Sample records for acidic side chains

  1. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each

  2. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajari, Timir; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvationmore » free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar

  3. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    NASA Astrophysics Data System (ADS)

    Hajari, Timir; van der Vegt, Nico F. A.

    2015-04-01

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  4. In Vitro Enzymatic Synthesis of New Penicillins Containing Keto Acids as Side Chains

    PubMed Central

    Ferrero, Miguel A.; Reglero, Angel; Martínez-Blanco, Honorina; Fernández-Valverde, Martiniano; Luengo, Jose M.

    1991-01-01

    Seven different penicillins containing α-ketobutyric, β-ketobutyric, γ-ketovaleric, α-ketohexanoic, δ-ketohexanoic, ε-ketoheptanoic, and α-ketooctanoic acids as side chains have been synthesized in vitro by incubating the enzymes phenylacetyl coenzyme A (CoA) ligase from Pseudomonas putida and acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum with CoA, ATP, Mg2+, dithiothreitol, 6-aminopenicillanic acid, and the corresponding side chain precursor. PMID:1952871

  5. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains.

    PubMed

    Makowski, Mariusz; Liwo, Adam; Sobolewski, Emil; Scheraga, Harold A

    2011-05-19

    A new model of side-chain-side-chain interactions for charged side-chains of amino acids, to be used in the UNRES force-field, has been developed, in which a side chain consists of a nonpolar and a charged site. The interaction energy between the nonpolar sites is composed of a Gay-Berne and a cavity term; the interaction energy between the charged sites consists of a Lennard-Jones term, a Coulombic term, a generalized-Born term, and a cavity term, while the interaction energy between the nonpolar and charged sites is composed of a Gay-Berne and a polarization term. We parametrized the energy function for the models of all six pairs of natural like-charged amino-acid side chains, namely propionate-propionate (for the aspartic acid-aspartic acid pair), butyrate-butyrate (for the glutamic acid-glutamic acid pair), propionate-butyrate (for the aspartic acid-glutamic acid pair), pentylamine cation-pentylamine cation (for the lysine-lysine pair), 1-butylguanidine cation-1-butylguanidine cation (for the arginine-arginine pair), and pentylamine cation-1-butylguanidine cation (for the lysine-arginine pair). By using umbrella-sampling molecular dynamics simulations in explicit TIP3P water, we determined the potentials of mean force of the above-mentioned pairs as functions of distance and orientation and fitted analytical expressions to them. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules were well represented by analytical expressions for all systems. The values of the parameters of all the energy components are physically reasonable, which justifies use of such potentials in coarse-grain protein-folding simulations. © 2011 American Chemical Society

  6. Hydrogen bonding between phosphate and amino acid side chains

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Rodriguez, M. L.

    1986-03-01

    Hydrogen bonds between polar groups of amino acid side chains (histidine, lysine, glutamic acid) and phosphate ions have been studied by infrared spectroscopy. Proton transfer from amino acid groups to phosphate occur mainly in case that tribasic and dibasic phosphate ions take part in hydrogen bonds. Conformational changes and continuum are strongly related to the degree of proton transfer and hydration. It is pointed out that the aforementioned properties should be of great significance for nucleation and growth of prostatic and renal stones.

  7. Side-chain-side-chain interactions and stability of the helical state

    NASA Astrophysics Data System (ADS)

    Zangi, Ronen

    2014-01-01

    Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.

  8. Theoretical Studies of Interactions between O-Phosphorylated and Standard Amino-Acid Side-Chain Models in Water

    PubMed Central

    Wiśniewska, Marta; Sobolewski, Emil; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.; Makowski, Mariusz

    2015-01-01

    Phosphorylation is a common post-translational modification of the amino-acid side chains (serine, tyrosine, and threonine) that contain hydroxyl groups. The transfer of the negatively charged phosphate group from an ATP molecule to such amino-acid side chains leads to changes in the local conformations of proteins and the pattern of interactions with other amino-acid side-chains. A convenient characteristic of the side chain–side chain interactions in the context of an aqueous environment is the potential of mean force (PMF) in water. A series of umbrella-sampling molecular dynamic (MD) simulations with the AMBER force field were carried out for pairs of O-phosphorylated serine (pSer), threonine (pThr), and tyrosine, (pTyr) with natural amino acids in a TIP3P water model as a solvent at 298 K. The weighted-histogram analysis method was used to calculate the four-dimensional potentials of mean force. The results demonstrate that the positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the relative orientation depend on the character of the interacting pairs. More distinct minima are observed for oppositely charged pairs such as, e.g., O-phosphorylated side-chains and positively charged ones, such as the side-chains of lysine and arginine. PMID:26100791

  9. IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank

    PubMed Central

    Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2013-01-01

    We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645

  10. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    NASA Astrophysics Data System (ADS)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  11. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching

    PubMed Central

    Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne

    2011-01-01

    Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873

  12. Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers

    NASA Astrophysics Data System (ADS)

    Peron, Jennifer; Edwards, Dave; Haldane, Mark; Luo, Xiaoyan; Zhang, Yongming; Holdcroft, Steven; Shi, Zhiqing

    Porous catalyst layers (CLs) containing short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomers of different ion exchange capacity (IEC: 1.3, 1.4 and 1.5 meq g -1) were deposited onto Nafion 211 to form catalyst-coated membranes. The porosity of SSC-PFSA-based CLs is larger than Nafion-CL analogues. CLs incorporating SSC ionomer extend the current density of fuel cell polarization curves at elevated temperature and lower relative humidity compared to those based on long-side chain PFSA (e.g., Nafion)-based CLs. Fuel cell polarization performance was greatly improved at 110 °C and 30% relative humidity (RH) when SSC PFSI was incorporated into the catalyst layer.

  13. Stabilization Effect of Amino Acid Side Chains in Peptide Assemblies on Graphite Studied by Scanning Tunneling Microscopy.

    PubMed

    Guo, Yuanyuan; Hou, Jingfei; Zhang, Xuemei; Yang, Yanlian; Wang, Chen

    2017-04-19

    An analysis is presented of the effects of amino acid side chains on peptide assemblies in ambient conditions on a graphite surface. The molecularly resolved assemblies of binary peptides are examined with scanning tunneling microscopy. A comparative analysis of the assembly structures reveals that the lamellae width has an appreciable dependence on the peptide sequence, which could be considered as a manifestation of a stabilizing effect of side-chain moieties of amino acids with high (phenylalanine) and low (alanine, asparagine, histidine and aspartic acid) propensities for aggregation. These amino acids are representative for the chemical structures involving the side chains of charged (histidine and aspartic acid), aromatic (phenylalanine), hydrophobic (alanine), and hydrophilic (asparagine) amino acids. These results might provide useful insight for understanding the effects of sequence on the assembly of surface-bound peptides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. From labdanes to drimanes. Degradation of the side chain of dihydrozamoranic acid.

    PubMed

    Rodilla, Jesús M L; Díez, D; Urones, J G; Rocha, Pedro M

    2004-04-30

    A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.

  15. Entropy and enthalpy of interaction between amino acid side chains in nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaitheeswaran, S., E-mail: vaithee05@gmail.com; Thirumalai, D.; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

    2014-12-14

    Understanding the stabilities of proteins in nanopores requires a quantitative description of confinement induced interactions between amino acid side chains. We use molecular dynamics simulations to study the nature of interactions between the side chain pairs ALA-PHE, SER-ASN, and LYS-GLU in bulk water and in water-filled nanopores. The temperature dependence of the bulk solvent potentials of mean force and the interaction free energies in cylindrical and spherical nanopores is used to identify the corresponding entropic and enthalpic components. The entropically stabilized hydrophobic interaction between ALA and PHE in bulk water is enthalpically dominated upon confinement depending on the relative orientationsmore » between the side chains. In the case of SER-ASN, hydrogen bonded configurations that are similar in bulk water are thermodynamically distinct in a cylindrical pore, thus making rotamer distributions different from those in the bulk. Remarkably, salt bridge formation between LYS-GLU is stabilized by entropy in contrast to the bulk. Implications of our findings for confinement-induced alterations in protein stability are briefly outlined.« less

  16. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  17. Ionizable side chains at catalytic active sites of enzymes.

    PubMed

    Jimenez-Morales, David; Liang, Jie; Eisenberg, Bob

    2012-05-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

  18. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  19. Acidic-basic properties of three alanine-based peptides containing acidic and basic side chains: comparison between theory and experiment.

    PubMed

    Makowska, Joanna; Bagińska, Katarzyna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A

    2008-01-01

    The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)(7)-KK-NH(2) (KAK), Ac-OO-(A)(7)-DD-NH(2) (OAD), Ac-KK-(A)(7)-EE-NH(2) (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability of these data, the ability of two theoretical methods to simulate pH-metric titration of those peptides was assessed: (i) the electrostatically driven Monte Carlo method with the ECEPP/3 force field and the Poisson-Boltzmann approach to compute solvation energy (EDMC/PB/pH), and (ii) the molecular dynamics method with the AMBER force field and the Generalized Born model (MD/GB/pH). For OAD and KAE, pK(a1) and pK(a2) correspond to the acidic side chains. For all three compounds in both solvents, the pK(a1) value is remarkably lower than the pK(a) of a compound modeling the respective isolated side chain, which can be explained by the influence of the electrostatic field from positively charged ornithine or lysine side chains. The experimental titration curves are reproduced well by the MD/GB/pH approach, the agreement being better if restraints derived from NMR measurements are incorporated in the conformational search. Poorer agreement is achieved by the EDMC/PB/pH method.

  20. Antibody side chain conformations are position-dependent.

    PubMed

    Leem, Jinwoo; Georges, Guy; Shi, Jiye; Deane, Charlotte M

    2018-04-01

    Side chain prediction is an integral component of computational antibody design and structure prediction. Current antibody modelling tools use backbone-dependent rotamer libraries with conformations taken from general proteins. Here we present our antibody-specific rotamer library, where rotamers are binned according to their immunogenetics (IMGT) position, rather than their local backbone geometry. We find that for some amino acid types at certain positions, only a restricted number of side chain conformations are ever observed. Using this information, we are able to reduce the breadth of the rotamer sampling space. Based on our rotamer library, we built a side chain predictor, position-dependent antibody rotamer swapper (PEARS). On a blind test set of 95 antibody model structures, PEARS had the highest average χ 1 and χ1+2 accuracy (78.7% and 64.8%) compared to three leading backbone-dependent side chain predictors. Our use of IMGT position, rather than backbone ϕ/ψ, meant that PEARS was more robust to errors in the backbone of the model structure. PEARS also achieved the lowest number of side chain-side chain clashes. PEARS is freely available as a web application at http://opig.stats.ox.ac.uk/webapps/pears. © 2018 Wiley Periodicals, Inc.

  1. Arabidopsis GUX Proteins Are Glucuronyltransferases Responsible for the Addition of Glucuronic Acid Side Chains onto Xylan

    EPA Science Inventory

    Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that muta...

  2. Phenylpropanoid 2,3-dioxygenase involved in the cleavage of the ferulic acid side chain to form vanillin and glyoxylic acid in Vanilla planifolia.

    PubMed

    Negishi, Osamu; Negishi, Yukiko

    2017-09-01

    Enzyme catalyzing the cleavage of the phenylpropanoid side chain was partially purified by ion exchange and gel filtration column chromatography after (NH 4 ) 2 SO 4 precipitation. Enzyme activities were dependent on the concentration of dithiothreitol (DTT) or glutathione (GSH) and activated by addition of 0.5 mM Fe 2+ . Enzyme activity for ferulic acid was as high as for 4-coumaric acid in the presence of GSH, suggesting that GSH acts as an endogenous reductant in vanillin biosynthesis. Analyses of the enzymatic reaction products with quantitative NMR (qNMR) indicated that an amount of glyoxylic acid (GA) proportional to vanillin was released from ferulic acid by the enzymatic reaction. These results suggest that phenylpropanoid 2,3-dioxygenase is involved in the cleavage of the ferulic acid side chain to form vanillin and GA in Vanilla planifolia.

  3. Side-chain amino-acid-based pH-responsive self-assembled block copolymers for drug delivery and gene transfer.

    PubMed

    Kumar, Sonu; Acharya, Rituparna; Chatterji, Urmi; De, Priyadarsi

    2013-12-10

    Developing safe and effective nanocarriers for multitype of delivery system is advantageous for several kinds of successful biomedicinal therapy with the same carrier. In the present study, we have designed amino acid biomolecules derived hybrid block copolymers which can act as a promising vehicle for both drug delivery and gene transfer. Two representative natural chiral amino acid-containing (l-phenylalanine and l-alanine) vinyl monomers were polymerized via reversible addition-fragmentation chain transfer (RAFT) process in the presence of monomethoxy poly(ethylene glycol) based macro-chain transfer agents (mPEGn-CTA) for the synthesis of well-defined side-chain amino-acid-based amphiphilic block copolymers, monomethoxy poly(ethylene glycol)-b-poly(Boc-amino acid methacryloyloxyethyl ester) (mPEGn-b-P(Boc-AA-EMA)). The self-assembled micellar aggregation of these amphiphilic block copolymers were studied by fluorescence spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Potential applications of these hybrid polymers as drug carrier have been demonstrated in vitro by encapsulation of nile red dye or doxorubicin drug into the core of the micellar nanoaggregates. Deprotection of side-chain Boc- groups in the amphiphilic block copolymers subsequently transformed them into double hydrophilic pH-responsive cationic block copolymers having primary amino groups in the side-chain terminal. The DNA binding ability of these cationic block copolymers were further investigated by using agarose gel retardation assay and AFM. The in vitro cytotoxicity assay demonstrated their biocompatible nature and these polymers can serve as "smart" materials for promising bioapplications.

  4. Changes in conformational dynamics of basic side chains upon protein-DNA association.

    PubMed

    Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji

    2016-08-19

    Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Automated side-chain model building and sequence assignment by template matching.

    PubMed

    Terwilliger, Thomas C

    2003-01-01

    An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer.

  6. Steric interactions determine side-chain conformations in protein cores.

    PubMed

    Caballero, D; Virrueta, A; O'Hern, C S; Regan, L

    2016-09-01

    We investigate the role of steric interactions in defining side-chain conformations in protein cores. Previously, we explored the strengths and limitations of hard-sphere dipeptide models in defining sterically allowed side-chain conformations and recapitulating key features of the side-chain dihedral angle distributions observed in high-resolution protein structures. Here, we show that modeling residues in the context of a particular protein environment, with both intra- and inter-residue steric interactions, is sufficient to specify which of the allowed side-chain conformations is adopted. This model predicts 97% of the side-chain conformations of Leu, Ile, Val, Phe, Tyr, Trp and Thr core residues to within 20°. Although the hard-sphere dipeptide model predicts the observed side-chain dihedral angle distributions for both Thr and Ser, the model including the protein environment predicts side-chain conformations to within 20° for only 60% of core Ser residues. Thus, this approach can identify the amino acids for which hard-sphere interactions alone are sufficient and those for which additional interactions are necessary to accurately predict side-chain conformations in protein cores. We also show that our approach can predict alternate side-chain conformations of core residues, which are supported by the observed electron density. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Cycloate, an inhibitor of fatty acid elongase, modulates the metabolism of very-long-side-chain alkylresorcinols in rye seedlings.

    PubMed

    Magnucka, Elzbieta G; Suzuki, Yoshikatsu; Pietr, Stanislaw J; Kozubek, Arkadiusz; Zarnowski, Robert

    2009-10-01

    Cycloate inhibits the biosynthesis of very-long-chain fatty acids, the essential constituents of plant waxes and suberin. Fatty acids also serve as precursors of aliphatic carbon chains in resorcinolic lipids, which play a fundamental role in the plant defence system against fungal pathogens. In this study, the effect of cycloate on the biosynthesis of 5-n-alkylresorcinols in rye seedlings (Secale cereale L.) grown under various light and thermal conditions was examined. The content of alkylresorcinols biosynthesised in rye was generally increased by the herbicide in both green and etiolated plants. The presence of cycloate also affected patterns of alkylresorcinol homologues in plants grown at 15 and 22 degrees C; very-long-side-chain compounds were less abundant, whereas both short-chain saturated and unsaturated homologues were generally accumulated. No cycloate-related effects caused by homologue pattern modifications were observed at elevated temperature. This study extends present understanding of the mode of action of thiocarbamate herbicides. Cycloate markedly affected the biosynthesis of very-long-side-chain resorcinolic lipids in rye seedlings, confirming the existence of parallels in both fatty acid and alkylresorcinol biosynthetic pathways. The observed cycloate-driven accumulation of 5-n-alkylresorcinols may improve the resistance of cereals to infections caused by microbial pathogens. Copyright 2009 Society of Chemical Industry.

  8. Solid-state NMR Study Reveals Collagen I Structural Modifications of Amino Acid Side Chains upon Fibrillogenesis*

    PubMed Central

    De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise

    2013-01-01

    In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452

  9. Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10-90 degrees C.

    PubMed

    Häckel, M; Hinz, H J; Hedwig, G R

    1999-11-15

    The partial molar volumes of tripeptides of sequence glycyl-X-glycine, where X is one of the amino acids alanine, leucine, threonine, glutamine, phenylalanine, histidine, cysteine, proline, glutamic acid, and arginine, have been determined in aqueous solution over the temperature range 10-90 degrees C using differential scanning densitometry . These data, together with those reported previously, have been used to derive the partial molar volumes of the side-chains of all 20 amino acids. The side-chain volumes are critically compared with literature values derived using partial molar volumes for alternative model compounds. The new amino acid side-chain volumes, along with that for the backbone glycyl group, were used to calculate the partial specific volumes of several proteins in aqueous solution. The results obtained are compared with those observed experimentally. The new side-chain volumes have also been used to re-determine residue volume changes upon protein folding.

  10. Predictions of the physicochemical properties of amino acid side chain analogs using molecular simulation.

    PubMed

    Ahmed, Alauddin; Sandler, Stanley I

    2016-03-07

    A candidate drug compound is released for clinical trails (in vivo activity) only if its physicochemical properties meet desirable bioavailability and partitioning criteria. Amino acid side chain analogs play vital role in the functionalities of protein and peptides and as such are important in drug discovery. We demonstrate here that the predictions of solvation free energies in water, in 1-octanol, and self-solvation free energies computed using force field-based expanded ensemble molecular dynamics simulation provide good accuracy compared to existing empirical and semi-empirical methods. These solvation free energies are then, as shown here, used for the prediction of a wide range of physicochemical properties important in the assessment of bioavailability and partitioning of compounds. In particular, we consider here the vapor pressure, the solubility in both water and 1-octanol, and the air-water, air-octanol, and octanol-water partition coefficients of amino acid side chain analogs computed from the solvation free energies. The calculated solvation free energies using different force fields are compared against each other and with available experimental data. The protocol here can also be used for a newly designed drug and other molecules where force field parameters and charges are obtained from density functional theory.

  11. Synthesis and analgesic activity of some side-chain modified anpirtoline derivatives.

    PubMed

    Rádl, S; Hezky, P; Proska, J; Hejnová, L; Krejcí, I

    2000-05-01

    New derivatives of anpirtoline and deazaanpirtoline modified in the side chain have been synthesized. The series includes compounds 3 with side-chains containing piperidine or pyrrolidine rings, compounds 4 containing 8-azabicyclo[3.2.1]octane moiety, and compounds 5 having piperazine ring in their side-chains. Their receptor binding profiles (5-HT1A, 5-HT1B) and analgesic activity (hot plate, acetic acid induced writhing) have been studied. Optimized structures (PM3-MOPAC, Alchemy 2000, Tripos Inc.) of the synthesized compounds 3-5 were compared with that of anpirtoline.

  12. Changes in conformational dynamics of basic side chains upon protein–DNA association

    PubMed Central

    Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji

    2016-01-01

    Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446

  13. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils.

    PubMed

    Punihaole, David; Jakubek, Ryan S; Workman, Riley J; Asher, Sanford A

    2018-04-19

    We determined an empirical correlation that relates the amide I vibrational band frequencies of the glutamine (Q) side chain to the strength of hydrogen bonding, van der Waals, and Lewis acid-base interactions of its primary amide carbonyl. We used this correlation to determine the Q side chain carbonyl interaction enthalpy (Δ H int ) in monomeric and amyloid-like fibril conformations of D 2 Q 10 K 2 (Q10). We independently verified these Δ H int values through molecular dynamics simulations that showed excellent agreement with experiments. We found that side chain-side chain and side chain-peptide backbone interactions in fibrils and monomers are more enthalpically favorable than are Q side chain-water interactions. Q10 fibrils also showed a more favorable Δ H int for side chain-side chain interactions compared to backbone-backbone interactions. This work experimentally demonstrates that interamide side chain interactions are important in the formation and stabilization of polyQ fibrils.

  14. Computational mining for hypothetical patterns of amino acid side chains in protein data bank (PDB)

    NASA Astrophysics Data System (ADS)

    Ghani, Nur Syatila Ab; Firdaus-Raih, Mohd

    2018-04-01

    The three-dimensional structure of a protein can provide insights regarding its function. Functional relationship between proteins can be inferred from fold and sequence similarities. In certain cases, sequence or fold comparison fails to conclude homology between proteins with similar mechanism. Since the structure is more conserved than the sequence, a constellation of functional residues can be similarly arranged among proteins of similar mechanism. Local structural similarity searches are able to detect such constellation of amino acids among distinct proteins, which can be useful to annotate proteins of unknown function. Detection of such patterns of amino acids on a large scale can increase the repertoire of important 3D motifs since available known 3D motifs currently, could not compensate the ever-increasing numbers of uncharacterized proteins to be annotated. Here, a computational platform for an automated detection of 3D motifs is described. A fuzzy-pattern searching algorithm derived from IMagine an Amino Acid 3D Arrangement search EnGINE (IMAAAGINE) was implemented to develop an automated method for searching of hypothetical patterns of amino acid side chains in Protein Data Bank (PDB), without the need for prior knowledge on related sequence or structure of pattern of interest. We present an example of the searches, which is the detection of a hypothetical pattern derived from known structural motif of C2H2 structural pattern from zinc fingers. The conservation of particular patterns of amino acid side chains in unrelated proteins is highlighted. This approach can act as a complementary method for available structure- and sequence-based platforms and may contribute in improving functional association between proteins.

  15. Side chain-side chain interactions of arginine with tyrosine and aspartic acid in Arg/Gly/Tyr-rich domains within plant glycine-rich RNA binding proteins.

    PubMed

    Kumaki, Yasuhiro; Nitta, Katsutoshi; Hikichi, Kunio; Matsumoto, Takeshi; Matsushima, Norio

    2004-07-01

    Plant glycine-rich RNA-binding proteins (GRRBPs) contain a glycine-rich region at the C-terminus whose structure is quite unknown. The C-terminal glycine-rich part is interposed with arginine and tyrosine (arginine/glycine/tyrosine (RGY)-rich domain). Comparative sequence analysis of forty-one GRRBPs revealed that the RGY-rich domain contains multiple repeats of Tyr-(Xaa)h-(Arg)k-(Xaa)l, where Xaa is mainly Gly, "k" is 1 or 2, and "h" and "l" range from 0 to 10. Two peptides, 1 (G1G2Y3G4G5G6R7R8D9G10) and 2 (G1G2R3R4D5G6G7Y8G9G10), corresponding to sections of the RGY-rich domain in Zea mays RAB15, were selected for CD and NMR experiments. The CD spectra indicate a unique, positive band near 228 nm in both peptides that has been ascribed to tyrosine residues in ordered structures. The pH titration by NMR revealed that a side chain-side chain interaction, presumably an H-Nepsilon...O=Cgamma hydrogen bonding interaction in the salt bridge, occurs between Arg (i) and Asp (i + 2). 1D GOESY experiments indicated the presence of NOE between the aromatic side chain proton and the arginine side chain proton in the two peptides suggesting strongly that the Arg (i) aromatic side chain interacts directly with the Tyr (i +/- 4 or i +/- 5) side chain.

  16. Identification of Oxygenated Fatty Acid as a Side Chain of Lipo-Alkaloids in Aconitum carmichaelii by UHPLC-Q-TOF-MS and a Database.

    PubMed

    Liang, Ying; Wu, Jian-Lin; Leung, Elaine Lai-Han; Zhou, Hua; Liu, Zhongqiu; Yan, Guanyu; Liu, Ying; Liu, Liang; Li, Na

    2016-03-31

    Lipo-alkaloid is a kind of C19-norditerpenoid alkaloid usually found in Aconitum species. Structurally, they contain an aconitane skeleton and one or two fatty acid moieties of 3-25 carbon chains with 1-6 unsaturated degrees. Analysis of the lipo-alkaloids in roots of Aconitum carmichaelii resulted in the isolation of six known pure lipo-alkaloids (A1-A6) and a lipo-alkaloid mixture (A7). The mixture shared the same aconitane skeleton of 14-benzoylmesaconine, but their side chains were determined to be 9-hydroxy-octadecadienoic acid, 13-hydroxy-octadecadienoic acid and 10-hydroxy-octadecadienoic acid, respectively, by MS/MS analysis after alkaline hydrolysis. To our knowledge, this is the first time of the reporting of the oxygenated fatty acids as the side chains in naturally-occurring lipo-alkaloids. In order to identify more lipo-alkaloids, a compound database was established based on various combinations between the aconitane skeleton and the fatty acid chain, and then, the identification of lipo-alkaloids was conducted using the database, UHPLC-Q-TOF-MS and MS/MS. Finally, 148 lipo-alkaloids were identified from A. carmichaelii after intensive MS/MS analysis, including 93 potential new compounds and 38 compounds with oxygenated fatty acid moieties.

  17. Quantitative expression of protein heterogeneity: Response of amino acid side chains to their local environment.

    PubMed

    Bandyopadhyay, Debashree; Mehler, Ernest L

    2008-08-01

    A general method has been developed to characterize the hydrophobicity or hydrophilicity of the microenvironment (MENV), in which a given amino acid side chain is immersed, by calculating a quantitative property descriptor (QPD) based on the relative (to water) hydrophobicity of the MENV. Values of the QPD were calculated for a test set of 733 proteins to analyze the modulating effects on amino acid residue properties by the MENV in which they are imbedded. The QPD values and solvent accessibility were used to derive a partitioning of residues based on the MENV hydrophobicities. From this partitioning, a new hydrophobicity scale was developed, entirely in the context of protein structure, where amino acid residues are immersed in one or more "MENVpockets." Thus, the partitioning is based on the residues "sampling" a large number of "solvents" (MENVs) that represent a very large range of hydrophobicity values. It was found that the hydrophobicity of around 80% of amino acid side chains and their MENV are complementary to each other, but for about 20%, the MENV and their imbedded residue can be considered as mismatched. Many of these mismatches could be rationalized in terms of the structural stability of the protein and/or the involvement of the imbedded residue in function. The analysis also indicated a remarkable conservation of local environments around highly conserved active site residues that have similar functions across protein families, but where members have relatively low sequence homology. Thus, quantitative evaluation of this QPD is suggested, here, as a tool for structure-function prediction, analysis, and parameter development for the calculation of properties in proteins. (c) 2008 Wiley-Liss, Inc.

  18. Influence of Protein Scaffold on Side-Chain Transfer Free Energies.

    PubMed

    Marx, Dagen C; Fleming, Karen G

    2017-08-08

    The process by which membrane proteins fold involves the burial of side chains into lipid bilayers. Both structure and function of membrane proteins depend on the magnitudes of side-chain transfer free energies (ΔΔG sc o ). In the absence of other interactions, ΔΔG sc o is an independent property describing the energetics of an isolated side chain in the bilayer. However, in reality, side chains are attached to the peptide backbone and surrounded by other side chains in the protein scaffold in biology, which may alter the apparent ΔΔG sc o . Previously we reported a whole protein water-to-bilayer hydrophobicity scale using the transmembrane β-barrel Escherichia coli OmpLA as a scaffold protein. To investigate how a different protein scaffold can modulate these energies, we measured ΔΔG sc o for all 20 amino acids using the transmembrane β-barrel E. coli PagP as a scaffold protein. This study represents, to our knowledge, the first instance of ΔΔG sc o measured in the same experimental conditions in two structurally and sequentially distinct protein scaffolds. Although the two hydrophobicity scales are strongly linearly correlated, we find that there are apparent scaffold induced changes in ΔΔG sc o for more than half of the side chains, most of which are polar residues. We propose that the protein scaffold affects the ΔΔG sc o of side chains that are buried in unfavorable environments by dictating the mechanisms by which the side chain can reach a more favorable environment and thus modulating the magnitude of ΔΔG sc o . Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Quantifying side-chain conformational variations in protein structure

    PubMed Central

    Miao, Zhichao; Cao, Yang

    2016-01-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs. PMID:27845406

  20. Quantifying side-chain conformational variations in protein structure

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Cao, Yang

    2016-11-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  1. Quantifying side-chain conformational variations in protein structure.

    PubMed

    Miao, Zhichao; Cao, Yang

    2016-11-15

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  2. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.

    PubMed

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A

    2017-01-19

    The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).

  3. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin.

    PubMed

    Kuo, Hsiou-Ting; Liu, Shing-Lung; Chiu, Wen-Chieh; Fang, Chun-Jen; Chang, Hsien-Chen; Wang, Wei-Ren; Yang, Po-An; Li, Jhe-Hao; Huang, Shing-Jong; Huang, Shou-Ling; Cheng, Richard P

    2015-05-01

    β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.

  4. Improved packing of protein side chains with parallel ant colonies.

    PubMed

    Quan, Lijun; Lü, Qiang; Li, Haiou; Xia, Xiaoyan; Wu, Hongjie

    2014-01-01

    The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. This parallel approach combines various sources of searching intelligence and energy functions to pack protein side chains

  5. Improved packing of protein side chains with parallel ant colonies

    PubMed Central

    2014-01-01

    Introduction The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. Methods We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. Results We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. Conclusions This parallel approach combines various sources of searching intelligence and energy

  6. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.

    PubMed

    Tobias, Fernando; Keiderling, Timothy A

    2016-05-10

    Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.

  7. How accurately do force fields represent protein side chain ensembles?

    PubMed

    Petrović, Dušan; Wang, Xue; Strodel, Birgit

    2018-05-23

    Although the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  8. Molecular dynamics simulation of amino acid ionic liquids near a graphene electrode: effects of alkyl side-chain length.

    PubMed

    Sadeghi Moghadam, Behnoosh; Razmkhah, Mohammad; Hamed Mosavian, Mohammad Taghi; Moosavi, Fatemeh

    2016-12-07

    Electric double layer (EDL) supercapacitors, using ionic liquid electrolytes, have been receiving a great deal of attention in response to the growing demand for energy storage systems. In the present study, the nanoscopic structure of amino acid ionic liquids (AAILs) as biodegradable electrolytes near a neutral graphene surface was studied by molecular dynamics (MD) simulation. In order to explore the influence of the anion type and structure, the effect of the alkyl side-chain length of amino acids on the EDL was investigated. The results for the AAILs, composed of 1-ethyl-3-methylimidazolium ([EMIM]) cations near alanine ([ALA]) and isoleucine ([ILE]) anions, were compared to a conventional electrolyte, [EMIM][PF 6 ]. A lower mobility of AAIL compared to [EMIM][PF 6 ], with diffusions as low as 10 -11 m 2 s -1 , was observed. The structural results demonstrated a layered structure near the surface and most of the adsorbed imidazolium cation rings lay flat on the graphene surface. Both MD and quantum computations were performed to shed light on the charge behavior of AAIL electrolytes. As the current results demonstrate, an increase in the anion side-chain length leads to a decrease in both the number of adsorbed ions on the surface and the thickness of the first adsorbed layer. More impressively, it was observed that a low charge concentration in the EDL of AAILs is due to more side-side interactions. This remarkable feature could introduce AAILs as more efficient electrolyte materials than conventional [EMIM][PF 6 ].

  9. Energetic, Structural, and Antimicrobial Analyses of [beta]-Lactam Side Chain Recognition by [beta]-Lactamases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caselli, E.; Powers, R.A.; Blaszczak, L.C.

    2010-03-05

    Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well asmore » four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta

  10. Synthesis of 2-Deoxybrassinosteroids Analogs with 24-nor, 22(S)-23-Dihydroxy-Type Side Chains from Hyodeoxycholic Acid.

    PubMed

    Carvajal, Rodrigo; González, Cesar; Olea, Andrés F; Fuentealba, Mauricio; Espinoza, Luis

    2018-05-29

    Natural brassinosteroids are widespread in the plant kingdom and it is known that they play an important role in regulating plant growth. In this study, two new brassinosteroid analogs with shorter side chains but keeping the diol function were synthesized. Thus, the synthesis of 2-deoxybrassinosteroids analogs of the 3α-hydroxy-24-nor, 22,23-dihydroxy-5α-cholestane side chain type is described. The starting material is a derivative from hyodeoxycholic acid ( 4 ), which was obtained with an overall yield of 59% following a previously reported five step route. The side chain of this intermediate was modified by oxidative decarboxylation to get a terminal olefin at the C22-C23 position (compound 20 ) and subsequent dihydroxylation of the olefin. The resulting epimeric mixture of 21a , 21b was separated and the absolute configuration at the C22 carbon for the main product 21a was elucidated by single crystal X-ray diffraction analysis of the benzoylated derivative 22 . Finally, lactonization of 21a through a Baeyer-Villiger oxidation of triacetylated derivative 23 , using CF₃CO₃H/CHCl₃ as oxidant system, leads to lactones 24 and 25 in 35% and 14% yields, respectively. Deacetylation of these compounds leads to 2-deoxybrassinosteroids 18 and 19 in 86% and 81% yields. Full structural characterization of all synthesized compounds was achieved using their 1D, 2D NMR, and HRMS data.

  11. The effect of the amino-acid side chains on the energy profiles for ion transport in the gramicidin A channel.

    PubMed

    Etchebest, C; Pullman, A

    1985-02-01

    Computations on the energy profiles for Na+ in the gramicidin A (GA) channel have been extended by introducing the effect, previously neglected, of the amino acid side chains of GA, fixed in their most stable conformations. The calculations have been performed in two approximations: 1) with the ethanolamine tail fixed in its most stable conformation, 2) with the tail allowed to optimize its conformation upon the progression of the ion. In both approximations the overall shape of the energy profile is very similar to that obtained in the absence of the side chains. One observes, however, a general lowering of the profile upon the adjunction of the side chains. The analysis of the factors responsible for this energy lowering indicates that it is due essentially to the electrostatic and polarisation components of the interaction which interplay differently, however, in the different parts of the channel. A particular role is attributed in this respect to the tryptophan residues of GA. The role of the 4 tryptophans present, Trp 15, 13, 11 and 9, is individualized by stripping of one of them at a time. The strongest effect on the energy deepening is due to Trp 13 and is particularly prominent in the entrance zone at 14.5A from the center of the channel. The result indicates the possibility of investigating theoretically the effect on the energy profiles of the substitution of the "natural" side chain by others.

  12. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.

    PubMed

    Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred

    2012-07-01

    Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.

  13. Protein-ligand docking with multiple flexible side chains

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Sanner, Michel F.

    2008-09-01

    In this work, we validate and analyze the results of previously published cross docking experiments and classify failed dockings based on the conformational changes observed in the receptors. We show that a majority of failed experiments (i.e. 25 out of 33, involving four different receptors: cAPK, CDK2, Ricin and HIVp) are due to conformational changes in side chains near the active site. For these cases, we identify the side chains to be made flexible during docking calculation by superimposing receptors and analyzing steric overlap between various ligands and receptor side chains. We demonstrate that allowing these side chains to assume rotameric conformations enables the successful cross docking of 19 complexes (ligand all atom RMSD < 2.0 Å) using our docking software FLIPDock. The number of side receptor side chains interacting with a ligand can vary according to the ligand's size and shape. Hence, when starting from a complex with a particular ligand one might have to extend the region of potential interacting side chains beyond the ones interacting with the known ligand. We discuss distance-based methods for selecting additional side chains in the neighborhood of the known active site. We show that while using the molecular surface to grow the neighborhood is more efficient than Euclidian-distance selection, the number of side chains selected by these methods often remains too large and additional methods for reducing their count are needed. Despite these difficulties, using geometric constraints obtained from the network of bonded and non-bonded interactions to rank residues and allowing the top ranked side chains to be flexible during docking makes 22 out of 25 complexes successful.

  14. A protein-dependent side-chain rotamer library.

    PubMed

    Bhuyan, Md Shariful Islam; Gao, Xin

    2011-12-14

    Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.

  15. Rapid and scalable synthesis of innovative unnatural α,β or γ-amino acids functionalized with tertiary amines on their side-chains.

    PubMed

    Schneider, Séverine; Ftouni, Hussein; Niu, Songlin; Schmitt, Martine; Simonin, Frédéric; Bihel, Frédéric

    2015-07-07

    We report a selective ruthenium catalyzed reduction of tertiary amides on the side chain of Fmoc-Gln-OtBu derivatives, leading to innovative unnatural α,β or γ-amino acids functionalized with tertiary amines. Rapid and scalable, this process allowed us to build a library of basic unnatural amino acids at the gram-scale and directly usable for liquid- or solid-phase peptide synthesis. The diversity of available tertiary amines allows us to modulate the physicochemical properties of the resulting amino acids, such as basicity or hydrophobicity.

  16. Side-chain to backbone interactions dictate the conformational preferences of a cyclopentane arginine analogue

    PubMed Central

    Revilla-López, Guillem; Torras, Juan; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    The intrinsic conformational preferences of the non-proteinogenic amino acids constructed by incorporating the arginine side chain in the β position of 1-aminocyclopentane-1-carboxylic acid (either in a cis or a trans orientation relative to the amino group) have been investigated using computational methods. These compounds may be considered as constrained analogues of arginine (denoted as c5Arg) in which the orientation of the side chain is fixed by the cyclopentane moiety. Specifically, the N-acetyl-N′-methylamide derivatives of cis and trans-c5Arg have been examined in the gas phase and in solution using B3LYP/6-311+G(d,p) calculations and Molecular Dynamics simulations. Results indicate that the conformational space available to these compounds is highly restricted, their conformational preferences being dictated by the ability of the guanidinium group in the side chain to establish hydrogen-bond interactions with the backbone. A comparison with the behavior previously described for the analogous phenylalanine derivatives is presented. PMID:19236034

  17. Amino Acid Selective 13C Labeling and 13C Scrambling Profile Analysis of Protein α and Side-Chain Carbons in Escherichia coli Utilized for Protein Nuclear Magnetic Resonance.

    PubMed

    Sugiki, Toshihiko; Furuita, Kyoko; Fujiwara, Toshimichi; Kojima, Chojiro

    2018-06-20

    Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15 N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13 C atoms experience less isotope scrambling than the main-chain 15 N atoms do. However, little is known about the side-chain 13 C atoms. Here, the 13 C scrambling profiles of the Cα and side-chain carbons were investigated for 15 N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13 Cα and 13 C side-chain labeling than in 15 N labeling. We utilized this reduced scrambling-prone character of 13 C as a simple and efficient method for amino acid selective 13 C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13 C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1 H- 15 N heteronuclear single-quantum coherence signals of the 15 N scrambling-prone amino acid were also easily filtered using 15 N-{ 13 Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.

  18. SCit: web tools for protein side chain conformation analysis.

    PubMed

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.

  19. SCit: web tools for protein side chain conformation analysis

    PubMed Central

    Gautier, R.; Camproux, A.-C.; Tufféry, P.

    2004-01-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438

  20. Residue-Specific Side-Chain Polymorphisms via Particle Belief Propagation.

    PubMed

    Ghoraie, Laleh Soltan; Burkowski, Forbes; Li, Shuai Cheng; Zhu, Mu

    2014-01-01

    Protein side chains populate diverse conformational ensembles in crystals. Despite much evidence that there is widespread conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as it facilitates deeper understanding of protein dynamics and functionality. In this paper, we describe a computational strategy capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using electron density information, and has successfully discovered previously unmodeled conformations.

  1. Side-chain mobility in the folded state of Myoglobin

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Onuchic, Jose

    We study the accessibility of alternative side-chain rotamer configurations in the native state of Myoglobin, using an all-atom structure-based model. From long, unbiased simulation trajectories we determine occupancies of rotameric states and also estimate configurational and vibrational entropies. Direct sampling of the full native-state dynamics, enabled by the simple model, reveals facilitation of side-chain motions by backbone dynamics. Correlations between different dihedral angles are quantified and prove to be weak. We confirm global trends in the mobilities of side-chains, following burial and also the chemical character of residues. Surface residues loose little configurational entropy upon folding; side-chains contribute significantly to the entropy of the folded state. Mobilities of buried side-chains vary strongly with temperature. At ambient temperature, individual side-chains in the core of the protein gain substantial access to alternative rotamers, with occupancies that are likely observable experimentally. Finally, the dynamics of buried side-chains may be linked to the internal pockets, available to ligand gas molecules in Myoglobin.

  2. Exploring the impact of the side-chain length on peptide/RNA binding events.

    PubMed

    Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia

    2017-07-19

    The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.

  3. C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking.

    PubMed

    Higgins, Chelsea D; Koellhoffer, Jayne F; Chandran, Kartik; Lai, Jonathan R

    2013-10-01

    We previously described potent inhibition of Ebola virus entry by a 'C-peptide' based on the GP2 C-heptad repeat region (CHR) targeted to endosomes ('Tat-Ebo'). Here, we report the synthesis and evaluation of C-peptides conjugated to cholesterol, and Tat-Ebo analogs containing covalent side chain-side chain crosslinks to promote α-helical conformation. We found that the cholesterol-conjugated C-peptides were potent inhibitors of Ebola virus glycoprotein (GP)-mediated cell entry (~10(3)-fold reduction in infection at 40 μM). However, this mechanism of inhibition is somewhat non-specific because the cholesterol-conjugated peptides also inhibited cell entry mediated by vesicular stomatitis virus glycoprotein G. One side chain-side chain crosslinked peptide had moderately higher activity than the parent compound Tat-Ebo. Circular dichroism revealed that the cholesterol-conjugated peptides unexpectedly formed a strong α-helical conformation that was independent of concentration. Side chain-side chain crosslinking enhanced α-helical stability of the Tat-Ebo variants, but only at neutral pH. These result provide insight into mechanisms of C-peptide inhibiton of Ebola virus GP-mediated cell entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization.

    PubMed

    Ryu, Joonghyun; Lee, Mokwon; Cha, Jehyun; Laskowski, Roman A; Ryu, Seong Eon; Kim, Deok-Soo

    2016-07-08

    Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem. Here, we present BetaSCPWeb which efficiently computes a conformation close to optimal using a geometry-prioritization method based on the Voronoi diagram of spherical atoms. Its outputs are visual, textual and PDB file format. The web server is free and open to all users at http://voronoi.hanyang.ac.kr/betascpweb with no login requirement. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    PubMed Central

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-01-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD. PMID:26899474

  6. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    NASA Astrophysics Data System (ADS)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  7. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides

    NASA Astrophysics Data System (ADS)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E.

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. [Figure not available: see fulltext.

  8. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    PubMed

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  9. Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells.

    PubMed

    Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R Noelle; Wang, Chun

    2011-04-10

    A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC(50) values of the Dox-loaded micelles were approximately ten-times (by 24h) and three-times (by 48h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results

  10. Protein side chain conformation predictions with an MMGBSA energy function.

    PubMed

    Gaillard, Thomas; Panel, Nicolas; Simonson, Thomas

    2016-06-01

    The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Residues with similar hexagon neighborhoods share similar side-chain conformations.

