Sample records for acidithiobacillus ferrooxidans atcc

  1. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    PubMed

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations. © Springer-Verlag 2011

  2. Global response of Acidithiobacillus ferrooxidans ATCC 53993 to high concentrations of copper: A quantitative proteomics approach.

    PubMed

    Martínez-Bussenius, Cristóbal; Navarro, Claudio A; Orellana, Luis; Paradela, Alberto; Jerez, Carlos A

    2016-08-11

    Acidithiobacillus ferrooxidans is used in industrial bioleaching of minerals to extract valuable metals. A. ferrooxidans strain ATCC 53993 is much more resistant to copper than other strains of this microorganism and it has been proposed that genes present in an exclusive genomic island (GI) of this strain would contribute to its extreme copper tolerance. ICPL (isotope-coded protein labeling) quantitative proteomics was used to study in detail the response of this bacterium to copper. A high overexpression of RND efflux systems and CusF copper chaperones, both present in the genome and the GI of strain ATCC 53993 was found. Also, changes in the levels of the respiratory system proteins such as AcoP and Rus copper binding proteins and several proteins with other predicted functions suggest that numerous metabolic changes are apparently involved in controlling the effects of the toxic metal on this acidophile. Using quantitative proteomics we overview the adaptation mechanisms that biomining acidophiles use to stand their harsh environment. The overexpression of several genes present in an exclusive genomic island strongly suggests the importance of the proteins coded in this DNA region in the high tolerance of A. ferrooxidans ATCC 53993 to metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-11-01

    The response of Acidithiobacillus ferrooxidans ATCC 23270 to copper was analyzed in sulfur-grown cells by using quantitative proteomics. Forty-seven proteins showed altered levels in cells grown in the presence of 50 mM copper sulfate. Of these proteins, 24 were up-regulated and 23 down-regulated. As seen before in ferrous iron-grown cells, there was a notorious up-regulation of RND-type Cus systems and different RND-type efflux pumps, indicating that these proteins are very important in copper resistance. Copper also triggered the down-regulation of the major outer membrane porin of A. ferrooxidans in sulfur-grown bacteria, suggesting they respond to the metal by decreasing the influx of cations into the cell. On the contrary, copper in sulfur-grown cells caused an overexpression of putative TadA and TadB proteins known to be essential for biofilm formation in bacteria. Surprisingly, sulfur-grown microorganisms showed increased levels of proteins related with energy generation (rus and petII operons) in the presence of copper. Although rus operon is overexpressed mainly in cells grown in ferrous iron, the up-regulation of rusticyanin in sulfur indicates a possible role for this protein in copper resistance as well. Finally, copper response in A. ferrooxidans appears to be influenced by the substrate being oxidized by the microorganism. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays.

    PubMed

    Ma, Liyuan; Li, Qian; Shen, Li; Feng, Xue; Xiao, Yunhua; Tao, Jiemeng; Liang, Yili; Yin, Huaqun; Liu, Xueduan

    2016-10-01

    Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S(0) substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.

  5. Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J.; Shabanowitz, Jeffrey; Hunt, Donald F.; Jerez, Carlos A.

    2015-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  6. Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors.

    PubMed

    Li, Yongquan; Li, Hongyu

    2014-03-01

    Studies on Acidithiobacillus ferrooxidans accepting electrons from Fe(II) have previously focused on cytochrome c. However, we have discovered that, besides cytochrome c, type IV pili (Tfp) can transfer electrons. Here, we report conduction by Tfp of A. ferrooxidans analyzed with a conducting-probe atomic force microscope (AFM). The results indicate that the Tfp of A. ferrooxidans are highly conductive. The genome sequence of A. ferrooxidans ATCC 23270 contains two genes, pilV and pilW, which code for pilin domain proteins with the conserved amino acids characteristic of Tfp. Multiple alignment analysis of the PilV and PilW (pilin) proteins indicated that pilV is the adhesin gene while pilW codes for the major protein element of Tfp. The likely function of Tfp is to complete the circuit between the cell surface and Fe(II) oxides. These results indicate that Tfp of A. ferrooxidans might serve as biological nanowires transferring electrons from the surface of Fe(II) oxides to the cell surface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    PubMed

    Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang

    2013-01-01

    An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.

  8. Toxin-Antitoxin Systems in the Mobile Genome of Acidithiobacillus ferrooxidans

    PubMed Central

    Bustamante, Paula; Tello, Mario; Orellana, Omar

    2014-01-01

    Toxin-antitoxin (TA) systems are genetic modules composed of a pair of genes encoding a stable toxin and an unstable antitoxin that inhibits toxin activity. They are widespread among plasmids and chromosomes of bacteria and archaea. TA systems are known to be involved in the stabilization of plasmids but there is no consensus about the function of chromosomal TA systems. To shed light on the role of chromosomally encoded TA systems we analyzed the distribution and functionality of type II TA systems in the chromosome of two strains from Acidithiobacillus ferrooxidans (ATCC 23270 and 53993), a Gram-negative, acidophilic, environmental bacterium that participates in the bioleaching of minerals. As in other environmental microorganisms, A. ferrooxidans has a high content of TA systems (28-29) and in twenty of them the toxin is a putative ribonuclease. According to the genetic context, some of these systems are encoded near or within mobile genetic elements. Although most TA systems are shared by both strains, four of them, which are encoded in the active mobile element ICEAfe1, are exclusive to the type strain ATCC 23270. We demostrated that two TA systems from ICEAfe1 are functional in E. coli cells, since the toxins inhibit growth and the antitoxins counteract the effect of their cognate toxins. All the toxins from ICEAfe1, including a novel toxin, are RNases with different ion requirements. The data indicate that some of the chromosomally encoded TA systems are actually part of the A. ferrooxidans mobile genome and we propose that could be involved in the maintenance of these integrated mobile genetic elements. PMID:25384039

  9. Weathering of phlogopite by Bacillus cereus and Acidithiobacillus ferrooxidans.

    PubMed

    Styriaková, Iveta; Bhatti, Tariq M; Bigham, Jerry M; Styriak, Igor; Vuorinen, Antti; Tuovinen, Olli H

    2004-03-01

    The purpose of this study was to assess the weathering of finely ground phlogopite, a trioctahedral mica, by placing it in contact with heterotrophic (Bacillus cereus) and acidophilic (Acidithiobacillus ferrooxidans) cultures. X-ray diffraction analyses of the phlogopite sample before and after 24 weeks of contact in B. cereus cultures revealed a decrease in the characteristic peak intensities of phlogopite, indicating destruction of individual structural planes of the mica. No new solid phase products or interlayer structures were detected in B. cereus cultures. Acidithiobacillus ferrooxidans cultures enhanced the chemical dissolution of the mineral and formed partially weathered interlayer structures, where interlayer K was expelled and coupled with the precipitation of K-jarosite [KFe3(SO4)2(OH)6].

  10. Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications.

    PubMed

    Campodonico, Miguel A; Vaisman, Daniela; Castro, Jean F; Razmilic, Valeria; Mercado, Francesca; Andrews, Barbara A; Feist, Adam M; Asenjo, Juan A

    2016-12-01

    Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining and environmental applications, as it can process mineral ores and alleviate the negative environmental consequences derived from the mining processes. In this study, the first genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270 was generated ( i MC507). A total of 587 metabolic and transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular Polysaccharide production. i MC507 serves as a knowledgebase for summarizing and categorizing the information currently available for A. ferrooxidans and enables the understanding and engineering of Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining applications.

  11. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    PubMed Central

    Valdés, Jorge; Pedroso, Inti; Quatrini, Raquel; Dodson, Robert J; Tettelin, Herve; Blake, Robert; Eisen, Jonathan A; Holmes, David S

    2008-01-01

    Background Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. Results The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes. Conclusion Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential. PMID:19077236

  12. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications.

    PubMed

    Valdés, Jorge; Pedroso, Inti; Quatrini, Raquel; Dodson, Robert J; Tettelin, Herve; Blake, Robert; Eisen, Jonathan A; Holmes, David S

    2008-12-11

    Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, gamma-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1-2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes. Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.

  13. ribB and ribBA genes from Acidithiobacillus ferrooxidans: expression levels under different growth conditions and phylogenetic analysis.

    PubMed

    Knegt, Fábio H P; Mello, Luciane V; Reis, Fernanda C; Santos, Marcos T; Vicentini, Renato; Ferraz, Lúcio F C; Ottoboni, Laura M M

    2008-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative, chemolithoautotrophic bacterium involved in metal bioleaching. Using the RNA arbitrarily primed polymerase chain reaction (RAP-PCR), we have identified several cDNAs that were differentially expressed when A. ferrooxidans LR was submitted to potassium- and phosphate-limiting conditions. One of these cDNAs showed similarity with ribB. An analysis of the A. ferrooxidans ATCC 23270 genome, made available by The Institute for Genomic Research, showed that the ribB gene was not located in the rib operon, but a ribBA gene was present in this operon instead. The ribBA gene was isolated from A. ferrooxidans LR and expression of both ribB and ribBA was investigated. Transcript levels of both genes were enhanced in cells grown in the absence of K2HPO4, in the presence of zinc and copper sulfate and in different pHs. Transcript levels decreased upon exposure to a temperature higher than the ideal 30 degrees C and at pH 1.2. A comparative genomic analysis using the A. ferrooxidans ATCC 23270 genome revealed similar putative regulatory elements for both genes. Moreover, an RFN element was identified upstream from the ribB gene. Phylogenetic analysis of the distribution of RibB and RibBA in bacteria showed six different combinations. We suggest that the presence of duplicated riboflavin synthesis genes in bacteria must provide their host with some benefit in certain stressful situations.

  14. Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Yu, Hualong; Liu, Xiaorong; Shen, Junhui; Chi, Daojie

    2017-03-01

    Solvent extraction organics (SX organics) entrained and dissoluted in the raffinate during copper SX operation, can impact bioleaching in case of raffinate recycling. The influence of SX organics on bioleaching process by Acidithiobacillus ferrooxidans (At. ferrooxidans) has been investigated. The results showed that, cells of At. ferrooxidans grew slower with contaminated low-grade chalcopyrite ores in shaken flasks bioleaching, the copper bioleaching efficiency reached 15%, lower than that of 24% for uncontaminated minerals. Obviously, the SX organics could adsorb on mineral surface and hinder its contact with bacterials, finanlly lead to the low bioleaching efficiency.

  15. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.

    PubMed

    Wang, Jingwei; Bai, Jianfeng; Xu, Jinqiu; Liang, Bo

    2009-12-30

    Bioleaching processes were used to mobilize metals from printed wire boards (PWBs). The bacteria Acidithiobacillus ferrooxidans (A. ferrooxidans) and Acidithiobacillus thiooxidans (A. thiooxidans) isolated from an acidic mine drainage were grown and acclimated in presence of PWBs and then used as bioleaching bacteria to solubilize metals from PWBs. The experimental results demonstrate that all the percentages of copper, lead, zinc solubilized into the leaching solution from actual PWBs basically increased with decrease of sieve fraction of sample and decrease of PWBs concentration. The concentration of PWBs should be controlled under the range from 7.8 to 19.5 g l(-1). Under 7.8 g l(-1) of the concentration of PWBs, the percentages of copper solubilized are 99.0%, 74.9%, 99.9% at 0.5-1.0mm of sieve fraction at 9 d of leaching time by the pure culture of A. ferrooxidans, the pure culture of A. thiooxidans, and mixed culture of A. ferrooxidans and A. thiooxidans, respectively, while the percentages of copper, lead and zinc solubilized are all more than 88.9% at <0.35 mm of the sieve fractions of sample at 5d of leaching time by the above three kinds of cultures. Variation of pH and redox potential of leaching solution with time implied that Fe(3+) oxidized from Fe(2+) in the culture medium in presence of A. ferrooxidans caused the mobilization of metals. It is concluded that A. ferrooxidans and A. thiooxidans were able to grow in the presence of PWBs and the pure culture of A. ferrooxidans, and the mixed culture of A. ferrooxidans and A. thiooxidans can not only efficiently bioleach the main metal copper but also bioleach other minor metals such as lead, zinc as well.

  16. Identification and Analysis of a Novel Gene Cluster Involves in Fe2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile.

    PubMed

    Ai, Chenbing; Liang, Yuting; Miao, Bo; Chen, Miao; Zeng, Weimin; Qiu, Guanzhou

    2018-07-01

    Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe 2+ oxidation and generate Fe 3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c 4 -type cytochrome c 552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe 2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe 2+ oxidation mechanism in Fe 2+ -oxidizing A. ferrooxidans ssp.

  17. Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe

    2012-08-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator.

  18. Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper

    PubMed Central

    Zheng, Xuecheng; Li, Dongwei

    2016-01-01

    This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximately 2 × 108 cells/mL and the highest copper leaching rate of 29%, which is 7% higher than that in the group with A. ferrooxidans only. R. phaseoli may use metabolized polysaccharides from A. ferrooxidans, and organic acids could chelate or precipitate harmful heavy metals to reduce their damage on A. ferrooxidans and promote its growth. Organic acids could also damage the mineral lattice to increase the leaching effect. PMID:26942203

  19. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.

    PubMed

    Zhu, Jianyu; Wang, Qianfen; Zhou, Shuang; Li, Qian; Gan, Min; Jiang, Hao; Qin, Wenqing; Liu, Xueduan; Hu, Yuehua; Qiu, Guanzhou

    2015-02-01

    This paper presents a study on the relation between bacterial adhesion force and bioleaching rate of chalcopyrite, which sheds light on the influence of interfacial interaction on bioleaching behavior. In our research, Acidithiobacillus ferrooxidans (A. ferrooxidans) were adapted to grow with FeSO4 · 7H2O, element sulfur or chalcopyrite. Then, surface properties of Acidithiobacillus ferrooxidans and chalcopyrite were analyzed by contact angle, zeta potential and Fourier transform infrared spectroscopy (FTIR). Adhesion force between bacteria and chalcopyrite was measured by atomic force microscopy (AFM). Attachment and bioleaching behaviors were also monitored. The results showed that A. ferrooxidans adapted with chalcopyrite exhibited the strongest adhesion force to chalcopyrite and the highest bioleaching rate. Culture adapted with sulfur bacteria took second place and FeSO4 · 7H2O-adapted bacteria were the lowest. Bioleaching rate and bacterial attachment capacity were positively related to bacterial adhesion force, which is affected by the nature of energy source. According to this work, the attachment of bacteria to chalcopyrite surface is one of the most important aspects that influence the bioleaching process of chalcopyrite. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The extremophile Acidithiobacillus ferrooxidans possesses a c-di-GMP signalling pathway that could play a significant role during bioleaching of minerals.

    PubMed

    Ruiz, L M; Castro, M; Barriga, A; Jerez, C A; Guiliani, N

    2012-02-01

      The primary goal of this study was to characterize the existence of a functional c-di-GMP pathway in the bioleaching bacterium Acidithiobacillus ferrooxidans.   A bioinformatic search revealed that the genome sequence of At. ferrooxidans ATCC 23270 codes for several proteins involved in the c-di-GMP pathway, including diguanylate cyclases (DGC), phosphodiesterases and PilZ effector proteins. Overexpression in Escherichia coli demonstrated that four At. ferrooxidans genes code for proteins containing GGDEF/EAL domains with functional DGC activity. MS/MS analysis allowed the identification of c-di-GMP in nucleotide preparations obtained from At. ferrooxidans cells. In addition, c-di-GMP levels in cells grown on the surface of solid energetic substrates such as sulfur prills or pyrite were higher than those measured in ferrous iron planktonic cells.   At. ferrooxidans possesses a functional c-di-GMP pathway that could play a key role in At. ferrooxidans biofilm formation during bioleaching processes.   This is the first global study about the c-di-GMP pathway in an acidophilic bacterium of great interest for the biomining industry. It opens a new way to explore the regulation of biofilm formation by biomining micro-organisms during the bioleaching process. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-02-07

    Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resistance determinants were searched by using 2D-PAGE, real time PCR (qRT-PCR) and quantitative proteomics with isotope-coded protein labeling (ICPL). A total of 594 proteins were identified of which 120 had altered levels in cells grown in the presence of copper. Of this group of proteins, 76 were up-regulated and 44 down-regulated. The up-regulation of RND-type Cus systems and different RND-type efflux pumps was observed in response to copper, suggesting that these proteins may be involved in copper resistance. An overexpression of most of the genes involved in histidine synthesis and several of those annotated as encoding for cysteine production was observed in the presence of copper, suggesting a possible direct role for these metal-binding amino acids in detoxification. Furthermore, the up-regulation of putative periplasmic disulfide isomerases was also seen in the presence of copper, suggesting that they restore copper-damaged disulfide bonds to allow cell survival. Finally, the down-regulation of the major outer membrane porin and some ionic transporters was seen in A. ferrooxidans grown in the presence of copper, indicating a general decrease in the influx of the metal and other cations into the cell. Thus, A. ferrooxidans most likely uses additional copper resistance strategies in which cell envelope proteins are key components. This knowledge will not only help to understand the mechanism of copper resistance in this extreme acidophile but may help also to select the best fit members of the biomining community to attain more efficient industrial metal leaching

  2. Growth of Acidithiobacillus Ferrooxidans ATCC 23270 in Thiosulfate Under Oxygen-Limiting Conditions Generates Extracellular Sulfur Globules by Means of a Secreted Tetrathionate Hydrolase

    PubMed Central

    Beard, Simón; Paradela, Alberto; Albar, Juan P.; Jerez, Carlos A.

    2011-01-01

    Production of sulfur globules during sulfide or thiosulfate oxidation is a characteristic feature of some sulfur bacteria. Although their generation has been reported in Acidithiobacillus ferrooxidans, its mechanism of formation and deposition, as well as the physiological significance of these globules during sulfur compounds oxidation, are currently unknown. Under oxygen-sufficient conditions (OSC), A. ferrooxidans oxidizes thiosulfate to tetrathionate, which accumulates in the culture medium. Tetrathionate is then oxidized by a tetrathionate hydrolase (TTH) generating thiosulfate, elemental sulfur, and sulfate as final products. We report here a massive production of extracellular conspicuous sulfur globules in thiosulfate-grown A. ferrooxidans cultures shifted to oxygen-limiting conditions (OLC). Concomitantly with sulfur globule deposition, the extracellular concentration of tetrathionate greatly diminished and sulfite accumulated in the culture supernatant. A. ferrooxidans cellular TTH activity was negligible in OLC-incubated cells, indicating that this enzymatic activity was not responsible for tetrathionate disappearance. On the other hand, supernatants from both OSC- and OLC-incubated cells showed extracellular TTH activity, which most likely accounted for tetrathionate consumption in the culture medium. The extracellular TTH activity described here: (i) gives experimental support to the TTH-driven model for hydrophilic sulfur globule generation, (ii) explains the extracellular location of A. ferrooxidans sulfur deposits, and (iii) strongly suggests that the generation of sulfur globules in A. ferrooxidans corresponds to an early step during its adaptation to an anaerobic lifestyle. PMID:21833324

  3. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    PubMed

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-09-01

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  4. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  5. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  6. Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans.

    PubMed

    Mykytczuk, N C S; Trevors, J T; Ferroni, G D; Leduc, L G

    2011-03-20

    Metal tolerance has been found to vary among Acidithiobacillus ferrooxidans strains and this can impact the efficiency of biomining practices. To explain observed strain variability for differences in metal tolerance we examined the effects of Cu(2+) and Ni(2+) concentrations (1-200 mM) on cytoplasmic membrane properties of two A. ferrooxidans type strains (ATCC 23270 and 19859) and four strains isolated from AMD water around Sudbury, Ontario, Canada. Growth rate, membrane fluidity and phase, determined from the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), and fatty acid profiles indicated that three different modes of adaptation were present and could separate between strains showing moderate, or high metal tolerance from more sensitive strains. To compensate for the membrane ordering effects of the metals, significant remodelling of the membrane was used to either maintain homeoviscous adaptation in the moderately tolerant strains or to increase membrane fluidity in the sensitive strains. Shifts in the gel-to-liquid crystalline transition temperature in the moderately tolerant strains led to multiple phase transitions, increasing the potential for phase separation and compromised membrane integrity. The metal-tolerant strain however, was able to tolerate increases in membrane order without significant compensation via fatty acid composition. Our multivariate analyses show a common adaptive response which involves changes in the abundant 16:0 and 18:1 fatty acids. However, fatty acid composition and membrane properties showed no difference in response to either copper or nickel suggesting that adaptive response was non-specific and tolerance dependent. We demonstrate that strain variation can be evaluated using differences in membrane properties as intrinsic determinants of metal susceptibility. Copyright © 2010 Elsevier GmbH. All rights reserved.

  7. Expression, purification and molecular structure modeling of thioredoxin (Trx) and thioredoxin reductase (TrxR) from Acidithiobacillus ferrooxidans.

    PubMed

    Wang, Yiping; Zhang, Xiaojian; Liu, Qing; Ai, Chenbing; Mo, Hongyu; Zeng, Jia

    2009-07-01

    The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, which plays several key roles in maintaining the redox environment of the cell. In Acidithiobacillus ferrooxidans, thioredoxin system may play important functions in the activity regulation of periplasmic proteins and energy metabolism. Here, we cloned thioredoxin (trx) and thioredoxin reductase (trxR) genes from Acidithiobacillus ferrooxidans, and expressed the genes in Escherichia coli. His-Trx and His-TrxR were purified to homogeneity with one-step Ni-NTA affinity column chromatography. Site-directed mutagenesis results confirmed that Cys33, Cys36 of thioredoxin, and Cys142, Cys145 of thioredoxin reductase were active-site residues.

  8. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A; Jerez, Carlos A

    2016-02-15

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270

    PubMed Central

    Navarro, Claudio A.; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A.

    2015-01-01

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. PMID:26637599

  10. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.

    PubMed

    Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro

    2016-01-01

    In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation.

    PubMed

    Zhou, Qingyang; Gao, Jingqing; Li, Yonghong; Zhu, Songfeng; He, Lulu; Nie, Wei; Zhang, Ruiqin

    2017-09-01

    Bioleaching is a promising technology for removal of metals from sludge and improvement of its dewaterability. Most of the previous studies of bioleaching were focused on removal of metals; bioleaching in cold environments has not been studied extensively. In this study, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were acclimated at 15 °C and co-inoculated to explore the optimal conditions for improvement of sludge dewaterability and removal of metals by the sequencing batch reactors. The data show after 6 days of bioleaching at 15 °C, 89.6% of Zn, 72.8% of Cu and 39.4% of Pb were removed and the specific resistance to filtration (SRF) was reduced to ∼12%. In addition, the best conditions for bioleaching are an initial pH of 6, a 15% (v/v) inoculum concentration, and A. thiooxidans and A. ferrooxidans mixed in a ratio of 4:1. We found that bioleaching of heavy metals is closely related to final pH, while the sludge SRF is dominated by other factors. Bioleaching can be completed in 6 days, and the sludge dewaterability and removal of metals at 15 °C meet the requirements of most sewage treatment plants.

  12. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    PubMed

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. © 2015 Wiley Periodicals, Inc.

  13. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    PubMed Central

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  14. Study of Acidithiobacillus ferrooxidans and enzymatic bio-Fenton process-mediated corrosion of copper-nickel alloy.

    PubMed

    Jadhav, U; Hocheng, H

    2016-10-01

    This study presents the corrosion behavior of the copper-nickel (Cu-Ni) alloy in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) and glucose oxidase (GOx) enzyme. In both the cases ferric ions played an important role in weight loss and thereby to carry out the corrosion of the Cu-Ni alloy. A corrosion rate of 0.6 (±0.008), 2.11 (±0.05), 3.69 (±0.26), 0.7 (±0.006) and 0.08 (±0.002) mm/year was obtained in 72 h using 9K medium with ferrous sulfate, A. ferrooxidans culture supernatant, A. ferrooxidans cells, GOx enzyme and hydrogen peroxide (H2O2) solution respectively. The scanning electron microscopy (SEM) micrographs showed that a variable extent of corrosion was caused by 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells. An arithmetic average surface roughness (Ra) of 174.78 nm was observed for the control work-piece using optical profilometer. The change in Ra was observed with the treatment of the Cu-Ni alloy using various systems. The Ra for 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells was 374.54, 607.32 and 799.48 nm, respectively, after 24 h. These results suggest that A. ferrooxidans cells were responsible for more corrosion of the Cu-Ni alloy than other systems used.

  15. Application of β-glucuronidase (GusA) as an effective reporter for extremely acidophilic Acidithiobacillus ferrooxidans.

    PubMed

    Wang, Huiyan; Fang, Liangyan; Wen, Qing; Lin, Jianqun; Liu, Xiangmei

    2017-04-01

    Acidithiobacillus ferrooxidans is a model organism for investigating metal sulfide bioleaching. The regulatory mechanism of gene expression by metabolizing various substrates is critical for understanding its role in bioleaching processes. However, no reporter has been successfully employed to study gene expression in A. ferrooxidans to date. In this study, a sensitive and robust reporter system based on β-glucuronidase (GusA) was described for feasible application in A. ferrooxidans. A set of vectors, which contained the transcriptional and translational fusions of gusA, were constructed and employed to analyze promoter activity and efficiency of translation initiation in A. ferrooxidans. Ptac and P2811 were screened out from ten tested promoters and could be used as strong promoters for gene overexpression in A. ferrooxidans. Among the four translational fusions of gusA with different start codons, ATG was most active, followed by TTG and GTG, while CTG showed the least activity. The transcriptional inhibition effect of an IclR-like transcription factor was also observed on its own encoding gene AFE_1668 as well as its neighboring AFE_1667. In addition, the specific chromogenic reaction of GusA could be detected and visualized by colonies of A. ferrooxidans containing gusA expression plasmids. Generally, the established GusA reporter system would be applied not only for quantitative analysis of promoter strength and its transcriptional regulation but also for qualitative colony screening in A. ferrooxidans in the future.

  16. Cloning, expression, and functional analysis of molecular motor pilT and pilU genes of type IV pili in Acidithiobacillus ferrooxidans.

    PubMed

    Li, Yongquan; Huang, Shuangsheng; Zhang, Xiaosu; Huang, Tao; Li, Hongyu

    2013-02-01

    PilT is a hexameric ATPase required for type IV pili (Tfp) retraction in gram-negative bacterium. Retraction of Tfp mediates intimate attachment and motility on inorganic solid surfaces. We investigated the cloning and expression of pilT and pilU genes of Acidithiobacillus ferrooxidans strains ATCC 23270, and the results indicate that PilT and PilU contain the canonical conserved AIRNLIRE and GMQTXXXXLXXL motifs that are the characteristic motifs of the PilT protein family; PilT and PilU also contain the canonical nucleotide-binding motifs, named with Walker A box (GxxGxGKT/S) and Walker B box (hhhhDE), respectively. The pilT and pilU genes were expressed to produce 37.1- and 42.0-kDa proteins, respectively, and co-transcribed induced by 10 % mineral powder. However, ATPase activity of PilT was distinctly higher than those of PilU. These results indicated that the PilT protein was the real molecular motor of Tfp, while PilU could play a key role in the assembly, modification, and twitching motility of Tfp in A. ferrooxidans. However, PilT and PilU were nonetheless interrelated in the forming and function of the molecular motor of Tfp.

