the evolution of these small water-rich objects is a function of their initial composition and temperature. The latter depends on the location of formation (in the inner or outer solar system) and most importantly on the time and duration of accretion, which determines the amount of short-lived radioisotopes available for early internal activity. New accretional models suggest that planetesimals grew rapidly throughout

  18. Effect of a protein-rich meal on urinary and salivary free amino acid concentrations in human subjects.

    PubMed

    Brand, H S; Jörning, G G; Chamuleau, R A; Abraham-Inpijn, L

    1997-08-08

    The aim of the present study was to investigate whether in healthy volunteers acute changes in plasma free amino acid composition after a protein-rich test meal are reflected in the urinary and salivary concentrations of the corresponding amino acids. The ingestion of a protein-rich meal elicited a significant increase of plasma and urine amino acid concentrations. The postprandial salivary amino acid excretion showed only minor changes. For several amino acids (alanine, arginine, asparagine, glycine, threonine and valine) significant relations were observed between the increase in concentration of these amino acids in venous plasma and urine. In whole saliva, only threonine and valine showed a significant relationship with the corresponding plasma concentration. Our data suggest that the urinary amino acid excretion of several amino acids has the potential for estimating short-term changes in plasma concentrations. Determination of salivary amino acid concentrations seems less appropriate for this purpose.

  19. Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California

    USGS Publications Warehouse

    Parsons, M.B.; Bird, D.K.; Einaudi, M.T.; Alpers, Charles N.

    2001-01-01

    Base-metal slag deposits at the Penn Mine in Calaveras County, California, are a source of environmental contamination through leaching of potentially toxic elements. Historical Cu smelting at Penn Mine (1865-1919) generated approximately 200,000 m3 of slag. The slag deposits, which are flooded annually by a reservoir used for drinking water and irrigation, also may be in contact with acidic ground waters (pH < 4) from the adjacent mine area. Slags vary from grey to black, are glassy to crystalline, and range in size from coarse sand to large (0.6 ?? 0.7 ?? 1.5 m), tub-shaped casts. Metals are hosted by a variety of minerals and two glass phases. On the basis of mineralogy, slags are characterized by 4 main types: fayalite-rich, glassy, willemite-rich, and sulfide-rich. The ranges in metal and metalloid concentrations of 17 slag samples are: As, 0.0004-0.92; Ba, 0.13-2.9; Cd, 0.0014-1.4; Cu, 0.18-6.4; Pb, 0.02-11; and Zn, 3.2-28 wt.%. Leachates from Toxicity Characteristic Leaching Procedure tests (acetic acid buffered at pH 4.93) on two wiltemite-rich slags contained Cd and Pb concentrations (up to 2.5 and 30 mg/l, respectively) in excess of US Environmental Protection Agency (USEPA) regulatory limits. Analyses of filtered (0.45 ??m) water, collected within the flooded slag dump during reservoir drawdown, reveal concentrations of Cd (1.7 ??g/l), Cu (35 ??g/l), and Zn (250 ??g/l) that exceed USEPA chronic toxicity guidelines for the protection of aquatic life. Data from field and laboratory studies were used to develop geochemical models with the program EQ3/6 that simulate irreversible mass-transfer between slag deposits and reservoir waters. These models include kinetic rate laws for abiotic sulfide oxidation and surface-controlled dissolution of silicates, oxides, and glass. Calculations demonstrate that the main processes controlling dissolved metal concentrations are (1) dissolution of fayalite, willemite, and glass; (2) sulfide oxidation; and (3) secondary

  20. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  1. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  2. A comparison of neutralization efficiency of chemicals with respect to acidic Kopili River water

    NASA Astrophysics Data System (ADS)

    Kapil, Nibedita; Bhattacharyya, Krishna G.

    2017-09-01

    Among all the renewable sources of energy, hydropower is the most potential source which is economical, non-polluting and eco-friendly. The efficiency of hydropower plant in the long run depends on many factors like water and sediment quality. Erosive and corrosive wear of machine parts like turbine is a complex phenomenon. The problem becomes more acute if the hydroenvironment is acidic in nature. The wear and tear due to corrosion/erosion caused by acid mine drainage (AMD) from coal mines reduces the efficiency and the life of the equipments. In this work, neutralization of the acidic water of the Kopili River, Assam, India was investigated using a number of basic chemicals and quantitatively estimating their effectiveness and actual requirement. The acidic water of the river, used as the cooling water, has been found responsible for damaging the equipments of the Kopili Hydro Electric Power Project (KHEP), Assam/Meghalaya, India by reducing the life of all metallic parts through corrosion. In this work, use is made of a number of basic materials like calcium carbonate, calcium hydroxide, calcium oxide, sodium carbonate, sodium hydroxide, and ammonia to examine their neutralization efficiency with respect to the acidic water and it was found that quick lime or raw lime (CaO) has the highest neutralization capacity. Suggestions have been made for meeting the problem of acidity of the river water.

  3. Trace-metal concentrations, waters from selected sky lakes, streams and springs, northern Shawangunk Mountains, New York: geologic and ecologic implications

    USGS Publications Warehouse

    Friedman, J.D.; Huth, P.C.; Smiley, D.

    1990-01-01

    Reconnaissance sampling and chemical analysis of water from selected lakes, streams and springs of the northern Shawangunk Mountains in 1987 to 1988 to determine the influence of lithology on trace-metal concentrations in surface water, and to establish a base level of concentration of 27 selected metals by ICP-AES and Hg by cold-vapor AAS methods, for geochemical exploration, ecologic, acid-rain, and climatic-change studies, have yielded trace-metal concentrations greater than detection limits for 10 metallic elements. Eighteen additional metallic elements were also present in trace quantities below the quantitative detection limit. Two distinct geochemical populations are related to source lithology and pH. -from Authors

  4. Synthesis of α-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase.

    PubMed

    Kim, Heejin; Choi, Nakyung; Oh, Se-Wook; Kim, Yangha; Hee Kim, Byung; Kim, In-Hwan

    2017-12-15

    An α-linolenic acid (ALA)-rich triacylglycerol (TAG) was synthesized from an ALA-rich fatty acid (FA) from perilla oil and glycerol, using a newly prepared immobilized lipase under vacuum. The ALA-rich FA (purity >90wt%) used as the substrate was prepared by urea complexation from perilla oil FAs. Liquid Lipozyme TL 100L lipase from Thermomyces lanuginosus was used for immobilization. Nine different hydrophilic and hydrophobic carriers for immobilization were tested, and Duolite A568, which is a hydrophilic resin, was selected as the best carrier. This immobilized lipase was used to synthesize TAG by direct esterification under vacuum. The parameters investigated were temperature, enzyme loading, and vacuum level. The optimum reaction conditions were a temperature of 60°C, an enzyme loading of 15% (based on the total weight of the substrate), and a vacuum of 0.7kPa, respectively. The maximum conversion to TAG of ca. 88wt% was obtained in 12h under the optimum conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Metal dispersion resulting from mining activities in coastal environments: A pathways approach

    USGS Publications Warehouse

    Koski, Randolph A.

    2012-01-01

    Acid rock drainage (ARD) and disposal of tailings that result from mining activities impact coastal areas in many countries. The dispersion of metals from mine sites that are both proximal and distal to the shoreline can be examined using a pathways approach in which physical and chemical processes guide metal transport in the continuum from sources (sulfide minerals) to bioreceptors (marine biota). Large amounts of metals can be physically transported to the coastal environment by intentional or accidental release of sulfide-bearing mine tailings. Oxidation of sulfide minerals results in elevated dissolved metal concentrations in surface waters on land (producing ARD) and in pore waters of submarine tailings. Changes in pH, adsorption by insoluble secondary minerals (e.g., Fe oxyhydroxides), and precipitation of soluble salts (e.g., sulfates) affect dissolved metal fluxes. Evidence for bioaccumulation includes anomalous metal concentrations in bivalves and reef corals, and overlapping Pb isotope ratios for sulfides, shellfish, and seaweed in contaminated environments. Although bioavailability and potential toxicity are, to a large extent, functions of metal speciation, specific uptake pathways, such as adsorption from solution and ingestion of particles, also play important roles. Recent emphasis on broader ecological impacts has led to complementary methodologies involving laboratory toxicity tests and field studies of species richness and diversity.

  6. Metal dispersion resulting from mining activities in coastal environments: a pathways approach

    USGS Publications Warehouse

    Koski, Randolph A.

    2012-01-01

    Acid rock drainage (ARD) and disposal of tailings that result from mining activities impact coastal areas in many countries. The dispersion of metals from mine sites that are both proximal and distal to the shoreline can be examined using a pathways approach in which physical and chemical processes guide metal transport in the continuum from sources (sulfide minerals) to bioreceptors (marine biota). Large amounts of metals can be physically transported to the coastal environment by intentional or accidental release of sulfide-bearing mine tailings. Oxidation of sulfide minerals results in elevated dissolved metal concentrations in surface waters on land (producing ARD) and in pore waters of submarine tailings. Changes in pH, adsorption by insoluble secondary minerals (e.g., Fe oxyhydroxides), and precipitation of soluble salts (e.g., sulfates) affect dissolved metal fluxes. Evidence for bioaccumulation includes anomalous metal concentrations in bivalves and reef corals, and overlapping Pb isotope ratios for sulfides, shellfish, and seaweed in contaminated environments. Although bioavailability and potential toxicity are, to a large extent, functions of metal speciation, specific uptake pathways, such as adsorption from solution and ingestion of particles, also play important roles. Recent emphasis on broader ecological impacts has led to complementary methodologies involving laboratory toxicity tests and field studies of species richness and diversity.

  7. Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, Raymond S.

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, increasing public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd, Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS®) that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (ProPhos), and 1-hydroxy-2-pyridinone (1,2-HOPO) from natural waters (river, ground, and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate and compares their performance to a high surface area activated carbon.more » The properties include sorption affinity, capacity, and sorption kinetics. Stability and regenerability of SAMMS materials were also investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. While the activated carbon is as effective as 1,2-HOPO-SAMMS for capturing lanthanides in natural (alkaline) waters, it has no affinity in acid solutions (pH 2.4) and low affinity in carbonate-rich dialysate. Over 99% of 100 ug/L of Gd in dialysate was removed by the ProPhos-SAMMS after ten minutes. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties, for a number of regeneration cycles. In acid solutions, PhoPhos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their potential for chromatographic lanthanide separations. Thus, SAMMS materials have a great potential to be used as sorbents in large scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and sorbent dialyzers for lanthanide clearances.« less

  8. Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils.

    PubMed

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2018-07-15

    Olive mill wastewater (OMWW) is an acidic, saline, and organic matter-rich aqueous byproduct of olive oil production that is usually disposed of by spreading on agricultural soils. This study tested whether spreading OMWW can release indigenous soil metals (Fe, Mn, Cu and Zn) through pH, redox, and DOM complexation-related mechanisms, using three agricultural soils having different textures and chemical properties, and controlled pH and redox conditions (pH5.6 or 8.4; ORP from -200 to +250mV). Comparison treatments included a solution having the same salt content and composition as OMWW but lacking OM, and deionized water (DW). In all three soils and under all pH and redox conditions, the model salt solution and DW treatments solubilized considerably fewer metal cations than did OMWW. Overall, the primary factor in metals release from the soils by OMWW was the DOM fraction. pH, redox and soil type played secondary but important roles in solubilization of the various metals. pH had a major impact on Mn leaching but no impact on Fe and Cu leaching. Conversely, redox did not affect Mn leaching, but lower redox conditions contributed to elevated release of both Fe and Cu. For the most part, released metals were sourced from water soluble, exchangeable, easily reducible, and moderately reducible soil metals pools. Fe, Mn and Cu released from the soils by OMWW featured mainly as metal-organic complexes, and OMWW generally caused Zn precipitation in the soils. Soils rich in clay and organic matter under reduced pH and low redox conditions released substantially more metal cations than did a sand-rich soil. Spreading OMWW may result in sequestration of essential micronutrients like Zn, and increased availability of other micronutrients such as Fe, Mn and Cu. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Influence of Heavy Metals and Water Parameters on the Composition and Abundance of Water Bugs (Insecta: Hemiptera) in the Kerian River Basin, Perak, Malaysia

    PubMed Central

    Ishadi, Nur Adibah Mohd; Rawi, Che Salmah Md; Ahmad, Abu Hassan; Abdul, Nurul Huda

    2014-01-01

    The hemipteran (Insecta) diversity in the upper part of the Kerian River Basin was low with only 8 families and 16 genera recorded at 4 study sites from 3 rivers. Water bug composition varied among sampling sites (Kruskal-Wallis χ 2 = 0.00, p<0.05) but was not affected by wet-dry seasons (Z = 0.00, p>0.05). All recorded water parameters were weakly associated with generic abundance but the biochemical oxygen demand (BOD), chemical oxygen demand (COD), Water Quality Index (WQI) and heavy metals (zinc and manganese) showed relatively strong positive or negative relations with hemipteran diversity and richness (H’ and R2). Within the ranges of measured water parameters, the WQI was negatively associated with hemipteran diversity and richness, implying the tolerance of the water bugs to the level of pollution encountered in the river basin. Based on its highest abundance and occurrence (ISI), Rhagovelia was the most important genus and along with Rheumatogonus and Paraplea, these genera were common at all study sites. In conclusion, habitat availability and suitability together with some environmental parameters influenced the abundance and composition of hemipterans in this river basin. PMID:27073600

  10. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  11. A tropical sediment toxicity test using the dipteran Chironomus crassiforceps to test metal bioavailability with sediment pH change in tropical acid-sulfate sediments.

    PubMed

    Peck, Mika R; Klessa, David A; Baird, Donald J

    2002-04-01

    The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.

  12. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  13. A Stable Graphitic, Nanocarbon-Encapsulated, Cobalt-Rich Core–Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivanantham, Arumugam; Ganesan, Pandian; Estevez,

    2018-01-11

    The oxygen electrode plays a vital role in the successful commercialization of renewable energy technologies, such as fuel cells and water electrolyzers. In this study, the Prussian blue analogue-derived nitrogen-doped nanocarbon (NC) layer-trapped, cobalt-rich, core–shell nanostructured electrocatalysts (core–shell Co@NC) are reported. The electrode exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble electrodes. The core–shell Co@NC-loaded nickel foam exhibits a lower overpotential of 330 mV than that of IrO2 on nickel foam at 10 mA cm−2 and has a durability of over 400 h. The commercial Pt/C cathode-assisted, core–shell Co@NC–anode water electrolyzer delivers 10more » mA cm−2 at a cell voltage of 1.59 V, which is 70 mV lower than that of the IrO2–anode water electrolyzer. Over the long-term chronopotentiometry durability testing, the IrO2–anode water electrolyzer shows a cell voltage loss of 230 mV (14%) at 95 h, but the loss of the core–shell Co@NC–anode electrolyzer is only 60 mV (4%) even after 350 h cell-operation. The findings indicate that the Prussian blue analogue is a class of inorganic nanoporous materials that can be used to derive metal-rich, core–shell electrocatalysts with enriched active centers.« less

  14. A Stable Graphitic, Nanocarbon-Encapsulated, Cobalt-Rich Core-Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivanantham, Arumugam; Ganesan, Pandian; Estevez, Luis

    The oxygen electrode plays a vital role in the successful commercialization of renewable energy technologies, such as fuel cells and water electrolyzers. In this study, the Prussian blue analogue-derived nitrogen-doped nanocarbon (NC) layer-trapped, cobalt-rich, core–shell nanostructured electrocatalysts (core–shell Co@NC) are reported. The electrode exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble electrodes. The core–shell Co@NC-loaded nickel foam exhibits a lower overpotential of 330 mV than that of IrO2 on nickel foam at 10 mA cm-2 and has a durability of over 400 h. The commercial Pt/C cathode-assisted, core–shell Co@NC–anode water electrolyzer delivers 10more » mA cm-2 at a cell voltage of 1.59 V, which is 70 mV lower than that of the IrO2–anode water electrolyzer. Over the long-term chronopotentiometry durability testing, the IrO2–anode water electrolyzer shows a cell voltage loss of 230 mV (14%) at 95 h, but the loss of the core–shell Co@NC–anode electrolyzer is only 60 mV (4%) even after 350 h cell-operation. The findings indicate that the Prussian blue analogue is a class of inorganic nanoporous materials that can be used to derive metal-rich, core–shell electrocatalysts with enriched active centers.« less

  15. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT WATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simu...

  16. Mars: A water-rich planet?

    USGS Publications Warehouse

    Carr, M.H.

    1986-01-01

    Mars had outgassed at least 0.5 to 1 km of water, 10 to 20 bar of CO2, and 0.1 to 0.3 bar of N2. The volatiles that have been retained are mostly in the cratered uplands. Terrain softening, fretted channels, debris flows, and closed depressions indicate that at least the upper 2 km of the cratered uplands at high latitudes (>30??) contain ice in amounts that exceed the porosity, estimated to be 10-20%. Theoretical studies, and lack of these features in the cratered uplands at low latitudes, suggest that the upper 1 km of the uplands at low latitudes is ice poor. However, valley networks indicate that water was present near the surface early in the planet's history, although in amounts smaller than at high latitudes. The entire upper 1 km, planetwide is estimated to have contained 75-125 m of water at the end of heavy bombardment. The largest sink for water is the megaregolith below 1 km. Episodic eruption of water from the deep megaregolith cut many of the large outflow channels. From the volume of water needed to cut the circum-Chryse channels, and assuming uniform planetwide distribution of water, the deep megaregolith is estimated to have contained at least 350 m of water at the end of heavy bombardment, thereby giving a total minimum inventory of 424-475 m planetwide. Most of the water lost from the low-latitude uplands by diffusion and in cutting the valley networks is now believed to be in the polar layered terrains. Most of the water involved in cutting the outflow channels is in the low-lying northern plains where a variety of features that have been attributed to ground ice is present. A large fraction of the planet's surface has been overplated with water-poor volcanics, of which we have samples in the SNC meteorites. The younger volcanics have reacted extensively with the old volatile-rich basement. Some of the CO2 and N2 outgassed was lost during heavy bombardment by impact erosion of the atmosphere and other processes. The remaining was fixed

  17. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    PubMed

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. MiniSipper: a new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring.

    PubMed

    Chapin, Thomas P; Todd, Andrew S

    2012-11-15

    Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7-8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R(2)>0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed. Published by Elsevier B.V.

  19. MiniSipper: A new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring

    USGS Publications Warehouse

    Chapin, Thomas P.; Todd, Andrew S.

    2012-01-01

    Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7–8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R2 > 0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed.

  20. Screening nitrogen-rich bases and oxygen-rich acids by theoretical calculations for forming highly stable salts.

    PubMed

    Zhang, Xueli; Gong, Xuedong

    2014-08-04

    Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  2. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic

  3. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO₃-δ metal oxide.

    PubMed

    Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang

    2013-09-15

    Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals.

    PubMed

    Chen, Junren; Shafi, Mohammad; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Liu, Chen; Zhong, Bin; Guo, Hua; He, Lizhi; Liu, Dan

    2016-10-01

    Moso bamboo (Phyllostachys pubescens) has great potential as phytoremediation material in soil contaminated by heavy metals. A hydroponics experiment was conducted to determine organic acid compounds of root exudates of lead- (Pb), zinc- (Zn), copper- (Cu), and cadmium (Cd)-tolerant of Moso bamboo. Plants were grown in nutrients solution which included Pb, Zn, Cu, and Cd applied as Pb(NO 3 ) 2 (200 μM), ZnSO 4 ·7H 2 O (100 μM), CuSO 4 ·5H 2 O (25 μM), and CdCl 2 (10 μM), respectively. Oxalic acid and malic acid were detected in all treatments. Lactic acid was observed in Cu, Cd, and control treatments. The oxalic was the main organic acid exudated by Moso bamboo. In the sand culture experiment, the Moso bamboo significantly activated carbonate heavy metals under activation of roots. The concentration of water-soluble metals (except Pb) in sand were significantly increased as compared with control. Organic acids (1 mM mixed) were used due to its effect on the soil adsorption of heavy metals. After adding mixed organic acids, the Cu and Zn sorption capacity in soils was decreased markedly compared with enhanced Pb and Cd sorption capacity in soils. The sorption was analyzed using Langmuir and Freundlich equations with R 2 values that ranged from 0.956 to 0.999 and 0.919 to 0.997, respectively.

  5. The effect of oxidizing water on metallic restorations in the mouth: in vitro reduction behavior of oxidizing water.

    PubMed

    Nishida, T

    1997-03-01

    Mouth-rinsing with oxydized water which contains electrolytically generated chlorine is known to hinder dental plaque formation and growth, but it also accelerates the deterioration of metallic restorations in the mouth. The present work consists of an in vitro study to elucidate the electrochemical reactions involved in the reduction of oxydized water on dental alloys through a systematic investigation of the potentiostatic polarization behavior of dental alloy electrodes. The five dental alloys selected for investigation were gold alloy, gold alloy containing platinum, silver-palladium-gold alloy, conventional amalgam and high copper amalgam. The corrosion potentials of all dental alloy electrodes were shown to be more noble in oxydized water than in 0.1N sodium chloride solution. The potential differences between the corrosion potentials were relatively small in the case of amalgam electrodes. The polarization curves for all of the dental alloy electrodes in oxydized water revealed reduction currents of chlorine, hypochlorous acid, dissolved oxygen and oxonium ion. The reduction of chlorine and hypochlorous acid started at a more noble potential than that of dissolved oxygen. The dental alloys studied, except the amalgams, did not dissolve excessively at the corrosion potentials in oxydized water.

  6. Impact of acid and trace metals deposition on freshwater invertebrates in north-eastern Fennoscandia and Kola Peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, V.

    1996-12-31

    Freshwater invertebrate communities in a total 400 lakes and streams in northeastern Norway, Finnish Lapland and the Kola Peninsula, subjected to the atmospheric deposition were studied. The severe influence of toxic heavy metals, dusts from smelters and mineral enrichment factories were found in the Kola Peninsula. The negative acidification effects on benthic communities were found in the Jarfjord (Norway), Enontekio, Ranua-Posio and Kittila-Kolari (Finnish Lapland) areas and in the Kola Peninsula (Russia). Taxa groups, known to be sensitive to acidification, such as gammarids, snails, mayflies, stone flies, were represented with few species and in a low abundance. Heavy metals accumulationmore » in biota is recorded in areas surrounding nickel smelters in the Kola Peninsula. The metal concentration invertebrates in remote areas is rather wide and depend on an air deposition, characteristics of lake catchment areas, as well as water acidity. The environmental variables, such as lake hydrological type, altitude of lakes, dominant substratum type, abundance of macrophytes and mosses in sampling area, content of pollutants in water also show significant relationships with metal concentration in invertebrates. The most severe negative effects on biota were found in waters with low pH and simultaneously contaminated by heavy metals. The biological method for estimation of simultaneously water acidification and contamination is suggested.« less

  7. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    PubMed

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  8. Cadmium Isotope Fractionation of the Surface Waters in a Mining Area Impacted by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Yang, W.; Chen, Y.; Tang, Y.