    PubMed

    Li, Shuai Cheng; Bu, Dongbo; Li, Ming

    2012-01-01

    We present in this study a new approach to code protein side-chain conformations into hexagon substructures. Classical side-chain packing methods consist of two steps: first, side-chain conformations, known as rotamers, are extracted from known protein structures as candidates for each residue; second, a searching method along with an energy function is used to resolve conflicts among residues and to optimize the combinations of side chain conformations for all residues. These methods benefit from the fact that the number of possible side-chain conformations is limited, and the rotamer candidates are readily extracted; however, these methods also suffer from the inaccuracy of energy functions. Inspired by threading and Ab Initio approaches to protein structure prediction, we propose to use hexagon substructures to implicitly capture subtle issues of energy functions. Our initial results indicate that even without guidance from an energy function, hexagon structures alone can capture side-chain conformations at an accuracy of 83.8 percent, higher than 82.6 percent by the state-of-art side-chain packing methods.

  12. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network

    PubMed Central

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S.; Zeng, Xiao Cheng

    2016-01-01

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks−Chandler−Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ > 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ < 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ = 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter. PMID:27803319

  13. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    PubMed

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  14. BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization

    PubMed Central

    Ryu, Joonghyun; Lee, Mokwon; Cha, Jehyun; Laskowski, Roman A.; Ryu, Seong Eon; Kim, Deok-Soo

    2016-01-01

    Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem. Here, we present BetaSCPWeb which efficiently computes a conformation close to optimal using a geometry-prioritization method based on the Voronoi diagram of spherical atoms. Its outputs are visual, textual and PDB file format. The web server is free and open to all users at http://voronoi.hanyang.ac.kr/betascpweb with no login requirement. PMID:27151195

  15. Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using Scanning Tunneling Microscopy

    PubMed Central

    Claridge, Shelley A.; Thomas, John C.; Silverman, Miles A.; Schwartz, Jeffrey J.; Yang, Yanlian; Wang, Chen; Weiss, Paul S.

    2014-01-01

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structure at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer’s and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level. PMID:24219245

  16. Improved modeling of side-chain--base interactions and plasticity in protein--DNA interface design.

    PubMed

    Thyme, Summer B; Baker, David; Bradley, Philip

    2012-06-08

    Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed "motifs") was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein-DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent. Published by Elsevier Ltd.

  17. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    PubMed

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantitative Profiling of Feruloylated Arabinoxylan Side-Chains from Graminaceous Cell Walls

    PubMed Central

    Schendel, Rachel R.; Meyer, Marleen R.; Bunzel, Mirko

    2016-01-01

    Graminaceous arabinoxylans are distinguished by decoration with feruloylated monosaccharidic and oligosaccharidic side-chains. Although it is hypothesized that structural complexity and abundance of these feruloylated arabinoxylan side-chains may contribute, among other factors, to resistance of plant cell walls to enzymatic degradation, quantitative profiling approaches for these structural units in plant cell wall materials have not been described yet. Here we report the development and application of a rapid and robust method enabling the quantitative comparison of feruloylated side-chain profiles in cell wall materials following mildly acidic hydrolysis, C18-solid phase extraction (SPE), reduction under aprotic conditions, and liquid chromatography with diode-array detection/mass spectrometry (LC-DAD/MS) separation and detection. The method was applied to the insoluble fiber/cell wall materials isolated from 12 whole grains: wild rice (Zizania aquatica L.), long-grain brown rice (Oryza sativa L.), rye (Secale cereale L.), kamut (Triticum turanicum Jakubz.), wheat (Triticum aestivum L.), spelt (Triticum spelta L.), intermediate wheatgrass (Thinopyrum intermedium), maize (Zea mays L.), popcorn (Zea mays L. var. everta), oat (Avena sativa L.) (dehulled), barley (Hordeum vulgare L.) (dehulled), and proso millet (Panicum miliaceum L.). Between 51 and 96% of the total esterified monomeric ferulates were represented in the quantified compounds captured in the feruloylated side-chain profiles, which confirms the significance of these structures to the global arabinoxylan structure in terms of quantity. The method provided new structural insights into cereal grain arabinoxylans, in particular, that the structural moiety α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose (FAXG), which had previously only been described in maize, is ubiquitous to cereal grains. PMID:26834763

  19. Assessing the influence of side-chain and main-chain aromatic benzyltrimethyl ammonium on anion exchange membranes.

    PubMed

    Li, Xiuhua; Nie, Guanghui; Tao, Jinxiong; Wu, Wenjun; Wang, Liuchan; Liao, Shijun

    2014-05-28

    3,3'-Di(4″-methyl-phenyl)-4,4'-difluorodiphenyl sulfone (DMPDFPS), a new monomer with two pendent benzyl groups, was easily prepared by Suzuki coupling reaction in high yield. A series of side-chain type ionomers (PAES-Qs) containing pendant side-chain benzyltrimethylammonium groups, which linked to the backbone by alkaline resisting conjugated C-C bonds, were synthesized via polycondensation, bromination, followed by quaternization and alkalization. To assess the influence of side-chain and main-chain aromatic benzyltrimethylammonium on anion exchange membranes (AEMs), the main-chain type ionomers (MPAES-Qs) with the same backbone were synthesized following the similar procedure. GPC and (1)H NMR results indicate that the bromination shows no reaction selectivity of polymer configurations and ionizations of the side-chain type polymers display higher conversions than that of the main-chain type ones do. These two kinds of AEMs were evaluated in terms of ion exchange capacity (IEC), water uptake, swelling ratio, λ, volumetric ion exchange capacity (IECVwet), hydroxide conductivity, mechanical and thermal properties, and chemical stability, respectively. The side-chain type structure endows AEMs with lower water uptake, swelling ratio and λ, higher IECVwet, much higher hydroxide conductivity, more robust dimensional stability, mechanical and thermal properties, and higher stability in hot alkaline solution. The side-chain type cationic groups containing molecular configurations have the distinction of being practical AEMs and membrane electrode assemblies of AEMFCs.

  20. Enhanced production of longer side-chain polyhydroxyalkanoic acid with omega-aromatic group substitution in phaZ-disrupted Pseudomonas fluorescens BM07 mutant through unrelated carbon source cometabolism and salicylic acid beta-oxidation inhibition.

    PubMed

    Choi, Mun Hwan; Xu, Ju; Rho, Jong Kook; Zhao, Xu Ping; Yoon, Sung Chul

    2010-06-01

    The deletion of the intracellular polyhydroxyalkanoate (PHA) depolymerase gene (phaZ) in Pseudomonas fluorescens BM07 was found to increase more efficiently the levels of longer medium-chain-length (MCL) omega-aromatic monomer-units than in the wild-type strain when the cells were grown with a mixture of fructose and MCL omega-aromatic fatty acid in the presence of salicylic acid that is known as a beta-oxidation inhibitor in BM07 strain. When 11-phenoxyundecanoic acid was used as co-carbon source, the longest monomer-unit 3-hydroxy-11-phenoxyundecanoate, not reported in literature yet, was incorporated into the polymer chain up to approximately 10 mol%. An advantage of salicylic acid inhibition technique is that salicylic acid is not metabolized in BM07 strain, thus, the effective concentration of the inhibitor remaining constant throughout the cultivation. In conclusion, this new technique could be exploited for the enhanced production of side-chain modulated functional MCL-PHA with improved physicochemical properties in P. fluorescens BM07. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Incorporation of basic side chains into cryptolepine scaffold: structure-antimalarial activity relationships and mechanistic studies.

    PubMed

    Lavrado, João; Cabal, Ghislain G; Prudêncio, Miguel; Mota, Maria M; Gut, Jiri; Rosenthal, Philip J; Díaz, Cecília; Guedes, Rita C; dos Santos, Daniel J V A; Bichenkova, Elena; Douglas, Kenneth T; Moreira, Rui; Paulo, Alexandra

    2011-02-10

    The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity when compared with the parent compound. Localization studies inside parasite blood stages by fluorescence microscopy showed that these derivatives accumulate inside the nucleus, indicating that the incorporation of a basic side chain is not sufficient enough to promote selective accumulation in the acidic digestive vacuole of the parasite. Most of the compounds within this series showed the ability to bind to a double-stranded DNA duplex as well to monomeric hematin, suggesting that these are possible targets associated with the observed antimalarial activity. Overall, these novel cryptolepine analogues with substantially improved antiplasmodial activity and selectivity index provide a promising starting point for development of potent and highly selective agents against drug-resistant malaria parasites.

  2. Synthesis, surface characterization, and biointeraction studies of low-surface energy side-chain polyetherurethanes

    NASA Astrophysics Data System (ADS)

    Porter, Stephen Christopher

    1999-10-01

    New segmented polyetherurethanes (PEUs) with low surface energy hydrocarbon and fluorocarbon side-chains attached to the polymer hard segments were synthesized. The surface chemistry of solvent cast polymer films was studied using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and dynamic contact angle (DCA) measurements. Increases in the overall density and length of the alkyl side-chains within the PEUs resulted in greater side-chain concentrations at the polymer surface. PEUs bearing long alkyl (> C10 ) and perfluorocarbon side-chains were found to posses surfaces with highly enriched side-chain concentrations relative to the bulk polymer. In PEUs with significant side-chain surface enrichment, the relatively polar hard segment blocks were shown to reside in high concentrations just below the side-chain enriched surface layer. Furthermore, DCA measurements demonstrated that the surface of the alkyl side-chain PEUs did not undergo significant rearrangement when placed into an aqueous environment, whereas the surface of a hard segment model polymer bearing C18 sidechains (PEU-C18-HS) did. Hydrogen bonding within the PEUs was examined using FTIR and was shown to be disrupted by the addition of side-chains; an effect dependent on the density but not on the length of the side-chains. Heteropolymer blends comprised of mixtures of high side-chain density and side-chain free PEUs were compared with homopolymers having the same overall side-chain concentration as the blends. Significantly more surface enrichment of side-chains was found in the heteropolymer blends whereas hydrogen bonding nearly the same as in the homopolymers. Adsorption of native and delipidized human serum albumin (HSA) from pure solution and blood plasma; the elutabilty of adsorbed HSA; and static platelet adhesion to plasma preadsorbed surfaces, were all examined on alkyl side-chain PEUs. Several polymers with high C18 side-chain densities displayed increased

  3. Hydrogen Bond Switching among Flavin and Amino Acid Side Chains in the BLUF Photoreceptor Observed by Ultrafast Infrared Spectroscopy

    PubMed Central

    Bonetti, Cosimo; Mathes, Tilo; van Stokkum, Ivo H. M.; Mullen, Katharine M.; Groot, Marie-Louise; van Grondelle, Rienk; Hegemann, Peter; Kennis, John T. M.

    2008-01-01

    BLUF domains constitute a recently discovered class of photoreceptor proteins found in bacteria and eukaryotic algae. BLUF domains are blue-light sensitive through a FAD cofactor that is involved in an extensive hydrogen-bond network with nearby amino acid side chains, including a highly conserved tyrosine and glutamine. The participation of particular amino acid side chains in the ultrafast hydrogen-bond switching reaction with FAD that underlies photoactivation of BLUF domains is assessed by means of ultrafast infrared spectroscopy. Blue-light absorption by FAD results in formation of FAD•− and a bleach of the tyrosine ring vibrational mode on a picosecond timescale, showing that electron transfer from tyrosine to FAD constitutes the primary photochemistry. This interpretation is supported by the absence of a kinetic isotope effect on the fluorescence decay on H/D exchange. Subsequent protonation of FAD•− to result in FADH• on a picosecond timescale is evidenced by the appearance of a N-H bending mode at the FAD N5 protonation site and of a FADH• C=N stretch marker mode, with tyrosine as the likely proton donor. FADH• is reoxidized in 67 ps (180 ps in D2O) to result in a long-lived hydrogen-bond switched network around FAD. This hydrogen-bond switch shows infrared signatures from the C-OH stretch of tyrosine and the FAD C4=O and C=N stretches, which indicate increased hydrogen-bond strength at all these sites. The results support a previously hypothesized rotation of glutamine by ∼180° through a light-driven radical-pair mechanism as the determinant of the hydrogen-bond switch. PMID:18708458

  4. Influence of side chain conformation and configuration on glycosyl donor reactivity and selectivity as illustrated by sialic acid donors epimeric at the 7-position.

    PubMed

    Kancharla, Pavan K; Crich, David

    2013-12-18

    Two N-acetyl 4O,5N-oxazolidinone-protected sialyl thioglycosides epimeric at the 7-position have been synthesized and their reactivity and stereoselectivity in glycosylation reactions have been compared. It is demonstrated that the natural 7S-donor is both more reactive and more α-selective than the unnatural 7R-isomer. The difference in reactivity is attributed to the side chain conformation and specifically to the proximity of O7 to the anomeric center. In the natural 7S-isomer, O7 is closer to the anomeric center than in its unnatural 7R-epimer and, therefore, better able to support incipient positive charge at the locus of reaction. The difference in selectivity is also attributed to the side conformation, which in the unnatural 7R-series is placed perpendicularly above the α-face of the donor and so shields it to a greater extent than in the 7S-series. These observations are consistent with earlier conclusions on the influence of the side chain conformation on reactivity and selectivity derived from conformationally locked models in the glucose and galactose series and corroborate the suggestion that those effects are predominantly stereoelectronic rather than torsional. The possible relevance of side chain conformation as a factor in the influence of glycosylation stereoselectivity by remote protecting groups and as a control element in enzymic processes for glycosidic bond formation and hydrolysis are discussed. Methods for assignment of the anomeric configuration in the sialic acid glycosides are critically surveyed.

  5. A Markov Random Field Framework for Protein Side-Chain Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff

  6. Dissecting the total transition state stabilization provided by amino acid side chains at orotidine 5'-monophosphate decarboxylase: a two-part substrate approach.

    PubMed

    Barnett, Shonoi A; Amyes, Tina L; Wood, Bryant M; Gerlt, John A; Richard, John P

    2008-07-29

    Kinetic analysis of decarboxylation catalyzed by S154A, Q215A, and S154A/Q215A mutant yeast orotidine 5'-monophosphate decarboxylases with orotidine 5'-monophosphate (OMP) and with a truncated nucleoside substrate (EO) activated by phosphite dianion shows (1) the side chain of Ser-154 stabilizes the transition state through interactions with the pyrimidine rings of OMP or EO, (2) the side chain of Gln-215 interacts with the phosphodianion group of OMP or with phosphite dianion, and (3) the interloop hydrogen bond between the side chains of Ser-154 and Gln-215 orients the amide side chain of Gln-215 to interact with the phosphodianion group of OMP or with phosphite dianion.

  7. Switching effect of the side chain on quantum walks on triple graphs

    NASA Astrophysics Data System (ADS)

    Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan

    2015-07-01

    We consider a continuous-time quantum walk on a triple graph and investigate the influence of the side chain on propagation in the main chain. Calculating the interchange of the probabilities between the two parts of the main chain, we find that a switching effect appears if there is an odd number of points in the side chain when concrete conditions between the length of the main chain and the position of the side chain are satisfied. However, such an effect does not occur if there is an even number of points in the side chain. We also suggest two proposals for experiments to demonstrate this effect, which may be employed to design a new type of switching device.

  8. Hidden regularity and universal classification of fast side chain motions in proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajeshwar, Rajitha; Smith, Jeremy C.; Krishnam, Marimuthu

    Proteins display characteristic dynamical signatures that appear to be universal across all proteins regardless of topology and size. Here, we systematically characterize the universal features of fast side chain motions in proteins by examining the conformational energy surfaces of individual residues obtained using enhanced sampling molecular dynamics simulation (618 free energy surfaces obtained from 0.94 s MD simulation). The side chain conformational free energy surfaces obtained using the adaptive biasing force (ABF) method for a set of eight proteins with different molecular weights and secondary structures are used to determine the methyl axial NMR order parameters (O axis 2), populationsmore » of side chain rotamer states (ρ), conformational entropies (S conf), probability fluxes, and activation energies for side chain inter-rotameric transitions. The free energy barriers separating side chain rotamer states range from 0.3 to 12 kcal/mol in all proteins and follow a trimodal distribution with an intense peak at ~5 kcal/mol and two shoulders at ~3 and ~7.5 kcal/mol, indicating that some barriers are more favored than others by proteins to maintain a balance between their conformational stability and flexibility. The origin and the influences of the trimodal barrier distribution on the distribution of O axis 2 and the side chain conformational entropy are discussed. A hierarchical grading of rotamer states based on the conformational free energy barriers, entropy, and probability flux reveals three distinct classes of side chains in proteins. A unique nonlinear correlation is established between O axis 2 and the side chain rotamer populations (ρ). In conclusion, the apparent universality in O axis 2 versus correlation, trimodal barrier distribution, and distinct characteristics of three classes of side chains observed among all proteins indicates a hidden regularity (or commonality) in the dynamical heterogeneity of fast side chain motions in proteins.« less

  9. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  10. A combinatorial approach to protein docking with flexible side chains.

    PubMed

    Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter

    2002-01-01

    Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.

  11. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.

    PubMed

    Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei

    2017-11-24

    Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Modulation of p-Cyanophenylalanine Fluorescence by Amino Acid Side-chains and Rational Design of Fluorescence Probes of α-Helix Formation

    PubMed Central

    Taskent-Sezgin, Humeyra; Marek, Peter; Thomas, Rosanne; Goldberg, Daniel; Chung, Juah; Carrico, Isaac; Raleigh, Daniel P.

    2011-01-01

    p-Cyanophenylalanine is an extremely useful fluorescence probe of protein structure which can be recombinantly and chemically incorporated into proteins. The probe has been used to study protein folding, protein-membrane interactions, protein-peptide interactions and amyloid formation, however the factors that control its fluorescence are not fully understood. Hydrogen bonding to the cyano group is known to play a major role in modulating the fluorescence quantum yield, but the role of potential side-chain quenchers has not yet been elucidated. A systematic study on the effects of different side-chains on p-cyanophenylalanine fluorescence is reported. Tyr is found to have the largest effect followed by deprotonated His, Met, Cys, protonated His, Asn, Arg, and protonated Lys. Deprotonated amino groups are much more effective fluorescence quenchers than protonated amino groups. Free neutral imidazole and hydroxide ion are also effective quenchers of p-cyanophenylalanine fluorescence with Stern-Volmer constants of 39.8 M−1 and 22.1 M−1, respectively. The quenching of p-cyanophenylalanine fluorescence by specific side-chains is exploited to develop specific, high sensitivity, fluorescence probes of helix formation. The approach is demonstrated with Ala based peptides that contain a p-cyanophenylalanine-His or a p-cyanophenylalanine-Tyr pair located at positions i and i+4. The p-cyanophenylalanine-His pair is most useful when the His side-chain is deprotonated and is, thus, complimentary to Trp-His pair which is most sensitive when the His side-chain is protonated. PMID:20565125

  14. Improved side-chain torsion potentials for the Amber ff99SB protein force field

    PubMed Central

    Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E

    2010-01-01

    Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20408171

  15. Effect of alkyl side chain location and cyclicity on the aerobic biotransformation of naphthenic acids.

    PubMed

    Misiti, Teresa M; Tezel, Ulas; Pavlostathis, Spyros G

    2014-07-15

    Aerobic biodegradation of naphthenic acids is of importance to the oil industry for the long-term management and environmental impact of process water and wastewater. The effect of structure, particularly the location of the alkyl side chain as well as cyclicity, on the aerobic biotransformation of 10 model naphthenic acids (NAs) was investigated. Using an aerobic, mixed culture, enriched with a commercial NA mixture (NA sodium salt; TCI Chemicals), batch biotransformation assays were conducted with individual model NAs, including eight 8-carbon isomers. It was shown that NAs with a quaternary carbon at the α- or β-position or a tertiary carbon at the β- and/or β'-position are recalcitrant or have limited biodegradability. In addition, branched NAs exhibited lag periods and lower degradation rates than nonbranched or simple cyclic NAs. Two NA isomers used in a closed bottle, aerobic biodegradation assay were mineralized, while 21 and 35% of the parent compound carbon was incorporated into the biomass. The NA biodegradation probability estimated by two widely used models (BIOWIN 2 and 6) and a recently developed model (OCHEM) was compared to the biodegradability of the 10 model NAs tested in this study as well as other related NAs. The biodegradation probability estimated by the OCHEM model agreed best with the experimental data and was best correlated with the measured NA biodegradation rate.

  16. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-07

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  17. Simulation study of the initial crystallization processes of poly(3-hexylthiophene) in solution: ordering dynamics of main chains and side chains.

    PubMed

    Takizawa, Yuumi; Shimomura, Takeshi; Miura, Toshiaki

    2013-05-23

    We study the initial nucleation dynamics of poly(3-hexylthiophene) (P3HT) in solution, focusing on the relationship between the ordering process of main chains and that of side chains. We carried out Langevin dynamics simulation and found that the initial nucleation processes consist of three steps: the ordering of ring orientation, the ordering of main-chain vectors, and the ordering of side chains. At the start, the normal vectors of thiophene rings aligned in a very short time, followed by alignment of main-chain end-to-end vectors. The flexible side-chain ordering took almost 5 times longer than the rigid-main-chain ordering. The simulation results indicated that the ordering of side chains was induced after the formation of the regular stack structure of main chains. This slow ordering dynamics of flexible side chains is one of the factors that cause anisotropic nuclei growth, which would be closely related to the formation of nanofiber structures without external flow field. Our simulation results revealed how the combined structure of the planar and rigid-main-chain backbones and the sparse flexible side chains lead to specific ordering behaviors that are not observed in ordinary linear polymer crystallization processes.

  18. Effect of vitamin A deprivation on the cholesterol side-chain cleavage enzyme activity of testes and ovaries of rats (Short Communication)

    PubMed Central

    Jayaram, M.; Murthy, S. K.; Ganguly, J.

    1973-01-01

    The cholesterol side-chain cleavage enzyme activity is decreased considerably at the mild stage of vitamin A deficiency in rat testes and ovaries and the decrease in activity becomes more pronounced with progress of deficiency. Supplementation of the deficient rats with retinyl acetate, but not retinoic acid, restores the enzyme activity to normal values. The cholesterol side-chain cleavage enzyme of adrenals is not affected by any of the above treatments. PMID:4772624

  19. Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments

    PubMed Central

    Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke

    2016-01-01

    Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909

  20. A Site Density Functional Theory for Water: Application to Solvation of Amino Acid Side Chains.

    PubMed

    Liu, Yu; Zhao, Shuangliang; Wu, Jianzhong

    2013-04-09

    We report a site density functional theory (SDFT) based on the conventional atomistic models of water and the universality ansatz of the bridge functional. The excess Helmholtz energy functional is formulated in terms of a quadratic expansion with respect to the local density deviation from that of a uniform system and a universal functional for all higher-order terms approximated by that of a reference hard-sphere system. With the atomistic pair direct correlation functions of the uniform system calculated from MD simulation and an analytical expression for the bridge functional from the modified fundamental measure theory, the SDFT can be used to predict the structure and thermodynamic properties of water under inhomogeneous conditions with a computational cost negligible in comparison to that of brute-force simulations. The numerical performance of the SDFT has been demonstrated with the predictions of the solvation free energies of 15 molecular analogs of amino acid side chains in water represented by SPC/E, SPC, and TIP3P models. For theTIP3P model, a comparison of the theoretical predictions with MD simulation and experimental data shows agreement within 0.64 and 1.09 kcal/mol on average, respectively.

  1. Liquid crystal polymers: evidence of hairpin defects in nematic main chains, comparison with side chain polymers

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.

    1996-09-01

    This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.

  2. Linear rheology and structure of molecular bottlebrushes with short side chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Brant, Patrick; Crowther, Donna J.

    We investigate the microstructure and linear viscoelasticity of model molecular bottlebrushes (BBs) using rheological and small-angle X-ray and neutron scattering measurements. Our polymers have short atactic polypropylene (aPP) side chains of molecular weight ranging from 119 g/mol to 259 g/mol and narrow molecular weight distribution (M{sub w}/M{sub n} 1.02–1.05). The side chain molecular weights are a small fraction of the entanglement molecular weight of the corresponding linear polymer (M{sub e,aPP}= 7.05 kg/mol), and as such, they are unentangled. The morphology of the aPP BBs is characterized as semiflexible thick chains with small side chain interdigitation. Their dynamic master curves, obtained by time-temperature superposition,more » reveal two sequential relaxation processes corresponding to the segmental relaxation and the relaxation of the BB backbone. Due to the short length of the side chains, their fast relaxation could not be distinguished from the glassy relaxation. The fractional free volume is an increasing function of the side chain length (N{sub SC}). Therefore, the glassy behavior of these polymers as well as their molecular friction and dynamic properties are influenced by their N{sub SC} values. The apparent flow activation energies are a decreasing function of N{sub SC}, and their values explain the differences in zero-shear viscosity measured at different temperatures.« less

  3. Functional modulation of a protein folding landscape via side-chain distortion

    PubMed Central

    Kelch, Brian A.; Salimi, Neema L.; Agard, David A.

    2012-01-01

    Ultrahigh-resolution (< 1.0 Å) structures have revealed unprecedented and unexpected details of molecular geometry, such as the deformation of aromatic rings from planarity. However, the functional utility of such energetically costly strain is unknown. The 0.83 Å structure of α-lytic protease (αLP) indicated that residues surrounding a conserved Phe side-chain dictate a rotamer which results in a ∼6° distortion along the side-chain, estimated to cost 4 kcal/mol. By contrast, in the closely related protease Streptomyces griseus Protease B (SGPB), the equivalent Phe adopts a different rotamer and is undistorted. Here, we report that the αLP Phe side-chain distortion is both functional and conserved in proteases with large pro regions. Sequence analysis of the αLP serine protease family reveals a bifurcation separating those sequences expected to induce distortion and those that would not, which correlates with the extent of kinetic stability. Structural and folding kinetics analyses of family members suggest that distortion of this side-chain plays a role in increasing kinetic stability within the αLP family members that use a large Pro region. Additionally, structural and kinetic folding studies of mutants demonstrate that strain alters the folding free energy landscape by destabilizing the transition state (TS) relative to the native state (N). Although side-chain distortion comes at a cost of foldability, it suppresses the rate of unfolding, thereby enhancing kinetic stability and increasing protein longevity under harsh extracellular conditions. This ability of a structural distortion to enhance function is unlikely to be unique to αLP family members and may be relevant in other proteins exhibiting side-chain distortions. PMID:22635267

  4. Electrostatic Solvation Free Energy of Amino Acid Side Chain Analogs: Implications for the Validity of Electrostatic Linear Response in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Bin; Pettitt, Bernard M.

    Electrostatic free energies of solvation for 15 neutral amino acid side chain analogs are computed. We compare three methods of varying computational complexity and accuracy for three force fields: free energy simulations, Poisson-Boltzmann (PB), and linear response approximation (LRA) using AMBER, CHARMM, and OPLSAA force fields. We find that deviations from simulation start at low charges for solutes. The approximate PB and LRA produce an overestimation of electrostatic solvation free energies for most of molecules studied here. These deviations are remarkably systematic. The variations among force fields are almost as large as the variations found among methods. Our study confirmsmore » that success of the approximate methods for electrostatic solvation free energies comes from their ability to evaluate free energy differences accurately.« less

  5. Product ion tandem mass spectrometric differentiation of regioisomeric side-chain groups in cathinone derivatives.

    PubMed

    Abiedalla, Younis; DeRuiter, Jack; Clark, C Randall

    2016-07-30

    Precursor materials are available to prepare aminoketone drugs containing regioisomeric propyl and isopropyl side-chain groups related to the drug alpha-pyrrovalerone (Flakka) and MDPV (3,4-methylenedioxypyrrovalerone). These compounds yield equivalent regioisomeric iminium cation base peaks in electron ionization mass spectrometry (EI-MS). The propyl and isopropyl side-chain groups related to alpha-pyrrovalerone and MDPV were prepared and evaluated in EI-MS and tandem mass spectrometry (MS/MS) product ion experiments. Deuterium labeling in both the pyrrolidine and alkyl side-chain groups allowed for the confirmation of the structures for the major product ions formed from the regioisomeric EI-MS iminium cation base peaks. These iminium cation base peaks show characteristic product ion spectra which allow differentiation of the side-chain propyl and isopropyl groups in the structure. The n-propyl side chain containing iminium cation base peak (m/z 126) in the EI-MS spectrum yields a major product ion at m/z 84 while the regioisomeric m/z 126 base peak for the isopropyl side chain yields a characteristic product ion at m/z 70. Deuterium labeling in both the pyrrolidine ring and the alkyl side chain confirmed the process for the formation of these major product ions. Product ion fragmentation provides useful data for differentiation of n-propyl and isopropyl side-chain iminium cations from cathinone derivative drugs of abuse. Regioisomeric n-propyl and isopropyl iminium cations of equal mass yield characteristic product ions identifying the alkyl side-chain regioisomers in the pyrrolidine cathinone derivatives. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Positioning of the carboxamide side chain in 11-oxo-11H-indeno[1,2-b]quinolinecarboxamide anticancer agents: effects on cytotoxicity.

    PubMed

    Deady, L W; Desneves, J; Kaye, A J; Finlay, G J; Baguley, B C; Denny, W A

    2001-02-01

    A series of 11-oxo-11H-indeno[1,2-b]quinolines bearing a carboxamide-linked cationic side chain at various positions on the chromophore was studied to determine structure-activity relationships between cytotoxicity and the position of the side chain. The compounds were prepared by Pfitzinger synthesis from an appropriate isatin and 1-indanone, followed by various oxidative steps, to generate the required carboxylic acids. The 4- and 6-carboxamides (with the side chain on a terminal ring, off the short axis of the chromophore) were effective cytotoxins. The dimeric 4- and 6-linked analogues were considerably more cytotoxic than the parent monomers, but had broadly similar activities. In contrast, analogues with side chains at the 8-position (on a terminal ring but off the long axis of the chromophore) or 10-position (off the short axis of the chromophore but in a central ring) were drastically less effective. The 4,10- and 6,10-biscarboxamides had activities between those of the corresponding parent monocarboxamides. The first of these showed good activity against advanced subcutaneous colon 38 tumours in mice.

  7. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ionization and order disorder transition of hydrogels with ionizable hydrophobic side chain

    NASA Astrophysics Data System (ADS)

    Matsuda, A.; Katayama, Y.; Kaneko, T.; Gong, J. P.; Osada, Y.

    2000-10-01

    pH dependence of the structural change of the amphiphilic copolymer gels containing the crystallizable side chain with carboxylic end group, poly(16-acryloylhexadecanoic acid (AHA)- co-acrylic acid (AA)), has been investigated. The poly(AHA- co-AA) gels could maintain the crystalline domain of AHA units up to pH=11 at ambient temperature, which abruptly transferred into disordered state beyond this pH due to the dissociation of the carboxylic group of AHA. However, the addition of salt or divalent ion enabled to crystallize the gel even at pH=11.5 due to the effective shielding of the electrostatic repulsion. The mechanism of order-disorder transition through changes of pH and salt concentration was discussed in terms of association-dissociation of AHA groups.

  9. Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.

    PubMed

    Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu

    2015-03-01

    Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. © 2014 Wiley Periodicals, Inc.

  10. 22. VIEW LOOKING FORWARD INTO CHAIN LOCKER FROM PORT SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW LOOKING FORWARD INTO CHAIN LOCKER FROM PORT SIDE ENTRY THROUGH CHAIN LOCKER BULKHEAD. PAWL BITT SHOWN IN FOREGROUND - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  11. Side-Chain Effects on the Thermoelectric Properties of Fluorene-Based Copolymers.

    PubMed

    Liang, Ansheng; Zhou, Xiaoyan; Zhou, Wenqiao; Wan, Tao; Wang, Luhai; Pan, Chengjun; Wang, Lei

    2017-09-01

    Three conjugated polymers with alkyl chains of different lengths are designed and synthesized, and their structure-property relationship as organic thermoelectric materials is systematically elucidated. All three polymers show similar photophysical properties, thermal properties, and mechanical properties; however, their thermoelectric performance is influenced by the length of their side chains. The length of the alkyl chain significantly influences the electrical conductivity of the conjugated polymers, and polymers with a short alkyl chain exhibit better conductivity than those with a long alkyl chain. The length of the alkyl chain has little effect on the Seebeck coefficient. Only a slight increase in the Seebeck coefficient is observed with the increasing length of the alkyl chain. The purpose of this study is to provide comprehensive insight into fine-tuning the thermoelectric properties of conjugated polymers as a function of side-chain engineering, thereby providing a novel perspective into the design of high-performance thermoelectric conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Low resistance, large dimension entrance to the inner cavity of BK channels determined by changing side-chain volume

    PubMed Central

    Niu, Xiaowei

    2011-01-01

    Large-conductance Ca2+- and voltage-activated K+ (BK) channels have the largest conductance (250–300 pS) of all K+-selective channels. Yet, the contributions of the various parts of the ion conduction pathway to the conductance are not known. Here, we examine the contribution of the entrance to the inner cavity to the large conductance. Residues at E321/E324 on each of the four α subunits encircle the entrance to the inner cavity. To determine if 321/324 is accessible from the inner conduction pathway, we measured single-channel current amplitudes before and after exposure and wash of thiol reagents to the intracellular side of E321C and E324C channels. MPA− increased currents and MTSET+ decreased currents, with no difference between positions 321 and 324, indicating that side chains at 321/324 are accessible from the inner conduction pathway and have equivalent effects on conductance. For neutral amino acids, decreasing the size of the entrance to the inner cavity by substituting large side-chain amino acids at 321/324 decreased outward single-channel conductance, whereas increasing the size of the entrance with smaller side-chain substitutions had little effect. Reductions in outward conductance were negated by high [K+]i. Substitutions had little effect on inward conductance. Fitting plots of conductance versus side-chain volume with a model consisting of one variable and one fixed resistor in series indicated an effective diameter and length of the entrance to the inner cavity for wild-type channels of 17.7 and 5.6 Å, respectively, with the resistance of the entrance ∼7% of the total resistance of the conduction pathway. The estimated dimensions are consistent with the structure of MthK, an archaeal homologue to BK channels. Our observations suggest that BK channels have a low resistance, large entrance to the inner cavity, with the entrance being as large as necessary to not limit current, but not much larger. PMID:21576375

  13. Side-chain hydroxylation in the metabolism of 8-aminoquinoline antiparasitic agents.

    PubMed

    Idowu, O R; Peggins, J O; Brewer, T G

    1995-01-01

    Primaquine, 8-(4-amino-1-methylbutylamino)-6-methoxyquinoline, is an antimalarial 8-aminoquinoline derivative. Although it has been in use since 1952, its metabolism has not been clearly defined. This is due to the instability of the expected aminophenol metabolites and their amphoteric nature, which makes their isolation difficult. Recent studies on the metabolism of WR 238605, a new primaquine analog, has shown that these problems may be solved by extracting the metabolites in the presence of ethyl chloroformate. Subsequent identification of the ethoxycarbonyl derivatives of the metabolites has made it possible to define the in vitro metabolism of primaquine. The primary metabolic pathways of primaquine involved hydroxylation of the phenyl ring of the quinoline nucleus and C-hydroxylation of the 3'-position of the 8-aminoalkylamino side chain. Ring-hydroxylation of primaquine gives rise to 5-hydroxyprimaquine, which on demethylation produces 5-hydroxy-6-demethylprimaquine. Side-chain hydroxylation of primaquine gives rise to 3'-hydroxyprimaquine, which also undergoes O-demethylation to 3'-hydroxy-6-demethylprimaquine. 6-Demethylprimaquine, a putative metabolite of primaquine, also underwent metabolism involving 3'-hydroxylation of the side chain. WR 6026, 8-(6-diethylaminohexylamino)-6-methoxy-4-methylquinoline, is an antileishmanial 8-aminoquinoline derivative. The in vitro metabolism of WR 6026 also results in the formation of side chain-oxygenated metabolites. The present results, together with previous observations on the metabolism of WR 238605 and closely related primaquine analog, suggest that side-chain oxygenation is an important metabolic pathway of antiparasitic 8-aminoquinoline compounds in general.

  14. Decomposition of total solvation energy into core, side-chains and water contributions: Role of cross correlations and protein conformational fluctuations in dynamics of hydration layer

    NASA Astrophysics Data System (ADS)

    Mondal, Sayantan; Mukherjee, Saumyak; Bagchi, Biman

    2017-09-01

    Dynamical coupling between water and amino acid side-chain residues in solvation dynamics is investigated by selecting residues often used as natural probes, namely tryptophan, tyrosine and histidine, located at different positions on protein surface. Such differently placed residues are found to exhibit different timescales of relaxation. The total solvation response measured by the probe is decomposed in terms of its interactions with (i) protein core, (ii) side-chain and (iii) water. Significant anti cross-correlation among these contributions are observed. When the motion of the protein side-chains is quenched, solvation either becomes faster or slower depending on the location of the probe.

  15. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.

    PubMed

    Giovannitti, Alexander; Maria, Iuliana P; Hanifi, David; Donahue, Mary J; Bryant, Daniel; Barth, Katrina J; Makdah, Beatrice E; Savva, Achilleas; Moia, Davide; Zetek, Matyáš; Barnes, Piers R F; Reid, Obadiah G; Inal, Sahika; Rumbles, Garry; Malliaras, George G; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain

    2018-05-08

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  16. Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.

    PubMed

    Cui, Chaohua; Wong, Wai-Yeung

    2016-02-01

    Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrophilic and Cell-Penetrable Pyrrolidinyl Peptide Nucleic Acid via Post-synthetic Modification with Hydrophilic Side Chains.

    PubMed

    Pansuwan, Haruthai; Ditmangklo, Boonsong; Vilaivan, Chotima; Jiangchareon, Banphot; Pan-In, Porntip; Wanichwecharungruang, Supason; Palaga, Tanapat; Nuanyai, Thanesuan; Suparpprom, Chaturong; Vilaivan, Tirayut

    2017-09-20

    Peptide nucleic acid (PNA) is a nucleic acid mimic in which the deoxyribose-phosphate was replaced by a peptide-like backbone. The absence of negative charge in the PNA backbone leads to several unique behaviors including a stronger binding and salt independency of the PNA-DNA duplex stability. However, PNA possesses poor aqueous solubility and cannot directly penetrate cell membranes. These are major obstacles that limit in vivo applications of PNA. In previous strategies, the PNA can be conjugated to macromolecular carriers or modified with positively charged side chains such as guanidinium groups to improve the aqueous solubility and cell permeability. In general, a preformed modified PNA monomer was required. In this study, a new approach for post-synthetic modification of PNA backbone with one or more hydrophilic groups was proposed. The PNA used in this study was the conformationally constrained pyrrolidinyl PNA with prolyl-2-aminocyclopentanecarboxylic acid dipeptide backbone (acpcPNA) that shows several advantages over the conventional PNA. The aldehyde modifiers carrying different linkers (alkylene and oligo(ethylene glycol)) and end groups (-OH, -NH 2 , and guanidinium) were synthesized and attached to the backbone of modified acpcPNA by reductive alkylation. The hybrids between the modified acpcPNAs and DNA exhibited comparable or superior thermal stability with base-pairing specificity similar to those of unmodified acpcPNA. Moreover, the modified apcPNAs also showed the improvement of aqueous solubility (10-20 folds compared to unmodified PNA) and readily penetrate cell membranes without requiring any special delivery agents. This study not only demonstrates the practicality of the proposed post-synthetic modification approach for PNA modification, which could be readily applied to other systems, but also opens up opportunities for using pyrrolidinyl PNA in various applications such as intracellular RNA sensing, specific gene detection, and antisense

  18. Protein side chain rotational isomerization: A minimum perturbation mapping study

    NASA Astrophysics Data System (ADS)

    Haydock, Christopher

    1993-05-01

    A theory of the rotational isomerization of the indole side chain of tryptophan-47 of variant-3 scorpion neurotoxin is presented. The isomerization potential energy, entropic part of the isomerization free energy, isomer probabilities, transition state theory reaction rates, and indole order parameters are calculated from a minimum perturbation mapping over tryptophan-47 χ1×χ2 torsion space. A new method for calculating the fluorescence anisotropy from molecular dynamics simulations is proposed. The method is based on an expansion that separates transition dipole orientation from chromophore dynamics. The minimum perturbation potential energy map is inverted and applied as a bias potential for a 100 ns umbrella sampling simulation. The entropic part of the isomerization free energy as calculated by minimum perturbation mapping and umbrella sampling are in fairly close agreement. Throughout, the approximation is made that two glutamine and three tyrosine side chains neighboring tryptophan-47 are truncated at the Cβ atom. Comparison with the previous combination thermodynamic perturbation and umbrella sampling study suggests that this truncated neighbor side chain approximation leads to at least a qualitatively correct theory of tryptophan-47 rotational isomerization in the wild type variant-3 scorpion neurotoxin. Analysis of van der Waals interactions in a transition state region indicates that for the simulation of barrier crossing trajectories a linear combination of three specially defined dihedral angles will be superior to a simple side chain dihedral reaction coordinate.

  19. Solution structure of a small protein containing a fluorinated side chain in the core

    PubMed Central

    Cornilescu, Gabriel; Hadley, Erik B.; Woll, Matthew G.; Markley, John L.; Gellman, Samuel H.; Cornilescu, Claudia C.

    2007-01-01

    We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5-Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5-Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability. PMID:17123960

  20. Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR.

    PubMed

    Sinnige, Tessa; Daniëls, Mark; Baldus, Marc; Weingarth, Markus

    2014-03-26

    We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.

  1. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David

    Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less

  2. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    DOE PAGES

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; ...

    2018-04-24

    Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less

  3. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating

    PubMed Central

    Cui, Liying; Aleksandrov, Luba; Hou, Yue-Xian; Gentzsch, Martina; Chen, Jey-Hsin; Riordan, John R; Aleksandrov, Andrei A

    2006-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel employing the ABC transporter structural motif. Deletion of a single residue (Phe508) in the first nucleotide-binding domain (NBD1), which occurs in most patients with cystic fibrosis, impairs both maturation and function of the protein. However, substitution of the Phe508 with small uncharged amino acids, including cysteine, is permissive for maturation. To explore the possible role of the phenylalanine aromatic side chain in channel gating we introduced a cysteine at this position in cysless CFTR, enabling its selective chemical modification by sulfhydryl reagents. Both cysless and wild-type CFTR ion channels have identical mean open times when activated by different nucleotide ligands. Moreover, both channels could be locked in an open state by introducing an ATPase inhibiting mutation (E1371S). However, the introduction of a single cysteine (F508C) prevented the cysless E1371S channel from maintaining the permanently open state, allowing closing to occur. Chemical modification of cysless E1371S/F508C by sulfhydryl reagents was used to probe the role of the side chain in ion channel function. Specifically, benzyl-methanethiosulphonate modification of this variant restored the gating behaviour to that of cysless E1371S containing the wild-type phenylalanine at position 508. This provides the first direct evidence that a specific interaction of the Phe508 aromatic side chain plays a role in determining the residency time in the closed state. Thus, despite the fact that this aromatic side chain is not essential for CFTR folding, it is important in the ion channel function. PMID:16484308

  4. Modified melanocortin tetrapeptide Ac-His-dPhe-Arg-Trp-NH at the arginine side chain with ureas and thioureas.

    PubMed

    Joseph, C G; Sorensen, N B; Wood, M S; Xiang, Z; Moore, M C; Haskell-Luevano, C

    2005-11-01

    The Ac-His-dPhe-Arg-Trp-NH2 tetrapeptide is a nonselective melanocortin agonist and replacement of Arg in the tetrapeptide with acidic, basic or neutral amino acids results in reduced potency at the melanocortin receptor (MCR) isoforms (MC1R and MC3-5R). To determine the importance of the positive charge and the guanidine moiety for melanocortin activity, a series of urea- and thiourea-substituted tetrapeptides were designed. Replacement of Arg with Lys or ornithine reduced agonist activity at the mouse mMC1 and mMC3-5 receptors, thus supporting the hypothesis that the guanidine moiety is important for receptor potency, particularly at the MC3-5 receptors. The Arg side chain-modified tetrapeptides examined in this study include substituted phenyl, naphthyl, and aliphatic urea and thiourea residues using a Lys side-chain template. These ligands elicit full-agonist pharmacology at the mouse MCRs examined in this study.