  17. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar

    2012-01-01

    Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. Copyright © 2013 S. Karger AG, Basel.

  18. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  19. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    PubMed Central

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  20. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans.

    PubMed

    Quatrini, Raquel; Jedlicki, Eugenia; Holmes, David S

    2005-12-01

    Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species.

  1. The Chemolithoautotroph Acidithiobacillus ferrooxidans Can Survive under Phosphate-Limiting Conditions by Expressing a C-P Lyase Operon That Allows It To Grow on Phosphonates▿ †

    PubMed Central

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A.

    2008-01-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (Pi), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is Pi, some bacteria are also able to metabolize Pi esters (with a C-O-P bond) and phosphonates (with a very inert C-P bond). By using bioinformatic analysis of genomic sequences of the type strain of A. ferrooxidans (ATCC 23270), we found that as part of a Pho regulon, this bacterium has a complete gene cluster encoding C-P lyase, which is the main bacterial enzyme involved in phosphonate (Pn) degradation in other microorganisms. A. ferrooxidans was able to grow in the presence of methyl-Pn or ethyl-Pn as an alternative phosphorus source. Under these growth conditions, a great reduction in inorganic polyphosphate (polyP) levels was seen compared with the level for cells grown in the presence of Pi. By means of reverse transcription-PCR (RT-PCR), DNA macroarrays, and real-time RT-PCR experiments, it was found that A. ferrooxidans phn genes were cotranscribed and their expression was induced when the microorganism was grown in methyl-Pn as the only phosphorus source. This is the first report of phosphonate utilization in a chemolithoautotrophic microorganism. The existence of a functional C-P lyase system is a clear advantage for the survival under Pi limitation, a condition that may greatly affect the bioleaching of ores. PMID:18203861

  2. Metabolomic study of Chilean biomining bacteria Acidithiobacillus ferrooxidans strain Wenelen and Acidithiobacillus thiooxidans strain Licanantay.

    PubMed

    Martínez, Patricio; Gálvez, Sebastián; Ohtsuka, Norimasa; Budinich, Marko; Cortés, María Paz; Serpell, Cristián; Nakahigashi, Kenji; Hirayama, Akiyoshi; Tomita, Masaru; Soga, Tomoyoshi; Martínez, Servet; Maass, Alejandro; Parada, Pilar

    2013-02-01

    In this study, we present the first metabolic profiles for two bioleaching bacteria using capillary electrophoresis coupled with mass spectrometry. The bacteria, Acidithiobacillus ferrooxidans strain Wenelen (DSM 16786) and Acidithiobacillus thiooxidans strain Licanantay (DSM 17318), were sampled at different growth phases and on different substrates: the former was grown with iron and sulfur, and the latter with sulfur and chalcopyrite. Metabolic profiles were scored from planktonic and sessile states. Spermidine was detected in intra- and extracellular samples for both strains, suggesting it has an important role in biofilm formation in the presence of solid substrate. The canonical pathway for spermidine synthesis seems absent as its upstream precursor, putrescine, was not present in samples. Glutathione, a catalytic activator of elemental sulfur, was identified as one of the most abundant metabolites in the intracellular space in A. thiooxidans strain Licanantay, confirming its participation in the sulfur oxidation pathway. Amino acid profiles varied according to the growth conditions and bioleaching species. Glutamic and aspartic acid were highly abundant in intra- and extracellular extracts. Both are constituents of the extracellular matrix, and have a probable role in cell detoxification. This novel metabolomic information validates previous knowledge from in silico metabolic reconstructions based on genomic sequences, and reveals important biomining functions such as biofilm formation, energy management and stress responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0443-3) contains supplementary material, which is available to authorized users.

  3. Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans.

    PubMed

    Hou, Qingjie; Fang, Di; Liang, Jianru; Zhou, Lixiang

    2015-01-01

    Jarosite [(Na+, K+, NH4+, H3O+)Fe3(SO4)2(OH)6] is an efficient scavenger for trace metals in Fe- and SO42--rich acidic water. During the biosynthesis of jarosite promoted by Acidithiobacillus ferrooxidans, the continuous supply of high oxygen levels is a common practice that results in high costs. To evaluate the function of oxygen in jarosite production by A. ferrooxidans, three groups of batch experiments with different oxygen supply levels (i.e., loading volume percentages of FeSO4 solution of 20%, 40%, and 70% v/v in the flasks), as well as three groups of sealed flask experiments with different limiting oxygen supply conditions (i.e., the solutions were not sealed at the initial stage of the ferrous oxidation reaction by paraffin but were rather sealed at the end of the ferrous oxidation reaction at 48 h), were tested. The formed Fe-precipitates were characterized via X-ray powder diffraction and scanning electron microscope-energy dispersive spectral analysis. The results showed that the biosynthesis of jarosite by A. ferrooxidans LX5 could be achieved at a wide range of solution loading volume percentages. The rate and efficiency of the jarosite biosynthesis were poorly correlated with the concentration of dissolved oxygen in the reaction solution. Similar jarosite precipitates, expressed as KFe3 (SO4) 2(OH)6 with Fe/S molar ratios between 1.61 and 1.68, were uniformly formed in unsealed and 48 h sealed flasks. These experimental results suggested that the supply of O2 was only essential in the period of the oxidation of ferrous iron to ferric but was not required in the period of ferric precipitation.

  4. Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper.

    PubMed

    Navarro, Claudio A; Orellana, Luis H; Mauriaca, Cecilia; Jerez, Carlos A

    2009-10-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A. ferrooxidans copA1 [copA1(Af)], copA2(Af), and copB(Af)), three genes related to a system of the resistance nodulation cell division family involved in the extraction of Cu from the cell (cusA(Af), cusB(Af), and cusC(Af)), and two genes coding for periplasmic chaperones for this metal (cusF(Af) and copC(Af)). The expression of most of these open reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A. ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their functionality. The results reported here and previously published data strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii) the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system.

  5. Transcriptional and Functional Studies of Acidithiobacillus ferrooxidans Genes Related to Survival in the Presence of Copper▿

    PubMed Central

    Navarro, Claudio A.; Orellana, Luis H.; Mauriaca, Cecilia; Jerez, Carlos A.

    2009-01-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A. ferrooxidans copA1 [copA1Af], copA2Af, and copBAf), three genes related to a system of the resistance nodulation cell division family involved in the extraction of Cu from the cell (cusAAf, cusBAf, and cusCAf), and two genes coding for periplasmic chaperones for this metal (cusFAf and copCAf). The expression of most of these open reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A. ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their functionality. The results reported here and previously published data strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii) the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system. PMID:19666734

  6. Significance of Oxygen Supply in Jarosite Biosynthesis Promoted by Acidithiobacillus ferrooxidans

    PubMed Central

    Liang, Jianru; Zhou, Lixiang

    2015-01-01

    Jarosite [(Na+, K+, NH4 +, H3O+)Fe3(SO4)2(OH)6] is an efficient scavenger for trace metals in Fe- and SO4 2--rich acidic water. During the biosynthesis of jarosite promoted by Acidithiobacillus ferrooxidans, the continuous supply of high oxygen levels is a common practice that results in high costs. To evaluate the function of oxygen in jarosite production by A. ferrooxidans, three groups of batch experiments with different oxygen supply levels (i.e., loading volume percentages of FeSO4 solution of 20%, 40%, and 70% v/v in the flasks), as well as three groups of sealed flask experiments with different limiting oxygen supply conditions (i.e., the solutions were not sealed at the initial stage of the ferrous oxidation reaction by paraffin but were rather sealed at the end of the ferrous oxidation reaction at 48 h), were tested. The formed Fe-precipitates were characterized via X-ray powder diffraction and scanning electron microscope-energy dispersive spectral analysis. The results showed that the biosynthesis of jarosite by A. ferrooxidans LX5 could be achieved at a wide range of solution loading volume percentages. The rate and efficiency of the jarosite biosynthesis were poorly correlated with the concentration of dissolved oxygen in the reaction solution. Similar jarosite precipitates, expressed as KFe3 (SO4) 2(OH)6 with Fe/S molar ratios between 1.61 and 1.68, were uniformly formed in unsealed and 48 h sealed flasks. These experimental results suggested that the supply of O2 was only essential in the period of the oxidation of ferrous iron to ferric but was not required in the period of ferric precipitation. PMID:25807372

  7. A dual-specific Glu-tRNA(Gln) and Asp-tRNA(Asn) amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans.

    PubMed

    Salazar, J C; Zúñiga, R; Raczniak, G; Becker, H; Söll, D; Orellana, O

    2001-07-06

    The gatC, gatA and gatB genes encoding the three subunits of glutamyl-tRNA(Gln) amidotransferase from Acidithiobacillus ferrooxidans, an acidophilic bacterium used in bioleaching of minerals, have been cloned and expressed in Escherichia coli. As in Bacillus subtilis the three gat genes are organized in an operon-like structure in A. ferrooxidans. The heterologously overexpressed enzyme converts Glu-tRNA(Gln) to Gln-tRNA(Gln) and Asp-tRNA(Asn) to Asn-tRNA(Asn). Biochemical analysis revealed that neither glutaminyl-tRNA synthetase nor asparaginyl-tRNA synthetase is present in A. ferrooxidans, but that glutamyl-tRNA synthetase and aspartyl-tRNA synthetase enzymes are present in the organism. These data suggest that the transamidation pathway is responsible for the formation of Gln-tRNA and Asn-tRNA in A. ferrooxidans.

  8. [Effect of temperature on activity of Acidithiobacillus ferrooxidan and formation of biogenic secondary iron minerals].

    PubMed

    Song, Yong-Wei; Zhao, Bo-Wen; Huo, Min-Bo; Cui, Chun-Hong; Zhou, Li-Xiang

    2013-08-01

    In this study, batch experiments were performed to investigate the effect of temperature on the Fe (II) oxidation and the formation of biogenic secondary iron minerals by Acidithiobacillus ferrooxidan. Results showed that the low temperature significantly inhibited the oxidation activity of A. ferrooxidan. In the FeSO4-H2O biological oxidation system facilitated by A. ferrooxidan, it was found that after 5 days culture, the oxidation rates of Fe (II) in treatments of 10 degrees C and 28 degrees C were 11.81% and 100%, respectively. In addition, it rapidly rose to 95.10% when the temperature was adjusted from 10 degrees C (cultured for 7 days) to 28 degrees C in 1 day, and the maximum oxidation rates were as follows: 10 degrees C (cultured for 7 days) +28 degrees C (2.25 h(-1)) > 28 degrees C (1.42 h(-1)) >10 degrees C (0.81 h(-1)). Furthermore, the XRD patterns showed that the lower Fe (III) supply rate was more conducive to the formation of amorphous schwertmannite in 9K medium at 10 degrees C. Correspondingly, the generation of amorphous schwertmannite was preceded to ihleite at 28 degrees C, and the crystallinity degree of ihleite was getting better with the extension of culture time. Combined with the SEM characteristics, it was judged that the 28 degrees C sample contained jarosite and schwertmannite.

  9. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.

    PubMed

    Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao

    2015-10-01

    The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible.

  10. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    PubMed

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.

  11. Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Dong, Ying-bo; Lin, Hai; Fu, Kai-bin; Xu, Xiao-fang; Zhou, Shan-shan

    2013-02-01

    Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with Acidithiobacillus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.

  12. Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Banderas, Alvaro; Guiliani, Nicolas

    2013-08-16

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.

  13. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    PubMed Central

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  14. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans.

    PubMed

    Chandraprabha, M N; Natarajan, K A; Somasundaran, P

    2004-08-15

    Effective methods for selective separation using flotation or flocculation of arsenopyrite from pyrite by biomodulation using Acidithiobacillus ferrooxidans are presented here. Adhesion of the bacterium to the surface of arsenopyrite was very slow compared to that to pyrite, resulting in a difference in surface modification of the minerals subsequent to interaction with cells. The cells were able to effectively depress pyrite flotation in presence of collectors like potassium isopropyl xanthate and potassium amyl xanthate. On the other hand the flotability of arsenopyrite after conditioning with the cells was not significantly affected. The activation of pyrite by copper sulfate was reduced when the minerals were conditioned together, resulting in better selectivity. Selective separation could also be achieved by flocculation of biomodulated samples.

  15. Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans.

    PubMed

    Ribeiro, Daniela A; Maretto, Danilo A; Nogueira, Fábio C S; Silva, Márcio J; Campos, Francisco A P; Domont, Gilberto B; Poppi, Ronei J; Ottoboni, Laura M M

    2011-06-01

    Acidithiobacillus ferrooxidans is a Gram negative, acidophilic, chemolithoautotrophic bacterium that plays an important role in metal bioleaching. During bioleaching, the cells are subjected to changes in the growth temperature and nutrients starvation. The aim of this study was to gather information about the response of the A.ferrooxidans Brazilian strain LR to K2HPO4 starvation and heat stress through investigation of cellular morphology, chemical composition and differential proteome. The scanning electron microscopic results showed that under the tested stress conditions, A. ferrooxidans cells became elongated while the Fourier transform infrared spectroscopy (FT-IR) analysis showed alterations in the wavenumbers between 850 and 1,275 cm(-1), which are related to carbohydrates, phospholipids and phosphoproteins. These findings indicate that the bacterial cell surface is affected by the tested stress conditions. A proteomic analysis, using 2-DE and tandem mass spectrometry, enabled the identification of 44 differentially expressed protein spots, being 30 due to heat stress (40°C) and 14 due to K2HPO4 starvation. The identified proteins belonged to 11 different functional categories, including protein fate, energy metabolism and cellular processes. The upregulated proteins were mainly from protein fate and energy metabolism categories. The obtained results provide evidences that A. ferrooxidans LR responds to heat stress and K2HPO4 starvation by inducing alterations in cellular morphology and chemical composition of the cell surface. Also, the identification of several proteins involved in protein fate suggests that the bacteria cellular homesostasis was affected. In addition, the identification of proteins from different functional categories indicates that the A. ferrooxidans response to higher than optimal temperatures and phosphate starvation involves global changes in its physiology.

  16. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.

    PubMed

    Zhao, Hongbo; Wang, Jun; Hu, Minghao; Qin, Wenqing; Zhang, Yansheng; Qiu, Guanzhou

    2013-12-01

    Bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans was carried out to investigate the influences between each other during bioleaching. Bioleaching results indicated that bornite accelerated the dissolution of chalcopyrite, and chalcopyrite also accelerated the dissolution of bornite, it could be described as a synergistic effect during bioleaching, this synergistic effect might be attributed to the galvanic effect between chalcopyrite and bornite, and to the relatively low solution potential as the addition of bornite. Significantly amount of elemental sulfur and jarosite formed on the minerals surface might be the main passivation film inhibiting the further dissolution, and the amount of elemental sulfur significantly increased with the addition of bornite. Results of electrochemical measurements indicated that the oxidation and reduction mechanisms of chalcopyrite and bornite were similar, the addition of bornite or chalcopyrite did not change the oxidative and reductive mechanisms, but increased the oxidation rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    NASA Astrophysics Data System (ADS)

    Yu, Run-lan; Liu, Jing; Tan, Jian-xi; Zeng, Wei-min; Shi, Li-juan; Gu, Guo-hua; Qin, Wen-qing; Qiu, Guan-zhou

    2014-04-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  18. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  19. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    González, Alex; Bellenberg, Sören; Mamani, Sigde; Ruiz, Lina; Echeverría, Alex; Soulère, Laurent; Doutheau, Alain; Demergasso, Cecilia; Sand, Wolfgang; Queneau, Yves; Vera, Mario; Guiliani, Nicolas

    2013-04-01

    Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.

  20. Improving the compression dewatering of sewage sludge through bioacidification conditioning driven by Acidithiobacillus ferrooxidans: dewatering rate vs. dewatering extent.

    PubMed

    Lu, Yi; Zhang, Chunmei; Zheng, Guanyu; Zhou, Lixiang

    2018-04-22

    Prior to mechanical dewatering, sludge conditioning is indispensable to reduce the difficulty of sludge treatment and disposal. The effect of bioacidification conditioning driven by Acidithiobacillus ferrooxidans LX5 on the dewatering rate and extent of sewage sludge during compression dewatering process was investigated in this study. The results showed that the bioacidification of sludge driven by A. ferrooxidans LX5 simultaneously improved both the sludge dewatering rate and extent, which was not attained by physical/chemical conditioning approaches, including ultrasonication, microwave, freezing/thawing, or by adding the chemical conditioner cationic polyacrylamide (CPAM). During the bioacidification of sludge, the decrease in sludge pH induced the damage of sludge microbial cell structures, which enhanced the dewatering extent of sludge, and the added Fe 2+ and the subsequent bio-oxidized Fe 3+ effectively flocculated the damaged sludge flocs to improve the sludge dewatering rate. In the compression dewatering process consisting of filtration and expression stages, high removal of moisture and a short dewatering time were achieved during the filtration stage and the expression kinetics were also improved because of the high elasticity of sludge cake and the rapid creeping of the aggregates within the sludge cake. In addition, the usefulness of bioacidification driven by A. ferrooxidans LX5 in improving the compression dewatering of sewage sludge could not be attained by the chemical treatment of sludge through pH modification and Fe 3+ addition. Therefore, the bioacidification of sludge driven by A. ferrooxidans LX5 is an effective conditioning method to simultaneously improve the rate and extent of compression dewatering of sewage sludge.

  1. Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Osorio, Héctor; Mangold, Stefanie; Denis, Yann; Ñancucheo, Ivan; Esparza, Mario; Johnson, D. Barrie; Bonnefoy, Violaine; Dopson, Mark

    2013-01-01

    Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu2+ included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H2S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S0 to Fe3+ via a respiratory chain that includes a bc1 complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations. PMID:23354702

  2. Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans.

    PubMed

    Ren, Wan-Xia; Li, Pei-Jun; Zheng, Le; Fan, Shu-Xiu; Verhozina, V A

    2009-02-15

    A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.

  3. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Shu; Yang, Yuankun; Liu, Congqiang; Dong, Faqin; Liu, Bijun

    2015-12-01

    Application of bioleaching process for metal recovery from electronic waste has received an increasing attention in recent years. In this work, a column bioleaching of copper from waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans has been investigated. After column bioleaching for 28d, the copper recovery reached at 94.8% from the starting materials contained 24.8% copper. Additionally, the concentration of Fe(3+) concentration varied significantly during bioleaching, which inevitably will influence the Cu oxidation, thus bioleaching process. Thus the variation in Fe(3+) concentration should be taken into consideration in the conventional kinetic models of bioleaching process. Experimental results show that the rate of copper dissolution is controlled by external diffusion rather than internal one because of the iron hydrolysis and formation of jarosite precipitates at the surface of the material. The kinetics of column bioleaching WPCBs remains unchanged because the size and morphology of precipitates are unaffected by maintaining the pH of solution at 2.25 level. In bioleaching process, the formation of jarosite precipitate can be prevented by adding dilute sulfuric acid and maintaining an acidic condition of the leaching medium. In such way, the Fe(2)(+)-Fe(3+) cycle process can kept going and create a favorable condition for Cu bioleaching. Our experimental results show that column Cu bioleaching from WPCBs by A. ferrooxidans is promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    PubMed

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. © 2014 Wiley Periodicals, Inc.

  5. [Effect of simulated inorganic anion leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    PubMed

    Chen, Yan; Huang, Fang; Xie, Xin-Yuan

    2014-04-01

    An Acidithiobacillus ferrooxidans strain WZ-1 (GenBank sequence number: JQ968461) was used as the research object. The effects of Cl-, NO3-, F- and 4 kinds of simulated inorganic anions leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Cl-, NO3(-)- didn't have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1), 1.0 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Cl- and NO3- (about 10.0 g x L(-1), 5.0 g x L(-1), respectively), but it had lower tolerance to F- (25 mg x L(-1)). Different kinds of simulated inorganic anions leaching solutions of electroplating sludge had significant differences in terms of their effects on bioactivity of WZ-1 with a sequence of Cl-/NO3(-)/F(-) > or = NO3(-)/F(-) > Cl-/F(-) > Cl(-)/NO3(-).

  6. Dissolution of realgar by Acidithiobacillus ferrooxidans in the presence and absence of zerovalent iron: Implications for remediation of iron-deficient realgar tailings.

    PubMed

    Fan, Lijun; Zhao, Fenghua; Liu, Jing; Hudson-Edwards, Karen A

    2018-06-06

    Realgar (As 4 S 4 )-rich tailings are iron-deficient arsenical mine wastes. The mechanisms and products of the dissolution of realgar by Acidithiobacillus ferrooxidans (A. ferrooxidans) in the presence (0.2 g and 2 g) and absence of zerovalent iron (ZVI) are investigated for three stages (each of 7 d with fresh A. ferrooxidans medium addition between the stages). SEM-EDX, FTIR, XPS and selective extraction analysis are used to characterize the solid-phase during the experiments. ZVI addition causes the systems to become more acid-generating, although pH increases are observed in the first day due to ZVI dissolution. Arsenic is released to solution due to realgar oxidation (∼30 mg L -1 in the 0 g ZVI system in Stage I), but low concentrations are observed in the ZVI-added systems (<5 mg L -1 ) and in Stages II and III of the 0 g ZVI system. As(III) dominates the released As(T) at day 1 (83-89% of As(T)), but is largely oxidized to As(V) at day 7 of each stage (53-98% of As(T)). Arsenic attenuation is attributed to the formation of mixed As-Fe oxyhydroxides and oxyhydroxy sulfates that take up released arsenic and are abundant in the 2.0 g ZVI system, and to passivation of the realgar surface. Consequently, a new strategy that combines A. ferrooxidans and exogenous ZVI addition for treating in-situ iron-deficient realgar-rich tailings is proposed, although its long-term effects need to be monitored. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation

    USGS Publications Warehouse

    Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C.

    2010-01-01

    Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.

  8. Catalytic effect of Ag⁺ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus.

    PubMed

    Zhang, Guangji; Chao, Xingwu; Guo, Pei; Cao, Junya; Yang, Chao

    2015-01-01

    Orpiment is one of the major arsenic sulfide minerals which commonly occurs in the gold mine environment and the weathering of this mineral can lead to the contamination of arsenic. In this study, chemical leaching experiments using 10g/L Fe(3+) at 35°C and 50°C were carried out and the results show that orpiment can be leached by Fe(3+) and the leaching rate of orpiment was significantly enhanced in the presence of Ag(+). The bioleaching experiments with mesophilic bacteria Acidithiobacillus ferrooxidans and moderate thermophilic bacteria Sulfobacillus sibiricus were carried out, showing that these two strains can survive in the mineral pulp and oxidize Fe(2+) to regenerate Fe(3+). Based on above results, it is believed that the leaching action of the acidic mining drainage by some bacteria can lead to the release of arsenic from orpiment. Different performances of At. ferrooxidans and S. sibiricus in the tests suggest they follow two different mechanisms and this point of view is further confirmed based on analyses of the composition and morphology of the mineral residue by SEM and EDS. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    PubMed

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups. © 2013.

  10. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    PubMed

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  11. Immobilization of Acidithiobacillus ferrooxidans on sulfonated microporous poly(styrene-divinylbenzene) copolymer with granulated activated carbon and its use in bio-oxidation of ferrous iron.

    PubMed

    Koseoglu-Imer, Derya Yuksel; Keskinler, Bulent

    2013-01-01

    The immobilization efficiencies of Acidithiobacillus ferrooxidans cells on different immobilization matrices were investigated for biooxidation of ferrous iron (Fe(2+)) to ferric iron (Fe(3+)). Six different matrices were used such as the polyurethane foam (PUF), granular activated carbon (GAC), raw poly(styrene-divinylbenzene) copolymer (rawSDVB), raw poly(styrene-divinylbenzene) copolymer with granular activated carbon (rawSDVB-GAC), sulfonated poly(styrene-divinylbenzene) copolymer (sulfSDVB) and sulfonated poly(styrene-divinylbenzene) copolymer with granular activated carbon (sulfSDVB-GAC). The sulfSDVB-GAC polymer showed the best performance for Fe(2+) biooxidation. It was used at packed-bed bioreactor and the kinetic parameters were obtained. The highest Fe(2+) biooxidation rate (R) was found to be 4.02 g/L h at the true dilution rate (Dt) of 2.47 1/h and hydraulic retention time (τ) of 0.4 h. The sulfSDVB-GAC polymer was used for the first time as immobilization material for A. ferrooxidans for Fe(2+) biooxidation. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.

    PubMed

    Liljeqvist, Maria; Rzhepishevska, Olena I; Dopson, Mark

    2013-02-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments.

  13. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp.

    PubMed

    Yang, Hailin; Feng, Shoushuai; Xin, Yu; Wang, Wu

    2014-02-01

    The community dynamics of attached and free cells of Acidithiobacillus sp. were investigated and compared during chalcopyrite bioleaching process. In the mixed strains system, Acidithiobacillus ferrooxidans was the dominant species at the early stage while Acidithiobacillus thiooxidans owned competitive advantage from the middle stage to the end of bioprocess. Meanwhile, compared to A. ferrooxidans, more significant effects of attached cells on free biomass with A. thiooxidans were shown in either the pure or mixed strains systems. Moreover, the effects of attached cells on key chemical parameters were also studied in different adsorption-deficient systems. Consistently, the greatest reduction of key chemical ion was shown with A. thiooxidans and the loss of bioleaching efficiency was high to 50.5%. These results all demonstrated the bioleaching function of attached cells was more efficient than the free cells, especially with A. thiooxidans. These notable results would help us to further understand the chalcopyrite bioleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    PubMed

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-02

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD.

  15. Gene Identification and Substrate Regulation Provide Insights into Sulfur Accumulation during Bioleaching with the Psychrotolerant Acidophile Acidithiobacillus ferrivorans

    PubMed Central

    Liljeqvist, Maria; Rzhepishevska, Olena I.

    2013-01-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments. PMID:23183980

  16. Isolation, sequence analysis, and comparison of two plasmids (28 and 29 kilobases) from the biomining bacterium Leptospirillum ferrooxidans ATCC 49879.

    PubMed

    Coram, Nicolette J; van Zyl, Leonardo J; Rawlings, Douglas E

    2005-11-01

    Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other features of the two plasmids, the first to be isolated from a bacterium of the genus Leptospirillum, is presented.

  17. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.

    PubMed

    Bryan, C G; Davis-Belmar, C S; van Wyk, N; Fraser, M K; Dew, D; Rautenbach, G F; Harrison, S T L

    2012-07-01

    Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 µM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 µM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and

  18. Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents.