    2016-12-01

    The pollution of natural waters and sediments with metals derived from acid mine drainage (AMD) is a global environmental problem. However, the processes governing the behaviors of transportation and transformation of metals like Cd in mountain area are poorly understood, the complicated hydro-geomorphic settings of mountain catchments are difficult to access . And few reports have been reported about the effects of. In this study, the concentration and the isotopic composition of Cd selected filtered stream samples from the Hengshi river affected by AMD have been determined. The Cd concentrations were determined for collected sediments samples, which cover the entire river valley from upstream to the downstream regions. Results showed that reducing concentrations for Cd were found in the river water from upstream to downstream, and also high enrichment factor for Cd in all the sediments, suggest that Cd mainly is derived from Liwu dam and easily enter into solid phase. The isotopic data show that the dissolved Cd in rivers is characterized by δ114/110Cd, ranged from 0.09 ‰ to 0.40 ‰ in term of δ114/110Cd , the mean is 0.25 ± 0.06 ‰, and the content of Cd from the sediments is 0.18 to 39.85 μg/g. The river isotope values are similar to the isotope signature of Liwu dam, which contain significant amounts of contaminants under a deep water cover, such as mine tailings, sulfide-rich rocks and minerals. Large fractionated Cd (δ114/110Cd = 0.40 ± 0.09 ‰) was found in water sample collected from midstream near a farmland, which imply there is a new source different from the LIWU dam depend on the heavier Cd signature. We hypothesize that this shift results from either hydrology changes over time in the main and tributaries stream, and some new pollution source imported. The change in the behavior of sorption of cadmium on oxides and hydroxides in the sediment system under low pH cause indistinguishable fractionation. Our result is encouraging for

  9. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  10. Abandoned metal mines and their impact on receiving waters: A case study from Southwest England.

    PubMed

    Beane, Steven J; Comber, Sean D W; Rieuwerts, John; Long, Peter

    2016-06-01

    Historic mine sites are a major source of contamination to terrestrial and river environments. To demonstrate the importance of determining the significance of point and diffuse metal contamination and the related bioavailability of the metals present from abandoned mines a case study has been carried out. The study provides a quantitative assessment of a historic mine site, Wheal Betsy, southwest England, and its contribution to non-compliance with Water Framework Directive (WFD) Environmental Quality Standards (EQS) for Cd, Cu, Pb and Zn. Surface water and sediment samples showed significant negative environmental impacts even taking account of the bioavailability of the metal present, with lead concentration in the stream sediment up to 76 times higher than the Canadian sediment guidelines 'Probable Effect Level'. Benthic invertebrates showed a decline in species richness adjacent to the mine site with lead and cadmium the main cause. The main mine drainage adit was the single most significant source of metal (typically 50% of metal load from the area, but 88% for Ni) but the mine spoil tips north and south of the adit input added together discharged roughly an equivalent loading of metal with the exception of Ni. The bioavailability of metal in the spoil tips exhibited differing spatial patterns owing to varying ambient soil physico-chemistry. The data collected is essential to provide a clear understanding of the contamination present as well as its mobility and bioavailability, in order to direct the decision making process regarding remediation options and their likely effectiveness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Drinking Water Sensor for Lead and Other Heavy Metals.

    PubMed

    Lin, Wen-Chi; Li, Zhongrui; Burns, Mark A

    2017-09-05

    Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.

  12. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate

  13. The RAVE Survey: Rich in Very Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon P.; Wyse, Rosemary F. G.; Ruchti, Gregory R.; Gilmore, G. F.; Grebel, Eva; Bienaymé, O.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Zwitter, T.

    2010-11-01

    Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars with iron abundances [Fe/H] <-2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] <=-2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] lsim-2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] lsim-4. Of these, one was already known to be "ultra metal-poor," one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H] = -4.0, rather than the published [Fe/H] = -3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our signal-to-noise ratio. RAVE observations are ongoing and should prove to be a rich source of bright, easily studied, very metal-poor stars. Based in part on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, in the framework of proposals 081.B-0900 and 080.B-0927.

  14. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA

    USGS Publications Warehouse

    Balistrieri, L.S.; Seal, R.R.; Piatak, N.M.; Paul, B.

    2007-01-01

    The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic

  15. Hydroxyapatite crystals biologically inspired on titanium by using an organic template based on the copolymer of acrylic acid and itaconic acid.

    PubMed

    Zhang, Chao; Li, Zhi-An; Cheng, Xiang-Rong; Xiao, Qun; Li, Hong-Bo

    2010-01-01

    Hydroxyapatite coating on metal implants is an effective method to enhance bioactive properties of the metal surface. We report here a method to coat the Ti-6Al-4V alloy with hydroxyapatite crystals. After alkaline/heat treatment, the spontaneous growth of organoapatite on titanium alloy surface involves sequential preadsorption of titanium isopropoxide (TIPO) and the copolymer of acrylic acid and itaconic acid on the metal, followed by exposure to simulated body fluid (SBF). The organoapatite characterization of the coating was carried out by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The copolymer of acrylic acid and itaconic acid overlayer which is rich of carboxylate groups can lead to the deposition of needle-like and homogeneous HA on the surface after immersion in SBF.

  16. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Influences of rich in saturated and unsaturated fatty acids diets in rat myocardium.

    PubMed

    Pinotti, Matheus Fécchio; Silva, Maeli Dal-Pai; Sugizaki, Mário Mateus; Novelli, Yeda Santana Diniz; Sant'ana, Lea Sílvia; Aragon, Flávio Ferrari; Padovani, Carlos Roberto; Novelli, Ethel Lourenzi Barbosa; Cicogna, Antonio Carlos

    2007-03-01

    To study the influence of saturated (SFA) and unsaturated fatty acid (UFA) rich diets on mechanical function, morphology and oxidative stress in rat myocardium. Male, 60-day-old Wistar rats were fed a control (n=8), a SFA (n=8), or a UFA-rich diet (n=8) for sixty days. Mechanical function was studied in isolated left ventricle papillary muscle under isometric and isotonic contractions, in basal conditions (1.25 mM calcium chloride) and after 5.2 mM calcium chloride and beta-adrenergic stimuli with 1.0 microM isoproterenol. Left ventricle fragments were used to study oxidative stress and morphology under light and electron microscopy. SFA and UFA-rich diets did not change myocardium mechanical function. Both diets caused oxidative stress, with high lipid hydroperoxide and low superoxide-dismutase concentrations. UFA rich diet decreased catalase expression and SFA rich diet decreased the amount of myocardial glutathione-peroxidase. Both diets promoted light ultrastructural injuries such as lipid deposits and cell membrane injuries. Results suggest that SFA and UFA rich diets do not alter isolated muscle mechanical function, but promote light myocardial morphological injuries and oxidative stress.

  18. Trace-metal sources and their release from mine wastes: examples from humidity cell tests of hardrock mine waste and from Warrior Basin coal

    USGS Publications Warehouse

    Diehl, S.F.; Smith, Kathleen S.; Desborough, G.A.; White, W.W.; Lapakko, K.A.; Goldhaber, Martin B.; Fey, David L.

    2003-01-01

    To assess the potential impact of metal and acid contamination from mine-waste piles, it is important to identify the mineralogic source of trace metals and their mode of occurrence. Microscopic analysis of mine-waste samples from both hard-rock and coalmine waste samples demonstrate a microstructural control, as well as mineralogic control, on the source and release of trace metals into local water systems. The samples discussed herein show multiple periods of sulfide mineralization with varying concentrations of trace metals. In the first case study, two proprietary hard-rock mine-waste samples exposed to a series of humidity cell tests (which simulate intense chemical weathering conditions) generated acid and released trace metals. Some trace elements of interest were: arsenic (45-120 ppm), copper (60-320 ppm), and zinc (30-2,500 ppm). Untested and humidity cell-exposed samples were studied by X-ray diffraction, scanning electron microscope with energy dispersive X-ray (SEM/EDX), and electron microprobe analysis. Studies of one sample set revealed arsenic-bearing pyrite in early iron- and magnesium-rich carbonate-filled microveins, and iron-, copper-, arsenic-, antimony-bearing sulfides in later crosscutting silica-filled microveins. Post humidity cell tests indicated that the carbonate minerals were removed by leaching in the humidity cells, exposing pyrite to oxidative conditions. However, sulfides in the silica-filled veins were more protected. Therefore, the trace metals contained in the sulfides within the silica-filled microveins may be released to the surface and (or) ground water system more slowly over a greater time period. In the second case study, trace metal-rich pyrite-bearing coals from the Warrior Basin, Alabama were analyzed. Arsenic-bearing pyrite was observed in a late-stage pyrite phase in microfaults and microveins that crosscut earlier arsenic.

  19. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake.

    PubMed

    Batty, Lesley C; Younger, Paul L

    2004-11-01

    The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues, (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H+ ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development.

  20. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions.

    PubMed

    Liu, Yang; Sun, Changbin; Xu, Jin; Li, Youzhi

    2009-08-30

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO(4)x5H(2)O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 degrees C to 40 degrees C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca(2+) from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S

  1. Design and Testing of a New Diatom-Based Index for Heavy Metal Pollution.

    PubMed

    Fernández, M R; Martín, G; Corzo, J; de la Linde, A; García, E; López, M; Sousa, M

    2018-01-01

    The Tinto and Odiel river basins (SW Spain) are known worldwide for their unique water characteristics. Such uniqueness is a consequence of their flow through the Iberian Pyrite Belt (an area rich in metal sulphides) and the mining activities in the basins. A process of sulphide oxidation occurs in this region, which acidifies the water and increases the amount of heavy metals in it. As a result, the rivers suffer the so-called "acid mine drainage" (AMD). Traditional biotic diatom-based indexes (IPS, IBD, EPI-D, etc.) do not take into account the pollution caused by AMD. The purpose of this paper is to develop a new diatom-based index which can serve as a useful and quick monitoring tool. Such tool must reflect the level of AMD while being user friendly. We present the development and validation of the ICM (Índice de Contaminación por Metales or Metal Pollution Index). ICM demonstrated to meet successfully the above criteria and, therefore, can assess water quality in the Tinto and Odiel Rivers. In addition, ICM was applied with satisfactory results in the Guadiamar River (SW Spain), which was subjected to AMD too. Thus, we propose to make use of it in any other basin with the same type of pollution.

  2. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    PubMed

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  3. Assessing pollution in a Mediterranean lagoon using acid volatile sulfides and estimations of simultaneously extracted metals.

    PubMed

    Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi

    2016-11-01

    Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.

  4. Hydrogen Abundances in Metal Grains from the Hammadah Al Hamra (HaH) 237 Metal-rich Chondrite: A Test of the Nebular-Formation Theory

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Guan, Y.; Leshin, L. A.

    2005-01-01

    The Bencubbin-like (CB) chondrites are metal-rich, primitive meteorites [1,2]. Some of these chondrites (HaH 237, QUE 94411) contain compositionally zoned metal grains with near-chondritic bulk compositions. Thermodynamic modeling of the zoning patterns in these grains suggests that they were formed by condensation in a region of the solar nebula with enhanced dust/gas ratios and a total pressure of 10(exp -4) bars at temperatures between 1400 - 1500 K [3]. If these predictions are correct than the metal grains would have been exposed to abundant H2 gas, which comprises the bulk of nebular systems. Since Fe-based alloys can absorb significant quantities of H, metal grains formed in the solar nebula should contain measurable abundances of H.

  5. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    PubMed

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  6. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  7. Solid polymer battery electrolyte and reactive metal-water battery

    DOEpatents

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  8. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    PubMed

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe(3+) ions.

    PubMed

    Zhang, Chuanqi; Yan, Yan; Pan, Qinhe; Sun, Libo; He, Hongming; Liu, Yunling; Liang, Zhiqiang; Li, Jiyang

    2015-08-07

    A microporous lanthanum metal-organic framework [La(TPT)(DMSO)2]·H2O (La-MOF ()), has been synthesized using a rigid unsymmetrical tricarboxylate ligand of p-terphenyl-3,4'',5-tricarboxylic acid (H3TPT). The structure of is constructed by bi-nuclear lanthanum clusters and fully deprotonated TPT(3-) ligands, which can be simplified into a 3,6-connected flu-3,6-C2/c topology with a point symbol of (4(4)·6)2(4·6(2)·8(7)·10(2)). The π-electron rich ligand H3TPT enables to have blue luminescence when excited at 342 nm at ambient temperature. Meanwhile, exhibits the selective detection of picric acid (PA) and Fe(3+) ions in ethanol solution over other nitroaromatic compounds and metal ions. The high quenching efficiency and selectivity of makes it a potential bi-functional chemosensor for both PA and Fe(3+) ions.

  10. THE OPTICAL COLORS OF GIANT ELLIPTICAL GALAXIES AND THEIR METAL-RICH GLOBULAR CLUSTERS INDICATE A BOTTOM-HEAVY INITIAL MASS FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Diederik Kruijssen, J. M., E-mail: goudfroo@stsci.edu, E-mail: kruijssen@mpa-garching.mpg.de

    2013-01-10

    We report a systematic and statistically significant offset between the optical (g - z or B - I) colors of seven massive elliptical galaxies and the mean colors of their associated massive metal-rich globular clusters (GCs) in the sense that the parent galaxies are redder by {approx}0.12-0.20 mag at a given galactocentric distance. However, spectroscopic indices in the blue indicate that the luminosity-weighted ages and metallicities of such galaxies are equal to that of their averaged massive metal-rich GCs at a given galactocentric distance, to within small uncertainties. The observed color differences between the red GC systems and their parentmore » galaxies cannot be explained by the presence of multiple stellar generations in massive metal-rich GCs, as the impact of the latter to the populations' integrated g - z or B - I colors is found to be negligible. However, we show that this paradox can be explained if the stellar initial mass function (IMF) in these massive elliptical galaxies was significantly steeper at subsolar masses than canonical IMFs derived from star counts in the solar neighborhood, with the GC colors having become bluer due to dynamical evolution, causing a significant flattening of the stellar MF of the average surviving GC.« less

  11. Stellar abundances and ages for metal-rich Milky Way globular clusters. Stellar parameters and elemental abundances for 9 HB stars in NGC 6352

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Primas, F.; Johnson, R. A.

    2009-01-01

    Context: Metal-rich globular clusters provide important tracers of the formation of our Galaxy. Moreover, and not less important, they are very important calibrators for the derivation of properties of extra-galactic metal-rich stellar populations. Nonetheless, only a few of the metal-rich globular clusters in the Milky Way have been studied using high-resolution stellar spectra to derive elemental abundances. Additionally, Rosenberg et al. identified a small group of metal-rich globular clusters that appeared to be about 2 billion years younger than the bulk of the Milky Way globular clusters. However, it is unclear if like is compared with like in this dataset as we do not know the enhancement of α-elements in the clusters and the amount of α-elements is well known to influence the derivation of ages for globular clusters. Aims: We derive elemental abundances for the metal-rich globular cluster NGC 6352 and we present our methods to be used in up-coming studies of other metal-rich globular clusters. Methods: We present a study of elemental abundances for α- and iron-peak elements for nine HB stars in the metal-rich globular cluster NGC 6352. The elemental abundances are based on high-resolution, high signal-to-noise spectra obtained with the UVES spectrograph on VLT. The elemental abundances have been derived using standard LTE calculations and stellar parameters have been derived from the spectra themselves by requiring ionizational as well as excitational equilibrium. Results: We find that NGC 6352 has [Fe/H] = -0.55, is enhanced in the α-elements to about +0.2 dex for Ca, Si, and Ti relative to Fe. For the iron-peak elements we find solar values. Based on the spectroscopically derived stellar parameters we find that an E(B-V) = 0.24 and (m-M) ≃ 14.05 better fits the data than the nominal values. An investigation of log gf-values for suitable Fe i lines lead us to the conclusion that the commonly used correction to the May et al. (1974) data should not be

  12. Sorption of metals on humic acid

    NASA Astrophysics Data System (ADS)

    Kerndorff, H.; Schnitzer, M.

    1980-11-01

    The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg≫ Fe≫ Pb≫ CuAl ≫ Ni ≫ CrZnCdCoMn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO 2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Y = 100/[1 + exp - (A + BX)], where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants.

  13. Trace Metal Accumulation In The Thau Coastal Lagoon and Its Possible Impact On The Waters of The Gulf of Lion In The Mediterranean

    NASA Astrophysics Data System (ADS)

    Abdullah, M. I.; Elbaz-Poulichet, Francoise

    Coastal lagoons are important marine environments for fisheries resources, wild life sanctuaries as well as many other economic activities. The Thau lagoon (at Sette, south coast of france) a major shell fisheries development in the region, receives inputs from a variety of sources namely seasonal run-off, river discharge, manmade waterways, karstic and thermal underground waters. A wide variety of material is thus added to the lagoon particularly trace metals such as Cu, Zn, Pb, Fe, Mn etc. . Metals added through karstic and thermal waters are particularly significant. Althought the lagoon covers some 75 km2, it is shallow with a maximum depth of only 9 m and with exchange with the Mediterranean being restricted along the narrow canal de Sette. Consequently, metal level can build up to quite high concentration upto x30 of that for normal seawater par- ticularly for metals such as Pb and Cu. While water exchange is severely limited, ma- jor water replacement do occur particularly during prolonged turbulent weather con- ditions with sustained onshore/offshore winds. Such episode occurred during March 2000 when it was observed that a significant proportion of the Thau lagoon was re- place by Mediterranean water. This water was characterized by it lower metal content and REE distribution. Such episodes are known to occur several times annually caus- ing significant amounts of metal-rich Thau water to discharge into the Gulf of Lion. It is concluded that such episodic exchanges constitute an important source of metals to the coastal zone and the Gulf of Lion which has been previously reported to have elevated metal levels.

  14. Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo.

    PubMed

    Zhang, Xiaowei; Zhong, Bin; Shafi, Mohammad; Guo, Jia; Liu, Chen; Guo, Hua; Peng, Danli; Wang, Ying; Liu, Dan

    2018-04-30

    The effect of EDTA and citric acid on accumulation, toxicity of heavy metals (Cu, Zn, Cd, and Pb), and growth of Moso bamboo was investigated in current experiment. The availability of heavy metals in soil and its uptake by plants has indicated toxicity. The results revealed that EDTA and citric acid has reduced biomass of Moso bamboo but non-significant difference in biomass was observed compared with control. Application of EDTA (10 mmol kg -1 ) has significantly improved copper (Cu) by 56.5 and 84.9% in roots and above ground parts of plants. Application of EDTA (10 mmol kg -1 ) has significantly enhanced lead (Pb) by 51.8 and 210.8% in roots and above ground parts of Moso bamboo. Furthermore, treatment of EDTA has significantly improved activities of water-soluble Cd, Cu, and Pb in soil by 98.9, 70.1, and 73.1 times compared with control. In case of contents of diethylenetriaminepentaacetic acid (DTPA)-extractable metals, the treatment of EDTA (10 mmol kg -1 ) has produced maximum increase of 244.5 mg kg -1 Zn and 157.9 mg kg -1 Pb, respectively. It is concluded that effect of EDTA was superior compared with citric acid for improvement of phytoremediation potential of Moso bamboo.

  15. Metal-ion interactions and the structural organization of Sepia eumelanin.

    PubMed

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  16. Competitive sorption of heavy metals by water hyacinth roots.

    PubMed

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca 2+ and Mg 2+ . However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    USGS Publications Warehouse

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  18. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Miguel Á.; Belmontes, Juan Alfonso; Hawkins, Bradford A.

    2005-07-01

    We used regression analyses to examine the relationships between reptile and amphibian species richness in Europe and 11 environmental variables related to five hypotheses for geographical patterns of species richness: (1) productivity; (2) ambient energy; (3) water-energy balance, (4) habitat heterogeneity; and (5) climatic variability. For reptiles, annual potential evapotranspiration (PET), a measure of the amount of atmospheric energy, explained 71% of the variance, with variability in log elevation explaining an additional 6%. For amphibians, annual actual evapotranspiration (AET), a measure of the joint availability of energy and water in the environment, and the global vegetation index, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions of the variance (61% and 60%, respectively) and had partially independent effects on richness as indicated by multiple regression. The two-factor environmental models successfully removed most of the statistically detectable spatial autocorrelation in the richness data of both groups. Our results are consistent with reptile and amphibian environmental requirements, where the former depend strongly on solar energy and the latter require both warmth and moisture for reproduction. We conclude that ambient energy explains the reptile richness pattern, whereas for amphibians a combination of water-energy balance and productivity best explain the pattern.

  19. Chemiluminescence of nitrogen-rich quantum dots in diperiodatoargentate(III) solution and its application in ferulic acid analysis.

    PubMed

    Fu, Zhaofu; Li, Gongke; Hu, Yufei

    2016-12-01

    A novel chemiluminescence (CL) system based on the reaction of fluorescent water-soluble nitrogen-rich quantum dots (N-dots) and diperiodatoargentate(III) (DPA) was developed. The prepared N-dots have a small size (≤10 nm) and high percentage of nitrogen (39.9 %), which exceeds the content of carbon in the same N-dots. The N-dots exhibit characteristic blue fluorescence under UV light and up-conversion luminescence. The relatively intense CL emission is based on the direct oxidation of N-dots by DPA. The CL emission may be attributed to the high nitrogen content and the special structure of the N-dots. The CL mechanism of N-dots and DPA was investigated by using CL, UV-Vis absorption, IR, fluorescence, and radical scavenging experiments. This investigation provides a way to study the optical properties of N-dots. The analytical applicability of the N-dots and DPA CL system in the determination of ferulic acid (FA) was explored. The CL intensity was linearly proportional to the concentration of ferulic acid from 3.0 × 10 -7 to 1.0 × 10 -5 g mL -1 with a detection limit of 8.0 × 10 -8 g mL -1 (3σ); the relative standard deviation was 2.4 % for 4.0 × 10 -7 g mL -1 FA (n = 9). The proposed method was successfully applied to the determination of ferulic acid in Angelica sinensis. The study provides valuable insight into the role of nitrogen-rich quantum dots in CL.

  20. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  1. Post Gold King Mine Spill Investigation of Metal Stability in Water and Sediments of the Animas River Watershed.

    PubMed

    Rodriguez-Freire, Lucia; Avasarala, Sumant; Ali, Abdul-Mehdi S; Agnew, Diane; Hoover, Joseph H; Artyushkova, Kateryna; Latta, Drew E; Peterson, Eric J; Lewis, Johnnye; Crossey, Laura J; Brearley, Adrian J; Cerrato, José M

    2016-11-01

    We applied spectroscopy, microscopy, diffraction, and aqueous chemistry methods to investigate the persistence of metals in water and sediments from the Animas River 13 days after the Gold King Mine spill (August 5, 2015). The Upper Animas River watershed, located in San Juan Colorado, is heavily mineralized and impacted by acid mine drainage, with low pH water and elevated metal concentrations in sediments (108.4 ± 1.8 mg kg -1 Pb, 32.4 ± 0.5 mg kg -1 Cu, 729.6 ± 5.7 mg kg -1 Zn, and 51 314.6 ± 295.4 mg kg -1 Fe). Phosphate and nitrogen species were detected in water and sediment samples from Farmington, New Mexico, an intensive agricultural area downstream from the Animas River, while metal concentrations were low compared to those observed upstream. Solid-phase analyses of sediments suggest that Pb, Cu, and Zn are associated with metal-bearing jarosite and other minerals (e.g., clays, Fe-(oxy)hydroxides). The solubility of jarosite at near-neutral pH and biogeochemical processes occurring downstream could affect the stability of metal-bearing minerals in river sediments. This study contributes relevant information about the association of metal mixtures in a heavy mineralized semiarid region, providing a foundation to better understand long-term metal release in a public and agricultural water supply.