  5. TROSY of side-chain amides in large proteins

    PubMed Central

    Liu, Aizhuo; Yao, Lishan; Li, Yue; Yan, Honggao

    2012-01-01

    By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N–HE{DZ} and 15N–HZ{DE} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N–HE{DZ} isotopomers of side-chain amides are as significant as on backbone amides. PMID:17347000

  6. Spectroscopy of PAHs with carbon side chains

    NASA Astrophysics Data System (ADS)

    Rouille, G.; Steglich, M.; Carpentier, Y.; Huisken, F.; Henning, T.

    2011-05-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) in space has been inferred ever since sp ecific infrared emission bands were interpreted as their collective fingerprint. In parallel, it has been admitted that the famous diffuse interstellar bands (DIBs), which are absorption features observed in the visible wavelength range, are bands belonging to the electronic spectra of free-flying interstellar molecules yet to be identified. As neutral PAHs of medium and large sizes exhibit absorption bands in the range where the DIBs are found, these molecules, which also fulfill other criteria, have been proposed as potential carriers. Studies of small PAHs in solutions have shown that adding an ethynyl side chain (--CCH) to their structure causes their electronic transitions to shift toward longer wavelengths. This fact, added to the observations of interstellar polyynyl radicals, motivated our current research project on PAHs carrying polyynyl side chains. In a first stage, we are measuring the electronic spectra of small PAHs and of their ethynyl and butadiynyl (--CCCCH) derivatives at cryogenic temperatures in rare gas matrices. Then, measurements will be carried out in supersonic jets, providing us with spectra obtained under conditions relevant to the study of free-flying interstellar molecules. The results of IR absorption measurements will be included in our set of new data. As a complement to our laboratory study on the substituted PAHs, quantum chemical calculations are carried out to interprete and simulate their IR and vibronic spectra. We use the density functional theory approach and its time-dependent extension for calculating the electronic ground states and the electronically excited states, respectively. Through the analysis of the new data, it will be determined whether PAHs carrying polyynyl side chains can play a role in interstellar phenomena. The latest results of this on-going project will be presented.

  7. Highly conductive side chain block copolymer anion exchange membranes.

    PubMed

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  8. Protein Side-Chain Resonance Assignment and NOE Assignment Using RDC-Defined Backbones without TOCSY Data3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2011-01-01

    One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called NASCA (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), NASCA extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that NASCA assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by NASCA have backbone RMSD 0

  9. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells.

    PubMed

    Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon

    2015-02-11

    New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

  10. Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents

    PubMed Central

    Rohloff, John C; Gelinas, Amy D; Jarvis, Thale C; Ochsner, Urs A; Schneider, Daniel J; Gold, Larry; Janjic, Nebojsa

    2014-01-01

    Limited chemical diversity of nucleic acid libraries has long been suspected to be a major constraining factor in the overall success of SELEX (Systematic Evolution of Ligands by EXponential enrichment). Despite this constraint, SELEX has enjoyed considerable success over the past quarter of a century as a result of the enormous size of starting libraries and conformational richness of nucleic acids. With judicious introduction of functional groups absent in natural nucleic acids, the “diversity gap” between nucleic acid–based ligands and protein-based ligands can be substantially bridged, to generate a new class of ligands that represent the best of both worlds. We have explored the effect of various functional groups at the 5-position of uracil and found that hydrophobic aromatic side chains have the most profound influence on the success rate of SELEX and allow the identification of ligands with very low dissociation rate constants (named Slow Off-rate Modified Aptamers or SOMAmers). Such modified nucleotides create unique intramolecular motifs and make direct contacts with proteins. Importantly, SOMAmers engage their protein targets with surfaces that have significantly more hydrophobic character compared with conventional aptamers, thereby increasing the range of epitopes that are available for binding. These improvements have enabled us to build a collection of SOMAmers to over 3,000 human proteins encompassing major families such as growth factors, cytokines, enzymes, hormones, and receptors, with additional SOMAmers aimed at pathogen and rodent proteins. Such a large and growing collection of exquisite affinity reagents expands the scope of possible applications in diagnostics and therapeutics. PMID:25291143

  11. 21. VIEW LOOKING FORWARD INTO STARBOARD SIDE OF CHAIN LOCKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW LOOKING FORWARD INTO STARBOARD SIDE OF CHAIN LOCKER FROM CHAIN LOCKER BULKHEAD; PAWL BITT SHOWN IN EXTREME LEFT FOREGROUND, WITH APRON IN BACKGROUND. BREASTHOOK, SHELF AND CLAMP SHOWN AT TOP OF IMAGE - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  12. Optocontrol of glutamate receptor activity by single side-chain photoisomerization

    PubMed Central

    Klippenstein, Viktoria; Hoppmann, Christian; Ye, Shixin; Wang, Lei; Paoletti, Pierre

    2017-01-01

    Engineering light-sensitivity into proteins has wide ranging applications in molecular studies and neuroscience. Commonly used tethered photoswitchable ligands, however, require solvent-accessible protein labeling, face structural constrains, and are bulky. Here, we designed a set of optocontrollable NMDA receptors by directly incorporating single photoswitchable amino acids (PSAAs) providing genetic encodability, reversibility, and site tolerance. We identified several positions within the multi-domain receptor endowing robust photomodulation. PSAA photoisomerization at the GluN1 clamshell hinge is sufficient to control glycine sensitivity and activation efficacy. Strikingly, in the pore domain, flipping of a M3 residue within a conserved transmembrane cavity impacts both gating and permeation properties. Our study demonstrates the first detection of molecular rearrangements in real-time due to the reversible light-switching of single amino acid side-chains, adding a dynamic dimension to protein site-directed mutagenesis. This novel approach to interrogate neuronal protein function has general applicability in the fast expanding field of optopharmacology. DOI: http://dx.doi.org/10.7554/eLife.25808.001 PMID:28534738

  13. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  14. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorenbos, G., E-mail: dorenbos@ny.thn.ne.jp

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead,more » respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.« less

  15. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids12

    PubMed Central

    Pfeuffer, Maria; Jaudszus, Anke

    2016-01-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid. PMID:27422507

  16. Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers.

    PubMed

    Ren, Lixia; Hardy, Christopher G; Tang, Chuanbing

    2010-07-07

    The synthesis of side-chain cobaltocenium-containing block copolymers and their self-assembly in solution was studied. Highly pure monocarboxycobaltocenium was prepared and subsequently attached to side chains of poly(tert-butyl acrylate)-block-poly(2-hydroxyethyl acrylate), yielding poly(tert-butyl acrylate)-block-poly(2-acryloyloxyethyl cobaltoceniumcarboxylate). The cobaltocenium block copolymers exhibited vesicle morphology in the mixture of acetone and water, while micelles of nanotubes were formed in the mixture of acetone and chloroform.

  17. Asymmetric Alkyl Side-Chain Engineering of Naphthalene Diimide-Based n-Type Polymers for Efficient All-Polymer Solar Cells.

    PubMed

    Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong

    2018-02-13

    The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.

    PubMed

    Sun, Delin; Forsman, Jan; Woodward, Clifford E

    2015-04-14

    Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol.

  19. Langmuir-Blodgett Films of Aromatic Schiff’s Bases Functionalized in the Side Chains of Polymethacrylate

    DTIC Science & Technology

    1991-05-03

    Report No. 21 - Latigmuir-Blodgett Films of Aromatic Schiffs Bases , K Fuctionalized in the Side Chains of Polymethacrylate by T. Takahashi, P. Miller...aromatic Schiff’s bases functionalized in the side chains of Polymethacrylate T. Takahashi**, P. Miller*, Y. M. Chen*, L. Samuelson***, D. Galotti, B...has been investigated for polymers in which nonlinear optical (NLO) moieties are attachcd i, the side chain of polymethacrylate (PMA) backbone. Polymer

  20. Effects of side chains in helix nucleation differ from helix propagation

    PubMed Central

    Miller, Stephen E.; Watkins, Andrew M.; Kallenbach, Neville R.; Arora, Paramjit S.

    2014-01-01

    Helix–coil transition theory connects observable properties of the α-helix to an ensemble of microstates and provides a foundation for analyzing secondary structure formation in proteins. Classical models account for cooperative helix formation in terms of an energetically demanding nucleation event (described by the σ constant) followed by a more facile propagation reaction, with corresponding s constants that are sequence dependent. Extensive studies of folding and unfolding in model peptides have led to the determination of the propagation constants for amino acids. However, the role of individual side chains in helix nucleation has not been separately accessible, so the σ constant is treated as independent of sequence. We describe here a synthetic model that allows the assessment of the role of individual amino acids in helix nucleation. Studies with this model lead to the surprising conclusion that widely accepted scales of helical propensity are not predictive of helix nucleation. Residues known to be helix stabilizers or breakers in propagation have only a tenuous relationship to residues that favor or disfavor helix nucleation. PMID:24753597

  1. Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain.

    PubMed

    Merle, B; Durussel, L; Delmas, P D; Clézardin, P

    1999-12-01

    Several studies overwhelmingly support the notion that decorin (DCN) is involved in matrix assembly, and in the control of cell adhesion and proliferation. However, nothing is known about the role of DCN during cell migration. Cell migration is a tightly regulated process which requires both adhesion (at the leading edge of the cell) and de-adhesion (at the trailing edge of the cell) from the substratum. We have determined in this study the effect of DCN on MG-63 osteosarcoma cell migration and have analyzed whether its effect is mediated by the protein core and/or the glycosaminoglycan side chain. DCN impeded the migration-promoting effect of matrix molecules (fibronectin, collagen type I) known to interact with the proteoglycan. Conversely, DCN did not counteract the migration-promoting effect of fibrinogen lacking proteoglycan affinity. DCN bearing dermatan-sulfate chains (i.e., skin and cartilage DCN) was about 20-fold more effective in inhibiting cell migration than DCN bearing chondroitin-sulfate chains (i.e., bone DCN). In addition, chondroitinase AC-treatment of cartilage DCN (which specifically removes chondroitin-sulfate chains) did not attenuate the inhibitory effect of this proteoglycan, while cartilage DCN deprived of both chondroitin- and dermatan-sulfate chains failed to alter cell migration promoted by either fibronectin or its heparin- and cell-binding domains. These data assert that the dermatan-sulfate chains of DCN are responsible for a negative influence on cell migration. However, isolated glycosaminoglycans failed to alter cell migration promoted by fibronectin, indicating that strongly negatively charged glycosaminoglycans alone cannot account for the impaired cell motility seen with DCN. Overall, these results show that the inhibitory action of DCN is dependent of substratum binding, is differentially mediated by its glycosaminoglycan side chains (chondroitin-sulfate vs. dermatan-sulfate chains), and is independent of a steric hindrance

  2. Modification of Side Chains of Conjugated Molecules and Polymers for Charge Mobility Enhancement and Sensing Functionality.

    PubMed

    Liu, Zitong; Zhang, Guanxin; Zhang, Deqing

    2018-06-19

    Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The

  3. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Gallani, J. L.; Hilliou, L.; Martinoty, P.; Keller, P.

    1994-03-01

    We show that, contrary to what is commonly believed, the isotropic phase of side-chain liquid-crystal polymers has viscoelastic properties which are totally different from those of ordinary flexible melt polymers. The results can be explained by the existence of a transient network created by the dynamic association of mesogenic groups belonging to different chains. The extremely high sensitivity of the compound to the state of the surfaces with which it is in contact offers us an unexpected method of studying surface states.

  4. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  5. Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?

    PubMed

    Kanimozhi, Catherine; Yaacobi-Gross, Nir; Burnett, Edmund K; Briseno, Alejandro L; Anthopoulos, Thomas D; Salzner, Ulrike; Patil, Satish

    2014-08-28

    The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential "edge-on" packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V(-1) s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast, moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional

  6. Engineering E. coli strain for conversion of short chain fatty acids to bioalcohols

    PubMed Central

    2013-01-01

    Background Recent progress in production of various biofuel precursors and molecules, such as fatty acids, alcohols and alka(e)nes, is a significant step forward for replacing the fossil fuels with renewable fuels. A two-step process, where fatty acids from sugars are produced in the first step and then converted to corresponding biofuel molecules in the second step, seems more viable and attractive at this stage. We have engineered an Escherichia coli strain to take care of the second step for converting short chain fatty acids into corresponding alcohols by using butyrate kinase (Buk), phosphotransbutyrylase (Ptb) and aldehyde/alcohol dehydrogenase (AdhE2) from Clostridium acetobutylicum. Results The engineered E. coli was able to convert butyric acid and other short chain fatty acids of chain length C3 to C7 into corresponding alcohols and the efficiency of conversion varied with different E. coli strain type. Glycerol proved to be a better donor of ATP and electron as compared to glucose for converting butyric acid to butanol. The engineered E. coli was able to tolerate up to 100 mM butyric acid and produced butanol with the conversion rate close to 100% under anaerobic condition. Deletion of native genes, such as fumarate reductase (frdA) and alcohol dehydrogenase (adhE), responsible for side products succinate and ethanol, which act as electron sink and could compete with butyric acid uptake, did not improve the butanol production efficiency. Indigenous acyl-CoA synthetase (fadD) was found to play no role in the conversion of butyric acid to butanol. Engineered E. coli was cultivated in a bioreactor under controlled condition where 60 mM butanol was produced within 24 h of cultivation. A continuous bioreactor with the provision of cell recycling allowed the continuous production of butanol at the average productivity of 7.6 mmol/l/h until 240 h. Conclusions E. coli engineered with the pathway from C. acetobutylicum could efficiently convert butyric acid

  7. Direct Determination of Site-Specific Noncovalent Interaction Strengths of Proteins from NMR-Derived Fast Side Chain Motional Parameters.

    PubMed

    Rajeshwar T, Rajitha; Krishnan, Marimuthu

    2017-05-25

    A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (O axis 2 ) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, O axis 2 , conformational entropy (S conf ), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with O axis 2 ∼ 0) to highly restricted (with O axis 2 ∼ 1) by increasing ξ by ∼3 kcal/mol. Beyond this critical range of ξ, both side chain flexibility and conformational entropy are insensitive to ξ. The interrelationships between conformational dynamics, conformational entropy, and noncovalent interactions of protein side chains established here open up new avenues to probe perturbation-induced (for example, ligand-binding, temperature, pressure) changes in fast side chain dynamics and thermodynamics of proteins by comparing their conformational energy surfaces in the native and perturbed states.

  8. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  9. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  10. Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmeier, M.; Rappich, J.; Nickel, N. H.

    The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell.more » We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.« less

  11. Highly conformationally constrained halogenated 6-spiroepoxypenicillins as probes for the bioactive side-chain conformation of benzylpenicillin

    NASA Astrophysics Data System (ADS)

    Shute, Richard E.; Jackson, David E.; Bycroft, Barrie W.

    1989-06-01

    The halogenated 6-spiroepoxypenicillins are a series of novel semisynthetic β-lactam compounds with highly conformationally restricted side chains incorporating an epoxide. Their biological activity profiles depend crucially on the configuration at position C-3 of that epoxide. In derivatives with aromatic-containing side chains, e.g., anilide, the 3 R-compounds possess notable Gram-positive antibacterial activity and potent β-lactamase inhibitory properties. The comparable 3S-compounds are antibacterially inactive, but retain β-lactamase inhibitory activity. Using the molecular simulation programs COSMIC and ASTRAL, we attempted to map a putative, lipophilic accessory binding site on the PBPs that must interact with the side-chain aromatic residue. Comparative computer-assisted modelling of the 3 R, and 3 S-anilides, along with benzylpenicillin, indicated that the available conformational space at room temperature for the side chains of the 3 R and the 3 S-anilides was mutually exclusive. The conformational space for the more flexible benzylpenicillin could accommodate the side chains of both the constrained penicillin derivatives. By a combination of van der Waals surface calculations and a pharmacophoric distance approach, closely coincident conformers of the 3 R-anilide and benzylpenicillin were identified. These conformers must be related to the antibacterial, `bioactive' conformer for the classical β-lactam antibiotics. From these proposed bioactive conformations, a model for the binding of benzylpenicillin to the PBPs relating the three-dimensional arrangement of a putative lipophilic S2-subsite, specific for the side-chain aromatic moiety, and the 3 α-carboxylate functionality is presented.

  12. Poly-dimethylsiloxane derivates side chains effect on syntan functionalized Polyamide fabric

    NASA Astrophysics Data System (ADS)

    Migani, V.; Weiss, H.; Massafra, M. R.; Merlo, A.; Colleoni, C.; Rosace, G.

    2011-02-01

    Poly-dimethylsiloxane (PDMS) polymers finishing of Polyamide-6,6 (PA66) fabrics involves ionic interactions between reactive groups on the PDMS polymers and the ones of the textile fabric. Such interactions could be strengthened by a pretreatment with a fixing agent to promote either ion-ion and H-bonding and ion-dipole forces. These forces could contribute towards the building of substantial PDMS-PA66 systems and the achieving of better adhesion properties to fabrics. Four different silicone polymers based on PDMS were applied on a synthetic tanning agent (syntan) finished Polyamide-6,6 fabric under acid conditions. Soxhlet extraction method and ATR FT-IR technique were used to investigate the application conditions. The finishing parameters such as pH and temperature together with fastness, mechanical and performance properties of the treated samples were studied and related to PDMS side chains effect on syntan functionalized Polyamide fabric.

  13. [Study on anti-bacterium activity of ginkgolic acids and their momomers].

    PubMed

    Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin

    2004-09-01

    Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.

  14. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  15. Topological side-chain classification of beta-turns: ideal motifs for peptidomimetic development.

    PubMed

    Tran, Tran Trung; McKie, Jim; Meutermans, Wim D F; Bourne, Gregory T; Andrews, Peter R; Smythe, Mark L

    2005-08-01

    Beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. Beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi2, psi2, phi3 and psi3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C(alpha)-C(beta) vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C(alpha)-C(beta) vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.

  16. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    PubMed

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.

  17. Molecular Dynamics Simulation of Calbindin D9k in Apo, Singly and Doubly Loaded States in Various Side-Chains

    NASA Astrophysics Data System (ADS)

    Thapa, Mahendra Bahadur

    , also extended to the amino acid side chains, and if so, to what extent. Such information could be useful in better understanding the physical basis of cooperative calcium binding in CAB. Most of the residues which provide ligands to bind calcium at the binding sites support positive cooperativity, as observed when Ca-Cß, Cß-C?, C-C bond and C-O bonds of COO groups of aspartic and glutamic acid residues, the C-N bond of the side-chain amide group in asparagine and glutamine residues, and the N-H bonds of amide (NH2) group order parameters were studied. There are only a few residues containing methyl groups that are involved in providing ligands to the calcium, and the studies of order parameters of C-C bond and C-H bond of these methyl groups did not exhibit the cooperativity effect upon calcium binding; the simulated C-C bond order parameter of the methyl group symmetry axis did correlate well with the experimental results for the fully loaded state of CAB (4ICB). Analysis of the MD trajectories using GSATools and MutInf, provided valuable insights into possible pathways for communicating allosteric effects between the two calcium-binding sites of CAB.

  18. A Solid-State Deuterium NMR and SFG Study of the Side Chain Dynamics of Peptides Adsorbed onto Surfaces

    PubMed Central

    Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.

    2011-01-01

    The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755

  19. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.

    PubMed

    Zykwinska, Agata; Thibault, Jean-François; Ralet, Marie-Christine

    2007-01-01

    The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.

  20. Enzyme resistant feruloylated xylooligomer analogues from thermochemically treated corn fiber contain large side chains, ethyl glycosides and novel sites of acetylation.

    PubMed

    Appeldoorn, Maaike M; de Waard, Pieter; Kabel, Mirjam A; Gruppen, Harry; Schols, Henk A

    2013-11-15

    In order to use corn fiber as a source for bioethanol production the enzymatic hydrolysis of the complex glucuronoarabinoxylans present has to be improved. Several oligosaccharides present in the supernatant of mild acid pretreated and enzymatically saccharified corn fiber that resist the current available enzymes were (semi)purified for structural analysis by NMR or ESI-MS(n). The structural features of 21 recalcitrant oligosaccharides are presented. A common feature of almost all these oligosaccharides is that they contain (part of) an α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose side chain attached to the O-3 position of the β-1-4 linked xylose backbone. Several of the identified oligosaccharides contained an ethyl group at the reducing end hypothesized to be formed during SSF. The ethyl glycosides found are far more complex than previously described structures. A new feature present in more than half of the oligosaccharides is an acetyl group attached to the O-2 position of the same xylose to which the oligomeric side chain was attached to the O-3 position. Finding enzymes attacking these large side chains and the dense substituted xylan backbone will boost the hydrolysis of corn fiber glucuronoxylan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Synthesis of diketopyrrolopyrrole-based polymers with polydimethylsiloxane side chains and their application in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Inori; Hashimoto, Kazuhito; Tajima, Keisuke

    2018-03-01

    Linear polydimethylsiloxane (PDMS) was investigated as a solubilizing group for π-conjugated polymers with the aim of combining high solubility in organic solvents with the molecular packing in solid films that is advantageous for charge transport. Diketopyrrolopyrrole-based copolymers with different contents and substitution patterns of the PDMS side chains were synthesized and evaluated for application in organic field-effect transistors. The PDMS side chains greatly increased the solubility of the polymers and led to shorter d-spacings of the π-stacking in the thin films compared with polymers containing conventional branched alkyl side chains.

  2. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    PubMed

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  3. Space Survivability of Main-Chain and Side-Chain POSS-Kapton Polyimides

    NASA Astrophysics Data System (ADS)

    Tomczak, Sandra J.; Wright, Michael E.; Guenthner, Andrew J.; Pettys, Brian J.; Brunsvold, Amy L.; Knight, Casey; Minton, Timothy K.; Vij, Vandana; McGrath, Laura M.; Mabry, Joseph M.

    2009-01-01

    Kapton® polyimde (PI) is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen (AO) in low Earth orbit (LEO), Kapton® is severely degraded. An effective approach to prevent this erosion is chemically bonding polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerization of POSS-diamine with the polyimide monomers. POSS is a silicon and oxygen cage-like structure surrounded by organic groups and can be polymerizable. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During POSS polyimide exposure to atomic oxygen, organic material is degraded and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Ground-based studies and MISSE-1 and MISSE-5 flight results have shown that POSS polyimides are resistant to atomic-oxygen attack in LEO. In fact, 3.5 wt% Si8O11 main-chain POSS polyimide eroded about 2 μm during the 3.9 year flight in LEO, whereas 32 μm of 0 wt% POSS polyimide would have eroded within 4 mos. The atomic-oxygen exposure of main-chain POSS polyimides and new side-chain POSS polyimides has shown that copolymerized POSS imparts similar AO resistance to polyimide materials regardless of POSS monomer structure.

  4. Controlling the mode of operation of organic transistors through side-chain engineering.

    PubMed

    Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B; Bandiello, Enrico; Hanifi, David A; Sessolo, Michele; Malliaras, George G; McCulloch, Iain; Rivnay, Jonathan

    2016-10-25

    Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors.

  5. Controlling the mode of operation of organic transistors through side-chain engineering

    PubMed Central

    Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B.; Bandiello, Enrico; Hanifi, David A.; Sessolo, Michele; Malliaras, George G.; McCulloch, Iain; Rivnay, Jonathan

    2016-01-01

    Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors. PMID:27790983

  6. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  7. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    PubMed

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  8. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  9. Effects of Xylan Side-Chain Substitutions on Xylan-Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass.

    PubMed

    Pereira, Caroline S; Silveira, Rodrigo L; Dupree, Paul; Skaf, Munir S

    2017-04-10

    Lignocellulosic biomass is mainly constituted by cellulose, hemicellulose, and lignin and represents an important resource for the sustainable production of biofuels and green chemistry materials. Xylans, a common hemicellulose, interact with cellulose and often exhibit various side chain substitutions including acetate, (4-O-methyl) glucuronic acid, and arabinose. Recent studies have shown that the distribution of xylan substitutions is not random, but follows patterns that are dependent on the plant taxonomic family and cell wall type. Here, we use molecular dynamics simulations to investigate the role of substitutions on xylan interactions with the hydrophilic cellulose face, using the recently discovered xylan decoration pattern of the conifer gymnosperms as a model. The results show that α-1,2-linked substitutions stabilize the binding of single xylan chains independently of the nature of the substitution and that Ca 2+ ions can mediate cross-links between glucuronic acid substitutions of two neighboring xylan chains, thus stabilizing binding. At high temperature, xylans move from the hydrophilic to the hydrophobic cellulose surface and are also stabilized by Ca 2+ cross-links. Our results help to explain the role of substitutions on xylan-cellulose interactions, and improve our understanding of the plant cell wall architecture and the fundamentals of biomass pretreatments.

  10. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    PubMed

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  11. Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains

    PubMed Central

    2017-01-01

    The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer’s side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics. PMID:28979937

  12. Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains.

    PubMed

    Schmatz, Brian; Yuan, Zhibo; Lang, Augustus W; Hernandez, Jeff L; Reichmanis, Elsa; Reynolds, John R

    2017-09-27

    The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer's side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics.

  13. Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR

    PubMed Central

    Altenbach, Christian; Froncisz, Wojciech; Hemker, Roy; Mchaourab, Hassane; Hubbell, Wayne L.

    2005-01-01

    In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (Wex) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of Wex are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Π. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of Wex can be determined from Π, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < ρ < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. PMID:15994891

  14. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain

    PubMed Central

    Iwaniuk, Daniel P.; Whetmore, Eric D.; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C.; Roepe, Paul D.; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activity of several new 4-amino-and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of P. falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11–15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain. PMID:19703776

  15. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain.

    PubMed

    Iwaniuk, Daniel P; Whetmore, Eric D; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian

    2009-09-15

    We report the synthesis and in vitro antimalarial activity of several new 4-amino- and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of Plasmodium falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11-15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain.

  16. The role of amino acid side chains in stabilizing dipeptides: the laser ablation Fourier transform microwave spectrum of Ac-Val-NH2.

    PubMed

    León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L

    2017-09-20

    The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.

  17. The binding of analogs of porphyrins and chlorins with elongated side chains to albumin

    PubMed Central

    Ben Dror, Shimshon; Bronshtein, Irena; Weitman, Hana; Smith, Kevin M.; O’Neal, William G.; Jacobi, Peter A.; Ehrenberg, Benjamin

    2012-01-01

    In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles’ affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers’ florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed. PMID:19330323

  18. Oral branched-chain amino acids decrease whole-body proteolysis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  19. Effect of cationic side-chains on intracellular delivery and cytotoxicity of pH sensitive polymer-doxorubicin nanocarriers.

    PubMed

    Fang, Chen; Kievit, Forrest M; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W; Zhang, Miqin

    2012-11-21

    Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pK(a)'s, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.

  20. Effect of cationic side-chains on intracellular delivery and cytotoxicity of pH sensitive polymer-doxorubicin nanocarriers

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Kievit, Forrest M.; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W.; Zhang, Miqin

    2012-10-01

    Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pKa's, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.

  1. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  2. Zirconium phosphate reinforced short side chain perflurosulfonic acid membranes for medium temperature proton exchange membrane fuel cell application

    NASA Astrophysics Data System (ADS)

    Casciola, Mario; Cojocaru, Paula; Donnadio, Anna; Giancola, Stefano; Merlo, Luca; Nedellec, Yannig; Pica, Monica; Subianto, Surya

    2014-09-01

    Composite membranes, made of an 830 equivalent weight short-side-chain perfluorosulfonic acid ionomer and containing up to 10 wt% zirconium phosphate (ZrP), are prepared by casting dispersions of ZrP nanoparticles in the ionomer solution. 30 μm thick composite membranes are characterized by transmission electron microscopy, X-ray diffraction, stress-strain tests, conductivity measurements, water uptake and ion-exchange capacity determinations, as well as fuel cell tests in H2/air. In comparison with the neat ionomer, the tensile modulus (E) and the yield stress (Y) of the composite membranes increase with the ZrP content, both at room temperature (ΔE/E up to +75%, ΔY/Y up to +47%) and at 80 °C/70% relative humidity (ΔE/E up to +64%, ΔY/Y up to +103%). Despite their lower hydration, the composite membranes are as conductive as the neat ionomer and the in-plane conductivity at 110 °C ranges from ∼0.005 S cm-1 at 25% RH to 0.14 S cm-1 at 90% RH. The fuel cell performance of a catalyst coated membrane loaded with 10 wt% ZrP is weakly affected by temperature in the range 80-110 °C. The peak power density decreases from 0.36 W cm-2, at 80 °C, to 0.28 W cm-2 at 110 °C, where the composite membrane performs better than the neat ionomer.

  3. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    PubMed

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  4. Biopolymers Containing Unnatural Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in

  5. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  6. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  7. The probability distribution of side-chain conformations in [Leu] and [Met]enkephalin determines the potency and selectivity to mu and delta opiate receptors.

    PubMed

    Nielsen, Bjørn G; Jensen, Morten Ø; Bohr, Henrik G

    2003-01-01

    The structure of enkephalin, a small neuropeptide with five amino acids, has been simulated on computers using molecular dynamics. Such simulations exhibit a few stable conformations, which also have been identified experimentally. The simulations provide the possibility to perform cluster analysis in the space defined by potentially pharmacophoric measures such as dihedral angles, side-chain orientation, etc. By analyzing the statistics of the resulting clusters, the probability distribution of the side-chain conformations may be determined. These probabilities allow us to predict the selectivity of [Leu]enkephalin and [Met]enkephalin to the known mu- and delta-type opiate receptors to which they bind as agonists. Other plausible consequences of these probability distributions are discussed in relation to the way in which they may influence the dynamics of the synapse. Copyright 2003 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 71: 577-592, 2003

  8. Side-chain conformation of the M2 transmembrane peptide proton channel of influenza a virus from 19F solid-state NMR.

    PubMed

    Luo, Wenbin; Mani, Rajeswari; Hong, Mei

    2007-09-13

    The M2 transmembrane peptide (M2TMP) of the influenza A virus forms a tetrameric helical bundle that acts as a proton-selective channel important in the viral life cycle. The side-chain conformation of the peptide is largely unknown and is important for elucidating the proton-conducting mechanism and the channel stability. Using a 19F spin diffusion NMR technique called CODEX, we have measured the oligomeric states and interhelical side chain-side chain 19F-19F distances at several residues using singly fluorinated M2TMP bound to DMPC bilayers. 19F CODEX data at a key residue of the proton channel, Trp41, confirm the tetrameric state of the peptide and yield a nearest-neighbor interhelical distance of approximately 11 A under both neutral and acidic pH. Since the helix orientation is precisely known from previous 15N NMR experiments and the backbone channel diameter has a narrow allowed range, this 19F distance constrains the Trp41 side-chain conformation to t90 (chi1 approximately 180 degrees , chi2 approximately 90 degrees ). This Trp41 rotamer, combined with a previously measured 15N-13C distance between His37 and Trp411, suggests that the His37 rotamer is t-160. The implication of the proposed (His37, Trp41) rotamers to the gating mechanism of the M2 proton channel is discussed. Binding of the antiviral drug amantadine to the peptide does not affect the F-F distance at Trp41. Interhelical 19F-19F distances are also measured at residues 27 and 38, each mutated to 4-19F-Phe. For V27F-M2TMP, the 19F-19F distances suggest a mixture of dimers and tetramers, whereas the L38F-M2TMP data indicate two tetramers of different sizes, suggesting side chain conformational heterogeneity at this lipid-facing residue. This work shows that 19F spin diffusion NMR is a valuable tool for determining long-range intermolecular distances that shed light on the mechanism of action and conformational heterogeneity of membrane protein oligomers.

  9. Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells.

    PubMed

    Zhang, Cai'e; Feng, Shiyu; Liu, Yahui; Hou, Ran; Zhang, Zhe; Xu, Xinjun; Wu, Youzhi; Bo, Zhishan

    2017-10-04

    Three indacenodithieno[3,2-b]thiophene (IT) cored small molecular acceptors (ITIC-SC6, ITIC-SC8, and ITIC-SC2C6) were synthesized, and the influence of side chains on their performances in solar cells was systematically probed. Our investigations have demonstrated the variation of side chains greatly affects the charge dissociation, charge mobility, and morphology of the donor:acceptor blend films. ITIC-SC2C6 with four branched side chains showed improved solubility, which can ensure the polymer donor to form favorable fibrous nanostructure during the drying of the blend film. Consequently, devices based on PBDB-ST:ITIC-SC2C6 demonstrated higher charge mobility, more effective exciton dissociation, and the optimal power conversion efficiency up to 9.16% with an FF of 0.63, a J sc of 15.81 mA cm -2 , and a V oc of 0.92 V. These results reveal that the side chain engineering is a valid way of tuning the morphology of blend films and further improving PCE in polymer solar cells.

  10. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins.

    PubMed

    Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu

    2014-04-01

    Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.

  11. Importance of medium chain fatty acids in animal nutrition

    NASA Astrophysics Data System (ADS)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  12. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR.

    PubMed

    Gerecht, Karola; Figueiredo, Angelo Miguel; Hansen, D Flemming

    2017-09-16

    Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the N ε -C ζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.

  13. Side chain requirements for affinity and specificity in D5, an HIV-1 antibody derived from the VH1-69 germline segment.

    PubMed

    Stewart, Alex; Harrison, Joseph S; Regula, Lauren K; Lai, Jonathan R

    2013-04-08

    Analysis of factors contributing to high affinity antibody-protein interactions provides insight into natural antibody evolution, and guides the design of antibodies with new or enhanced function. We previously studied the interaction between antibody D5 and its target, a designed protein based on HIV-1 gp41 known as 5-Helix, as a model system [Da Silva, G. F.; Harrison, J. S.; Lai, J. R., Biochemistry, 2010, 49, 5464-5472]. Antibody D5 represents an interesting case study because it is derived from the VH1-69 germline segment; this germline segment is characterized by a hydrophobic second heavy chain complementarity determining region (HCDR2) that constitutes the major functional paratope in D5 and several antibodies derived from the same progenitor. Here we explore side chain requirements for affinity and specificity in D5 using phage display. Two D5-based libraries were prepared that contained diversity in all three light chain complementarity determining regions (LCDRs 1-3), and in the third HCDR (HCDR3). The first library allowed residues to vary among a restricted set of six amino acids (Tyr/Ala/Asp/Ser/His/Pro; D5-Lib-I). The second library was designed based on a survey of existing VH1-69 antibody structures (D5-Lib-II). Both libraries were subjected to multiple rounds of selection against 5-Helix, and individual clones characterized. We found that selectants from D5-Lib-I generally had moderate affinity and specificity, while many clones from D5-Lib-II exhibited D5-like properties. Additional analysis of the D5-Lib-II functional population revealed position-specific biases for particular amino acids, many that differed from the identity of those side chains in D5. Together these results suggest that there is some permissiveness for alternative side chains in the LCDRs and HCDR3 of D5, but that replacement with a minimal set of residues is not tolerated in this scaffold for 5-Helix recognition. This work provides novel information about this high

  14. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.

    PubMed

    Ollikainen, Noah; de Jong, René M; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.

  15. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations

    PubMed Central

    Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510

  16. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations.

    PubMed

    Ahlstrom, Logan S; Vorontsov, Ivan I; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations.

  17. Roles of head group architecture and side chain length on colorimetric response of polydiacetylene vesicles to temperature, ethanol and pH.

    PubMed

    Charoenthai, Nipaphat; Pattanatornchai, Thanutpon; Wacharasindhu, Sumrit; Sukwattanasinitt, Mongkol; Traiphol, Rakchart

    2011-08-15

    In this contribution, we report the relationship between molecular structures of polydiacetylene (PDA) vesicles, fabricated by using three monomers, 10,12-tricosadiynoic acid (TCDA), 10,12-pentacosadiynoic acid (PCDA) and N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA), and their color-transition behaviors. The modification of side chain length and head group of the PDA vesicles strongly affects the colorimetric response to temperature, ethanol and pH. A shorter side chain of poly(TCDA) yields weaker inter- and intra-chain dispersion interactions in the bilayers compared to the system of poly(PCDA), which in turn results in a faster color transition upon exposure to all stimuli. A change of head group in poly(AEPCDA) slightly reduces the transition temperature. Interestingly, the colorimetric response of poly(AEPCDA) vesicles to the addition of ethanol is found to occur in a two-step fashion while the response of poly(PCDA) vesicles takes place in a one-step process. The amount of ethanol required for inducing complete color-transition of poly(AEPCDA) vesicles is also much higher, about 87% v/v. The increase of pH to ~9 and ~10 causes a color-transition of poly(TCDA) and poly(PCDA) vesicles, respectively. The poly(AEPCDA) vesicles, on the other hand, change color upon decreasing pH to ~0. The colorimetric response also occurs in a multi-step fashion. These discrepancies are attributed to the architecture of surface layers of poly(AEPCDA), constituting amine and amide groups separated by ethyl linkers. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Mutation of Phe413 to Tyr in catalase KatE from Escherichia coli leads to side chain damage and main chain cleavage.

    PubMed

    Jha, Vikash; Donald, Lynda J; Loewen, Peter C

    2012-09-15

    The monofunctional catalase KatE of Esherichia coli exhibits exceptional resistance to heat denaturation and proteolytic degradation. During an investigation of subtle conformation changes in Arg111 and Phe413 on the proximal side of the heme induced by H(2)O(2), variants at position R111, T115 and F413 were constructed. Because the residues are not situated in the distal side heme cavity where catalysis occurs, significant changes in reactivity were not expected and indeed, only small changes in the kinetic characteristics were observed in all of the variants. However, the F413Y variant was found to have undergone main chain cleavage whereas the R111A, T115A, F413E and F413K variants had not. Two sites of cleavage were identified in the crystal structure and by mass spectrometry at residues 111 and 115. In addition to main chain cleavage, modifications to the side chains of Tyr413, Thr115 and Arg111 were suggested by differences in the electron density maps compared to maps of the native and inactive variant H128N/F413Y. The inactive variant H128N/F413Y and the active variant T115A/F413Y both did not exhibit main chain cleavage and the R11A/F413Y variant exhibited less cleavage. In addition, the apparent modification of three side chains was largely absent in these variants. It is also significant that all three F413 single variants contained heme b suggesting that the fidelity of the phenyl group was important for mediating heme b oxidation to heme d. The reactions are attributed to the introduction of a new reactive center possibly involving a transient radical on Tyr413 formed during catalytic turn over. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Properties of the branched-chain 2-hydroxy acid/2-oxo acid shuttle in mouse spermatozoa.

    PubMed

    Coronel, C E; Gallina, F G; Gerez de Burgos, N M; Burgos, C; Blanco, A

    1986-05-01

    Operation of the branched-chain 2-hydroxy acid/2-oxo acid shuttle for the transfer of reducing equivalents in mitochondria of mouse spermatozoa was studied in vitro in reconstituted systems. Results show that the branched-chain 2-oxo acids within the mitochondria are offered several metabolic pathways. (a) Decarboxylation: mouse sperm mitochondria possess high branched-chain 2-oxo acid decarboxylase activity. (b) Recycling to the cytosol by using a transport system which can be inhibited by alpha-cyano-3-hydroxycinnamate and pH 6.8. (c) Transamination to the corresponding amino acids: experiments presented indicate that leucine formed from 4-methyl-2-oxopentanoate may pass to the external phase, re-initiating the cycle. These two last possibilities would allow autocatalytic operation of the shuttle. The branched-chain 2-hydroxy acids apparently do not utilize the monocarboxylate carrier to penetrate the mitochondria.

  20. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    PubMed

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  1. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure.

    PubMed

    Schumann, Marcel; Armen, Roger S

    2013-05-30

    Molecular docking of small-molecules is an important procedure for computer-aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph-based optimization algorithm for assignment of the near-optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. Copyright © 2013 Wiley Periodicals, Inc.

  2. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides.

    PubMed

    Racovita, Radu C; Jetter, Reinhard

    2016-10-01

    The present study presents comprehensive chemical analyses of cuticular wax mixtures of the bamboo Phyllostachys aurea. The epicuticular and intracuticular waxes were sampled selectively from the adaxial side of leaves on young and old plants and investigated by gas chromatography-mass spectrometry and flame ionization detection. The epi- and intracuticular layers on young and old leaves had wax loads ranging from 1.7 μg/cm(2) to 1.9 μg/cm(2). Typical very-long-chain aliphatic wax constituents were found with characteristic chain length patterns, including alkyl esters (primarily C48), alkanes (primarily C29), fatty acids (primarily C28 and C16), primary alcohols (primarily C28) and aldehydes (primarily C30). Alicyclic wax components were identified as tocopherols and triterpenoids, including substantial amounts of triterpenoid esters. Alkyl esters, alkanes, fatty acids and aldehydes were found in greater amounts in the epicuticular layer, while primary alcohols and most terpenoids accumulated more in the intracuticular wax. Alkyl esters occurred as mixtures of metamers, combining C20 alcohol with various acids into shorter ester homologs (C36C40), and a wide range of alcohols with C22 and C24 acids into longer esters (C42C52). Primary amides were identified, with a characteristic chain length profile peaking at C30. The amides were present exclusively in the epicuticular layer and thus at or near the surface, where they may affect plant-herbivore or plant-pathogen interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations.

    PubMed

    Lundgren, Martin; Niemi, Antti J

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central C(α) carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the C(β) carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the C(α)-C(β) structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  4. Imidazoline phosphonic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmore, D.