    PubMed

    Dave, Shailesh R; Gupta, Kajal H; Tipre, Devayani R

    2008-11-01

    Four arsenic resistant ferrous oxidizers were isolated from Hutti Gold Mine Ltd. (HGML) samples. Characterization of these isolates was done using conventional microbiological, biochemical and molecular methods. The ferrous oxidation rates with these isolates were 16, 48, 34 and 34 mg L(-1)h(-1) and 15, 47, 34 and 32 mg L(-1)h(-1) in absence and presence of 20 mM of arsenite (As3+) respectively. Except isolate HGM 8, other three isolates showed 2.9-6.3% inhibition due to the presence of 20 mM arsenite. Isolate HGM 8 was able to grow in presence of 14.7 g L(-1) of arsenite, with 25.77 mg L(-1)h(-1) ferrous oxidation rate. All the four isolates were able to oxidize iron and arsenopyrite from 20 g L(-1) and 40 g L(-1) refractory gold ore and 20 g L(-1) refractory gold concentrate. Once the growth was established pH adjustment was not needed inspite of ferrous oxidation, which could be due to concurrent oxidation of pyrite. Isolate HGM 8 showed the final cell count of as high as 1.12 x 10(8) cells mL(-1) in 40 g L(-1) refractory gold ore. The isolates were grouped into one haplotypes by amplified ribosomal DNA restriction analysis (ARDRA). The phylogenetic position of HGM 8 was determined by 16S rDNA sequencing. It was identified as Acidithiobacillus ferrooxidans and strain name was given as SRHGM 1.

  19. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans.

    PubMed

    Meruane, G; Salhe, C; Wiertz, J; Vargas, T

    2002-11-05

    The influence of solution Eh on the rate of ferrous iron oxidation by Acidithiobacillus ferrooxidans is characterized. The experimental approach was based on the use of a two-chamber bioelectrochemical cell, which can determine the ferrous iron oxidation rate at controlled potential. Results enabled the formulation of a novel kinetic model, which incorporates the effect of solution Eh in an explicit form but still integrates the effect of ferrous iron concentration and ferric inhibition. The results showed that at Eh values below 650 mV (standard hydrogen electrode, SHE) the bacterial oxidative activity is mainly dependent on ferrous iron concentration. At Eh values between 650 and 820 mV (SHE) the oxidation rate is mainly controlled by ferric inhibition. Over 820 mV (SHE) the bacterial oxidative activity is strongly inhibited by the Eh increase, being completely inhibited at Eh = 840 mV (SHE). Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 280-288, 2002.

  20. [Phylogenetic and diversity analysis of Acidithiobacillus spp. based on 16S rRNA and RubisCO genes homologues].

    PubMed

    Liu, Minrui; Lin, Pengwu; Qi, Xing'e; Ni, Yongqing

    2016-04-14

    The purpose of the study was to reveal geographic region-related Acidithiobacillus spp. distribution and allopatric speciation. Phylogenetic and diversity analysis was done to expand our knowledge on microbial phylogeography, diversity-maintaining mechanisms and molecular biogeography. We amplified 16S rRNA gene and RubisCO genes to construct corresponding phylogenetic trees based on the sequence homology and analyzed genetic diversity of Acidithiobacillus spp.. Thirty-five strains were isolated from three different regions in China (Yunnan, Hubei, Xinjiang). The whole isolates were classified into five groups. Four strains were identified as A. ferrivorans, six as A. ferridurans, YNTR4-15 Leptspirillum ferrooxidans and HBDY3-31 as Leptospirillum ferrodiazotrophum. The remaining strains were identified as A. ferrooxidans. Analysis of cbbL and cbbM genes sequences of representative 26 strains indicated that cbbL gene of 19 were two copies (cbbL1 and cbbL2) and 7 possessed only cbbL1. cbbM gene was single copy. In nucleotide-based trees, cbbL1 gene sequences of strains were separated into three sequence types, and the cbbL2 was similar to cbbL1 with three types. Codon bias of RubisCO genes was not obvious in Acidithiobacillus spp.. Strains isolated from three different regions in China indicated a great genetic diversity in Acidithiobacillus spp. and their 16S rRNA/RubisCO genes sequence was of significant difference. Phylogenetic tree based on 16S rRNA genes and RubisCO genes was different in Acidithiobacillus spp..

  1. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    PubMed Central

    Makita, Mario; Esperón, Margarita; Pereyra, Benito; López, Alejandro; Orrantia, Erasmo

    2004-01-01

    Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS). Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield) of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS) was totally oxidized too, anglesite (PbSO4) formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1). Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight) of arsenic removal. Further studies are needed to determine other factors that influence specifically the solubilization of arsenic in

  2. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant.

    PubMed

    Hocheng, Hong; Su, Cheer; Jadhav, Umesh U

    2014-12-01

    The generation of 300–500 kg of slag per ton of the steel produced is a formidable amount of solid waste available for treatment. They usually contain considerable quantities of valuable metals. In this sense, they may become either important secondary resource if processed in eco-friendly manner for secured supply of contained metals or potential pollutants, if not treated properly. It is possible to recover metals from steel slag by applying bioleaching process. Electric arc furnace (EAF) slag sample was used for bioleaching of metals. In the present study, before bioleaching experiment water washing of an EAF slag was carried out. This reduced slag pH from 11.2 to 8.3. Culture supernatants of Acidithiobacillus thiooxidans (At. thiooxidans), Acidithiobacillus ferrooxidans (At. ferrooxidans), and Aspergillus niger (A. niger) were used for metal solubilization. At. thiooxidans culture supernatant containing 0.016 M sulfuric acid was found most effective for bioleaching of metals from an EAF slag. Maximum metal extraction was found for Mg (28%), while it was least for Mo (0.1%) in six days. Repeated bioleaching cycles increased metal recovery from 28% to 75%, from 14% to 60% and from 11% to 27%, for Mg, Zn and Cu respectively.

  3. The Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans.

    PubMed

    Moinier, Danielle; Byrne, Deborah; Amouric, Agnès; Bonnefoy, Violaine

    2017-01-01

    The chemical attack of ore by ferric iron and/or sulfuric acid releases valuable metals. The products of these reactions are recycled by iron and sulfur oxidizing microorganisms. These acidophilic chemolithotrophic prokaryotes, among which Acidithiobacillus ferrooxidans , grow at the expense of the energy released from the oxidation of ferrous iron and/or inorganic sulfur compounds (ISCs). In At. ferrooxidans , it has been shown that the expression of the genes encoding the proteins involved in these respiratory pathways is dependent on the electron donor and that the genes involved in iron oxidation are expressed before those responsible for ISCs oxidation when both iron and sulfur are present. Since the redox potential increases during iron oxidation but remains stable during sulfur oxidation, we have put forward the hypothesis that the global redox responding two components system RegB/RegA is involved in this regulation. To understand the mechanism of this system and its role in the regulation of the aerobic respiratory pathways in At. ferrooxidans , the binding of different forms of RegA (DNA binding domain, wild-type, unphosphorylated and phosphorylated-like forms of RegA) on the regulatory region of different genes/operons involved in ferrous iron and ISC oxidation has been analyzed. We have shown that the four RegA forms are able to bind specifically the upstream region of these genes. Interestingly, the phosphorylation of RegA did not change its affinity for its cognate DNA. The transcriptional start site of these genes/operons has been determined. In most cases, the RegA binding site(s) was (were) located upstream from the -35 (or -24) box suggesting that RegA does not interfere with the RNA polymerase binding. Based on the results presented in this report, the role of the RegB/RegA system in the regulation of the ferrous iron and ISC oxidation pathways in At. ferrooxidans is discussed.

  4. The Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans

    PubMed Central

    Moinier, Danielle; Byrne, Deborah; Amouric, Agnès; Bonnefoy, Violaine

    2017-01-01

    The chemical attack of ore by ferric iron and/or sulfuric acid releases valuable metals. The products of these reactions are recycled by iron and sulfur oxidizing microorganisms. These acidophilic chemolithotrophic prokaryotes, among which Acidithiobacillus ferrooxidans, grow at the expense of the energy released from the oxidation of ferrous iron and/or inorganic sulfur compounds (ISCs). In At. ferrooxidans, it has been shown that the expression of the genes encoding the proteins involved in these respiratory pathways is dependent on the electron donor and that the genes involved in iron oxidation are expressed before those responsible for ISCs oxidation when both iron and sulfur are present. Since the redox potential increases during iron oxidation but remains stable during sulfur oxidation, we have put forward the hypothesis that the global redox responding two components system RegB/RegA is involved in this regulation. To understand the mechanism of this system and its role in the regulation of the aerobic respiratory pathways in At. ferrooxidans, the binding of different forms of RegA (DNA binding domain, wild-type, unphosphorylated and phosphorylated-like forms of RegA) on the regulatory region of different genes/operons involved in ferrous iron and ISC oxidation has been analyzed. We have shown that the four RegA forms are able to bind specifically the upstream region of these genes. Interestingly, the phosphorylation of RegA did not change its affinity for its cognate DNA. The transcriptional start site of these genes/operons has been determined. In most cases, the RegA binding site(s) was (were) located upstream from the −35 (or −24) box suggesting that RegA does not interfere with the RNA polymerase binding. Based on the results presented in this report, the role of the RegB/RegA system in the regulation of the ferrous iron and ISC oxidation pathways in At. ferrooxidans is discussed. PMID:28747899

  5. Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Minjie; Li, Yanjun; Zhang, Li; Wang, Jianying; Zheng, Chunli; Zhang, Xuefeng

    2015-02-01

    Acidithiobacillus ferrooxidans plays a critical role in metal solubilization in the biomining industry, and occupies an ecological niche characterized by high acidity and high concentrations of toxic heavy metal ions. In order to investigate the possible metal resistance mechanism, the cellular distribution of cadmium was tested. The result indicated that Cd(2+) entered the cells upon initial exposure resulting in increased intracellular concentrations, followed by its excretion from the cells during subsequent growth and adaptation. Sequence homology analyses were used to identify 10 genes predicted to participate in heavy metal homeostasis, and the expression of these genes was investigated in cells cultured in the presence of increasing concentrations of toxic divalent cadmium (Cd(2+)). The results suggested that one gene (cmtR A.f ) encoded a putative Cd(2+)/Pb(2+)-responsive transcriptional regulator; four genes (czcA1 A.f , czcA2 A.f , czcB1 A.f ; and czcC1 A.f ) encoded heavy metal efflux proteins for Cd(2+); two genes (cadA1 A.f and cadB1 A.f ) encoded putative cation channel proteins related to the transport of Cd(2+). No significant enhancement of gene expression was observed at low concentrations of Cd(2+) (5 mM) and most of the putative metal resistance genes were up-regulated except cmtR A.f , cadB3 A.f ; and czcB1 A.f at higher concentrations (15 and 30 mM) according to real-time polymerase chain reaction. A model was developed for the mechanism of resistance to cadmium ions based on homology analyses of the predicted genes, the transcription of putative Cd(2+) resistance genes, and previous work.

  6. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

    2014-02-01

    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  7. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.

    PubMed

    Klink, C; Eisen, S; Daus, B; Heim, J; Schlömann, M; Schopf, S

    2016-06-01

    The aim of this study was to investigate the potential of bioleaching for the treatment of an environmentally hazardous waste, a blast-furnace flue dust designated Theisen sludge. Bioleaching of Theisen sludge was investigated at acidic conditions with Acidithiobacillus ferrooxidans in pure and mixed-species culture with Acidiphilium. In shaking-flask experiments, bioleaching parameters (pH, redox potential, zinc extraction from ZnS, ferrous- and ferric-iron concentration) were controlled regularly. The analysis of the dissolved metals showed that 70% zinc and 45% copper were extracted. Investigations regarding the arsenic and antimony species were performed. When iron ions were lacking, animonate (Sb(V)) and total arsenic concentration were highest in solution. The bioleaching approach was scaled up in stirred-tank bioreactors resulting in higher leaching efficiency of valuable trace elements. Concentrations of dissolved antimony were approx. 23 times, and of cobalt, germanium, and rhenium three times higher in comparison to shaking-flask experiments, when considering the difference in solid load of Theisen sludge. The extraction of base and trace metals from Theisen sludge, despite of its high content of heavy metals and organic compounds, was feasible with iron-oxidizing acidophilic bacteria. In stirred-tank bioreactors, the mixed-species culture performed better. To the best of our knowledge, this study is the first providing an appropriate biological technology for the treatment of Theisen sludge to win valuable elements. © 2016 The Society for Applied Microbiology.

  8. Effect of metal sulfide pulp density on gene expression of electron transporters in Acidithiobacillus sp. FJ2.

    PubMed

    Fatemi, Faezeh; Miri, Saba; Jahani, Samaneh

    2017-05-01

    In Acidithiobacillus ferrooxidans, one of the most important bioleaching bacterial species, the proteins encoded by the rus operon are involved in the electron transfer from Fe 2+ to O 2 . To obtain further knowledge about the mechanism(s) involved in the adaptive responses of the bacteria to growth on the different uranium ore pulp densities, we analyzed the expression of the four genes from the rus operon by real-time PCR, when Acidithiobacillus sp. FJ2 was grown in the presence of different uranium concentrations. The uranium bioleaching results showed the inhibitory effects of the metal pulp densities on the oxidation activity of the bacteria which can affect Eh, pH, Fe oxidation and uranium extractions. Gene expression analysis indicated that Acidithiobacillus sp. FJ2 tries to survive in the stress with increasing in the expression levels of cyc2, cyc1, rus and coxB, but the metal toxicity has a negative effect on the gene expression in different pulp densities. These results indicated that Acidithiobacillus sp. FJ2 could leach the uranium even in high pulp density (50%) by modulation in rus operon gene responses.

  9. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant

    DOE PAGES

    Li, Ting-Feng; Painter, Richard G.; Ban, Bhupal; ...

    2015-06-03

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm2 in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pHmore » 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s -1. The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment.« less

  10. Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression.

    PubMed

    Ohmura, N; Kitamura, K; Saiki, H

    1993-03-15

    Microbial desulfurization might be developed as a new process for the removal of pyrite sulfur from coal sluries such as coal-water mixture (CWM). An application of iron-oxidizing bacterium Thiobacillus ferrooxidans to flotation would shorten the periods of the microbial removal of pyrite from some weeks by leaching methods to a few minutes. The floatability of pyrite in flotation was mainly reduced by T. ferrooxidans itself rather than by other microbial substances in bacterial culture as additive of flotation liquor. Floatability was suppressed within a few seconds by bacterial contact. The suppression was proportional to increasing the number of cells observed between bacterial adhesion and the suppression of floatability. If 25% of the total pyrite surface area covered with the bacteria, pyrite floatability would be completely depressed. Bacteria that lost their iron-oxidizing activities by sodium cyanide treatment were also able to adhere to pyrite and reduced pyrite floatability as much as normal bacteria did. Thiobacillus ferrooxidans ATCC 23270, T-1, 9, and 11, which had different iron-oxidizing abilities, suppressed floatability to similar-levels. The oxidizing ability of bacteria did not influence the suppressing effect. These results showed the mechanism of the suppression of pyrite floatability by bacteria. Quick bacterial adhesion to pyrite induced floatability suppression by changing the surface property from hydrophobic. The quick adhesion of the bacterium was the novel function which worked to change the surface property of pyrite to remove it from coal. (c) 1993 John Wiley & Sons, Inc.

  11. [Inhibition of Low Molecular Organic Acids on the Activity of Acidithiobacillus Species and Its Effect on the Removal of Heavy Metals from Contaminated Soil].

    PubMed

    Song, Yong-wei; Wang, He-rul; Cao, Yan-xiao; Li, Fei; Cui, Chun-hong; Zhou, Li

    2016-05-15

    Application of organic fertilizer can reduce the solubility and bioavailability of heavy metals in contaminated soil, but in the flooded anaerobic environment, organic fertilizer will be decomposed to produce a large number of low molecular organic acids, which can inhibit the biological activity of Acidithiobacillus species. Batch cultures studies showed that the monocarboxylic organic acids including formic acid, acetic acid, propionic acid, and butyric acid exhibited a marked toxicity to Acidithiobacillus species, as indicated by that 90% of inhibitory rate for Fe2 and So oxidation in 72 h were achieved at extremely low concentrations of 41.2 mg · L⁻¹, 78.3 mg · L⁻¹, 43.2 mg · L⁻¹, 123.4 mg · L⁻¹ and 81.9 mg 230. 4 mg · L⁻¹, 170.1 mg · L⁻¹, 123.4 mg · L⁻¹ respectively. Of these organic acids, formic acid was the most toxic one as indicated by that Fe2 and So oxidation was almost entirely inhibited at a low concentration. In addition, it was found that Acidithiobacillus ferrooxidans was more sensitive to low molecular organic acids than Acidithiobacillus thiooxidans. What's more, there was little effect on biological acidification process of heavy metal contaminated soil when organic acids were added at initial stage (Oh), but it was completely inhibited when these acids were added after 12 h of conventional biological acidification, thus decreasing the efficiency of heavy metals dissolution from soil.

  12. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate

    PubMed Central

    Bobadilla Fazzini, Roberto A.; Levican, Gloria

    2010-01-01

    The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)—has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788–789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492–493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-3063-8) contains supplementary material, which is available to authorized users. PMID:21191788

  13. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    PubMed

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine.

  14. Selective Adhesion of Thiobacillus ferrooxidans to Pyrite

    PubMed Central

    Ohmura, Naoya; Kitamura, Keiko; Saiki, Hiroshi

    1993-01-01

    Bacterial adhesion to mineral surfaces plays an important role not only in bacterial survival in natural ecosystems, but also in mining industry applications. Selective adhesion was investigated with Thiobacillus ferrooxidans by using four minerals, pyrite, quartz, chalcopyrite, and galena. Escherichia coli was used as a control bacterium. Contact angles were used as indicators of hydrophobicity, which was an important factor in the interaction between minerals and bacteria. The contact angle of E. coli in a 0.5% sodium chloride solution was 31°, and the contact angle of T. ferrooxidans in a pH 2.0 sulfuric acid solution was 23°. E. coli tended to adhere to more hydrophobic minerals by hydrophobic interaction, while T. ferrooxidans selectively adhered to iron-containing minerals, such as pyrite and chalcopyrite. Ferrous ion inhibited the selective adhesion of T. ferrooxidans to pyrite competitively, while ferric ion scarcely inhibited such adhesion. When selective adhesion was quenched by ferrous ion completely, adhesion of T. ferrooxidans was controlled by hydrophilic interactions. Adhesion of E. coli to pyrite exhibited a liner relationship on langmuir isotherm plots, but adhesion of T. ferrooxidans did not. T. ferrooxidans recognized the reduced iron in minerals and selectively adhered to pyrite and chalcopyrite by a strong interaction other than the physical interaction. PMID:16349106

  15. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy

    NASA Astrophysics Data System (ADS)

    Brunner, Benjamin; Yu, Jae-Young; Mielke, Randall E.; MacAskill, John A.; Madzunkov, Stojan; McGenity, Terry J.; Coleman, Max

    2008-06-01

    The solution chemistry during the initial (slow increase of dissolved iron and sulfate) and main stage (rapid increase of dissolved iron and sulfate) of pyrite leaching by Acidithiobacillus ferrooxidans (Af) at a starting pH of 2.05 shows significant differences. During the initial stage, ferrous iron (Fe2+) is the dominant iron species in solution and the molar ratio of produced sulfate (SO42-) and total iron (Fetot) is 1.1, thus does not reflect the stoichiometry of pyrite (FeS2). During the main stage, ferric iron (Fe3+) is the dominant iron species in solution and the SO42-:Fetot ratio is with 1.9, close to the stoichiometry of FeS2. Another difference between initial and main stage is an initial trend to slightly higher pH values followed by a drop during the main stage to pH 1.84. These observations raise the question if there are different modes of bioleaching of pyrite, and if there are, what those modes imply in terms of leaching mechanisms. Different oxygen and sulfur isotope trends of sulfate during the initial and main stages of pyrite oxidation confirm that there are two pyrite bioleaching modes. The biochemical reactions during initial stage are best explained by the net reaction FeS2 + 3O2 ⇒ Fe2+ + SO42- + SO2(g). The degassing of sulfur dioxide (SO2) acts as sink for sulfur depleted in 34S compared to pyrite, and is the cause of the SO42-:Fetot ratio of 1.1 and the near constant pH. During the exponential phase, pyrite sulfur is almost quantitatively converted to sulfate, according to the net reaction FeS2 + 15/4O2 + 1/2H2O ⇒ Fe3+ + 2SO42- + H+. We hypothesize that the transition between the modes of bioleaching of pyrite is due to the impact of the accumulation of ferrous iron, which induces changes in the metabolic activity of Af and may act as an inhibitor for the oxidation of sulfur species. This transition defines a fundamental change in the growth strategy of Af. A mode, where bacteria gain energy by oxidation of elemental sulfur to

  16. A novel mineral flotation process using Thiobacillus ferrooxidans.

    PubMed

    Nagaoka, T; Ohmura, N; Saiki, H

    1999-08-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals.

  17. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  18. A Novel Mineral Flotation Process Using Thiobacillus ferrooxidans

    PubMed Central

    Nagaoka, Toru; Ohmura, Naoya; Saiki, Hiroshi

    1999-01-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals. PMID:10427053

  19. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.

    PubMed

    Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-12-01

    In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.

  20. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2016-01-01

    The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optimizing the Electron Transfer Reactions at the Cathode of Microbial Fuel Cells

    DTIC Science & Technology

    2015-05-15

    of iron-oxidizing Gram-negative eubacteria (Nitrospiraceae and Proteobacteria), Gram-positive eubacteria (Firmicutes and Actinobacteria ) and archaea...Euryarchaeota Actinobacteria Crenarachaeota Nitrospiraceae...Proteobacteria, Acidithiobacillus ferrooxidans; Firmicutes, Sulfobacillus thermosulfidooxidans; Actinobacteria , Ferrimicrobium acidiphilum; Euryarchaeota

  2. "Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH".

    PubMed

    Ulloa, G; Collao, B; Araneda, M; Escobar, B; Álvarez, S; Bravo, D; Pérez-Donoso, J M

    2016-12-01

    The use of bacterial cells to produce fluorescent semiconductor nanoparticles (quantum dots, QDs) represents a green alternative with promising economic potential. In the present work, we report for the first time the biosynthesis of CdS QDs by acidophilic bacteria of the Acidithiobacillus genus. CdS QDs were obtained by exposing A. ferrooxidans, A. thiooxidans and A. caldus cells to sublethal Cd 2+ concentrations in the presence of cysteine and glutathione. The fluorescence of cadmium-exposed cells moves from green to red with incubation time, a characteristic property of QDs associated with nanocrystals growth. Biosynthesized nanoparticles (NPs) display an absorption peak at 360nm and a broad emission spectra between 450 and 650nm when excited at 370nm, both characteristic of CdS QDs. Average sizes of 6 and 10nm were determined for green and red NPs, respectively. The importance of cysteine and glutathione on QDs biosynthesis in Acidithiobacillus was related with the generation of H 2 S. Interestingly, QDs produced by acidophilic bacteria display high tolerance to acidic pH. Absorbance and fluorescence properties of QDs was not affected at pH 2.0, a condition that totally inhibits the fluorescence of QDs produced chemically or biosynthesized by mesophilic bacteria (stable until pH 4.5-5.0). Results presented here constitute the first report of the generation of QDs with improved properties by using extremophile microorganisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    PubMed

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  4. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    PubMed Central

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  5. Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms

    PubMed Central

    Jones, Daniel S; Schaperdoth, Irene; Macalady, Jennifer L

    2016-01-01

    Extremely acidic (pH 0–1.5) Acidithiobacillus-dominated biofilms known as snottites are found in sulfide-rich caves around the world. Given the extreme geochemistry and subsurface location of the biofilms, we hypothesized that snottite Acidithiobacillus populations would be genetically isolated. We therefore investigated biogeographic relationships among snottite Acidithiobacillus spp. separated by geographic distances ranging from meters to 1000s of kilometers. We determined genetic relationships among the populations using techniques with three levels of resolution: (i) 16S rRNA gene sequencing, (ii) 16S–23S intergenic transcribed spacer (ITS) region sequencing and (iii) multi-locus sequencing typing (MLST). We also used metagenomics to compare functional gene characteristics of select populations. Based on 16S rRNA genes, snottites in Italy and Mexico are dominated by different sulfur-oxidizing Acidithiobacillus spp. Based on ITS sequences, Acidithiobacillus thiooxidans strains from different cave systems in Italy are genetically distinct. Based on MLST of isolates from Italy, genetic distance is positively correlated with geographic distance both among and within caves. However, metagenomics revealed that At. thiooxidans populations from different cave systems in Italy have different sulfur oxidation pathways and potentially other significant differences in metabolic capabilities. In light of those genomic differences, we argue that the observed correlation between genetic and geographic distance among snottite Acidithiobacillus populations is partially explained by an evolutionary model in which separate cave systems were stochastically colonized by different ancestral surface populations, which then continued to diverge and adapt in situ. PMID:27187796

  6. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    PubMed Central

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575

  7. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    PubMed Central

    Levicán, Gloria; Ugalde, Juan A; Ehrenfeld, Nicole; Maass, Alejandro; Parada, Pilar

    2008-01-01

    Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms. PMID:19055775

  8. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.

    1987-01-01

    The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homologymore » (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.« less

  9. Biological effect of Acidithiobacillus thiooxidans on some potentially toxic elements during alteration of SON 68 nuclear glass

    NASA Astrophysics Data System (ADS)

    Bachelet, M.; Crovisier, J. L.; Stille, P.; Vuilleumier, S.; Geoffroy, V.

    2009-04-01

    Although underground nuclear waste repositories are not expected to be favourable places for microbial activity, one should not exclude localized action of extremophilic bacteria on some materials involved in the storage concept. Among endogenous or accidentally introduced acidophiles, some are susceptible to lead to a locally drastic decreased in pH, with potential consequences on materials corrosion. Experiments were performed with Acidithiobacillus thiooxidans on 100-125 m french reference nuclear glass SON68 grains in a mineral medium under static conditions during 60 days at 25degC. Growth medium was periodically renewed and analyzed by ICP-AES and ICP-MS spectrometry for both major, trace and ultra-trace elements. Biofilm formation was evidenced by confocal laser microscopy, staining DNA with ethidium bromide and exopolysaccharides with calcofluor white. Biofilm thickness around material grains exceeded 20 m under the chosen experimental conditions. It can be noticed that while numerous studies on biofilm formation upon interaction between Acidithiobacillus ferrooxidans and materials are found in the literature, evidence for biofilm formation is still scarce for the case of the acidophilic bacterium A. thiooxidans. Presence of biofilm is a key parameter for material alteration at the solid/solution interface in biotic systems. Indeed, various constitutive elements of materials trapped in the polyanionic polymer of biofilm may also influence the alteration process. In particular, biofilm may reduce the alteration rate of materials by forming a protective barrier at their surface (Aouad et al., 2008). In this study, glass alteration rates, determined using strontium as tracer, showed that the progressive formation of a biofilm on the surface of glass has a protective effect against its alteration. Uranium and rare earth elements (REE) are efficiently trapped in the biogenic compartment of the system (exopolysaccharides + bacterial cells). Besides, the ratio

  10. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  11. Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site.