  2. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    PubMed Central

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  3. Origin of life and iron-rich clays

    NASA Technical Reports Server (NTRS)

    Hartman, H. H.

    1986-01-01

    The premise that life began with self-replicating iron-rich clays is explored. In association with these clays and UV light, polar organic molecules, such as oxalic acid, were synthesized. The carbonaceous chondrites have both iron-rich clays and organic molecules. It is convenient to classify meteoritic organic matter into 3 categories: insoluble polymer, hydrocarbons and polar organics (soluble in water). Recent work on the delta D, delta N-15 and delta C-13 has made it clear that these three fractions have been made by three different mechanisms. A significant fraction of the insoluble polymer has a delta-D which suggests that it was made in an interstellar medium. The hydrocarbons seem to have been made on a parent body by a Fischer-Tropsch mechanism. The polar organics were probably synthesized in a mixture of carbonate (NH4)2CO3, Fe(++) ion and liquid water by radiolysis. In a set of experiments the radiolysis of (NH4)2CO3 in the presence and absence of Fe(++) ion has been examined. The synthesis of glycine in the presence of Fe(++) ion is 3-4 times that in the absence of ferrous ion. The effects of the addition of hydrocarbons to this mixture are explored. Iron-rich clays at low temperature and pressure are synthesized. So far the results are not sufficiently crystalline to look for replication. It should be noted that organic chelating agents such as oxalic acid do increase the crystallinity of the clays but not sufficiently. The hydrothermal synthesis of iron-rich clays is being examined.

  4. NHEXAS PHASE I ARIZONA STUDY--METALS IN WATER ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Water data set contains analytical results for measurements of up to 11 metals in 314 water samples over 211 households. Sample collection was undertaken at the tap and any additional drinking water source used extensively within each residence. The primary metals...

  5. The crystallization of metal soaps and fatty acids in oil paint model systems.

    PubMed

    Hermans, Joen J; Keune, Katrien; van Loon, Annelies; Iedema, Piet D

    2016-04-28

    The formation and crystallization of metal soaps in oil paint layers is an important issue in the conservation of oil paintings. The chemical reactions and physical processes that are involved in releasing metal ions from pigments and fatty acids from the oil binder to form crystalline metal soap deposits have so far remained poorly understood. We have used a combination of differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on model mixtures of palmitic acid, lead palmitate or zinc palmitate and linseed oil to study the transition from amorphous material to crystalline fatty acid or metal soap. This transition forms the final stage in the cascade of processes leading to metal soap-related oil paint degradation. Palmitic acid as well as the metal soaps showed nearly ideal solubility behavior. However, it was found that, near room temperature, both lead and zinc palmitate are practically insoluble in both liquid and partially polymerized linseed oil. Interestingly, the rate of metal soap and fatty acid crystallization decreased rapidly with the degree of linseed oil polymerization, possibly leading to systems where metal soaps are kinetically trapped in a semi-crystalline state. To explain the various morphologies of metal soap aggregates observed in oil paint layers, it is proposed that factors affecting the probability of crystal nucleation and the rate of crystal growth play a crucial role, like exposure to heat or cleaning solvents and the presence of microcracks.

  6. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    DOE PAGES

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; ...

    2015-10-29

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and amore » thin surface layer on certain crystallographic facets. Finally and more specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.« less

  7. A folate-rich diet is as effective as folic acid from supplements in decreasing plasma homocysteine concentrations

    PubMed Central

    2005-01-01

    Background & Aims: At least 500 μg of folic acid are required daily to treat hyperhomocysteinemia. To reach this amount by dietary changes alone may be difficult because food has a low folic acid content and bioavailability. No studies have compared the effects of similar amounts of additional folate derived from a combination of folate-rich and fortified foods or folic acid from supplements on plasma total homocysteine (tHcy) concentrations, which was the aim of this study. Methods: Twenty male patients with hyperhomocysteinemia and coronary artery disease were included in a randomized, crossover intervention trial. Patients were treated daily with a combination of foods containing approximately 500 μg of folate or with one 500 μg capsule of synthetic folic acid over two five-week periods separated by a five-week wash-out period. Results: Plasma folate increased markedly (p<0.001) and plasma tHcy decreased (p<0.001) with both therapies. Folate-rich foods decreased tHcy by 8.6% (95% CI: –15.9 to –1.2) and synthetic folic acid capsules by 8% (95% CI: –13.3 to –2.7). Conclusions: This study shows, for the first time in the literature, that a folate-rich diet is as effective as folic acid capsules in decreasing plasma tHcy concentrations and adds further support to the recommendation of those diets to prevent cardiovascular disease. PMID:15968341

  8. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    PubMed

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling

    2014-05-01

    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper

  9. Abundances in the Very Metal Poor s-Process-rich Star CS 22183-015

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer A.; Bolte, Michael

    2002-11-01

    We report on the abundances for 13 elements in CS 22183-015, the most metal-poor, s-process-rich star yet discovered. We measure [Fe/H]=-3.12 and large overabundances compared to scaled solar values for 11 heavy elements with s-process origin. The low luminosity of the star suggests that it is a CH star, a giant that has accreted s-processed material from an evolved, very metal poor companion. We find a [Pb/Ba] value of 1.1 dex and, more generally, that the ratio of heavy to light s-process elements is larger than seen in the solar system. This result is consistent with theoretical expectations for the s-process in metal-poor stars. [Eu/La] is higher than predicted from the solar system s-process abundance ratios. We argue that the s-process in metal-poor stars is more efficient at producing Eu that in asymptotic giant branch stars of solar metallicity. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  11. Understanding structure, metal distribution, and water adsorption in mixed-metal MOF-74

    DOE PAGES

    Howe, Joshua D.; Morelock, Cody R.; Jiao, Yang; ...

    2016-11-30

    We present a joint computational and experimental study of Mg–Ni-MOF-74 and Mg–Cd-MOF-74 to gain insight into the mixing of metals and understand how metal mixing affects the structure of the undercoordinated open-metal sites. Our calculations predict that metal mixing is energetically preferred in these materials. Recent experimental work has demonstrated that Mg–Ni-MOF-74 shows a much greater surface area retention in the presence of water than Mg-MOF-74. To probe this effect, we study H 2O adsorption in Mg–Ni-MOF-74, finding that the adsorption energetics and electronic structure do not change significantly at the metal sites when compared to Mg-MOF-74 and Ni-MOF-74, respectively.more » Lastly, we conclude that the increased stability of Mg–Ni-MOF-74 is a result of a M–O bond length distortion in mixed-metal MOF-74, consistent with recent work on the stability of MOF-74 under water exposure.« less

  12. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece

    USGS Publications Warehouse

    Hein, J.R.; Stamatakis, G.; Dowling, J.S.

    2000-01-01

    The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water hydrothermal system. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were hydrothermally mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same hydrothermal system. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (hydrothermal fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The hydrothermal fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The hydrothermal fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and

  13. Fate of Metals in Relation to Water and Sediment Properties in a Subtropical Lake in Central Himalaya, India.

    PubMed

    Inaotombi, Shaikhom; Gupta, Prem Kumar

    2017-04-01

    Lakes of Himalaya are one of the most fragile ecosystems on earth. Tourism and urban development in the upland region strongly affect its water resources. The high rate of sedimentation and organic matter deposition alters the ecological state of sediment bed, which indirectly influences on dynamics of metallic elements. We investigated spatial and temporal variations of water and sediment characteristic in Lake Sattal of Central Himalaya, India. Samples were collected seasonally from four sampling locations from January 2011 to December 2012. Pearson's correlation and Canonical correspondence analysis (CCAs) were applied to examine the dynamics and behaviors of heavy metals. Concentrations of elements were in the order of fluoride (Fl) > zinc (Zn) > copper (Cu) > iron (Fe) > manganese (Mn). Sand size fraction was higher in the littoral zone while clay particle was dominant in the profundal zone of the lake. Dissolved oxygen at sediment-water-interface (SWI) and water temperature were the major factors influencing the dynamics of metallic contents in the water column. Spatially, total organic matter (TOM) was higher in the deeper portion of the lake. Our study revealed that mobility of Fe is temperature-dependent, whereas speciation of Mn and Cu are primarily controlled by the suboxic condition of SWI in organic-rich site. Upland lakes are more vulnerable to anoxic condition and have severe implications on heavy metals speciation. Proper implementation of land use policies and management practices, including stormwater detention, can be integrated into resolving such problems.

  14. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson [Castro Valley, CA

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  15. Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Fegley, Bruce, Jr.

    1987-01-01

    Two plausible projectiles are considered: an ice-rich long-period comet and a much smaller rock-metal asteroid. In the framework of a proposal addressed by Lewis et al. (1982), it is shown that, while the impact projectiles themselves do not shock-heat the atmosphere very extensively, the supersonic plume of water vapor and rock produced on impact does shock the atmosphere up to global scales and the shock is of sufficient intensity to produce abundant nitric oxide. For example, an ice-rich long-period comet with a mass of 1.25 x 10 to the 16th kg and a velocity of 65 km/s striking the earth would produce about 7 x 10 to the 40th molecules NO through shock-heating of the atmosphere by the high-velocity ejecta plume fragments. Specific attention is given to the fraction of the atmosphere shock-heated, the global circulation of the nitrogen oxides, the effects of the ejecta plume water on acid rain (AR) predictions, the effects of AR on continental soils, the relationship between AR production rates and the total amount of acid needed to acidify the surface oceans, and the longevity of the oceanic acidity event and the exhaled CO2 event and their implications for the environment in the first millenia or so after the impact.

  16. Acidicapsa ferrireducens sp. nov., Acidicapsa acidiphila sp. nov., and Granulicella acidiphila sp. nov.: novel acidobacteria isolated from metal-rich acidic waters.

    PubMed

    Falagán, Carmen; Foesel, Bärbel; Johnson, Barrie

    2017-05-01

    Four novel strains of Acidobacteria were isolated from water samples taken from pit lakes at two abandoned metal mines in the Iberian Pyrite Belt mining district, south-west Spain. Three of the isolates belong to the genus Acidicapsa (MCF9 T , MCF10 T , and MCF14) and one of them to the genus Granulicella (MCF40 T ). All isolates are moderately acidophilic (pH growth optimum 3.8-4.1) and mesophilic (temperature growth optima 30-32 °C). Isolates MCF10 T and MCF40 T grew at pH lower (<3.0) than previously reported for all other acidobacteria. All four strains are obligate heterotrophs and metabolised a wide range of sugars. While all four isolates are obligate aerobes, MCF9 T , MCF10 T , and MCF14 catalysed the reductive dissolution of the ferric iron mineral schwertmannite when incubated under micro-aerobic conditions. Isolates MCF9 T and MCF14 shared 99.5% similarity of their 16 S rRNA genes, and were considered to be strains of the same species. The major quinone of strains MCF10 T , MCF9 T , and MCF40 T is MK-8, and their DNA G + C contents are 60.0, 59.7, and 62.1 mol%, respectively. Based on phylogenetic and phenotypic data, three novel species, Acidicapsa ferrireducens strain MCF9 T (=DSM 28997 T  = NCCB 100575 T ), Acidicapsa acidiphila strain MCF10 T (=DSM 29819 T  = NCCB 100576 T ), and Granulicella acidiphila strain MCF40 T (DSM 28996 T  = NCCB 100577 T ), are proposed.

  17. Postprandial lipid responses to an alpha-linolenic acid-rich oil, olive oil and butter in women: a randomized crossover trial.

    PubMed

    Svensson, Julia; Rosenquist, Anna; Ohlsson, Lena

    2011-06-28

    Postprandial lipaemia varies with gender and the composition of dietary fat due to the partitioning of fatty acids between beta-oxidation and incorporation into triacylglycerols (TAGs). Increasing evidence highlights the importance of postprandial measurements to evaluate atherogenic risk. Postprandial effects of alpha-linolenic acid (ALA) in women are poorly characterized. We therefore studied the postprandial lipid response of women to an ALA-rich oil in comparison with olive oil and butter, and characterized the fatty acid composition of total lipids, TAGs, and non-esterified fatty acids (NEFAs) in plasma. A randomized crossover design (n = 19) was used to compare the postprandial effects of 3 meals containing 35 g fat. Blood samples were collected at regular intervals for 7 h. Statistical analysis was carried out with ANOVA (significant difference = P < 0.05). No significant difference was seen in incremental area under the curve (iAUC) plasma-TAG between the meals. ALA and oleic acid levels were significantly increased in plasma after ALA-rich oil and olive oil meals, respectively. Palmitic acid was significantly increased in plasma-TAG after the butter meal. The ratios of 18:2 n-6 to18:3 n-3 in plasma-TAGs, three and seven hours after the ALA-rich oil meal, were 1.5 and 2.4, respectively. The corresponding values after the olive oil meal were: 13.8 and 16.9; and after the butter meal: 9.0 and 11.6. The postprandial p-TAG and NEFA response in healthy pre-menopausal women was not significantly different after the intake of an ALA-rich oil, olive oil and butter. The ALA-rich oil significantly affected different plasma lipid fractions and improved the ratio of n-6 to n-3 fatty acids several hours postprandially.

  18. Postprandial lipid responses to an alpha-linolenic acid-rich oil, olive oil and butter in women: A randomized crossover trial

    PubMed Central

    2011-01-01

    Background Postprandial lipaemia varies with gender and the composition of dietary fat due to the partitioning of fatty acids between beta-oxidation and incorporation into triacylglycerols (TAGs). Increasing evidence highlights the importance of postprandial measurements to evaluate atherogenic risk. Postprandial effects of alpha-linolenic acid (ALA) in women are poorly characterized. We therefore studied the postprandial lipid response of women to an ALA-rich oil in comparison with olive oil and butter, and characterized the fatty acid composition of total lipids, TAGs, and non-esterified fatty acids (NEFAs) in plasma. Methods A randomized crossover design (n = 19) was used to compare the postprandial effects of 3 meals containing 35 g fat. Blood samples were collected at regular intervals for 7 h. Statistical analysis was carried out with ANOVA (significant difference = P < 0.05). Results No significant difference was seen in incremental area under the curve (iAUC) plasma-TAG between the meals. ALA and oleic acid levels were significantly increased in plasma after ALA-rich oil and olive oil meals, respectively. Palmitic acid was significantly increased in plasma-TAG after the butter meal. The ratios of 18:2 n-6 to18:3 n-3 in plasma-TAGs, three and seven hours after the ALA-rich oil meal, were 1.5 and 2.4, respectively. The corresponding values after the olive oil meal were: 13.8 and 16.9; and after the butter meal: 9.0 and 11.6. Conclusions The postprandial p-TAG and NEFA response in healthy pre-menopausal women was not significantly different after the intake of an ALA-rich oil, olive oil and butter. The ALA-rich oil significantly affected different plasma lipid fractions and improved the ratio of n-6 to n-3 fatty acids several hours postprandially. PMID:21711508

  19. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.

    PubMed

    Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu

    2018-06-06

    Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.

  20. Effect of the combination of dithiooctanoate monomers and acidic adhesive monomers on adhesion to precious metals, precious metal alloys and non-precious metal alloys.

    PubMed

    Ikemura, Kunio; Kojima, Katsunori; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    This study investigated the effect of the combination of a dithiooctanoate monomer and an acidic adhesive monomer on adhesion to precious metals, precious and non-precious metal alloys. From a selection of four dithiooctanoate monomers and six acidic adhesive monomers, 14 experimental primers containing a combination of 5.0 wt% of a dithiooctanoate monomer and 1.0 wt% of an acidic adhesive monomer in acetone were prepared. Tensile bond strengths (TBSs) of MMA-PMMA/TBBO resin to nine kinds of precious metals, precious metal alloys, and non-precious metal alloys after 2,000 thermal cycles were measured. Results showed that there were no significant differences in TBS among the primers to all the precious and non-precious metal adherends tested (p>0.05). Highest TBS values (46.5-55.8 MPa) for bonding to Au alloy, Au-Ag-Pd alloy, Co-Cr alloy, and Ni-Cr alloy were achieved with the primer which contained 5.0 wt% 10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) and 1.0 wt% 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA). Therefore, 5.0 wt% 10-MDDT and 1.0 wt% 6-MHPA was determined as the optimal combination for bonding to precious metals, precious and non-precious metal alloys.

  1. Biosorbents for Removing Hazardous Metals and Metalloids †

    PubMed Central

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  2. The Drenchwater deposit, Alaska: An example of a natural low pH environment resulting from weathering of an undisturbed shale-hosted Zn-Pb-Ag deposit

    USGS Publications Warehouse

    Graham, G.E.; Kelley, K.D.

    2009-01-01

    The Drenchwater shale-hosted Zn-Pb-Ag deposit and the immediate vicinity, on the northern flank of the Brooks Range in north-central Alaska, is an ideal example of a naturally low pH system. The two drainages, Drenchwater and False Wager Creeks, which bound the deposit, differ in their acidity and metal contents. Moderately acidic waters with elevated concentrations of metals (pH ??? 4.3, Zn ??? 1400 ??g/L) in the Drenchwater Creek drainage basin are attributed to weathering of an exposed base-metal-rich massive sulfide occurrence. Stream sediment and water chemistry data collected from False Wager Creek suggest that an unexposed base-metal sulfide occurrence may account for the lower pH (2.7-3.1) and very metal-rich waters (up to 2600 ??g/L Zn, ??? 260 ??g/L Cu and ???89 ??g/L Tl) collected at least 2 km upstream of known mineralized exposures. These more acidic conditions produce jarosite, schwertmannite and Fe-hydroxides commonly associated with acid-mine drainage. The high metal concentrations in some water samples from both streams naturally exceed Alaska state regulatory limits for freshwater aquatic life, affirming the importance of establishing base-line conditions in the event of human land development. The studies at the Drenchwater deposit demonstrate that poor water quality can be generated through entirely natural weathering of base-metal occurrences, and, possibly unmineralized black shale.

  3. Permittivity of naphthenic acid-water mixture.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay

    2007-01-01

    Naphthenic acid (NA) is predominantly a mono-carboxylic acid obtained as a by-product of petroleum refining with variable composition and ingredients. It is reported that water affected by processes in the petroleum industries generally contains 40-120 mg IL of naphthenic acid which is considered to be in the range of toxicity to human consumption [Clemente et. al, 2005; McMartin, 2003]. This contaminated water needs treatment before its use as drinking water by remote communities. Recent literature suggests that NAs could be separated from diesel fuel using microwave radiation [Lingzhao et. al, 2004]. Removal of naphthenic acid from vacuum cut #1 distillate oil of Daqing using microwaves has also been reported by Huang et. al [2006]. The microwave treatment can be applied to drinking water containing small concentrations of naphthenic acid. In this case permittivity information is useful in designing a microwave applicator and modeling studies. Permittivity measurements were done using a HP 8510 Vector Network Analyzer and coaxial probe reflection method to study the dielectric properties of naphthenic acid in water. The effects of process variables such as frequency, concentration and temperature on dielectric properties were determined.

  4. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  5. Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite

    PubMed Central

    2018-01-01

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal–organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb2+ and Hg2+, from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg2+ and 394 mg of Pb2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na+, are present at concentrations up to 14 000 times that of Pb2+. The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles. PMID:29632880

  6. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...

  7. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...

  8. Catalytic effect of different reactor materials under subcritical water conditions: decarboxylation of cysteic acid into taurine

    NASA Astrophysics Data System (ADS)

    Faisal, M.

    2018-03-01

    In order to understand the influence of reactor materials on the catalytic effect for a particular reaction, the decomposition of cysteic acid from Ni/Fe-based alloy reactors under subcritical water conditions was examined. Experiments were carried out in three batch reactors made of Inconel 625, Hastelloy C-22 and SUS 316 over temperatures of 200 to 300 °C. The highest amount of eluted metals was found for SUS 316. The results demonstrated that reactor materials contribute to the resulting product. Under the tested conditions, cysteic acid decomposes readily with SUS 316. However, the Ni-based materials (Inconel 625 and Hastelloy C-22) show better resistance to metal elution. It was found that among the materials used in this work, SUS 316 gave the highest reaction rate constant of 0.1934 s‑1. The same results were obtained at temperatures of 260 and 300 °C. Investigation of the Arrhenius activation energy revealed that the highest activation energy was for Hastelloy C-22 (109 kJ/mol), followed by Inconel 625 (90 kJ/mol) and SUS 316 (70 kJ/mol). The decomposition rate of cysteic acid was found to follow the results for the trend of the eluted metals. Therefore, it can be concluded that the decomposition of cysteic acid was catalyzed by the elution of heavy metals from the surface of the reactor. The highest amount of taurine from the decarboxylation of cysteic acid was obtained from SUS 316.

  9. Metabolizable energy values and amino acid availability of vetch (Vicia sativa) and ervil (Vicia ervilia) seeds soaked in water and acetic acid.

    PubMed

    Farran, M T; Barbour, G W; Uwayjan, M G; Ashkarian, V M

    2001-07-01

    In two experiments we evaluated the effect of water and acetic acid soaking on ME, apparent amino acid (AA) availability, and true AA availability of vetch (V) and ervil (E) seeds. In Experiment 1, the feedstuffs were untreated (U) V or coarsely ground V soaked in water (1:10, wt/vol) at 40 C for 72 h with a water change every 12 h (40WV), vetch soaked in 1% acetic acid for 24 h at 40 C (40AAV) or at room temperature (RTAAV), or dehulled soybean meal (SBM). In Experiment 2, E seeds were subjected to the same soaking methods, and the ingredients were UE, 40WE, 40AAE, RTAAE, and SBM. Each feedstuff was precision-fed to five individually caged mature ISA Brown roosters. A group of five roosters was used to correct for metabolic and endogenous energy and amino acid losses. The AME, AMEn, TME, and TMEn of UV and UE (in parentheses) were 2,558 (2,663), 2,840 (3,098), 3,026 (3,154), and 2,934 (3,176) kcal/kg DM, respectively, and were, in general, higher than those of SBM. The TMEn of V increased as a result of soaking in water or acetic acid, whereas that of E decreased in 40WE and RTAAE by 492 and 920 kcal/kg DM, respectively (P < 0.05). The apparent availability of most essential amino acids in UV and UE was lower (P < 0.05) than that of SBM. Acetic acid soaking of V, irrespective of temperature, and E at 40 C resulted in apparent AA availability similar to that of SBM except for Met. The true AA availability of V treated or not, and that of E soaked at 40 C, were similar to that of SBM. Results indicated that UV and UE are energy rich ingredients but detrimental to amino acid availability. Soaking the seeds in acetic acid at room temperature and at 40 C improved the nutritional value of V and E, respectively.

  10. Safety Evaluation of Osun River Water Containing Heavy Metals and Volatile Organic Compounds (VOCs) in Rats.

    PubMed

    Azeez, L; Salau, A K; Adewuyi, S O; Osineye, S O; Tijani, K O; Balogun, R O

    2015-12-20

    This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector (GC-FID). Male and female rats were exposed to Osun river water for three weeks and then sacrificed. The abundance of heavy metals in Osun river followed the trend Pb > Cd > Zn > Fe > Cr > Cu while VOCs followed the trend benzene < ethylbenzene < toluene < xylene. The concentrations of Pb, Cd and benzene were higher than the permissible limits of Standards Organization of Nigeria (SON) and World Health Organization (WHO) respectively. Rats exposed to Osun river water for three weeks had increased WBC, thiobarbituric acid reactive substances (TBARS), serum proteins and serum aminotransferases. There were also significant decreases in HCT, PLT, liver aminotransferases and liver glutathione compared to the control. These results show that the pollutants in Osun river water are capable of inducing hematological imbalance and liver cell injury. The toxicity induced in blood was sex-dependent affecting female rats more than male rats.