    1972-07-04

    Nitrogen-heterocyclic phosphonic acids and derivatives are characterized by aminomethyl (or substituted methyl) phosphonic acids or derivatives thereof bonded directly or indirectly, i.e., through a N-side chain to the nitrogen atom in the heterocyclic ring, for example those containing in the molecule at least one of the following units: ..pi..Equation/sup -/ where represents a heterocyclic ring having a nitrogen atom on the ring; -R'N- represents an amino- terminated side chain attached directly to the ring nitrogen (which side chain may or may not be present); and ..pi..Equation/sup -/ represents a methyl (or substituted methyl) phosphonic acid group where M is hydrogen,more » an alcohol or a salt moiety, and X and Y are hydrogen or a substituted group such as alkyl, aryl, etc., of which one or 2 units may be present depending on the available nitrogen bonded by hydrogens, and to uses for these compounds, for example, as scale inhibitors, corrosion inhibitors, etc. (5 claims)« less

  5. Evidence for in vitro binding of pectin side chains to cellulose.

    PubMed

    Zykwinska, Agata W; Ralet, Marie-Christine J; Garnier, Catherine D; Thibault, Jean-François J

    2005-09-01

    Pectins of varying structures were tested for their ability to interact with cellulose in comparison to the well-known adsorption of xyloglucan. Our results reveal that sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectins, which are rich in neutral sugar side chains, can bind in vitro to cellulose. The extent of binding varies with respect to the nature and structure of the side chains. Additionally, branched arabinans (Br-Arabinans) or debranched arabinans (Deb-Arabinans; isolated from sugar beet) and galactans (isolated from potato) were shown bind to cellulose microfibrils. The adsorption of Br-Arabinan and galactan was lower than that of Deb-Arabinan. The maximum adsorption affinity of Deb-Arabinan to cellulose was comparable to that of xyloglucan. The study of sugar beet and potato alkali-treated cell walls supports the hypothesis of pectin-cellulose interaction. Natural composites enriched in arabinans or galactans and cellulose were recovered. The binding of pectins to cellulose microfibrils may be of considerable significance in the modeling of primary cell walls of plants as well as in the process of cell wall assembly.

  6. Side-chain Liquid Crystal Polymers (SCLCP): Methods and Materials. An Overview

    PubMed Central

    Ganicz, Tomasz; Stańczyk, Włodzimierz

    2009-01-01

    This review focuses on recent developments in the chemistry of side chain liquid crystal polymers. It concentrates on current trends in synthetic methods and novel, well defined structures, supramolecular arrangements, properties, and applications. The review covers literature published in this century, apart from some areas, such as dendritic and elastomeric systems, which have been recently reviewed.

  7. Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis.

    PubMed

    Parisi, Laura R; Li, Nasi; Atilla-Gokcumen, G Ekin

    2017-12-21

    Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Role of Tryptophan Side Chain Dynamics on the Trp-Cage Mini-Protein Folding Studied by Molecular Dynamics Simulations

    PubMed Central

    Kannan, Srinivasaraghavan; Zacharias, Martin

    2014-01-01

    The 20 residue Trp-cage mini-protein is one of smallest proteins that adopt a stable folded structure containing also well-defined secondary structure elements. The hydrophobic core is arranged around a single central Trp residue. Despite several experimental and simulation studies the detailed folding mechanism of the Trp-cage protein is still not completely understood. Starting from fully extended as well as from partially folded Trp-cage structures a series of molecular dynamics simulations in explicit solvent and using four different force fields was performed. All simulations resulted in rapid collapse of the protein to on average relatively compact states. The simulations indicate a significant dependence of the speed of folding to near-native states on the side chain rotamer state of the central Trp residue. Whereas the majority of intermediate start structures with the central Trp side chain in a near-native rotameric state folded successfully within less than 100 ns only a fraction of start structures reached near-native folded states with an initially non-native Trp side chain rotamer state. Weak restraining of the Trp side chain dihedral angles to the state in the folded protein resulted in significant acceleration of the folding both starting from fully extended or intermediate conformations. The results indicate that the side chain conformation of the central Trp residue can create a significant barrier for controlling transitions to a near native folded structure. Similar mechanisms might be of importance for the folding of other protein structures. PMID:24563686

  9. Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected ¹³C CPMG relaxation dispersion.

    PubMed

    Weininger, Ulrich; Respondek, Michal; Akke, Mikael

    2012-09-01

    Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.

  10. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    PubMed

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how

  11. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  12. Accelerated cell sheet detachment by copolymerizing hydrophilic PEG side chains into PNIPAm nanocomposite hydrogels.

    PubMed

    Liu, Dan; Wang, Tao; Liu, Xinxing; Tong, Zhen

    2012-10-01

    One-end-connected short poly(ethylene glycol) (PEG) side chains were facilely introduced into the poly(N-isopropylacrylamide) (PNIPAm) nanocomposite hydrogel (NC gel) via in situ copolymerization of NIPAm monomer and PEG macromonomer in the aqueous suspension of hectorite clay Laponite XLS. The NC gels were characterized with Fourier transform infrared and x-ray photoelectron spectroscopy for the composition, DSC and transmittance for the phase separation temperature, dynamic mechanical spectra and swelling ratio for the interaction. Increasing the PEG content led to a small increase in the storage modulus and the lower critical solution temperature (LCST) of the copolymerized NC gels, and the LCST of the copolymerized NC gels was still below 37 °C. The L929 cell adhesion and proliferation on the surface of these NC gels were not suppressed by the incorporation of hydrophilic PEG side chains. By lowering temperature below the LCST, the cell sheet spontaneously detached from the copolymerized NC gels. The surface morphology and surface wettability of the NC gels were detected by atom force microscope and contact angle measurement. A rough and hydrophilic surface induced by a small amount of PEG side chains was found to be favorable to accelerate the cell sheet detachment, probably due to the enhanced water permeation into the gel-cell sheet interface.

  13. Predicting side-chain conformations of methionine using a hard-sphere model with stereochemical constraints

    NASA Astrophysics Data System (ADS)

    Virrueta, A.; Gaines, J.; O'Hern, C. S.; Regan, L.

    2015-03-01

    Current research in the O'Hern and Regan laboratories focuses on the development of hard-sphere models with stereochemical constraints for protein structure prediction as an alternative to molecular dynamics methods that utilize knowledge-based corrections in their force-fields. Beginning with simple hydrophobic dipeptides like valine, leucine, and isoleucine, we have shown that our model is able to reproduce the side-chain dihedral angle distributions derived from sets of high-resolution protein crystal structures. However, methionine remains an exception - our model yields a chi-3 side-chain dihedral angle distribution that is relatively uniform from 60 to 300 degrees, while the observed distribution displays peaks at 60, 180, and 300 degrees. Our goal is to resolve this discrepancy by considering clashes with neighboring residues, and averaging the reduced distribution of allowable methionine structures taken from a set of crystallized proteins. We will also re-evaluate the electron density maps from which these protein structures are derived to ensure that the methionines and their local environments are correctly modeled. This work will ultimately serve as a tool for computing side-chain entropy and protein stability. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship. J. G. is supported by NIH training Grant NIH-5T15LM007056-28.

  14. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    PubMed Central

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  15. Molecular design of anti-MRSA agents based on the anacardic acid scaffold.

    PubMed

    Green, Ivan R; Tocoli, Felismino E; Lee, Sang Hwa; Nihei, Ken-Ichi; Kubo, Isao

    2007-09-15

    A series of anacardic acid analogues possessing different side chains viz. phenolic, branched, and alicyclic were synthesized and their antibacterial activity tested against methicillin-resistant Staphylococcus aureus (MRSA). The maximum activity against this bacterium occurred with the branched side-chain analogue, 6-(4',8'-dimethylnonyl)salicylic acid, and the alicyclic side-chain analogue, 6-cyclododecylmethyl salicylic acid, with the minimum inhibitory concentration (MIC) of 0.39 microg/mL, respectively. This activity was superior to that of the most potent antibacterial anacardic acid isolated from the cashew Anacardium occidentale (Anacardiaceae), apple and nut, that is, the 6-[8'(Z),11'(Z),14'-pentadecatrienyl]salicylic acid.

  16. Variation of the net charge, lipophilicity, and side chain flexibility in Dmt(1)-DALDA: Effect on Opioid Activity and Biodistribution.

    PubMed

    Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W; Ballet, Steven

    2012-11-26

    The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt(1)]-DALDA and to investigate the Phe(3) side chain flexibility, the final amide bond was N-methylated and Phe(3) was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (ip and sc) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity, and transport properties. Strikingly, while [Dmt(1)]-DALDA and its N-methyl analogue, Dmt-d-Arg-Phe-NMeLys-NH(2), showed a long-lasting antinociceptive effect (>7 h), the peptides with d-Cit(2) generate potent antinociception more rapidly (maximal effect at 1h postinjection) but also lose their analgesic activity faster when compared to [Dmt(1)]-DALDA and [Dmt(1),NMeLys(4)]-DALDA.

  17. Variation of the net charge, lipophilicity and side chain flexibility in Dmt1-DALDA: effect on opioid activity and biodistribution

    PubMed Central

    Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N.; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A.; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W.; Ballet, Steven

    2012-01-01

    The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt1]-DALDA and to investigate the Phe3 side chain flexibility, the final amide bond was N-methylated and Phe3 was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (i.p. and s.c.) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity and transport properties. Strikingly, while [Dmt1]-DALDA and its N-methyl analogue, Dmt-D-Arg-Phe-NMeLys-NH2, showed a long-lasting antinociceptive effect (>7h), the peptides with D-Cit2 generate potent antinociception more rapidly (maximal effect at 1h post-injection) but also lose their analgesic activity faster, when compared to [Dmt1]-DALDA and [Dmt1,NMeLys4]-DALDA. PMID:23102273

  18. Improving proton conduction pathways in di- and triblock copolymer membranes: Branched versus linear side chains

    NASA Astrophysics Data System (ADS)

    Dorenbos, G.

    2017-06-01

    Phase separation within a series of polymer membranes in the presence of water is studied by dissipative particle dynamics. Each polymer contains hydrophobic A beads and hydrophilic C beads. Three parent architectures are constructed from a backbone composed of connected hydrophobic A beads to which short ([C]), long ([A3C]), or symmetrically branched A5[AC][AC] side chains spring off. Three di-block copolymer derivatives are constructed by covalently bonding an A30 block to each parent architecture. Also three tri-blocks with A15 blocks attached to both ends of each parent architecture are modeled. Monte Carlo tracer diffusion calculations through the water containing pores for 1226 morphologies reveal that water diffusion for parent architectures is slowest and diffusion through the di-blocks is fastest. Furthermore, diffusion increases with side chain length and is highest for branched side chains. This is explained by the increase of water pore size with , which is the average number of bonds that A beads are separated from a nearest C bead. Optimization of within the amphiphilic parent architecture is expected to be essential in improving proton conduction in polymer electrolyte membranes.

  19. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE PAGES

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    2016-02-10

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  20. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  2. 2. ACID STORAGE SHED, FRONT AND RIGHT SIDES, LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ACID STORAGE SHED, FRONT AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base C-84, Acid Storage Shed, North of launch area, northwest of earthen berm of Acid Fueling Station, Barrington, Cook County, IL

  3. Role of Side-Chain Molecular Features in Tuning Lower Critical Solution Temperatures (LCSTs) of Oligoethylene Glycol Modified Polypeptides.

    PubMed

    Gharakhanian, Eric G; Deming, Timothy J

    2016-07-07

    A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.

  4. Precise structural analysis of α-helical polypeptide by quantum-chemical calculation related to reciprocal side-chain combination of two L-phenylalanine residues

    NASA Astrophysics Data System (ADS)

    Niimura, Subaru; Kurosu, Hiromichi; Shoji, Akira

    2010-04-01

    To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a series of well-defined α-helical octadecapeptides composed of two L-phenylalanine (Phe) and 16 L-alanine (Ala) residues, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy calculation and the precise secondary structural analysis, we found that the conformational stability of the α-helix is closely related to the reciprocal side-chain combinations (such as positional relation and side-chain conformation) of two Phe residues in this system. Furthermore, we demonstrated that the 1H, 13C, 15N and 17O isotropic chemical shifts of each Phe residue depend on the respective side-chain conformations of the Phe residue.

  5. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H 2 oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boralugodage, Nilusha Priyadarshani; Arachchige, Rajith Jayasingha; Dutta, Arnab

    Amino acids and peptides have been shown to have a significant influence on the H2 production and oxidation reactivity of Ni(P R 2N R’ 2) 2, where P R 2N R’ 2 = 1,5-diaza-3,7-diphosphacyclooctane, R is either phenyl (Ph) or cyclohexyl (Cy), and R’ is either an amino acid or peptide. Most recently, the Ni(P Cy 2Naminoacid 2) 2 complexes (CyAA) have shown enhanced H 2 oxidation rates, water solubility, and in the case of arginine (CyArg) and phenylalanine (CyPhe), electrocatalytic reversibility. Both the backbone –COOH and side chain interactions were shown to be critical to catalytic performance. Here wemore » further investigate the roles of the outer coordination sphere by evaluating amino acids with acidic, basic, and hydrophilic side chains, as well as dipeptides which combine multiple successful features from previous complexes. Six new complexes were prepared, three containing single amino acids: aspartic acid (CyAsp), lysine (CyLys), and serine (CySer) and three containing dipeptides: glycine-phenylalanine (Cy(GlyPhe)), phenylalanine-glycine (Cy(PheGly)), and aspartic acid-phenylananine (Cy(AspPhe)). The resulting catalytic performance demonstrates that complexes need both interactions between side chain and –COOH groups for fast, efficient catalysis. The fastest of all of the catalysts, Cy(AspPhe), had both of these features, while the other dipeptide complexes with an amide replacing the -COOH were both slower; however, the amide group was demonstrated to participate in the proton pathway when side chain interactions are present to position it. Both the hydrophilic and basic side chains, notably lacking in side chain interactions, significantly increased the overpotential, with only modest increases in TOF. Of all of the complexes, only CyAsp was reversible at room temperature, and only in water, the first of these complexes to demonstrate room temperature reversibility in water. These results continue to provide and solidify design rules for

  6. A Study on the Impact of Poly(3-hexylthiophene) Chain Length and Other Applied Side-Chains on the NO2 Sensing Properties of Conducting Graft Copolymers

    PubMed Central

    Kepska, Kinga

    2018-01-01

    The detection and concentration measurements of low concentrations of nitrogen dioxide (NO2) are important because of its negative effects on human health and its application in many fields of industry and safety systems. In our approach, conducting graft copolymers based on the poly(3-hexylthiophene) (P3HT) conducting polymer and other side-chains, polyethylene glycol (PEG) and dodec-1-en, grafted on a poly(methylhydrosiloxane) backbone, were investigated. The grafts containing PEG (PEGSil) and dodec-1-en (DodecSil) in two variants, namely, fractions with shorter (hexane fraction -H) and longer (chloroform fraction -CH) side-chains of P3HT, were tested as receptor structures in NO2 gas sensors. Their responses to NO2, within the concentration range of 1–20 ppm, were investigated in an nitrogen atmosphere at different operating temperatures—room temperature (RT) = 25 °C, 50 °C, and 100 °C. The results indicated that both of the copolymers with PEG side-chains had higher responses to NO2 than the materials with dodec-1-en side-chains. Furthermore, the results indicated that, in both cases, H fractions were more sensitive than CH fractions. The highest response to 1 ppm of NO2, from the investigated graft copolymers, had PEGSil H, which indicated a response of 1330% at RT and 1980% at 100 °C. The calculated lower-limit of the detection of this material is lower than 300 ppb of NO2 at 100 °C. This research indicated that graft copolymers of P3HT had great potential for low temperature NO2 sensing, and that the proper choice of other side-chains in graft copolymers can improve their gas sensing properties. PMID:29558448

  7. Blocking of proteolytic processing and deletion of glycosaminoglycan side chain of mouse DMP1 by substituting critical amino acid residues.

    PubMed

    Peng, Tao; Huang, Bingzhen; Sun, Yao; Lu, Yongbo; Bonewald, Lynda; Chen, Shuo; Butler, William T; Feng, Jerry Q; D'Souza, Rena N; Qin, Chunlin

    2009-01-01

    Dentin matrix protein 1 (DMP1) is present in the extracellular matrix (ECM) of dentin and bone as processed NH(2)- and COOH-terminal fragments, resulting from proteolytic cleavage at the NH(2) termini of 4 aspartic acid residues during rat DMP1 processing. One cleavage site residue, Asp(181) (corresponding to Asp(197) of mouse DMP1), and its flanking region are highly conserved across species. We speculate that cleavage at the NH(2) terminus of Asp(197) of mouse DMP1 represents an initial, first-step scission in the whole cascade of proteolytic processing. To test if Asp(197) is critical for initiating the proteolytic processing of mouse DMP1, we substituted Asp(197) with Ala(197) by mutating the corresponding nucleotides of mouse cDNA that encode this amino acid residue. This mutant DMP1 cDNA was cloned into a pcDNA3.1 vector. Data from transfection experiments indicated that this single substitution blocked the proteolytic processing of mouse DMP1 in HEK-293 cells, indicating that cleavage at the NH(2) terminus of Asp(197) is essential for exposing other cleavage sites for the conversion of DMP1 to its fragments. The NH(2)-terminal fragment of DMP1 occurs as a proteoglycan form (DMP1-PG) that contains a glycosaminoglycan (GAG) chain. Previously, we showed that a GAG chain is linked to Ser(74) in rat DMP1 (Ser(89) in mouse DMP1). To confirm that mouse DMP1-PG possesses a single GAG chain attached to Ser(89), we substituted Ser(89) by Gly(89). Data from transfection analysis indicated that this substitution completely prevented formation of the GAG-containing form, confirming that DMP1-PG contains a single GAG chain attached to Ser(89) in mouse DMP1. Copyright 2008 S. Karger AG, Basel.

  8. The dominant role of side chains in supramolecular double helical organisation in synthetic tripeptides

    NASA Astrophysics Data System (ADS)

    Sharma, Ankita; Tiwari, Priyanka; Dutt Konar, Anita

    2018-06-01

    Peptide self-assembled nanostructures have attracted attention recently owing to their promising applications in diversified avenues. To validate the importance of sidechains in supramolecular architectural stabilization, herein this report describes the self-assembly propensities involving weak interactions in a series of model tripeptides Boc-Xaa-Aib-Yaa-OMe I-IV, (where Xaa = 4-F-Phe/NMeSer/Ile & Yaa = Tyr in peptide I-III respectively and Xaa = 4-F-Phe & Yaa = Ile in peptide IV) differing in terminal side chains. The solid state structural analysis reveals that tripeptide (I) displays supramolecular preference for double helical architecture. However, when slight modification has been introduced in the N-terminal side chains disfavour the double helical organisation (Peptide II and III). Indeed the peptides display sheet like ensemble within the framework. Besides replacement of C-terminal Tyr by Ile in peptide I even do not promote the architecture, emphasizing the dominant role of balance of side chains in stabilizing double helical organisation. The CD measurements, concentration dependant studies, NMR titrations and ROESY spectra are well in agreement with the solid state conformational investigation. Moreover the morphological experiments utilizing FE-SEM, support the heterogeneity present in the peptides. Thus this work may not only hold future promise in understanding the structure and function of neurodegenerative diseases but also assist in rational design of protein modification in biologically active peptides.

  9. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  10. Structural and kinetic mapping of side-chain exposure onto the protein energy landscape.

    PubMed

    Bernstein, Rachel; Schmidt, Kierstin L; Harbury, Pehr B; Marqusee, Susan

    2011-06-28

    Identification and characterization of structural fluctuations that occur under native conditions is crucial for understanding protein folding and function, but such fluctuations are often rare and transient, making them difficult to study. Native-state hydrogen exchange (NSHX) has been a powerful tool for identifying such rarely populated conformations, but it generally reveals no information about the placement of these species along the folding reaction coordinate or the barriers separating them from the folded state and provides little insight into side-chain packing. To complement such studies, we have performed native-state alkyl-proton exchange, a method analogous to NSHX that monitors cysteine modification rather than backbone amide exchange, to examine the folding landscape of Escherichia coli ribonuclease H, a protein well characterized by hydrogen exchange. We have chosen experimental conditions such that the rate-limiting barrier acts as a kinetic partition: residues that become exposed only upon crossing the unfolding barrier are modified in the EX1 regime (alkylation rates report on the rate of unfolding), while those exposed on the native side of the barrier are modified predominantly in the EX2 regime (alkylation rates report on equilibrium populations). This kinetic partitioning allows for identification and placement of partially unfolded forms along the reaction coordinate. Using this approach we detect previously unidentified, rarely populated conformations residing on the native side of the barrier and identify side chains that are modified only upon crossing the unfolding barrier. Thus, in a single experiment under native conditions, both sides of the rate-limiting barrier are investigated.

  11. Structural and kinetic mapping of side-chain exposure onto the protein energy landscape

    PubMed Central

    Bernstein, Rachel; Schmidt, Kierstin L.; Harbury, Pehr B.; Marqusee, Susan

    2011-01-01

    Identification and characterization of structural fluctuations that occur under native conditions is crucial for understanding protein folding and function, but such fluctuations are often rare and transient, making them difficult to study. Native-state hydrogen exchange (NSHX) has been a powerful tool for identifying such rarely populated conformations, but it generally reveals no information about the placement of these species along the folding reaction coordinate or the barriers separating them from the folded state and provides little insight into side-chain packing. To complement such studies, we have performed native-state alkyl-proton exchange, a method analogous to NSHX that monitors cysteine modification rather than backbone amide exchange, to examine the folding landscape of Escherichia coli ribonuclease H, a protein well characterized by hydrogen exchange. We have chosen experimental conditions such that the rate-limiting barrier acts as a kinetic partition: residues that become exposed only upon crossing the unfolding barrier are modified in the EX1 regime (alkylation rates report on the rate of unfolding), while those exposed on the native side of the barrier are modified predominantly in the EX2 regime (alkylation rates report on equilibrium populations). This kinetic partitioning allows for identification and placement of partially unfolded forms along the reaction coordinate. Using this approach we detect previously unidentified, rarely populated conformations residing on the native side of the barrier and identify side chains that are modified only upon crossing the unfolding barrier. Thus, in a single experiment under native conditions, both sides of the rate-limiting barrier are investigated. PMID:21670244

  12. Independent Metrics for Protein Backbone and Side-Chain Flexibility: Time Scales and Effects of Ligand Binding.

    PubMed

    Fuchs, Julian E; Waldner, Birgit J; Huber, Roland G; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R

    2015-03-10

    Conformational dynamics are central for understanding biomolecular structure and function, since biological macromolecules are inherently flexible at room temperature and in solution. Computational methods are nowadays capable of providing valuable information on the conformational ensembles of biomolecules. However, analysis tools and intuitive metrics that capture dynamic information from in silico generated structural ensembles are limited. In standard work-flows, flexibility in a conformational ensemble is represented through residue-wise root-mean-square fluctuations or B-factors following a global alignment. Consequently, these approaches relying on global alignments discard valuable information on local dynamics. Results inherently depend on global flexibility, residue size, and connectivity. In this study we present a novel approach for capturing positional fluctuations based on multiple local alignments instead of one single global alignment. The method captures local dynamics within a structural ensemble independent of residue type by splitting individual local and global degrees of freedom of protein backbone and side-chains. Dependence on residue type and size in the side-chains is removed via normalization with the B-factors of the isolated residue. As a test case, we demonstrate its application to a molecular dynamics simulation of bovine pancreatic trypsin inhibitor (BPTI) on the millisecond time scale. This allows for illustrating different time scales of backbone and side-chain flexibility. Additionally, we demonstrate the effects of ligand binding on side-chain flexibility of three serine proteases. We expect our new methodology for quantifying local flexibility to be helpful in unraveling local changes in biomolecular dynamics.

  13. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. From Semi- to Full-Two-Dimensional Conjugated Side-Chain Design: A Way toward Comprehensive Solar Energy Absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Pengjie; Wang, Huan; Qu, Shiwei

    Two polymers with fully two-dimensional (2D) conjugated side chains, 2D-PTB-Th and 2D-PTB-TTh, were synthesized and characterized through simultaneously integrating the 2D-TT and the 2D-BDT monomers onto the polymer backbone. Resulting from the synergistic effect from the conjugated side chains on both monomers, the two polymers showed remarkably efficient absorption of the sunlight and improved pi-pi intermolecular interactions for efficient charge carrier transport. The optimized bulk heterojunction device based on 2D-PTB-Th and PC71BM shows a higher PCE of 9.13% compared to PTB7-Th with a PCE of 8.26%, which corresponds to an approximately 10% improvement in solar energy conversion. The fully 2D-conjugatedmore » side-chain concept reported here developed a new molecular design strategy for polymer materials with enhanced sunlight absorption and efficient solar energy conversion.« less

  15. Motion of spin label side chains in cellular retinol-binding protein: correlation with structure and nearest-neighbor interactions in an antiparallel beta-sheet.

    PubMed

    Lietzow, Michael A; Hubbell, Wayne L

    2004-03-23

    A goal in the development of site-directed spin labeling in proteins is to correlate the motion of a nitroxide side chain with local structure, interactions, and dynamics. Significant progress toward this goal has been made using alpha-helical proteins of known structure, and the present study is the first step in a similar exploration of a beta-sheet protein, cellular retinol-binding protein (CRBP). Nitroxide side chains were introduced along both interior and edge strands. At sites in interior strands, the side-chain motion is strongly influenced by interactions with side chains of neighboring strands, giving rise to a rich variety of dynamic modes (weakly ordered, strongly ordered, immobilized) and complex electron paramagnetic resonance spectra that are modulated by strand twist. The interactions giving rise to the dynamic modes are explored using mutagenesis, and the results demonstrate the particular importance of the non-hydrogen-bonded neighbor residue in giving rise to highly ordered states. Along edge strands of the beta-sheet, the motion of the side chain is simple and weakly ordered, resembling that at solvent-exposed surfaces of an alpha-helix. A simple working model is proposed that can account for the wide variety of dynamic modes encountered. Collectively, the results suggest that the nitroxide side chain is an effective probe of side-chain interactions, and that site-directed spin labeling should be a powerful means of monitoring conformational changes that involve changes in beta-sheet topology.

  16. Short chain fatty acids (butyric acid) and intestinal diseases

    PubMed

    Manrique Vergara, David; González Sánchez, María Eugenia

    2017-10-15

    Short chain fatty acids contain up to 6 carbon atoms. Among them, butyric acid stands out for its key role in pathologies with intestinal affectation. Butyric acid is the main energetic substrate of the colonocyte, it stimulates the absorption of sodium and water in the colon, and presents trophic action on the intestinal cells. To review the clinical use of formulations for the oral use of butyric acid. Review of published articles on oral supplementation with butyric acid in intestinal pathologies. The publications mainly deal with the use of oral butyric acid in pathologies involving inflammation and / or alterations of intestinal motility. Highlighting the clinical potential in inflammatory bowel diseases and irritable bowel syndrome. The use of oral supplementation with butyric acid is a promising strategy in pathologies such as inflammatory bowel diseases and irritable bowel syndrome. Bio-available butyric acid formulations with acceptable organoleptic characteristics are being advanced.

  17. Free Energy Perturbation Calculations of the Thermodynamics of Protein Side-Chain Mutations.

    PubMed

    Steinbrecher, Thomas; Abel, Robert; Clark, Anthony; Friesner, Richard

    2017-04-07

    Protein side-chain mutation is fundamental both to natural evolutionary processes and to the engineering of protein therapeutics, which constitute an increasing fraction of important medications. Molecular simulation enables the prediction of the effects of mutation on properties such as binding affinity, secondary and tertiary structure, conformational dynamics, and thermal stability. A number of widely differing approaches have been applied to these predictions, including sequence-based algorithms, knowledge-based potential functions, and all-atom molecular mechanics calculations. Free energy perturbation theory, employing all-atom and explicit-solvent molecular dynamics simulations, is a rigorous physics-based approach for calculating thermodynamic effects of, for example, protein side-chain mutations. Over the past several years, we have initiated an investigation of the ability of our most recent free energy perturbation methodology to model the thermodynamics of protein mutation for two specific problems: protein-protein binding affinities and protein thermal stability. We highlight recent advances in the field and outline current and future challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells.

    PubMed

    Wang, Jin-Liang; Liu, Kai-Kai; Liu, Sha; Liu, Feng; Wu, Hong-Bin; Cao, Yong; Russell, Thomas P

    2017-06-14

    A pair of linear tetrafluorinated small molecular donors, named as ThIDTTh4F and ThIDTSe4F, which are with tetrathienyl-substituted IDT as electron-rich central core, electron-deficient difluorobenzothiadiazole as acceptor units, and donor end-capping groups, but having differences in the π-bridge (thiophene and selenophene), were successfully synthesized and evaluated as donor materials in organic solar cells. Such π-bridge and core units in these small molecules play a decisive role in the formation of the nanoscale separation of the blend films, which were systematically investigated through absorption spectra, grazing incidence X-ray diffraction pattern, transmission electron microscopy images, resonant soft X-ray scattering profiles, and charge mobility measurement. The ThIDTSe4F (with selenophene π-bridge)-based device exhibited superior performance than devices based on ThIDTh4F (with thiophene π-bridge) after post annealing treatment owing to optimized film morphology and improved charge transport. Power conversion efficiency of 7.31% and fill factor of ∼0.70 were obtained by using a blend of ThIDTSe4F and PC 71 BM with thermal annealing and solvent vapor annealing treatments, which is the highest PCE from aromatic side-chain substituted IDT-based small molecular solar cells. The scope of this study is to reveal the structure-property relationship of the aromatic side-chain substituted IDT-based donor materials as a function of π-bridge and the post annealing conditions.

  19. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    PubMed

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin

    2013-12-01

    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Binding of tetramethylammonium to polyether side-chained aromatic hosts. Evaluation of the binding contribution from ether oxygen donors.

    PubMed

    Bartoli, Sandra; De Nicola, Gina; Roelens, Stefano

    2003-10-17

    A set of macrocyclic and open-chain aromatic ligands endowed with polyether side chains has been prepared to assess the contribution of ether oxygen donors to the binding of tetramethylammonium (TMA), a cation believed incapable of interacting with oxygen donors. The open-chain hosts consisted of an aromatic binding site and side chains possessing a variable number of ether oxygen donors; the macrocyclic ligands were based on the structure of a previously investigated host, the dimeric cyclophane 1,4-xylylene-1,4-phenylene diacetate (DXPDA), implemented with polyether-type side chains in the backbone. Association to tetramethylammonium picrate (TMAP) was measured in CDCl(3) at T = 296 K by (1)H NMR titrations. Results confirm that the main contribution to the binding of TMA comes from the cation-pi interaction established with the aromatic binding sites, but they unequivocally show that polyether chains participate with cooperative contributions, although of markedly smaller entity. Water is also bound, but the two guests interact with aromatic rings and oxygen donors in an essentially noncompetitive way. An improved procedure for the preparation of cyclophanic tetraester derivatives has been developed that conveniently recycles the oligomeric ester byproducts formed in the one-pot cyclization reaction. An alternative entry to benzylic diketones has also been provided that makes use of a low-order cyanocuprate reagent to prepare in fair yields a class of compounds otherwise uneasily accessible.

  1. Effect of Pendant Side-Chain Sterics and Dipole Forces on Short Range Ordering in Random Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration

    Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).

  2. Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein

    PubMed Central

    Iyer, Bharat Ramasubramanian; Zadafiya, Punit; Vetal, Pallavi Vijay

    2017-01-01

    The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly in vivo but are believed to be less important for β-barrel assembly in vitro. Here, we experimentally measured the thermodynamic contribution of all 20 amino acids at the β-signal motif to the unassisted folding of the model β-barrel protein PagP. We obtained the partitioning free energy for all 20 amino acids at the lipid-facing interface (ΔΔG0w,i(φ)) and the protein-facing interface (ΔΔG0w,i(π)) residues and found that hydrophobic amino acids are most favorably transferred to the lipid-facing interface, whereas charged and polar groups display the highest partitioning energy. Furthermore, the change in non-polar surface area correlated directly with the partitioning free energy for the lipid-facing residue and inversely with the protein-facing residue. We also demonstrate that the interface residues of the β-signal motif are vital for in vitro barrel assembly, because they exhibit a side chain–specific energetic contribution determined by the change in nonpolar accessible surface. We further establish that folding cooperativity and hydrophobic collapse are balanced at the membrane interface for optimal stability of the PagP β-barrel scaffold. We conclude that the PagP C-terminal β-signal motif influences the folding cooperativity and stability of the folded β-barrel and that the thermodynamic contributions of the lipid- and protein-facing residues in the transmembrane protein β-signal motif depend on the nature of the amino acid side chain. PMID:28592485

  3. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    PubMed

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  4. Digestion by fungal glycanases of arabinoxylans with different feruloylated side-chains.

    PubMed

    Wende, G; Fry, S C

    1997-07-01

    Alcohol-insoluble residues (AIRs) from Festuca and Zea cell cultures contained 7.4 and 35 nmol esterified ferulate mg-1, respectively. Driselase solubilised 79% of the feruloylated material from both AIRs. Of the feruloyl esters solubilised from Festuca and Zea AIRs, 72 and 56% respectively were small enough to be mobile on paper chromatography. The major feruloylated product of Zea AIR was the known 5-O-feruloyl-alpha-L-Araf-(1-->3)-beta-D-Xylp-(1-->4)- D-Xyl (Fer-Ara-Xyl-Xyl). In contrast, the smallest major feruloylated product of Festuca AIR was a feruloyl pentasaccharide (3) containing 3 Xyl, 1 Ara and 1 non-pentose residue (NPR). The Ara and two of the three Xyl groups of 3 were resistant to NaIO4. Mild acid hydrolysis of 3 gave xylobiose, a feruloyl trisaccharide and beta-D-Xylp-(1-->2)-(5-O-feruloyl)-L-Ara. Compound 3 was therefore NPR-(1-->3)-beta-D-Xylp-(1-->2)-(5-O-feruloyl)-alpha-L-Ar af-(1-->3)-beta-D-Xylp-(1-->4)-D-Xyl. We conclude that the complex feruloyl oligosaccharide side-chains of Festuca arabinoxylan do not protect the polysaccharide against hydrolysis by the fungal glycanases present in Driselase.

  5. Evolution of the biosynthesis of the branched-chain amino acids

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  6. Frequent side chain methyl carbon-oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures.

    PubMed

    Yesselman, Joseph D; Horowitz, Scott; Brooks, Charles L; Trievel, Raymond C

    2015-03-01

    The propensity of backbone Cα atoms to engage in carbon-oxygen (CH · · · O) hydrogen bonding is well-appreciated in protein structure, but side chain CH · · · O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH · · · O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH · · · O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH · · · O hydrogen bonding contributes to the energetics of protein structure and folding. © 2014 Wiley Periodicals, Inc.

  7. Chemical construction and structural permutation of neurotoxic natural product, antillatoxin: importance of the three-dimensional structure of the bulky side chain

    PubMed Central

    INOUE, Masayuki

    2014-01-01

    Antillatoxin 1 is a unique natural product that displays potent neurotoxic and neuritogenic activities through activation of voltage-gated sodium channels. The peptidic macrocycle of 1 was attached to a side chain with an exceptionally high degree of methylation. In this review, we discuss the total synthesis and biological evaluation of 1 and its analogues. First we describe an efficient synthetic route to 1. This strategy enabled the unified preparation of nine side chain analogues. Structure-activity relationship studies of these analogues revealed that subtle side chain modification leads to dramatic changes in activity, and detailed structural analyses indicated the importance of the overall size and three dimensional shape of the side chain. Based on these data, we designed and synthesized a photoresponsive analogue, proving that the activity of 1 was modulated via a photochemical reaction. The knowledge accumulated through these studies will be useful for the rational design of new tailor-made molecules to control the function and behavior of ion channels. PMID:24522155

  8. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids

    PubMed Central

    Chen, Xi; Du, Xue; Shen, Jianliang; Wang, Weiqun

    2016-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59–81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. PMID:27510581

  9. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    PubMed

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. © 2016 by the Society for Experimental Biology and Medicine.

  10. MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling.

    PubMed

    Song, Yifan; Mao, Junjun; Gunner, M R

    2009-11-15

    Multiconformation continuum electrostatics (MCCE) explores different conformational degrees of freedom in Monte Carlo calculations of protein residue and ligand pK(a)s. Explicit changes in side chain conformations throughout a titration create a position dependent, heterogeneous dielectric response giving a more accurate picture of coupled ionization and position changes. The MCCE2 methods for choosing a group of input heavy atom and proton positions are described. The pK(a)s calculated with different isosteric conformers, heavy atom rotamers and proton positions, with different degrees of optimization are tested against a curated group of 305 experimental pK(a)s in 33 proteins. QUICK calculations, with rotation around Asn and Gln termini, sampling His tautomers and torsion minimum hydroxyls yield an RMSD of 1.34 with 84% of the errors being <1.5 pH units. FULL calculations adding heavy atom rotamers and side chain optimization yield an RMSD of 0.90 with 90% of the errors <1.5 pH unit. Good results are also found for pK(a)s in the membrane protein bacteriorhodopsin. The inclusion of extra side chain positions distorts the dielectric boundary and also biases the calculated pK(a)s by creating more neutral than ionized conformers. Methods for correcting these errors are introduced. Calculations are compared with multiple X-ray and NMR derived structures in 36 soluble proteins. Calculations with X-ray structures give significantly better pK(a)s. Results with the default protein dielectric constant of 4 are as good as those using a value of 8. The MCCE2 program can be downloaded from http://www.sci.ccny.cuny.edu/~mcce. 2009 Wiley Periodicals, Inc.

  11. Phenylalanyl-Glycyl-Phenylalanine Tripeptide: A Model System for Aromatic-Aromatic Side Chain Interactions in Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, Haydee; Pluhackova, Kristyna; Hobza, Pavel

    The performance of a wide range of quantum chemical calculations for the ab initio study of realistic model systems of aromatic-aromatic side chain interactions in proteins (in particular those π-π interactions occurring between adjacent residues along the protein sequence) is here assessed on the phenylalanyl-glycyl-phenylalanine (FGF) tripeptide. Energies and geometries obtained at different levels of theory are compared with CCSD(T)/CBS benchmark energies and RI-MP2/cc-pVTZ benchmark geometries, respectively. Consequently, a protocol of calculation alternative to the very expensive CCSD(T)/CBS is proposed. In addition to this, the preferred orientation of the Phe aromatic side chains is discussed and compared with previous resultsmore » on the topic.« less

  12. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies

    PubMed Central

    Liu, Aihua; Lin, Yanhua; Terry, Ryan; Nelson, Kelly; Bernstein, Paul S

    2014-01-01

    Macular degeneration is a progressive, bilateral eye disorder that damages the macula of the human eye. The most common form of macular degeneration is age-related macular degeneration (AMD), which is the leading cause of irreversible blindness in people older than 50 years in developed countries. Autosomal dominant Stargardt disease-3 (STGD3) is an inherited macular dystrophy that has clinical features similar to dry AMD, but occurs at a much earlier age. It is caused by a mutation in the elongation of very-long-chain fatty acids-like 4 (ELOVL4) gene, which is responsible for encoding the elongase enzyme that converts shorter chain fatty acids into C28–C38 very long-chain polyunsaturated fatty acids (VLCPUFAs, total number of carbons ≥24). Diets rich in long-chain polyunsaturated fatty acids (LCPUFAs) have inverse associations with the progression of AMD and STGD3, and a deficiency in retinal LCPUFAs and VLCPUFAs has been detected in AMD retinas and STGD3 animal models. This article systematically summarizes the roles of LCPUFAs and VLCPUFAs in AMD and STGD3, and discusses future research directions. PMID:25324899

  13. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reactionmore » chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.« less

  14. Fine-tuning blend morphology via alkylthio side chain engineering towards high performance non-fullerene polymer solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ling; Feng, Liuliu; Yuan, Jun; Peng, Hongjian; Zou, Yingping; Li, Yongfang

    2018-03-01

    Two medium bandgap polymers (ffQx-TS1, ffQx-TS2) were designed and synthesized to investigate the influence of different alkylthio side chain on the morphology and photovoltaic performance of non-fullerene polymer solar cells (PSCs). Both polymers exhibit similar molecular weights and comparable the highest occupied molecular orbital (HOMO) energy level. However, the polymer with straight alkylthio chain delivers a root-mean-square (RMS) of 0.86 nm, which is slightly lower than that with branched chain (1.40 nm). The lower RMS benefits the ohmic contact between the active lay and interface layer, thus enhanced short circuit current (Jsc) (from 13.54 mA cm-1 to 15.25 mA cm-1) could be obtained. Due to the enhancement of Jsc, better power conversion efficiency (PCE) of 7.69% for ffQx-TS2 could be realized. These results indicated that alkylthio side chain engineering is a promising method to improve photovoltaic performance.

  15. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (<25%) with SCFAs (>37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  16. Microphase separation of comb copolymers with two different lengths of side chains

    NASA Astrophysics Data System (ADS)

    Aliev, M. A.; Kuzminyh, N. Yu.

    2009-10-01

    The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.

  17. Straight and branched-chain fatty acids in preorbital glands of sika deer, Cervus nippon.

    PubMed

    Wood, William F

    2004-02-01

    Using GC-MS analysis, 11 major volatile compounds were found in the preorbital gland secretion from a female sika deer, Cervus nippon. These compounds are the C14 through C18 straight-chain fatty acids, (ZZ)-9,12-octadecadienoic acid, 12-methyltridecanoic acid, 13-methyltetradecanoic acid, 14-methylpentadecanoic acid, 14-methylhexadecanoic acid, and 15-methylhexadecanoic acid. The five branched-chain acids make up over 29% of the volatiles in the gland. This is the first time branched-chain carboxylic acids have been reported from ungulate preorbital glands.

  18. Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets.

    PubMed

    Camacho, Carlos J

    2005-08-01

    The CAPRI-II experiment added an extra level of complexity to the problem of predicting protein-protein interactions by including 5 targets for which participants had to build or complete the 3-dimensional (3D) structure of either the receptor or ligand based on the structure of a close homolog. In this article, we describe how modeling key side-chains using molecular dynamics (MD) in explicit solvent improved the recognition of the binding region of a free energy- based computational docking method. In particular, we show that MD is able to predict with relatively high accuracy the rotamer conformation of the anchor side-chains important for molecular recognition as suggested by Rajamani et al. (Proc Natl Acad Sci USA 2004;101:11287-11292). As expected, the conformations are some of the most common rotamers for the given residue, while latch side-chains that undergo induced fit upon binding are forced into less common conformations. Using these models as starting conformations in conjunction with the rigid-body docking server ClusPro and the flexible docking algorithm SmoothDock, we produced valuable predictions for 6 of the 9 targets in CAPRI-II, missing only the 3 targets that underwent significant structural rearrangements upon binding. We also show that our free energy- based scoring function, consisting of the sum of van der Waals, Coulombic electrostatic with a distance-dependent dielectric, and desolvation free energy successfully discriminates the nativelike conformation of our submitted predictions. The latter emphasizes the critical role that thermodynamics plays on our methodology, and validates the generality of the algorithm to predict protein interactions.