    PubMed

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Nanba, Kenji; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-01-01

    Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0-3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)(-1) of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit.

  12. Analysis of Early Bacterial Communities on Volcanic Deposits on the Island of Miyake (Miyake-jima), Japan: a 6-year Study at a Fixed Site

    PubMed Central

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Nanba, Kenji; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-01-01

    Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0–3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)−1 of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit. PMID:22075623

  13. Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium.

    PubMed

    Gan, Min; Zhou, Shuang; Li, Mingming; Zhu, Jianyu; Liu, Xinxing; Chai, Liyuan

    2015-04-01

    A defined mesophile consortium including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirilum ferriphilum was applied in bioleaching sediments contaminated with multiple heavy metals. Flask experiments showed that sulfur favored the acidification in the early stage while pyrite led to a great acidification potential in the later stage. An equal sulfur/pyrite ratio got the best acidification effect. Substrate utilization started with sulfur in the early stage, and then the pH decline and the community shift give rise to the utilization of pyrite. Solubilization efficiency of Zn, Cu, Mn, and Cd reached 96.1, 93.3, 92.13, and 87.65%, respectively. Bioleaching efficiency of other elements (As, Hg, Pb) was not more than 30%. Heavy metal solubilization was highly negatively correlated with pH variation. Logistic models were well fitted with the solubilization efficiency, which can be used to predict the bioleaching process. The dominant species in the early stage of bioleaching were A. ferrooxidans and A. thiooxidans, and the abundance of L. ferriphilum increased together with pyrite utilization and pH decline.

  14. Effect of Ferric Ions on Bioleaching of Pentlandite Concentrate

    NASA Astrophysics Data System (ADS)

    Li, Qian; Lai, Huimin; Yang, Yongbin; Xu, Bin; Jiang, Tao; Zhang, Yaping

    The intensified effects of ferric phosphate and ferric sulfate as nutrient and oxidant on the bioleaching of pentlandite concentrate with Acidithiobacillus ferrooxidans and Sulfobacillus thermosulfidooxidans were studied. The results showed that the nickel leaching rate was enhanced continuously with FePO4 or Fe2(SO4)3 added in certain extent, but declined at excess. For A. ferrooxidans, the optimum additive amount of Fe2(SO4)3 was 6.63mM/L and the nickel leaching rate reached 71.76%. Compared with Fe2(SO4)3, the optimum additive amount of FePO4 was 26.52mM/L for both strains. For A. ferrooxidans and S. thermosulfidooxidans, the nickel leaching rate could increase to 98.06% and 98.11% which was 1.83 times and 1.55 times of the leachig rate of blank test, respectively.

  15. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  16. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

    PubMed

    Travisany, Dante; Cortés, María Paz; Latorre, Mauricio; Di Genova, Alex; Budinich, Marko; Bobadilla-Fazzini, Roberto A; Parada, Pilar; González, Mauricio; Maass, Alejandro

    2014-11-01

    Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Microbial Ecology of an Extreme Acidic Environment, the Tinto River

    PubMed Central

    González-Toril, E.; Llobet-Brossa, E.; Casamayor, E. O.; Amann, R.; Amils, R.

    2003-01-01

    The Tinto River (Huelva, southwestern Spain) is an extreme environment with a rather constant acidic pH along the entire river and a high concentration of heavy metals. The extreme conditions of the Tinto ecosystem are generated by the metabolic activity of chemolithotrophic microorganisms thriving in the rich complex sulfides of the Iberian Pyrite Belt. Molecular ecology techniques were used to analyze the diversity of this microbial community. The community's composition was studied by denaturing gradient gel electrophoresis (DGGE) using 16S rRNA and by 16S rRNA gene amplification. A good correlation between the two approaches was found. Comparative sequence analysis of DGGE bands showed the presence of organisms related to Leptospirillum spp., Acidithiobacillus ferrooxidans, Acidiphilium spp., “Ferrimicrobium acidiphilum,” Ferroplasma acidiphilum, and Thermoplasma acidophilum. The different phylogenetic groups were quantified by fluorescent in situ hybridization with a set of rRNA-targeted oligonucleotide probes. More than 80% of the cells were affiliated with the domain Bacteria, with only a minor fraction corresponding to Archaea. Members of Leptospirillum ferrooxidans, Acidithiobacillus ferrooxidans, and Acidiphilium spp., all related to the iron cycle, accounted for most of the prokaryotic microorganisms detected. Different isolates of these microorganisms were obtained from the Tinto ecosystem, and their physiological properties were determined. Given the physicochemical characteristics of the habitat and the physiological properties and relative concentrations of the different prokaryotes found in the river, a model for the Tinto ecosystem based on the iron cycle is suggested. PMID:12902280

  18. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076.

    PubMed

    Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo

    2017-03-12

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli .

  19. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    PubMed

    Castro, Matías; Deane, Shelly M; Ruiz, Lina; Rawlings, Douglas E; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.

  20. Diguanylate Cyclase Null Mutant Reveals That C-Di-GMP Pathway Regulates the Motility and Adherence of the Extremophile Bacterium Acidithiobacillus caldus

    PubMed Central

    Castro, Matías; Deane, Shelly M.; Ruiz, Lina; Rawlings, Douglas E.; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process. PMID:25689133

  1. An Immunological Strategy To Monitor In Situ the Phosphate Starvation State in Thiobacillus ferrooxidans

    PubMed Central

    Varela, Patricia; Levicán, Gloria; Rivera, Francisco; Jerez, Carlos A.

    1998-01-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular weight (70,000 to 80,000). These proteins were considered to be potential markers of the phosphate starvation state of these microorganisms. We developed a single-cell immunofluorescence assay that allowed monitoring of the phosphate starvation condition of this biomining microorganism by measuring the increased expression of the surface proteins. In the presence of low levels of arsenate (2 mM), the growth of phosphate-starved T. ferrooxidans cells was greatly inhibited compared to that of control nonstarved cells. Therefore, the determination of the phosphorus nutritional state is particularly relevant when arsenic compounds are solubilized during the bioleaching of different ores. PMID:9835593

  2. Use of an acidophilic yeast strain to enable the growth of leaching bacteria on solid media.

    PubMed

    Ngom, Baba; Liang, Yili; Liu, Yi; Yin, Huaqun; Liu, Xueduan

    2015-03-01

    In this study, a Candida digboiensis strain was isolated from a heap leaching plant in Zambia and used in double-layer agar plate to efficiently isolate and purify leaching bacteria. Unlike Acidiphilium sp., the yeast strain was tetrathionate tolerant and could metabolize a great range of organic compounds including organic acids. These properties allowed the yeast strain to enable and fasten the growth of iron and sulfur oxidizers on double-layer agar plate. The isolates were identified as Acidithiobacillus ferrooxidans FOX1, Leptospirillun ferriphilum BN, and Acidithiobacillus thiooxidans ZMB. These three leaching bacteria were inhibited by organic acids such as acetic and propionic acids; however, their activities were enhanced by Candida digboiensis NB under dissolved organic matter stress.

  3. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  4. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  5. Impact of solvent extraction organics on adsorption and bioleaching of A. ferrooxidans and L. ferriphilum

    NASA Astrophysics Data System (ADS)

    Hualong, Yu; Xiaorong, Liu

    2017-04-01

    Copper solvent extraction entrained and dissoluted organics (SX organics) in the raffinate during SX operation can contaminated chalcopyrite ores and influence bioleaching efficiency by raffinate recycling. The adsorption and bioleaching of A. ferrooxidans and L. ferriphilum with contaminated ores were investigated. The results showed that, A. ferrooxidans and L. ferriphilum cells could adsorb quickly on minerals, the adsorption rate on contaminated ores were 83% and 60%, respectively, larger than on uncontaminated ores. However, in the bioleaching by the two kinds of acid bacterias, contaminated ores presented a lower bioleaching efficiency.

  6. An electrochemical sensing approach for scouting microbial chemolithotrophic metabolisms.

    PubMed

    Saavedra, Albert; Figueredo, Federico; Cortón, Eduardo; Abrevaya, Ximena C

    2018-05-01

    The present study was aimed to test an electrochemical sensing approach for the detection of an active chemolithotrophic metabolism (and therefore the presence of chemolithotrophic microorganisms) by using the corrosion of pyrite by Acidithiobacillus ferrooxidans as a model. Different electrochemical techniques were combined with adhesion studies and scanning electron microscopy (SEM). The experiments were performed in presence or absence of A. ferrooxidans and without or with ferrous iron in the culture medium (0 and 0.5 g L -1 , respectively). Electrochemical parameters were in agreement with voltammetric studies and SEM showing that it is possible to distinguish between an abiotically-induced corrosion process (AIC) and a microbiologically-induced corrosion process (MIC). The results show that our approach not only allows the detection of chemolithotrophic activity of A. ferrooxidans but also can characterize the corrosion process. This may have different kind of applications, from those related to biomining to life searching missions in other planetary bodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching

  8. Biofilm Formation by the Acidophile Bacterium Acidithiobacillus thiooxidans Involves c-di-GMP Pathway and Pel exopolysaccharide.

    PubMed

    Díaz, Mauricio; Castro, Matias; Copaja, Sylvia; Guiliani, Nicolas

    2018-02-21

    Acidophile bacteria belonging to the Acidithiobacillus genus are pivotal players for the bioleaching of metallic values such as copper. Cell adherence to ores and biofilm formation, mediated by the production of extracellular polymeric substances, strongly favors bioleaching activity. In recent years, the second messenger cyclic diguanylate (c-di-GMP) has emerged as a central regulator for biofilm formation in bacteria. C-di-GMP pathways have been reported in different Acidithiobacillus species; however, c-di-GMP effectors and signal transduction networks are still largely uncharacterized in these extremophile species. Here we investigated Pel exopolysaccharide and its role in biofilm formation by sulfur-oxidizing species Acidithiobacillus thiooxidans . We identified 39 open reading frames (ORFs) encoding proteins involved in c-di-GMP metabolism and signal transduction, including the c-di-GMP effector protein PelD, a structural component of the biosynthesis apparatus for Pel exopolysaccharide production. We found that intracellular c-di-GMP concentrations and transcription levels of pel genes were higher in At . thiooxidans biofilm cells compared to planktonic ones. By developing an At . thiooxidans Δ pelD null-mutant strain we revealed that Pel exopolysaccharide is involved in biofilm structure and development. Further studies are still necessary to understand how Pel biosynthesis is regulated in Acidithiobacillus species, nevertheless these results represent the first characterization of a c-di-GMP effector protein involved in biofilm formation by acidophile species.

  9. Spatial and Temporal Analysis of the Microbial Community in the Tailings of a Pb-Zn Mine Generating Acidic Drainage ▿ †

    PubMed Central

    Huang, Li-Nan; Zhou, Wen-Hua; Hallberg, Kevin B.; Wan, Cai-Yun; Li, Jie; Shu, Wen-Sheng

    2011-01-01

    Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage. PMID:21705549

  10. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) by Leptospirillum ferrooxidans

    NASA Astrophysics Data System (ADS)

    Corkhill, C. L.; Wincott, P. L.; Lloyd, J. R.; Vaughan, D. J.

    2008-12-01

    Arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ˜917 and ˜180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).

  11. The Chromosomal Arsenic Resistance Genes of Thiobacillus ferrooxidans Have an Unusual Arrangement and Confer Increased Arsenic and Antimony Resistance to Escherichia coli

    PubMed Central

    Butcher, Bronwyn G.; Deane, Shelly M.; Rawlings, Douglas E.

    2000-01-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. PMID:10788346

  12. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching

    PubMed Central

    Gehrke, Tilman; Telegdi, Judit; Thierry, Dominique; Sand, Wolfgang

    1998-01-01

    Leaching bacteria such as Thiobacillus ferrooxidans attach to pyrite or sulfur by means of extracellular polymeric substances (EPS) (lipopolysaccharides). The primary attachment to pyrite at pH 2 is mediated by exopolymer-complexed iron(III) ions in an electrochemical interaction with the negatively charged pyrite surface. EPS from sulfur cells possess increased hydrophobic properties and do not attach to pyrite, indicating adaptability to the substrate or substratum. PMID:9647862

  13. Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron:rusticyanin oxidoreductase.

    PubMed

    Blake, R C; Shute, E A

    1994-08-09

    Rusticyanin is an acid-stable, soluble blue copper protein found in abundance in the periplasmic space of Thiobacillus ferrooxidans, an acidophilic bacterium capable of growing autotrophically on soluble ferrous sulfate. An acid-stable iron:rusticyanin oxidoreductase activity was partially purified from cell-free extracts of T. ferrooxidans. The enzyme-catalyzed, iron-dependent reduction of the rusticyanin exhibited three kinetic properties characteristic of aerobic iron oxidation by whole cells. (i) A survey of 14 different anions indicated that catalysis by the oxidoreductase occurred only in the presence of sulfate or selenate, an anion specificity identical to that of whole cells. (ii) Saturation with both sulfatoiron(II) and the catalyst produced a concentration-independent rate constant of 3 s-1 for the reduction of the rusticyanin, which is an electron transfer reaction sufficiently rapid to account for the flux of electrons through the iron respiratory chain. (iii) Values for the enzyme-catalyzed pseudo-first-order rate constants for the reduction of the rusticyanin showed a hyperbolic dependence on the concentration of sulfatoiron(II) with a half-maximal effect at 300 microM, a value similar to the apparent KM for iron shown by whole cells. On the basis of these favorable comparisons between the behavior patterns of isolated biomolecules and those of whole cells, this iron:rusticyanin oxidoreductase is postulated to be the primary cellular oxidant of ferrous ions in the iron respiratory electron transport chain of T. ferrooxidans.

  14. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    PubMed Central

    Kay, Catherine M.; Rowe, Owen F.; Rocchetti, Laura; Coupland, Kris; Hallberg, Kevin B.; Johnson, D. Barrie

    2013-01-01

    A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis). Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2) and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans). The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes. PMID:25371339

  15. Measurement of Fe2+ ion by coulometry method at incubation of Thiobacillus ferrooxidans.

    PubMed

    Tsuda, I; Kato, K; Nozaki, K

    1996-12-01

    Thiobacillus ferrooxidans is a chemoautotrophic bacterium that is capable of using Fe2+ oxidation by O2 as the sole source of energy for growth and CO2 fixation. The idea of the solar bacterial biomass farm by using of this bacterium is proposed. The incubation experiment of these bacteria was carried out, and the 9K culture medium as the standard medium for T. ferrooxidans was used. The measurement of Fe2+ in the growth stage was carried out as the first step of the experiments to clarify the possibility of this system. The items of measurement were Fe2+ ion density, pH of the medium, bacterium density and quantity of total organic carbon (TOC). The density of Fe2+ ion in the medium was measured by coulometry method. This method has the following advantage, high accuracy (<1%), easy operation, short measurement time (a few minutes) and small sample quantity (about 0.1 ml). The experimental results show that the Fe 2+ ion density is measured as same as the accuracy of pH measurement. At the final stage of the growth, the pH decreased due to the generation of the iron hydroxide (Fe(OH)3). The bacterium density and TOC slightly increased after that Fe2+ runs short. This result shows that the CO2 fixation speed is slower than Fe2+ oxidation speed. It is shown by the experiment that the growth limit of T. ferrooxidans is caused by the disappearance of the Fe2+ ion. It may be possible that the bacterium density increases by the continuous supply of Fe2+ ion.

  16. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant

    PubMed Central

    Chen, Linxu; Ren, Yilin; Lin, Jianqun; Liu, Xiangmei; Pang, Xin; Lin, Jianqiang

    2012-01-01

    Background Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system. Results An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor) was created and its growth abilities were measured in media using elemental sulfur (S0) and tetrathionate (K2S4O6) as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR) of the wild type and the Δsor mutant in S0 and K2S4O6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO) and heterodisulfide reductase (HDR), the truncated Sox pathway, and the S4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media. Conclusion An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized. PMID:22984393

  17. Inactivation of Bacteria S. aureus ATCC 25923 and S. Thyphimurium ATCC 14 028 Influence of UV-HPEF

    NASA Astrophysics Data System (ADS)

    Bakri, A.; Hariono, B.; Utami, M. M. D.; Sutrisno

    2018-01-01

    The research was objected to study the performance of the UV unit - HPEF in inactivating bacteria population of Gram-positive (S aureus ATCC 25923) and Gram-negative (S Thyphimurium ATCC 14028) inoculated in sterilized goat’s milk. UV pasteurization instrument employed three reactors constructed in series UV-C system at 10 W, 253.7 nm wavelength made in Kada (USA) Inc. with 1.8 J/cm2 dose per reactor. HPEF instrument used high pulsed electric field at 31.67 kV/cm, 15 Hz and goat’s milk rate at 4:32 ± 0.71 cc/second. Pathogenic bacteria was observed According to Indonesian National Standard 01-2782-1998. Inactivation rate of pathogenic bacteria ie S Thyphimurium ATCC 14028 and S. aureus ATCC 25923 was 0.28 and 0.19 log cycle or 6.35 and 4.34 log cfu/ml/hour, respectively; D value was 0.16 and 0.23 hour with k value was 14.62 and 10 hour-1 respectively.

  18. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans

    PubMed Central

    Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu

    2000-01-01

    The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768

  19. Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus.

    PubMed

    Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario

    2015-10-21

    The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an "archaeal like" enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293(T). The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the "thermophilic" nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293(T) was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant.

  20. Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus

    PubMed Central

    Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario

    2015-01-01

    The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant. PMID:27682113

  1. The toxicity of graphene and its impacting on bioleaching of metal ions from sewages sludge by Acidithiobacillus sp.

    PubMed

    Guo, Shen; Lin, Jiajiang; Wang, Qingping; Megharaj, Mallavarapu; Chen, Zuliang

    2018-03-01

    The increasing production of graphene raised concerns about their releasing into sewage sludge, however, there is little information about graphene impacting on the growth of bacteria and hence their bioleaching of metal ions from sewages sludge. In this study, we reported that Acidithiobacillus sp., isolated from sewages, were used to bioleach Cu 2+ and Zn 2+ from sewages sludge in the presence of graphene. The negative effect on the growth of Acidithiobacillus sp. and dose-dependent were observed in presence of graphene, where the optical density (OD 420 ) of the culture decreased from 0.163 to 0.045, while the bioleaching efficiency of Cu 2+ (70%-16%) and Zn 2+ (80%-48%) were also reduced when the graphene dose decreased from 50 mg L -1 to 1 mg L -1 . Furthermore, scanning electron microscopy (SEM) and atomic force microscopy (AFM) confirmed that the direct contacts between graphene and cell at 1 mg L -1 graphene caused cell membrane disruption, while Acidithiobacillus sp. grew better by forming dense biofilms around the suspended graphene at a 50 mg L -1 . LIVE/DEAD staining further demonstrated that almost no live cells were detected at 1 mg L -1 graphene. The toxicity of graphene could generally be explained by depending on the concentration of graphene. The new findings provide an insight into dose dependence, which impacted on the growth of Acidithiobacillus sp. and their bioleaching of metal ion from sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    PubMed Central

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  3. Gene function analysis in extremophiles: the "nif" regulon of the strict iron oxidizing bacterium "Leptospirillum ferrooxidans"

    NASA Astrophysics Data System (ADS)

    Parro, Victor; Moreno-Paz, Mercedes

    2004-03-01

    In Centro de Astrobiologia it has been considered the Tinto river as a model ecosystem to study life based on iron. The final goal is to study the biological and metabolic diversity in microorganisms living there, following a genomic approach, to get insights to the mechanisms of adaptation to this environment. The Gram-negative bacterium Leptospirillum ferrooxidans is one of the most abundant microorganisms in the river, and it is one of the main responsible in maintenance of pH balance and, as a consequence, the physico-chemical properties of the exosystem. We have constructed a Shotgun DNA microarrays from this bacterium and we have used it to studied its genetic capacity for nitrogen fixation. With this approach we have identified most of the genes necessary for dinitrogen (N2) reduction, confirming the capacity of L. ferrooxidans as a free diazotrophic (nitrogen fixer) microorganism.

  4. Evidence of biogenic corrosion of titanium after exposure to a continuous culture of thiobacillus ferrooxidans grown in thiosulfate medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, J M; Martin, S I; Masterson, B

    2000-12-07

    Experiments were undertaken to evaluate extreme conditions under which candidate materials intended for use in a proposed nuclear waste repository might be susceptible to corrosion by endogenous microorganisms. Thiobucillus ferrooxidans, a sulfur-oxidizing bacterium, was grown in continuous culture using thiosulfate as an energy source; thiosulfate is oxidized to sulfate as a metabolic endproduct by this organism. Culture conditions were optimized to produce a high-density, metabolically active culture throughout a period of long term incubation in the presence of Alloy 22 (a high nickel-based alloy) and Titanium grade 7 (Tigr7) material coupons. After seven months incubation under these conditions, material couponsmore » were withdrawn and analyzed by high resolution microscopy and energy dispersive x-ray analyses. Alloy 22 coupons showed no detectable signs of corrosion. Tigr7, however, demonstrated distinct roughening of the coupon surface, and [presumably solubilized and precipitated] titanium was detected on Alloy 22 coupons incubated in the same T. ferrooxiduns culture vessel. Control coupons of these materials incubated in sterile thiosulfate medium did not demonstrate any signs of corrosion, thus showing that observed corrosive effects were due to the T. ferrooxidans metabolic activities. T. ferrooxidans intermediates of thiosulfate oxidation or sulfate may have caused the corrosive effects observed on Tigr7.« less

  5. Microgravity alters the physiological characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under different nutrient conditions.

    PubMed

    Kim, H W; Matin, A; Rhee, M S

    2014-04-01

    The aim of this study is to provide understanding of microgravity effects on important food-borne bacteria, Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895, cultured in nutrient-rich or minimal medium. Physiological characteristics, such as growth (measured by optical density and plating), cell morphology, and pH, were monitored under low-shear modeled microgravity (LSMMG; space conditions) and normal gravity (NG; Earth conditions). In nutrient-rich medium, all strains except ATCC 35150 showed significantly higher optical density after 6 h of culture under LSMMG conditions than under NG conditions (P < 0.05). LSMMG-cultured cells were approximately 1.8 times larger than NG-cultured cells at 24 h; therefore, it was assumed that the increase in optical density was due to the size of individual cells rather than an increase in the cell population. The higher pH of the NG cultures relative to that of the LSMMG cultures suggests that nitrogen metabolism was slower in the latter. After 24 h of culturing in minimal media, LSMMG-cultured cells had an optical density 1.3 times higher than that of NG-cultured cells; thus, the higher optical density in the LSMMG cultures may be due to an increase in both cell size and number. Since bacteria actively grew under LSMMG conditions in minimal medium despite the lower pH, it is of some concern that LSMMG-cultured E. coli O157:H7 may be able to adapt well to acidic environments. These changes may be caused by changes in nutrient metabolism under LSMMG conditions, although this needs to be demonstrated in future studies.

  6. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.

    PubMed

    Ebrahimi, S; Fernández Morales, F J; Kleerebezem, R; Heijnen, J J; van Loosdrecht, M C M

    2005-05-20

    In this study, the feasibility and engineering aspects of acidophilic ferrous iron oxidation in a continuous biofilm airlift reactor inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria were investigated. Specific attention was paid to biofilm formation, competition between both types of bacteria, ferrous iron oxidation rate, and gas liquid mass transfer limitations. The reactor was operated at a constant temperature of 30 degrees C and at pH values of 0-1.8. Startup of the reactor was performed with basalt carrier material. During the experiments the basalt was slowly removed and the ferric iron precipitates formed served as a biofilm carrier. These precipitates have highly suitable characteristics as a carrier material for the immobilization of ferrous iron-oxidizing bacteria and dense conglomerates were observed. Lowering the pH (0.6-1) resulted in dissolution of the ferric precipitates and induced granular sludge formation. The maximum ferrous iron oxidation rate achieved in this study was about 145 molFe(2+)/m(3).h at a hydraulic residence time of 0.25 h. Optimal treatment performance was obtained at a loading rate of 100 mol/m(3).h at a conversion efficiency as high as 98%. Fluorescent in situ hybridization (FISH) studies showed that when the reactor was operated at high ferrous iron conversion (>85%) for 1 month, the desirable L. ferrooxidans species could out-compete A. ferrooxidans due to the low Fe(2+) and high Fe(3+) concentrations. (c) 2005 Wiley Periodicals, Inc.

  7. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means ofmore » rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.« less

  8. The bioleaching potential of a bacterial consortium.

    PubMed

    Latorre, Mauricio; Cortés, María Paz; Travisany, Dante; Di Genova, Alex; Budinich, Marko; Reyes-Jara, Angélica; Hödar, Christian; González, Mauricio; Parada, Pilar; Bobadilla-Fazzini, Roberto A; Cambiazo, Verónica; Maass, Alejandro

    2016-10-01

    This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  10. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  11. Suppression of pyritic sulphur during flotation tests using the bacterium Thiobacillus ferrooxidans.

    PubMed

    Townsley, C C; Atkins, A S; Davis, A J

    1987-07-01

    Environmental concern about sulphur dioxide emissions has led to the examination of the possibility of removing pyritic sulphur from coal prior to combustion during froth flotation, a routine method for coal cleaning at the pit-head. The bacterium Thiobacillus ferrooxidans was effective in leaching 80% and 63% -53 mum pyrite at 2% and 6% pulp density in shake flasks in 240 and 340 h, respectively.The natural floatability of pyrite was significantly reduced in the Hallimond tube following 2.5 min of conditioning in membrane-filtered bacterial liquor prior to flotation. The suppression effect was greatly enhanced in the presence of Thiobacillus ferrooxidans. A bacterial suspension in pH 2.0 distilled water showed 85% suppression, whereas in spent growth liquor this value was 95%. The optimum bacterial density was 3.25 x 10(10) cells/g pyrite in 230-ml distilled water (2% pulp density) in the Hallimond tube. The degree of suppression by the cells was related to particle size but not to pH or temperature. The sulphur content of a synthetic coal/pyrite mixture was reduced from 10.9 to 2.1% by flotation after bacterial preconditioning. It is postulated that pyrite removal in coals which are cleaned by froth flotation could be significantly reduced using a bacterial preconditioning stage with a short residence time of 2.5 min.

  12. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis.