  11. Down the Tubes: Vetting the Apparent Water-rich Parent Body being Accreted by the White Dwarf GD 16

    NASA Astrophysics Data System (ADS)

    Melis, Carl

    2015-10-01

    How water is distributed in a planetary system critically affects the formation, evolution, and habitability of its constituent rocky bodies. White dwarf stars provide a unique method to probe the prevalence of water-rich rocky bodies outside of our Solar system and where they preferentially reside in a planetary system. However, as evidenced by the case of GD 362, some parent bodies that at first glance might appear to be water-rich can actually be quite water-scarce. At this time there are only a small number of plausibly water-rich rocky bodies that are being actively accreted by their host white dwarf star. Given such a sample size it is crucial to characterize each one in sufficient detail to remove interlopers like GD 362 that might otherwise affect future statistical analyses. In this proposal we seek to vet GD 16, a water-rich candidate yet to be observed with HST-COS that is the brightest remaining such target in the UV.

  12. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.

    PubMed

    Gosavi, K; Sammut, J; Gifford, S; Jankowski, J

    2004-05-25

    Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.

  13. Influence of multi-step washing using Na2EDTA, oxalic acid and phosphoric acid on metal fractionation and spectroscopy characteristics from contaminated soil.

    PubMed

    Wei, Meng; Chen, Jiajun

    2016-11-01

    A multi-step soil washing test using a typical chelating agent (Na 2 EDTA), organic acid (oxalic acid), and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated with heavy metals near an arsenic mining area. The aim of the test was to improve the heavy metal removal efficiency and investigate its influence on metal fractionation and the spectroscopy characteristics of contaminated soil. The results indicated that the orders of the multi-step washing were critical for the removal efficiencies of the metal fractions, bioavailability, and potential mobility due to the different dissolution levels of mineral fractions and the inter-transformation of metal fractions by XRD and FT-IR spectral analyses. The optimal soil washing options were identified as the Na 2 EDTA-phosphoric-oxalic acid (EPO) and phosphoric-oxalic acid-Na 2 EDTA (POE) sequences because of their high removal efficiencies (approximately 45 % for arsenic and 88 % for cadmium) and the minimal harmful effects that were determined by the mobility and bioavailability of the remaining heavy metals based on the metal stability (I R ) and modified redistribution index ([Formula: see text]).

  14. Metal loading assessment of a small mountainous sub-basin characterized by acid drainage -- Prospect Gulch, upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Wirt, Laurie; Leib, Kenneth J.; Melick, Roger; Bove, Dana J.

    2001-01-01

    strongly affected by natural acidity from pyrite weathering. Metal content in the water column is a composite of multiple sources affected by hydrologic, geologic, climatic, and anthropogenic conditions. Identifying sources of metals from various drainage areas was determined using a tracer injection approach and synoptic sampling during low flow conditions on September 29, 1999 to determine loads. The tracer data was interpreted in conjunction with detailed geologic mapping, topographic profiling, geochemical characterization, and the occurrence and distribution of trace metals to identify sources of ground-water inflows. For this highly mineralized sub-basin, we demonstrate that SO4, Al, and Fe load contributions from drainage areas that have experienced historical mining?although substantial?are relatively insignificant in comparison with SO4, Al, and Fe loads from areas experiencing natural weathering of highlyaltered, pyritic rocks. Regional weathering of acid-sulfate mineral assemblages produces moderately low pH waters elevated in SO4, Al, and Fe; but generally lacking in Cu, Cd, Ni, and Pb. Samples impacted by mining are also characterized by low pH and large concentrations of SO4, Al, and Fe; but contained elevated dissolved metals from ore-bearing vein minerals such as Cu, Zn, Cd, Ni, and Pb. Occurrences of dissolved trace metals were helpful in identifying ground-water sources and flow paths. For example, cadmium was greatest in inflows associated with drainage from inactive mine sites and absent in inflows that were unaffected by past mining activities and thus served as an important indicator of mining contamination for this environmental setting. The most heavily mine-impacted reach (PG153 to PG800), contributed 8% of the discharge, and 11%, 9%, and 12% of the total SO4, Al, and Fe loads in Prospect Gulch. The same reach yielded 59% and 37% of the total Cu and Zn loads for the subbasin. In contrast, the naturally acidic inflows from the Red Chemotroph

  15. Water-soluble polymers for recovery of metal ions from aqueous streams

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  16. Effects of hydrogen rich water on prolonged intermittent exercise.

    PubMed

    Da Ponte, Alessandro; Giovanelli, Nicola; Nigris, Daniele; Lazzer, Stefano

    2018-05-01

    Recent studies showed a positive effect of hydrogen rich water (HRW) intake on acid-base homeostasis at rest. We investigated 2-weeks of HRW intake on repeated sprint performance and acid-base status during prolonged intermittent cycling exercise. In a cross over single-blind protocol, 8 trained male cyclists (age [mean±SD] 41±7 years, body mass 72.3±4.4 kg, height 1.77±0.04 m, maximal oxygen uptake [V̇O2max] 52.6±4.4 mL·kg-1·min-1) were provided daily with 2 liters of placebo normal water (PLA, pH 7.6, oxidation/reduction potential [ORP] +230 mV, free hydrogen content 0 ppb) or HRW (pH 9.8, ORP -180 mV, free Hydrogen 450 ppb). Tests were performed at baseline and after each period of 2 weeks of treatment. The treatments were counter-balanced and the sequence randomized. The 30-minute intermittent cycling trial consisted in 10 3-minute blocks, each one composed by 90 seconds at 40% V̇O2max, 60 seconds at 60% V̇O2max, 16 seconds all out sprint, and 14 seconds active recovery. Oxygen uptake (V̇O2), heart rate and power output were measured during the whole test, while mean and peak power output (PPO), time to peak power and Fatigue Index (FI) were determined during all the 16 seconds sprints. Lactate, pH and bicarbonate (HCO3-) concentrations were determined at rest and after each sprint on blood obtained by an antecubital vein indwelling catheter. In the PLA group, PPO in absolute values decreased significantly at the 8th and 9th of 10 sprints and in relative values, ΔPPO, decreased significantly at 6th, 8th and 9th of 10 sprints (by mean: -12±5%, P<0.006), while it remained unchanged in HRW group. Mean power, FI, time to peak power and total work showed no differences between groups. In both conditions lactate levels increased while pH and HCO3- decreased progressively as a function of the number of sprints. Two weeks of HRW intake may help to maintain PPO in repetitive sprints to exhaustion over 30 minutes.

  17. The metal-rich abundance pattern - spectroscopic properties and abundances for 107 main-sequence stars

    NASA Astrophysics Data System (ADS)

    Ivanyuk, O. M.; Jenkins, J. S.; Pavlenko, Ya. V.; Jones, H. R. A.; Pinfield, D. J.

    2017-07-01

    We report results from the high-resolution spectral analysis of the 107 metal-rich (mostly [Fe/H] ≥ 7.67 dex) target stars from the Calan-Hertfordshire Extrasolar Planet Search programme observed with HARPS. Using our procedure of finding the best fit to the absorption line profiles in the observed spectra, we measure the abundances of Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Ni, Cu and Zn, and then compare them with known results from different authors. Most of our abundances agree with these works at the level of ±0.05 dex or better for the stars we have in common. However, we do find systematic differences that make direct inferences difficult. Our analysis suggests that the selection of line lists and atomic line data along with the adopted continuum level influence these differences the most. At the same time, we confirm the positive trends of abundances versus metallicity for Na, Mn, Ni and, to a lesser degree, Al. A slight negative trend is observed for Ca, whereas Si and Cr tend to follow iron. Our analysis allows us to determine the positively skewed normal distribution of projected rotational velocities with a maximum peaking at 3 km s-1. Finally, we obtained a Gaussian distribution of microturbulent velocities that has a maximum at 1.2 km s-1 and a full width at half-maximum Δv1/2 = 0.35 km s-1, indicating that metal-rich dwarfs and subgiants in our sample have a very restricted range in microturbulent velocity.

  18. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOEpatents

    Wang. Yong; Peden. Charles H. F.; Choi. Saemin

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  19. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    DOEpatents

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  20. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.

    2003-07-22

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  1. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.

    2006-12-26

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  2. On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, Paul M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2012-12-01

    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer spectra of 217 oxygen-rich asymptotic giant branch and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 μm. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ˜10-9 M⊙ yr-1. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-μm feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-μm band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.

  3. Metal-Organic Frameworks for Cultural Heritage Preservation: The Case of Acetic Acid Removal.

    PubMed

    Dedecker, Kevin; Pillai, Renjith S; Nouar, Farid; Pires, João; Steunou, Nathalie; Dumas, Eddy; Maurin, Guillaume; Serre, Christian; Pinto, Moisés L

    2018-04-25

    The removal of low concentrations of acetic acid from indoor air at museums poses serious preservation problems that the current adsorbents cannot easily address owing to their poor affinity for acetic acid and/or their low adsorption selectivity versus water. In this context, a series of topical water-stable metal-organic frameworks (MOFs) with different pore sizes, topologies, hydrophobic characters, and functional groups was explored through a joint experimental-computational exploration. We demonstrate how a subtle combination of sufficient hydrophobicity and optimized host-guest interactions allows one to overcome the challenge of capturing traces of this very polar volatile organic compound in the presence of humidity. The optimal capture of acetic acid was accomplished with MOFs that do not show polar groups in the inorganic node or have lipophilic but polar (e.g., perfluoro) groups functionalized to the organic linkers, that is, the best candidates from the list of explored MOFs are MIL-140B and UiO-66-2CF 3 . These two MOFs present the appropriate pore size to favor a high degree of confinement, together with organic spacers that allow an enhancement of the van der Waals interactions with the acetic acid. We establish in this work that MOFs can be a viable solution to this highly challenging problem in cultural heritage protection, which is a new field of application for this type of hybrid materials.

  4. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, A.; Burgstaller, W.; Schinner, F.

    1991-03-01

    In the presence of insoluble metal oxides (industrial filter dust, zinc oxide, synthetic mixture of metal oxides), Penicillium simplicissimum developed the ability to excrete considerable amounts of citric acid (>100 mM). Parallel with the increase of citric acid concentration in the culture broth, zinc was solubilized from zinc oxide. The adsorption of filter dust onto the mycelium (the pellets formed were less than 1 mm in diameter) was required for not only the citric acid excretion but also the leaching of zinc. When the filter dust was replaced with a synthetic mixture of metal oxides or with zinc oxide inmore » combination with trace elements, levels of adsorption and citric acid production were observed to be similar to those in experiments where industrial filter dust was used. The two most important properties of the filter dust were its heavy-metal content and its buffering capacity. These properties were simulated by adding heavy metals in soluble form (as chlorides, sulfates, or nitrates) or soluble buffers to the medium. Both heavy metals and buffers were not able to induce a citric acid efflux. As with citric acid production by Aspergillus niger, the addition of manganese lowered citric acid excretion (by 40% with metal oxide-induced citric acid efflux and by 100% with urea-induced citric acid efflux). Copper antagonized the effect of manganese. The mechanism for the bulk of citric acid excretion by P. simplicissimum, however, seemed to be different from that described for citric acid accumulation by A. niger. Because of the inefficiency of metals in solubilized form and of soluble buffers to induce a strong citric acid efflux, adsorption of an insoluble metal compound (zinc oxide) turned out to be essential.« less

  5. Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream.

    PubMed

    Byrne, Patrick; Runkel, Robert L; Walton-Day, Katherine

    2017-07-01

    Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH <3.1) seeps that enter along the left bank of Lion Creek. Investigation of inflow water (trace metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.

  6. Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream

    USGS Publications Warehouse

    Byrne, Patrick; Runkel, Robert L.; Walton-Day, Katie

    2017-01-01

    Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH <3.1) seeps that enter along the left bank of Lion Creek. Investigation of inflow water (trace metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.

  7. Shape Evolution of Metal Nanoparticles in Water Vapor Environment.

    PubMed

    Zhu, Beien; Xu, Zhen; Wang, Chunlei; Gao, Yi

    2016-04-13

    The structures of the metal nanoparticles are crucial for their catalytic activities. How to understand and even control the shape evolution of nanoparticles under reaction condition is a big challenge in heterogeneous catalysis. It has been proved that many reactive gases hold the capability of changing the structures and properties of metal nanoparticles. One interesting question is whether water vapor, such a ubiquitous environment, could induce the shape evolution of metal nanoparticles. So far this question has not received enough attention yet. In this work, we developed a model based on the density functional theory, the Wulff construction, and the Langmuir adsorption isotherm to explore the shape of metal nanoparticle at given temperature and water vapor pressure. By this model, we show clearly that water vapor could notably increase the fraction of (110) facets and decrease that of (111) facets for 3-8 nm Cu nanoparticles, which is perfectly consistent with the experimental observations. Further investigations indicate the water vapor has different effects on the different metal species (Cu, Au, Pt, and Pd). This work not only helps to understand the water vapor effect on the structures of metal nanoparticles but also proposes a simple but effective model to predict the shape of nanoparticles in certain environment.

  8. Fat-soluble vitamins and plasma and erythrocyte membrane fatty acids in chylothorax pediatric patients receiving a medium-chain triglyceride-rich diet.

    PubMed

    Densupsoontorn, Narumon; Jirapinyo, Pipop; Tirapongporn, Hathaichanok; Wongarn, Renu; Chotipanang, Kwanjai; Phuangphan, Phakkanan; Chongviriyaphan, Nalinee

    2014-11-01

    Post-operative chylothorax can be cured by a medium-chain triglyceride (MCT)-rich diet. However, there is concern that an MCT-rich diet results in clinical and biochemical deficiencies in fat-soluble vitamins and fatty acids. We compared fat-soluble vitamins status and fatty acids status before and after administration of an MCT-rich diet. Nine children with congenital heart disease developed chylothorax after cardiac surgery. Blood samples were drawn from each subject twice, first prior to administration of an MCT-rich diet and secondly when the chylothorax was clinically cured and the MCT diet discontinued. Both blood samples were analyzed for retinol and 25-hydroxy vitamin D concentrations, the ratio of α-tocopherol to total lipids (α-TE/TL), coagulogram, and the fatty acid composition in plasma and erythrocyte membrane phospholipids. In spite of a decrease in the α-TE/TL ratio (3.78 ± 0.89 vs 2.36 ± 0.44 mg/g, p<0.05), this decrease did not reach the deficiency cut-off level. Linoleic acid in both plasma and erythrocyte membrane lipids decreased significantly (25.25 ± 8.06 vs 14.25 ± 2.88%, and 11.19 ± 2.15 vs 6.89 ± 2.45%, respectively). Administration of an MCT-rich diet for treatment of postoperative chylothorax caused a reduction in vitamin E status and linoleic acid, but without any symptoms of deficiency.

  9. Longevity of acid discharges from underground mines located above the regional water table.

    PubMed

    Demchak, J; Skousen, J; McDonald, L M

    2004-01-01

    The duration of acid mine drainage flowing out of underground mines is important in the design of watershed restoration and abandoned mine land reclamation projects. Past studies have reported that acid water flows from underground mines for hundreds of years with little change, while others state that poor drainage quality may last only 20 to 40 years. More than 150 above-drainage (those not flooded after abandonment) underground mine discharges from Pittsburgh and Upper Freeport coal seams were located and sampled during 1968 in northern West Virginia, and we revisited 44 of those sites in 1999-2000 and measured water flow, pH, acidity, Fe, sulfate, and conductivity. We found no significant difference in flows between 1968 and 1999-2000. Therefore, we felt the water quality data could be compared and the data represented real changes in pollutant concentrations. There were significant water quality differences between year and coal seam, but no effect of disturbance. While pH was not significantly improved, average total acidity declined 79% between 1968 and 1999-2000 in Pittsburgh mines (from 66.8 to 14 mmol H+ L(-1)) and 56% in Upper Freeport mines (from 23.8 to 10.4 mmol H+ L(-1)). Iron decreased an average of about 80% across all sites (from an average of 400 to 72 mg L(-1)), while sulfate decreased between 50 and 75%. Pittsburgh seam discharge water was much worse in 1968 than Upper Freeport seam water. Twenty of our 44 sites had water quality information in 1980, which served as a midpoint to assess the slope of the decline in acidity and metal concentrations. Five of 20 sites (25%) showed an apparent exponential rate of decline in acidity and iron, while 10 of 20 sites (50%) showed a more linear decline. Drainage from five Upper Freeport sites increased in acidity and iron. While it is clear that surface mines and below-drainage underground mines improve in discharge quality relatively rapidly (20-40 years), above-drainage underground mines are not as

  10. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation.

    PubMed

    Zhang, Peili; Li, Lin; Nordlund, Dennis; Chen, Hong; Fan, Lizhou; Zhang, Biaobiao; Sheng, Xia; Daniel, Quentin; Sun, Licheng

    2018-01-26

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2 . The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

  11. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil.

    PubMed

    do Nascimento, Clístenes Williams A; Amarasiriwardena, Dula; Xing, Baoshan

    2006-03-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal.

  12. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    PubMed

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  13. Geochemical modelling and speciation studies of metal pollutants present in selected water systems in South Africa

    NASA Astrophysics Data System (ADS)

    Magu, M. M.; Govender, P. P.; Ngila, J. C.

    2016-04-01

    Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.

  14. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain.

    PubMed

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.

  15. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    PubMed Central

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  16. Removal of metals from aqueous solution and sea water by functionalized graphite nanoplatelets based electrodes.

    PubMed

    Mishra, Ashish Kumar; Ramaprabhu, S

    2011-01-15

    In the present wok, we have demonstrated the simultaneous removal of sodium and arsenic (pentavalent and trivalent) from aqueous solution using functionalized graphite nanoplatelets (f-GNP) based electrodes. In addition, these electrodes based water filter was used for multiple metals removal from sea water. Graphite nanoplatelets (GNP) were prepared by acid intercalation and thermal exfoliation. Functionalization of GNP was done by further acid treatment. Material was characterized by different characterization techniques. Performance of supercapacitor based water filter was analyzed for the removal of high concentration of arsenic (trivalent and pentavalent) and sodium as well as for desalination of sea water, using cyclic voltametry (CV) and inductive coupled plasma-optical emission spectroscopy (ICP-OES) techniques. Adsorption isotherms and kinetic characteristics were studied for the simultaneous removal of sodium and arsenic (both trivalent and pentavalent). Maximum adsorption capacities of 27, 29 and 32 mg/g for arsenate, arsenite and sodium were achieved in addition to good removal efficiency for sodium, magnesium, calcium and potassium from sea water. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage.

    PubMed

    Aranda, Suzan; Borrok, David M; Wanty, Richard B; Balistrieri, Laurie S

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ(66)Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰±0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ(66)Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰±0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Miniaturized and direct spectrophotometric multi-sample analysis of trace metals in natural waters.

    PubMed

    Albendín, Gemma; López-López, José A; Pinto, Juan J

    2016-03-15

    Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Discovery of Extended Blue Horizontal Branches in Two Metal-rich Globular Clusters

    NASA Astrophysics Data System (ADS)

    Rich, R. Michael; Sosin, Craig; Djorgovski, S. George; Piotto, Giampaolo; King, Ivan R.; Renzini, Alvio; Phinney, E. Sterl; Dorman, Ben; Liebert, James; Meylan, Georges

    1997-07-01

    We have used WFPC2 to construct B, V color-magnitude diagrams of four metal-rich globular clusters, NGC 104 (47 Tuc), NGC 5927, NGC 6388, and NGC 6441. All four clusters have well populated red horizontal branches (RHB), as expected for their metallicity. However, NGC 6388 and 6441 also exhibit a prominent blue horizontal-branch (BHB) extension, including stars reaching as faint in V as the turnoff luminosity. This discovery demonstrates directly for the first time that a major population of hot horizontal-branch (HB) stars can exist in old, metal-rich systems. This may have important implications for the interpretation of the integrated spectra of elliptical galaxies. The cause of the phenomenon remains uncertain. We examine the possibility that NGC 6388 and 6441 are older than the other clusters, but a simple difference in age may not be sufficient to produce the observed distributions along the HB. The high central densities in NGC 6388 and 6441 suggest that the existence of the BHB tails might be caused by stellar interactions in the dense cores of these clusters, which we calculate to have two of the highest collision rates among globular clusters in the Galaxy. Tidal collisions might act in various ways to enhance loss of envelope mass and therefore populate the blue side of the HB. However, the relative frequency of tidal collisions does not seem large enough (compared to that of the clusters with pure RHBs) to account for such a drastic difference in HB morphology. While a combination of an age difference and dynamical interactions may help, prima facie the lack of a radial gradient in the BHB/RHB star ratio seems to argue against dynamical effects playing a role. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  20. Water-Rich Fluid Material Containing Orderly Condensed Proteins.

    PubMed

    Nojima, Tatsuya; Iyoda, Tomokazu

    2017-01-24

    A fluid material with high protein content (120-310 mg mL -1 ) was formed through the ordered self-assembly of native proteins segregated from water. This material is instantly prepared by the simple mixing of a protein solution with anionic and cationic surfactants. By changing the ratio of the surfactants based on the electrostatic characteristics of the target protein, we observed that the surfactants could function as a versatile molecular glue for protein assembly. Moreover, these protein assemblies could be disassembled back into an aqueous solution depending on the salt conditions. Owing to the water-retaining properties of the hydrophilic part of surfactants, the proteins in this material are in a water-rich environment, which maintains their native structure and function. The inclusion of water also provides functional extensibility to this material, as demonstrated by the preparation of an enzymatically active gel. We anticipate that the unique features of this material will permit the use of proteins not only in solution but also as elements of integrated functionalized materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mineralogy controls on reactive transport of Marcellus Shale waters.

    PubMed

    Cai, Zhang; Wen, Hang; Komarneni, Sridhar; Li, Li

    2018-07-15

    Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50-90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75-99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20-70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock

  2. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    PubMed

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution <1.5 A and the set of nonredundant protein structures from the PDB. The former was used to determine the distances between each metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  3. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    NASA Astrophysics Data System (ADS)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    ), the &δ&&30Si value of dissolved silicon in the lake water must be even higher. We infer that progressive cation removal alone is inadequate to describe rock dissolution and silicification by acid fluid. Exchange of silicon between the solution and mineral phases probably accompanied the alteration process. This hypothesis is qualitatively consistent with the idea that elements in solution take part in the formation of altered silica-rich layers at mineral-solution interfaces, as invoked to interpret surface reactions during silicate mineral weathering (e.g., Adriaens et al., 1999; Hellmann et al., 2003). References Adriaens et al., 1999. Surf. Interface Anal., 27: 8-23 Basile-Doelsch et al., 2006. Nature, 433: 399-402. Hellmann et al., 2003. Phys. Chem. Minerals, 30: 192-197.

  4. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...