  19. Fused-Ring Acceptors with Asymmetric Side Chains for High-Performance Thick-Film Organic Solar Cells.

    PubMed

    Feng, Shiyu; Zhang, Cai'e; Liu, Yahui; Bi, Zhaozhao; Zhang, Zhe; Xu, Xinjun; Ma, Wei; Bo, Zhishan

    2017-11-01

    A kind of new fused-ring electron acceptor, IDT-OB, bearing asymmetric side chains, is synthesized for high-efficiency thick-film organic solar cells. The introduction of asymmetric side chains can increase the solubility of acceptor molecules, enable the acceptor molecules to pack closely in a dislocated way, and form favorable phase separation when blended with PBDB-T. As expected, PBDB-T:IDT-OB-based devices exhibit high and balanced hole and electron mobility and give a high power conversion efficiency (PCE) of 10.12%. More importantly, the IDT-OB-based devices are not very sensitive to the film thickness, a PCE of 9.17% can still be obtained even the thickness of active layer is up to 210 nm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structure–Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase

    PubMed Central

    2016-01-01

    Kinetic parameters are reported for the reactions of whole substrates (kcat/Km, M–1 s–1) (R)-glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) and for the substrate pieces [(kcat/Km)E·HPi/Kd, M–2 s–1] glycolaldehyde (GA) and phosphite dianion (HPi) catalyzed by the I172A/L232A mutant of triosephosphate isomerase from Trypanosoma brucei brucei (TbbTIM). A comparison with the corresponding parameters for wild-type, I172A, and L232A TbbTIM-catalyzed reactions shows that the effect of I172A and L232A mutations on ΔG⧧ for the wild-type TbbTIM-catalyzed reactions of the substrate pieces is nearly the same as the effect of the same mutations on TbbTIM previously mutated at the second side chain. This provides strong evidence that mutation of the first hydrophobic side chain does not affect the functioning of the second side chain in catalysis of the reactions of the substrate pieces. By contrast, the effects of I172A and L232A mutations on ΔG⧧ for wild-type TbbTIM-catalyzed reactions of the whole substrate are different from the effect of the same mutations on TbbTIM previously mutated at the second side chain. This is due to the change in the rate-determining step that determines the barrier to the isomerization reaction. X-ray crystal structures are reported for I172A, L232A, and I172A/L232A TIMs and for the complexes of these mutants to the intermediate analogue phosphoglycolate (PGA). The structures of the PGA complexes with wild-type and mutant enzymes are nearly superimposable, except that the space opened by replacement of the hydrophobic side chain is occupied by a water molecule that lies ∼3.5 Å from the basic side chain of Glu167. The new water at I172A mutant TbbTIM provides a simple rationalization for the increase in the activation barrier ΔG⧧ observed for mutant enzyme-catalyzed reactions of the whole substrate and substrate pieces. By contrast, the new water at the L232A mutant does not predict the decrease in

  1. Side Chain Degradable Cationic-Amphiphilic Polymers with Tunable Hydrophobicity Show in Vivo Activity.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Hoque, Jiaul; Konai, Mohini M; Krishnamoorthy, Paramanandham; Shome, Bibek R; Haldar, Jayanta

    2016-09-12

    Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions

  2. Side chain flexibility and the pore dimensions in the GABAA receptor

    NASA Astrophysics Data System (ADS)

    Rossokhin, Alexey V.; Zhorov, Boris S.

    2016-07-01

    Permeation of ions through open channels and their accessibility to pore-targeting drugs depend on the pore cross-sectional dimensions, which are known only for static X-ray and cryo-EM structures. Here, we have built homology models of the closed, open and desensitized α1β2γ2 GABAA receptor (GABAAR). The models are based, respectively, on the X-ray structure of α3 glycine receptor (α3 GlyR), cryo-EM structure of α1 GlyR and X-ray structure of β3 GABAAR. We employed Monte Carlo energy minimizations to explore how the pore lumen may increase due to repulsions of flexible side chains from a variable-diameter electroneutral atom (an expanding sphere) pulled through the pore. The expanding sphere computations predicted that the pore diameter averaged along the permeation pathway is larger by approximately 3 Å than that computed for the models with fixed sidechains. Our models predict three major pore constrictions located at the levels of -2', 9' and 20' residues. Residues around the -2' and 9' rings are known to form the desensitization and activation gates of GABAAR. Our computations predict that the 20' ring may also serve as GABAAR gate whose physiological role is unclear. The side chain flexibility of residues -2', 9' and 20' and hence the dimensions of the constrictions depend on the GABAAR functional state.

  3. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    NASA Astrophysics Data System (ADS)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  4. Interactions between Therapeutic Proteins and Acrylic Acid Leachable.

    PubMed

    Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da

    2012-01-01

    Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.

  5. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. © 2015 Wiley Periodicals, Inc.

  6. On the complex •OH/•O--induced free radical chemistry of arylalkylamines with special emphasis on the contribution of the alkylamine side chain.

    PubMed

    Szabó, László; Mile, Viktória; Tóth, Tünde; Balogh, György T; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-02-01

    A full account of the • OH-induced free radical chemistry of an arylalkylamine is given taking all the possible reaction pathways quantitatively into consideration. Such knowledge is indispensable when the alkylamine side chain plays a crucial role in biological activity. The fundamental reactions are investigated on the model compound N-methyl-3-phenypropylamine (MPPA), and extended to its biologically active analog, to the antidepressant fluoxetine (FLX). Pulse radiolysis techniques were applied including redox titration and transient spectral analysis supplemented with DFT calculations. The contribution of the amine moiety to the free radical-induced oxidation mechanism appeared to be appreciable. • O - was used to observe hydrogen atom abstraction events at pH 14 giving rise to the strongly reducing α-aminoalkyl radicals (∼38% of the radical yield) and to benzyl (∼4%), β-aminoalkyl (∼24%), and aminyl radicals (∼31%) of MPPA. One-electron transfer was also observed yielding aminium radicals with low efficiency (∼3%). In the • OH-induced oxidation protonated α-aminoalkyl (∼49%), β-aminoalkyl (∼27%), benzyl radicals (∼4%), and aminium radicals (∼5%) are initially generated on the side chain of MPPA at pH 6, whereas hydroxycyclohexadienyl radicals (∼15%) were also produced. These initial events are followed by complex protonation-deprotonation reactions establishing acid-base equilibria; however, these processes are limited by the transient nature of the radicals and the kinetics of the ongoing reactions. The contribution of the radicals from the side chain alkylamine substituent of FLX totals up to ∼54% of the initially available oxidant yield.

  7. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures.

    PubMed

    Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan

    2016-08-10

    The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting

  8. Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for High-Efficiency Polymer Solar Cells.

    PubMed

    Xue, Lingwei; Yang, Yankang; Xu, Jianqiu; Zhang, Chunfeng; Bin, Haijun; Zhang, Zhi-Guo; Qiu, Beibei; Li, Xiaojun; Sun, Chenkai; Gao, Liang; Yao, Jia; Chen, Xiaofeng; Yang, Yunxu; Xiao, Min; Li, Yongfang

    2017-10-01

    Suppression of carrier recombination is critically important in realizing high-efficiency polymer solar cells. Herein, it is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D-conjugated D-A copolymer J91 is designed and synthesized with bi(alkyl-difluorothienyl)-benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low-lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n-type organic semiconductor acceptor m-ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(3-hexylphenyl)-dithieno[2,3-d:2,3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high V OC of 0.984 V and high J SC of 18.03 mA cm -2 is obtained for the polymer solar cells based on J91/m-ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    PubMed

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Photochemical reaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen) with basic amino acids and dipeptides.

    PubMed

    Suzuki, Tadashi; Shinoda, Mio; Osanai, Yohei; Isozaki, Tasuku

    2013-08-22

    Photoreaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen, KP) with basic amino acids (histidine, lysine, and arginine) and dipeptides (carnosine and anserine) including a histidine moiety in phosphate buffer solution (pH 7.4) has been investigated with transient absorption spectroscopy. With UV irradiation KP(-) gave rise to a carbanion through a decarboxylation reaction, and the carbanion easily abstracted a proton from the surrounding molecule to yield a 3-ethylbenzophenone ketyl biradical (EBPH). The dipeptides as well as the basic amino acids were found to accelerate the proton transfer reaction whereas alanine and glycine had no effect on the reaction, revealing that these amino acids having a protonated side chain act as a proton donor. The formation quantum yield of EBPH was estimated to be fairly large by means of an actinometrical method with benzophenone, and the bimolecular reaction rate constant for the proton transfer between the carbanion and the protonated basic amino acids or the protonated dipeptides was successfully determined. It has become apparent that the bimolecular reaction rate constant for the proton transfer depended on the acid dissociation constant for the side chain of the amino acids for the first time. This reaction mechanism was interpreted by difference of the heat of reaction for each basic amino acid based on the thermodynamical consideration. These results strongly suggest that the side chain of the basic amino acid residue in protein should play an important role for photochemistry of KP in vivo.

  11. Polythiophene Derivative with a Side Chain Chromophore as Photovoltaic and Photorefractive Materials

    DTIC Science & Technology

    1993-11-17

    the desired bulk property in the polymer such as water solubility,1 8 optical activity,19 ionic conductivity 20 or liquid crystalline properties. 2 1...photoexcitation, which is similar to photoinduced polarization observed in the Langmuir - Blodgett (L-B) films of donor-acceptor molecules. 23 But due to...Maximum 200 Words) A new, solution processable, thiophene copolymer with a side chain nonlinear optical (NLO) chromophore namely Poly (3-octylthiophene

  12. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    PubMed

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  13. Water-Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides.

    PubMed

    Fa, Shixin; Zhao, Yan

    2018-01-02

    Sequence-specific recognition of peptides is of enormous importance to many chemical and biological applications, but has been difficult to achieve due to the minute differences in the side chains of amino acids. Acidic peptides are known to play important roles in cell growth and gene expression. In this work, we report molecularly imprinted micelles coded with molecular recognition information for the acidic and hydrophobic side chains of acidic peptides. The imprinted receptors could distinguish acidic amino acids from other polar and nonpolar amino acids, with dissociation constants of tens of nanomolar for biologically active peptides containing up to 18 amino acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Validation of molecularly imprinted polymers for side chain selective phosphopeptide enrichment.

    PubMed

    Chen, Jing; Shinde, Sudhirkumar; Subedi, Prabal; Wierzbicka, Celina; Sellergren, Börje; Helling, Stefan; Marcus, Katrin

    2016-11-04

    Selective enrichment techniques are essential for mapping of protein posttranslational modifications (PTMs). Phosphorylation is one of the PTMs which continues to be associated with significant analytical challenges. Particularly problematic are tyrosine-phosphorylated peptides (pY-peptides) resulting from tryptic digestion which commonly escape current chemo- or immuno- affinity enrichments and hence remain undetected. We here report on significant improvements in this regard using pY selective molecularly imprinted polymers (pY-MIPs). The pY-MIP was compared with titanium dioxide (TiO 2 ) affinity based enrichment and immunoprecipitation (IP) with respect to selective enrichment from a mixture of 13 standard peptides at different sample loads. At a low sample load (1pmol of each peptide), IP resulted in enrichment of only a triply phosphorylated peptide whereas TiO 2 enriched phosphopeptides irrespective of the amino acid side chain. However, with increased sample complexity, TiO 2 failed to enrich the doubly phosphorylated peptides. This contrasted with the pY-MIP showing enrichment of all four tyrosine phosphorylated peptides at 1pmol sample load of each peptide with a few other peptides binding unselectively. At an increased sample complexity consisting of the standard peptides spiked into mouse brain digest, the MIP showed clear enrichment of all four pY- peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    PubMed

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins.

    PubMed

    Stroganov, Oleg V; Novikov, Fedor N; Zeifman, Alexey A; Stroylov, Viktor S; Chilov, Ghermes G

    2011-09-01

    A new graph-theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation-dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief-network-a well-established mathematical abstraction-the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi-empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pK(a) values of protein residues. The average correlation coefficient (R) between calculated and experimental pK(a) values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pK(a) calculations. Copyright © 2011 Wiley-Liss, Inc.

  17. Stabilizing interactions between aromatic and basic side chains in alpha-helical peptides and proteins. Tyrosine effects on helix circular dichroism.

    PubMed

    Andrew, Charles D; Bhattacharjee, Samita; Kokkoni, Nicoleta; Hirst, Jonathan D; Jones, Gareth R; Doig, Andrew J

    2002-10-30

    Here we investigate the structures and energetics of interactions between aromatic (Phe or Tyr) and basic (Lys or Arg) amino acids in alpha-helices. Side chain interaction energies are measured using helical peptides, by quantifying their helicities with circular dichroism at 222 nm and interpreting the results with Lifson-Roig-based helix/coil theory. A difficulty in working with Tyr is that the aromatic ring perturbs the CD spectrum, giving an incorrect helicity. We calculated the effect of Tyr on the CD at 222 nm by deriving the intensities of the bands directly from the electronic and magnetic transition dipole moments through the rotational strengths corresponding to each excited state of the polypeptide. This gives an improved value of the helix preference of Tyr (from 0.48 to 0.35) and a correction to the helicity for the peptides containing Tyr. We find that Phe-Lys, Lys-Phe, Phe-Arg, Arg-Phe, and Tyr-Lys are all stabilizing by -0.10 to -0.18 kcal.mol-1 when placed i, i + 4 on the surface of a helix in aqueous solution, despite the great difference in polarity between these residues. Interactions between these side chains have previously been attributed to cation-pi bonds. A survey of protein structures shows that they are in fact predominantly hydrophobic interactions between the CH2 groups of Lys or Arg and the aromatic rings.

  18. Characterization of an Aldolase Involved in Cholesterol Side Chain Degradation in Mycobacterium tuberculosis.

    PubMed

    Gilbert, Stephanie; Hood, LaChae; Seah, Stephen Y K

    2018-01-15

    The heteromeric acyl coenzyme A (acyl-CoA) dehydrogenase FadE28-FadE29 and the enoyl-CoA hydratase ChsH1-ChsH2, encoded by genes within the intracellular growth ( igr ) operon of Mycobacterium tuberculosis , catalyze the dehydrogenation of the cholesterol metabolite 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA), with a 3-carbon side chain, and subsequent hydration of the product 3-oxo-4,17-pregnadiene-20-carboxyl-CoA (3-OPDC-CoA) to form 17-hydroxy-3-oxo-4-pregnene-20-carboxyl-CoA (17-HOPC-CoA). The gene downstream of chsH2 , i.e., ltp2 , was expressed in recombinant Rhodococcus jostii RHA1 in combination with other genes within the igr operon. His-tagged Ltp2 copurified with untagged ChsH1-ChsH2, ChsH2, or the C-terminal domain of ChsH2, which contains a domain of unknown function (DUF35). Ltp2 in association with ChsH1-ChsH2 or just the DUF35 domain of ChsH2 was shown to catalyze the retroaldol cleavage of 17-HOPC-CoA to form androst-4-ene-3,17-dione and propionyl-CoA. Steady-state kinetic analysis using the Ltp2-DUF35 complex showed that the aldolase had optimal activity at pH 7.5, with a K m of 6.54 ± 0.90 μM and a k cat of 159 ± 8.50 s -1 ChsH1-ChsH2 could hydrate only about 30% of 3-OPDC-CoA, but this unfavorable equilibrium could be overcome when the aldolase was present to remove the hydrated product, providing a rationale for the close association of the aldolase with the hydratase. Homologs of ChsH1, ChsH2, and Ltp2 are found in steroid-degrading Gram-positive and Gram-negative bacteria, suggesting that side chains of diverse steroids may be cleaved by aldolases in the bacteria. IMPORTANCE The C-C bond cleavage of the D-ring side chain of cholesterol was shown to be catalyzed by an aldolase. The aldolase associates with the hydratase that catalyzes the preceding reaction in the cholesterol side chain degradation pathway. These enzymes are encoded by genes within the intracellular growth ( igr ) operon of M. tuberculosis , and the operon was demonstrated

  19. Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations.

    PubMed

    Zhu, Tong; Zhang, John Z H; He, Xiao

    2014-09-14

    In this work, protein side chain (1)H chemical shifts are used as probes to detect and correct side-chain packing errors in protein's NMR structures through structural refinement. By applying the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method for ab initio calculation of chemical shifts, incorrect side chain packing was detected in the NMR structures of the Pin1 WW domain. The NMR structure is then refined by using molecular dynamics simulation and the polarized protein-specific charge (PPC) model. The computationally refined structure of the Pin1 WW domain is in excellent agreement with the corresponding X-ray structure. In particular, the use of the PPC model yields a more accurate structure than that using the standard (nonpolarizable) force field. For comparison, some of the widely used empirical models for chemical shift calculations are unable to correctly describe the relationship between the particular proton chemical shift and protein structures. The AF-QM/MM method can be used as a powerful tool for protein NMR structure validation and structural flaw detection.

  20. Properties of Acetate Kinase Isozymes and a Branched-Chain Fatty Acid Kinase from a Spirochete

    PubMed Central

    Harwood, Caroline S.; Canale-Parola, Ercole

    1982-01-01

    Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids. PMID:6288660

  1. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  2. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  3. Surface Engineering of ITO Substrates to Improve the Memory Performance of an Asymmetric Conjugated Molecule with a Side Chain.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Xiao, Xin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-09-05

    Organic multilevel random resistive access memory (RRAM) devices with an electrode/organic layer/electrode sandwich-like structure suffer from poor reproducibility, such as low effective ternary device yields and a wide threshold voltage distribution, and improvements through organic material renovation are rather limited. In contrast, engineering of the electrode surfaces rather than molecule design has been demonstrated to boost the performance of organic electronics effectively. Herein, we introduce surface engineering into organic multilevel RRAMs to enhance their ternary memory performance. A new asymmetric conjugated molecule composed of phenothiazine and malononitrile with a side chain (PTZ-PTZO-CN) was fabricated in an indium tin oxide (ITO)/PTZ-PTZO-CN/Al sandwich-like memory device. Modification of the ITO substrate with a phosphonic acid (PA) prior to device fabrication increased the ternary device yield (the ratio of effective ternary device) and narrowed the threshold voltage distribution. The crystallinity analysis revealed that PTZ-PTZO-CN grown on untreated ITO crystallized into two phases. After the surface engineering of ITO, this crystalline ambiguity was eliminated and a sole crystal phase was obtained that was the same as in the powder state. The unified crystal structure and improved grain mosaicity resulted in a lower threshold voltage and, therefore, a higher ternary device yield. Our result demonstrated that PA modification also improved the memory performance of an asymmetric conjugated molecule with a side chain. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ω-Turn: a novel β-turn mimic in globular proteins stabilized by main-chain to side-chain C−H···O interaction.

    PubMed

    Dhar, Jesmita; Chakrabarti, Pinak; Saini, Harpreet; Raghava, Gajendra Pal Singh; Kishore, Raghuvansh

    2015-02-01

    Mimicry of structural motifs is a common feature in proteins. The 10-membered hydrogen-bonded ring involving the main-chain C − O in a β-turn can be formed using a side-chain carbonyl group leading to Asx-turn. We show that the N − H component of hydrogen bond can be replaced by a C(γ) -H group in the side chain, culminating in a nonconventional C − H···O interaction. Because of its shape this β-turn mimic is designated as ω-turn, which is found to occur ∼ three times per 100 residues. Three residues (i to i + 2) constitute the turn with the C − H···O interaction occurring between the terminal residues, constraining the torsion angles ϕi + 1, ψi + 1, ϕi + 2 and χ'1(i + 2) (using the interacting C(γ) atom). Based on these angles there are two types of ω-turns, each of which can be further divided into two groups. C(β) -branched side-chains, and Met and Gln have high propensities to occur at i + 2; for the last two residues the carbonyl oxygen may participate in an additional interaction involving the S and amino group, respectively. With Cys occupying the i + 1 position, such turns are found in the metal-binding sites. N-linked glycosylation occurs at the consensus pattern Asn-Xaa-Ser/Thr; with Thr at i + 2, the sequence can adopt the secondary structure of a ω-turn, which may be the recognition site for protein modification. Location between two β-strands is the most common occurrence in protein tertiary structure, and being generally exposed ω-turn may constitute the antigenic determinant site. It is a stable scaffold and may be used in protein engineering and peptide design. © 2014 Wiley Periodicals, Inc.

  5. Dissociation of branched-chain alpha-keto acid dehydrogenase kinase (BDK) from branched-chain alpha-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors.

    PubMed

    Murakami, Taro; Matsuo, Masayuki; Shimizu, Ayako; Shimomura, Yoshiharu

    2005-02-01

    Branched-chain alpha-keto acid dehydrogenase kinase (BDK) phosphorylates and inactivates the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), which is the rate-limiting enzyme in the branched-chain amino acid catabolism. BDK has been believed to be bound to the BCKDC. However, recent our studies demonstrated that protein-protein interaction between BDK and BCKDC is one of the factors to regulate BDK activity. Furthermore, only the bound form of BDK appears to have its activity. In the present study, we examined effects of BDK inhibitors on the amount of BDK bound to the BCKDC using rat liver extracts. The bound form of BDK in the extracts of liver from low protein diet-fed rats was measured by an immunoprecipitation pull down assay with or without BDK inhibitors. Among the BDK inhibitors. alpha-ketoisocaproate, alpha-chloroisocaproate, and a-ketoisovalerate released the BDK from the complex. Furthermore, the releasing effect of these inhibitors on the BDK appeared to depend on their inhibition constants. On the other hand, clofibric acid and thiamine pyrophosphate had no effect on the protein-protein interaction between two enzymes. These results suggest that the dissociation of the BDK from the BCKDC is one of the mechanisms responsible for the action of some inhibitors to BDK.

  6. Specificity of neutral amino acid uptake at the basolateral side of the epithelium in the cat salivary gland in situ.

    PubMed

    Bustamante, J C; Mann, G E; Yudilevich, D L

    1981-01-01

    1. Amino acid uptake was measured in resting cat submandibular glands with either a natural blood supply or perfused at constant flow with a Krebs-albumin solution. Following a bolus arterial injection of a 3H-labelled amino acid and D-[14C]mannitol (extracellular reference tracer), the venous effluent was immediately sampled sequentially. The maximal uptake, Umax, from the blood or perfusate was determined from the paired-tracer dilution curves using the expression: uptake % = (1 -- (3H/14C) X 100). 2. In glands with a natural blood supply, Umax values up to 46% were measured for short-chain (serine and alanine) and long-chain (valine, methionine, leucine, isoleucine, 1-amino-cyclopentane cyclopentane carboxylic acid, phenylalanine, tryptophan, tyrosine, histidine and glutamine) neutral amino acids. In contrast, Umax was negligible for amino acids of the imino-glycine group (proline and glycine) and the nonmetabolized amino acids, 2-aminoisobutyric acid (AIB) and methylaminoisobutyric acid (MeAIB). 3. In glands with a natural blood supply addition of an unlabelled amino acid to the tracer injectate reduced Umax for the test acid by up to 80%. The pattern of these interactions suggested the presence of two transport systems for neutral amino acids, one preferring short-chain and the other long-chain amino acids. 4. In glands perfused at constant flow rates with an amino acid-free Krebs-albumin solution high Umax values were measured: L-serine (66%), L-alanine (54%), L-leucine (43%), L-phenylalanine (42%) and L-tyrosine (51%). Only a low uptake was observed for L-proline (8%) and glycine (14%). There was no uptake of methylaminoisobutyric acid which confirms the result obtained in glands with an intact circulation. 5. Saturation of L-phenylalanine influx was observed in perfused glands as the perfusate concentration of unlabelled L-phenylalanine was increased from 0.5 to 20 mmol . 1-1. A Michaelis--Menten analysis based on a single entry system indicated an apparent

  7. Erythrolic acids A-E, Meroterpenoids from a Marine-Derived Erythrobacter sp

    PubMed Central

    Hu, Youcai; Legako, Aaron G.; Espindola, Ana Paula D.M.; MacMillan, John B.

    2012-01-01

    Erythrolic acids A-E (1–5) are five unusual meroterpenoids isolated from the bacterium Erythrobacter sp. derived from a marine sediment sample collected in Galveston, TX. The structures were elucidated by means of detailed spectroscopic analysis and chemical derivatization. The erythrolic acids contain a 4-hydroxybenzoic acid appended with a modified terpene side chain. The side chain modifications include oxidation of a terminal methyl substituent and in the case of 1–4 addition of a 2-carbon unit to give terpene side chains of unusual length; C22 for 1 and 2, C17 for 3 and C12 for 4. The relative and absolute configurations of the meroterpenoids were determined by coupling constant, NOE and Mosher’s analysis. In vitro cytotoxicity towards a number of non-small cell lung cancer (NSCLC) cell lines revealed only modest activity for erythrolic acid D (4) (2.5 μM against HCC44). The discovery of these unusual diterpenes, along with the previously reported erythrazoles, demonstrate the natural product potential of a previously unstudied group of bacteria for drug discovery. The unusual nature of the terpene side chain, we believe, involves an oxidation of a terminal methyl group to a carboxylic acid and subsequent Claisen condensation with acetyl-CoA. PMID:22384985

  8. Direct Comparison of Amino Acid and Salt Interactions with Double-Stranded and Single-Stranded DNA from Explicit-Solvent Molecular Dynamics Simulations.

    PubMed

    Andrews, Casey T; Campbell, Brady A; Elcock, Adrian H

    2017-04-11

    Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.

  9. Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria.

    PubMed

    Kurdi, Peter; Tanaka, Hiroshi; Van Veen, Hendrik W; Asano, Kozo; Tomita, Fusao; Yokota, Atsushi

    2003-08-01

    Cholic acid (CA) transport was investigated in nine intestinal Bifidobacterium strains. Upon energization with glucose, all of the bifidobacteria accumulated CA. The driving force behind CA accumulation was found to be the transmembrane proton gradient (Delta pH, alkaline interior). The levels of accumulated CA generally coincided with the theoretical values, which were calculated by the Henderson-Hasselbalch equation using the measured internal pH values of the bifidobacteria, and a pK(a) value of 6.4 for CA. These results suggest that the mechanism of CA accumulation is based on the diffusion of a hydrophobic weak acid across the bacterial cell membrane, and its dissociation according to the Delta pH value. A mixture of short-chain fatty acids (acetate, propionate and butyrate) at the appropriate colonic concentration (117 mM in total) reduced CA accumulation in Bifidobacterium breve JCM 1192(T). These short-chain fatty acids, which are weak acids, reduced the Delta pH, thereby decreasing CA accumulation in a dose-dependent manner. The bifidobacteria did not alter or modify the CA molecule. The probiotic potential of CA accumulation in vivo is discussed in relation to human bile acid metabolism.

  10. The serotype-specific glucose side chain of rhamnose-glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans.

    PubMed

    Shibata, Yukie; Yamashita, Yoshihisa; van der Ploeg, Jan R

    2009-05-01

    Bacteriophage M102 is a virulent siphophage that propagates in some serotype c Streptococcus mutans strains, but not in S. mutans of serotype e, f or k. The serotype of S. mutans is determined by the glucose side chain of rhamnose-glucose polysaccharide (RGP). Because the first step in the bacteriophage infection process is adsorption of the phage, it was investigated whether the serotype specificity of phage M102 was determined by adsorption. M102 adsorbed to all tested serotype c strains, but not to strains of different serotypes. Streptococcus mutans serotype c mutants defective in the synthesis of the glucose side chain of RGP failed to adsorb phage M102. These results suggest that the glucose side chain of RGP acts as a receptor for phage M102.

  11. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.

    PubMed

    Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A

    2017-07-19

    Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.

  12. Distribution of volatile branched-chain fatty acids in various lamb tissues.

    PubMed

    Brennand, C P; Lindsay, R C

    1992-01-01

    Volatile fatty acids (C4-C11) including even-, odd-, and branched-chain members in lamb tissues were quantitatively analyzed. Volatile branched-chain fatty acids (BCFA) were more concentrated in subcutaneous adipose tissue samples (rump, shoulder, breast) than in perinepheric adipose or muscle tissues. Perinepheric adipose tissue contained relatively high quantities of n-chain, even-numbered fatty acids and very low levels of BCFA. Greater variation existed in fatty acid profiles among similar subcutaneous adipose tissues from different lambs than between samples of adipose tissue from different carcass sites from a given lamb sample. 4-Methyl- and 4-ethyloctanoic acids were present at concentrations greatly above threshold levels in all lamb fats tested, and thus upon hydrolysis would contribute species-related flavors to lamb. 4-Methylnonanoic concentrations in lamb fats ranged from nondetectable to greater than the threshold level, and therefore this compound would not always contribute to the species-related flavors of lamb. Lean meat samples contained very low concentrations of 4-methyl- and 4-ethyloctanoic acids. Copyright © 1992. Published by Elsevier Ltd.

  13. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    DOE PAGES

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; ...

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less

  14. Aromatic Side Chain Water-to-Lipid Transfer Free Energies Show a Depth Dependence across the Membrane Normal.

    PubMed

    McDonald, Sarah K; Fleming, Karen G

    2016-06-29

    Quantitating and understanding the physical forces responsible for the interactions of biomolecules are fundamental to the biological sciences. This is especially challenging for membrane proteins because they are embedded within cellular bilayers that provide a unique medium in which hydrophobic sequences must fold. Knowledge of the energetics of protein-lipid interactions is thus vital to understand cellular processes involving membrane proteins. Here we used a host-guest mutational strategy to calculate the Gibbs free energy changes of water-to-lipid transfer for the aromatic side chains Trp, Tyr, and Phe as a function of depth in the membrane. This work reveals an energetic gradient in the transfer free energies for Trp and Tyr, where transfer was most favorable to the membrane interfacial region and comparatively less favorable into the bilayer center. The transfer energetics follows the concentration gradient of polar atoms across the bilayer normal that naturally occurs in biological membranes. Additional measurements revealed nearest-neighbor coupling in the data set are influenced by a network of aromatic side chains in the host protein. Taken together, these results show that aromatic side chains contribute significantly to membrane protein stability through either aromatic-aromatic interactions or placement at the membrane interface.

  15. Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease.

    PubMed

    Flock, Michael R; Kris-Etherton, Penny M

    2013-03-01

    The purpose of this review is to discuss the metabolism of long-chain saturated fatty acids and the ensuing effects on an array of metabolic events. Individual long-chain saturated fatty acids exhibit unique biological properties. Dietary saturated fat absorption varies depending on chain-length and the associated food matrix. The in-vivo metabolism of saturated fatty acids varies depending on the individual fatty acid and the nutritional state of the individual. A variety of fatty acid metabolites are formed, each with their own unique structure and properties that warrant further research. Replacing saturated fatty acids with unsaturated fatty acids improves the blood lipid profile and reduces cardiovascular disease risk, although the benefits depend on the specific saturated fatty acid(s) being replaced. Acknowledging the complexity of saturated fatty acid metabolism and associated metabolic events is important when assessing their effects on cardiovascular disease risk. Investigating the biological effects of saturated fatty acids will advance our understanding of how they affect cardiovascular disease risk.

  16. Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s

    PubMed Central

    Tsuji, Hideto; Eto, Takehiko; Sakamoto, Yuzuru

    2011-01-01

    Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected. PMID:28824149

  17. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    PubMed Central

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  18. Activity of 3-Ketosteroid 9α-Hydroxylase (KshAB) Indicates Cholesterol Side Chain and Ring Degradation Occur Simultaneously in Mycobacterium tuberculosis*

    PubMed Central

    Capyk, Jenna K.; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C.; Eltis, Lindsay D.

    2011-01-01

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (kcat/Km) of KshAB for the CoA thioester substrates was 20–30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent KmO2 was 90 ± 10 μm in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ1 ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism. PMID:21987574

  19. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis.

    PubMed

    Capyk, Jenna K; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C; Eltis, Lindsay D

    2011-11-25

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (k(cat)/K(m)) of KshAB for the CoA thioester substrates was 20-30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent K(m)(O(2)) was 90 ± 10 μM in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ(1) ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism.

  20. Liquid Crystalline Polymers Containing Heterocycloalkane Mesogens. 1. Side-Chain Liquid Crystalline Polymethacrylates and Polycrylates Containing 2,5-Disubstituted-1,3-Dioxane Mesogens.

    DTIC Science & Technology

    1986-10-01

    Report No. 2 Liquid Crystalline Polymers Containing Heterocycloalkane Mesogeus 1. Side-Chain Liquid Crystalline Polymethacrylates and . Polyacrylates...8217. " "-"-"-" " "" ’CS" i Liquid Crystalline Polymers Containing Heterocycloalkane Mesogens 1. Side-Chain Liquid Crystalline Polymethacrylates and Polyacrylates...University Cleveland, OH 44106 ABSTRACT Polymethacrylates and polyacrylates containing 2-(p-hydroxyphenyl)-5-(p-meth- oxyphenyl)-1,3-dioxane as a

  1. The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities.

    PubMed

    Dantsker, David; Roche, Camille; Samuni, Uri; Blouin, George; Olson, John S; Friedman, Joel M

    2005-11-18

    After photodissociation, ligand rebinding to myoglobin exhibits complex kinetic patterns associated with multiple first-order geminate recombination processes occurring within the protein and a simpler bimolecular phase representing second-order ligand rebinding from the solvent. A smooth transition from cryogenic-like to solution phase properties can be obtained by using a combination of sol-gel encapsulation, addition of glycerol as a bathing medium, and temperature tuning (-15 --> 65 degrees C). This approach was applied to a series of double mutants, myoglobin CO (H64L/V68X, where X = Ala, Val, Leu, Asn, and Phe), which were designed to examine the contributions of the position 68(E11) side chain to the appearance and disappearance of internal rebinding phases in the absence of steric and polar interactions with the distal histidine. Based on the effects of viscosity, temperature, and the stereochemistry of the E11 side chain, the three major phases, B --> A, C --> A, and D --> A, can be assigned, respectively, to ligand rebinding from the following: (i) the distal heme pocket, (ii) the xenon cavities prior to large amplitude side chain conformational relaxation, and (iii) the xenon cavities after significant conformational relaxation of the position 68(E11) side chain. The relative amplitudes of the B --> A and C --> A phases depend markedly on the size and shape of the E11 side chain, which regulates sterically both ligand return to the heme iron atom and ligand migration to the xenon cavities. The internal xenon cavities provide a transient docking site that allows side chain relaxations and the entry of water into the vacated distal pocket, which in turn slows ligand recombination markedly.

  2. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the HDL receptor SR-BI

    PubMed Central

    Yu, Miao; Lau, Thomas Y.; Carr, Steven A.; Krieger, Monty

    2013-01-01

    The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys321-Pro322-Cys323 (CPC) motif and connect Cys280 to Cys334. We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys384 to HDL binding and lipid uptake. The effects of CPC mutations on activity were context dependent. Full wild-type (WT) activity required Pro322 and Cys323 only when Cys321 was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX or XXX mutants (X≠WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys323 is deleterious, perhaps because of aberrant disulfide bond formation. Pro322 may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for activity. C384X (X=S,T,L,Y,G,A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (increased binding, decreased uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C384X mutants were BLT-1 resistant, supporting the proposal that Cys384's thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738

  3. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  4. A Strategy Combining Higher Energy C-Trap Dissociation with Neutral Loss- and Product Ion-Based MSn Acquisition for Global Profiling and Structure Annotation of Fatty Acids Conjugates

    NASA Astrophysics Data System (ADS)

    Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an

    2017-03-01

    Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.

  5. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  6. Naphthalenetetracarboxylic diimide layer-based transistors with nanometer oxide and side chain dielectrics operating below one volt.

    PubMed

    Jung, Byung Jun; Martinez Hardigree, Josue F; Dhar, Bal Mukund; Dawidczyk, Thomas J; Sun, Jia; See, Kevin Cua; Katz, Howard E

    2011-04-26

    We designed a new naphthalenetetracarboxylic diimide (NTCDI) semiconductor molecule with long fluoroalkylbenzyl side chains. The side chains, 1.2 nm long, not only aid in self-assembly and kinetically stabilize injected electrons but also act as part of the gate dielectric in field-effect transistors. On Si substrates coated only with the 2 nm thick native oxide, NTCDI semiconductor films were deposited with thicknesses from 17 to 120 nm. Top contact Au electrodes were deposited as sources and drains. The devices showed good transistor characteristics in air with 0.1-1 μA of drain current at 0.5 V of V(G) and V(DS) and W/L of 10-20, even though channel width (250 μm) is over 1000 times the distance (20 nm) between gate and drain electrodes. The extracted capacitance-times-mobility product, an expression of the sheet transconductance, can exceed 100 nS V(-1), 2 orders of magnitude higher than typical organic transistors. The vertical low-frequency capacitance with gate voltage applied in the accumulation regime reached as high as 650 nF/cm(2), matching the harmonic sum of capacitances of the native oxide and one side chain and indicating that some gate-induced carriers in such devices are distributed among all of the NTCDI core layers, although the preponderance of the carriers are still near the gate electrode. Besides demonstrating and analyzing thickness-dependent NTCDI-based transistor behavior, we also showed <1 V detection of dinitrotoluene vapor by such transistors.

  7. Synthesis and anti-HIV activity of novel N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT).

    PubMed

    Pontikis, R; Benhida, R; Aubertin, A M; Grierson, D S; Monneret, C

    1997-06-06

    A series of 33 N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (1, HEPT) were synthesized and evaluated for their anti-HIV-1 activity. In particular, the influence of substitution of the terminal hydroxy group of the acyclic structure of HEPT and the structural rigidity of this side chain were investigated. Halo (7, 8), azido (9), and amino (10-15) derivatives were synthesized from HEPT via the p-tosylate derivative 6. Acylation of the primary amine 15 afforded the amido analogs 16-20. The diaryl derivatives 26-29 were prepared by reaction of HEPT, or of the 6-(2-pyridylthio) analog 23, with diaryl disulfides in the presence of tri-n-butylphosphine. Compounds 39-41, in which the N-1 side chain is rigidified by incorporation of an E-configured double bond, were obtained by palladium(0)-catalyzed coupling of several different 6-(arylthio)uracil derivatives (37, 38) with allyl acetates 33. Compounds 13, 40a,c,d,f, and 41, incorporating an aromatic ring at the end of the acyclic side chain, were found to be more potent than the known diphenyl-substituted HEPT analog BPT (2), two of them, 40c,d, being 10-fold more active.

  8. Interactions between Membranes and "Metaphilic" Polypeptide Architectures with Diverse Side-Chain Populations.

    PubMed

    Lee, Michelle W; Han, Ming; Bossa, Guilherme Volpe; Snell, Carly; Song, Ziyuan; Tang, Haoyu; Yin, Lichen; Cheng, Jianjun; May, Sylvio; Luijten, Erik; Wong, Gerard C L

    2017-03-28

    At physiological conditions, most proteins or peptides can fold into relatively stable structures that present on their molecular surfaces specific chemical patterns partially smeared out by thermal fluctuations. These nanoscopically defined patterns of charge, hydrogen bonding, and/or hydrophobicity, along with their elasticity and shape stability (folded proteins have Young's moduli of ∼1 × 10 8 Pa), largely determine and limit the interactions of these molecules, such as molecular recognition and allosteric regulation. In this work, we show that the membrane-permeating activity of antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) can be significantly enhanced using prototypical peptides with "molten" surfaces: metaphilic peptides with quasi-liquid surfaces and adaptable shapes. These metaphilic peptides have a bottlebrush-like architecture consisting of a rigid helical core decorated with mobile side chains that are terminated by cationic or hydrophobic groups. Computer simulations show that these flexible side chains can undergo significant rearrangement in response to different environments, giving rise to adaptable surface chemistry of the peptide. This quality makes it possible to control their hydrophobicity over a broad range while maintaining water solubility, unlike many AMPs and CPPs. Thus, we are able to show how the activity of these peptides is amplified by hydrophobicity and cationic charge, and rationalize these results using a quantitative mean-field theory. Computer simulations show that the shape-changing properties of the peptides and the resultant adaptive presentation of chemistry play a key enabling role in their interactions with membranes.

  9. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  10. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  11. What the ultimate polymeric electro-optic materials will be: guest-host, crosslinked, or side-chain?

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Zhang, Hua; Oh, Min-Cheol; Dalton, Larry R.; Steier, William H.

    2003-07-01

    Material processing and device fabrication of many different electro-optic (EO) polymers developed at USC are reviewed. Detailed discussion is given to guest-host CLD/APCs, crosslinking perfluorocyclobutane (PFCB) polymer CX1, and thermally stable side-chain polymers CX2 and CX3. Excellent EO performance (1.4V at 1.31 μm, 2.1 V at 1.55 μm) was achieved in CLD/APC Mach-Zehnder modulators (2-cm, push-pull). CLD/APCs also possess low optical losses (1.2 dB/cm in slab waveguides and in thick core channel waveguides). However, the guest-host materials only have limited thermal stability (110-132 °C in short term, <60 °C in long term) and require special techniques in device fabrication. The crosslinking polymer CX1 was able to provide long-term stability at 85 oC when fully cured. It also has a low optical loss (comparable to CLD/APCs) before curing and decent EO coefficient when poled at 180 °C. However, after the films were poled at the crosslinking temperatures (200 °C or above), the transmissions of the waveguides and EO activity became very poor due to poling-induced chromophore degradation. By judicial molecular design of both chromophore and monomer structures to suppress thermal motion of polymer segments, we were able to realize the same or even better thermal stability in side-chain polymers CX2 and CX3. Since no curing is needed, devices can be poled at their optimal poling temperatures, and all good properties can be obtained simultaneously. Despite the excellent solubility in chlorinated solvents, these side-chain polymers are resistant to some other organic solvents or solutions such as acetone, photoresist and various UV-curable liquids.

  12. Oxidative cleavage of the octyl side chain of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045) in rat and dog liver preparations.

    PubMed

    Umehara, K; Kudo, S; Hirao, Y; Morita, S; Uchida, M; Odomi, M; Miyamoto, G

    2000-08-01

    The metabolism of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045), a new potent biguanide antiseptic, was investigated using rat and dog liver preparations to elucidate the mechanism of OPB-2045 metabolite formation, in which the octyl side chain is reduced to four, five, or six carbon atoms. Chemical structures of metabolites were characterized by 1H NMR, fast atom bombardment/mass spectrometry, and liquid chromatography/electrospray ionization-tandem mass spectrometry. Three main metabolites were observed during incubation of OPB-2045 with rat liver S9: 2-octanol (M-1), 3-octanol (M-2), and 4-octanol (M-3). In the incubation of OPB-2045 with dog liver S9, eight metabolites were observed, seven of which being M-1, M-2, M-3, 2-octanone (M-4), threo-2,3-octandiol (M-5), erythro-2,3-octandiol (M-6), and 1,2-octandiol (M-7). M-5 and M-6 were further biotransformed to a ketol derivative and C-C bond cleavage metabolite (hexanoic acid derivative), an in vivo end product, in the incubation with dog liver microsomes. The reactions required NADPH as a cofactor and were significantly inhibited by the various inhibitors of cytochrome P450 (i.e., CO, n-octylamine, SKF 525-A, metyrapone, and alpha-naphthoflavone). The results indicate that the degraded products of OPB-2045 are produced by C-C bond cleavage after monohydroxylation, dihydroxylation, and ketol formation at the site of the octyl side chain with possible involvement of cytochrome P450 systems. This aliphatic C-C bond cleavage by sequential oxidative reactions may play an important role in the metabolism of other drugs or endogenous compounds that possess aliphatic chains.

  13. A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data

    PubMed Central

    Zeng, Jianyang; Roberts, Kyle E.; Zhou, Pei

    2011-01-01

    Abstract A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have shown that accurate backbone folds can be determined using sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This opens a question of whether we can also determine the accurate protein side-chain conformations using sparse or unassigned NMR data. We attack this question by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which records the through-space dipolar interactions between protons nearby in three-dimensional (3D) space. We propose a Bayesian approach with a Markov random field (MRF) model to integrate the likelihood function derived from observed experimental data, with prior information (i.e., empirical molecular mechanics energies) about the protein structures. We unify the side-chain structure prediction problem with the side-chain structure determination problem using unassigned NMR data, and apply the deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global optimum solution that maximizes the posterior probability. We employ a Hausdorff-based measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experimental noise in NMR data, which also determines the weighting factor of the data term in the scoring function derived from the Bayesian framework. We tested our approach on real NMR data of three proteins: the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our algorithm can be applied in high-resolution protein structure determination. Since our approach does not require any NOE assignment, it can

  14. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids.