    PubMed

    González, Carolina; Yanquepe, María; Cardenas, Juan Pablo; Valdes, Jorge; Quatrini, Raquel; Holmes, David S; Dopson, Mark

    2014-11-01

    Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp.

    PubMed

    Hao, Likai; Liu, Xiangmei; Wang, Huiyan; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2012-09-01

    An efficient genetic system for introducing genes into biomining microorganisms is essential not only to experimentally determine the functions of genes predicted based on bioinformatic analysis, but also for their genetic breeding. In this study, a small broad-host-range vector named pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups, was studied for the feasibility of its use in conjugative gene transfer into extremely acidophilic strains of Acidithiobacillus. To do this, a recombinant plasmid pBBR-tac-Sm, a derivative of pBBR1MCS-2, was constructed and the streptomycin resistant gene (Sm(r)) was used as the reporter gene. Using conjugation, pBBR-tac-Sm was successfully transferred into three tested strains of Acidithiobacillus. Then we measured its transfer frequency, its stability in Acidithiobacillus cells, and the level of resistance to streptomycin of the transconjugants and compared this with the IncQ plasmid pJRD215 control. Our results indicate that pBBR1MCS-2 provides a new and useful tool in the genetic manipulation of Acidithiobacillus strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil.

    PubMed

    Stamford, N P; Santos, P R; Santos, C E S; Freitas, A D S; Dias, S H L; Lira, M A

    2007-04-01

    Phosphate rocks have low available P and soluble P fertilizers have been preferably used in plant crop production, although economic and effective P sources are needed. Experiments were carried out on a Brazilian Typic Fragiudult soil with low available P to evaluate the agronomic effectiveness of phosphate rock (PR) compared with soluble phosphate fertilizer. Yam bean (Pachyrhizus erosus) inoculated with rhizobia (strains NFB 747 and NFB 748) or not inoculated was the test crop. Biofertilizers were produced in field furrows by mixing phosphate rock (PR) and sulphur inoculated with Acidithiobacillus (S+Ac) in different rates (50, 100, 150 and 200 g S kg(-1) PR), with 60 days of incubation. Treatments were carried out with PR; biofertilizers B(50), B(100), B(150), B(200); triple super phosphate (TSP); B(200) without Acidithiobacillus and a control treatment without P application (P(0)). TSP and biofertilizers plus S inoculated with Acidithiobacillus increased plant growth. Soil acidity and available P increased when biofertilizers B(150) and B(200) were applied. We conclude that biofertilizers may be used as P source; however, long term use will reduce soil pH and potentially reduce crop growth.

  15. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp.

    PubMed Central

    do Carmo, Monique S.; Noronha, Francisca M. F.; Arruda, Mariana O.; Costa, Ênnio P. da Silva; Bomfim, Maria R. Q.; Monteiro, Andrea S.; Ferro, Thiago A. F.; Fernandes, Elizabeth S.; Girón, Jorge A.; Monteiro-Neto, Valério

    2016-01-01

    Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains. PMID:27833605

  16. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation.

    PubMed

    González, Carolina; Lazcano, Marcelo; Valdés, Jorge; Holmes, David S

    2016-01-01

    Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia . These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e -5 . None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus , making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD).

  17. [Recent research progress on the biomining bacteria of Acidithiobacillus caldus--a review].

    PubMed

    Pang, Xin; Chen, Dandan; Lin, Jianqun; Liu, Xiangmei; Lin, Jianqiang; Yan, Wangming

    2009-11-01

    Acidithiobacillus caldus (A. caldus) is one of the predominant biomining bacteria, which shows application prospect in biological metallurgy. It can enhance the biomining efficiency together with iron oxidation bacteria in mixed biomining system. Based on the published papers and our study on this bacterium, we described the research progress on it from four aspects, including the biomining mechanism, arsenic-resistant mechanism, genome study and genetic reconstruction. Furthermore, we discussed the prospects of research on A. caldus.

  18. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation

    PubMed Central

    González, Carolina; Lazcano, Marcelo; Valdés, Jorge; Holmes, David S.

    2016-01-01

    Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e−5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD). PMID:28082953

  20. Bioleaching of heavy metals from sewage sludge using Acidithiobacillus thiooxidans

    NASA Astrophysics Data System (ADS)

    Wen, Ye-Ming; Lin, Hong-Yan; Wang, Qing-Ping; Chen, Zu-Liang

    2010-11-01

    Acidithiobacillus thiooxidans was isolated from sewage sludge using the incubation in the Waksman liquor medium and the inoculation in Waksman solid plate. It was found that the optimum conditions of the bioleaching included solid concentration 2%, sulfur concentration 5 gṡL-1 and cell concentration 10%. The removal efficiency of Cr, Cu, Pb and Zh in sewage sludge, which was obtained from waste treatment plant, Jinshan, Fuzhou, was 43.65%, 96.24%, 41.61% and 96.50% in the period of 4˜10 days under the optimum conditions, respectively. After processing using the proposed techniques, the heavy metals in sewage sludge did meet the requirement the standards of nation.

  1. Catalytic effect of light illumination on bioleaching of chalcopyrite.

    PubMed

    Zhou, Shuang; Gan, Min; Zhu, Jianyu; Li, Qian; Jie, Shiqi; Yang, Baojun; Liu, Xueduan

    2015-04-01

    The influence of visible light exposure on chalcopyrite bioleaching was investigated using Acidithiobacillus ferrooxidans. The results indicated, in both shake-flasks and aerated reactors with 8500-lux light, the dissolved Cu was 91.80% and 23.71% higher, respectively, than that in the controls without light. The catalytic effect was found to increase bioleaching to a certain limit, then plateaued as the initial chalcopyrite concentration increased from 2% to 4.5%. Thus a balanced mineral concentration is highly amenable to bioleaching via offering increased available active sites for light adsorption while eschewing mineral aggregation and screening effects. Using semiconducting chalcopyrite, the light facilitated the reduction of Fe(3+) to Fe(2+) as metabolic substrates for A.ferrooxidans, leading to better biomass, lower pH and redox potential, which are conducive to chalcopyrite leaching. The light exposure on iron redox cycling was further confirmed by chemical leaching tests using Fe(3+), which exhibited higher Fe(2+) levels in the light-induced system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching

    PubMed Central

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  3. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarosemore » gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.« less

  4. Bacterial oxidation of ferrous iron at low temperatures.

    PubMed

    Kupka, Daniel; Rzhepishevska, Olena I; Dopson, Mark; Lindström, E Börje; Karnachuk, Olia V; Tuovinen, Olli H

    2007-08-15

    This study comprises the first report of ferrous iron oxidation by psychrotolerant, acidophilic iron-oxidizing bacteria capable of growing at 5 degrees C. Samples of mine drainage-impacted surface soils and sediments from the Norilsk mining region (Taimyr, Siberia) and Kristineberg (Skellefte district, Sweden) were inoculated into acidic ferrous sulfate media and incubated at 5 degrees C. Iron oxidation was preceded by an approximately 3-month lag period that was reduced in subsequent cultures. Three enrichment cultures were chosen for further work and one culture designated as isolate SS3 was purified by colony isolation from a Norilsk enrichment culture for determining the kinetics of iron oxidation. The 16S rRNA based phylogeny of SS3 and two other psychrotolerant cultures, SS5 from Norilsk and SK5 from Northern Sweden, was determined. Comparative analysis of amplified 16S rRNA gene sequences showed that the psychrotolerant cultures aligned within Acidithiobacillus ferrooxidans. The rate constant of iron oxidation by growing cultures of SS3 was in the range of 0.0162-0.0104 h(-1) depending on the initial pH. The oxidation kinetics followed an exponential pattern, consistent with a first order rate expression. Parallel iron oxidation by a mesophilic reference culture of Acidithiobacillus ferrooxidans was extremely slow and linear. Precipitates harvested from the 5 degrees C culture were identified by X-ray diffraction as mixtures of schwertmannite (ideal formula Fe(8)O(8)(OH)(6)SO(4)) and jarosite (KFe(3)(SO(4))(2)(OH)(6)). Jarosite was much more dominant in precipitates produced at 30 degrees C. (c) 2007 Wiley Periodicals, Inc.

  5. The community dynamics of major bioleaching microorganisms during chalcopyrite leaching under the effect of organics.

    PubMed

    Li, Qihou; Tian, Ye; Fu, Xian; Yin, Huaqun; Zhou, Zhijun; Liang, Yiting; Qiu, Guanzhou; Liu, Jie; Liu, Hongwei; Liang, Yili; Shen, Li; Cong, Jing; Liu, Xueduan

    2011-08-01

    To determine the effect of organics (yeast extract) on microbial community during chalcopyrite bioleaching at different temperature, real-time polymerase chain reaction (PCR) was employed to analyze community dynamics of major bacteria applied in bioleaching. The results showed that yeast extract exerted great impact on microbial community, and therefore influencing bioleaching rate. To be specific, yeast extract was adverse to this bioleaching process at 30°C due to decreased proportion of important chemolithotrophs such as Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. However, yeast extract could promote bioleaching rate at 40°C on account of the increased number and enhanced work of Ferroplasma thermophilum, a kind of facultative bacteria. Similarly, bioleaching rate was enhanced under the effect of yeast extract at 50°C owing to the work of Acidianus brierleyi. At 60°C, bioleaching rate was close to 100% and temperature was the dominant factor determining bioleaching rate. Interestingly, the existence of yeast extract greatly enhanced the relative competitiveness of Ferroplasma thermophilum in this complex bioleaching microbial community.

  6. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    PubMed Central

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  7. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity.

    PubMed

    Vivi, Viviane Karolina; Martins-Franchetti, Sandra Mara; Attili-Angelis, Derlene

    2018-06-07

    The increasing use of plastics in human activities has resulted in an enormous amount of residues which became a matter of great environmental concern. Scientific studies on the microbial degradation of natural and synthetic molecules show the potential of fungal application on cleaning technologies. The biodegradation of PCL (polycaprolactone) and PVC (polyvinyl chloride) films by Aspergillus brasiliensis (ATCC 9642), Penicillium funiculosum (ATCC 11797), Chaetomium globosum (ATCC 16021), Trichoderma virens (ATCC 9645), and Paecilomyces variotii (ATCC 16023) was studied. According to ISO 846-1978-"Testing of Plastics - Influence of fungi and bacteria", samples of the studied polymers were inoculated with a mix suspension of 10 6 fungal inoculum and maintained in moisture glass chambers in a bacteriological incubator at 28 °C for 28 days. The samples were analyzed by means of morphological and color changes, mass loss, optical microscopy (OM), and scanning electron microscopy (SEM) after 28 days of culturing. After the incubation period, visual observations of the PCL films showed many micropores and cracks, pigmentation, surface erosion and hyphal adhesion on the sample surfaces, and a mass loss of up to 75%. On the contrary, there was no evidence of PVC biodegradation, such as changes in color and significant mass loss. Chaetomium globosum ATCC 16021 was a pioneer in the colonization and attack of PCL, resulting in significant mass losses. Although PVC was less attacked by the ascomycete, the polymer supported the adhesion and growth of its fertile structures (perithecia), suggesting the fungal potential to degrade both plastics.

  8. Influence of Organic Solvents on Chalcopyrite Oxidation Ability of Thiobacillus ferrooxidans

    PubMed Central

    Torma, Arpad E.; Itzkovitch, Irwin J.

    1976-01-01

    It has been shown that organic solvents used primarily for the extraction of metals from aqueous leach liquors decrease both the surface tension of the aqueous phase and the chalcopyrite oxidation ability of Thiobacillus ferrooxidans. For the reagents and modifiers investigated, the order of inhibition was found to be LIX 70 < LIX 73 < LIX 71 < LIX 64N < LIX 65N < TBP ∼ isodecanol ∼ nonylphenol < LIX 63 <<< D2EHPA ∼ Kelex 100 < Kelex 120 <<< Alamine 336 ∼ Alamine 308 ∼ Alamine 310 < Alamine 304 < Adogen 381 ∼ Aliquat 336 < Adogen 364. To avoid limitation in bacterial activity, organic matter should be removed from the recycling liquor prior to leaching. PMID:16345164

  9. Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895.

    PubMed

    Kim, H W; Rhee, M S

    2016-05-15

    We previously showed that modeled microgravity conditions alter the physiological characteristics of Escherichia coli O157:H7. To examine how microgravity conditions affect bacterial heat stress responses, D values, membrane fatty acid composition, and heat stress-related gene expression (clpB, dnaK, grpE, groES, htpG, htpX, ibpB, and rpoH), E. coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895 were cultured under two different conditions: low-shear modeled microgravity (LSMMG, an analog of spaceflight conditions) and normal gravity (NG, Earth-like conditions). When 24-h cultures were heated to 55°C, cells cultured under LSMMG conditions showed reduced survival compared with cells cultured under NG conditions at all time points (P < 0.05). D values of all tested strains were lower after LSMMG culture than after NG culture. Fourteen of 37 fatty acids examined were present in the bacterial membrane: nine saturated fatty acids (SFA) and five unsaturated fatty acids (USFA). The USFA/SFA ratio, a measure of membrane fluidity, was higher under LSMMG conditions than under NG conditions. Compared with control cells grown under NG conditions, cells cultured under LSMMG conditions showed downregulation of eight heat stress-related genes (average, -1.9- to -3.7-fold). The results of this study indicate that in a simulated space environment, heat resistance of E. coli O157:H7 decreased, and this might be due to the synergistic effects of the increases in membrane fluidity and downregulated relevant heat stress genes. Microgravity is a major factor that represents the environmental conditions in space. Since infectious diseases are difficult to deal with in a space environment, comprehensive studies on the behavior of pathogenic bacteria under microgravity conditions are warranted. This study reports the changes in heat stress resistance of E. coli O157:H7, the severe foodborne pathogen, under conditions that mimic microgravity. The results provide scientific

  10. Antimicrobial activity of lactic acid bacteria isolated from bekasam against staphylococcus aureus ATCC 25923, escherichia coli ATCC 25922, and salmonella sp

    NASA Astrophysics Data System (ADS)

    Sari, Melia; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Bekasam is an Indonesian fermented food made of fish. As a fermented food, this food may contain some beneficial bacteria like lactic acid bacteria (LAB), which usually have antimicrobial properties such as organic acid, hydrogen peroxide, and a bacteriocin. A study on antimicrobial activity of LAB isolated from bekasam against some pathogenic bacteria has been conducted. The purpose of this study was to know the ability of crude bacteriocin produced LAB of bekasam against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella sp. Bekasam sample was taken from South Sumatera. LAB isolation was done using de Man Rogosa and Sharpe agar. A bacterial colony with clear zone was selected and purified to get a single colony. The antagonistic assay of the LAB was conducted in Muller-Hinton agar Selected isolates with higher clearing zone were assayed for antibacterial effect of their crude bacteriocin of different culture incubation time of 6, 9, and 12 hours. The results showed that the crude extract bacteriocin of isolate MS2 of 9 hours culture incubation time inhibited more in Staphylococcus aureus ATCC 25923 with inhibition zone of 13.1 mm, whereas isolate MS9 of 9 hours culture incubation time inhibited more in Escherichia coli ATCC 25922 and Salmonella sp. with inhibition zone of 12.7 and 7.3 mm, respectively.

  11. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    PubMed

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain)

    PubMed Central

    López-Pamo, Enrique; Gomariz, María; Amils, Ricardo; Aguilera, Ángeles

    2013-01-01

    The Iberian Pyrite Belt (IPB) hosts one of the world’s largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and microbial diversity of two pit lakes located in the IPB. Both pit lakes are acidic and showed high concentrations of sulfate and dissolved metals. Concentrations of sulfate and heavy metals were higher in the Nuestra Señora del Carmen lake (NSC) by one order of magnitude than in the Concepción (CN) lake. The hydrochemical characteristics of NSC were typical of acid mine waters and can be compared with other acidic environments. When compared to other IPB acidic pit lakes, the superficial water of CN is more diluted than that of any of the others due, probably, to the strong influence of runoff water. Both pit lakes showed chemical and thermal stratification with well defined chemoclines. One particular characteristic of NSC is that it has developed a chemocline very close to the surface (2 m depth). Microbial community composition of the water column was analyzed by 16S and 18S rRNA gene cloning and sequencing. The microorganisms detected in NSC were characteristic of acid mine drainage (AMD), including iron oxidizing bacteria (Leptospirillum, Acidithiobacillus ferrooxidans) and facultative iron reducing bacteria and archaea (Acidithiobacillus ferrooxidans, Acidiphilium, Actinobacteria, Acidimicrobiales, Ferroplasma) detected in the bottom layer. Diversity in CN was higher than in NSC. Microorganisms known from AMD systems (Acidiphilium, Acidobacteria and Ferrovum) and microorganisms never reported from AMD systems were identified. Taking into consideration the hydrochemical characteristics of these pit lakes and the spatial distribution of the identified microorganisms, a

  13. Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798)

    PubMed Central

    Dimitrova, Daniela; Engelbrecht, Kathleen C.; Koenig, David W.; Wolfe, Alan J.

    2017-01-01

    ABSTRACT Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E. coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496 bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid. PMID:28684574

  14. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.

  15. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  16. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-05-26

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  17. Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798).

    PubMed

    Dimitrova, Daniela; Engelbrecht, Kathleen C; Putonti, Catherine; Koenig, David W; Wolfe, Alan J

    2017-07-06

    Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E. coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496 bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid. Copyright © 2017 Dimitrova et al.

  18. Properties of realgar bioleaching using an extremely acidophilic bacterium and its antitumor mechanism as an anticancer agent.

    PubMed

    Chen, Peng; Xu, Ruixiang; Yan, Lei; Wu, Zhengrong; Wei, Yan; Zhao, Wenbin; Wang, Xin; Xie, Qinjian; Li, Hongyu

    2017-05-22

    Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese). It contains over 90% tetra-arsenic tetra-sulfide (As 4 S 4 ). Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans). Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS) works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method.

  19. Complete genome sequence of Leptospirillum ferrooxidans strain C2-3, isolated from a fresh volcanic ash deposit on the island of Miyake, Japan.

    PubMed

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Oshima, Kenshiro; Kim, Seok-Won; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-08-01

    A diazotrophic, acidophilic, iron-oxidizing bacterium, Leptospirillum ferrooxidans, known to be difficult to cultivate, was isolated from a fresh volcanic ash deposit on the island of Miyake, Japan. Here, we report the complete genome sequence of a cultured strain, C2-3.

  20. Short communication: Adverse effect of surface-active reagents on the bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans.

    PubMed

    Huerta, G; Escobar, B; Rubio, J; Badilla-Ohlbaum, R

    1995-09-01

    Oxidation of Fe(II) iron and bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans was adversely affected by isopropylxanthate, a flotation agent, and by LIX 984, a solvent-extraction agent, each at ≤ 1 g/l. The reagents/l were adsorbed on the bacterial surface, decreasing the bacteria's development and preventing biooxidation. Both reagents inhibited the bioleaching of pyrite and LIX 984 also inhibited the bioleaching of chalcopyrite.

  1. Molecular Characterization of Bacterial Respiration on Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respirationmore » on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by

  2. 40 CFR 180.1205 - Beauveria bassiana ATCC #74040; exemption from the requirements of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Beauveria bassiana ATCC #74040... RESIDUES IN FOOD Exemptions From Tolerances § 180.1205 Beauveria bassiana ATCC #74040; exemption from the... the insecticide Beauveria bassiana (ATCC #74040) in or on all food commodities when applied or used as...

  3. 40 CFR 180.1205 - Beauveria bassiana ATCC #74040; exemption from the requirements of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Beauveria bassiana ATCC #74040... RESIDUES IN FOOD Exemptions From Tolerances § 180.1205 Beauveria bassiana ATCC #74040; exemption from the... the insecticide Beauveria bassiana (ATCC #74040) in or on all food commodities when applied or used as...

  4. Complete Genome Sequence of Leptospirillum ferrooxidans Strain C2-3, Isolated from a Fresh Volcanic Ash Deposit on the Island of Miyake, Japan

    PubMed Central

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Oshima, Kenshiro; Kim, Seok-Won; Hattori, Masahira; Kamijo, Takashi

    2012-01-01

    A diazotrophic, acidophilic, iron-oxidizing bacterium, Leptospirillum ferrooxidans, known to be difficult to cultivate, was isolated from a fresh volcanic ash deposit on the island of Miyake, Japan. Here, we report the complete genome sequence of a cultured strain, C2-3. PMID:22815442

  5. Leaching of Chalcopyrite with Thiobacillus ferrooxidans: Effect of Surfactants and Shaking

    PubMed Central

    Duncan, D. W.; Trussell, P. C.; Walden, C. C.

    1964-01-01

    The rate of leaching of chalcopyrite by Thiobacillus ferrooxidans has been greatly accelerated by using shaken flasks in place of stationary bottles or percolators. A further increase in rate and extent of leaching was obtained by the use of Tween 20, 40, 60, and 80, Triton X-100, Quaker TT 5386, and Hyamine 2389. Tween 20 was the most effective surfactant. No individual component of the Tween molecule was responsible for the improved leaching. The Tween-to-chalcopyrite ratio is more important than the Tween-to-medium ratio. The effect of the surfactants is probably due to increased contact between the mineral surface and the organism, and shaking provides the necessary oxygen. Rates and yields obtained by use of surfactants and shaking as aids to microbiological leaching approach those obtained with acidified erric sulfate leaching. PMID:14131359

  6. Isolation and characterization of Acidithiobacillus caldus from a sulfur-oxidizing bacterial biosensor and its role in detection of toxic chemicals.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Kim, Sung-Min; Yoon, Sung-Hwan; Joo, Jin-Ho; Shin, Beom-Soo; Jeon, Byong-Hun; Bae, Wookeun; Oh, Sang-Eun

    2010-08-01

    A novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed for the rapid and reliable detection of toxic chemicals in water. The methodology exploits the ability of SOB to oxidize sulfur particles in the presence of oxygen to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The assay is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that SOB biosensor can detect toxic chemicals, such as heavy metals and CN-, in the 5-2000ppb range. One bacterium was isolated from an SOB biosensor and the 16S rRNA gene of the bacterial strain has 99% and 96% sequence similarity to Acidithiobacillus sp. ORCS6 and Acidithiobacillus caldus DSM 8584, respectively. The isolate was identified as A. caldus SMK. The SOB biosensor is ideally suited for monitoring toxic chemicals in water having the advantages of high sensitivity and quick detection.

  7. [Determination of minimal concentrations of biocorrosion inhibitors by a bioluminescence method in relation to bacteria, participating in biocorrosion].

    PubMed

    Efremenko, E N; Azizov, R E; Makhlis, T A; Abbasov, V M; Varfolomeev, S D

    2005-01-01

    By using a bioluminescence ATP assay, we have determined the minimal concentrations of some biocorrosion inhibitors (Katon, Khazar, VFIKS-82, Nitro-1, Kaspii-2, and Kaspii-4) suppressing most common microbial corrosion agents: Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Pseudomonas putida, Pseudomonas fluorescens, and Acidithiobacillus ferrooxidans. The cell titers determined by the bioluminescence method, including not only dividing cells but also their dormant living counterparts, are two- to sixfold greater than the values determined microbiologically. It is shown that the bioluminescence method can be applied to determination of cell titers in samples of oil-field waters in the presence of iron ions (up to 260 mM) and iron sulfide (to 186 mg/l) and in the absence or presence of biocidal corrosion inhibitors.

  8. Draft Genome Sequence of Aspergillus oryzae ATCC 12892

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Shuang; Pomraning, Kyle R.; Bohutskyi, Pavlo

    The draft genome sequence ofAspergillus oryzaeATCC 12892 is presented here.A. oryzaeproduces 3-nitropropionic acid, which has been investigated with regard to understanding the biosynthesis of nitroorganic compounds.

  9. Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge during Bioleaching

    PubMed Central

    Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement. PMID:25050971

  10. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1998-01-01

    The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox potential apparatus described previously (P. I. Harvey and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997). This apparatus is designed to control the redox potential in the leaching compartment of an electrolytic cell by reduction or oxidation of dissolved iron. By controlling the redox potential the apparatus maintains the concentrations of ferrous and ferric ions at their initial values. Experiments were conducted in the presence of T. ferrooxidans and under sterile conditions. Analysis of the conversion of zinc sulfide in the absence of the bacteria and analysis of the conversion of zinc sulfate in the presence of the bacteria produced the same results. This indicates that the only role of the bacteria under the conditions used is regeneration of ferric ions in solution. In this work we found no evidence that there is a direct mechanism for bacterial leaching. PMID:9758769

  11. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans.

    PubMed

    Mesa, M M; Macías, M; Cantero, D

    2002-01-01

    Microbial oxidation of ferrous iron may be a viable alternative method of producing ferric sulfate, which is a reagent used for removal of H(2)S from biogas. The paper introduces a kinetic study of the biological oxidation of ferrous iron by Thiobacillus ferrooxidans immobilized on biomass support particles (BSP) composed of polyurethane foam. On the basis of the data obtained, a mathematical model for the bioreactor was subsequently developed. In the model described here, the microorganisms adhere by reversible physical adsorption to the ferric precipitates that are formed on the BSP. The model can also be considered as an expression for the erosion of microorganisms immobilized due to the agitation of the medium by aeration.

  12. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism.

    PubMed

    Auernik, Kathryne S; Maezato, Yukari; Blum, Paul H; Kelly, Robert M

    2008-02-01

    Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, approximately 2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized.

  13. The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon Metallosphaera sedula Provides Insights into Bioleaching-Associated Metabolism▿ †

    PubMed Central

    Auernik, Kathryne S.; Maezato, Yukari; Blum, Paul H.; Kelly, Robert M.

    2008-01-01

    Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, ∼2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. PMID:18083856

  14. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.

    PubMed

    Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M

    2009-09-01

    A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.

  15. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  16. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H.C.

    1998-07-14

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  17. Leaching of metals from end-of-life solar cells.

    PubMed

    Chakankar, Mital; Su, Chun Hui; Hocheng, Hong

    2018-04-10

    The issue of recycling waste solar cells is critical with regard to the expanded use of these cells, which increases waste production. Technology establishment for this recycling process is essential with respect to the valuable and hazardous metals present therein. In the present study, the leaching potentials of Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans, Penicillium chrysogenum, and Penicillium simplicissimum were assessed for the recovery of metals from spent solar cells, with a focus on retrieval of the valuable metal Te. Batch experiments were performed to explore and compare the metal removal efficiencies of the aforementioned microorganisms using spent media. P. chrysogenum spent medium was found to be most effective, recovering 100% of B, Mg, Si, V, Ni, Zn, and Sr along with 93% of Te at 30 °C, 150 rpm and 1% (w/v) pulp density. Further optimization of the process parameters increased the leaching efficiency, and 100% of Te was recovered at the optimum conditions of 20 °C, 200 rpm shaking speed and 1% (w/v) pulp density. In addition, the recovery of aluminum increased from 31 to 89% upon process optimization. Thus, the process has considerable potential for metal recovery and is environmentally beneficial.