  5. Influence of acid rain upon water plumbosolvency.

    PubMed Central

    Moore, M R

    1985-01-01

    The West of Scotland has had particular problems in the past associated with soft acidic water supplies and uptake of lead from domestic plumbing systems by such water. As a consequence of this, health problems related to overexposure to lead have been identified. The current debate on acidification of ground waters by acid rain is therefore particularly pertinent to this area. Studies have shown that even a modest decrease in pH will result in very substantial increase in plumbosolvency. This was found to be of particular importance in the city of Glasgow and town of Ayr, where prior to water treatment, pH values were 6.3 and 5.4, respectively, and where, consequentially, large numbers of homes did not comply with lead in water standards. Closed-loop lime-dosing systems were introduced in both Glasgow and Ayr to increase the pH with immediate decrease in the lead content of the water and, subsequently, blood lead concentrations of the subjects living in these areas. Such closed-loop systems will compensate for any acidity in water supplies, whether of natural origin or originating from acid rain precipitation. However, when such treatment has not been applied, any increase in water acidity due to acid rain which is, in many cases, already unacceptable. which is, in many cases, already unacceptable. PMID:4076078

  6. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering.

    PubMed

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-05-08

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal-dielectric-metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm(-1) is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry.

  7. Questa baseline and pre-mining ground-water quality investigation. 23. Quantification of mass loading from mined and unmined areas along the Red River, New Mexico

    USGS Publications Warehouse

    Kimball, Briant A.; Nordstrom, D. Kirk; Runkel, Robert L.; Vincent, Kirk R.; Verplanck, Phillip L.

    2006-01-01

    Along the course of the Red River, between the town of Red River, New Mexico, and the U.S. Geological Survey streamflow-gaging station near Questa, New Mexico, there are several catchments that contain hydrothermally altered bedrock. Some of these alteration zones have been mined and others have not, presenting an opportunity to evaluate differences that may exist in the mass loading of metals from mined and unmined sections. Such differences may help to define pre-mining conditions. Spatially detailed chemical sampling at stream and inflow sites occurred during low-flow conditions in 2001 and 2002, and during the synoptic sampling, stream discharge was calculated by tracer dilution. Discharge from most catchments, particularly those with alteration scars, occurred as ground water in large debris fans, which generally traveled downstream in an alluvial aquifer until geomorphic constraints caused it to discharge at several locations along the study reach. Locations of discharge zones were indicated by the occurrence of numerous inflows as seeps and springs. Inflows were classified into four groups, based on differences in chemical character, which ranged from near-neutral water showing no influence of mining or alteration weathering to acidic water with high concentrations of metals and sulfate. Acidic, metal-rich inflows occurred from mined and unmined areas, but the most-acidic inflow water that had the highest concentrations of metals and sulfate only occurred downstream from the mine. Locations of ground-water inflow also corresponded to substantial changes in stream chemistry and mass loading of metals and sulfate. The greatest loading occurred in the Cabin Springs, Thunder Bridge, and Capulin Canyon sections, which all occur downstream from the mine. A distinct chemical character and substantially greater loading in water downstream from the mine suggest that there could be impacts from mining that can be distinguished from the water draining from unmined

  8. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    PubMed

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pH<10, possibly due to the dissolution of ettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  10. Light-enhanced acid catalysis over a metal-organic framework.

    PubMed

    Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2018-03-06

    A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.

  11. Hydrogen-rich water affected blood alkalinity in physically active men.

    PubMed

    Ostojic, Sergej M; Stojanovic, Marko D

    2014-01-01

    Possible appliance of effective and safe alkalizing agent in the treatment of metabolic acidosis could be of particular interest to humans experiencing an increase in plasma acidity, such as exercise-induced acidosis. In the present study we tested the hypothesis that the daily oral intake of 2L of hydrogen-rich water (HRW) for 14 days would increase arterial blood alkalinity at baseline and post-exercise as compared with the placebo. This study was a randomized, double blind, placebo-controlled trial involving 52 presumably healthy physically active male volunteers. Twenty-six participants received HRW and 26 a placebo (tap water) for 14 days. Arterial blood pH, partial pressure for carbon dioxide (pCO2), and bicarbonates were measured at baseline and postexercise at the start (day 0) and at the end of the intervention period (day 14). Intake of HRW significantly increased fasting arterial blood pH by 0.04 (95% confidence interval; 0.01 - 0.08; p < 0.001), and postexercise pH by 0.07 (95% confidence interval; 0.01 - 0.10; p = 0.03) after 14 days of intervention. Fasting bicarbonates were significantly higher in the HRW trial after the administration regimen as compared with the preadministration (30.5 ± 1.9 mEq/L vs. 28.3 ± 2.3 mEq/L; p < 0.0001). No volunteers withdrew before the end of the study, and no participant reported any vexatious side effects of supplementation. These results support the hypothesis that HRW administration is safe and may have an alkalizing effect in young physically active men.

  12. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals.

    PubMed

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  13. INFLUENCE OF THE KRAMER EFFECT ON ADSORPTION ON METALS.

    DTIC Science & Technology

    ADSORPTION, *ALLOYS, *FILMS, *METALS, *PROCESSING, ACIDS, ALCOHOLS , CYCLOHEXANES, EXCHANGE REACTIONS , FATTY ACIDS, HEAT TREATMENT , LEAD ALLOYS...LINOLENIC ACID, MACHINING , MEASUREMENT, MONOMOLECULAR FILMS, OLEIC ACID, SURFACES, TIN ALLOYS, WATER

  14. Climate-change-driven deterioration of water quality in a mineralized watershed.

    PubMed

    Todd, Andrew S; Manning, Andrew H; Verplanck, Philip L; Crouch, Caitlin; McKnight, Diane M; Dunham, Ryan

    2012-09-04

    A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100-400% (400-2000 μg/L) during low-flow months, when metal concentrations are highest. SO(4) and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2-1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.

  15. Climate-change-driven deterioration of water quality in a mineralized watershed

    USGS Publications Warehouse

    Todd, Andrew; Manning, Andrew H.; Verplanck, Philip L.; Crouch, Caitlin; McKnight, Diane M.; Dunham, Ryan

    2012-01-01

    A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100–400% (400–2000 μg/L) during low-flow months, when metal concentrations are highest. SO4 and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2–1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.

  16. Chemical and Hydrologic Data From the Cement Creek and Upper Animas River Confluence and Mixing Zone, Silverton, Colorado, September 1997

    USGS Publications Warehouse

    Schemel, Laurence E.; Cox, Marisa H.

    2007-01-01

    Cement Creek, an acidic tributary, discharges into the circum-neutral Animas River (pH>7) in Silverton, Colorado located in the high-elevation San Juan Mountains. Mixing of Animas River water with acidic metal rich Cement Creek water raises water pH and produces metal precipitates. This report presents selected anion, cation, chloride, and sulfate data along with hydrologic data highlighting the mixing of these streams during the low-flow period in late summer 1997.

  17. Release of iron, zinc, and lead from common iron construction bars and zinc metallic bars in water solutions and meals.

    PubMed

    Lechtig, Aarón; Lòpez de Romaña, Daniel; Boy, Erick; Vargas, Alejandro; Rosas del Portal, Mauricio; Huaylinos, María Luisa

    2007-12-01

    The use of iron pots has decreased the prevalence of anemia. To investigate the release of iron, zinc, and lead from metallic iron and zinc bars incubated in water and in meals. Iron, zinc, and lead concentrations were measured at different incubation conditions in water and in meals. The iron concentration in water was 1.26 mg/L after incubation with one iron bar at pH 7 and 100 degrees C for 20 minutes and in meals was 0.97 mg per 100 g of wet meals, rich in phytate, cooking at 100 degrees C during 20 minutes. The maximum contents were 7720 mg/L of iron and 1826 mg/L of zinc in vinegar at pH 3 and 20 degrees C after 90 and 32 days, respectively. Lead was released from the bars, but at concentrations well below the upper tolerable limits. In outreach populations, the use of iron and zinc metallic bars in water and meals could contribute to sustainable, very low-cost prevention of iron and zinc deficiencies, and home-fortified vinegar could be used for treatment of both deficiencies. Field trials should be performed to determine the impact that the use of iron and zinc metallic bars in water and meals might have on the iron and zinc status of population groups.

  18. Comparison of the optical responses of O-poor and O-rich thermochromic VOX films during semiconductor-to-metal transition

    NASA Astrophysics Data System (ADS)

    Luo, Zhenfei; Wu, Zhiming; Wang, Tao; Xu, Xiangdong; Li, Weizhi; Li, Wei; Jiang, Yadong

    2012-09-01

    O-poor and O-rich thermochromic vanadium oxide (VOX) nanostructured thin films were prepared by applying reactive direct current magnetron sputtering and post-annealing in oxygen ambient. UV-visible spectrophotometer and spectroscopic ellipsometry were used to investigate the optical properties of films. It was found that, when the O-poor VOX thin film underwent semiconductor-to-metal transition, the values of optical conductivity and extinction coefficient in the visible region increased due to the existence of occupied band-gap states. This noticeable feature, however, was not observed for the O-rich film, which showed a similar optical behavior with the stoichiometric crystalline VO2 films reported in the literatures. Moreover, the O-poor VOX film exhibits consistent variations of transmission values in the visible/near-infrared region when it undergoes semiconductor-to-metal transition.

  19. Analytical results for total-digestions, EPA-1312 leach, and net acid production for twenty-three abandoned metal-mining related wastes in the Boulder River watershed, northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, David L.; Desborough, George A.; Finney, Christopher J.

    2000-01-01

    IntroductionMetal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana, have been implicated in their detrimental effects on water quality with regard to acid generation and toxic-metal solubilization during snow melt and storm water runoff events. This degradation of water quality is defined chiefly by the “Class 1 Aquatic Life Standards” that give limits for certain dissolved metal concentrations according to water alkalinity.Veins enriched in base- and precious metals were explored and mined in the Basin, Cataract Creek, and High Ore Creek drainages over a period of more than 70 years. Extracted minerals included galena, sphalerite, pyrite, chalcopyrite, tetrahedrite and arsenopyrite. Most of the metal-mining wastes in the study area were identified and described by the Montana Bureau of Mines and Geology. In 1997, the U.S. Geological Survey collected 20 composite samples of mine-dump or tailings waste from ten sites in the Basin and Cataract Creek drainages, and two samples from one site in the High Ore Creek drainage. Desborough and Fey presented data concerning acid generation potential, mineralogy, concentrations of certain metals by energy-dispersive X-ray fluorescence (EDXRF), and trace-element leachability of mine and exploration wastes from the ten sites of the Basin and Cataract Creek drainages. The present report presents total-digestion major- and trace-element analyses, net acid production (NAP), and results from the EPA-1312 synthetic precipitation leach procedure (SPLP) performed on the same composite samples from the ten sites from the Basin and Cataract Creek drainages, and two composite samples from the site in the High Ore Creek drainage.

  20. Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation.

    PubMed

    Levizou, Efi; Statiris, George; Papadimitriou, Theodoti; Laspidou, Chrysi S; Kormas, Konstantinos Ar

    2017-09-01

    This study investigated the microcystins (MCs)-rich irrigation water effect on lettuce of different developmental stages, i.e. during a two months period, covering the whole period from seed germination to harvest at marketable size of the plant. We followed four lettuce plant groups receiving MCs-rich water (1.81μgl -1 of dissolved MCs), originating from the Karla Reservoir, central Greece: 1) from seeds, 2) the cotyledon, 3) two true leaves and 4) four true leaves stages, all of which were compared to control plants that received tap water. Lettuce growth, photosynthetic performance, biochemical and mineral characteristics, as well as MCs accumulation in leaves, roots and soil were measured. The overall performance of lettuce at various developmental stages pointed to increased tolerance since growth showed minor alterations and non-enzymatic antioxidants remained unaffected. Plants receiving MCs-rich water from the seed stage exhibited higher photosynthetic capacity, chlorophylls and leaf nitrogen content. Nevertheless, considerable MCs accumulation in various plant tissues occurred. The earlier in their development lettuce plants started receiving MCs-rich water, the more MCs they accumulated: roots and leaves of plants exposed to MCs-rich water from seeds and cotyledons stage exhibited doubled MCs concentrations compared to respective tissues of the 4 Leaves group. Furthermore, roots accumulated significantly higher MCs amounts than leaves of the same plant group. Concerning human health risk, the Estimated Daily Intake values (EDI) of Seed and Cotyledon groups leaves exceeded Tolerable Daily Intake (TDI) by a factor of 6, while 2 Leaves and 4 Leaves groups exceeded TDI by a factor of 4.4 and 2.4 respectively. Our results indicate that irrigation of lettuce with MCs-rich water may constitute a serious public health risk, especially when contaminated water is received from the very early developmental stages (seed and cotyledon). Finally, results obtained for

  1. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peili; Li, Lin; Nordlund, Dennis

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygenmore » evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.« less

  2. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation

    DOE PAGES

    Zhang, Peili; Li, Lin; Nordlund, Dennis; ...

    2018-01-26

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygenmore » evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.« less

  3. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain)

    PubMed Central

    López-Pamo, Enrique; Gomariz, María; Amils, Ricardo; Aguilera, Ángeles

    2013-01-01

    The Iberian Pyrite Belt (IPB) hosts one of the world’s largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and microbial diversity of two pit lakes located in the IPB. Both pit lakes are acidic and showed high concentrations of sulfate and dissolved metals. Concentrations of sulfate and heavy metals were higher in the Nuestra Señora del Carmen lake (NSC) by one order of magnitude than in the Concepción (CN) lake. The hydrochemical characteristics of NSC were typical of acid mine waters and can be compared with other acidic environments. When compared to other IPB acidic pit lakes, the superficial water of CN is more diluted than that of any of the others due, probably, to the strong influence of runoff water. Both pit lakes showed chemical and thermal stratification with well defined chemoclines. One particular characteristic of NSC is that it has developed a chemocline very close to the surface (2 m depth). Microbial community composition of the water column was analyzed by 16S and 18S rRNA gene cloning and sequencing. The microorganisms detected in NSC were characteristic of acid mine drainage (AMD), including iron oxidizing bacteria (Leptospirillum, Acidithiobacillus ferrooxidans) and facultative iron reducing bacteria and archaea (Acidithiobacillus ferrooxidans, Acidiphilium, Actinobacteria, Acidimicrobiales, Ferroplasma) detected in the bottom layer. Diversity in CN was higher than in NSC. Microorganisms known from AMD systems (Acidiphilium, Acidobacteria and Ferrovum) and microorganisms never reported from AMD systems were identified. Taking into consideration the hydrochemical characteristics of these pit lakes and the spatial distribution of the identified microorganisms, a

  4. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1980-01-01

    The paper examines the synthesis of peptides from aminoacids and ATP with a lysine-rich protenoid. The latter in aqueous solution catalyzes the formation of peptides from free amino acids and ATP; this catalytic activity is not found in acidic protenoids, even though the latter contain a basic aminoacid. The pH optimum for the synthesis is about 11, but it is appreciable below 8 and above 13. Temperature data indicate an optimum at 20 C or above, with little increase in rate up to 60 C. Pyrophosphate can be used instead of ATP, but the yields are lower. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous aminoacids.

  5. Lipidic biosignatures in diagenetically stabilized ironstones terraces of Rio Tinto, an acidic environment with analogies to Mars

    NASA Astrophysics Data System (ADS)

    Sánchez-García, L.; Carrizo, D.; Fernández-Remolar, D.; Parro, V.

    2017-09-01

    The characterization of extreme environments with analogies to Mars is important for understanding if/how life may have thrived in the Red Planet. Río Tinto in SW Spain is an extreme environment with constant acidic waters (mean pH of 2.3) and high concentration of heavy metals, which are direct consequence of the active metabolism of chemolithotrophic microorganisms thriving in the rich polymetallic sulfides present in the massive Iberian Pyritic Belt. Abundant minerals rich in ferric iron and sulfates, which result from the pyrite metabolism (e.g. jarosite, goethite, hematites, etc.) are of special interest for their potential for organics preservation [1]. Here, we investigate the occurrence and preservation of biological signatures in diagenetically stabilized ironstone deposits in Río Tinto, by using geolipidic markers.

  6. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  7. Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, P.; Bernard, A.

    2000-04-01

    The crater lake of Kawah Ijen volcano contains extremely low pH (<0.4) waters with high SO4 (∼70000 mg/kg), Cl (∼21000 mg/kg), F (∼1500 mg/kg), Al (∼5000 mg/kg), Fe (∼2000 mg/kg) and trace metal (Cu ∼0.5, Zn ∼4, Pb ∼3 mg/kg) contents. These brines seep outward through the western crater rim and reappear on the other side as streamlets, which form the headwaters of the Banyupahit stream. The Banyupahit first mixes with fresh rivers and thermal springs in the Ijen caldera and then irrigates a coastal agricultural plain which is 30 km from the summit crater. We discuss the downstream composition changes affecting the Banyupahit waters by using stable isotope, chemical and mineralogical data collected from sites along the stream length. The saturation of the stream waters with respect to minerals was evaluated with SOLVEQ and WATEQ4F and compared with the geochemical observations. An aluminous mineralogy (alunogen, pickeringite, tamarugite and kalinite) develops in the upper part of the Banyupahit due to concentration of the headwaters by evaporation. Downstream attenuation of dissolved element concentrations results principally from dilution and from mineral precipitation. The stream pH changes from ∼0 at the source to >4 close to the mouth. The δD and δ18O values and the relative SO4-Cl-F contents of the Banyupahit waters indicate that the tributaries are mostly meteoric. Dissolved SO4 in the acidic stream come only from the crater lake seepages and are not involved later in microbially mediated reactions, as shown by their δ34S and δ18O values. Re-equilibration of the stream SO4 oxygen-isotope composition with H2O from tributaries does not occur. Calcium, SiO2, Al, Fe, K and SO4 behave non-conservatively in the stream waters. Gypsum, silica (amorphous or poorly ordered), a basic aluminum hydroxysulfate (basaluminite?), K-jarosite and amorphous ferric hydroxide may exert a solubility control on these elements along the entire stream length, or

  8. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  9. Influence of the Trojan Nickel Mine on surface water quality, Mazowe valley, Zimbabwe: Runoff chemistry and acid generation potential of waste rock

    NASA Astrophysics Data System (ADS)

    Lupankwa, Keretia; Love, David; Mapani, Benjamin; Mseka, Stephen; Meck, Maideyi

    The impacts of mining on the environment depend on the nature of the ore body, the type of mining and the size of operation. The focus of this study is on Trojan Nickel Mine which is located 90 km north of Harare, Zimbabwe. It produces nickel from iron, iron-nickel and copper-nickel sulphides and disposes of waste rock in a rock dump. Surface water samples were taken at 11 points selected from a stream which drains the rock dump, a stream carrying underground water and the river into which these streams discharge. Samples were analysed for metals using atomic absorption spectrometry, for sulphates by gravitation and for carbonates and bicarbonates by back titration. Ninteen rock samples were collected from the dump and static tests were performed using the Sobek acid base accounting method. The results show that near neutral runoff (pH 7.0-8.5) with high concentrations of sulphate (over 100 mg/L) and some metals (Pb > 1.0 mg/L and Ni > 0.2 mg/L) emanates from the dump. This suggests that acid mine drainage is buffered in the dump (probably by carbonates). This is supported by the static tests, which show that the fine fraction of dump material neutralises acid. Runoff from the dump flows into a pond. Concentrations of sulphates and metals decrease after the dump runoff enters the pond, but sufficient remains to increase levels of calcium, sulphate, bicarbonate, iron and lead in the Pote River. The drop in concentrations at the pond indicates that the settling process has a positive effect on water quality. This could be enhanced by treating the pond water to raise pH, thus precipitating out metals and decreasing their concentrations in water draining from the pond.

  10. Application of poly (ethyleneimine) solution as a binding agent in DGT technique for measurement of heavy metals in water.

    PubMed

    Sui, Dian-Peng; Fan, Hong-Tao; Li, Jing; Li, You; Li, Qiong; Sun, Ting

    2013-09-30

    A 0.050 mol L(-1) solution of poly (ethyleneimine) (PEI), had been used as a novel binding agent of diffusive gradients in thin-films (DGT) technique (PEI-DGT) for measuring the concentrations of labile Cu(2+), Cd(2+) and Pb(2+) in waters. The binding capacities of the PEI-DGT for Cu(2+), Cd(2+) and Pb(2+) were 11.8, 10.2 and 10.6 μmol L(-1), respectively. The performance of PEI-DGT was independence of pH in the range of 4-8 and ionic strength in the range from 1×10(-4) to 0.1 mol L(-1) (as NaNO3). PEI-DGT could measure 104.7±5.2% of the total concentration of Cd(2+) (0.500 mg L(-1)), 95.2±4.3% of the total Cu(2+) (0.500 mg L(-1)) and 99.2±3.4% of the total Pb(2+) (0.500 mg L(-1)) in synthetic solution. Effects of the ligands on the measurement of labile metals were also investigated in synthetic solutions containing the various concentrations of EDTA and humic acid. In EDTA solution, the concentrations of labile metals measured by PEI-DGT showed good agreement with the theoretical concentrations of free metal ions. In humic acid solution, the concentrations of labile metals measured by PEI-DGT decreased with the increase of the concentrations of humic acid. Several DGT devices with various binding agents, including PEI, sodium polyacrylate and poly(4-styrenesulfonate) solution, were used for the measurement of labile fractions of Cu(2+), Cd(2+) and Pb(2+) in the spiked waters and in mine wastewaters. The results showed that the concentrations of labile metal measured by DGT devices with different binding agents could be significantly different, indicating that the labile fractions of metals were dependent on the binding strength of the binding agents with metals. By choosing binding agents, the useful information on the speciation and bioavailability of the analytes can be provided. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. MODIFICATION OF METAL PARTITIONING BY SUPPLEMENTING ACID VOLATILE SULFIDE IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Acid volatile sulfide is a component of sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. EPA has proposed AVS as a key normalization phase for the development of sediment quality criteria for metals. Experime...

  13. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-06-17

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  14. Polymerin and lignimerin, as humic acid-like sorbents from vegetable waste, for the potential remediation of waters contaminated with heavy metals, herbicides, or polycyclic aromatic hydrocarbons.

    PubMed

    Capasso, Renato; De Martino, Antonio

    2010-10-13

    Polymerin is a humic acid-like polymer, which we previously recovered for the first time from olive oil mill waste waters (OMWW) only, and chemically and physicochemically characterized. We also previously investigated its versatile sorption capacity for toxic inorganic and organic compounds. Therefore, a review is presented on the removal, from simulated polluted waters, of cationic heavy metals [Cu(II), Zn, Cr(III)] and anionic ones [Cr(VI)) and As(V)] by sorption on this natural organic sorbent in comparison with its synthetic derivatives, K-polymerin, a ferrihydrite-polymerin complex and with ferrihydrite. An overview is also performed of the removal of ionic herbicides (2,4-D, paraquat, MCPA, simazine, and cyhalofop) by sorption on polymerin, ferrihydrite, and their complex and of the removal of phenanthrene, as a representative of polycyclic aromatic hydrocarbons, by sorption on this sorbent and its complexes with micro- or nanoparticles of aluminum oxide, pointing out the employment of all these sorbents in biobed systems, which might allow the remediation of water and protection of surface and groundwater. In addition, a short review is also given on the removal of Cu(II) and Zn from simulated contaminated waters, by sorption on the humic acid-like organic fraction, named lignimerin, which we previously isolated for the first time, in collaboration with a Chilean group, from cellulose mill Kraft waste waters (KCMWW) only. More specifically, the production methods and the characterization of the two natural sorbents (polymerin and lignimerin) and their derivatives (K-polymerin ferrihydrite-polymerin, polymerin-microAl(2)O(3) and -nanoAl(2)O(3), and H-lignimerin, respectively) as well as their sorption data and mechanism are reviewed. Published and original results obtained by the cyclic sorption on all of the considered sorbents for the removal of the above-mentioned toxic compounds from simulated waste waters are also reported. Moreover, sorption capacity

  15. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.