    PubMed

    Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M; Qiao, Shanlei; Spencer, Melanie D; Zeisel, Steven H; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei

    2013-08-01

    Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and inter-day (within 7 days) precision (< 10%), and good stability (< 20%) within 4 days at room temperature (23-25 °C), or 7 days when stored at -20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistics analysis of the concentrations of these target metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research.

  15. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: the effect of alcohol carbon chain length.

    PubMed

    Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J

    2013-02-01

    The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Condensing enzymes from Cuphea wrightii associated with medium chain fatty acid biosynthesis.

    PubMed

    Slabaugh, M B; Leonard, J M; Knapp, S J

    1998-03-01

    Seed oils of most Cuphea species contain > 90% medium chain (C8-C14) fatty acids. Thioesterases with specificity for these substrates are important determinants of the medium chain phenotype. The role of condensing enzymes, however, has not been investigated. cDNA clones encoding beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS) were isolated from C. wrightii, a C10/C12-producing species. Deduced amino acid sequences of four unique clones were approximately 60% identical to plant KAS I sequences and approximately 75% identical to a distinct class of KAS sequences recently identified in castor and barley. A 46 kDa protein that was observed only in developing and mature seed was detected using antiserum directed against recombinant Cuphea KAS protein. The 46 kDa protein was abundant in developing seeds of six medium chain-producing Cuphea species but barely detected in one long chain-producing species. A 48 kDa protein identified immunologically as KAS I was expressed in both medium and long chain-producing Cuphea species and was detected in all tissues tested. In in vitro assays, extracts from C. wrightii and C. viscosissima developing embryos were unable to extend fatty acid chains beyond C10 following treatment with 10 microns cerulenin, a potent inhibitor of KAS I. However, a C. viscosissima mutant, cpr-1, whose seed oils are deficient in caprate relative to wild type, was impaired in extension of C8 to C10 in this assay and Western analysis revealed a specific deficiency in 46 kDa KAS in cpr-1 embryos. These results implicate cerulenin-resistant condensing activity in production of medium chain fatty acids in Cuphea.

  17. Arginine side chain stacking with peptide plane stabilizes the protein helix conformation in a cooperative way.

    PubMed

    Wang, Jia; Chen, Jingfei; Li, Jingwen; An, Liaoyuan; Wang, Yefei; Huang, Qingshan; Yao, Lishan

    2018-06-01

    A combined experimental and computational study is performed for arginine side chain stacking with the protein α-helix. Theremostability measurements of Aristaless homeodomain, a helical protein, suggest that mutating the arginine residue R106, R137 or R141, which has the guanidino side chain stacking with the peptide plane, to alanine, destabilizes the protein. The R-PP stacking has an energy of ∼0.2-0.4 kcal/mol. This stacking interaction mainly comes from dispersion and electrostatics, based on MP2 calculations with the energy decomposition analysis. The calculations also suggest that the stacking stabilizes 2 backbone-backbone h-bonds (i→i-4 and i-3→i-7) in a cooperative way. Desolvation and electrostatic polarization are responsible for cooperativity with the i→i-4 and i-3→i-7 h-bonds, respectively. This cooperativity is supported by a protein α-helices h-bond survey in the pdb databank where stacking shortens the corresponding h-bond distances. © 2018 Wiley Periodicals, Inc.

  18. Short-chain fatty acid sensing in rat duodenum.

    PubMed

    Akiba, Yasutada; Inoue, Takuya; Kaji, Izumi; Higashiyama, Masaaki; Narimatsu, Kazuyuki; Iwamoto, Ken-ichi; Watanabe, Masahiko; Guth, Paul H; Engel, Eli; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2015-02-01

    Luminal lipid in the duodenum modulates gastroduodenal functions via the release of gut hormones and mediators such as cholecystokinin and 5-HT. The effects of luminal short-chain fatty acids (SCFAs) in the foregut are unknown. Free fatty acid receptors (FFARs) for long-chain fatty acids (LCFAs) and SCFAs are expressed in enteroendocrine cells. SCFA receptors, termed FFA2 and FFA3, are expressed in duodenal enterochromaffin cells and L cells, respectively. Activation of LCFA receptor (FFA1) and presumed FFA3 stimulates duodenal HCO3(-) secretion via a glucagon-like peptide (GLP)-2 pathway, whereas FFA2 activation induces HCO3(-) secretion via muscarinic and 5-HT4 receptor activation. The presence of SCFA sensing in the duodenum with GLP-2 and 5-HT signals further supports the hypothesis that luminal SCFA in the foregut may contribute towards the generation of functional symptoms. Intraduodenal fatty acids (FA) and bacterial overgrowth, which generate short-chain FAs (SCFAs), have been implicated in the generation of functional dyspepsia symptoms. We studied the mechanisms by which luminal SCFA perfusion affects duodenal HCO3(-) secretion (DBS), a measure of mucosal neurohumoral activation. Free fatty acid receptor (FFAR) 1 (FFA1), which binds long-chain FA (LCFA), and SCFA receptors FFA2 and FFA3 were immunolocalised to duodenal enteroendocrine cells. FFA3 colocalised with glucagon-like peptide (GLP)-1, whereas FFA2 colocalised with 5-HT. Luminal perfusion of the SCFA acetate or propionate increased DBS, enhanced by dipeptidyl peptidase-IV (DPPIV) inhibition, at the same time as increasing GLP-2 portal blood concentrations. Acetate-induced DBS was partially inhibited by monocarboxylate/HCO3(-) exchanger inhibition without affecting GLP-2 release, implicating acetate absorption in the partial mediation of DBS. A selective FFA2 agonist dose-dependently increased DBS, unaffected by DPPIV inhibition or by cholecystokinin or 5-HT3 receptor antagonists, but was inhibited

  19. Effect of the side chain spacer structure on the pH-responsive properties of polycarboxylates.

    PubMed

    Harada, Atsushi; Teranishi, Ryoma; Yuba, Eiji; Kono, Kenji

    The properties of stimuli-responsive polymers change significantly with changes to their environment, such as temperature and pH. This behavior can be utilized for the preparation of stimuli-responsive carriers for efficient cytosolic delivery of active drugs. Among the possible environmental conditions, pH is one of the most useful stimuli because the pH in an endosome is lower than under physiological conditions, depending on endosomal development. This pH difference is an important factor in the design of pH-responsive polymers, which can be used to enhance the transport of endocytosed drugs from the endosomal compartment to the cytoplasm. Such polymers can destabilize the endosomal bilayer under mildly acidic conditions and be nondisruptive at pH 7.4 not only for efficient endosomal escape but also for the suppression of nonspecific interaction with lipids existing under physiological conditions. In this study, we developed polycarboxylates with well-controlled pH-responsive properties bearing various spacer structures with different hydrophobicity. 3-methyl glutarylated polyallylamine and 2-carboxy-cyclohexanoylated polyallylamine were synthesized through the reaction between primary amine of PAA and acid anhydrides. Side chain spacers with higher hydrophobicity induced significant interactions with liposomal membranes at higher pH. pH-destabilizing liposomes could be modulated through the changing the composition of spacer structures with different hydrophobicity. Such formulations may represent an attractive strategy for the improvement of cytosolic delivery of active molecules.

  20. A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging.

    PubMed

    Magata, Yasuhiro; Kawaguchi, Takayoshi; Ukon, Misa; Yamamura, Norio; Uehara, Tomoya; Ogawa, Kazuma; Arano, Yasushi; Temma, Takashi; Mukai, Takahiro; Tadamura, Eiji; Saji, Hideo

    2004-01-01

    C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.

  1. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids.

    PubMed

    Leber, Christopher; Da Silva, Nancy A

    2014-02-01

    Carbon feedstocks from fossilized sources are being rapidly depleted due to rising demand for industrial and commercial applications. Many petroleum-derived chemicals can be directly or functionally substituted with chemicals derived from renewable feedstocks. Several short chain organic acids may fulfill this role using their functional groups as a target for chemical catalysis. Saccharomyces cerevisiae was engineered to produce short chain carboxylic acids (C6 to C10 ) from glucose using the heterologous Homo sapiens type I fatty acid synthase (hFAS). This synthase was activated by phosphopantetheine transfereases AcpS and Sfp from Escherichia coli and Bacillus subtilis, respectively, both in vitro and in vivo. hFAS was produced in the holo-form and produced carboxylic acids in vitro, confirmed by NADPH and ADIFAB assays. Overexpression of hFAS in a yeast FAS2 knockout strain, deficient in de novo fatty acid synthesis, demonstrated the full functional replacement of the native fungal FAS by hFAS. Two active heterologous short chain thioesterases (TEs) from Cuphea palustris (CpFatB1) and Rattus norvegicus (TEII) were evaluated for short chain fatty acid (SCFA) synthesis in vitro and in vivo. Three hFAS mutants were constructed: a mutant deficient in the native TE domain, a mutant with a linked CpFatB1 TE and a mutant with a linked TEII TE. Using the native yeast fatty acid synthase for growth, the overexpression of the hFAS mutants and the short-chain TEs (linked or plasmid-based) increased in vivo caprylic acid and total SCFA production up to 64-fold (63 mg/L) and 52-fold (68 mg/L), respectively, over the native yeast levels. Combined over-expression of the phosphopantetheine transferase with the hFAS mutant resulted in C8 titers of up to 82 mg/L and total SCFA titers of up to 111 mg/L. © 2013 Wiley Periodicals, Inc.

  2. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    PubMed Central

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  3. Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Intracellular concentration and specificity of medium-chain acyl thioester hydrolase.

    PubMed Central

    Knudsen, J

    1979-01-01

    The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue. PMID:574008

  4. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid.

    PubMed Central

    Burstein, Y; Kantour, F; Schechter, I

    1976-01-01

    Analyses of amino-acid sequences of the total cell-free products programmed by the mRNA of MOPC-104E gamma light (L)-chain show that over 95% of the products have sequences of a distinct protein that correspond to the L-chain precursor. In this precursor an extra piece is coupled to the NH2-terminus of the mature L-chain. Analyses of products labeled with [3H]alanine, [3H]leucine, and [3H]proline demonstrate that the extra piece is composed of at least 18 residues. Analyses of [35S]methione-labeled product indicate that the extra piece may contain an additional NH2-terminal methionine, which is detected in about 10% of the molecules. Partial recovery of the NJ2-terminal methionine (alanine, leucine, and proline are recovered in yields close to theoretical, greater than 95%) suggests that it is the initiator methionine, which is known to be short lived in eukaryotes due to rapid hydrolysis. Thus, the extra piece seems to be 19 residues in length, and it contains one methionine at the NH2-terminus, three alanines at positions 2, 12, and 17, and five leucines at positions 6, 8, 10, 11, and 13. The close gathering of leucine residues, as well as their abundance (26%), suggest that the extra piece would be quite hydrophobic. Hydrophobicity seems to be a general property of the extra piece, since similar clusters of leucine were found in the precursors of 3 KL-chains (Burstein, Y. & Schechter, I. (1976) Biochem. J. 157, 145-151). The NH2-terminus of the mature MOPC-104E gamma L-chain is blocked by pyroglutamic acid. The fact that in the precursor a peptide segment precedes this NH2-terminus establishes that pyroglutamic acid is not the initiator residue for synthesis of the L-chain. Apparently, the pyroglutamic acid is formed by cyclization of glutamic acid or glutamine during cleavage of the extra piece to yield the mature L-chain. Images PMID:822420

  5. Synthesis of Triamino Acid Building Blocks with Different Lipophilicities

    PubMed Central

    Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger

    2015-01-01

    To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040

  6. Can the Dielectric Constant of Fullerene Derivatives Be Enhanced by Side-Chain Manipulation? A Predictive First-Principles Computational Study.

    PubMed

    Sami, Selim; Haase, Pi A B; Alessandri, Riccardo; Broer, Ria; Havenith, Remco W A

    2018-04-19

    The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn-Sham method to calculate the electronic contribution to the dielectric constant for fullerene C 60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C 60 .

  7. Can the Dielectric Constant of Fullerene Derivatives Be Enhanced by Side-Chain Manipulation? A Predictive First-Principles Computational Study

    PubMed Central

    2018-01-01

    The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn–Sham method to calculate the electronic contribution to the dielectric constant for fullerene C60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C60. PMID:29561616

  8. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    PubMed

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  9. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  10. Side-chain conformational space analysis (SCSA): A multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Chen, Xiang; Shang, Zhicai

    2009-03-01

    In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A*0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.

  11. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids

    PubMed Central

    Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M.; Qiao, Shanlei; Spencer, Melanie D.; Zeisel, Steven H.; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei

    2013-01-01

    Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and inter-day (within 7 days) precision (< 10%), and good stability (< 20%) within 4 days at room temperature (23–25 °C), or 7 days when stored at −20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistics analysis of the concentrations of these target metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research. PMID:23997757

  12. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective

    PubMed Central

    Schönfeld, Peter; Wojtczak, Lech

    2016-01-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  13. Exploiting the CNC side chain in heterocyclic rearrangements: synthesis of 4(5)-acylamino-imidazoles.

    PubMed

    Piccionello, Antonio Palumbo; Buscemi, Silvestre; Vivona, Nicolò; Pace, Andrea

    2010-08-06

    A new variation on the Boulton-Katritzky reaction is reported, namely, involving use of a CNC side chain. A novel Montmorillonite-K10 catalyzed nonreductive transamination of a 3-benzoyl-1,2,4-oxadiazole afforded a 3-(alpha-aminobenzyl)-1,2,4-oxadiazole, which was condensed with benzaldehydes to afford the corresponding imines. In the presence of strong base, these imines underwent Boulton-Katritzky-type rearrangement to afford novel 4(5)-acylaminoimidazoles.

  14. Improved Modeling of Side-Chain–Base Interactions and Plasticity in Protein–DNA Interface Design

    PubMed Central

    Thyme, Summer B.; Baker, David; Bradley, Philip

    2012-01-01

    Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed “motifs”) was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein–DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent. PMID:22426128

  15. Branched-Chain Amino Acids.

    PubMed

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  16. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Pan; School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026; Xi, Zhaoyong

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at threemore » different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.« less

  17. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity.

    PubMed

    Langer, S; Scislowski, P W; Brown, D S; Dewey, P; Fuller, M F

    2000-01-01

    The present experiment was designed to elucidate the mechanism of the methionine-sparing effect of excess branched-chain amino acids (BCAA) reported in the previous paper (Langer & Fuller, 2000). Twelve growing gilts (30-35 kg) were prepared with arterial catheters. After recovery, they received for 7 d a semipurified diet with a balanced amino acid pattern. On the 7th day blood samples were taken before (16 h postabsorptive) and after the morning meal (4 h postprandial). The animals were then divided into three groups and received for a further 7 d a methionine-limiting diet (80% of requirement) (1) without any amino acid excess; (2) with excess leucine (50% over requirement); or (3) with excesses of all three BCAA (leucine, isoleucine, valine, each 50% over the requirement). On the 7th day blood samples were taken as in the first period, after which the animals were killed and liver and muscle samples taken. Plasma amino acid and branched-chain keto acid (BCKA) concentrations in the blood and branched-chain keto-acid dehydrogenase (BCKDH; EC 1.2.4.4) activity in liver and muscle homogenates were determined. Compared with those on the balanced diet, pigs fed on methionine-limiting diets had significantly lower (P < 0.05) plasma methionine concentrations in the postprandial but not in the postabsorptive state. There was no effect of either leucine or a mixture of all three BCAA fed in excess on plasma methionine concentrations. Excess dietary leucine reduced (P < 0.05) the plasma concentrations of isoleucine and valine in both the postprandial and postabsorptive states. Plasma concentrations of the BCKA reflected the changes in the corresponding amino acids. Basal BCKDH activity in the liver and total BCKDH activity in the biceps femoris muscle were significantly (P < 0.05) increased by excesses of leucine or all BCAA.

  18. Precise side-chain conformation analysis of L-phenylalanine in α-helical polypeptide by quantum-chemical calculation and 13C CP-MAS NMR measurement

    NASA Astrophysics Data System (ADS)

    Niimura, Subaru; Suzuki, Junya; Kurosu, Hiromichi; Yamanobe, Takeshi; Shoji, Akira

    2010-04-01

    To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a well-defined α-helical octadecapeptide composed of L-alanine (Ala) and L-phenylalanine (Phe) residues, H-(Ala) 8-Phe-(Ala) 9-OH, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy and the precise secondary structural parameters such as main-chain dihedral angles and hydrogen-bond parameters of the optimized structure, we confirmed that the conformational stability of an α-helix is affected dominantly by the side-chain conformation ( χ1) of the Phe residue in this system: model A ( T form: around 180° of χ1) is most stable in α-helix and model B ( G + form: around -60° of χ1) is next stable, but model C ( G - form: around 60° of χ1) is less stable. In addition, we demonstrate that the stable conformation of poly( L-phenylalanine) is an α-helix with the side-chain T form, by comparison of the carbonyl 13C chemical shift measured by 13C CP-MAS NMR and the calculated one.

  19. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI.

    PubMed

    Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty

    2012-12-18

    The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.

  20. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  1. Effect of chain length on binding of fatty acids to Pluronics in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O

    2008-03-15

    We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.

  2. Mesoscopic modeling for nucleic acid chain dynamics

    PubMed Central

    Sales-Pardo, M.; Guimerà, R.; Moreira, A. A.; Widom, J.; Amaral, L. A. N.

    2007-01-01

    To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands. PMID:16089566

  3. Can 5-methylcytosine analogues with extended alkyl side chains guide DNA methylation?

    PubMed

    Kotandeniya, D; Seiler, C L; Fernandez, J; Pujari, S S; Curwick, L; Murphy, K; Wickramaratne, S; Yan, S; Murphy, D; Sham, Yuk Y; Tretyakova, N Y

    2018-01-25

    5-Methylcytosine ( Me C) is an endogenous modification of DNA that plays a crucial role in DNA-protein interactions, chromatin structure, epigenetic regulation, and DNA repair. Me C is produced via enzymatic methylation of the C-5 position of cytosine by DNA-methyltransferases (DNMT) which use S-adenosylmethionine (SAM) as a cofactor. Hemimethylated CG dinucleotides generated as a result of DNA replication are specifically recognized and methylated by maintenance DNA methyltransferase 1 (DNMT1). The accuracy of DNMT1-mediated methylation is essential for preserving tissue-specific DNA methylation and thus gene expression patterns. In the present study, we synthesized DNA duplexes containing MeC analogues with modified C-5 side chains and examined their ability to guide cytosine methylation by the human DNMT1 protein. We found that the ability of 5-alkylcytosines to direct cytosine methylation decreased with increased alkyl chain length and rigidity (methyl > ethyl > propyl ∼ vinyl). Molecular modeling studies indicated that this loss of activity may be caused by the distorted geometry of the DNA-protein complex in the presence of unnatural alkylcytosines.

  4. Absolute Side-chain Structure at Position 13 Is Required for the Inhibitory Activity of Bromein*

    PubMed Central

    Sawano, Yoriko; Hatano, Ken-ichi; Miyakawa, Takuya; Tanokura, Masaru

    2008-01-01

    Bromelain isoinhibitor (bromein), a cysteine proteinase inhibitor from pineapple stem, has a unique double-chain structure. The bromein precursor protein includes three homologous inhibitor domains, each containing an interchain peptide between the light and heavy chains. The interchain peptide in the single-chain precursor is immediately processed by bromelain, a target proteinase. In the present study, to clarify the essential inhibitory site of bromein, we constructed 44 kinds of site-directed and deletion mutants and investigated the inhibitory activity of each toward bromelain. As a result, the complete chemical structure of Leu13 in the light chain was revealed to be essential for inhibition. Pro12 prior to the leucine residue was also involved in the inhibitory activity and would control the location of the leucine side chain by the fixed φ dihedral angle of proline. Furthermore, the five-residue length of the interchain peptide was strictly required for the inhibitory activity. On the other hand, no inhibitory activity against bromelain was observed by the substitution of proline for the N terminus residue Thr15 of the interchain peptide. In summary, these mutational analyses of bromein demonstrated that the appropriate position and conformation of Leu13 are absolutely crucial for bromelain inhibition. PMID:18948264

  5. Improving the reactivity of phenylacetylene macrocycles toward topochemical polymerization by side chains modification

    PubMed Central

    Daigle, Maxime; Cantin, Katy

    2014-01-01

    Summary The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:25161718

  6. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-08-09

    A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.

  7. Combinatorics of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  8. Topical tranexamic acid as an adjuvant treatment in melasma: Side-by-side comparison clinical study.

    PubMed

    Chung, Jong Yoon; Lee, Jong Hee; Lee, Joo Heung

    2016-08-01

    Tranexamic acid (TNA) is a novel therapeutic agent for hyperpigmented skin disorders. The efficacy and safety of topical TNA in patients with melasma has not been heretofore studied. The main objective of this study is to evaluate the efficacy and safety of topical TNA combined with intense pulsed light (IPL) treatment in Asians with melasma. A randomized, split-face (internally controlled) study was conducted in 15 women who received four monthly sessions of IPL to both sides of the face. Topical TNA or vehicle was applied to a randomly assigned side during and after IPL treatment. Patients were followed up for 12 weeks after completing the IPL treatments. Baseline and follow-up melanin index (MI; measured by Mexameter®, Courage and Khazaka, Cologne, Germany) and modified melasma area and severity index (mMASI) scores were determined. Thirteen subjects completed the study without serious adverse events. MI and mMASI decreased significantly from baseline to 12 weeks after the last IPL treatment on the topical TNA side but not on the vehicle side. The efficacy of topical TNA in preventing rebound pigmentation after IPL treatment was also statistically significant. Topical TNA can be considered an effective and safe adjuvant to conventional treatment for melasma.

  9. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  10. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  11. The Branched-Chain Amino Acid Aminotransferase Encoded by ilvE Is Involved in Acid Tolerance in Streptococcus mutans

    PubMed Central

    Santiago, Brendaliz; MacGilvray, Matthew; Faustoferri, Roberta C.

    2012-01-01

    The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353–1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638–641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007–4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414–419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F1-Fo ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans. PMID:22328677

  12. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    PubMed

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli.

    PubMed

    Lee, Sunhee; Jung, Yeontae; Lee, Seunghan; Lee, Jinwon

    2013-03-01

    Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD(+)/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.

  14. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  15. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids.

    PubMed

    Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W

    1987-08-01

    The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.

  16. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    NASA Astrophysics Data System (ADS)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  17. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  18. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  19. The solvatochromic effects of side chain substitution on the binding interaction of novel tricarbocyanine dyes with human serum albumin.

    PubMed

    Beckford, Garfield; Owens, Eric; Henary, Maged; Patonay, Gabor

    2012-04-15

    The effects of solvatochromism on protein-ligand interactions have been studied by absorbance and near-infrared laser induced fluorescence (NIR-LIF) spectroscopy. The utility of three novel classes of cyanine dyes designed for this purpose illustrates that the affinity interactions of ligands at the hydrophobic binding pockets of Human Serum Albumin (HSA) are not only dependent on the overall hydrophobic characteristics of the molecules but are highly influenced by the size of the ligands as well. Whereas changes to the chromophore moiety exhibited slight to moderate changes to the hydrophobic nature of these molecules, substitution at the alkyl indolium side chain has enabled us to vary the binding affinity towards serum albumin. Substitution at the indolium side chain among an ethyl to butyl group results in improved binding characteristics and an almost three-fold increase in affinity constant. In addition, replacement of the ethyl side chain with a phenylpropyl group also yielded unique solvotachromic patterns such as increased hydrophobicity and subsequent biocompatibility with the HSA binding regions. Ligand interaction was however inhibited by steric hindrance associated with the bulky phenyl ring system thus affecting the increased binding that could be realized from the improved hydrophobic nature of the molecules. This characteristic change in binding affinity is of potential interest to developing a methodology which reveals information on the hydrophobic character and steric specificity of the binding cavities. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Mechanical Behavior of Side-Chain Liquid Crystalline Networks

    NASA Astrophysics Data System (ADS)

    Gallani, J. L.; Hilliou, L.; Martinoty, P.; Doublet, F.; Mauzac, M.

    1996-03-01

    The mechanical properties of a homologue series of side-chain mesomorphic networks were studied with a piezo-rheometer over frequencies ranging from 10^{-2} Hz to 10^4 Hz. The results show that the compound's response is governed essentially by the dynamic glass transition. It is sensitive to the N-SmA transition, but insensitive to the N-I transition, with the result that the empirical principle of time-temperature superposition can be applied throughout the N-I transition. The influence of the crosslinking density and the amount of mesogenic side groups was also studied. For each of the samples, the static rigidity modulus G_0, the infinite-frequency dynamic rigidity modulus G_infty, and the characteristic frequencies respectively associated with the longest visco-elastic mode and the glass transition, were determined. Les propriétés mécaniques d'une série homologue de réseaux mésomorphes à chaînes latérales ont été étudiées avec un piézo-rhéomètre entre 10^{-2} Hz et 10^4 Hz. Les résultas obtenus montrent que la réponse du matériau est essentiellement gouvernée par la transition vitreuse dynamique; elle est sensible à la transition N-SmA mais insensible à la transition N-I de sorte qu'il est possible d'appliquer le principe empirique de superposition temps-température au travers de la transition N-I. L'influence du taux de réticulation et du taux de mésogènes a également été étudiée. Le module de rigidité statique G_0, le module de rigidité dynamique à fréquence infinie G_infty et les fréquences caractéristiques associées respectivement au mode viscoélastique le plus long et à la transition vitreuse, ont été déterminées pour chaque échantillon.

  1. A 13C{31P} REDOR NMR Investigation of the Role of Glutamic Acid Residues in Statherin-Hydroxyapatite Recognition

    PubMed Central

    Ndao, Moise; Ash, Jason T.; Breen, Nicholas F.; Goobes, Gil; Stayton, Patrick S.; Drobny, Gary P.

    2011-01-01

    The side chain carboxyl groups of acidic proteins found in the extra-cellular matrix (ECM) of mineralized tissues play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), the principal mineral component of bone and teeth. Among the acidic proteins found in the saliva is statherin, a 43-residue tyrosine-rich peptide that is a potent lubricant in the salivary pellicle and an inhibitor of both HAP crystal nucleation and growth. Three acidic amino acids – D1, E4, and E5 – are located in the N-terminal 15 amino acid segment, with a fourth amino acid, E26, located outside the N-terminus. We have utilized 13C{31P} REDOR NMR to analyze the role played by acidic amino acids in the binding mechanism of statherin to the HAP surface by measuring the distance between the δ-carboxyl 13C spins of the three glutamic acid side chains of statherin (residues E4, E5, E26) and 31P spins of the phosphate groups at the HAP surface. 13C{31P} REDOR studies of glutamic-5-13C acid incorporated at positions E4 and E26 indicate a 13C–31P distance of more than 6.5 Å between the side chain carboxyl 13C spin of E4 and the closest 31P in the HAP surface. In contrast, the carboxyl 13C spin at E5 has a much shorter 13C–31P internuclear distance of 4.25±0.09 Å, indicating that the carboxyl group of this side chain interacts directly with the surface. 13C T1ρ and slow-spinning MAS studies indicate that the motions of the side chains of E4 and E5 are more restricted than that of E26. Together, these results provide further insight into the molecular interactions of statherin with HAP surfaces. PMID:19678690

  2. 4-N, 4-S & 4-O Chloroquine Analogues: Influence of Side Chain Length and Quinolyl Nitrogen pKa on Activity vs. Chloroquine Resistant Malaria+, #

    PubMed Central

    Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.

    2009-01-01

    Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4N, 4S and 4O derivatives vs. μ-oxo dimeric heme, measure binding constants for monomeric vs. dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs. CQR malaria. PMID:18512900

  3. Fourier transform microwave spectroscopy of Ac-Ser-NH2: the role of side chain interactions in peptide folding.

    PubMed

    Cabezas, Carlos; Robben, Martinus A T; Rijs, Anouk M; Peña, Isabel; Alonso, J L

    2015-08-21

    Serine capped dipeptide N-acetyl-l-serinamide (Ac-Ser-NH2) has been investigated using Fourier transform microwave spectroscopic techniques combined with laser ablation sources. Spectral signatures originating from one dominant species have been detected in the supersonic expansion. Rotational and nuclear quadrupole coupling constants of the two (14)N nuclei have been used in the characterization of a C/γ-turn structure, which is stabilized by a CO∙∙∙HN intramolecular hydrogen bond closing a seven-membered ring. Two extra hydrogen bonds involving the polar side chain (-CH2OH) further stabilize the structure. The non-observation of C5 species, attributed to the presence of the polar side chain, is in contrast with the previous gas phase observation of the related dipeptides containing glycine or alanine residues. The A-E splitting pattern arising from the internal rotation of the methyl group has been analyzed and the internal rotation barrier has been determined.

  4. Effect of side-chain structure of rigid polyimide dispersant on mechanical properties of single-walled carbon nanotube/cyanate ester composite.

    PubMed

    Yuan, Wei; Li, Weifeng; Mu, Yuguang; Chan-Park, Mary B

    2011-05-01

    Three kinds of polymer, polyimide without side-chain (PI), polyimide-graft-glyceryl 4-nonylphenyl ether (PI-GNE), and polyimide-graft-bisphenol A diglyceryl acrylate (PI-BDA), have been synthesized and used to disperse single-walled carbon nanotubes (SWNTs) and to improve the interfacial bonding between SWNTs and cyanate ester (CE) matrix. Visual observation, UV-vis-near-IR (UV-vis-NIR) spectra, and atomic force microscopy (AFM) images show that both PI-GNE and PI-BDA are highly effective at dispersing and debundling SWNTs in DMF, whereas PI is less effective. Interaction between SWNTs and PI, PI-GNE or PI-BDA was confirmed by computer simulation and Raman spectra. A series of CE-based composite films reinforced with different loadings of SWNTs, SWNTs/PI, SWNTs/PI-GNE and SWNTs/PI-BDA were prepared by solution casting. It was found that, because of the unique side-chain structure of PI-BDA, SWNTs/PI-BDA disperse better in CE matrix than do SWNTs/PI-GNE, SWNTs/PI, and SWNTs. As a result, SWNTs/PI-BDA/CE composites have the greatest improvement in mechanical properties of the materials tested. These results imply that the choice of side-chain on a dispersant is very important to the dispersion of SWNTs in matrix and the filler/matrix interfacial adhesion, which are two key requirements for achieving effective reinforcement.

  5. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults.

    PubMed

    Würtz, Peter; Soininen, Pasi; Kangas, Antti J; Rönnemaa, Tapani; Lehtimäki, Terho; Kähönen, Mika; Viikari, Jorma S; Raitakari, Olli T; Ala-Korpela, Mika

    2013-03-01

    Branched-chain and aromatic amino acids are associated with the risk for future type 2 diabetes; however, the underlying mechanisms remain elusive. We tested whether amino acids predict insulin resistance index in healthy young adults. Circulating isoleucine, leucine, valine, phenylalanine, tyrosine, and six additional amino acids were quantified in 1,680 individuals from the population-based Cardiovascular Risk in Young Finns Study (baseline age 32 ± 5 years; 54% women). Insulin resistance was estimated by homeostasis model assessment (HOMA) at baseline and 6-year follow-up. Amino acid associations with HOMA of insulin resistance (HOMA-IR) and glucose were assessed using regression models adjusted for established risk factors. We further examined whether amino acid profiling could augment risk assessment of insulin resistance (defined as 6-year HOMA-IR >90th percentile) in early adulthood. Isoleucine, leucine, valine, phenylalanine, and tyrosine were associated with HOMA-IR at baseline and for men at 6-year follow-up, while for women only leucine, valine, and phenylalanine predicted 6-year HOMA-IR (P < 0.05). None of the other amino acids were prospectively associated with HOMA-IR. The sum of branched-chain and aromatic amino acid concentrations was associated with 6-year insulin resistance for men (odds ratio 2.09 [95% CI 1.38-3.17]; P = 0.0005); however, including the amino acid score in prediction models did not improve risk discrimination. Branched-chain and aromatic amino acids are markers of the development of insulin resistance in young, normoglycemic adults, with most pronounced associations for men. These findings suggest that the association of branched-chain and aromatic amino acids with the risk for future diabetes is at least partly mediated through insulin resistance.

  6. Synthesis of Side-Chain Oxysterols and their Enantiomers through Cross-Metathesis Reactions of Δ22 Steroids

    PubMed Central

    Brownholland, David P.

    2017-01-01

    A synthetic route that utilizes a cross-metathesis reaction with Δ22 steroids has been developed to prepare sterols with varying C-27 side-chains. Natural sterols containing hydroxyl groups at the 25 and (25R)-26 positions were prepared. Enantiomers of cholesterol and (3β,25R)-26-hydroxycholesterol (27-hydroxycholesterol) trideuterated at C-19 were prepared for future biological studies. PMID:28300584

  7. Confocal analysis of hepatocellular long-chain fatty acid uptake.

    PubMed

    Elsing, C; Winn-Börner, U; Stremmel, W

    1995-12-01

    Transmembrane transport and cytosolic accumulation of fatty acids were investigated using confocal laser scanning microscopy (cLSM). A Zeiss LSM 310 system was used to determine the uptake of the fluorescent fatty acid derivative 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3- diazol-4-yl)amino]octadecanoic acid (12-NBD stearate) (C18) in single rat hepatocytes. Uptake was a saturable process with a Michaelis-Menten constant value of 68 nM. Initial uptake velocity was dependent on extracellular presence of albumin and beta-lactoglobulin. Absence of albumin reduced uptake to 32 +/- 16% (P < 0.01) of control values. In the presence of unlabeled stearate, uptake of 12-NBD stearate was lowered to 49 +/- 12% (P < 0.01). Ion substitution experiments showed no sodium dependency of uptake. Increase in membrane potential led to a pronounced accumulation of the fatty acid derivative within the plasma membrane and in the adjacent cytoplasmic compartment, whereas membrane depolarization had no effect on uptake rates. In separate experiments line scans through representative hepatocytes were analyzed to generate "x-t" plots. 12-NBD stearate showed a fluorescence pattern with prominent staining of the area of the plasma membrane and the adjacent cytoplasm, dependent on the presence of extracellular albumin. For the hepatocellular cytosolic accumulation process of 12-NBD stearate a diffusion constant of 22.2 +/- 6.2 x 10(-9) cm2/s was calculated. In contrast to the long-chain fatty acid derivative 12-NBD stearate, short (C5)- and medium (C11)-chain fatty acids revealed no membrane interaction with hepatocytes. Erythrocytes also lacked a membrane interaction process for 12-NBD stearate. In conclusion, it was demonstrated that cLSM is capable of directly evaluating the cellular fatty acid uptake process at a subcellular level.

  8. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS.

    PubMed

    Yudkoff, Marc

    2017-01-01

    Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood-brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a "glutamate-BCAA cycle" which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.

  9. Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores.

    PubMed

    Liang, Shide; Zhang, Jian; Zhang, Shicui; Guo, Huarong

    2004-11-15

    We show that residues at the interfaces of protein-protein complexes have higher side-chain energy than other surface residues. Eight different sets of protein complexes were analyzed. For each protein pair, the complex structure was used to identify the interface residues in the unbound monomer structures. Side-chain energy was calculated for each surface residue in the unbound monomer using our previously developed scoring function.1 The mean energy was calculated for the interface residues and the other surface residues. In 15 of the 16 monomers, the mean energy of the interface residues was higher than that of other surface residues. By decomposing the scoring function, we found that the energy term of the buried surface area of non-hydrogen-bonded hydrophilic atoms is the most important factor contributing to the high energy of the interface regions. In spite of lacking hydrophilic residues, the interface regions were found to be rich in buried non-hydrogen-bonded hydrophilic atoms. Although the calculation results could be affected by the inaccuracy of the scoring function, patch analysis of side-chain energy on the surface of an isolated protein may be helpful in identifying the possible protein-protein interface. A patch was defined as 20 residues surrounding the central residue on the protein surface, and patch energy was calculated as the mean value of the side-chain energy of all residues in the patch. In 12 of the studied monomers, the patch with the highest energy overlaps with the observed interface. The results are more remarkable when only three residues with the highest energy in a patch are averaged to derive the patch energy. All three highest-energy residues of the top energy patch belong to interfacial residues in four of the eight small protomers. We also found that the residue with the highest energy score on the surface of a small protomer is very possibly the key interaction residue. (c) 2004 Wiley-Liss, Inc.

  10. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel.

    PubMed

    Teo, Wei Suong; Ling, Hua; Yu, Ai-Qun; Chang, Matthew Wook

    2015-01-01

    Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for

  11. Use of side-chain incompatibility for tailoring long-range p/n heterojunctions: photoconductive nanofibers formed by self-assembly of an amphiphilic donor-acceptor dyad consisting of oligothiophene and perylenediimide.

    PubMed

    Li, Wei-Shi; Saeki, Akinori; Yamamoto, Yohei; Fukushima, Takanori; Seki, Shu; Ishii, Noriyuki; Kato, Kenichi; Takata, Masaki; Aida, Takuzo

    2010-07-05

    To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other (2(Amphi)), self-assembles into nanofibers with a long-range D/A heterojunction. In contrast, when the dyad is modified with dodecyl side chains at both termini (2(Lipo)), ill-defined microfibers result. In steady-state measurements using microgap electrodes, a cast film of the nanofiber of 2(Amphi) displays far better photoconducting properties than that of the microfiber of 2(Lipo). Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly indicate that the nanofiber of 2(Amphi) intrinsically allows for better carrier generation and transport properties than the microfibrous assembly of 2(Lipo).

  12. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    PubMed

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Björneholm, Olle

    2017-04-27

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied X-ray photoelectron spectroscopy (XPS) to study aqueous solutions of four amino acids, glycine, alanine, valine, and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidence that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interactions play a central role in cloud droplet formation, and they should be considered in climate models.

  13. Heterogeneous chain dynamics and aggregate lifetimes in precise acid-containing polyethylenes: Experiments and simulations

    DOE PAGES

    Middleton, L. Robert; Tarver, Jacob D.; Cordaro, Joseph; ...

    2016-11-10

    Melt state dynamics for a series of strictly linear polyethylenes with precisely spaced associating functional groups were investigated. The periodic pendant acrylic acid groups form hydrogen-bonded acid aggregates within the polyethylene (PE) matrix. The dynamics of these nanoscale heterogeneous morphologies were investigated from picosecond to nanosecond timescales by both quasi-elastic neutron scattering (QENS) measurements and fully atomistic molecular dynamics (MD) simulations. Two dynamic processes were observed. The faster dynamic processes which occur at the picosecond timescales are compositionally insensitive and indicative of spatially restricted local motions. The slower dynamic processes are highly composition dependent and indicate the structural relaxation ofmore » the polymer backbone. Higher acid contents, or shorter PE spacers between pendant acid groups, slow the structural relaxation timescale and increase the stretching parameter (β) of the structural relaxation. Additionally, the dynamics of specific hydrogen atom positions along the backbone correlate structural heterogeneity imposed by the associating acid groups with a mobility gradient along the polymer backbone. At time intervals (<2 ns), the mean-squared displacements for the four methylene groups closest to the acid groups are up to 10 times smaller than those of methylene groups further from the acid groups. At longer timescales acid aggregates rearrange and the chain dynamics of the slow, near-aggregate regions and the faster bridge regions converge, implying a characteristic timescale for the passage of chains between aggregates. As a result, the characterization of the nanoscale chain dynamics in these associating polymer systems both provides validation of simulation force fields and provides understanding of heterogeneous chain dynamics in associating polymers.« less

  14. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  15. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris.

    PubMed

    Driessen, A J; Hellingwerf, K J; Konings, W N

    1987-09-15

    The energetics of neutral and branched chain amino acid transport by membrane vesicles from Streptococcus cremoris have been studied with a novel model system in which beef heart mitochondrial cytochrome c oxidase functions as a proton-motive force (delta p) generating system. In the presence of reduced cytochrome c, a large delta p was generated with a maximum value at pH 6.0. Apparent H+/amino acid stoichiometries (napp) have been determined at external pH values between 5.5 and 8.0 from the steady state levels of accumulation and the delta p. For L-leucine napp (0.8) was nearly independent of the pH. For L-alanine and L-serine napp decreased from 0.9-1.0 at pH 5.5 to 0-0.2 at pH 8.0. The napp for the different amino acids decreased with increasing external amino acid concentration. At pH 6.0, first order rate constants for amino acid exit (kex) under steady state conditions for L-leucine, L-alanine, and L-serine were 1.1-1.3, 0.084, and 0.053 min-1, respectively. From the pH dependence of kex it is concluded that amino acid exit in steady state is the sum of two processes, pH-dependent carrier-mediated amino acid exit and pH-independent passive diffusion (external leak). The first order rate constant for passive diffusion increased with increasing hydrophobicity of the side chain of the amino acids. As a result of these processes the kinetic steady state attained is less than the amino acid accumulation ratio predicted by thermodynamic equilibrium. The napp determined from the steady state accumulation represents, therefore, a lower limit. It is concluded that the mechanistic stoichiometry (n) for L-leucine, L-alanine, and L-serine transport most likely equals 1.

  16. Probing the effects of the ester functional group, alkyl side chain length and anions on the bulk nanostructure of ionic liquids: a computational study.

    PubMed

    Fakhraee, Mostafa; Gholami, Mohammad Reza

    2016-04-14

    The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.

  17. Computational Design of Thermostabilizing d-Amino Acid Substitutions

    PubMed Central

    Rodriguez-Granillo, Agustina; Annavarapu, Srinivas; Zhang, Lei; Koder, Ronald L.; Nanda, Vikas

    2012-01-01

    Judicious incorporation of d-amino acids in engineered proteins confer many advantages such as preventing degradation by endogenous proteases, and designing novel structures and functions not accessible to homochiral polypeptides. Glycine to d-alanine substitutions at the carboxy-termini can stabilize α-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by d-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using d-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing d-amino acid mutations. Substituting a key glycine in the Trp-Cage mini-protein with d-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces at both the α-helix C-terminus and throughout the protein. PMID:21978298

  18. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    PubMed

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  19. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthesis of new opioid derivatives with a propellane skeleton and their pharmacologies: Part 5, novel pentacyclic propellane derivatives with a 6-amide side chain.

    PubMed

    Nakajima, Ryo; Yamamoto, Naoshi; Hirayama, Shigeto; Iwai, Takashi; Saitoh, Akiyoshi; Nagumo, Yasuyuki; Fujii, Hideaki; Nagase, Hiroshi

    2015-10-01

    We designed and synthesized pentacyclic propellane derivatives with a 6-amide side chain to afford compounds with higher MOR/KOR ratio and lower sedative effects than nalfurafine. The obtained etheno-bridged derivative with a β-amide side chain, YNT-854, showed a higher MOR/KOR ratio than nalfurafine. YNT-854 also exhibited a higher dose ratio between the sedative effect and the analgesic effect than observed with nalfurafine, which may guide the future design of useful analgesics with a weaker sedative effect than nalfurafine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synthesis of side-chain oxysterols and their enantiomers through cross-metathesis reactions of Δ22 steroids.