  18. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794.

    PubMed

    Yang, Yan-Bei; Wang, Shuai; Wang, Chang; Huang, Quan-Yong; Bai, Jing-Wen; Chen, Jian-Qing; Chen, Xue-Ying; Li, Yan-Hua

    2015-12-01

    Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. In this study, the effects of subinhibitory concentrations (sub-MICs) of emodin on biofilm formation by S. suis ATCC700794 were evaluated. As quantified by crystal violet staining, biofilm formation by S. suis ATCC700794 was dose-dependently decreased after growth with 1/2 MIC, 1/4 MIC, or 1/8 MIC of emodin. By scanning electron microscopy, the structural architecture of the S. suis ATCC700794 biofilms was examined following growth in culture medium supplemented with 1/2 MIC, 1/4 MIC, 1/8 MIC, or 1/16 MIC of emodin. Scanning electron microscopy analysis revealed the potential effect of emodin on biofilm formation by S. suis ATCC700794. The expression of luxS gene and virulence genes in S. suis ATCC700794 was investigated by quantitative RT-PCR. It was found that sub-MICs of emodin significantly decreased the expression of gapdh, sly, fbps, ef, and luxS. However, it was found that sub-MICs of emodin significantly increased the expression of cps2J, mrp, and gdh. These findings showed that sub-MICs of emodin could cause the difference in the expression level of the virulence genes.

  19. Quantification of the Effects of Salt Stress and Physiological State on Thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579

    PubMed Central

    den Besten, Heidy M. W.; Mataragas, Marios; Moezelaar, Roy; Abee, Tjakko; Zwietering, Marcel H.

    2006-01-01

    The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50°C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions. PMID:16957208

  20. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    PubMed

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  1. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions.

    PubMed

    Dopson, Mark; Holmes, David S; Lazcano, Marcelo; McCredden, Timothy J; Bryan, Christopher G; Mulroney, Kieran T; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L J

    2016-01-01

    Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of "biomining." A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans . Ac. prosperus had optimum iron oxidation at 20 g L -1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L -1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F 0 F 1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl - with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a

  2. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions

    PubMed Central

    Dopson, Mark; Holmes, David S.; Lazcano, Marcelo; McCredden, Timothy J.; Bryan, Christopher G.; Mulroney, Kieran T.; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L. J.

    2017-01-01

    Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a

  3. Lactobacillus acidophilus ATCC 4356 Prevents Atherosclerosis via Inhibition of Intestinal Cholesterol Absorption in Apolipoprotein E-Knockout Mice

    PubMed Central

    Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-01-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE−/−) mice. Eight-week-old ApoE−/− mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE−/− mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. PMID:25261526

  4. Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex.

    PubMed

    Loveridge, E Joel; Jones, Cerith; Bull, Matthew J; Moody, Suzy C; Kahl, Małgorzata W; Khan, Zainab; Neilson, Louis; Tomeva, Marina; Adams, Sarah E; Wood, Andrew C; Rodriguez-Martin, Daniel; Pinel, Ingrid; Parkhill, Julian; Mahenthiralingam, Eshwar; Crosby, John

    2017-07-01

    Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the β-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization. IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted. Copyright © 2017

  5. Comparative Genome Analysis Provides Insights into Both the Lifestyle of Acidithiobacillus ferrivorans Strain CF27 and the Chimeric Nature of the Iron-Oxidizing Acidithiobacilli Genomes.

    PubMed

    Tran, Tam T T; Mangenot, Sophie; Magdelenat, Ghislaine; Payen, Emilie; Rouy, Zoé; Belahbib, Hassiba; Grail, Barry M; Johnson, D Barrie; Bonnefoy, Violaine; Talla, Emmanuel

    2017-01-01

    The iron-oxidizing species Acidithiobacillus ferrivorans is one of few acidophiles able to oxidize ferrous iron and reduced inorganic sulfur compounds at low temperatures (<10°C). To complete the genome of At. ferrivorans strain CF27, new sequences were generated, and an update assembly and functional annotation were undertaken, followed by a comparative analysis with other Acidithiobacillus species whose genomes are publically available. The At. ferrivorans CF27 genome comprises a 3,409,655 bp chromosome and a 46,453 bp plasmid. At. ferrivorans CF27 possesses genes allowing its adaptation to cold, metal(loid)-rich environments, as well as others that enable it to sense environmental changes, allowing At. ferrivorans CF27 to escape hostile conditions and to move toward favorable locations. Interestingly, the genome of At. ferrivorans CF27 exhibits a large number of genomic islands (mostly containing genes of unknown function), suggesting that a large number of genes has been acquired by horizontal gene transfer over time. Furthermore, several genes specific to At. ferrivorans CF27 have been identified that could be responsible for the phenotypic differences of this strain compared to other Acidithiobacillus species. Most genes located inside At. ferrivorans CF27-specific gene clusters which have been analyzed were expressed by both ferrous iron-grown and sulfur-attached cells, indicating that they are not pseudogenes and may play a role in both situations. Analysis of the taxonomic composition of genomes of the Acidithiobacillia infers that they are chimeric in nature, supporting the premise that they belong to a particular taxonomic class, distinct to other proteobacterial subgroups.

  6. Diversity and Ecophysiology of New Isolates of Extremely Acidophilic CS2-Converting Acidithiobacillus Strains

    PubMed Central

    Smeulders, Marjan J.; Pol, Arjan; Zandvoort, Marcel H.; Jetten, Mike S. M.

    2013-01-01

    Biofiltration of industrial carbon disulfide (CS2)-contaminated waste air streams results in the acidification of biofilters and therefore reduced performance, high water use, and increased costs. To address these issues, we isolated 16 extremely acidophilic CS2-converting Acidithiobacillus thiooxidans strains that tolerated up to 6% (vol/vol) sulfuric acid. The ecophysiological properties of five selected strains (2Bp, Sts 4-3, S1p, G8, and BBW1) were compared. These five strains had pH optima between 1 (2Bp) and 2 (S1p). Their affinities for CS2 ranged between 80 (G8) and 130 (2Bp) μM. Strains S1p, G8, and BBW1 had more hydrophobic cell surfaces and produced less extracellular polymeric substance than did strains 2Bp and Sts 4-3. All five strains converted about 80% of the S added as CS2 to S0 when CS2 was supplied in excess. The rate of S0 consumption varied between 7 (Sts 4-3) and 63 (S1p) nmol O2 min−1 ml culture−1. Low S0 consumption rates correlated partly with low levels of cell attachment to externally produced S0 globules. During chemostat growth, the relative amount of CS2 hydrolase in the cell increased with decreasing growth rates. This resulted in more S0 accumulation during CS2 overloads at low growth rates. Intermittent interruptions of the CS2 supply affected all five strains. Strains S1p, G8, and BBW1 recovered from 24 h of starvation within 4 h, and strains 2Bp and Sts 4-3 recovered within 24 h after CS2 was resupplied. We recommend the use of mixtures of Acidithiobacillus strains in industrial biofilters. PMID:23995926

  7. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans.

    PubMed

    Yin, Huaqun; Zhang, Xian; Li, Xiaoqi; He, Zhili; Liang, Yili; Guo, Xue; Hu, Qi; Xiao, Yunhua; Cong, Jing; Ma, Liyuan; Niu, Jiaojiao; Liu, Xueduan

    2014-07-04

    Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights

  8. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans

    PubMed Central

    2014-01-01

    Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. Results The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Conclusion Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence

  9. Lactobacillus rhamnosus GG (ATCC 53103) and platelet aggregation in vitro.

    PubMed

    Korpela, R; Moilanen, E; Saxelin, M; Vapaatalo, H

    1997-06-17

    Lactobacillus rhamnosus GG is an experimentally and clinically well documented probiotic used in different dairy products. The present study aimed to investigate the safety aspects of Lactobacillus rhamnosus GG, particularly with respect to platelet aggregation, the initiating event in thrombosis. Platelet rich plasma was separated from the blood of healthy volunteers, and the effects of Lactobacillus rhamnosus GG (ATCC 53103), Lactobacillus rhamnosus (ATCC 7469) and Enterococcus faecium T2L6 in different dilutions on spontaneous, ADP- and adrenaline-induced aggregation were tested. The bacteria did not influence spontaneous aggregation. Only Enterococcus faecium T2L6 enhanced the adrenaline-induced aggregation, with a less clear effect on ADP-induced aggregation.

  10. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    PubMed Central

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  11. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production.

    PubMed

    Grosso-Becerra, María-Victoria; González-Valdez, Abigail; Granados-Martínez, María-Jessica; Morales, Estefanía; Servín-González, Luis; Méndez, José-Luis; Delgado, Gabriela; Morales-Espinosa, Rosario; Ponce-Soto, Gabriel-Yaxal; Cocotl-Yañez, Miguel; Soberón-Chávez, Gloria

    2016-12-01

    Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P. aeruginosa strain ATCC 9027 in terms of its genome-sequence, virulence, antibiotic resistance, and its ability to produce mono-rhamnolipids when carrying plasmids with different cloned genes from the type strain PAO1. The genes that were expressed from the plasmids are those coding for enzymes involved in the synthesis of this biosurfactant (rhlA and rhlB), as well as the gene that codes for the RhlR transcriptional regulator. We confirm that strain ATCC 9027 forms part of the PA7 clade, but contrary to strain PA7, it is sensitive to antibiotics and is completely avirulent in a mouse model. We also report that strain ATCC 9027 mono-rhamnolipid synthesis is limited by the expression of the rhlAB-R operon. Thus, this strain carrying the rhlAB-R operon produces similar rhamnolipids levels as PAO1 strain. We determined that strain ATCC 9027 with rhlAB-R operon was not virulent to mice. These results show that strain ATCC 9027, expressing PAO1 rhlAB-R operon, has a high biotechnological potential for industrial mono-rhamnolipid production.

  12. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials.

  14. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  15. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    USDA-ARS?s Scientific Manuscript database

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  16. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    NASA Astrophysics Data System (ADS)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  17. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-08-04

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials. 5 figs.

  18. Draft Genome Sequence of Lactobacillus helveticus ATCC 12046

    PubMed Central

    2018-01-01

    ABSTRACT Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production. PMID:29449405

  19. Thymoquinone Inhibits Virulence Related Traits of Cronobacter sakazakii ATCC 29544 and Has Anti-biofilm Formation Potential.

    PubMed

    Shi, Chao; Yan, Chunhong; Sui, Yue; Sun, Yi; Guo, Du; Chen, Yifei; Jin, Tong; Peng, Xiaoli; Ma, Linlin; Xia, Xiaodong

    2017-01-01

    The aim of this study was to determine whether thymoquinone, the principal active ingredient in the volatile oil of Nigella sativa seeds, could suppress certain virulence traits of Cronobacter sakazakii ATCC 29544 which contribute to infection. Sub-inhibitory concentrations of thymoquinone significantly decreased motility, quorum sensing, and endotoxin production of C. sakazakii ATCC 29544 and biofilm formation of C. sakazakii 7-17. Thymoquinone substantially reduced the adhesion and invasion of C. sakazakii ATCC 29544 to HT-29 cells and decreased the number of intracellular bacterial cells within the RAW 264.7 macrophage cells. Thymoquinone also repressed the transcription of sixteen genes involved in the virulence. These findings suggest that thymoquinone could attenuated virulence-related traits of C. sakazakii ATCC 29544, and its effects on other C. sakazakii strains and in vivo C. sakazakii infection need further investigation.

  20. Thymoquinone Inhibits Virulence Related Traits of Cronobacter sakazakii ATCC 29544 and Has Anti-biofilm Formation Potential

    PubMed Central

    Shi, Chao; Yan, Chunhong; Sui, Yue; Sun, Yi; Guo, Du; Chen, Yifei; Jin, Tong; Peng, Xiaoli; Ma, Linlin; Xia, Xiaodong

    2017-01-01

    The aim of this study was to determine whether thymoquinone, the principal active ingredient in the volatile oil of Nigella sativa seeds, could suppress certain virulence traits of Cronobacter sakazakii ATCC 29544 which contribute to infection. Sub-inhibitory concentrations of thymoquinone significantly decreased motility, quorum sensing, and endotoxin production of C. sakazakii ATCC 29544 and biofilm formation of C. sakazakii 7-17. Thymoquinone substantially reduced the adhesion and invasion of C. sakazakii ATCC 29544 to HT-29 cells and decreased the number of intracellular bacterial cells within the RAW 264.7 macrophage cells. Thymoquinone also repressed the transcription of sixteen genes involved in the virulence. These findings suggest that thymoquinone could attenuated virulence-related traits of C. sakazakii ATCC 29544, and its effects on other C. sakazakii strains and in vivo C. sakazakii infection need further investigation. PMID:29234307

  1. Draft Genome Sequence of Lactobacillus helveticus ATCC 12046.

    PubMed

    Palomino, María Mercedes; Burguener, Germán F; Campos, Josefina; Allievi, Mariana; Fina-Martin, Joaquina; Prado Acosta, Mariano; Fernández Do Porto, Darío A; Ruzal, Sandra M

    2018-02-15

    Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production. Copyright © 2018 Palomino et al.

  2. Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system.

    PubMed

    Ortakci, F; Sert, S

    2012-12-01

    The objective of this study was to determine the effect of encapsulation on survival of probiotic Lactobacillus acidophilus ATCC 4356 (ATCC 4356) in yogurt and during artificial gastric digestion. Strain ATCC 4356 was added to yogurt either encapsulated in calcium alginate or in free form (unencapsulated) at levels of 8.26 and 9.47 log cfu/g, respectively, and the influence of alginate capsules (1.5 to 2.5mm) on the sensorial characteristics of yogurts was investigated. The ATCC 4356 strain was introduced into an artificial gastric solution consisting of 0.08 N HCl (pH 1.5) containing 0.2% NaCl or into artificial bile juice consisting of 1.2% bile salts in de Man, Rogosa, and Sharpe broth to determine the stability of the probiotic bacteria. When incubated for 2h in artificial gastric juice, the free ATCC 4356 did not survive (reduction of >7 log cfu/g). We observed, however, greater survival of encapsulated ATCC 4356, with a reduction of only 3 log cfu/g. Incubation in artificial bile juice (6 h) did not significantly affect the viability of free or encapsulated ATCC 4356. Moreover, statistically significant reductions (~1 log cfu/g) of both free and encapsulated ATCC 4356 were observed during 4-wk refrigerated storage of yogurts. The addition of probiotic cultures in free or alginate-encapsulated form did not significantly affect appearance/color or flavor/odor of the yogurts. However, significant deficiencies were found in body/texture of yogurts containing encapsulated ATCC 4356. We concluded that incorporation of free and encapsulated probiotic bacteria did not substantially change the overall sensory properties of yogurts, and encapsulation in alginate using the extrusion method greatly enhanced the survival of probiotic bacteria against an artificial human gastric digestive system. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    PubMed Central

    León-Calvijo, María A.; Leal-Castro, Aura L.; Almanzar-Reina, Giovanni A.; Rosas-Pérez, Jaiver E.; García-Castañeda, Javier E.; Rivera-Monroy, Zuly J.

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2 Ahx 2C2) exhibit bigger or similar activity against E. coli (MIC 4–33 μM) and E. faecalis (MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317

  4. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    PubMed

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  5. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    PubMed

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  7. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay.

    PubMed

    Guven, Duyusen E; Akinci, Gorkem

    2013-09-01

    The effect of sediment size on metals bioleaching from bay sediments was investigated by using fine (< 45 microm), medium (45-300 microm), and coarse (300-2000 microm) size fractions of a sediment sample contaminated with Cr, Cu, Pb, and Zn. Chemical speciation of the metals in bulk and size fractions of sediment were studied before and after bioleaching. Microbial activity was provided with mixed cultures of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. The bioleaching process was carried out in flask experiments for 48 days, by using 5% (W/V) of solid concentration in suspension. Bioleaching was found to be efficient for the removal of selected heavy metals from every size fraction of sediments, where the experiments with the smaller particles resulted in the highest solubilization ratios. At the end of the experimental period, Cr, Cu, Pb and Zn were solubilized to the ratios of 68%, 88%, 72%, and 91% from the fine sediment, respectively. Higher removal efficiencies can be explained by the larger surface area provided by the smaller particles. The changes in the chemical forms of metals were determined and most of the metal releases were observed from the reducible and organic fractions independent from grain size. Higher concentrations were monitored in the residual fraction after bioleaching period, suggesting they are trapped in this fraction, and cannot be solubilized under natural conditions.

  8. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries

    NASA Astrophysics Data System (ADS)

    Heydarian, Ahmad; Mousavi, Seyyed Mohammad; Vakilchap, Farzane; Baniasadi, Mahsa

    2018-02-01

    The rapid increase in the production of electrical and electronic equipment, along with higher consumption of these products, has caused defective and obsolete equipment to accumulate in the environment. In this research, bioleaching of spent lithium-ion batteries (LIBs) used in laptops is carried out under two-step condition based on the bacterial activities of a mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. First, the best inoculum ratio of two acidophilic bacteria for the mixed culture is obtained. Next, adaptation is carried out successfully and the solid-to-liquid ratio reaches 40 g L-1. Response surface methodology is utilized to optimize the effective variables of initial pH, iron sulfate and sulfur concentrations. The maximum recovery of metal is about 99.2% for Li, 50.4% for Co and 89.4% for Ni under optimum conditions of 36.7 g L-1 iron sulfate concentration, 5.0 g L-1 sulfur concentration and initial pH of 1.5 for the best inoculum ratio of 3/2. Results of FE-SEM, XRD and FTIR analysis before and after bioleaching confirm that bacterial activity is a promising and effective route for metal recovery from spent LIBs. Toxicity assessment tests demonstrate the suitability of the bioleached residual as a nonhazardous material that meets environmental limitations for safe disposal.

  9. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.

    PubMed

    Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan

    2011-04-01

    A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching

    NASA Astrophysics Data System (ADS)

    Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young

    2018-03-01

    The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.

  11. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process.

    PubMed

    Chen, Lihua; Liu, Wenen; Li, Yanming; Luo, San; Liu, Qingxia; Zhong, Yiming; Jian, Zijuan; Bao, Meihua

    2013-09-01

    The aim of this study was to investigate the effect of Lactobacillus (L.) acidophilus ATCC 4356 on the progression of atherosclerosis in Apoliprotein-E knockout (ApoE(-/-)) mice and the underlying mechanisms. Eight week-old ApoE(-/-) mice were treated with L. acidophilus ATCC 4356 daily for 12 weeks. The wild type (WT) mice or ApoE(-/-) mice in the vehicle group were treated with saline only. Body weights, serum lipid levels, aortic atherosclerotic lesions, and tissue oxidative and inflammatory statuses were examined among the groups. As compared to ApoE(-/-) mice in the vehicle group, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 had no changes in body weights and serum lipid profiles, but showed decreased atherosclerotic lesion size in en face aorta. In comparison with WT mice, ApoE(-/-) mice in the vehicle group showed higher levels of serum malondialdehyde (MDA), oxidized low density lipoprotein (oxLDL) and tumor necrosis factor-alpha (TNF-α), but lower levels of interleukin-10 (IL-10) and superoxide dismutase (SOD) activities in serum. Administration of L. acidophilus ATCC 4356 could reverse these trends in a dose-dependent manner in ApoE(-/-) mice. Furthermore, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 showed an inhibition of translocation of NF-κB p65 from cytoplasm to nucleus, suppression of degradation of aortic IκB-α, and improvements of gut microbiota distribution, as compared to ApoE(-/-) mice in the vehicle group. Our findings suggest that administration of L. acidophilus ATCC 4356 can attenuate the development of atherosclerotic lesions in ApoE(-/-) mice through reducing oxidative stress and inflammatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Kinetics of the Removal of Iron Pyrite from Coal by Microbial Catalysis

    PubMed Central

    Hoffmann, Michael R.; Faust, Bruce C.; Panda, Fern A.; Koo, Hong H.; Tsuchiya, Henry M.

    1981-01-01

    Different strains of Thiobacillus ferrooxidans and Thiobacillus thiooxidans were used to catalyze the oxidative dissolution of iron pyrite, FeS2, in nine different coal samples. Kinetic variables and parametric factors that were determined to have a pronounced effect on the rate and extent of oxidative dissolution at a fixed Po2 were: the bacterial strain, the nitrogen/phosphorus molar ratio, the partial pressure of CO2, the coal source, and the total reactive surface area of FeS2. The overall rate of leaching, which exhibited a first-order dependence on the total surface area of FeS2, was analyzed mathematically in terms of the sum of a biochemical rate, ν1, and a chemical rate, ν2. Results of this study show that bacterial desulfurization (90 to 98%) of coal samples which are relatively high in pyritic sulfur can be achieved within a time-frame of 8 to 12 days when pulp densities are ≤20% and particle sizes are ≤74 μm. The most effective strains of T. ferrooxidans were those that were isolated from natural systems, and T. ferrooxidans ATCC 19859 was the most effective pure strain. The most effective nutrient media contained relatively low phosphate concentrations, with an optimal N/P molar ratio of 90:1. These results suggest that minimal nutrient additions may be required for a commercial desulfurization process. PMID:16345826

  13. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system

    PubMed Central

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-01-01

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  14. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  15. Development of Bioluminescent Cronobacter sakazakii ATCC 29544 in a Mouse Model.

    PubMed

    Wang, Xiwen; Li, Zhiping; Dong, Xiaolin; Chi, Hang; Wang, Guannan; Li, Jiakuan; Sun, Rui; Chen, Man; Zhang, Xinying; Wang, Yuanyuan; Qu, Han; Sun, Yu; Xia, Zhiping; Li, Qianxue

    2015-05-01

    Cronobacter sakazakii is an emerging pathogen that causes severe and life-threatening conditions including meningitis, bacteremia, and necrotizing enterocolitis. An animal model study for extrapolation of C. sakazakii infection can provide a better understanding of pathogenesis. However, methods for real-time monitoring of the course of C. sakazakii infection in living animals have been lacking. We developed a bioluminescent C. sakazakii strain (ATCC 29544) that can be used for real-time monitoring of C. sakazakii infection in BALB/c mice. C. sakazakii ATCC 29544 mainly colonized brain, liver, spleen, kidney, and gastrointestinal tract, as indicated by bioluminescence imaging. This work provides a novel approach for studying the progression of C. sakazakii infection and evaluating therapeutics in a living mouse model.

  16. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    PubMed

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    PubMed

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  18. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  19. Complete Genome Sequence of Thiostrepton-Producing Streptomyces laurentii ATCC 31255

    PubMed Central

    Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya

    2016-01-01

    Streptomyces laurentii ATCC 31255 produces thiostrepton, a thiopeptide class antibiotic. Here, we report the complete genome sequence for this strain, which contains a total of 8,032,664 bp, 7,452 predicted coding sequences, and a G+C content of 72.3%. PMID:27257211

  20. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates.

    PubMed

    West, Thomas P

    2016-01-01

    The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.

  1. Draft Genome Sequence of Sphingomonas echinoides ATCC 14820

    PubMed Central

    Shin, Seung Chul; Kim, Su Jin; Ahn, Do Hwan; Lee, Jong Kyu

    2012-01-01

    Sphingomonas is a Gram-negative, yellow-pigmented, chemoheterotrophic, strictly aerobic bacterium. The bacterium is known to be metabolically versatile and can utilize a wide range of natural compounds as well as some types of environmental contaminants, such as creosote, polychlorinated biphenyls, etc. Here, we report the draft genome sequence of Sphingomonas echinoides ATCC 14820, which will provide additional information to enhance our understanding of metabolic versatility of Sphingomonas. PMID:22408244

  2. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria

    PubMed Central

    Tsai, Yi-Chin Candace; Lapina, Maria Claribel; Bhushan, Shashi; Mueller-Cajar, Oliver

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation. PMID:26567524

  3. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress.

    PubMed

    Wang, Wenwen; He, Jiayi; Pan, Daodong; Wu, Zhen; Guo, Yuxing; Zeng, Xiaoqun; Lian, Liwei

    2018-01-01

    The adhesion ability of Lactobacillus plantarum affects retention time in the human gastro-intestinal tract, as well as influencing the interaction with their host. In this study, the relationship between the adhesion activity of, and metabolic changes in, L. plantarum ATCC 14917 under initial acid and alkali stress was evaluated by analyzing auto-aggregation, protein adhesion and cell adhesion in vitro. Based on scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis, the morphology of the bacteria became thickset and the thickness of their cell walls decreased under initial alkali stress. The fold changes of auto-aggregation, adhere to mucin and HT-29 cell lines of L. plantarum ATCC 14917 in the acid group were increased by 1.141, 1.125 and 1.156, respectively. But decreased significantly in the alkali group (fold changes with 0.842, 0.728 and 0.667). Adhesion-related protein increased in the acid group but declined in the alkali group at the mRNA expression level according to real time polymerase chain reaction (RT-PCR) analysis. The changes in the metabolite profiles of L. plantarum ATCC 14917 were characterized using Ultra-Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight-mass spectrometry (UPLS-ESI-Q-TOF-MS). In the alkali group, the content of a lot of substances involved in the energy and amino acid metabolism decreased, but the content of some substances involved in the energy metabolism was slightly increased in the acid group. These findings demonstrate that energy metabolism is positively correlated with the adhesion ability of L. plantarum ATCC 14917. The amino-acids metabolism, especially the amino acids related to pH-homeostasis mechanisms (lysine, aspartic acid, arginine, proline and glutamic acid), showed an obvious effect on the adhesion ability of L. plantarum ATCC 14917. This investigation provides a better understanding of L. plantarum's adhesion mechanisms under initial pH stress.

  4. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.

    PubMed

    Jiang, Longfa

    2013-01-01

    This study aims to investigate the effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Curdlan production fell when excess nitrogen source was present, while biomass accumulation increased as the level of nitrogen source raised. Curdlan production and biomass accumulation were greater with urea compared with those with other nitrogen sources. The highest production of curdlan and biomass accumulation by A. faecalis ATCC 31749 was 28.16 g L(-1) and 9.58 g L(-1), respectively, with urea, whereas those with NH(4)Cl were 15.17 g L(-1) and 6.25 g L(-1), respectively. The optimum fermentation time for curdlan production was also affected by the nitrogen source in the medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Cui, Chunhong

    2013-01-01

    The feasibility of removing heavy metals and eliminating pathogens from pig slurry through bioleaching involving the fungus Galactomyces sp. Z3 and two acidophilic thiobacillus (A. ferrooxidans LX5 and A. thiooxidans TS6) was investigated. It was found that the isolated pig slurry dissolved organic matter (DOM) degrader Z3 was identified as Galactomyces sp. Z3, which could grow well at pH 2.5-7 and degrade pig slurry DOM from 1973 to 942 mg/l within 48 h. During the successive multi-batch bioleaching systems, the co-inoculation of pig slurry degrader Galactomyces sp. Z3 and the two Acidithiobacillus species could improve pig slurry bioleaching efficiency compared to the single system without Galactomyces sp. Z3. The removal efficiency of Zn and Cu exceeded 94% and 85%, respectively. In addition, the elimination efficiencies of pathogens, including both total coliform and faecal coliform counts, exceeded 99% after bioleaching treatment. However, the counts of Galactomyces sp. Z3 decreased with the fall of pH and did not restore to the initial level during successive multi-batch bioleaching systems, and it is necessary to re-inoculate Galactomyces sp. Z3 cells into the bioleaching system to maintain its role in degrading pig slurry DOM. Therefore, a bioleaching technique involving both Galactomyces sp. Z3 and Acidithiobacillus species is an efficient method for removing heavy metals and eliminating pathogens from pig slurry.