    PubMed

    Kim, Sung-Hyun; Lee, In-Sook

    2010-02-01

    Chelates have been shown to enhance the phytoextraction of metal from contaminated soil. In this study, we evaluated the ability of chelates to enhance the phytoextraction of metals by barnyard grass (Echinochloa crus-galli) from soils contaminated with multiple metals. The results revealed that EDTA increased the ability of barnyard grass to take up Cd, Cu and Pb, but that it resulted in increased soil leaching. Conversely, citric acid induced the removal of Cd, Cu and Pb from soil without increasing the risk of leaching. Furthermore, E.crus-galli showed no signs of phytotoxicity in response to treatment with citric acid, whereas its shoot growth decreased in response to treatment with EDTA (p < 0.05). Taken together, these results demonstrate that citric acid is a good agent for the enhancement of the phytoextraction of metals.

  16. Wildfires and water chemistry: effect of metals associated with wood ash.

    PubMed

    Cerrato, José M; Blake, Johanna M; Hirani, Chris; Clark, Alexander L; Ali, Abdul-Mehdi S; Artyushkova, Kateryna; Peterson, Eric; Bixby, Rebecca J

    2016-08-10

    The reactivity of metals associated with ash from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico, was assessed through a series of laboratory experiments. Microscopy, spectroscopy, diffraction, and aqueous chemistry measurements were integrated to determine the chemical composition of wood ash and its effect on water chemistry. Climate change has caused dramatic impacts and stresses that have resulted in large-scale increases in wildfire activity in semi-arid areas of the world. Metals and other constituents associated with wildfire ash can be transported by storm event runoff and negatively affect the water quality in streams and rivers. Differences among ash from six tree species based on total concentrations of metals such as Ca, Al, Mg, Fe, and Mn were identified using non-metric multidimensional analysis. Metal-bearing carbonate and oxide phases were quantified by X-ray diffraction analyses and X-ray spectroscopy analyses. These metal-bearing carbonate phases were readily dissolved in the first 30 minutes of reaction with 18 MΩ water and 10 mM HCO3(-) in laboratory batch experiments which resulted in the release of metals and carbonates in the ash, causing water alkalinity to increase. However, metal concentrations decreased over the course of the experiment, suggesting that metals re-adsorb to ash. Our results suggest that the dissolution of metal-bearing carbonate and oxide phases in ash and metal re-adsorption to ash are relevant processes affecting water chemistry after wildfire events. These results have important implications to better understand the impact of wildfire events on water quality.

  17. Removal of trace metal contaminants from potable water by electrocoagulation.

    PubMed

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K

    2016-06-21

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  18. Removal of trace metal contaminants from potable water by electrocoagulation

    PubMed Central

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564

  19. Removal of trace metal contaminants from potable water by electrocoagulation

    NASA Astrophysics Data System (ADS)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  20. Acid precipitation: compositional changes during throughfall; soil water. Technical completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R.

    1984-12-01

    Lysimeters were installed at two soil depths within each of the three major ecosystems on Camels Hump Mountain. Collections were made weekly during the frost-free season of 1982 and 1983. Samples were analyzed for pH, conductivity, and a broad range of metals, anionic and cationic constituents, and for other physical properties. The findings included: soil solutions obtained from the upper-elevations in a northern coniferous forest zone are significantly more acidic than those from the lower elevation hardwood forest zone; soil solutions for all ecological zones are more acidic in the spring during and shortly after snowmelt than they are latermore » in the frost free-season; aluminum in soil solutions from the upper elevations is present in concentrations known to be phytotoxic to seedlings of forest trees and to groundcover plants; cadmium, Pb, and Zn are, in the spring, present in concentrations that are close to being phytotoxic; there are changes in the ratios of divalent cations to specific metals during the season and as functions of altitude and forest zones; nitrate concentration in soil water are also elevation- and time dependent.« less

  1. Metal transport and remobilisation in a basin affected by acid mine drainage: the role of ochreous amorphous precipitates.

    PubMed

    Consani, Sirio; Carbone, Cristina; Dinelli, Enrico; Balić-Žunić, Tonci; Cutroneo, Laura; Capello, Marco; Salviulo, Gabriella; Lucchetti, Gabriella

    2017-06-01

    Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea. The aim of this work is to evaluate the dispersion of metals in the Gromolo Torrent basin from the abandoned Cu-Fe sulphide mine of Libiola to the Ligurian Sea and to assess the metal remobilisation from the amorphous precipitates. The mineralogy of the superficial sediments collected in the torrent bed and the concentrations of different elements of environmental concern (Cu, Zn, Cd, Co, Cr, Mn, Ni, Pb, As, and Sb) were therefore analysed. The results showed that the precipitates contain high concentration of Fe, Al, Cu, and Zn, significantly modifying the bulk chemistry of the Gromolo Torrent sediments. In order to evaluate the possible remobilisation of ecotoxic elements from the amorphous precipitates, bulk leaching tests were performed with both deionised and seawater. Bulk leaching tests with deionised water mobilised primarily high Pb amounts, but also relatively high concentrations of Fe, Al, Cu, and Zn are released in the leachate. In seawater tests, Fe, Al, Cu, and Zn were released in smaller amounts, while other elements like Mn, Cd, Co, and Ni increased in the released fraction. Pb was still strongly released as in deionised water experiments. The results show that the interaction of precipitates and seawater can remobilise high concentrations of metals, thus affecting the surrounding environment.

  2. Plant water relations as affected by heavy metal stress: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelo, J.; Poschenrieder, C.

    1990-01-01

    Metal toxicity causes multiple direct and indirect effects in plants which concern practically all physiological functions. In this review the effects of excess heavy metals and aluminum on those functions which will alter plant water relations are considered. After a brief comment on the metal effects in cell walls and plasma-lemma, and their consequences for cell expansion growth, the influences of high meal availability on the factors which regulate water entry and water exit in plants are considered. Emphasis is placed on the importance of distinguishing between low water availability in mine and serpentine soils and toxicity effects in plantsmore » which may impair the ability of a plant to regulate water uptake. Examples on water relations of both plants grown on metalliferous soil and hydroponics are presented, and the effects of metal toxicity on root growth, water transport and transpiration are considered. It is concluded that future research has to focus on the mechanisms of metal-induced inhibition of both root elongation and morphogenetic processes within roots. In order to understand the relation between metal tolerance and drought resistance better, further studies into metal tolerance mechanisms at the cell wall, membrane and vacuolar level, as well as into the mechanisms of drought resistance of plants adapted to metalliferous soils are required. 135 refs., 7 figs., 6 tabs.« less

  3. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    PubMed

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive

  4. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) with Th7Fe3-type structure

    NASA Astrophysics Data System (ADS)

    Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.

    2012-08-01

    Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.

  5. NHEXAS PHASE I MARYLAND STUDY--METALS IN WATER ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Water data set contains analytical results for measurements of up to 11 metals in 400 water samples over 80 households. One-liter samples of tap water were collected after a two minute flush from the tap identified by the resident as that most commonly used for dri...

  6. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.

    PubMed

    Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe

    2013-09-15

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate > sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated into a Carbon Lattice.

    PubMed

    Ding, Yuxiao; Huang, Xing; Yi, Xianfeng; Qiao, Yunxiang; Sun, Xiaoyan; Zheng, Anmin; Su, Dang Sheng

    2018-06-04

    Designing heterogeneous metal-free catalysts for hydrogenation is a long-standing challenge in catalysis. Nanodiamond-based carbon materials were prepared that are surface-doped with electron-rich nitrogen and electron-deficient boron. The two heteroatoms are directly bonded to each other to form unquenched Lewis pairs with infinite π-electron donation from the surrounding graphitic structure. Remarkably, these Lewis pairs can split H 2 to form H + /H - pairs, which subsequently serve as the active species for hydrogenation of different substrates. This unprecedented finding sheds light on the uptake of H 2 across carbon-based materials and suggests that dual Lewis acidity-basicity on the carbon surface may be used to heterogeneously activate a variety of small molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impact on sediments and water by release of copper from chalcopyrite bearing rock due to acidic mine drainage

    NASA Astrophysics Data System (ADS)

    Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath

    2018-04-01

    Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.

  9. Compatibility Study of Silver Biocide in Drinking Water with Candidate Metals for Crew Exploration Vehicle Potable Water System

    NASA Technical Reports Server (NTRS)

    Adam, Niklas M.

    2009-01-01

    The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.

  10. Do constructed wetlands remove metals or increase metal bioavailability?

    PubMed

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, Earl Philip; Gatrone, Ralph Carl; Nash, Kenneth LaVerne

    1997-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  12. The effect of dietary supplementation of algae rich in docosahexaenoic acid on boar fertility.

    PubMed

    Murphy, E M; Stanton, C; Brien, C O '; Murphy, C; Holden, S; Murphy, R P; Varley, P; Boland, M P; Fair, S

    2017-03-01

    The objective of this study was to assess the effects of dietary supplementation of a commercial algal product rich in docosahexaenoic acid (DHA) on boar fertility as assessed in vitro and in vivo. Boars were fed one of three experimental diets for 19 weeks: (i) Control (Ctl) diet (n = 31), (ii) Ctl diet plus 75g All-G-Rich per day (n = 31) or (iii) Ctl diet plus 150g All-G-Rich per day (n = 30). Parameters assessed were (i) raw semen quality; volume, sperm concentration, total motility and morphology (ii) liquid semen quality; progressive motility, viability, hypotonic resistance and acrosomal integrity (iii) frozen-thawed semen quality; motility, thermal stress, viability, membrane fluidity and mitochondrial activity (iv) sperm and seminal plasma (SP) fatty acid composition (FAC) (v) total antioxidant capacity (TAC) of SP and (vi) farrowing rates and litter sizes of sows (n = 1158) inseminated with liquid semen. Boars consuming 75g All-G-Rich had a larger semen volume (P < 0.05) and a higher total sperm number (P < 0.01) than the Ctl treatment, however, there was no effect of treatment on any other semen quality parameter (P > 0.05). There was no effect of dietary treatment on the FAC and TAC of SP or on farrowing rate and litter size (P > 0.05). There was an effect of dietary treatment on the FAC of sperm, represented by an 1.72 and 1.60 fold increase in the DHA content for 75 and 150g treatments, respectively, compared to the Ctl treatment. In conclusion, a significant increase in semen volume and total sperm number in boars supplemented 75g All-G-Rich daily, resulted in an increase in production of 3 to 4 more doses per ejaculate, thus, indicating that the feeding regime described within this study has the potential for increasing the output of boar studs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The effects of fire temperatures on water soluble heavy metals.

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    , because at long term can increase soil acidity. After all base cations have being leached, pH values decrease, and the heavy metals remaining in the ash are easily transported with unknown impacts on soil and water resources. Research is needed in the study at long term of the effects of fire in metals accumulation in soil resources, and all these aspects will be discussed. Keywords: Fire ash, heavy metals, Quercus suber, Quercus robur, Pinus pinea, Pinus pinaster, prescribed fire, pH, Calcite

  14. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide.

    PubMed

    Jadhav, Umesh; Su, C; Hocheng, Hong

    2016-12-01

    In the present study, the leaching of metals from large pieces of computer printed circuit boards (CPCBs) was studied. A combination of citric acid (0.5 M) and 1.76 M hydrogen peroxide (H 2 O 2 ) was used to leach the metals from CPCB piece. The influence of system variables such as H 2 O 2 concentration, concentration of citric acid, shaking speed, and temperature on the metal leaching process was investigated. The complete metal leaching was achieved in 4 h from a 4 × 4 cm CPCB piece. The presence of citric acid and H 2 O 2 together in the leaching solution is essential for complete metal leaching. The optimum addition amount of H 2 O 2 was 5.83 %. The citric acid concentration and shaking speed had an insignificant effect on the leaching of metals. The increase in the temperature above 30 °C showed a drastic effect on metal leaching process.

  15. Sulphur-containing Amino Acids: Protective Role Against Free Radicals and Heavy Metals.

    PubMed

    Colovic, Mirjana B; Vasic, Vesna M; Djuric, Dragan M; Krstic, Danijela Z

    2018-01-30

    Sulphur is an abundant element in biological systems, which plays an important role in processes essential for life as a constituent of proteins, vitamins and other crucial biomolecules. The major source of sulphur for humans is plants being able to use inorganic sulphur in the purpose of sulphur-containing amino acids synthesis. Sulphur-containing amino acids include methionine, cysteine, homocysteine, and taurine. Methionine and cysteine are classified as proteinogenic, canonic amino acids incorporated in protein structure. Sulphur amino acids are involved in the synthesis of intracellular antioxidants such as glutathione and N-acetyl cysteine. Moreover, naturally occurring sulphur-containing ligands are effective and safe detoxifying agents, often used in order to prevent toxic metal ions effects and their accumulation in human body. Literature search for peer-reviewed articles was performed using PubMed and Scopus databases, and utilizing appropriate keywords. This review is focused on sulphur-containing amino acids - methionine, cysteine, taurine, and their derivatives - glutathione and N-acetylcysteine, and their defense effects as antioxidant agents against free radicals. Additionally, the protective effects of sulphur-containing ligands against the toxic effects of heavy and transition metal ions, and their reactivation role towards the enzyme inhibition are described. Sulphur-containing amino acids represent a powerful part of cell antioxidant system. Thus, they are essential in the maintenance of normal cellular functions and health. In addition to their worthy antioxidant action, sulphur-containing amino acids may offer a chelating site for heavy metals. Accordingly, they may be supplemented during chelating therapy, providing beneficial effects in eliminating toxic metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Determination of trace metals in drinking water in Irbid City-Northern Jordan.

    PubMed

    Alomary, Ahmed

    2013-02-01

    Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.

  17. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.

    PubMed

    Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D

    2011-03-01

    Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase. Copyright © 2010 SETAC.

  18. Determination of robust metallicities for metal-rich red giant branch stars. An application to the globular cluster NGC 6528

    NASA Astrophysics Data System (ADS)

    Liu, C.; Ruchti, G.; Feltzing, S.; Primas, F.

    2017-05-01

    Context. The study of the Milky Way relies on our ability to interpret the light from stars correctly. With the advent of the astrometric ESA mission Gaia we will enter a new era where the study of the Milky Way can be undertaken on much larger scales than currently possible. In particular we will be able to obtain full 3D space motions of red giant stars at large distances. This calls for a reinvestigation of how reliably we can determine, for example, iron abundances in such stars and how well they reproduce those of dwarf stars. Aims: Here we explore robust ways of determining the iron content of metal-rich giant stars. We aim to understand what biases and shortcomings the widely applied methods suffer from. Methods: In this study we were mainly concerned with standard methods of analysing stellar spectra. These include the analysis of individual lines to determine stellar parameters, and analysis of the broad wings of certain lines (e.g. Hα and calcium lines) to determine effective temperature and surface gravity for the stars. Results: For NGC 6528 we find that [Fe/H] = + 0.04 dex with a scatter of σ = 0.07 dex, which gives an error in the derived mean abundance of 0.02 dex. Conclusions: Our work has two important conclusions for analysis of metal-rich red giant branch stars. Firstly, for spectra with S/N of below about 35 per reduced pixel, [Fe/H] becomes too high. Secondly, determination of Teff using the wings of the Hα line results in [Fe/H] values about 0.1 dex higher than if excitational equilibrium is used. The last conclusion is perhaps unsurprising, as we expect the NLTE effect to become more prominent in cooler stars and we can not use the wings of the Hα line to determine Teff for the cool stars in our sample. We therefore recommend that in studies of metal-rich red giant stars care should be taken to obtain sufficient calibration data to enable use of the cooler stars. Based on observations made with the ESO/VLT, at Paranal Observatory, under

  19. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary.

    PubMed

    Feng, Chenghong; Guo, Xiaoyu; Yin, Su; Tian, Chenhao; Li, Yangyang; Shen, Zhenyao

    2017-10-01

    The partitioning of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) between the water, suspended particulate matter (SPM), and sediments in seven channel sections during three hydrologic seasons in the Yangtze Estuary was comprehensively investigated. Special attention was paid to the role of tides, influential factors (concentrations of SPM and dissolved organic carbon, and particle size), and heavy metal speciation. The SPM-water and sediment-water partition coefficients (K p ) of the heavy metals exhibited similar changes along the channel sections, though the former were larger throughout the estuary. Because of the higher salinity, the K p values of most of the metals were higher in the north branch than in the south branch. The K p values of Cd, Co, and As generally decreased from the wet season to the dry season. Both the diagonal line method and paired samples t-test showed that no specific phase transfer of heavy metals existed during the flood and ebb tides, but the sediment-water K p was more concentrated for the diagonal line method, owing to the relatively smaller tidal influences on the sediment. The partition coefficients (especially the K p for SPM-water) had negative correlations with the dissolved organic carbon (DOC) but positive correlations were noted with the particle size for most of the heavy metals in sediment. Two types of significant correlations were observed between K p and metal speciation (i.e., exchangeable, carbonate, reducible, organic, and residual fractions), which can be used to identify the dominant phase-partition mechanisms (e.g., adsorption or desorption) of heavy metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water.

    PubMed

    Mbareck, Chamekh; Nguyen, Quang Trong; Alaoui, Ouafa Tahiri; Barillier, Daniel

    2009-11-15

    Polysulfone (PSf)/polyacrylic acid ultrafiltration (PSf/PAA) membranes were prepared from a polymer blend in dimethylformamide by coagulation in water according to the wet phase inversion method. Immobilization of water-soluble PAA within the non-soluble PSf matrix was proven by the increase of ion exchange capacity and the intensity of the carboxyl groups' peak with the increase of PAA content as shown by Fourier transform infrared spectra. These results lead to consider that PSf and PAA form a semi-interpenetrating polymer networks. The obtained membranes showed a decrease of mean surface-pore sizes, the overall porosity and the hydraulic permeability with the increase in PAA content. Such results were imputed to the morphologic modifications of PSf film with the immobilization of increasing PAA amount. PSf/PAA membranes showed high lead, cadmium and chromium rejection which reaches 100% at pH superior to 5.7 and a low rejection at low pH. Moreover, the heavy metal rejection decreases with feed solution concentration and applied pressure increases. These behaviors were attributed to the role of carboxylic groups in ion exchange or complexation. As a matter of fact, the strong lead ion-PAA interactions were revealed by the scanning electron microscopy with energy dispersive X-rays (SEM-EDX).

  1. Lipoprotein profiles and serum peroxide levels of aged women consuming palmolein or oleic acid-rich sunflower oil diets.

    PubMed

    Cuesta, C; Ródenas, S; Merinero, M C; Rodríguez-Gil, S; Sánchez-Muniz, F J

    1998-09-01

    To investigate the hypercholesterolemic effects of a dietary exchange between 16:0 and 18:1 while 18:2 was at relatively lower level (approximately 4%) in aged women with initially high total serum cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) values and with high intakes of dietary cholesterol. Subjects were assigned to two consecutive 28 d periods. In the first period all subjects followed an oleic acid-rich diet in the form of oleic acid-rich sunflower oil. This was followed by a second period rich in palmitic acid in the form of palmolein. Nutrient intakes, serum lipids, lipoproteins, antioxidant vitamins, peroxides and LDL-peroxides were measured at two dietary periods. Instituto de Nutrición y Bromatología (CSIC), Departamento de Nutrición y Bromatología I (Nutrición) and Sección Departamental de Quimica Analítica, Universidad Complutense, Madrid, Spain. The palmolein period led to an increase in TC (P < 0.001; 17.7%) and serum apolipoprotein (Apo) B levels (P < 0.001; 18.0%). LDL-C and LDL-Apo B concentrations were higher (P < 0.001, 4.33+/-0.94 mmol/L and P < 0.01, 1.08+/-0.20 g/L, respectively) following this period than following the oleic acid-rich sunflower oil diet (3.56+/-0.85 mmol/L, 0.93+/-0.16g/L, respectively). No significant differences were observed in the TC/high density lipoprotein cholesterol (TC/HDL-C) ratio between the two dietary periods. Serum and LDL-peroxides were lower (P < 0.01, 49.5%, and P < 0.001, 69.0%, respectively) after the palmolein diet than after the oleic acid-rich sunflower oil diet. The palmolein diet significantly increased TC, LDL-C, Apo B, VLDL-ApoB, LDL-ApoB in women with TC > or = 6.21 mmol/L or with TC < 6.21 mmol/L, but the increase in Apo B, LDL-C and LDL-Apo B was greater among the women with high TC. The palmolein diet increased HDL-C in women with high or with low TC but this rise was on the borderline of statistical significance (P = 0.06) only in normocholesterolemics. Serum and LDL

  2. Heavy metals analysis and quality assessment in drinking water - Khorramabad city, Iran.

    PubMed

    Ghaderpoori, Mansour; Kamarehie, Bahram; Jafari, Ali; Ghaderpoury, Afshin; Karami, Mohammadamin

    2018-02-01

    Continuous monitoring of drinking water quality is essential in terms of heavy metals and toxic substances. The general objective of this study were to determine the concentration of heavy metals in drinking water of Khorramabad city and to determine the water quality indices (The heavy metal pollution index and heavy metal evaluation index). According to the city map, 45 points were selected for drinking water sampling through the city distribution system. The results of this study showed that the average concentration of heavy metals such as Zn, Pb, Cd, Cr, and Cu were 47.01 μg/l, 3.2 μg/l, 0.42 μg/l, 5.08 μg/l, and 6.79 μg/l, respectively. The HPI and HEI (water quality indices) for Zn, Pb, Cd, Cr, and Cu were 46.58, 46.58, respectively. According to the indices, the city drinking water quality is good in terms of heavy metals.

  3. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.

    PubMed

    Hedrich, Sabrina; Johnson, D Barrie

    2012-02-01

    A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to <1mg/L. The system was highly effective in selectively removing iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOEpatents

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  5. Water Adsorption on Various Metal Organic Framework

    NASA Astrophysics Data System (ADS)

    Teo, H. W. B.; Chakraborty, A.

    2017-12-01

    In this paper, Metal Organic Framework (MOF) undergoes N2 and water adsorption experiment to observe how the material properties affects the water sorption performance. The achieved N2 isotherms is used to estimate the BET surface area, pore volume and, most importantly, the pore size distribution of the adsorbent material. It is noted that Aluminium Fumarate and CAU-10 has pore distribution of about 6Å while MIL-101(Cr) has 16 Å. The water adsorption isotherms at 25°C shows MIL-101(Cr) has a long hydrophobic length from relative pressure of 0 ≤ P/Ps ≤ 0.4 with a maximum water uptake of 1kg/kg sorbent. Alkali metal ions doped MIL-101(Cr) reduced the hydrophobic length and maximum water uptake of original MIL-101(Cr). Aluminium Fumarate and CAU-10 has lower water uptake, but the hydrophobic length of both materials is within relative pressure of P/Ps ≤ 0.2. The kinetic behaviour of doped MIL-101(Cr), Aluminium Fumarate and CAU-10 are faster than MIL-101(Cr).