    PubMed

    Brownholland, David P; Covey, Douglas F

    2017-05-01

    A synthetic route that utilizes a cross-metathesis reaction with Δ 22 steroids has been developed to prepare sterols with varying C-27 side-chains. Natural sterols containing hydroxyl groups at the 25 and (25R)-26 positions were prepared. Enantiomers of cholesterol and (3β,25R)-26-hydroxycholesterol (27-hydroxycholesterol) trideuterated at C-19 were prepared for future biological studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  3. Primary Metabolism and Medium-Chain Fatty Acid Alterations Precede Long-Chain Fatty Acid Changes Impacting Neutral Lipid Metabolism in Response to an Anticancer Lysophosphatidylcholine Analogue in Yeast.

    PubMed

    Tambellini, Nicolas P; Zaremberg, Vanina; Krishnaiah, Saikumari; Turner, Raymond J; Weljie, Aalim M

    2017-10-06

    The nonmetabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sublethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids, and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short-medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increases in metabolites such as trehalose, proline, and γ-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol, and myristoleic acid showed a steady increase during the period analyzed (2, 4, and 6 h after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signaling lipid diacylglycerol.

  4. Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle

    PubMed Central

    Brooijmans, Rob; Hugenholtz, Jeroen

    2009-01-01

    A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria. PMID:20948651

  5. Long-Chain Perfluoroalkyl acids (PFAAs) Affect the Bioconcentration and Tissue Distribution of Short-Chain PFAAs in Zebrafish (Danio rerio).

    PubMed

    Wen, Wu; Xia, Xinghui; Hu, Diexuan; Zhou, Dong; Wang, Haotian; Zhai, Yawei; Lin, Hui

    2017-11-07

    Short- and long-chain perfluoroalkyl acids (PFAAs), ubiquitously coexisting in the environment, can be accumulated in organisms by binding with proteins and their binding affinities generally increase with their chain length. Therefore, we hypothesized that long-chain PFAAs will affect the bioconcentration of short-chain PFAAs in organisms. To testify this hypothesis, the bioconcentration and tissue distribution of five short-chain PFAAs (linear C-F = 3-6) were investigated in zebrafish in the absence and presence of six long-chain PFAAs (linear C-F = 7-11). The results showed that the concentrations of the short-chain PFAAs in zebrafish tissues increased with exposure time until steady states reached in the absence of long-chain PFAAs. However, in the presence of long-chain PFAAs, these short-chain PFAAs in tissues increased until peak values reached and then decreased until steady states, and the uptake and elimination rate constants of short-chain PFAAs declined in all tissues and their BCF ss decreased by 24-89%. The inhibitive effect of long-chain PFAAs may be attributed to their competition for transporters and binding sites of proteins in zebrafish with short-chain PFAAs. These results suggest that the effect of long-chain PFAAs on the bioconcentration of short-chain PFAAs should be taken into account in assessing the ecological and environmental effects of short-chain PFAAs.

  6. Synthesis and characterisation of new types of side chain cholesteryl polymers.

    PubMed

    Wang, Bin; Du, Haiyan; Zhang, Junhua

    2011-01-01

    A series of cholesterol derivatives have been synthesised via the alkylation reaction of the 3-hydroxyl group with the aliphatic bromide compounds with different chain lengths, namely 3β-alkyloxy-cholesterol. The double bond between the C5 and C6 positions in these cholesterol derivatives was oxidised into epoxy, followed by an epoxy-ring-opening reaction with the treatment with acrylic acid, resulting in a series of 3β-alkyloxy-5α-hydroxy-6β-acryloyloxycholesterol, C(n)OCh (n=1, 2, 4, 6, 8, 10, 12), The acrylate group is connected to the C6 position, which is confirmed by the single crystal structure analysis. The corresponding polymers, PC(n)OCh, were prepared via free radical polymerisation. The structure of monomers and the resulting polymers were characterised with nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The thermal properties of PC(n)OCh were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). To determine the secondary structure of polymers, circular dichroism (CD) spectra were performed. It was found that not all monomers produce high-molecular-weight polymers because of steric hindrance. However, all polymers have a helical structure, which can be enhanced by increasing the alkoxy chain length. In addition, increasing the alkoxy chain length decreases the glass transition temperature and increases the decomposition temperature of the polymers. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer

  8. 4-N-, 4-S-, and 4-O-chloroquine analogues: influence of side chain length and quinolyl nitrogen pKa on activity vs chloroquine resistant malaria.

    PubMed

    Natarajan, Jayakumar K; Alumasa, John N; Yearick, Kimberly; Ekoue-Kovi, Kekeli A; Casabianca, Leah B; de Dios, Angel C; Wolf, Christian; Roepe, Paul D

    2008-06-26

    Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.

  9. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    PubMed Central

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  10. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length

    PubMed Central

    Sydor, Tobias; Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-01-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. PMID:23078612

  11. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    PubMed

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. © 2012 Blackwell Publishing Ltd.

  12. Diketopyrrolopyrrole-Based Conjugated Polymer Entailing Triethylene Glycols as Side Chains with High Thin-Film Charge Mobility without Post-Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Si-Fen; Liu, Zi-Tong; Cai, Zheng-Xu

    Side chain engineering of conjugated donor-acceptor polymers is a new way to manipulate their optoelectronic properties. Two new diketopyrrolopyrrole (DPP)-terthiophene-based conjugated polymers PDPP3T-1 and PDPP3T-2, with both hydrophilic triethylene glycol (TEG) and hydrophobic alkyl chains, are reported. It is demonstrated that the incorporation of TEG chains has a significant effect on the interchain packing and thin-film morphology with noticeable effect on charge transport. Polymer chains of PDPP3T-1 in which TEG chains are uniformly distributed can self-assemble spontaneously into a more ordered thin film. As a result, the thin film of PDPP3T-1 exhibits high saturated hole mobility up to 2.6 cm(2)more » V-1 s(-1) without any post-treatment. This is superior to those of PDPP3T with just alkyl chains and PDPP3T-2. Moreover, the respective field effect transistors made of PDPP3T-1 can be utilized for sensing ethanol vapor with high sensitivity (down to 100 ppb) and good selectivity.« less

  13. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  14. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  15. GammaM23K, gammaM232K, and gammaL77K single substitutions in the TF1-ATPase lower ATPase activity by disrupting a cluster of hydrophobic side chains.

    PubMed

    Bandyopadhyay, Sanjay; Allison, William S

    2004-07-27

    In crystal structures of the bovine F(1)-ATPase (MF(1)), the side chains of gammaMet(23), gammaMet(232), and gammaLeu(77) interact in a cluster. Substitution of the corresponding residues in the alpha(3)beta(3)gamma subcomplex of TF(1) with lysine lowers the ATPase activity to 2.3, 11, and 15%, respectively, of that displayed by wild-type. In contrast, TF(1) subcomplexes containing the gammaM(23)C, gammaM(232)C, and gammaL(77)C substitutions display 36, 36, and 130%, respectively, of the wild-type ATPase activity. The ATPase activity of the gammaM(23)C/gammaM(232)C double mutant subcomplex is 36% that of the wild-type subcomplex before and after cross-linking the introduced cysteines, whereas the ATPase activity of the gammaM(23)C/L(77)C double mutant increased from 50 to 85% that of wild-type after cross-linking the introduced cysteines. Only beta-beta cross-links formed when the alpha(3)(betaE(395)C)(3)gammaM(23)C double mutant was inactivated with CuCl(2). The overall results suggest that the attenuated ATPase of the mutant subcomplexes containing the gammaM(23)K, gammaL(77)K, and gammaM(232)K substitutions is caused by disruption of the cluster of hydrophobic amino acid side chains and that the midregion of the coiled-coil comprised of the amino- and carboxyl-terminal alpha helices of the gamma subunit does not undergo unwinding or major displacement from the side chain of gammaLeu(77) during ATP-driven rotation of the gamma subunit.

  16. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid [18:1 n-9], M = caprylic acid [8:01) for 2 wk. Then lymph was collected 24 h following administration of a single bolus of 13C-labeled MLM or LLL. The total lymphatic recovery of exogenous 18:1 n-9 24 h after administration of a single bolus of MLM or LLL was similar in rats on the LLL diet (43% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol structure and composition (P= 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long-chain fatty acids from a single meal depends on the overall long-chain fatty acid composition of the habitual diet. This could have implications for enteral feeding for longer periods.

  17. Simulated infrared spectra of triflic acid during proton dissociation.

    PubMed

    Laflamme, Patrick; Beaudoin, Alexandre; Chapaton, Thomas; Spino, Claude; Soldera, Armand

    2012-05-05

    Vibrational analysis of triflic acid (TfOH) at different water uptakes was conducted. This molecule mimics the sulfonate end of the Nafion side-chain. As the proton leaves the sulfonic acid group, structural changes within the Nafion side-chain take place. They are revealed by signal shifts in the infrared spectrum. Molecular modeling is used to follow structural modifications that occur during proton dissociation. To confirm the accuracy of the proposed structures, infrared spectra were computed via quantum chemical modeling based on density functional theory. The requirement to use additional diffuse functions in the basis set is discussed. Comparison between simulated infrared spectra of 1 and 2 acid molecules with different water contents and experimental data was performed. An accurate description of infrared spectra for systems containing 2 TfOH was obtained. Copyright © 2012 Wiley Periodicals, Inc.

  18. Energetically Unfavorable Amide Conformations for N6-Acetyllysine Side Chains in Refined Protein Structures

    PubMed Central

    Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.

    2013-01-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043

  19. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    NASA Astrophysics Data System (ADS)

    Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.

  20. A novel regulatory system in plants involving medium-chain fatty acids.

    PubMed

    Hunzicker, Gretel Mara

    2009-12-01

    Polyethylene glycol sorbitan monoacylates (Tween) are detergents of widespread use in plant sciences. However, little is known about the plant response to these compounds. Interestingly, the structure of Tweens' detergents (especially from Tween 20) resembles the lipid A structure from gram-negative bacteria polysaccharides (a backbone with short saturated fatty acids). Thus, different assays (microarray, GC-MS, RT-PCR, Northern blots, alkalinization and mutant analyses) were conducted in order to elucidate physiological changes in the plant response to Tween 20 detergent. Tween 20 causes a rapid and complex change in transcript abundance which bears all characteristics of a pathogenesis-associated molecular pattern (PAMP)/elicitor-induced defense response, and they do so at concentrations which cause no detectable deleterious effects on plant cellular integrity. In the present work, it is shown that the PAMP/elicitor-induced defense responses are caused by medium-chain fatty acids which are efficiently released from the Tween backbone by the plant, notably lauric acid (12:0) and methyl lauric acid. These compounds induce the production of ethylene, medium alkalinization and gene activation in a jasmonate-independent manner. Medium-chain fatty acids are thus novel elicitors/regulators of plant pathogen defense as they have being proved in animals.

  1. Evidence of a reverse side-chain effect of tris(pentafluoroethyl)trifluorophosphate [FAP]-based ionic liquids against pathogenic bacteria.

    PubMed

    Weyhing-Zerrer, Nadine; Kalb, Roland; Oßmer, Rolf; Rossmanith, Peter; Mester, Patrick

    2018-02-01

    Increased interest in ionic liquids (ILs) is due to their designable and tunable unique physicochemical properties, which are utilized for a wide variety of chemical and biotechnological applications. ILs containing the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion have been shown to have excellent hydrolytic, electrochemical and thermal stability and have been successfully used in various applications. In the present study the influence of the cation on the toxicity of the [FAP] anion was investigated. Due to the properties of [FAP] ILs, the IL-toxicity of seven cations with [FAP] compared to [Cl] was examined by determination of minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) on six Gram-positive and six Gram-negative clinically-relevant bacteria. For the first time, to our knowledge, the results provide evidence for a decrease in toxicity with increasing alkyl side-chain length, indicating that the combination of both ions is responsible for this 'reverse side-chain effect'. These findings could portend development of new non-toxic ILs as green alternatives to conventional organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms.

    PubMed

    Kobayashi, Rumi; Murakami, Taro; Obayashi, Mariko; Nakai, Naoya; Jaskiewicz, Jerzy; Fujiwara, Yoko; Shimomura, Yoshiharu; Harris, Robert A

    2002-11-15

    Clofibrate promotes catabolism of branched-chain amino acids by increasing the activity of the branched-chain alpha-keto acid dehydrogenase [BCKDH] complex. Depending upon the sex of the rats, nutritional state, and tissue being studied, clofibrate can affect BCKDH complex activity by three different mechanisms. First, by directly inhibiting BCKDH kinase activity, clofibrate can increase the proportion of the BCKDH complex in the active, dephosphorylated state. This occurs in situations in which the BCKDH complex is largely inactive due to phosphorylation, e.g., in the skeletal muscle of chow-fed rats or in the liver of female rats late in the light cycle. Second, by increasing the levels at which the enzyme components of the BCKDH complex are expressed, clofibrate can increase the total enzymatic activity of the BCKDH complex. This is readily demonstrated in livers of rats fed a low-protein diet, a nutritional condition that induces a decrease in the level of expression of the BCKDH complex. Third, by decreasing the amount of BCKDH kinase expressed and therefore its activity, clofibrate induces an increase in the percentage of the BCKDH complex in the active, dephosphorylated state. This occurs in the livers of rats fed a low-protein diet, a nutritional condition that causes inactivation of the BCKDH complex due to upregulation of the amount of BCKDH kinase. WY-14,643, which, like clofibric acid, is a ligand for the peroxisome-proliferator-activated receptor alpha [PPARalpha], does not directly inhibit BCKDH kinase but produces the same long-term effects as clofibrate on expression of the BCKDH complex and its kinase. Thus, clofibrate is unique in its capacity to stimulate BCAA oxidation through inhibition of BCKDH kinase activity, whereas PPARalpha activators in general promote BCAA oxidation by increasing expression of components of the BCKDH complex and decreasing expression of the BCKDH kinase.

  3. Cuphea: a new plant source of medium-chain fatty acids.

    PubMed

    Graham, S A

    1989-01-01

    The plant genus Cuphea (family Lythraceae) promises to provide a new source of industrially and nutritionally important medium-chain fatty acids, especially of lauric acid now supplied exclusively by coconut and palm kernel oils from foreign sources. The seed lipids of Cuphea were first discovered in the 1960s to contain high percentages of several medium-chain fatty acids, including caprylic, capric, lauric, and myristic acid. Research is still in the early stages, but it is intensifying toward the goal of developing the genus into a new temperate climate crop for production of specialty oils. Given the diversity of Cuphea seed lipid composition and the wide ecological and distributional range of the genus, it may be possible to tailor crops to produce selected fatty acids on demand under a variety of growing conditions. Cuphea comprises about 260 species, most native to the New World tropics. Its morphology, classification, chromosome numbers, distribution, ecology, and folk uses are presented. Seed structure is described and seed lipid composition for 73 species is summarized. Problems in domestication and agronomic progress are reviewed. Knowledge of the biosynthetic mechanism controlling the lipids produced by Cuphea remains very limited. Future research in this area, and particularly successful employment of gene transfer techniques, may allow genes controlling the mechanism to be transferred to an already established seed oil producer such as rapeseed. Presently, both traditional plant breeding techniques and newer biotechnological methods are directed toward Cuphea oilseed development.

  4. Total synthesis of a CD-ring: side-chain building block for preparing 17-epi-calcitriol derivatives from the Hajos-Parrish dione.

    PubMed

    Michalak, Karol; Wicha, Jerzy

    2011-08-19

    An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.

  5. Resonant electron capture by aspartame and aspartic acid molecules.

    PubMed

    Muftakhov, M V; Shchukin, P V

    2016-12-30

    The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Synthesis of medium-chain fatty acids and their incorporation into triacylglycerols by cell-free fractions from Cuphea embryos.

    PubMed

    Deerberg, S; von Twickel, J; Förster, H H; Cole, T; Fuhrmann, J; Heise, K P

    1990-02-01

    During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40-50 mg·d(-1)·(g fresh weight)(-1)) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-(14)C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2-3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60-80% in this lipid fraction.

  7. Correlation between polymer architecture, mesoscale structure and photovoltaic performance in side-chain-modified PAE-PAV:fullerene bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Rathgeber, S.; Kuehnlenz, F.; Hoppe, H.; Egbe, D. A. M.; Tuerk, S.; Perlich, J.; Gehrke, R.

    2012-02-01

    A poly(arylene-ethynylene)-alt-poly(arylene-vinylene) statistical copolymer carrying linear and branched alkoxy side chains along the conjugated backbone in a random manner, yields, compared to its regular substituted counterparts, an improved performance in polymer:fullerene bulk-heterojunction solar cells. Results obtained from GiWAXS experiments show that the improved performance of the statistical copolymer may be attributed to the following structural characteristics: 1) Well, ordered stacked domains that promote backbone planarization and thus improve the ππ-overlap. 2) Partly face-on alignment of domains relative to the electrodes for an improved active layer electrode charge transfer. Branched side chains seem to promote face-on domain orientation. Most likely they can minimize their unfavorable contact with the interface by just bringing the CH3 groups of the branches into direct contact with the surface so that favorable phenylene-substrate interaction can promote face-on orientation. 3) A more isotropic domain orientation throughout the active layer to ensure that the backbone alignment direction has components perpendicular and parallel to the electrodes in order to compromise between light absorption and efficient intra-chain charge transport.

  8. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen

    PubMed Central

    Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu

    2017-01-01

    Objective This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. Methods To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. Results The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05). The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05). The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. Conclusion This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter. PMID:28728386

  9. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen.

    PubMed

    Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu

    2017-11-01

    This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05). The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05). The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

  10. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    USDA-ARS?s Scientific Manuscript database

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been repor...

  11. [Molecular docking of chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid with human serum albumin].

    PubMed

    Zhou, Jing; Ma, Hong-yue; Fan, Xin-sheng; Xiao, Wei; Wang, Tuan-jie

    2012-10-01

    To investigate the mechanism of binding of human serum albumin (HSA) with potential sensitinogen, including chlorogenic acid and two isochlorogenic acids (3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid). By using the docking algorithm of computer-aided molecular design and the Molegro Virtual Docker, the crystal structures of HSA with warfarin and diazepam (Protein Data Bank ID: 2BXD and 2BXF) were selected as molecular docking receptors of HSA sites I and II. According to docking scores, key residues and H-bond, the molecular docking mode was selected and confirmed. The molecular docking of chlorogenic acid and two isochlorogenic acids on sites I and II was compared based on the above design. The results from molecular docking indicated that chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid could bind to HSA site I by high affinity scores of -112.3, -155.3 and -153.1, respectively. They could bind to site II on HSA by high affinity scores of -101.7, -138.5 and -133.4, respectively. In site I, two isochlorogenic acids interacted with the key apolar side-chains of Leu238 and Ala291 by higher affinity scores than chlorogenic acid. Furthermore, the H-bonds of isochlorogenic acids with polar residues inside the pocket and at the entrance of the pocket were different from chlorogenic acid. Moreover, the second coffee acyl of isochlorogenic acid occupied the right-hand apolar compartment in the pocket of HSA site I. In site I, the second coffee acyl of isochlorogenic acid formed the H-bonds with polar side-chains, which contributed isochlorogenic acid to binding with site II of HSA. The isochlorogenic acids with two coffee acyls have higher binding abilities with HSA than chlorogenic acid with one coffee acyl, suggesting that isochlorogenic acids binding with HSA may be sensitinogen.

  12. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats.

    PubMed

    You, Yi-Qian Nancy; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R

    2008-01-01

    Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine.

  13. Effects of Medium-Chain Triglycerides, Long-Chain Triglycerides, or 2-Monododecanoin on Fatty Acid Composition in the Portal Vein, Intestinal Lymph, and Systemic Circulation in Rats

    PubMed Central

    Nancy You, Yi-Qian; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R.

    2011-01-01

    Background Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. Methods The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. Results MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. Conclusions The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine. PMID:18407910

  14. Branched-chain amino acids in metabolic signaling and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Branched-chain amino acids (BCAAs) are important directly- and indirectly-acting nutrient signals. Frequently, their actions have been reported to be anti-obesity in nature, especially in rodent models. Yet, circulating BCAAs tend to be elevated in obesity, and even associated with poorer metaboli...

  15. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  16. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 177.1980 of this chapter that contact food of Types I, II, IV-B, VI-B, VII-B, and VIII identified in... produced by the reaction of either ethylene glycol or glycerol with long chain monobasic acids containing... carboxylic acids in the formation of the glycerol esters being neutralized with calcium hydroxide to produce...

  17. Effect of short-chain fatty acids on the formation of amylose microparticles by amylosucrase.

    PubMed

    Lim, Min-Cheol; Park, Kyu-Hwan; Choi, Jong-Hyun; Lee, Da-Hee; Letona, Carlos Andres Morales; Baik, Moo-Yeol; Park, Cheon-Seok; Kim, Young-Rok

    2016-10-20

    Amylose microparticles can be produced by self-assembly of amylose molecules through an amylosucrase-mediated synthesis. Here we investigated the role of short-chain fatty acids in the formation of amylose microparticles and the fate of these fatty acids at the end of the reaction. The rate of self-assembly and production yields of amylose microparticles were significantly enhanced in the presence of fatty acids. The effect was dependent on the length of the fatty acid carbon tail; butanoic acid (C4) was the most effective, followed by hexanoic acid (C6) and octanoic acid (C8). The amylose microparticles were investigated by carrying out SEM, XRD, Raman, NMR, FT-IR and DSC analysis. The size, morphology and crystal structure of the resulting amylose microparticles were comparable with those of amylose microparticles produced without fatty acids. The results indicated the carboxyl group of the fatty acid to be responsible for promoting the self-assembly of amylose chains to form microparticles. The fatty acids were eventually removed from the microstructure through the tight association of amylose double helices to form the amylose microparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enzymatic preparation of structured oils containing short-chain fatty acids.

    PubMed

    Kanda, Ayato; Namiki, Fusako; Hara, Setsuko

    2010-01-01

    Structured oils prepared by enzymatic transacylation with triacylglycerols (TAGs) and various fatty acids (FAs) were characterized. Transacylation with trilaurin and saturated FAs (C4:0-C16:0) was performed using Lipozyme RM-IM under standard reaction conditions. The structured oils thus produced had transacylation ratios of 25-37%, as medium-chain FAs > long-chain FAs > short-chain FAs. This result confirmed that short-chain FAs have little reactivity in enzymatic transacylation. All prepared oils shared the same composition of TAG molecular species, as demonstrated by HPLC analysis, and contained a mixture of mono-substituted, di-substituted, and non-substituted TAGs. The reaction conditions for transacylation with TAGs and short-chain FAs were optimized to improve transacylation ratios. The introduction ratios of C4:0, C5:0, and C6:0 into trilaurin were increased to 52.4, 42.5, and 34.1%, respectively, by extending the reaction time. Transacylation between TAGs and short-chain FAs was further examined by using Lipase PL. C4:0 was introduced at 51.1%, the same ratio as for Lipozyme RM-IM. When C5:0 and C6:0 were used as the FA substrate, the transacylation ratios obtained were 47.7 and 43.4%, respectively, higher than those for Lipase RM-IM. Lipase PL is therefore useful for introducing short-chain FAs into TAGs.

  19. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  20. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less

  1. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  2. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients.

    PubMed

    Scaglia, Fernando; Carter, Susan; O'Brien, William E; Lee, Brendan

    2004-04-01

    Urea cycle disorders (UCDs) are a group of inborn errors of hepatic metabolism caused by the loss of enzymatic activities that mediate the transfer of nitrogen from ammonia to urea. These disorders often result in life-threatening hyperammonemia and hyperglutaminemia. A combination of sodium phenylbutyrate and sodium phenylacetate/benzoate is used in the clinical management of children with urea cycle defects as a glutamine trap, diverting nitrogen from urea synthesis to alternatives routes of excretion. We have observed that patients treated with these compounds have selective branched chain amino acid (BCAA) deficiency despite adequate dietary protein intake. However, the direct effect of alternative therapy on the steady state levels of plasma branched chain amino acids has not been well characterized. We have measured steady state plasma branched chain and other essential non-branched chain amino acids in control subjects, untreated ornithine transcarbamylase deficiency females and treated null activity urea cycle disorder patients in the fed steady state during the course of stable isotope studies. Steady-state leucine levels were noted to be significantly lower in treated urea cycle disorder patients when compared to either untreated ornithine transcarbamylase deficiency females or control subjects (P<0.0001). This effect was reproduced in control subjects who had depressed leucine levels when treated with sodium phenylacetate/benzoate (P<0.0001). Our studies suggest that this therapeutic modality has a substantial impact on the metabolism of branched chain amino acids in urea cycle disorder patients. These findings suggest that better titration of protein restriction could be achieved with branched chain amino acid supplementation in patients with UCDs who are on alternative route therapy.

  3. Molecular Design for Preparation of Hexagonal-Ordered Porous Films Based on Side-chain Type Liquid-Crystalline Star Polymer.

    PubMed

    Naka, Yumiko; Takayama, Hiromu; Koyama, Teruhisa; Le, Khoa V; Sasaki, Takeo

    2018-05-02

    Fabrication of regularly porous films by the breath-figure method has attracted much attention. The simple, low-cost technique uses the condensation of water droplets to produce these structures, but the phenomenon itself is complex, requiring control over many interacting parameters that change throughout the process. Developing a unified understanding for the molecular design of polymers to prepare ordered porous films is challenging, but required for further advancements. In this article, the effects of the chemical structure of polymers in the breath-figure technique were systematically explored using side-chain type liquid-crystalline (LC) star polymers. The formation of porous films was affected by the structure of the polymers. Although the entire film surface of poly(11-[4-(4-cyanobiphenyl)oxy]undecyl methacrylate) (P11CB) had a hexagonal ordered porous structure over a certain Mn value, regularly arranged holes did not easily form in poly(methyl methacrylate) (PMMA), even though the main chain of PMMA is similar to that of P11CB. Comparing P11CB and poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11B) (P11CB without cyano groups) showed that the local polar groups in hydrophobic polymers promoted the formation of ordered porous films. No holes formed in poly(4-cyanobiphenyl methacrylate) (P0CB) (P11CB without alkyl spacers) films due to its hydrophilicity. The introduction of alkyl chains in P0CB allowed the preparation of honeycomb-structured films by increasing the internal tension. However, alkyl chains in the side chain alone did not result in a porous structure, as in the case of poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11). Aromatic rings are also required to increase the Tg and improve film formability. In the present study, suitable molecular designs of polymers were found, specifically hydrophobic polymers with local polar groups, to form a regularly porous structure. Development of clear guidelines for the molecular

  4. Quantum Computational Calculations of the Ionization Energies of Acidic and Basic Amino Acids: Aspartate, Glutamate, Arginine, Lysine, and Histidine

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.

    An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.

  5. Intake of long-chain ω-3 fatty acids from diet and supplements in relation to mortality.

    PubMed

    Bell, Griffith A; Kantor, Elizabeth D; Lampe, Johanna W; Kristal, Alan R; Heckbert, Susan R; White, Emily

    2014-03-15

    Evidence from experimental studies suggests that the long-chain ω-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid have beneficial effects that may lead to reduced mortality from chronic diseases, but epidemiologic evidence is mixed. Our objective was to evaluate whether intake of long-chain ω-3 fatty acids from diet and supplements is associated with cause-specific and total mortality. Study participants (n = 70,495) were members of a cohort study (the Vitamins and Lifestyle Study) who were residents of Washington State aged 50-76 years at the start of the study (2000-2002). Participants were followed for mortality through 2006 (n = 3,051 deaths). Higher combined intake of eicosapentaenoic acid and docosahexaenoic acid from diet and supplements was associated with a decreased risk of total mortality (hazard ratio (HR) = 0.82, 95% confidence interval (CI): 0.73, 0.93) and mortality from cancer (HR = 0.77, 95% CI: 0.64, 0.92) but only a small reduction in risk of death from cardiovascular disease (HR = 0.87, 95% CI: 0.68, 1.10). These results suggest that intake of long-chain ω-3 fatty acids may reduce risk of total and cancer-specific mortality.

  6. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.

    PubMed

    Wang, Jinghong; Wu, Xiaosu; Simonavicius, Nicole; Tian, Hui; Ling, Lei

    2006-11-10

    Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.

  7. Pursuing High-Mobility n-Type Organic Semiconductors by Combination of "Molecule-Framework" and "Side-Chain" Engineering.

    PubMed

    Zhang, Cheng; Zang, Yaping; Zhang, Fengjiao; Diao, Ying; McNeill, Christopher R; Di, Chong-An; Zhu, Xiaozhang; Zhu, Daoben

    2016-10-01

    "Molecule-framework" and "side-chain" engineering is powerful for the design of high-performance organic semiconductors. Based on 2DQTTs, the relationship between molecular structure, film microstructure, and charge-transport property in organic thin-film transistors (OTFTs) is studied. 2DQTT-o-B exhibits outstanding electron mobilities of 5.2 cm 2 V -1 s -1 , which is a record for air-stable solution-processable n-channel small-molecule OTFTs to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.

    PubMed

    Bowen, Christopher H; Bonin, Jeff; Kogler, Anna; Barba-Ostria, Carlos; Zhang, Fuzhong

    2016-03-18

    In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12.

  9. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains.

    PubMed

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-05-17

    We report the synthesis of methionine-containing recombinant elastin-like polypeptides (ELPs) of different lengths that contain periodically spaced methionine residues. These ELPs were chemoselectively alkylated at all methionine residues to give polycationic derivatives. Some of these samples were found to possess solubility transitions in water, where the temperature of these transitions varied with ELP concentration, nature of the methionine alkylating group, and nature of the sulfonium counterions. These studies show that introduction and controlled spacing of methionine sulfonium residues into ELPs can be used as a means both to tune their solubility transition temperatures in water using a variety of different parameters and to introduce new side-chain functionality.

  10. Amino Acid Side Chain Interactions in the Presence of Salts

    PubMed Central

    Hassan, Sergio A.

    2005-01-01

    The effects of salt on the intermolecular interactions between polar/charged amino acids are investigated through molecular dynamics simulations. The mean forces and associated potentials are calculated for NaCl salt in the 0–2 M concentration range at 298 K. It is found that the addition of salt may stabilize or destabilize the interactions, depending on the nature of the interacting molecules. The degree of (de)stabilization is quantified, and the origin of the salt-dependent modulation is discussed based upon an analysis of solvent density profiles. To gain insight into the molecular origin of the salt modulation, spatial distribution functions (sdf’s) are calculated, revealing a high degree of solvent structuredness in all cases. The peaks in the sdf’s are consistent with long-range hydrogen-bonding networks connecting the solute hydrophilic groups, and that contribute to their intermolecular solvent-induced forces. The restructuring of water around the solutes as they dissociate from close contact is analyzed. This analysis offers clues on how the solvent structure modulates the effective intermolecular interactions in complex solutes. This modulation results from a critical balance between bulk electrostatic forces and those exerted by (i) the water molecules in the structured region between the monomers, which is disrupted by ions that transiently enter the hydration shells, and (ii) the ions in the hydration shells in direct interactions with the solutes. The implications of these findings in protein/ligand (noncovalent) association/dissociation mechanisms are briefly discussed. PMID:16479276

  11. Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids.

    PubMed

    Villapakkam, Anuradha C; Handke, Luke D; Belitsky, Boris R; Levdikov, Vladimir M; Wilkinson, Anthony J; Sonenshein, Abraham L

    2009-11-01

    Bacillus subtilis CodY protein is a DNA-binding global transcriptional regulator that responds to branched-chain amino acids (isoleucine, leucine, and valine) and GTP. Crystal structure studies have shown that the N-terminal region of the protein includes a GAF domain that contains a hydrophobic pocket within which isoleucine and valine bind. This region is well conserved in CodY homologs. Site-directed mutagenesis was employed to understand the roles of some of the residues in the GAF domain and hydrophobic pocket in interaction with isoleucine and GTP. The F40A, F71E, and F98A forms of CodY were inactive in vivo. They were activatable by GTP but to a much lesser extent by branched-chain amino acids in vitro. The CodY mutant R61A retained partial repression of target promoters in vivo and was able to respond to GTP in vitro but also responded poorly to branched-chain amino acids in vitro unless GTP was simultaneously present. Thus, the GAF domain includes residues essential for full activation of CodY by branched-chain amino acids, but these residues are not critical for activation by GTP. Binding studies with branched-chain amino acids and their analogs revealed that an amino group at position 2 and a methyl group at position 3 of valine are critical components of the recognition of the amino acids by CodY.

  12. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells

    PubMed Central

    Francis, Brian R.

    2015-01-01

    Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and

  13. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity.

    PubMed

    Wang, Qiao; Du, Xiuxiu; Ma, Ke; Shi, Ping; Liu, Wenbin; Sun, Jing; Peng, Min; Huang, Zhiwei

    2018-03-01

    Elongases FEN1/ELO2 and SUR4/ELO3 are important enzymes involved in the elongation of long-chain fatty acids (LCFAs) to very long-chain fatty acids (VLCFAs) in Saccharomyces cerevisiae. The molecular mechanism of the involvement of these elongases in lipotoxicity is unclear. In the present study, we investigated the role of VLCFA elongases in oleic acid-mediated yeast cytotoxicity. The spot test showed that yeast strains with the deletion of ELO2 or ELO3 were strikingly sensitive to oleic acid, while there was no change on the growth of strain with deleted ELO1 which was involved in the elongation of C 14 fatty acid (FA) to C 16 FA. By using GC-MS, the unsaturation index was increased in elo2△ and elo3△ mutants after treatment with oleic acid (OLA). However, the proportion of VLCFAs was increased in response to OLA in the wild-type strain. The growth inhibition of elo2△ and elo3△ could be partially rescued by two commonly used antioxidant agents N-acetyl cysteine (NAC) and Ascorbic acid (VC). The further study showed that exposure to excess OLA led to an increase in the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), and a decline in the quantity of reduced glutathione (GSH) in both the wild type and mutant strains. However, the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) were increased in the wild type and elo1△ strains, while they were significantly decreased in the mutants of elo2△ and elo3△ after treated with excess OLA. Thus, oxidative damage mainly contributed to the cell death induced by OLA in ole2△ and ole3△. Taken together, although disruption of ELO2 or ELO3 did not affect the cellular lipid unsaturation, they altered the distribution and propotion of cellular VLCFAs, leading to the cell membrane impairment, which augmented the ability of OLA to permeabilize the plasma membrane. The data suggest that the very long-chain fatty acids elongases ELO2 and ELO3

  14. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  15. Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content

    PubMed Central

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.

    2009-01-01

    In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835

  16. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    PubMed

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  17. Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells.

    PubMed

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-03

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  18. Short-chain fatty acid sensing in rat duodenum

    PubMed Central

    Akiba, Yasutada; Inoue, Takuya; Kaji, Izumi; Higashiyama, Masaaki; Narimatsu, Kazuyuki; Iwamoto, Ken-ichi; Watanabe, Masahiko; Guth, Paul H; Engel, Eli; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2015-01-01

    Intraduodenal fatty acids (FA) and bacterial overgrowth, which generate short-chain FAs (SCFAs), have been implicated in the generation of functional dyspepsia symptoms. We studied the mechanisms by which luminal SCFA perfusion affects duodenal HCO3− secretion (DBS), a measure of mucosal neurohumoral activation. Free fatty acid receptor (FFAR) 1 (FFA1), which binds long-chain FA (LCFA), and SCFA receptors FFA2 and FFA3 were immunolocalised to duodenal enteroendocrine cells. FFA3 colocalised with glucagon-like peptide (GLP)-1, whereas FFA2 colocalised with 5-HT. Luminal perfusion of the SCFA acetate or propionate increased DBS, enhanced by dipeptidyl peptidase-IV (DPPIV) inhibition, at the same time as increasing GLP-2 portal blood concentrations. Acetate-induced DBS was partially inhibited by monocarboxylate/HCO3− exchanger inhibition without affecting GLP-2 release, implicating acetate absorption in the partial mediation of DBS. A selective FFA2 agonist dose-dependently increased DBS, unaffected by DPPIV inhibition or by cholecystokinin or 5-HT3 receptor antagonists, but was inhibited by atropine and a 5-HT4 antagonist. By contrast, a selective FFA1 agonist increased DBS accompanied by GLP-2 release, enhanced by DPPIV inhibition and inhibited by a GLP-2 receptor antagonist. Activation of FFA1 by LCFA and presumably FFA3 by SCFA increased DBS via GLP-2 release, whereas FFA2 activation stimulated DBS via muscarinic and 5-HT4 receptor activation. SCFA/HCO3− exchange also appears to be present in the duodenum. The presence of duodenal fatty acid sensing receptors that signal hormone release and possibly signal neural activation may be implicated in the pathogenesis of functional dyspepsia. PMID:25433076

  19. Diabetes and branched-chain amino acids: What is the link?

    PubMed

    Bloomgarden, Zachary

    2018-05-01

    Branched-chain amino acids (BCAA) have increasingly been studied as playing a role in diabetes, with the PubMed search string "diabetes" AND "branched chain amino acids" showing particular growth in studies of the topic over the past decade (Fig. ). In the Young Finn's Study, BCAA and, to a lesser extent, the aromatic amino acids phenylalanine and tyrosine were associated with insulin resistance (IR) in men but not in women, whereas the gluconeogenic amino acids alanine, glutamine, or glycine, and several other amino acids (i.e. histidine, arginine, and tryptophan) did not show an association with IR. Obesity may track more strongly than metabolic syndrome and diabetes with elevated BCAA. In a study of 1302 people aged 40-79; higher levels of BCAA tracked with older age, male sex, and metabolic syndrome, as well as with obesity, cardiovascular risk, dyslipidemia, hypertension, and uric acid. Medium- and long-chain acylcarnitines, by-products of mitochondrial catabolism of BCAAs, as well as branched-chain keto acids and the BCAA themselves distinguished obese people having versus not having features of IR, and in a study of 898 patients with essential hypertension, the BCAA and tyrosine and phenylalanine were associated with metabolic syndrome and impaired fasting glucose. In a meta-analysis of three genome-wide association studies, elevations in BCAA and, to a lesser extent, in alanine tracked with IR, whereas higher levels of glutamine and glycine were associated with lesser likelihood of IR. Given these associations with IR, it is not surprising that a number of studies have shown higher BCAA levels in people with and prior to development of type 2 diabetes (T2D), although this has particularly been shown in Caucasian and Asian ethnic groups while not appearing to occur in African Americans. Similarly, higher BCAA levels track with cardiovascular disease. [Figure: see text] The metabolism of BCAA involves two processes: (i) a reversible process catalysed by a

  20. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    PubMed

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  1. Visualizing the chain-flipping mechanism in fatty-acid biosynthesis

    DOE PAGES

    Beld, Joris; Cang, Hu; Burkart, Michael D.

    2014-10-29

    The acyl carrier protein (ACP) from fatty acid synthases sequesters elongating products within its hydrophobic core, but this dynamic mechanism remains poorly understood. In this paper, we exploited solvatochromic pantetheine probes attached to ACP that fluoresce when sequestered. The addition of a catalytic partner lures the cargo out of the ACP and into the active site of the enzyme, thus enhancing fluorescence to reveal the elusive chain-flipping mechanism. This activity was confirmed by the use of a dual solvatochromic cross-linking probe and solution-phase NMR spectroscopy. Finally, the chain-flipping mechanism was visualized by single-molecule fluorescence techniques, thus demonstrating specificity between themore » Escherichia coli ACP and its ketoacyl synthase catalytic partner KASII.« less

  2. Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Pengjie; Wang, Huan; Mo, Daize

    By taking the advantage of chlorination and fully conjugated side chains,2D-PBTClshows a PCE of up to 8.81% in non-fullerene solar cells, which corresponds to an approximately 28% improvement compared to that ofPTB7-Th-based devices.

  3. Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics

    DOE PAGES

    Chao, Pengjie; Wang, Huan; Mo, Daize; ...

    2017-12-18

    By taking the advantage of chlorination and fully conjugated side chains,2D-PBTClshows a PCE of up to 8.81% in non-fullerene solar cells, which corresponds to an approximately 28% improvement compared to that ofPTB7-Th-based devices.

  4. Serum long-chain omega-3 polyunsaturated Fatty acids and future blood pressure in an ageing population.

    PubMed

    Nyantika, A N; Tuomainen, T-P; Kauhanen, J; Voutilainen, S; Virtanen, J K

    2015-05-01

    To investigate the associations of serum long-chain omega-3 polyunsaturated fatty acids (PUFA) and hair mercury with future blood pressure in an ageing population. Prospective study with baseline measurements in 1998-2001 and follow-up measurements in 2005-2008. The linear relationships (β) of baseline serum fatty acids and hair mercury with future systolic and diastolic blood pressure and pulse pressure were analyzed with multiple linear regression models, using log-transformed values. 181 men and 200 women aged 53-73 y from the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD) population in Eastern Finland, who were free of cardiovascular disease, diabetes or hypertension at baseline. Total serum esterified and nonesterified fatty acids and pubic hair mercury were used as markers for exposure. Anthropometric and other lifestyle and health-related data were collected. The mean serum concentrations were 1.67% (SD 0.92) for eicosapentaenoic acid (EPA), 0.79% (SD 0.16) for docosapentaenoic acid (DPA) and 2.78 (SD 0.92) for docosahexaenoic acid (DHA), of all serum fatty acids. The mean hair mercury concentration was 1.5 µg/g (SD 1.6). We did not find statistically significant associations between the baseline serum long-chain omega-3 PUFA concentrations or hair mercury content and future blood pressure. Hair mercury did not modify the associations with the long-chain omega-3 PUFAs, either. Higher serum long-chain omega-3 PUFA concentration, a biomarker of fish or fish oil consumption, may not have an impact on future blood pressure in an ageing population.

  5. O-Acetyl Side-Chains in Monosaccharides: Redundant NMR Spin-Couplings and Statistical Models for Acetate Ester Conformational Analysis.

    PubMed

    Turney, Toby; Pan, Qingfeng; Sernau, Luke; Carmichael, Ian; Zhang, Wenhui; Wang, Xiaocong; Woods, Robert J; Serianni, Anthony S

    2017-01-12

    α- and β-d-glucopyranose monoacetates 1-3 were prepared with selective 13 C enrichment in the O-acetyl side-chain, and ensembles of 13 C- 1 H and 13 C- 13 C NMR spin-couplings (J-couplings) were measured involving the labeled carbons. Density functional theory (DFT) was applied to a set of model structures to determine which J-couplings are sensitive to rotation of the ester bond θ. Eight J-couplings ( 1 J CC , 2 J CH , 2 J CC , 3 J CH , and 3 J CC ) were found to be sensitive to θ, and four equations were parametrized to allow quantitative interpretations of experimental J-values. Inspection of J-coupling ensembles in 1-3 showed that O-acetyl side-chain conformation depends on molecular context, with flanking groups playing a dominant role in determining the properties of θ in solution. To quantify these effects, ensembles of J-couplings containing four values were used to determine the precision and accuracy of several 2-parameter statistical models of rotamer distributions across θ in 1-3. The statistical method used to generate these models has been encoded in a newly developed program, MA'AT, which is available for public use. These models were compared to O-acetyl side-chain behavior observed in a representative sample of crystal structures, and in molecular dynamics (MD) simulations of O-acetylated model structures. While the functional form of the model had little effect on the precision of the calculated mean of θ in 1-3, platykurtic models were found to give more precise estimates of the width of the distribution about the mean (expressed as circular standard deviations). Validation of these 2-parameter models to interpret ensembles of redundant J-couplings using the O-acetyl system as a test case enables future extension of the approach to other flexible elements in saccharides, such as glycosidic linkage conformation.