  6. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, William S.; Thomas, Steven R.; Nieves, Rafael A.; Himmel, Michael E.

    1994-01-01

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C.sub.1, and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81.degree. C. at pH's from about 2 to about 9, and at a inactivation temperature of about 100.degree. C. at pH's from about 2 to about 9.

  7. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, W.S.; Thomas, S.R.; Nieves, R.A.; Himmel, M.E.

    1994-11-22

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C[sub 1], and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81 C at pH's from about 2 to about 9, and at a inactivation temperature of about 100 C at pH's from about 2 to about 9. 9 figs.

  8. Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469.

    PubMed

    de Figueroa, R M; Benito de Cárdenas, I L; Sesma, F; Alvarez, F; de Ruiz Holgado, A P; Oliver, G

    1996-10-01

    Lactobacillus rhamnosus ATCC 7469 exhibited diauxie when grown in a medium containing both glucose and citrate as energy source. Glucose was used as the primary energy source during the glucose-citrate diauxie. Uptake of citrate was carried out by an inducible citrate transport system. The induction of citrate uptake system was repressed in the presence of glucose. This repression was reversible and mediated by cAMP.

  9. Magnetic response in cultures of Streptococcus mutans ATCC-27607.

    PubMed

    Adamkiewicz, V W; Bassous, C; Morency, D; Lorrain, P; Lepage, J L

    1987-01-01

    Streptococcus mutans ATCC-27607 produces exopolysaccharides that adhere to glass. In the normal geomagnetic field about 50% more polysaccharide adhere preferentially to glass surfaces facing North as compared to South facing surfaces. Reversal of the direction of the magnetic field by 180 degrees produces a similar reversal in the direction of the preferential accumulation. Reduction of the field by 90% abolishes the preferential accumulation.

  10. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress

    PubMed Central

    Wang, Wenwen; He, Jiayi; Wu, Zhen; Guo, Yuxing; Zeng, Xiaoqun; Lian, Liwei

    2018-01-01

    The adhesion ability of Lactobacillus plantarum affects retention time in the human gastro-intestinal tract, as well as influencing the interaction with their host. In this study, the relationship between the adhesion activity of, and metabolic changes in, L. plantarum ATCC 14917 under initial acid and alkali stress was evaluated by analyzing auto-aggregation, protein adhesion and cell adhesion in vitro. Based on scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis, the morphology of the bacteria became thickset and the thickness of their cell walls decreased under initial alkali stress. The fold changes of auto-aggregation, adhere to mucin and HT-29 cell lines of L. plantarum ATCC 14917 in the acid group were increased by 1.141, 1.125 and 1.156, respectively. But decreased significantly in the alkali group (fold changes with 0.842, 0.728 and 0.667). Adhesion—related protein increased in the acid group but declined in the alkali group at the mRNA expression level according to real time polymerase chain reaction (RT-PCR) analysis. The changes in the metabolite profiles of L. plantarum ATCC 14917 were characterized using Ultra-Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight-mass spectrometry (UPLS-ESI-Q-TOF-MS). In the alkali group, the content of a lot of substances involved in the energy and amino acid metabolism decreased, but the content of some substances involved in the energy metabolism was slightly increased in the acid group. These findings demonstrate that energy metabolism is positively correlated with the adhesion ability of L. plantarum ATCC 14917. The amino-acids metabolism, especially the amino acids related to pH-homeostasis mechanisms (lysine, aspartic acid, arginine, proline and glutamic acid), showed an obvious effect on the adhesion ability of L. plantarum ATCC 14917. This investigation provides a better understanding of L. plantarum’s adhesion mechanisms under initial p

  11. Draft Genome Sequence of Thiostrepton-Producing Streptomyces azureus ATCC 14921

    PubMed Central

    Sakihara, Kengo; Maeda, Jumpei; Tashiro, Kosuke; Fujino, Yasuhiro; Kuhara, Satoru; Ohshima, Toshihisa; Ogata, Seiya

    2015-01-01

    Streptomyces azureus ATCC 14921 belongs to the Streptomyces cyaneus cluster and is known to be a thiostrepton producer. Here, we report a draft genome sequence for this strain, consisting of 350 contigs containing a total of 8,790,525 bp, 8,164 predicted coding sequences, and a G+C content of 70.9%. PMID:26494661

  12. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.

    PubMed

    Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M

    2015-06-01

    The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.

  13. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Dan; Ojumu, John O.

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. In addition, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

  14. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509

    DOE PAGES

    Close, Dan; Ojumu, John O.

    2016-11-03

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. In addition, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

  15. Selective separation of pyrite and chalcopyrite by biomodulation.

    PubMed

    Chandraprabha, M N; Natarajan, K A; Modak, Jayant M

    2004-09-01

    Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.

  16. Microbial population Diversity of indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Kim, B.; Cho, K.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    A taxon- or group-specific PCR primer serves as a valuable tool for studying the bioleaching mechanisms of a particular group of microorganisms. Especially for an uncultured (or very difficult to isolate from their environments) group of microorganisms, the group-specific PCR primer is essential for the investigation of distribution patterns and the estimation of genetic diversity of the target microorganisms. This study investigated the Biodiversity through molecular biology method using the three different indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea and acidic hot spring in Hatchnobaru, Japan. We performed the optical analysis (phase-contrast microscope and SEM), base sequencing. In the phase-contrast microscope(X 4,000) and SEM analysis, the rod-shaped bacteria with 1μm in length were observed. The results of base sequencing using EzTaxon server data revealed Acidithiobacillus ferrooxidans (Go-seong - 97.79%, Yeon-hwa - 97.90% and Hatchnobaru - 97.97%)

  17. Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization.

    PubMed

    Arshadi, M; Mousavi, S M

    2014-12-01

    Computer printed circuit boards (CPCBs) have a rich metal content and are produced in high volume, making them an important component of electronic waste. The present study used a pure culture of Acidithiobacillus ferrooxidans to leach Cu and Ni from CPCBs waste. The adaptation phase began at 1g/l CPCBs powder with 10% inoculation and final pulp density was reached at 20g/l after about 80d. Four effective factors including initial pH, particle size, pulp density, and initial Fe(3+) concentration were optimized to achieve maximum simultaneous recovery of Cu and Ni. Their interactions were also identified using central composite design in response surface methodology. The suggested optimal conditions were initial pH 3, initial Fe(3+) 8.4g/l, pulp density 20g/l and particle size 95μm. Nearly 100% of Cu and Ni were simultaneously recovered under optimum conditions. Finally, bacterial growth characteristics versus time at optimum conditions were plotted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Is Mars a habitable environment for extremophilic microorganisms from Earth?

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Reitz, Guenther; Flemming, Hans-Curt; Bauermeister, Anja

    In the last decades several sucessful space missions to our neighboring planet Mars have deepened our knowledge about its environmental conditions substantially. Orbiters with intruments for remote sensing and landers with sophisticated intruments for in situ investigations resulted in a better understanding of Mars’ radiation climate, atmospheric composition, geology, and mineralogy. Extensive regions of the surface of Mars are covered with sulfate- and ferric oxide-rich layered deposits. These sediments indicate the possible existence of aqueous, acidic environments on early Mars. Similar environments on Earth harbour a specialised community of microorganisms which are adapted to the local stress factors, e.g. low pH, high concentrations of heavy metal ions, oligotrophic conditions. Acidophilic iron-sulfur bacteria isolated from such habitats on Earth could be considered as model organisms for an important part of a potential extinct Martian ecosystem or an ecosystem which might even exist today in protected subsurface niches. Acidithiobacillus ferrooxidans was chosen as a model organism to study the ability of these bacteria to survive or grow under conditions resembling those on Mars. Stress conditions tested included desiccation, radiation, low temperatures, and high salinity. It was found that resistance to desiccation strongly depends on the mode of drying. Biofilms grown on membrane filters can tolerate longer periods of desiccation than planktonic cells dried without any added protectants, and drying under anaerobic conditions is more favourable to survival than drying in the presence of oxygen. Organic compounds such as trehalose and glycine betaine had a positive influence on survival after drying and freezing. A. ferrooxidans was shown to be sensitive to high salt concentrations, ionizing radiation, and UV radiation. However, the bacteria were able to utilize the iron minerals in Mars regolith mixtures as sole energy source. The survival and growth of

  19. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2 (ATCC...

  1. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2 (ATCC...

  2. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2 (ATCC...

  3. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2 (ATCC...

  4. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2 (ATCC...

  5. Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, Michael E.; Adney, William S.; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068). The cellulase is water soluble, possesses both C.sub.1 and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83.degree. C. at pH's from about 2 to about 9, and in inactivation temperature of about 110.degree. C. at pH's from about 2 to about 9.

  6. Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, M.E.; Adney, W.S.; Tucker, M.P.; Grohmann, K.

    1994-01-04

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068) is presented. The cellulase is water soluble, possesses both C[sub 1] and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83 C at pH's from about 2 to about 9, and in inactivation temperature of about 110 C at pH's from about 2 to about 9. 7 figures.

  7. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community.

    PubMed

    Moreno-Paz, Mercedes; Gómez, Manuel J; Arcas, Aida; Parro, Víctor

    2010-06-24

    Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy). Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers). In the Río Tinto (Spain), brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum) and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery) and environmental applications (acid mine drainage, bioremediation). The aim of this study was to investigate the physiological differences between the free living (planktonic) and the sessile (biofilm associated) lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB), synthesis of cell wall structures (lnt, murA, murB), specific proteases (clpX/clpP), stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL), etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA) were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively) in the acidic (pH 1.8) water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Our results indicate that the acidophilic filaments are dynamic structures

  8. Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies

    PubMed Central

    Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun

    2013-01-01

    Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933

  9. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946

    USDA-ARS?s Scientific Manuscript database

    Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...

  10. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  11. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta,, Charles A.; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  12. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    PubMed

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923.

    PubMed

    Santhana Raj, L; Hing, H L; Baharudin, Omar; Teh Hamidah, Z; Aida Suhana, R; Nor Asiha, C P; Vimala, B; Paramsarvaran, S; Sumarni, G; Hanjeet, K

    2007-06-01

    Mesosomes of Staphylococcus aureus ATCC 25923 treated with antibiotics were examined morphologically under the electron microscope. The Transmission Electron Microscope Rapid Method was used to eliminate the artifacts due to sample processing. Mesosomes were seen in all the antibiotic treated bacteria and not in the control group. The main factor that contributes to the formation of mesosomes in the bacteria was the mode of action of the antibiotics. The continuous cytoplasmic membrane with infolding (mesosomes) as in the S. aureus ATCC 25923 is therefore confirmed as a definite pattern of membrane organization in gram positive bacteria assaulted by amikacin, gentamicin, ciprofloxacin, vancomycin and oxacillin antibiotics. Our preliminary results show oxacillin and vancomycin treated bacteria seemed to have deeper and more mesosomes than those treated with amikacin, gentamicin and ciprofloxacin. Further research is needed to ascertain whether the deep invagination and the number of mesosomes formed is associated with the types of antibiotic used.

  14. Inhibition of microbial concrete corrosion by Acidithiobacillus thiooxidans with functionalised zeolite-A coating.

    PubMed

    Haile, Tesfaalem; Nakhla, George

    2009-01-01

    The inhibition of the corrosive action of Acidithiobacillus thiooxidans on concrete specimens coated by functionalised zeolite-A containing 14% zinc and 5% silver by weight was studied. Uncoated concrete specimens, epoxy-coated concrete specimens (EP), and functionalised zeolite-A coated concrete specimens with epoxy to zeolite weight ratios of 3:1 (Z1), 2:2 (Z2) and 1:3 (Z3) were studied. Specimens were characterised by x-ray powder diffraction and field emission scanning electron microscopy for the identification of corrosion products and morphological changes. Biomass growth at the conclusion of the 32-day experiments was 4, 179 and 193 mg volatile suspended solids g(-1) sulphur for the uncoated, EP and Z1 specimens, whereas that of Z2 and Z3 were negligible. In the uncoated, EP and Z1 specimens, sulphate production rates were 0.83, 9.1 and 8.8 mM SO(4)(2-) day(-1) and the specific growth rates, mu, were 0.14, 0.57 and 0.47 day(-1), respectively. The corresponding values for Z2 and Z3 were negligible due to their bacterial inhibition characteristics.

  15. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap.

    PubMed

    Zhang, Xian; Niu, Jiaojiao; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-19

    Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.

  16. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma.

  17. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroemberg, N.K.; Karlsson, K.A.

    1990-07-05

    Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) were radiolabeled externally (125I) or metabolically (35S) and analyzed for their ability to bind glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells. Two binding properties were found and characterized in detail. (i) Both bacteria showed binding to lactosylceramide (LacCer) in a fashion similar to bacteria characterized earlier. The activity of free LacCer was dependent on the ceramide structure; species with 2-hydroxy fatty acid and/or a trihydroxy base were positive, while species with nonhydroxy fatty acid and a dihydroxy base were negative binders. Several glycolipids with internal lactose weremore » active but only gangliotriaosylceramide and gangliotetraosylceramide were as active as free LacCer. The binding to these three species was half-maximal at about 200 ng of glycolipid and was not blocked by preincubation of bacteria with free lactose or lactose-bovine serum albumin. (ii) A. naeslundii, unlike A. viscosus, showed a superimposed binding concluded to be to terminal or internal GalNAc beta and equivalent to a lactose-inhibitable specificity previously analyzed by other workers. Terminal Gal beta was not recognized in several glycolipids, although free Gal and lactose were active as soluble inhibitors. The binding was half-maximal at about 10 ng of glycolipid. A glycolipid mixture prepared from a scraping of human buccal epithelium contained an active glycolipid with sites for both binding specificities.« less

  18. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.

    PubMed

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying; Kong, Jian

    2017-11-01

    Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δ pox mutant, while those of POX increased significantly in the Δ pdh mutant. More lactate but less acetate was produced in the Δ pdh mutant than in the wild-type and Δ pox mutant strains, and more H 2 O 2 (a product of the POX pathway) was produced in the Δ pdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we

  19. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367

    PubMed Central

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying

    2017-01-01

    ABSTRACT Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we

  20. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli

    PubMed Central

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin

    2015-01-01

    Abstract As a highly valued keto‐carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α‐Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole‐genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio‐Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high‐efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4‐fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. PMID:26580858

  1. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis.

    PubMed

    Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang

    2011-06-01

    Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.

  2. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611.

    PubMed

    Zhang, Jing; Liu, Caixia; Xie, Yijia; Li, Ning; Ning, Zhanguo; Du, Na; Huang, Xirong; Zhong, Yaohua

    2017-05-10

    Aspergillus niger ATCC20611 is one of the most potent filamentous fungi used commercially for production of fructooligosaccharides (FOS), which are prospective components of functional food by stimulating probiotic bacteria in the human gut. However, current strategies for improving FOS yield still rely on production process development. The genetic engineering approach hasn't been applied in industrial strains to increase FOS production level. Here, an optimized polyethylene glycol (PEG)-mediated protoplast transformation system was established in A. niger ATCC 20611 and used for further strain improvement. The pyrithiamine resistance gene (ptrA) was selected as a dominant marker and protoplasts were prepared with high concentration (up to 10 8 g -1 wet weight mycelium) by using mixed cell wall-lysing enzymes. The transformation frequency with ptrA can reach 30-50 transformants per μg of DNA. In addition, the efficiency of co-transformation with the EGFP reporter gene (egfp) was high (approx. 82%). Furthermore, an activity-improved variant of β-fructofuranosidase, FopA(A178P), was successfully overexpressed in A. niger ATCC 20611 by using the transformation system. The transformant, CM6, exhibited a 58% increase in specific β-fructofuranosidase activity (up to 507U/g), compared to the parental strain (320U/g), and effectively reduced the time needed for completion of FOS synthesis. These results illustrate the feasibility of strain improvement through genetic engineering for further enhancement of FOS production level. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Zhan, Xiao; Wang, Wu

    2014-06-01

    An integrated strategy (additional energy substrate-three stage pH control-fed batch) was firstly proposed for efficiently improving chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter. The strain adaptive-growing phase was greatly shortened from 8days into 4days with the supplement of additional 2g/L Fe(2+)+2g/L S(0). Jarosite passivation was effectively weakened basing on higher biomass via the three-stage pH-stat control (pH 1.3-1.0-0.7). The mineral substrate inhibition was attenuated by fed-batch fermentation. With the integrated strategy, the biochemical reaction was promoted and achieved a better balance. Meanwhile, the domination course of A. thiooxidans in the microbial community was shortened from 14days to 8days. As the results of integrated strategy, the final copper ion and productivity reached 89.1mg/L and 2.23mg/(Ld), respectively, which was improved by 52.8% compared to the uncontrolled batch bioleaching. The integrated strategy could be further exploited for industrial chalcopyrite bioleaching. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Functional Characterization of the FoxE Iron Oxidoreductase from the Photoferrotroph Rhodobacter ferrooxidans SW2*

    PubMed Central

    Saraiva, Ivo H.; Newman, Dianne K.; Louro, Ricardo O.

    2012-01-01

    Photoferrotrophy is presumed to be an ancient type of photosynthetic metabolism in which bacteria use the reducing power of ferrous iron to drive carbon fixation. In this work the putative iron oxidoreductase of the photoferrotroph Rhodobacter ferrooxidans SW2 was cloned, purified, and characterized for the first time. This protein, FoxE, was characterized using spectroscopic, thermodynamic, and kinetic techniques. It is a c-type cytochrome that forms a trimer or tetramer in solution; the two hemes of each monomer are hexacoordinated by histidine and methionine. The hemes have positive reduction potentials that allow downhill electron transfer from many geochemically relevant ferrous iron forms to the photosynthetic reaction center. The reduction potentials of the hemes are different and are cross-assigned to fast and slow kinetic phases of ferrous iron oxidation in vitro. Lower reactivity was observed at high pH and may contribute to prevent ferric iron precipitation inside or at the surface of the cell. These results help fill in the molecular details of a metabolic process that likely contributed to the deposition of precambrian banded iron formations, globally important sedimentary rocks that are found on every continent today. PMID:22661703

  5. Influence of controlled atmosphere on thermal inactivation of Escherichia coli ATCC 25922 in almond powder.

    PubMed

    Cheng, Teng; Li, Rui; Kou, Xiaoxi; Wang, Shaojin

    2017-06-01

    Heat controlled atmosphere (CA) treatments hold potential to pasteurize Salmonella enteritidis PT 30 in almonds. Nonpathogenic Escherichia coli ATCC 25922 was used as a surrogate species of pathogenic Salmonella for validation of thermal pasteurization to meet critical safety requirements. A controlled atmosphere/heating block system (CA-HBS) was used to rapidly determine thermal inactivation of E. coli ATCC 25922. D- and z-values of E. coli ATCC 25922 inoculated in almond powder were determined at four temperatures between 65 °C and 80 °C under different gas concentrations and heating rates. The results showed that D- and z-values of E. coli under CA treatment were significantly (P < 0.05) lower than those under regular atmosphere (RA) treatment at 4 given temperatures. Relatively higher CO 2 concentrations (20%) and lower O 2 concentrations (2%) were more effective to reduce thermal inactivation time. There were no significant differences in D-values of E. coli when heating rates were above 1 °C/min both in RA and CA treatments. But D-values significantly (P < 0.05) increased under RA treatment and decreased under CA treatment at lower heating rates. Combination of rapid heat and CA treatments could be a promising method for thermal inactivation of S. enteritidis PT 30 in almond powder. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    PubMed

    Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

  7. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579

    PubMed Central

    Abfalter, Carmen M.; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G.; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686

  8. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  9. Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus.

    PubMed

    Smith, Sarah L; Johnson, D Barrie

    2018-03-01

    Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.

  10. Plasmid-Encoded MCP Is Involved in Virulence, Motility, and Biofilm Formation of Cronobacter sakazakii ATCC 29544

    PubMed Central

    Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun

    2014-01-01

    The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage. PMID:25332122

  11. In silico identification of molecular mimics involved in the pathogenesis of Clostridium botulinum ATCC 3502 strain.

    PubMed

    Bhardwaj, Tulika; Haque, Shafiul; Somvanshi, Pallavi

    2018-05-12

    Bacterial pathogens invade and disrupt the host defense system by means of protein sequences structurally similar at global and local level both. The sharing of homologous sequences between the host and the pathogenic bacteria mediates the infection and defines the concept of molecular mimicry. In this study, various computational approaches were employed to elucidate the pathogenicity of Clostridium botulinum ATCC 3502 at genome-wide level. Genome-wide study revealed that the pathogen mimics the host (Homo sapiens) and unraveled the complex pathogenic pathway of causing infection. The comparative 'omics' approaches helped in selective screening of 'molecular mimicry' candidates followed by the qualitative assessment of the virulence potential and functional enrichment. Overall, this study provides a deep insight into the emergence and surveillance of multidrug resistant C. botulinum ATCC 3502 caused infections. This is the very first report identifying C. botulinum ATCC 3502 proteome enriched similarities to the human host proteins and resulted in the identification of 20 potential mimicry candidates, which were further characterized qualitatively by sub-cellular organization prediction and functional annotation. This study will provide a variety of avenues for future studies related to infectious agents, host-pathogen interactions and the evolution of pathogenesis process. Copyright © 2018. Published by Elsevier Ltd.

  12. Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544.

    PubMed

    Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun; Ryu, Sangryeol

    2015-01-01

    The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose.

    PubMed

    Dwidar, Mohammed; Kim, Seil; Jeon, Byoung Seung; Um, Youngsoon; Mitchell, Robert J; Sang, Byoung-In

    2013-03-04

    Currently, the most promising microorganism used for the bio-production of butyric acid is Clostridium tyrobutyricum ATCC 25755T; however, it is unable to use sucrose as a sole carbon source. Consequently, a newly isolated strain, Bacillus sp. SGP1, that was found to produce a levansucrase enzyme, which hydrolyzes sucrose into fructose and glucose, was used in a co-culture with this strain, permitting C. tyrobutyricum ATCC 25755T to ferment sucrose to butyric acid. B. sp. SGP1 alone did not show any butyric acid production and the main metabolite produced was lactic acid. This allowed C. tyrobutyricum ATCC 25755T to utilize the monosaccharides resulting from the activity of levansucrase together with the lactic acid produced by B. sp. SGP1 to generate butyric acid, which was the main fermentative product within the co-culture. Furthermore, the final acetic acid concentration in the co-culture was significantly lower when compared with pure C. tyrobutyricum ATCC 25755T cultures grown on glucose. In fed-batch fermentations, the optimum conditions for the production of butyric acid were around pH 5.50 and a temperature of 37°C. Under these conditions, the final butyrate concentration was 34.2±1.8 g/L with yields of 0.35±0.03 g butyrate/g sucrose and maximum productivity of 0.3±0.04 g/L/h. Using this co-culture, sucrose can be utilized as a carbon source for butyric acid production at a relatively high yield. In addition, this co-culture offers also the benefit of a greater selectivity, with butyric acid constituting 92.8% of the acids when the fermentation was terminated.

  14. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli.

    PubMed

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin; Liu, Tiangang

    2016-02-01

    As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4-fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature.

    PubMed

    Barahona, Sergio; Dorador, Cristina; Zhang, Ruiyong; Aguilar, Pablo; Sand, Wolfgang; Vera, Mario; Remonsellez, Francisco

    2014-11-01

    Microorganisms are used to aid the extraction of valuable metals from low-grade sulfide ores in mines worldwide, but relatively little is known about this process in cold environments. This study comprises a preliminary analysis of the bacterial diversity of the polyextremophilic acid River Aroma located in the Chilean Altiplano, and revealed that Betaproteobacteria was the most dominant bacterial group (Gallionella-like and Thiobacillus-like). Taxa characteristic of leaching environments, such Acidithiobacillus and Leptospirillum, were detected at low abundances. Also, bacteria not associated with extremely acidic, metal-rich environments were found. After enrichment in iron- and sulfur-oxidizing media, we isolated and identified a novel psychrotolerant Acidithiobacillus ferrivorans strain ACH. This strain can grow using ferrous iron, sulfur, thiosulfate, tetrathionate and pyrite, as energy sources. Optimal growth was observed in the presence of pyrite, where cultures reached a cell number of 6.5 · 10(7) cells mL(-1). Planktonic cells grown with pyrite showed the presence of extracellular polymeric substances (10 °C and 28 °C), and a high density of cells attached to pyrite grains were observed at 10 °C by electron microscopy. The attachment of cells to pyrite coupons and the presence of capsular polysaccharides were visualized by using epifluorescence microscopy, through nucleic acid and lectin staining with Syto(®)9 and TRITC-Con A, respectively. Interestingly, we observed high cell adhesion including the formation of microcolonies within 21 days of incubation at 4 °C, which was correlated with a clear induction of capsular polysaccharides production. Our data suggests that attachment to pyrite is not temperature-dependent in At. ferrivorans ACH. The results of this study highlight the potential of this novel psychrotolerant strain in oxidation and attachment to minerals under low-temperature conditions. Copyright © 2014 Institut Pasteur. Published by

  16. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil.

    PubMed

    Yang, Zhihui; Wu, Zijian; Liao, Yingping; Liao, Qi; Yang, Weichun; Chai, Liyuan

    2017-08-01

    Here, a novel strategy that combines microbial oxidation by As(III)-oxidizing bacterium and biogenic schwertmannite (Bio-SCH) immobilization was first proposed and applied for treating the highly arsenic-contaminated soil. Brevibacterium sp. YZ-1 isolated from a highly As-contaminated soil was used to oxidize As(III) in contaminated soils. Under optimum culture condition for microbial oxidation, 92.3% of water-soluble As(III) and 84.4% of NaHCO 3 -extractable As(III) in soils were removed. Bio-SCH synthesized through the oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans immobilize As(V) in the contaminated soil effectively. Consequently, the combination of microbial oxidation and Bio-SCH immobilization performed better in treating the highly As-contaminated soil with immobilization efficiencies of 99.3% and 82.6% for water-soluble and NaHCO 3 -extractable total As, respectively. Thus, the combination can be considered as a green remediation strategy for developing a novel and valuable solution for As-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ribulose bisphosphate carboxylase activity and a Calvin cycle gene cluster in Sulfobacillus species.