  6. Forensic analysis of anthraquinone, azo, and metal complex acid dyes from nylon fibers by micro-extraction and capillary electrophoresis.

    PubMed

    Stefan, Amy R; Dockery, Christopher R; Nieuwland, Alexander A; Roberson, Samantha N; Baguley, Brittany M; Hendrix, James E; Morgan, Stephen L

    2009-08-01

    The extraction and separation of dyes present on textile fibers offers the possibility of enhanced discrimination between forensic trace fiber evidence. An automated liquid sample handling workstation was programmed to deliver varying solvent combinations to acid-dyed nylon samples, and the resulting extracts were analyzed by an ultraviolet/visible microplate reader to evaluate extraction efficiencies at different experimental conditions. Combinatorial experiments using three-component mixture designs varied three solvents (water, pyridine, and aqueous ammonia) and were employed at different extraction temperatures for various extraction durations. The extraction efficiency as a function of the three solvents (pyridine/ammonia/water) was modeled and used to define optimum conditions for the extraction of three subclasses of acid dyes (anthraquinone, azo, and metal complex) from nylon fibers. The capillary electrophoresis analysis of acid dye extracts is demonstrated using an electrolyte solution of 15 mM ammonium acetate in acetonitrile/water (40:60, v/v) at pH 9.3. Excellent separations and discriminating diode array spectra are obtained even for dyes of similar color.

  7. Elimination of cadmium trace contaminations from drinking water.

    PubMed

    Zhao, Xuan; Höll, Wolfgang H; Yun, Guichun

    2002-02-01

    Raw waters polluted with trace heavy metals present serious problems to the part of the Chinese water supply. One of the important contaminants is cadmium. Removal of trace amounts of heavy metals can be achieved by means of selective sorption processes. One of the possibilities is the application of weak base anion exchangers. LEWIS-base/acid interactions lead to an exclusive sorption of heavy metal cations and an equivalent amount of anions of strong acids. The respective elimination of cadmium from pure solutions and spiked natural water and the regeneration of the exhausted exchanger has been investigated. The results demonstrate a very efficient elimination. The standards for drinking water are met for a very large relative volume of treated water. In addition, even a considerable share of dissolved organic matter is adsorbed. Regeneration requires a first step with sulfuric acid to remove the metals and a second one with sodium hydroxide to neutralize the exchanger and to displace the DOC adsorbed. The heavy metals can be concentrated in a small volume which facilitates the discharge of the waste.

  8. Non-catalytic hydrogenation of VO2 in acid solution.

    PubMed

    Chen, Yuliang; Wang, Zhaowu; Chen, Shi; Ren, Hui; Wang, Liangxin; Zhang, Guobin; Lu, Yalin; Jiang, Jun; Zou, Chongwen; Luo, Yi

    2018-02-26

    Hydrogenation is an effective way to tune the property of metal oxides. It can conventionally be performed by doping hydrogen into solid materials with noble-metal catalysis, high-temperature/pressure annealing treatment, or high-energy proton implantation in vacuum condition. Acid solution naturally provides a rich proton source, but it should cause corrosion rather than hydrogenation to metal oxides. Here we report a facile approach to hydrogenate monoclinic vanadium dioxide (VO 2 ) in acid solution at ambient condition by placing a small piece of low workfunction metal (Al, Cu, Ag, Zn, or Fe) on VO 2 surface. It is found that the attachment of a tiny metal particle (~1.0 mm) can lead to the complete hydrogenation of an entire wafer-size VO 2 (>2 inch). Moreover, with the right choice of the metal a two-step insulator-metal-insulator phase modulation can even be achieved. An electron-proton co-doping mechanism has been proposed and verified by the first-principles calculations.

  9. Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice.

    PubMed

    Suzuki, Yohei; Sato, Tadashi; Sugimoto, Masataka; Baskoro, Hario; Karasutani, Keiko; Mitsui, Aki; Nurwidya, Fariz; Arano, Naoko; Kodama, Yuzo; Hirano, Shin-Ichi; Ishigami, Akihito; Seyama, Kuniaki; Takahashi, Kazuhisa

    2017-10-07

    Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H 2 ) has been reported as a preventive and therapeutic antioxidant. Molecular H 2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H 2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H 2 . We administered H 2 -rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H 2 -rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H 2 -rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H 2 -untreated mice. Moreover, treatment with H 2 -rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H 2 -rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our

  10. Source apportionment and water solubility of metals in size segregated particles in urban environments.

    PubMed

    Jiang, Sabrina Yanan; Kaul, Daya S; Yang, Fenhuan; Sun, Li; Ning, Zhi

    2015-11-15

    Metals in atmospheric particulate matter (PM) have been associated with various adverse health effects. Different factors contributing to the characterization and distribution of atmospheric metals in urban environments lead to uncertainty of the understanding of their impact on public health. However, few studies have provided a comprehensive picture of the spatial and seasonal variability of metal concentration, solubility and size distribution, all of which have important roles in their contribution to health effects. This study presents an experimental investigation on the characteristics of metals in PM2.5 and coarse PM in two seasons from four urban sites in Hong Kong. The PM samples were extracted separately with aqua regia and water, and a total of sixteen elements were analyzed using ICP-MS and ICP-OES to determine the size segregated concentration and solubility of metals. The concentrations of major metals were distributed in similar patterns with the same order of magnitude among different urban sites. Source apportionment using Positive Matrix Factorization (PMF) indicated that three sources namely road dust, vehicular exhaust and ship emission are major contributors to the urban atmospheric metal concentrations in Hong Kong with distinctly different profiles between coarse PM and PM2.5 fractions. The individual metals were assigned to different sources, consistent with literature documentation, except potassium emerging with substantial contribution from vehicle exhaust emission. Literature data from past studies on both local and other cities were compared to the results from the present study to investigate the impact of different emission sources and control policies on metal distribution in urban atmosphere. A large variation of solubility among the metals reflected that the majority of metals in PM2.5 were more soluble than those in coarse PM indicating size dependent chemical states of metals. The data from this study provides a rich dataset of

  11. Relevance of a Hypersaline Sodium-Rich Naturally Sparkling Mineral Water to the Protection against Metabolic Syndrome Induction in Fructose-Fed Sprague-Dawley Rats: A Biochemical, Metabolic, and Redox Approach.

    PubMed

    Pereira, Cidália Dionísio; Severo, Milton; Araújo, João Ricardo; Guimarães, João Tiago; Pestana, Diogo; Santos, Alejandro; Ferreira, Rita; Ascensão, António; Magalhães, José; Azevedo, Isabel; Monteiro, Rosário; Martins, Maria João

    2014-01-01

    The Metabolic Syndrome increases the risk for atherosclerotic cardiovascular disease and type 2 Diabetes Mellitus. Increased fructose consumption and/or mineral deficiency have been associated with Metabolic Syndrome development. This study aimed to investigate the effects of 8 weeks consumption of a hypersaline sodium-rich naturally sparkling mineral water on 10% fructose-fed Sprague-Dawley rats (Metabolic Syndrome animal model). The ingestion of the mineral water (rich in sodium bicarbonate and with higher potassium, calcium, and magnesium content than the tap water used as control) reduced/prevented not only the fructose-induced increase of heart rate, plasma triacylglycerols, insulin and leptin levels, hepatic catalase activity, and organ weight to body weight ratios (for liver and both kidneys) but also the decrease of hepatic glutathione peroxidase activity and oxidized glutathione content. This mineral-rich water seems to have potential to prevent Metabolic Syndrome induction by fructose. We hypothesize that its regular intake in the context of modern diets, which have a general acidic character interfering with mineral homeostasis and are poor in micronutrients, namely potassium, calcium, and magnesium, could add surplus value and attenuate imbalances, thus contributing to metabolic and redox health and, consequently, decreasing the risk for atherosclerotic cardiovascular disease.

  12. A study of marine pollution caused by the release of metals into seawater following acid spills.

    PubMed

    Cabon, Jean-Yves; Giamarchi, Philippe; Le Floch, Stephane

    2010-07-01

    This study examined the potential metal pollution induced by the accidental spill of different acids into seawater. The acids sink to the bottom according to their densities and subsequently react with marine sediments. The acids selected for this study were acetic, hydrochloric, nitric, sulfuric, and phosphoric acids; the metallic elements selected were Cr, Cu, Fe, Mn, Pb and Zn. The sediment was collected in Brest Harbour. The percentages of metals released from this sediment in the presence of various concentrations of acids in seawater were important; concentrations of approximately 7 mg L(-1) for Mn and 60 mg L(-1) for Zn were observed under our experimental conditions. We also examined the rate of release of these metals from the sediment into the seawater in the presence of the different acids and under different experimental conditions. We found that most of the metallic elements were released from the sediments into the seawater during the first fifteen minutes of exposure. After this time, a high degree of pollution was induced if acids leached into seawater were not rapidly diluted. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Sediment matrix characterization as a tool for evaluating the environmental impact of heavy metals in metal mining, smelting, and ore processing areas.

    PubMed

    Ružičková, Silvia; Remeteiová, Dagmar; Mičková, Vladislava; Dirner, Vojtech

    2018-02-21

    In this work, the matrix characterization (mineralogy, total and local chemical composition, and total organic (TOC) and inorganic carbon (TIC) contents) of different types of sediments from mining- and metallurgy-influenced areas and the assessment of the impact of the matrix on the association of potentially hazardous metals with the mineral phases of these samples, which affect their mobility in the environment, are presented. For these purposes, sediment samples with different origins and from different locations in the environment were analyzed. Anthropogenic sediments from metal-rich post-flotation tailings (Lintich, Slovakia) represent waste from ore processing, natural river sediments from the Hornád River (Košice, Slovakia) represent areas influenced predominantly by the metallurgical industry, and lake sediments from a water reservoir Ružín (inflow from the Hornád and Hnilec Rivers, Slovakia) represent the impact of the metallurgical and/or mining industries. The total metal contents were determined by X-ray fluorescence (XRF) analysis, the local chemical and morphological microanalysis by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and the TOC and TIC contents by infrared (IR) spectrometry. The mobility/bioavailability of Cu, Pb, and Zn in/from sediments at the studied areas was assessed by ethylenediaminetetraacetic acid (EDTA) and acetic acid (AA) extraction and is discussed in the context of the matrix composition. The contents of selected potentially hazardous elements in the extracts were determined by the high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

  14. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent.

    PubMed

    Maatar, Wafa; Boufi, Sami

    2015-08-01

    A poly(methacrylic acid-co-maleic acid) grafted nanofibrillated cellulose (NFC-MAA-MA) aerogel was prepared via radical polymerization in an aqueous solution using Fenton's reagent. The ensuing aerogel, in the form of a rigid porous material, was characterized by FTIR and NMR and used as an adsorbent for the removal of heavy metals from aqueous solutions. It showed an efficient adsorption, exceeding 95% toward Pb(2+), Cd(2+), Zn(2+) and Ni(2+) when their concentration was lower than 10 ppm and ranged from 90% to 60% for a metal concentration higher than 10 ppm. Over 98% of the adsorbed metal ion was recovered using EDTA as a desorbing solution, and the subsequent washing allowed the aerogel to be reused repeatedly without noticeable loss of adsorption capacity. It was concluded that the (NFC-MAA-MA) aerogel may be used as a high capacity and reusable sorbent material in heavy-metal removing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Water-in-Supercritical CO2 Microemulsion Stabilized by a Metal Complex.

    PubMed

    Luo, Tian; Zhang, Jianling; Tan, Xiuniang; Liu, Chengcheng; Wu, Tianbin; Li, Wei; Sang, Xinxin; Han, Buxing; Li, Zhihong; Mo, Guang; Xing, Xueqing; Wu, Zhonghua

    2016-10-17

    Herein we propose for the first time the utilization of a metal complex for forming water-in-supercritical CO 2 (scCO 2 ) microemulsions. The water solubility in the metal-complex-stabilized microemulsion is significantly improved compared with the conventional water-in-scCO 2 microemulsions stabilized by hydrocarbons. Such a microemulsion provides a promising route for the in situ CO 2 reduction catalyzed by a metal complex at the water/scCO 2 interface. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    PubMed

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles.

  17. Heavy metal displacement in salt-water-irrigated soil during phytoremediation.

    PubMed

    Wahla, Intkhab Hazoor; Kirkham, M B

    2008-09-01

    In regions where phytoremediation is carried out, brackish water must often be used. However, no information exists concerning the consequences of saline-water irrigation on the mobility of heavy metals in sludge applied to soil during phytoremediation. The purpose of this experiment was to determine the effect of NaCl irrigation on displacement of seven heavy metals in sludge (Cd, Cu, Fe, Mn, Ni, Pb, Zn) applied to the surface of soil columns containing barley plants. Half the columns received NaCl irrigation (10,000 mg L(-1)) and half the columns received tap-water irrigation. Half the columns were treated with the chelating agent EDTA. With no EDTA, irrigation with the NaCl solution increased the concentrations of Cd, Fe, Mn, and Pb in the drainage water above drinking-water standards. Irrigation of sludge farms with brackish water is not recommended, because saline water increased the mobility of the heavy metals and they polluted the drainage water.

  18. Adsorptive Removal of Metal Ions from Water using Functionalized Biomaterials.

    PubMed

    Deshpande, Kanchanmala

    2017-01-01

    Synthesis and modification of cost-effective sorbents for removing heavy metals from water resources is an area of significance. It had been reported that materials with biological origins, such as agricultural and animal waste, are excellent alternatives to conventional adsorbents due to their higher affinity, capacity and selectivity towards metal ions. These properties of biomaterials help to reduce or detoxify metal ions concentration in contaminated water to acceptable regulatory standards. Synthesis of novel, efficient, cost effective, eco-friendly biomaterials for heavy metal adsorption from water is still an area of challenge. In this comprehensive review, acompilation of patents as well as published articles is carried out to outline the properties of different biomaterials based on their precursors along withdetailed description of biomaterial morphology and various surface modification approaches. A detailed study of the performance of adsorbents and the role of physical and chemical modification in terms of enhancing their potential for metal adsorption from water is compiled here. The factors affecting adsorption behavior i.e., capacity and affinity of e biomaterials is also compiled. This paper presents a concise review of reported studies on the synthesis and modification of biomaterials, their use for heavy metal removal from waters and future prospects of this technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Cobalt encapsulated N-doped defect-rich carbon nanotube as pH universal hydrogen evolution electrocatalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Suyun; Xiao, Xinxin; Lv, Taotao; Lv, Xiaomeng; Liu, Botao; Wei, Wei; Liu, Jun

    2018-07-01

    Exploring efficient and economical Pt-free electrocatalysts is of great significance for the electrocatalytic hydrogen evolution reaction (HER). However, the rational design on an industrial scale is a formidable challenge. Herein, we reported a facile calcination at controlled temperatures to fabricate rationally assembled cobalt nanoparticles embedded in defect-rich N-doped carbon nanotubes (Co-NCNTs), which was derived from low-cost dicyanadiamide thermally polymerized with cobalt precursor forming metal-organic frameworks, then further calculation leading to final products. The as-obtained samples were endowed with high content of N as electrocatalytic active site, defect-rich structure and excellent synergistic effect between cobalt nanoparticles and carbon nanotubes toward electrocatalytic HER. As expected, Co-NCNTs were highly active and long-term stable with onset potentials of c.a. 15 mV in acidic electrolytes (0.5 M H2SO4), 70 mV in alkaline (1 M KOH) and 300 mV in neutral media (pH 7). Specially, to achieve the current density of 10 mA cm-2, the overpotential of 103 mV in acid, 204 mV in alkaline and 337 mV in neutral media was obtained. The enhanced HER performance was discussed in detail by adjusting the molar ratio of precursor and metal species. Moreover, the present synthetic route is easy to scale up and expand to other non-noble metal and alloy.

  20. Furfural production by 'acidic steam stripping' of lignocellulose.

    PubMed

    van Buijtenen, Jeroen; Lange, Jean-Paul; Espinosa Alonso, Leticia; Spiering, Wouter; Polmans, Rob F; Haan, Rene J

    2013-11-01

    Furfural and acetic acid are produced with approximately 60 and 90 mol % yield, respectively, upon stripping bagasse with a gaseous stream of HCl/steam and condensing the effluent to water/furfural/acetic acid. The reaction kinetics is 1(st)  order in furfural and 0.5(th)  order in HCl. A process concept with full recycling of the reaction effluents is proposed to reduce the energy demand to <10 tonsteam  tonfurfural (-1) and facilitate the product recovery through a simple liquid/liquid separation of the condensate into a water-rich and a furfural-rich phase. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    PubMed

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  2. Role of multiple substrates (spent mushroom compost, ochre, steel slag, and limestone) in passive remediation of metal-containing acid mine drainage.

    PubMed

    Molahid, Verma Loretta M; Mohd Kusin, Faradiella; Madzin, Zafira

    2018-01-12

    The potential of selected materials in treating metal-rich acid mine drainage (AMD) has been investigated in a series of batch experiment. The efficiencies of both single and mixed substrates under two conditions i.e. low- and high-concentration solutions containing heavy metals were evaluated. Synthetic metal-containing AMD was used in the experiments treated using spent mushroom compost (SMC), ochre, steel slag (SS), and limestone. Different ratios of treatment materials were incorporated in the substrate mix and were tested in an anoxic condition. In the batch test, physicochemical parameters (pH, redox potential, total dissolved solids, conductivity, and Ca concentration) and heavy metals (Fe, Mn, Pb, Zn, and Al) were analysed. The mixed substrates have shown satisfactory performance in increasing pH with increasing Ca concentration and removing metals. It has been found that SS and ochre played an important role in the treatment of AMD. The results showed that the mixed substrates SM1 (i.e. 10% SMC mixed with 20% ochre, 30% steel slag, and 40% limestone) and SM2 (i.e. 20% SMC mixed with 30% ochre, 40% steel slag, and 10% limestone) were effective in increasing the pH from as low as 3.5-8.09, and removing heavy metals with more than 90% removal efficiencies.

  3. Small Community and Household Water Systems Research on Removal of Metals and Pesticides from Drinking Water Sources

    EPA Science Inventory

    The presentation entitled “Small Community and Household Water Systems Research on Removal of Metals and Pesticides from Drinking Water Sources” provides treatment alternatives for removal of metals and pesticides from surface and ground waters before human consumption. The pres...

  4. "Periodic-table-style" paper device for monitoring heavy metals in water.

    PubMed

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  5. Black water sludge reuse in agriculture: are heavy metals a problem?

    PubMed

    Tervahauta, Taina; Rani, Sonia; Hernández Leal, Lucía; Buisman, Cees J N; Zeeman, Grietje

    2014-06-15

    Heavy metal content of sewage sludge is currently the most significant factor limiting its reuse in agriculture within the European Union. In the Netherlands most of the produced sewage sludge is incinerated, mineralizing the organic carbon into the atmosphere rather than returning it back to the soil. Source-separation of black water (toilet water) excludes external heavy metal inputs, such as industrial effluents and surface run-offs, producing sludge with reduced heavy metal content that is a more favorable source for resource recovery. The results presented in this paper show that feces is the main contributor to the heavy metal loading of vacuum collected black water (52-84%), while in sewage the contribution of feces is less than 10%. To distinguish black water from sewage in the sludge reuse regulation, a control parameter should be implemented, such as the Hg and Pb content that is significantly higher in sewage sludge compared to black water sludge (from 50- to 200-fold). The heavy metals in feces and urine are primarily from dietary sources, and promotion of the soil application of black water sludge over livestock manure and artificial fertilizers could further reduce the heavy metal content in the soil/food cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Rainy Periods and Bottom Water Stagnation Initiating Brine Accumulation and Metal Concentrations: 1. The Late Quaternary

    NASA Astrophysics Data System (ADS)

    Rossignol-Strick, Martine

    1987-06-01

    A working hypothesis is proposed to account for the present accumulation of brines in isolated pockets of the ocean floor and for the formation of the underlying organic and metal-rich sediments. These are the Tyro and Bannock basins in the East Mediterranean, the Red Sea Deeps, and the Orca Basin in the northern Gulf of Mexico. Initiation of brine-derived deposition in the Red Sea Deeps and Orca Basin occurred between 12,000 and 8000 years B.P. This time bracket also encompasses the formation of the latest East Mediterranean sapropel and the wettest global climate since the last glacial maximum. This wet period first appeared in the tropics around 12,000 years B.P, then in the subtropical and middle latitudes. During the same period, the 23,000 year precession cycle brought the summer insolation of the northern hemisphere to its peak at 11,000 years B.P. with retreating northern hemisphere ice sheets. The Red Sea Deeps and the Orca Basin became anoxic during this humid period, and metal-rich sapropel deposition then began. In contrast, the Tyro and Bannock basins began accumulating a brine long before and persisted beyond this climatic stage. The hypothesis involves two propositions: (1) As in the Eastern Mediterranean Sea, marine anoxia was mainly the consequence of the large influx of continental runoff and local precipitation. Longer residence time of bottom waters, so-called "stagnation," in silled rimmed basins would have resulted from lower salinity at the sea surface in areas of deep water formation in the Eastern Mediterranean, the Red Sea, and the Gulf of Mexico and (2) Miocene or older evaporites underlie these basins or outcrop on their flanks. Leaching from these evaporites was an ongoing process before the quasi-stagnation phase, but the initial leachate, much less saline than the present brines, was continuously flushed by bottom circulation. The climate-induced quiescence of bottom waters in these basins enabled the leachate to accumulate. The

  7. Geochemical and Hydrologic Controls of Copper-Rich Surface Waters in the Yerba Loca-Mapocho System

    NASA Astrophysics Data System (ADS)

    Pasten, P.; Montecinos, M.; Coquery, M.; Pizarro, G. E.; Abarca, M. I.; Arce, G. J.

    2015-12-01

    Andean watersheds in Northern and Central Chile are naturally enriched with metals, many of them associated to sulfide mineralizations related to copper mining districts. The natural and anthropogenic influx of toxic metals into drinking water sources pose a sustainability challenge for cities that need to provide safe water with the smallest footprint. This work presents our study of the transformations of copper in the Yerba Loca-Mapocho system. Our sampling campaign started from the headwaters at La Paloma Glacier and continues to the inlet of the San Enrique drinking water treatment plant, a system feeding municipalities in the Eastern area of Santiago, Chile. Depending on the season, total copper concentrations go as high as 22 mg/L for the upper sections, which become diluted to <5 mg/L downstream. pH ranged from 3 to 5.6 while suspended solids ranged from <10 to 100 mg/L. We used Geochemist Workbench to assess copper speciation and to evaluate the thermodynamic controls for the formation and dissolution of solid phases. A sediment trap was used to concentrate suspended particulate matter, which was analyzed with ICP-MS, TXRF (total reflection X ray fluorescence) and XRD (X-ray diffraction). Major elements detected in the precipitates were Al (200 g/kg), S (60 g/kg), and Cu (6 g/kg). Likely solid phases include hydrous amorphous phases of aluminum hydroxides and sulfates, and copper hydroxides/carbonates. Efforts are undergoing to find the optimal mixing ratios between the acidic stream and more alkaline streams to maximize attenuation of dissolved copper. The results of this research could be used for enhancing in-stream natural attenuation of copper and reducing treatment needs at the drinking water facility. Acknowledgements to Fondecyt 1130936 and Conicyt Fondap 15110020

  8. Water hyacinth as indicator of heavy metal pollution the tropics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, H.; Otero, M.; Lodenius, M.