  6. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid

    NASA Astrophysics Data System (ADS)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro

    2017-10-01

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  7. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.

    PubMed

    Li, Zhong; Yalcin, Talat; Cassady, Carolyn J

    2006-07-01

    Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.

  8. General Base-General Acid Catalysis by Terpenoid Cyclases§

    PubMed Central

    Pemberton, Travis A.; Christianson, David W.

    2016-01-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains. PMID:27072285

  9. Improved synthesis and characterization of saturated branched-chain fatty acid isomers

    USDA-ARS?s Scientific Manuscript database

    The development of viable technologies for producing green products from renewable fats and oils is highly desirable since such materials can serve as replacements for non-renewable and poorly biodegradable petroleum-based products. Mixtures of saturated branched-chain fatty acid isomers (sbc-FAs),...

  10. Long-chain n-3 and n-6 polyunsaturated fatty acids and risk of atrial fibrillation: Results from a Danish cohort study.

    PubMed

    Mortensen, Lotte Maxild; Lundbye-Christensen, Søren; Schmidt, Erik Berg; Calder, Philip C; Schierup, Mikkel Heide; Tjønneland, Anne; Parner, Erik T; Overvad, Kim

    2017-01-01

    Studies of the relation between polyunsaturated fatty acids and risk of atrial fibrillation have been inconclusive. The risk of atrial fibrillation may depend on the interaction between n-3 and n-6 polyunsaturated fatty acids as both types of fatty acids are involved in the regulation of systemic inflammation. We investigated the association between dietary intake of long chain polyunsaturated fatty acids (individually and in combination) and the risk of atrial fibrillation with focus on potential interaction between the two types of polyunsaturated fatty acids. The risk of atrial fibrillation in the Diet, Cancer and Health Cohort was analyzed using the pseudo-observation method to explore cumulative risks on an additive scale providing risk differences. Dietary intake of long chain polyunsaturated fatty acids was assessed by food frequency questionnaires. The main analyses were adjusted for the dietary intake of n-3 α-linolenic acid and n-6 linoleic acid to account for endogenous synthesis of long chain polyunsaturated fatty acids. Interaction was assessed as deviation from additivity of absolute association measures (risk differences). Cumulative risks in 15-year age periods were estimated in three strata of the cohort (N = 54,737). No associations between intake of n-3 or n-6 long chain polyunsaturated fatty acids and atrial fibrillation were found, neither when analyzed separately as primary exposures nor when interaction between n-3 and n-6 long chain polyunsaturated fatty acids was explored. This study suggests no association between intake of long chain polyunsaturated fatty acids and risk of atrial fibrillation.

  11. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    PubMed

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  12. Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo,J.; Resnick, P.; Efimenko, K.

    2008-01-01

    The degradation of stain-resistant coating materials leads to the release of biopersistent perfluorooctanoic acid (PFOA) to the environment. In order to find the environmentally friendly substitutes, we have designed and synthesized a series of nonbiopersistant fluorinated polymers containing perfluorobutyl groups in the side chains. The surface properties of the new coating materials were characterized by static and dynamic contact angle measurements. The new coating materials demonstrate promising hydrophobic and oleophobic properties with low surfaces tensions. The wetting properties and surface structure of the polymers were tuned by varying the 'spacer' structures between the polymer backbones and the perfluorinated groups ofmore » the side chains. The relationship between orientations of the fluorinated side chains and performances of polymer surfaces were further investigated by near-edge X-ray fine absorption structure (NEXAFS) experiments and differential scanning calorimetry (DSC).« less

  13. Chromatographic and mass spectral methods of identification for the side-chain and ring regioisomers of methylenedioxymethamphetamine.

    PubMed

    Aalberg, L; DeRuiter, J; Noggle, F T; Sippola, E; Clark, C R

    2000-08-01

    The popular drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) is one of a total of 10 regioisomeric 2,3- and 3,4-methylenedioxyphenethylamines of MW 193 that yields regioisomeric fragment ions with equivalent mass (m/z 58 and 135/136) in the electron-impact (EI) mass spectrum. Thus, these 10 methylenedioxyphenethylamines are uniquely isomeric; they have the same molecular weight and equivalent major fragments in their mass spectra. The specific identification of one of these compounds (i.e., Ecstasy or 3,4-MDMA) in a forensic drug sample depends upon the analyst's ability to eliminate the other regioisomers as possible interfering or coeluting substances. This study reports the synthesis, chemical properties, spectral characterization, and chromatographic analysis of these 10 unique regioisomers. The ten 2,3- and 3,4-regioisomers of MDMA are synthesized from commercially available precursor chemicals. In the EI mass spectra, the side-chain regioisomers show some variation in the relative intensity of the major ions, with the exception of only one or two minor ions that might be considered side-chain specific fragments. The position of substitution for the methylenedioxy ring is not easily determined by mass spectral techniques, and the ultimate identification of any one of these amines with the elimination of the other nine must depend heavily upon chromatographic methods. The chromatographic separation of these 10 uniquely regioisomeric amines are studied using reversed-phase liquid chromatographic methods with gradient elution and gas chromatographic techniques with temperature program optimization.

  14. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    PubMed Central

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  15. Effects of clofibric acid on the activity and activity state of the hepatic branched-chain 2-oxo acid dehydrogenase complex.

    PubMed Central

    Zhao, Y; Jaskiewicz, J; Harris, R A

    1992-01-01

    Feeding clofibric acid to rats caused little or no change in total activity of the liver branched-chain 2-oxo acid dehydrogenase complex (BCODC). No change in mass of liver BCODC was detected by immunoblot analysis in response to dietary clofibric acid. No changes in abundance of mRNAs for the BCODC E1 alpha, E1 beta and E2 subunits were detected by Northern-blot analysis. Likewise, dietary clofibric acid had no effect on the activity state of liver BCODC (percentage of enzyme in the dephosphorylated, active, form) of rats fed on a chow diet. However, dietary clofibric acid greatly increased the activity state of liver BCODC of rats fed on a diet deficient in protein. No stable change in liver BCODC kinase activity was found in response to clofibric acid in either chow-fed or low-protein-fed rats. Clofibric acid had a biphasic effect on flux through BCODC in hepatocytes prepared from low-protein-fed rats. Stimulation of BCODC flux at low concentrations was due to clofibric acid inhibition of BCODC kinase, which in turn allowed activation of BCODC by BCODC phosphatase. Inhibition of BCODC flux at high concentrations was due to direct inhibition of BCODC by clofibric acid. The results suggest that the effects of clofibric acid in vivo on branched-chain amino acid metabolism can be explained by the inhibitory effects of this drug on BCODC kinase. Images Fig. 2. Fig. 3. PMID:1637295

  16. The recovery of 13C-labeled oleic acid in rat lymph after administration of long chain triacylglycerols or specific structured triacylglycerols.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Consumption of specific structured triacylglycerols, MLM (M = medium chain fatty acid, L = long chain fatty acid), delivers fast energy and long chain fatty acids to the organism. The purpose of the present study was to compare lymphatic absorption of (13)C-labeled MLM and (13)C-labeled LLL in rats. Stable isotope labeling enables the separation of the endogenous and exogenous fatty acids. Lymph was collected during 24 h following administration of MLM or LLL. Lymph fatty acid composition and (13)C-enrichment were determined and quantified by gas chromatography combustion isotope ratio mass spectrometry. The recovery of 18:1n-9 was higher after administration of LLL compared with MLM (58.1% +/- 7.4% and 29.1% +/- 3.9%, respectively, P < 0.001). This may be due to a higher chylomicron formation stimulated by a higher amount of long chain fatty acids in the intestine after LLL compared with MLM administration. This was confirmed by the tendencies of higher lymphatic transport of endogenous fatty acids. The study revealed a higher lymphatic recovery of the administered long chain fatty acids after LLL compared with MLM consumption.

  17. Short chain fatty acid production and glucose responses by methane producers

    USDA-ARS?s Scientific Manuscript database

    Fermentation by gut microbiota has been linked to physiologic responses in the host. Methanogenic gut bacteria may remove more carbon from indigestible food matrices especially poorly digested carbohydrates. We sought to assess the effects of methane production on short chain fatty acid (SCFA) con...

  18. Branched-chain amino acid supplementation and the immune response of long-distance athletes.

    PubMed

    Bassit, Reinaldo A; Sawada, Letícia A; Bacurau, Reury F P; Navarro, Franciso; Martins, Eivor; Santos, Ronaldo V T; Caperuto, Erico C; Rogeri, Patrícia; Costa Rosa, Luís F B P

    2002-05-01

    Intense long-duration exercise has been associated with immunosuppression, which affects natural killer cells, lymphokine-activated killer cells, and lymphocytes. The mechanisms involved, however, are not fully determined and seem to be multifactorial, including endocrine changes and alteration of plasma glutamine concentration. Therefore, we evaluated the effect of branched-chain amino acid supplementation on the immune response of triathletes and long-distance runners. Peripheral blood was collected prior to and immediately after an Olympic Triathlon or a 30k run. Lymphocyte proliferation, cytokine production by cultured cells, and plasma glutamine were measured. After the exercise bout, athletes from the placebo group presented a decreased plasma glutamine concentration that was abolished by branched-chain amino acid supplementation and an increased proliferative response in their peripheral blood mononuclear cells. Those cells also produced, after exercise, less tumor necrosis factor, interleukins-1 and -4, and interferon and 48% more interleukin-2. Supplementation stimulated the production of interleukin-2 and interferon after exercise and a more pronounced decrease in the production of interleukin-4, indicating a diversion toward a Th1 type immune response. Our results indicate that branched-chain amino acid (BCAA) supplementation recovers the ability of peripheral blood mononuclear cells proliferate in response to mitogens after a long distance intense exercise, as well as plasma glutamine concentration. The amino acids also modify the pattern of cytokine production leading to a diversion of the immune response toward a Th1 type of immune response.

  19. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    PubMed

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  20. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    PubMed

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cc04821a

    PubMed Central

    Gerecht, Karola; Figueiredo, Angelo Miguel

    2017-01-01

    Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised. PMID:28840203

  2. Metabolic Analysis Reveals Altered Long-Chain Fatty Acid Metabolism in the Host by Huanglongbing Disease.

    PubMed

    Suh, Joon Hyuk; Niu, Yue S; Wang, Zhibin; Gmitter, Frederick G; Wang, Yu

    2018-02-07

    Candidatus Liberibacter asiaticus (CLas) is the presumed causal agent of Huanglongbing, one of the most destructive diseases in citrus. However, the lipid metabolism component of host response to this pathogen has not been investigated well. Here, metabolic profiling of a variety of long-chain fatty acids and their oxidation products was first performed to elucidate altered host metabolic responses of disease. Fatty acid signals were found to decrease obviously in response to disease regardless of cultivar. Several lipid oxidation products strongly correlated with those fatty acids were also consistently reduced in the diseased group. Using a series of statistical methods and metabolic pathway mapping, we found significant markers contributing to the pathological symptoms and identified their internal relationships and metabolic network. Our findings suggest that the infection of CLas may cause the altered metabolism of long-chain fatty acids, possibly leading to manipulation of the host's defense derived from fatty acids.

  3. Metabolic Engineering for Enhanced Medium Chain Omega Hydroxy Fatty Acid Production in Escherichia coli

    PubMed Central

    Xiao, Kang; Yue, Xiu-Hong; Chen, Wen-Chao; Zhou, Xue-Rong; Wang, Lian; Xu, Lin; Huang, Feng-Hong; Wan, Xia

    2018-01-01

    Medium chain hydroxy fatty acids (HFAs) at ω-1, 2, or 3 positions (ω-1/2/3) are rare in nature but are attractive due to their potential applications in industry. They can be metabolically engineered in Escherichia coli, however, the current yield is low. In this study, metabolic engineering with P450BM3 monooxygenase was applied to regulate both the chain length and sub-terminal position of HFA products in E. coli, leading to increased yield. Five acyl-acyl carrier protein thioesterases from plants and bacteria were first evaluated for regulating the chain length of fatty acids. Co-expression of the selected thioesterase gene CcFatB1 with a fatty acid metabolism regulator fadR and monooxygenase P450BM3 boosted the production of HFAs especially ω-3-OH-C14:1, in both the wild type and fadD deficient strain. Supplementing renewable glycerol to reduce the usage of glucose as a carbon source further increased the HFAs production to 144 mg/L, representing the highest titer of such HFAs obtained in E. coli under the comparable conditions. This study illustrated an improved metabolic strategy for medium chain ω-1/2/3 HFAs production in E. coli. In addition, the produced HFAs were mostly secreted into culture media, which eased its recovery. PMID:29467747

  4. Analogues of methotrexate and aminopterin with gamma-methylene and gamma-cyano substitution of the glutamate side chain: synthesis and in vitro biological activity.

    PubMed

    Rosowsky, A; Bader, H; Freisheim, J H

    1991-01-01

    Analogues of methotrexate (MTX) and aminopterin (AMT) modified at the gamma-position of the glutamate side chain were synthesized and evaluated as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. Condesations of 4-amino-4-deoxy-N10-methylpteroic acid (mAPA) with dimethyl DL-4-methyleneglutamate in the presence of diethyl phosphorocyanidate (DEPC) followed by alkaline hydrolysis yielded N-(4-amino-4-deoxy-N10-methylpteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneMTX). Condensation of 4-amino-4-deoxy-N10-formylpteroic acid (fAPA) with dimethyl-DL-4-methyleneglutamate by the mixed carboxylic-carbonic anhydride method yielded N-4-amino-4-deoxypteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneAMT). Also prepared via DEPC coupling was a mixture of the four possible diastereomers of N-(4-amino-4-deoxy-N10-methylpteroyl)-4-cyanoglutamic acid (gamma-cyanoMTX). The requisite intermediate gamma-tert-butyl alpha-methyl 4-cyanoglutamate, as a DL-threo/DL-erythro mixture, was prepared from methyl N alpha-Boc-O-tosyl-L-serinate by reaction with sodium tert-butyl cyanoacetate followed by mild trifluoroacetic treatment to selectively remove the Boc group. The gamma-methylene derivatives of MTX and AMT are attractive because of their potential to act as Michael acceptors within the DHFR active site. gamma-CyanoMTX may be viewed as a congener of the nonpolyglutamated MTX analogue gamma-fluoroMTX. In vitro bioassay data for the gamma-methylene and gamma-cyano compounds support the idea that the active site of DHFR, already known for its ability to tolerate modification of the gamma-carboxyl group of MTX and AMT, can likewise accommodate substitution on the gamma-carbon itself.

  5. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    PubMed

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  6. Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core.

    PubMed

    Borders, Donald B; Leese, Richard A; Jarolmen, Howard; Francis, Noreen D; Fantini, Amadeo A; Falla, Tim; Fiddes, John C; Aumelas, André

    2007-03-01

    Laspartomycin was originally isolated and characterized in 1968 as a lipopeptide antibiotic related to amphomycin. The molecular weight and structure remained unknown until now. In the present study, laspartomycin was purified by a novel calcium chelate procedure, and the structure of the major component (1) was determined. The structure of laspartomycin C (1) differs from that of amphomycin and all related antibiotics as a result of its peptide region being acidic rather than amphoteric and the amino acid branching into the side chain being diaminopropionic rather than diaminobutyric. In addition, the fatty acid side chain is 2,3-unsaturated compared to 3,4-unsaturated for amphomycin and other related antibiotics. Calcium ion addition to stabilize a particular conformer was found to be important for an enzymatic deacylation of the antibiotic. A peptide resulting from the deacylation was critical for chemical structure determination by NMR studies, which also involved addition of calcium ions to stabilize a conformer.

  7. The safety of Lipistart, a medium-chain triglyceride based formula, in the dietary treatment of long-chain fatty acid disorders: a phase I study.

    PubMed

    MacDonald, Anita; Webster, Rachel; Whitlock, Matthew; Gerrard, Adam; Daly, Anne; Preece, Mary Anne; Evans, Sharon; Ashmore, Catherine; Chakrapani, Anupam; Vijay, Suresh; Santra, Saikat

    2018-03-28

    Children with long-chain fatty acid β-oxidation disorders (LCFAOD) presenting with clinical symptoms are treated with a specialist infant formula, with medium chain triglyceride (MCT) mainly replacing long chain triglyceride (LCT). It is essential that the safety and efficacy of any new specialist formula designed for LCFAOD be tested in infants and children. In an open-label, 21-day, phase I trial, we studied the safety of a new MCT-based formula (feed 1) in six well-controlled children (three male), aged 7-13 years (median 9 years) with LCFAOD (very long chain acyl CoA dehydrogenase deficiency [VLCADD], n=2; long chain 3-hydroxyacyl CoA dehydrogenase deficiency [LCHADD], n=2; carnitine acyl carnitine translocase deficiency [CACTD], n=2). Feed 1 (Lipistart; Vitaflo) contained 30% energy from MCT, 7.5% LCT and 3% linoleic acid and it was compared with a conventional MCT feed (Monogen; Nutricia) (feed 2) containing 17% energy from MCT, 3% LCT and 1.1% linoleic acid. Subjects consumed feed 2 for 7 days then feed 1 for 7 days and finally resumed feed 2 for 7 days. Vital signs, blood biochemistry, ECG, weight, height, food/feed intake and symptoms were monitored. Five subjects completed the study. Their median daily volume of both feeds was 720 mL (range 500-1900 mL/day). Feed 1 was associated with minimal changes in tolerance, free fatty acids (FFA), acylcarnitines, 3-hydroxybutyrate (3-HB), creatine kinase (CK), blood glucose, liver enzymes and no change in an electrocardiogram (ECG). No child complained of muscle pain or symptoms associated with LCFAOD on either feed. This is the first safety trial reported of an MCT formula specifically designed for infants and children with LCFAOD. In this short-term study, it appeared safe and well tolerated in this challenging group.

  8. Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Zhang; L Richter; D DeLongchamp

    We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm{sup 2} V{sup -1} s{sup -1}, with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packingmore » and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.« less

  9. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  10. Structural similarity between β(3)-peptides synthesized from β(3)-homo-amino acids and aspartic acid monomers.

    PubMed

    Ahmed, Sahar; Sprules, Tara; Kaur, Kamaljit

    2014-07-01

    Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset for enhanced biological response. Here we show that oligomeric β(3)-hexapeptides synthesized from L-aspartic acid monomers (β(3)-peptides 1, 5a, and 6) or homologated β(3)-amino acids (β(3)-peptide 2), fold into similar stable 14-helical secondary structures in solution, except that the former form right-handed 14-helix and the later form left-handed 14-helix. β(3)-Peptides from L-Asp monomers contain an additional amide bond in the side chains that provides opportunities for more hydrogen bonding. However, based on the NMR solution structures, we found that β(3)-peptide from L-Asp monomers (1) and from homologated amino acids (2) form similar structures with no additional side-chain interactions. These results suggest that the β(3)-peptides derived from L-Asp are promising peptide-mimetics that can be readily synthesized using L-Asp monomers as well as the right-handed 14-helical conformation of these β(3)-peptides (such as 1 and 6) may prove beneficial in the design of mimics for right-handed α-helix of α-peptides. © 2014 Wiley Periodicals, Inc.

  11. Developing Potential Energy Curves of Acidic and Basic Amino Acids Using Quantum Computational Techniques

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.

    2017-04-01

    Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).

  12. Evaluation of long-chain n3 fatty acid content in diploid and triploid rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Intake of long chain n3 fatty acids (LCn3), eicosapentaenoic acid (EPA; 20:5 n3) and docosahexaenoic acid (DHA; 22:6 n3), is associated with reduced cardiovascular disease. There is growing interest in farmed fish like rainbow trout, Oncorhynchus mykiss, as sources of LCn3. The trout industry raises...

  13. Precise Side-Chain Engineering of Thienylenevinylene-Benzotriazole-Based Conjugated Polymers with Coplanar Backbone for Organic Field Effect Transistors and CMOS-like Inverters.

    PubMed

    Lee, Min-Hye; Kim, Juhwan; Kang, Minji; Kim, Jihong; Kang, Boseok; Hwang, Hansu; Cho, Kilwon; Kim, Dong-Yu

    2017-01-25

    Two donor-acceptor (D-A) alternating conjugated polymers based on thienylenevinylene-benzotriazole (TV-BTz), PTV6B with a linear side chain and PTVEhB with a branched side chain, were synthesized and characterized for organic field effect transistors (OFETs) and complementary metal-oxide-semiconductor (CMOS)-like inverters. According to density functional theory (DFT), polymers based on TV-BTz exhibit a coplanar and rigid structure with no significant twists, which could cause to an increase in charge-carrier mobility in OFETs. Alternating alkyl side chains of the polymers impacted neither the band gap nor the energy level. However, it significantly affected the morphology and crystallinity when the polymer films were thermally annealed. To investigate the effect of thermal annealing on the morphology and crystallinity, we characterized the polymer films using atomic force microscopy (AFM) and 2D-grazing incidence X-ray diffraction (2D-GIWAXD). Fibrillary morphologies with larger domains and increased crystallinity were observed in the polymer films after thermal annealing. These polymers exhibited improved charge-carrier mobilities in annealed films at 200 °C and demonstrated optimal OFET device performance with p-type transport characteristics with charge-carrier mobilities of 1.51 cm 2 /(V s) (PTV6B) and 2.58 cm 2 /(V s) (PTVEhB). Furthermore, CMOS-like inorganic (ZnO)-organic (PTVEhB) hybrid bilayer inverter showed that the inverting voltage (V inv ) was positioned near the ideal switching point at half (1/2) of supplied voltage (V DD ) due to fairly balanced p- and n-channels.

  14. Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review.

    PubMed

    Heinze, Verónica M; Actis, Adriana B

    2012-02-01

    The role of dietary fatty acids on cancer is still controversial. To examine the current literature on the protective role of conjugated linoleic acid (CLA) and marine long-chain fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and the risk of breast and prostate cancer, data from 41 case-control and cohort studies and relevant in vitro and animal experiments were included in this 2000-2010 revision. Epidemiological studies on CLA intake or its tissue concentration related to breast and prostate tumorigenesis are not conclusive; EPA and DHA intake have shown important inverse associations just in some studies. Additional research on the analysed association is required.

  15. A Message Passing Approach to Side Chain Positioning with Applications in Protein Docking Refinement *

    PubMed Central

    Moghadasi, Mohammad; Kozakov, Dima; Mamonov, Artem B.; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.

    2013-01-01

    We introduce a message-passing algorithm to solve the Side Chain Positioning (SCP) problem. SCP is a crucial component of protein docking refinement, which is a key step of an important class of problems in computational structural biology called protein docking. We model SCP as a combinatorial optimization problem and formulate it as a Maximum Weighted Independent Set (MWIS) problem. We then employ a modified and convergent belief-propagation algorithm to solve a relaxation of MWIS and develop randomized estimation heuristics that use the relaxed solution to obtain an effective MWIS feasible solution. Using a benchmark set of protein complexes we demonstrate that our approach leads to more accurate docking predictions compared to a baseline algorithm that does not solve the SCP. PMID:23515575

  16. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOEpatents

    Davis, Jeffery T [College Park, MD; Sidorov, Vladimir [Richmond, VA; Kotch, Frank W [New Phila., PA

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  17. Branched Chain Amino Acids: Beyond Nutrition Metabolism.

    PubMed

    Nie, Cunxi; He, Ting; Zhang, Wenju; Zhang, Guolong; Ma, Xi

    2018-03-23

    Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.

  18. Branched Chain Amino Acids: Beyond Nutrition Metabolism

    PubMed Central

    2018-01-01

    Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes. PMID:29570613

  19. trans Octadecenoic acid and trans octadecadienoic acid are inversely related to long-chain polyunsaturates in human milk: results of a large birth cohort study.

    PubMed

    Szabó, Eva; Boehm, Günther; Beermann, Christopher; Weyermann, Maria; Brenner, Hermann; Rothenbacher, Dietrich; Decsi, Tamás

    2007-05-01

    Several observational studies indicate that trans isomeric fatty acids may interfere with the metabolism of essential fatty acids in the human organism. The objective was to investigate the relation between trans fatty acids and long-chain polyunsaturates in mature human milk. Human milk samples (n=769) were obtained at the 6th week of lactation from mothers participating in a birth cohort study in Germany. The fatty acid composition of the milk samples was measured by high-resolution capillary gas-liquid chromatography. trans Octadecenoic and trans octadecadienoic acids were inversely correlated with linoleic acid (r=-0.32 and -0.33, P<0.0001 for both), alpha-linolenic acid (r=-0.35 and -0.27, P<0.0001), arachidonic acid (r=-0.60 and -0.47, P<0.0001), and docosahexaenoic acid (r=-0.51 and -0.33, P<0.0001). In contrast, no inverse correlations were observed between trans hexadecenoic acid and polyunsaturated fatty acids. The data obtained in the present study suggest that the availability of 18-carbon trans isomeric fatty acids may be inversely related to the availability of long-chain polyunsaturated fatty acids in mature human milk.

  20. A new viscosupplement based on partially hydrophobic hyaluronic acid: a comparative study.

    PubMed

    Finelli, Ivana; Chiessi, Ester; Galesso, Devis; Renier, Davide; Paradossi, Gaio

    2011-01-01

    A novel partially hydrophobized derivative of hyaluronic acid (HYADD® 4), containing a low number of C16 side-chains per polysaccharide backbone, provides injectable hydrogels stabilized by side-chain hydrophobic interactions. The rheological properties of Hymovis®, a physical hydrogel based on the hyaluronic acid derivative HYADD® 4, were evaluated using as reference a solution of the parent natural polysaccharide, hyaluronic acid. The rheological measurements were performed both in flow and oscillation regimes at the physiological frequency values of the knee, typically spanning the range from 0.5 Hz (walking frequency) to 3 Hz (running frequency). Moreover, the viscoelastic features of Hymovis® were compared with the market-available viscosupplementation products in view of its use in joint diseases.The different behavior of the investigated materials in crossover frequency measurements and in structure recovery experiments can be explained on the basis of the structural and dynamic properties of the polymeric systems.

  1. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis.

    PubMed

    Zhang, Ji Yao; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-03-01

    Endogenous synthesis of the long-chain polyunsaturated fatty acids (LCPUFAs) is mediated by the fatty acid desaturase (FADS) gene cluster (11q12-13.1) and elongation of very long-chain fatty acids 2 (ELOVL2) (6p24.2) and ELOVL5 (6p12.1). Although older biochemical work identified the product of one gene, FADS2, rate limiting for LCPUFA synthesis, recent studies suggest that polymorphisms in any of these genes can limit accumulation of product LCPUFA. Genome-wide association study (GWAS) of Greenland Inuit shows strong adaptation signals within FADS gene cluster, attributed to high omega-3 fatty acid intake, while GWAS found ELOVL2 associated with sleep duration, age and DNA methylation. ELOVL5 coding mutations cause spinocerebellar ataxia 38, and epigenetic marks were associated with depression and suicide risk. Two sterol response element binding sites were found on ELOVL5, a SREBP-1c target gene. Minor allele carriers of a 3 single nucleotide polymorphism (SNP) haplotype in ELOVL2 have decreased 22 : 6n-3 levels. Unequivocal molecular evidence shows mammalian FADS2 catalyzes direct Δ4-desaturation to yield 22 : 6n-3 and 22 : 5n-6. An SNP near FADS1 influences the levels of 5-lipoxygenase products and epigenetic alteration. Genetic polymorphisms within FADS and ELOVL can limit LCPUFA product accumulation at any step of the biosynthetic pathway.

  2. A comparison of the metabolic fate of Fatty acids of different chain lengths in developing oilseeds.

    PubMed

    Battey, J F; Ohlrogge, J B

    1989-07-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.

  3. A Comparison of the Metabolic Fate of Fatty Acids of Different Chain Lengths in Developing Oilseeds

    PubMed Central

    Battey, James F.; Ohlrogge, John B.

    1989-01-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates. PMID:16666885

  4. Insulin resistance and the metabolism of branched-chain amino acids.

    PubMed

    Lu, Jingyi; Xie, Guoxiang; Jia, Weiping; Jia, Wei

    2013-03-01

    Insulin resistance (IR) is a key pathological feature of metabolic syndrome and subsequently causes serious health problems with an increased risk of several common metabolic disorders. IR related metabolic disturbance is not restricted to carbohydrates but impacts global metabolic network. Branched-chain amino acids (BCAAs), namely valine, leucine and isoleucine, are among the nine essential amino acids, accounting for 35% of the essential amino acids in muscle proteins and 40% of the preformed amino acids required by mammals. The BCAAs are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in insulin resistant conditions and/or insulin deficiency. Although increased circulating BCAA concentration in insulin resistant conditions has been noted for many years and BCAAs have been reported to be involved in the regulation of glucose homeostasis and body weight, it is only recently that BCAAs are found to be closely associated with IR. This review will focus on the recent findings on BCAAs from both epidemic and mechanistic studies.

  5. Trapping by amylose of the aliphatic chain grafted onto chlorogenic acid: importance of the graft position.

    PubMed

    Le-Bail, P; Lorentz, C; Pencreac'h, G; Soultani-Vigneron, S; Pontoire, B; López Giraldo, L J; Villeneuve, P; Hendrickx, J; Tran, V

    2015-03-06

    5-Caffeoylquinic acid (chlorogenic acid), is classified in acid-phenols family and as polyphenolic compounds it possesses antioxidant activity. The oxydative modification of chlorogenic acid in foods may lead to alteration of their qualities; to counteract these degradation effects, molecular encapsulation was used to protect chlorogenic acid. Amylose can interact strongly with a number of small molecules, including lipids. In order to enable chlorogenic acid complexation by amylose, a C16 aliphatic chain was previously grafted onto the cycle of quinic acid. This work showed that for the two lipophilic derivatives of chlorogenic acid: hexadecyl chlorogenate obtained by alkylation and 3-O-palmitoyl chlorogenic acid obtained by acylation; only the 3-O-palmitoyl chlorogenic acid complexed amylose. The chlorogenic acid derivatives were studied by X-ray diffraction, differential scanning calorimetry and NMR to elucidate the interaction. By comparing the results with previous work on the complexation of amylose by 4-O-palmitoyl chlorogenic acid, the importance of the aliphatic chain position on the cycle of the quinic acid is clearly highlighted. A study in molecular modeling helped to understand the difference in behavior relative to amylose of these three derivatives of chlorogenic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Design, synthesis and biological evaluation of paclitaxel-mimics possessing only the oxetane D-ring and side chain structures.

    PubMed

    Chen, Xing-Xiu; Gao, Feng; Wang, Qi; Huang, Xing; Wang, Dan

    2014-01-01

    Two spiro paclitaxel-mimics consisting only of an oxetane D-ring and a C-13 side chain were designed and synthesized on the basis of analysis of structure-activity relationships (SAR) of paclitaxel. In vitro microtubule-stabilizing and antiproliferative assays indicated a moderate weaker activity of the mimics than paclitaxel, but which still represented the first example of simplified paclitaxel analogues with significant anti-tumor biological activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Synthesis of novel vitamin K derivatives with alkylated phenyl groups introduced at the ω-terminal side chain and evaluation of their neural differentiation activities.

    PubMed

    Sakane, Rie; Kimura, Kimito; Hirota, Yoshihisa; Ishizawa, Michiyasu; Takagi, Yuta; Wada, Akimori; Kuwahara, Shigefumi; Makishima, Makoto; Suhara, Yoshitomo

    2017-11-01

    Vitamin K is an essential cofactor of γ-glutamylcarboxylase as related to blood coagulation and bone formation. Menaquinone-4, one of the vitamin K homologues, is biosynthesized in the body and has various biological activities such as being a ligand for steroid and xenobiotic receptors, protection of neuronal cells from oxidative stress, and so on. From this background, we focused on the role of menaquinone in the differentiation activity of progenitor cells into neuronal cells and we synthesized novel vitamin K derivatives with modification of the ω-terminal side chain. We report here new vitamin K analogues, which introduced an alkylated phenyl group at the ω-terminal side chain. These compounds exhibited potent differentiation activity as compared to control. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awartani, Omar M.; Gautam, Bhoj; Zhao, Wenchao

    The performance of the 11.25% efficient PBDB-T : ITIC system degraded to 4.35% after a minor side-chain modification in PBDB-O : ITIC. In this study, the underlying reasons behind this vast difference in efficiencies are investigated.

  9. Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility

    DOE PAGES

    Awartani, Omar M.; Gautam, Bhoj; Zhao, Wenchao; ...

    2018-01-01

    The performance of the 11.25% efficient PBDB-T : ITIC system degraded to 4.35% after a minor side-chain modification in PBDB-O : ITIC. In this study, the underlying reasons behind this vast difference in efficiencies are investigated.

  10. Fatty acid methyl esters with two vicinal alkylthio side chains and their NMR characterization

    USDA-ARS?s Scientific Manuscript database

    The addition reaction of dimethyl disulfide (DMDS) to double bonds in alkenes and monounsaturated fatty acid esters in the presence of iodine or other catalysts to give bis(methylthio) derivatives has largely served analytical purposes in mass spectrometry with scattered reports on the addition of o...

  11. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    PubMed Central

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an “open-cap” conformation or a “swivel-back” mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics. PMID:22713574

  12. Comprehensive Study on the Impact of the Cation Alkyl Side Chain Length on the Solubility of Water in Ionic Liquids.

    PubMed

    Kurnia, Kiki A; Neves, Catarina M S S; Freire, Mara G; Santos, Luís M N B F; Coutinho, João A P

    2015-10-01

    A comprehensive study on the phase behaviour of two sets of ionic liquids (ILs) and their interactions with water is here presented through combining experimental and theoretical approaches. The impact of the alkyl side chain length and the cation symmetry on the water solubility in the asymmetric [C N- 1 C 1 im][NTf 2 ] and symmetric [C N- 1 C N- 1 im][NTf 2 ] series of ILs ( N up to 22), from 288.15 K to 318.15 K and at atmospheric pressure, was studied. The experimental data reveal that the solubility of water in ILs with an asymmetric cation is higher than in those with the symmetric isomer. Several trend shifts on the water solubility as a function of the alkyl side chain length were identified, namely at [C 6 C 1 im][NTf 2 ] for asymmetric ILs and at [C 4 C 4 im][NTf 2 ] and [C 7 C 7 im][NTf 2 ] for the symmetric ILs. To complement the experimental data and to further investigate the molecular-level mechanisms behind the dissolution process, Density Functional Theory calculations, using the Conductor-like Screening Model for Real Solvents (COSMO-RS) and the Electrostatic potential-derived CHelpG, were performed. The COSMO-RS model is able to qualitatively predict water solubility as function of temperature and alkyl chain lengths of both symmetric and asymmetric cations. Furthermore, the model is also capable to predict the somewhat higher water solubility in the asymmetric cation, as well as the trend shift as function of alkyl chain lengths experimentally observed. Both COSMO-RS and the electrostatic potential-derived CHelpG show that the interactions of water and the IL cation take place on the IL polar region, namely on the aromatic head and adjacent methylene groups what explains the differences in water solubility observed for cations with different chain lengths. Furthermore, the CHelpG calculations for the isolated cations in the gas phase indicates that the trend shift of water solubility as function of alkyl chain lengths and the difference of water

  13. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    PubMed Central

    Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081

  14. Chlorogenic acid-arabinose hybrid domains in coffee melanoidins: Evidences from a model system.

    PubMed

    Moreira, Ana S P; Coimbra, Manuel A; Nunes, Fernando M; Passos, Cláudia P; Santos, Sónia A O; Silvestre, Armando J D; Silva, André M N; Rangel, Maria; Domingues, M Rosário M

    2015-10-15

    Arabinose from arabinogalactan side chains was hypothesized as a possible binding site for chlorogenic acids in coffee melanoidins. To investigate this hypothesis, a mixture of 5-O-caffeoylquinic acid (5-CQA), the most abundant chlorogenic acid in green coffee beans, and (α1 → 5)-L-arabinotriose, structurally related to arabinogalactan side chains, was submitted to dry thermal treatments. The compounds formed during thermal processing were identified by electrospray ionization mass spectrometry (ESI-MS) and characterized by tandem MS (ESI-MS(n)). Compounds composed by one or two CQAs covalently linked with pentose (Pent) residues (1-12) were identified, along with compounds bearing a sugar moiety but composed exclusively by the quinic or caffeic acid moiety of CQAs. The presence of isomers was demonstrated by liquid chromatography online coupled to ESI-MS and ESI-MS(n). Pent1-2CQA were identified in coffee samples. These results give evidence for a diversity of chlorogenic acid-arabinose hybrids formed during roasting, opening new perspectives for their identification in melanoidin structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Molecular engineering of side-chain liquid crystalline polymers by living cationic polymerization using Webster`s initiating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percec, V.

    1993-12-31

    Webster`s cationic initiating system (HO{sub 3}SCF{sub 3}/SMe{sub 2}) (Macromolecules, 23, 1918 (1990)) was shown by us (for a review see Adv. Mater., 4, 548 (1992)) to polymerize, via a living mechanism, mesogenic vinyl ethers which contain a large variety of functional groups. This is mostly because SMe{sub 2} is a softer nucleophile than any of the functional groups available in these monomers. The molecular engineering of side-chain liquid crystalline polymers with conventional and complex architectures via this polymerization technique will be discussed.

  16. The complex role of branched chain amino acids in diabetes and cancer.

    PubMed

    O'Connell, Thomas M

    2013-10-14

    The obesity and diabetes epidemics are continuing to spread across the globe. There is increasing evidence that diabetes leads to a significantly higher risk for certain types of cancer. Both diabetes and cancer are characterized by severe metabolic perturbations and the branched chain amino acids (BCAAs) appear to play a significant role in both of these diseases. These essential amino acids participate in a wide variety of metabolic pathways, but it is now recognized that they are also critical regulators of a number of cell signaling pathways. An elevation in branched chain amino acids has recently been shown to be significantly correlated with insulin resistance and the future development of diabetes. In cancer, the normal demands for BCAAs are complicated by the conflicting needs of the tumor and the host. The severe muscle wasting syndrome experience by many cancer patients, known as cachexia, has motivated the use of BCAA supplementation. The desired improvement in muscle mass must be balanced by the need to avoid providing materials for tumor proliferation. A better understanding of the complex functions of BCAAs could lead to their use as biomarkers of the progression of certain cancers in diabetic patients.

  17. Influence of short-chain fatty acids on iron absorption by proximal colon.

    PubMed

    Bouglé, D; Vaghefi-Vaezzadeh, N; Roland, N; Bouvard, G; Arhan, P; Bureau, F; Neuville, D; Maubois, J L

    2002-09-01

    Short-chain fatty acids produced by bacterial fermentation in the colon enhance the local absorption of cations, such as calcium, that could be used to improve the bioavailability of iron if a significant colonic absorption of iron were to occur. Iron (iron gluconate, 100 microM) absorption by the caecum of the rat was compared with that in proximal sites of the small bowel using the Ussing chamber model; the influence of probiotic bacteria (Propionibacterium freudenreichii) on iron absorption was assessed and compared with that of two of their fermentation products (acetic and propionic acids) using the Ussing chamber and the ligated colon with gamma emitting iron as experimental models. The caecum absorbed less iron than the duodenum, but significantly more than the jejunum and ileum. This occurred mainly through an enhanced mucosal transfer of iron uptake. Propionibacteria enhanced iron absorption from the proximal colon; the same effect was observed in the presence of viable bacteria, or the culture medium free of viable bacteria, or acetate and propionate or propionate alone. The proximal colon could be a significant site available for iron absorption; this absorption can be enhanced by local production of short-chain fatty acids such as propionate.

  18. Long-range dynamic effects of point mutations propagate through side chains in the serine protease inhibitor eglin c.

    PubMed

    Clarkson, Michael W; Lee, Andrew L

    2004-10-05

    Long-range interactions are fundamental to protein behaviors such as cooperativity and allostery. In an attempt to understand the role protein flexibility plays in such interactions, the distribution of local fluctuations in a globular protein was monitored in response to localized, nonelectrostatic perturbations. Two valine-to-alanine mutations were introduced into the small serine protease inhibitor eglin c, and the (15)N and (2)H NMR spin relaxation properties of these variants were analyzed in terms of the Lipari-Szabo dynamics formalism and compared to those of the wild type. Significant changes in picosecond to nanosecond dynamics were observed in side chains located as much as 13 A from the point of mutation. Additionally, those residues experiencing altered dynamics appear to form contiguous surfaces within the protein. In the case of V54A, the large-to-small mutation results in a rigidification of connected residues, even though this mutation decreases the global stability. These findings suggest that dynamic perturbations arising from single mutations may propagate away from the perturbed site through networks of interacting side chains. That this is observed in eglin c, a classically nonallosteric protein, suggests that such behavior will be observed in many, if not all, globular proteins. Differences in behavior between the two mutants suggest that dynamic responses will be context-dependent.

  19. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.

    PubMed

    Schueler-Furman, Ora; Wang, Chu; Baker, David

    2005-08-01

    RosettaDock uses real-space Monte Carlo minimization (MCM) on both rigid-body and side-chain degrees of freedom to identify the lowest free energy docked arrangement of 2 protein structures. An improved version of the method that uses gradient-based minimization for off-rotamer side-chain optimization and includes information from unbound structures was used to create predictions for Rounds 4 and 5 of CAPRI. First, large numbers of independent MCM trajectories were carried out and the lowest free energy docked configurations identified. Second, new trajectories were started from these lowest energy structures to thoroughly sample the surrounding conformation space, and the lowest energy configurations were submitted as predictions. For all cases in which there were no significant backbone conformational changes, a small number of very low-energy configurations were identified in the first, global search and subsequently found to be close to the center of the basin of attraction in the free energy landscape in the second, local search. Following the release of the experimental coordinates, it was found that the centers of these free energy minima were remarkably close to the native structures in not only the rigid-body orientation but also the detailed conformations of the side-chains. Out of 8 targets, the lowest energy models had interface root-mean-square deviations (RMSDs) less than 1.1 A from the correct structures for 6 targets, and interface RMSDs less than 0.4 A for 3 targets. The predictions were top submissions to CAPRI for Targets 11, 12, 14, 15, and 19. The close correspondence of the lowest free energy structures found in our searches to the experimental structures suggests that our free energy function is a reasonable representation of the physical chemistry, and that the real space search with full side-chain flexibility to some extent solves the protein-protein docking problem in the absence of significant backbone conformational changes. On the

  20. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics

    PubMed Central

    Wünsch, Matthias; Schröder, David; Fröhr, Tanja; Teichmann, Lisa; Hedwig, Sebastian; Janson, Nils; Belu, Clara; Simon, Jasmin; Heidemeyer, Shari; Holtkamp, Philipp; Rudlof, Jens; Klemme, Lennard; Hinzmann, Alessa; Neumann, Beate; Stammler, Hans-Georg

    2017-01-01

    The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman’s chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilyl)ethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cyclo)alkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics. PMID:29234470