    1989-12-01

    The water hyacinth (Eichhornia crassipes) is a common aquatic plant in many tropical countries. Its ability absorb nutrients and other elements from the water has made it possible to use it for water purification purposes. Eichhornia, especially stems and leaves, have been successfully used as indicators of heavy metal pollution in tropical countries. The uptake of heavy metals in this plant is stronger in the roots than in the floating shoots. Metallothionein-like compounds have been found from roots of this species after cadmium exposure. The purpose of this investigation was to study the possibilities of using roots of water hyacinthmore » as a biological indicator of metal pollution in tropical aquatic ecosystems.« less

  9. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1997-10-14

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  10. Richness, coverage and concentration of heavy metals in vascular epiphytes along an urbanization gradient.

    PubMed

    Becker, Diego Fedrizzi Petry; Linden, Rafael; Schmitt, Jairo Lizandro

    2017-04-15

    Richness, coverage and concentration of heavy metals in vascular epiphytes were analyzed in isolated trees along an urbanization gradient in Southern Brazil. A total of 20 phorophytes were sampled in the main street of each site. Concentrations of chromium, cadmium, lead, manganese, nickel and zinc were measured in the leaves of Tillandsia recurvata L. using Graphite Furnace Atomic Absorption Spectrophotometry. A decreasing gradient of epiphyte richness and coverage was observed as urbanization increased. Vehicle fleet and demographic density were the parameters most correlated with the reduction of epiphytic diversity. In T. recurvata, significantly higher values of cadmium, lead and zinc were recorded in the most urbanized areas, and were strongly related to the vehicle fleet and to the demographic density in these sites. The results demonstrated that these parameters could be applied to the diagnosis of environmental quality in urban areas, allowing standardized analyses in other regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water

    NASA Astrophysics Data System (ADS)

    Dinu, Marina

    2013-04-01

    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  12. Photochemically engineering the metal-semiconductor interface for room-temperature transfer hydrogenation of nitroarenes with formic acid.

    PubMed

    Li, Xin-Hao; Cai, Yi-Yu; Gong, Ling-Hong; Fu, Wei; Wang, Kai-Xue; Bao, Hong-Liang; Wei, Xiao; Chen, Jie-Sheng

    2014-12-08

    A mild photochemical approach was applied to construct highly coupled metal-semiconductor dyads, which were found to efficiently facilitate the hydrogenation of nitrobenzene. Aniline was produced in excellent yield (>99 %, TOF: 1183) using formic acid as hydrogen source and water as solvent at room temperature. This general and green catalytic process is applicable to a wide range of nitroarenes without the involvement of high-pressure gases or sacrificial additives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles

    PubMed Central

    Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2012-01-01

    Background: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia. Methods: In this study, superparamagnetic iron oxide nanoparticles (SPIONs) modified with an edible biopolymer poly(γ-glutamic acid) (PGA) were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF). Results: Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3–8) and biological pH (1–8), implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg·min, respectively. A maximum removal occurred in the pH range 4–8 in deionized water and 5–8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001–1 M sodium acetate) and essential metals (Cu, Fe, Zn, Mg, Ca, and K) did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the latter. However, a lower cadmium removal capacity was shown for SGIF (23.15 mg/g) than for deionized water (31.13 mg/g). Conclusion: These results

  14. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  15. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    PubMed Central

    Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  16. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model.

    PubMed

    Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  17. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Treesearch

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  18. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    NASA Astrophysics Data System (ADS)

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Jorgenson, Janet; McGimsey, Robert G.; Wang, Bronwen

    2008-07-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8 × 106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfur content. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetation-damaging acidic aerosols accompanying drainage of an acidic

  19. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    USGS Publications Warehouse

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  20. Stability of CoP x Electrocatalysts in Continuous and Interrupted Acidic Electrolysis of Water.

    PubMed

    Goryachev, Andrey; Gao, Lu; Zhang, Yue; Rohling, Roderigh Y; Vervuurt, René H J; Bol, Ageeth A; Hofmann, Jan P; Hensen, Emiel J M

    2018-04-11

    Cobalt phosphides are an emerging earth-abundant alternative to platinum-group-metal-based electrocatalysts for the hydrogen evolution reaction (HER). Yet, their stability is inferior to platinum and compromises the large-scale applicability of CoP x in water electrolyzers. In the present study, we employed flat, thin CoP x electrodes prepared through the thermal phosphidation (PH 3 ) of Co 3 O 4 films made by plasma-enhanced atomic layer deposition to evaluate their stability in acidic water electrolysis by using a multi-technique approach. The films were found to be composed of two phases: CoP in the bulk and a P-rich surface CoP x (P/Co>1). Their performance was evaluated in the HER and the exchange current density was determined to be j 0 =-8.9 ⋅ 10 -5  A/cm 2 . The apparent activation energy of HER on CoP x ( E a =81±15 kJ/mol) was determined for the first time. Dissolution of the material in 0.5 M H 2 SO 4 was observed, regardless of the constantly applied cathodic potential, pointing towards a chemical instead of an electrochemical origin of the observed cathodic instability. The current density and HER faradaic efficiency (FE) were found to be stable during chronoamperometric treatment, as the chemical composition of the HER-active phase remained unchanged. On the contrary, a dynamic potential change performed in a repeated way facilitated dissolution of the film, yielding its complete degradation within 5 h. There, the FE was also found to be changing. An oxidative route of CoP x dissolution has also been proposed.

  1. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    PubMed

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to microtox by the use of calcium alginate beads containing humic acid.

    PubMed

    Pandey, Ashok K; Pandey, Shri Dhar; Misra, Virendra

    2002-06-01

    Improper disposal of hazardous wastes can lead to release of potentially harmful substances through leaching such as heavy metals, which ultimately contaminate soil, sediment surface water, and groundwater through runoff. To remove these toxic metals and avoid any adverse effect on the ecosystem, a novel approach involving calcium alginate (CA) beads containing humic acid (HA) was used. For this, 10% leachates of the waste obtained from two major industrial units with electroplating processess were prepared at neutral pH and analyzed by atomic absorption spectrophotometry (AAS). Both leachates contained Cd, Cu, Cr, Ni, Mn, Fe, and Zn. The concentrations of Ni, Mn, Fe, and Zn in the waste were found to be significant. The leachates analyzed were passed through columns packed with calcium alginate beads with or without humic acid. The concentrations of various metals in beads and in different fractions collected after adsorption were measured. Data recorded indicate that calcium alginate beads containing humic acids are more efficient in removal of all metals in substantial amounts from the two leachates. Along with removal of metals, this process led to considerable detoxification of the leachates as tested by Microtox assay, indicated by earlier protection and higher EC(50). The significance of the results in relation to removal of toxic metals by beads containing humic acid is discussed. (c) 2002 Elsevier Science (USA).

  3. Comparison of metallothionein concentrations and tissue distribution of trace metals in crabs (Pachygrapsus marmoratus) from a metal-rich estuary, in and out of the reproductive season.

    PubMed

    Mouneyrac, C; Amiard-Triquet, C; Amiard, J C; Rainbow, P S

    2001-07-01

    Crabs, Pachygrapsus marmoratus, were sampled in June 1997 and February 1998 from two sites (at the mouth and 25 km upstream) in the metal-rich Gironde estuary, France. Gills and hepatopancreas were analysed for metal (Cd, Cu, Zn) and metallothionein (MT) contents, in order to examine the influence of both biological and environmental factors on the physico-chemical forms of detoxified metal storage in the crabs. The concentrations of MT and both cytosolic and insoluble metals were not greatly different between males and females, and the influence of organ weights was also minimal. Intersite differences were observed, probably resulting from the gradient of salinity in the estuary, which interacts with both the chemical speciation and bioavailability of metals, and the general protein metabolism of the crabs. Seasonal changes were also important, probably in interaction with the moult and reproductive cycles. In February, concentrations of insoluble metals were generally higher than in June, in both organs, suggesting that essential metals, particularly Zn, are stored during winter then remobilised during the breeding season. The natural variability in the concentrations of MT often concealed any relationship with accumulated metal concentrations. Thus MT in crabs cannot be considered as a useful biomarker of metal pollution.

  4. Application of two low-cost adsorption media for removal of toxic metals from contaminated water.

    PubMed

    Somerville, R; Norrström, A C

    2009-01-01

    Since the operational costs of commonly used materials for adsorption of toxic metals can be substantial, natural material may be of great interest for treatment applications. Two types of natural material that have shown particular promise are seaweed and seafood waste. In this study, adsorption capacity of Brown seaweed and shrimp shells were compared with a strong acid cation exchange resin (CER). A case study site was used as a reference point and column experiments were designed in a similar manner although at different scale. Each media reduced concentrations of the target metals to levels below defined reference values. If the alternative adsorption media perform as well in the field as the laboratory, the results suggest that the media tested would completely remove the toxic metals in groundwater and runoff water. Seaweed and shrimp shells had stronger affinities for Pb and Cu than CER. However, CER was superior in affinity for Zn, the most weakly bound metal. Moreover, the results showed that Ca in the solution reduced the adsorption capacity of the other metals. This illustrates the limitations of applying the behaviour of the batch studies with single metal solutions to a multi-component system with competitive adsorption.

  5. 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Zhi; Zhang, Hanguang; Karakalos, Stavros

    Current platinum group metal (PGM)-free carbon nanocomposite catalysts for the oxygen reduction reaction (ORR) in acidic electrolyte often suffer from rapid degradation associated with carbon corrosion due to the use of large amount of amorphoous carbon black supports. Here, we developed a new concept of using freestanding 3D hydrogel to design support-free Fe-N-C catalysts. A 3D polyaniline (PANI)-based hydrogel was used for preparing a new type of single atomic iron site-rich catalyst, which has exhibited exceptionally enhanced activity and stability compared to conventional Fe-N-C catalysts supported on amorphous carbon blacks. The achieved performance metric on the hydrogel PANI-Fe catalysts ismore » one of the best ever reported PGM-free catalysts, reaching a half-wave potential up to 0.83 V vs. RHE and only leaving 30 mV gap with Pt/C catalysts (60 μgPt/cm2) in challenging acidic media. Remarkable ORR stability was accomplished as well on the same catalyst evidenced by using harsh potential cycling tests. The well dispersion of atomic iron into partially graphitized carbon, featured with dominance of micropores and porous network structures, is capable of accommodating increased number of active sites, strengthening local bonding among iron, nitrogen and carbon, and facilitating mass transfer. The 3D polymer hydrogel approach would be a new pathway to advance PGM-free catalysts.« less

  6. 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media

    DOE PAGES

    Qiao, Zhi; Zhang, Hanguang; Karakalos, Stavros; ...

    2017-08-03

    Current platinum group metal (PGM)-free carbon nanocomposite catalysts for the oxygen reduction reaction (ORR) in acidic electrolyte often suffer from rapid degradation associated with carbon corrosion due to the use of large amount of amorphoous carbon black supports. Here, we developed a new concept of using freestanding 3D hydrogel to design support-free Fe-N-C catalysts. A 3D polyaniline (PANI)-based hydrogel was used for preparing a new type of single atomic iron site-rich catalyst, which has exhibited exceptionally enhanced activity and stability compared to conventional Fe-N-C catalysts supported on amorphous carbon blacks. The achieved performance metric on the hydrogel PANI-Fe catalysts ismore » one of the best ever reported PGM-free catalysts, reaching a half-wave potential up to 0.83 V vs. RHE and only leaving 30 mV gap with Pt/C catalysts (60 μgPt/cm2) in challenging acidic media. Remarkable ORR stability was accomplished as well on the same catalyst evidenced by using harsh potential cycling tests. The well dispersion of atomic iron into partially graphitized carbon, featured with dominance of micropores and porous network structures, is capable of accommodating increased number of active sites, strengthening local bonding among iron, nitrogen and carbon, and facilitating mass transfer. The 3D polymer hydrogel approach would be a new pathway to advance PGM-free catalysts.« less

  7. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy.

    PubMed

    Ji, Xiao-Jun; Zhang, Ai-Hui; Nie, Zhi-Kui; Wu, Wen-Jia; Ren, Lu-Jing; Huang, He

    2014-10-01

    Arachidonic acid (ARA)-rich oil production by Mortierella alpina is a long fermentation period needed process due to the low growth rate of the filamentous fungus used. This causes the low productivity of ARA-rich oil and hinders its industrial mass scale production. In the present study, different fed-batch strategies were conducted to shorten the fermentation period. The result showed that compared with the batch culture, the fermentation period was shortened from 7days to 5days with the productivity of ARA-rich oil increased from 0.9g/(L·d) to 1.3g/(L·d) by using the fed-batch fermentation strategy. Furthermore, repeated fed-batch fermentation strategy was adopted to achieve the purpose of continuous production. By using this strategy, the fermentation period was shortened from 40days to 26days in a four cycle repeated fed-batch fermentation. This strategy proved to be convenient and economical for ARA-rich oil commercial production process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  9. Weathering of sulfidic shale and copper mine waste: Secondary minerals and metal cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Jackson, J.C.

    2003-01-01

    Metal cycling via physical and chemical weathering of discrete sources (copper mines) and regional (non-point) sources (sulfide-rich shale) is evaluated by examining the mineralogy and chemistry of weathering products in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. The elements in copper mine waste, secondary minerals, stream sediments, and waters that are most likely to have negative impacts on aquatic ecosystems are aluminum, copper, zinc, and arsenic because these elements locally exceed toxicity guidelines for surface waters or for stream sediments. Acid-mine drainage has not developed in streams draining inactive copper mines. Acid-rock drainage and chemical weathering processes that accompany debris flows or human disturbances of sulfidic rocks are comparable to processes that develop acid-mine drainage elsewhere. Despite the high rainfall in the mountain range, sheltered areas and intermittent dry spells provide local venues for development of secondary weathering products that can impact aquatic ecosystems.

  10. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    USGS Publications Warehouse

    Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten

    2013-01-01

    We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

  11. Water repellent properties of dispersed metals containing low-dimensional forms of ammonium compounds on the surface

    NASA Astrophysics Data System (ADS)

    Syrkov, A. G.; Kabirov, V. R.; Silivanov, M. O.

    2017-07-01

    For the first time the change of the water repellent properties of dispersed copper, modified using quaternary ammonium compounds on 24 h time scale in saturated water vapours was studied. Exponential time dependences of the water repellent properties of dispersed copper with adsopted QAC were derived and characterized. It was established that the samples modified in mixed and consistent modes by both modifiers reach the saturation state faster than others, due to the small number of hydrophilic centers on the surface of metals. The last conclusion was confirmed by the distribution spectra of centers of adsorption, which were obtained by the adsorption of acid-base indicators for more dispersed samples based on aluminum powder.

  12. Simulation of the influence of EDTA on the sorption of heavy metals by humic acids

    NASA Astrophysics Data System (ADS)

    Kropacheva, T. N.; Didik, M. V.; Kornev, V. I.

    2015-04-01

    The results of mathematical simulation of sorption equilibria with the participation of divalent cations of heavy metals (HMs), chelant (EDTA), and insoluble forms of humic acids (HAs) are discussed. It is shown that the formation of chelates of metals with EDTA in solutions results in the decreasing sorption of the metals by humic acids. We also analyzed the effect of the acidity of the medium and the HM: EDTA: HA ratio (in a wide range) on the desorption of metals. The desorbing effect of EDTA on the metals is the highest at pH 3-5 and increases with an increase in the concentration of EDTA and a decrease in the concentration of HAs. With respect to the remobilization of metals under the impact of EDTA, the metal cations can be arranged into the following sequence: Cu(II) > Ni(II) > Pb(II) ≫ Cd(II) > Co(II) > Zn(II). The obtained data have been used to analyze the remobilization / extraction of HMs from soils with a high content of humic substances.

  13. A stable lithium-rich surface structure for lithium-rich layered cathode materials

    PubMed Central

    Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook

    2016-01-01

    Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178

  14. Preferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film.

    PubMed

    Zhao, Meng-Qiang; Tian, Gui-Li; Zhang, Qiang; Huang, Jia-Qi; Nie, Jing-Qi; Wei, Fei

    2012-04-07

    Direct bulk growth of single-walled carbon nanotubes (SWCNTs) with required properties, such as diameter, length, and chirality, is the first step to realize their advanced applications in electrical and optical devices, transparent conductive films, and high-performance field-effect transistors. Preferential growth of short aligned, metallic-rich SWCNTs is a great challenge to the carbon nanotube community. We report the bulk preferential growth of short aligned SWCNTs from perpendicular Mo-containing FeMgAl layered double hydroxide (LDH) film by a facile thermal chemical vapor deposition with CH(4) as carbon source. The growth of the short aligned SWCNTs showed a decreased growth velocity with an initial value of 1.9 nm s(-1). Such a low growth velocity made it possible to get aligned SWCNTs shorter than 1 μm with a growth duration less than 15 min. Raman spectra with different excitation wavelengths indicated that the as-grown short aligned SWCNTs showed high selectivity of metallic SWCNTs. Various kinds of materials, such as mica, quartz, Cu foil, and carbon fiber, can serve as the substrates for the growth of perpendicular FeMoMgAl LDH films and also the growth of the short aligned SWCNTs subsequently. These findings highlight the easy route for bulk preferential growth of aligned metallic-rich SWCNTs with well defined length for further bulk characterization and applications. This journal is © The Royal Society of Chemistry 2012

  15. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN WATER ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Water data set contains analytical results for measurements of up to 11 metals in 98 water samples over 61 households. Sample collection was undertaken at the tap and any additional drinking water source used extensively within each residence. The primary metals o...

  16. Partitioning of metals in a degraded acid sulfate soil landscape: influence of tidal re-inundation.

    PubMed

    Claff, Salirian R; Sullivan, Leigh A; Burton, Edward D; Bush, Richard T; Johnston, Scott G

    2011-11-01

    The oxidation and acidification of sulfidic soil materials results in the re-partitioning of metals, generally to more mobile forms. In this study, we examine the partitioning of Fe, Cr, Cu, Mn, Ni and Zn in the acidified surface soil (0-0.1 m) and the unoxidised sub-soil materials (1.3-1.5 m) of an acid sulfate soil landscape. Metal partitioning at this acidic site was then compared to an adjacent site that was previously acidified, but has since been remediated by tidal re-inundation. Differences in metal partitioning were determined using an optimised six-step sequential extraction procedure which targets the "labile", "acid-soluble", "organic", "crystalline oxide", "pyritic" and "residual" fractions. The surficial soil materials of the acidic site had experienced considerable losses of Cr, Cu, Mn and Ni compared to the underlying parent material due to oxidation and acidification, yet only minor losses of Fe and Zn. In general, the metals most depleted from the acidified surface soil materials exhibited the greatest sequestration in the surface soil materials of the tidally remediated site. An exception to this was iron, which accumulated to highly elevated concentrations in the surficial soil materials of the tidally remediated site. The "acid-soluble", "organic" and "pyritic" fractions displayed the greatest increase in metals following tidal remediation. This study demonstrates that prolonged tidal re-inundation of severely acidified acid sulfate soil landscapes leads to the immobilisation of trace metals through the surficial accumulation of iron oxides, organic material and pyrite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Thallium-rich rust scales in drinkable water distribution systems: A case study from northern Tuscany, Italy.

    PubMed

    Biagioni, Cristian; D'Orazio, Massimo; Lepore, Giovanni O; d'Acapito, Francesco; Vezzoni, Simone

    2017-06-01

    Following the detection of a severe thallium contamination of the drinkable water from the public distribution system of Valdicastello Carducci-Pietrasanta (northern Tuscany, Italy), and the identification of the source of contamination in the Molini di Sant'Anna spring (average Tl content≈15μgL -1 ), the replacement of the contaminated water with a virtually Tl-free one (Tl<0.10μgL -1 ) caused an increase in Tl concentration in the drinkable water. This suggested that the pipeline interior had become a secondary source of Tl contamination, promoting its mineralogical and geochemical study. Rust scales samples taken from several pipeline segments, as well as leaching products obtained from these samples, were investigated through scanning electron microscopy, X-ray fluorescence chemical analyses, inductively coupled plasma - mass spectrometry, X-ray diffraction, and X-ray absorption spectroscopy. Thallium-rich rust scales (up to 5.3wt% Tl) have been found only in pipeline samples taken downstream the water treatment plant, whereas the sample taken upstream contains much less Tl (~90μgg -1 ). The Tl-rich nature of such scales is related to the occurrence of nano- and micro-spherules of Tl 2 O 3 and less abundant nanocrystalline μm-sized encrustations of TlCl. Leaching experiments on Tl-rich rust scales indicate that a fraction of the available Tl is easily dissolved in tap water; X-ray absorption spectroscopy suggests that monovalent thallium occurs in water equilibrated with the rust scales, probably related to the dissolution of TlCl encrustations. Therefore, Tl dissolved as Tl + only in the water from the Molini di Sant'Anna spring was partially removed through oxidative precipitation of Tl 2 O 3 and precipitation of TlCl. This highlights the critical role played by the addition of chlorine-based oxidants in water treatment plants that could favour the deposition of Tl-rich coatings within the pipelines, giving rise to unexpected secondary sources of

  18. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  19. Geochemical Controls on the Partitioning and Hydrological Transport of Metals in a Human Impacted, Non-Acidic, River System

    NASA Astrophysics Data System (ADS)

    Thorslund, J.; Jarsjo, J.; Wällstedt, T.; Morth, C. M.; Lychagin, M.; Chalov, S.

    2014-12-01

    The knowledge of coupled processes controlling the spreading and fate of metals in non-acidic river systems is currently much more limited than the knowledge of metal behavior under acidic conditions (e.g., in acid mine drainage systems). Critical geochemical controls governing metal speciation may thus differ substantially between acidic and non-acidic hydrological systems. We here aim at expanding the knowledge of metals in non-acidic river systems, by considering a high pH river, influenced by mining by the largest gold mining area in the Mongolian part of the transboundary Lake Baikal drainage basin. The combined impact of geochemical and hydrological processes is investigated, to be able to understand the solubility of various heavy metals, their partitioning between particulate and dissolved phase and its impact on overall transport. We show, through site specific measurements and a geochemical modelling approach, that the combined effects of precipitation of ferrihydrite and gibbsite and associated sorption complexes of several metals can explain the high impact of suspended transport relative to total transport often seen under non-acidic conditions. Our results also identifies the phosphate mineral Hydroxyapatite as a potential key sorption site for many metals, which has both site specific and general relevance for metal partitioning under non-acidic conditions. However, an adsorption database, which is currently unavailable for hydroxyapatite, needs to be developed for appropriate sorption quantification. Furthermore, Cd, Fe, Pb and Zn were particularly sensitive to increasing DOC concentrations, which increased the solubility of these metals due to metal-organic complexation. Modeling the sensitivity to changes in geochemical parameters showed that decreasing pH and increasing DOC concentrations in downstream regions would increase the dissolution and hence the toxicity and bioavailability of many pollutants of concern in the downstream ecosystem. In

  20. Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens

    PubMed Central

    Mettrop, Ivan S.; Cusell, Casper; Kooijman, Annemieke M.; Lamers, Leon P. M.

    2015-01-01

    In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens (‘rich fens’). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC) for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks) summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3 - concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3 - and NH4 + dynamics showed no considerable changes either. In conclusion, short-term summer