    PubMed

    Caldwell, Paul E; MacLean, Martin R; Norris, Paul R

    2007-07-01

    The Calvin-Benson-Bassham (CBB) cycle has been extensively studied in proteobacteria, cyanobacteria, algae and plants, but hardly at all in Gram-positive bacteria. Some characteristics of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and a cluster of potential CBB cycle genes in a Gram-positive bacterium are described in this study with two species of Sulfobacillus (Gram-positive, facultatively autotrophic, mineral sulfide-oxidizing acidophiles). In contrast to the Gram-negative, iron-oxidizing acidophile Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans grew poorly autotrophically unless the CO(2) concentration was enhanced over that in air. However, the RuBisCO of each organism showed similar affinities for CO(2) and for ribulose 1,5-bisphosphate, and similar apparent derepression of activity under CO(2) limitation. The red-type, form I RuBisCO of Sulfobacillus acidophilus was confirmed as closely related to that of the anoxygenic phototroph Oscillochloris trichoides. Eight genes potentially involved in the CBB cycle in S. acidophilus were clustered in the order cbbA, cbbP, cbbE, cbbL, cbbS, cbbX, cbbG and cbbT.

  18. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    PubMed Central

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria. PMID:23760258

  19. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    NASA Astrophysics Data System (ADS)

    Ma, Yingqun; Lin, Chuxia

    2013-06-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  20. Microbial oxidation of Fe²⁺ and pyrite exposed to flux of micromolar H₂O₂ in acidic media.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe(2+) was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe(2+) could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe(2+) to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe(2+)-Fe(3+) conversion rate in the solution (due to reduced microbial activity) weakened the Fe(3+)-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  1. Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium.

    PubMed

    Arshadi, M; Mousavi, S M

    2015-01-01

    In this research simultaneous gold and copper recovery from computer printed circuit boards (CPCBs) was evaluated using central composite design of response surface methodology (CCD-RSM). To maximize simultaneous metals' extraction from CPCB waste four factors which affected bioleaching were selected to be optimized. A pure culture of Bacillus megaterium, a cyanogenic bacterium, was used to produce cyanide as a leaching agent. Initial pH 10, pulp density 2g/l, particle mesh#100 and glycine concentration 0.5g/l were obtained as optimal conditions. Gold and copper were extracted simultaneously at about 36.81 and 13.26% under optimum conditions, respectively. To decrease the copper effect as an interference agent in the leaching solution, a pretreatment strategy was examined. For this purpose firstly using Acidithiobacillus ferrooxidans copper in the CPCB powder was totally extracted, then the residual sediment was subjected to further experiments for gold recovery by B. megaterium. Using pretreated sample under optimal conditions 63.8% gold was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.

    PubMed

    Orell, Alvaro; Navarro, Claudio A; Arancibia, Rafaela; Mobarec, Juan C; Jerez, Carlos A

    2010-01-01

    Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Regulation of a glutamyl-tRNA synthetase by the heme status

    PubMed Central

    Levicán, Gloria; Katz, Assaf; de Armas, Merly; Núñez, Harold; Orellana, Omar

    2007-01-01

    Glutamyl-tRNA (Glu-tRNA), formed by Glu-tRNA synthetase (GluRS), is a substrate for protein biosynthesis and tetrapyrrole formation by the C5 pathway. In this route Glu-tRNA is transformed to δ-aminolevulinic acid, the universal precursor of tetrapyrroles (e.g., heme and chlorophyll) by the action of Glu-tRNA reductase (GluTR) and glutamate semialdehyde aminotransferase. GluTR is a target of feedback regulation by heme. In Acidithiobacillus ferrooxidans, an acidophilic bacterium that expresses two GluRSs (GluRS1 and GluRS2) with different tRNA specificity, the intracellular heme level varies depending on growth conditions. Under high heme requirement for respiration increased levels of GluRS and GluTR are observed. Strikingly, when intracellular heme is in excess, the cells respond by a dramatic decrease of GluRS activity and the level of GluTR. The recombinant GluRS1 enzyme is inhibited in vitro by hemin, but NADPH restores its activity. These results suggest that GluRS plays a major role in regulating the cellular level of heme. PMID:17360620

  4. Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction

    NASA Astrophysics Data System (ADS)

    Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan

    2017-04-01

    The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.

  5. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate.

    PubMed

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui

    2016-11-05

    Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe2O3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe2O3 red pigment powders contained 98.24wt.% of Fe2O3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22nm to 86nm and averaged at 45nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose

    PubMed Central

    2013-01-01

    Background Currently, the most promising microorganism used for the bio-production of butyric acid is Clostridium tyrobutyricum ATCC 25755T; however, it is unable to use sucrose as a sole carbon source. Consequently, a newly isolated strain, Bacillus sp. SGP1, that was found to produce a levansucrase enzyme, which hydrolyzes sucrose into fructose and glucose, was used in a co-culture with this strain, permitting C. tyrobutyricum ATCC 25755T to ferment sucrose to butyric acid. Results B. sp. SGP1 alone did not show any butyric acid production and the main metabolite produced was lactic acid. This allowed C. tyrobutyricum ATCC 25755T to utilize the monosaccharides resulting from the activity of levansucrase together with the lactic acid produced by B. sp. SGP1 to generate butyric acid, which was the main fermentative product within the co-culture. Furthermore, the final acetic acid concentration in the co-culture was significantly lower when compared with pure C. tyrobutyricum ATCC 25755T cultures grown on glucose. In fed-batch fermentations, the optimum conditions for the production of butyric acid were around pH 5.50 and a temperature of 37°C. Under these conditions, the final butyrate concentration was 34.2±1.8 g/L with yields of 0.35±0.03 g butyrate/g sucrose and maximum productivity of 0.3±0.04 g/L/h. Conclusions Using this co-culture, sucrose can be utilized as a carbon source for butyric acid production at a relatively high yield. In addition, this co-culture offers also the benefit of a greater selectivity, with butyric acid constituting 92.8% of the acids when the fermentation was terminated. PMID:23452443

  7. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.

    PubMed

    Alvarez, María de Fátima; Medina, Roxana; Pasteris, Sergio E; Strasser de Saad, Ana M; Sesma, Fernando

    2004-01-01

    Lactobacillus rhamnosus ATCC 7469 was able to grow in glycerol as the sole source of energy in aerobic conditions, producing lactate, acetate, and diacetyl. A biphasic growth was observed in the presence of glucose. In this condition, glycerol consumption began after glucose was exhausted from the culture medium. Glycerol kinase activity was detected in L. rhamnosus ATCC 7469, a characteristic of microorganisms which catabolize glycerol in aerobic conditions. Genetic analysis revealed that this strain possesses two glycerol kinase genes: gykA and glpK, that encode for two different glycerol kinases GykA and GlpK, respectively. The glpK geneis associated in an operon with alpha-glycerophosphate oxidase (glpO) and glycerol facilitator (glpF) genes. Transcriptional analysis revealed that only glpK is expressed when L. rhamnosus was grown on glycerol. Copyright 2004 S. Karger AG, Basel

  8. Evaluation of Nostoc Strain ATCC 53789 as a Potential Source of Natural Pesticides

    PubMed Central

    Biondi, Natascia; Piccardi, Raffaella; Margheri, M. Cristina; Rodolfi, Liliana; Smith, Geoffrey D.; Tredici, Mario R.

    2004-01-01

    The cyanobacterium Nostoc strain ATCC 53789, a known cryptophycin producer, was tested for its potential as a source of natural pesticides. The antibacterial, antifungal, insecticidal, nematocidal, and cytotoxic activities of methanolic extracts of the cyanobacterium were evaluated. Among the target organisms, nine fungi (Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, and Verticillium albo-atrum) were growth inhibited and one insect (Helicoverpa armigera) was killed by the extract, as well as the two model organisms for nematocidal (Caenorhabditis elegans) and cytotoxic (Artemia salina) activity. No antibacterial activity was detected. The antifungal activity against S. sclerotiorum was further studied with both extracts and biomass of the cyanobacterium in a system involving tomato as a host plant. Finally, the herbicidal activity of Nostoc strain ATCC 53789 was evaluated against a grass mixture. To fully exploit the potential of this cyanobacterium in agriculture as a source of pesticides, suitable application methods to overcome its toxicity toward plants and nontarget organisms must be developed. PMID:15184126

  9. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  10. Production and Rheological Properties of Welan Gum Produced by Sphingomonas sp. ATCC 31555 with Different Nitrogen Sources.

    PubMed

    Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhan, Xiaobei

    2017-01-01

    This study aimed to investigate the effect of nitrogen sources on the production and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555. Six different nitrogen sources were used for ATCC 31555 fermentation, and 2 of these were further analyzed due to their more positive influence on welan gum production and bacterial biomass. Bacterial biomass, welan gum yield, welan viscosity, molecular weight, monosaccharide composition, acyl content, and welan structure were analyzed. Welan gum production and the biomass concentration of ATCC 31555 were higher in media containing NaNO3 and beef extract. Welan viscosity decreased at higher temperatures of 30-90°C, and it increased with a higher welan concentration. In the media containing NaNO3 (3 g·L-1), welan viscosity was higher at 30-70°C and a welan solution concentration of 6-10 g·L-1. With a reduced NaNO3 concentration, the molecular weight of welan gum and the molar ratio of mannose decreased, but the molar ratio of glucuronic acid increased. With different nitrogen sources, the acetyl content of welan gum differed but its structure was similar. NaNO3 and beef extract facilitated welan production. A reduced NaNO3 concentration promoted welan viscosity. © 2017 S. Karger AG, Basel.

  11. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium

    PubMed Central

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P.

    2016-01-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first gene of this ars operon, arsR, encodes a putative ArsR As(III)-responsive transcriptional repressor. The next three genes encode proteins of unknown function. The remaining genes, arsDABC, have well-characterized roles in detoxification of inorganic arsenic, but there are no known genes for MAs(III) resistance. Expression of each gene after exposure to trivalent and pentavalent inorganic and methylarsenicals was analyzed. MAs(III) was the most effective inducer. The arsD gene was the most highly expressed of the ars operon genes. These results demonstrate that this anaerobic microbiome bacterium has arsenic-responsive genes that confer resistance to inorganic arsenic and may be responsible for the organism's ability to maintain its prevalence in the gut following dietary exposure to inorganic arsenic. PMID:27040269

  12. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8.

    PubMed

    Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo

    2016-01-01

    Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.

  13. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923

    PubMed Central

    Treangen, Todd J.; Maybank, Rosslyn A.; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F.; Karaolis, David K. R.; Koren, Sergey; Ondov, Brian; Phillippy, Adam M.; Bergman, Nicholas H.

    2014-01-01

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. PMID:25377701

  14. Complete genome sequence of Anabaena variabilis ATCC 29413

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun

    2013-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we providemore » some additional characteristics of the strain, and an analysis of the complete genome sequence.« less

  15. Cytochrome components of nitrate- and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774.

    PubMed Central

    Liu, M C; Costa, C; Coutinho, I B; Moura, J J; Moura, I; Xavier, A V; LeGall, J

    1988-01-01

    Three multiheme c-type cytochromes--the tetraheme cytochrome c3 (molecular weight [MW] 13,500), a dodecaheme cytochrome c (MW 40,800), and a "split-Soret" cytochrome c (MW 51,540), which is a dimer with 2 hemes per subunit (MW 26,300)--were isolated from the soluble fraction of Desulfovibrio desulfuricans (ATCC 27774) grown under nitrate- or sulfate-respiring conditions. Two of them, the dodecaheme and the split-Soret cytochromes, showed no similarities to any of the c-type cytochromes isolated from other sulfate-reducing bacteria, while the tetraheme cytochrome c3 appeared to be analogous to the cytochrome c3 found in other sulfate-reducing bacteria. For all three multiheme c-type cytochromes isolated, the homologous proteins from nitrate- and sulfate-grown cells were indistinguishable in amino acid composition, physical properties, and spectroscopic characteristics. It therefore appears that the same c-type cytochrome components are present when D. desulfuricans ATCC 27774 cells are grown under either condition. This is in contrast to the considerable difference found in Pseudomonas perfectomarina (Liu et al., J. Bacteriol. 154:278-286, 1983), a marine denitrifier, when the cells are grown on nitrate or oxygen as the terminal electron acceptor. In addition, two spectroscopy methods capable of revealing minute structural variations in proteins provided identical information about the tetraheme cytochrome c3 from nitrate-grown and sulfate-grown cells. PMID:2848008

  16. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    Červený, Jan; Sinetova, Maria A; Valledor, Luis; Sherman, Louis A; Nedbal, Ladislav

    2013-08-06

    The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability.

  17. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus

    PubMed Central

    Pang, Xin; Lin, Jianqiang; Liu, Xiangmei; Wang, Rui; Lin, Jianqun; Chen, Linxu

    2017-01-01

    Acidithiobacillus caldus is a chemolithoautotrophic sulfur-oxidizing bacterium that is widely used for bioleaching processes. Acidithiobacillus spp. are suggested to contain sulfur dioxygenases (SDOs) that facilitate sulfur oxidation. In this study, two putative sdo genes (A5904_0421 and A5904_1112) were detected in the genome of A. caldus MTH-04 by BLASTP searching with the previously identified SDO (A5904_0790). We cloned and expressed these genes, and detected the SDO activity of recombinant protein A5904_0421 by a GSH-dependent in vitro assay. Phylogenetic analysis indicated that A5904_0421and its homologous SDOs, mainly found in autotrophic bacteria, were distantly related to known SDOs and were categorized as a new subgroup of SDOs. The potential functions of genes A5904_0421 (termed sdo1) and A5904_0790 (termed sdo2) were investigated by generating three knockout mutants (Δsdo1, Δsdo2 and Δsdo1&2), two sdo overexpression strains (OE-sdo1 and OE-sdo2) and two sdo complemented strains (Δsdo1/sdo1’ and Δsdo2/sdo2’) of A. caldus MTH-04. Deletion or overexpression of the sdo genes did not obviously affect growth of the bacteria on S0, indicating that the SDOs did not play an essential role in the oxidation of extracellular elemental sulfur in A. caldus. The deletion of sdo1 resulted in complete inhibition of growth on tetrathionate, slight inhibition of growth on thiosulfate and increased GSH-dependent sulfur oxidation activity on S0. Transcriptional analysis revealed a strong correlation between sdo1 and the tetrathionate intermediate pathway. The deletion of sdo2 promoted bacterial growth on tetrathionate and thiosulfate, and overexpression of sdo2 altered gene expression patterns of sulfide:quinone oxidoreductase and rhodanese. Taken together, the results suggest that sdo1 is essential for the survival of A. caldus when tetrathionate is used as the sole energy resource, and sdo2 may also play a role in sulfur metabolism. PMID:28873420

  18. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.

    PubMed

    Bonnefoy, Violaine; Holmes, David S

    2012-07-01

    This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up

  19. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923.

    PubMed

    Treangen, Todd J; Maybank, Rosslyn A; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F; Karaolis, David K R; Koren, Sergey; Ondov, Brian; Phillippy, Adam M; Bergman, Nicholas H; Rosovitz, M J

    2014-11-06

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. Copyright © 2014 Treangen et al.

  20. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.

    PubMed

    Lee, Eunseong; Han, Yosep; Park, Jeonghyun; Hong, Jeongsik; Silva, Rene A; Kim, Seungkon; Kim, Hyunjung

    2015-01-01

    The behavior of arsenic (As) bioleaching from mine tailings containing high amount of As (ca. 34,000 mg/kg) was investigated using Acidithiobacillus thiooxidans to get an insight on the optimal conditions that would be applied to practical heap and/or tank bioleaching tests. Initial pH (1.8-2.2), temperature (25-40 °C), and solid concentration (0.5-4.0%) were employed as experimental parameters. Complementary characterization experiments (e.g., XRD, SEM-EDS, electrophoretic mobility, cell density, and sulfate production) were also carried out to better understand the mechanism of As bioleaching. The results showed that final As leaching efficiency was similar regardless of initial pH. However, greater initial As leaching rate was observed at initial pH 1.8 than other conditions, which could be attributed to greater initial cell attachment to mine tailings. Unlike the trend observed when varying the initial pH, the final As leaching efficiency varied with the changes in temperature and solid concentration. Specifically, As leaching efficiency tended to decrease with increasing temperature due to the decrease in the bacterial growth rate at higher temperature. Meanwhile, As leaching efficiency tended to increase with decreasing solid concentration. The results for jarosite contents in mine tailings residue after bioleaching revealed that much greater amount of the jarosite was formed during the bioleaching reaction at higher solid concentration, suggesting that the coverage of the surface of the mine tailings by jarosite and/or the co-precipitation of the leached As with jarosite could be a dominant factor reducing As leaching efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization.

    PubMed

    Francl, Alyssa L; Hoeflinger, Jennifer L; Miller, Michael J

    2012-04-01

    Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by Lactobacillus gasseri ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334. Characterization of an EI knockout strain [EI (enzyme I) is required for phosphotransferase system transporter (PTS) function] demonstrated that L. gasseri requires PTS(s) to utilize lactose. In order to determine which PTS(s) were necessary for lactose utilization, we compared transcript expression profiles in response to lactose for the 15 complete PTSs identified in the NCK334 genome. PTS 6CB (LGAS_343) and PTS 8C (LGAS_497) were induced in the presence of lactose 107- and 53-fold, respectively. However, L. gasseri ATCC 33323 PTS 6CB, PTS 8C had a growth rate similar to that of the wild-type on semisynthetic deMan, Rogosa, Sharpe (MRS) medium with lactose. Expression profiles of L. gasseri ATCC 33323 PTS 6CB, PTS 8C in response to lactose identified PTS 9BC (LGAS_501) as 373-fold induced, whereas PTS 9BC was not induced in NCK334. Elimination of growth on lactose required the inactivation of both PTS 6CB and PTS 9BC. Among the six candidate phospho-β-galactosidase genes present in the NCK334 genome, LGAS_344 was found to be induced 156-fold in the presence of lactose. In conclusion, we have determined that: (1) NCK334 uses a PTS to import lactose; (2) PTS 6CB and PTS 8C gene expression is strongly induced by lactose; and (3) elimination of PTS 6CB and PTS 9BC is required to prevent growth on lactose.

  2. Improved penicillin amidase production using a genetically engineered mutant of escherichia coli ATCC 11105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robas, N.; Zouheiry, H.; Branlant, G.

    Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, the authors constructed various recombinant E. coli HB 101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic acid (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selectedmore » based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the HindIII fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene.« less

  3. Finished Genome Sequence of Escherichia coli K-12 Strain HMS174 (ATCC 47011).

    PubMed

    Mairhofer, Juergen; Krempl, Peter M; Thallinger, Gerhard G; Striedner, Gerald

    2014-11-20

    Escherichia coli strain K-12 substrain HMS174 is an engineered descendant of the E. coli K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is used in fermentation processes for heterologous protein production. Here, we report the complete genome sequence of E. coli HMS174 (ATCC 47011). Copyright © 2014 Mairhofer et al.

  4. [Effect of glucose and lactose on the utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469].

    PubMed

    Benito de Cárdenas, I L; Medina, R; Oliver, G

    1992-01-01

    The utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469 in a complex medium containing glucose, lactose or citrate was investigated, as an approach to the question of the transport of this acid and the possible relationship with the production of flavour compounds (diacetyl and acetoin). This lactobacillus uses citrate as an energy source in the absence of carbohydrates. External pH and growth increases when citrate is added to complex medium. The presence of citrate does not affect glucose uptake. L. casei ATCC 7469 possibly uses a transport system for citrate utilization, and citrate uptake seems to be under glucose or lactose control. Lactose only inhibits the entrance of citrate at high concentration while the utilization of this acid was negatively regulated by low glucose concentration.

  5. Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans.

    PubMed

    Lara, René H; García-Meza, J Viridiana; Cruz, Roel; Valdez-Pérez, Donato; González, Ignacio

    2012-08-01

    Massive pyrite (FeS₂) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S(n)²⁻, S⁰). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe(1-x )S₂) to active sulfur species (e.g., Fe(1-x )S(2-y ), S⁰). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S(n)²⁻/S⁰ speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S(n)²⁻/S⁰ surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria.

  6. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regionsmore » have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.« less

  7. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R. Blaine; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  8. Application of fuel cell for pyrite and heavy metal containing mining waste

    NASA Astrophysics Data System (ADS)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  9. The sim Operon Facilitates the Transport and Metabolism of Sucrose Isomers in Lactobacillus casei ATCC 334▿

    PubMed Central

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-01-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with Mrs of ∼50,000 and ∼17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the ∼50-kDa protein as an NAD+- and metal ion-dependent phospho-α-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-α-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to ∼1.5- and ∼1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. PMID:18310337

  10. Effect of calcium in assay medium on D value of Bacillus stearothermophilus ATCC 7953 spores.

    PubMed

    Sasaki, K; Shintani, H; Itoh, J; Kamogawa, T; Kajihara, Y

    2000-12-01

    The D value of commercial biological indicator spore strips using Bacillus stearothermophilus ATCC 7953 was increased by higher calcium concentrations in assay media. The calcium concentration in assay media varied among the manufacturers. The calcium concentration in assay media is an important factor to consider to minimize the variation of D value.

  11. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  12. Contact lens disinfecting solutions antibacterial efficacy: comparison between clinical isolates and the standard ISO ATCC strains of Pseudomonas aeruginosa and Staphylococcus aureus.

    PubMed

    Mohammadinia, M; Rahmani, S; Eslami, G; Ghassemi-Broumand, M; Aghazadh Amiri, M; Aghaie, Gh; Tabatabaee, S M; Taheri, S; Behgozin, A

    2012-02-01

    To evaluate the disinfectant properties of the three multipurpose contact lens disinfecting solutions available in Iran, against clinical isolates and the standard ISO ATCC strains of Pseudomonas aeruginosa and Staphylococcus aureus, based on the international organization for standardization (ISO) 14729 guidelines. Three multipurpose solutions that were tested were ReNu Multiplus, Solo Care Aqua and All-Clean Soft. The test solutions were challenged with clinical isolates and the standard strains of P. aeruginosa(ATCC 9027) and S. aureus(ATCC 6538), based on the ISO Stand-alone procedure for disinfecting products. Solutions were sampled for surviving microorganisms at manufacturer's minimum recommended disinfection time. The number of viable organisms was determined and log reductions calculated. All of the three test solutions in this study provided a reduction greater than the required mean 3.0 logarithmic reduction against the recommended standard ATCC strains of P. aeruginosa and S. aureus. Antibacterial effectiveness of Solo Care Aqua and All-Clean Soft against clinical isolates of P. aeruginosa and S. aureus were acceptable based on ISO 14729 Stand-alone test. ReNu MultiPlus showed a minimum acceptable efficacy against the clinical isolate of S. aureus, but did not reduce the clinical isolate by the same amount. Although the contact lens disinfecting solutions meet/exceed the ISO 14729 Stand-alone primary acceptance criteria for standard strains of P. aeruginosa and S. aureus, their efficacy may be insufficient against clinical isolates of these organisms.

  13. Contact lens disinfecting solutions antibacterial efficacy: comparison between clinical isolates and the standard ISO ATCC strains of Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Mohammadinia, M; Rahmani, S; Eslami, G; Ghassemi-Broumand, M; Aghazadh Amiri, M; Aghaie, Gh; Tabatabaee, S M; Taheri, S; Behgozin, A

    2012-01-01

    Purpose To evaluate the disinfectant properties of the three multipurpose contact lens disinfecting solutions available in Iran, against clinical isolates and the standard ISO ATCC strains of Pseudomonas aeruginosaand Staphylococcus aureus, based on the international organization for standardization (ISO) 14729 guidelines. Methods Three multipurpose solutions that were tested were ReNu Multiplus, Solo Care Aqua and All-Clean Soft. The test solutions were challenged with clinical isolates and the standard strains of P. aeruginosa(ATCC 9027) and S. aureus(ATCC 6538), based on the ISO Stand-alone procedure for disinfecting products. Solutions were sampled for surviving microorganisms at manufacturer's minimum recommended disinfection time. The number of viable organisms was determined and log reductions calculated. Results All of the three test solutions in this study provided a reduction greater than the required mean 3.0 logarithmic reduction against the recommended standard ATCC strains of P. aeruginosaand S. aureus. Antibacterial effectiveness of Solo Care Aqua and All-Clean Soft against clinical isolates of P. aeruginosaand S. aureuswere acceptable based on ISO 14729 Stand-alone test. ReNu MultiPlus showed a minimum acceptable efficacy against the clinical isolate of S. aureus, but did not reduce the clinical isolate by the same amount. Conclusions Although the contact lens disinfecting solutions meet/exceed the ISO 14729 Stand-alone primary acceptance criteria for standard strains of P. aeruginosaand S. aureus, their efficacy may be insufficient against clinical isolates of these organisms. PMID:22094301

  14. Effect of Calcium in Assay Medium on D Value of Bacillus stearothermophilus ATCC 7953 Spores

    PubMed Central

    Sasaki, Koichi; Shintani, Hideharu; Itoh, Junpei; Kamogawa, Takuji; Kajihara, Yousei

    2000-01-01

    The D value of commercial biological indicator spore strips using Bacillus stearothermophilus ATCC 7953 was increased by higher calcium concentrations in assay media. The calcium concentration in assay media varied among the manufacturers. The calcium concentration in assay media is an important factor to consider to minimize the variation of D value. PMID:11097939

  15. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Park, Chulhwan; Kim, Seung Wook

    2017-07-01

    In this study, L-lactic acid production was investigated from metabolically engineered strain of E. aerogenes ATCC 29007. The engineered strain E. aerogenes SUMI01 (Δpta) was generated by the deletion of phosphate acetyltransferase (pta) gene from the chromosome of E. aerogenes ATCC 29007 and deletion was confirmed by colony PCR. Under the optimized fermentation conditions, at 37°C and pH 6 for 84h, the L-lactic acid produced by engineered strain E. aerogenes SUMI01 (Δpta) in flask fermentation using 100g/L mannitol as the carbon source was 40.05g/L as compared to that of the wild type counterpart 20.70g/L. At the end of the batch fermentation in bioreactor the production of L-lactic acid reached to 46.02g/L and yield was 0.41g/g by utilizing 112.32g/L mannitol. This is the first report regarding the production of L-lactic acid from Enterobacter species. We believe that this result may provide valuable guidelines for further engineering Enterobacter strain for the improvement of L-lactic acid production. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Changes in biooxidation mechanism and transient biofilm characteristics by As(V) during arsenopyrite colonization with Acidithiobacillus thiooxidans.

    PubMed

    Ramírez-Aldaba, Hugo; Vázquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Trejo-Córdoba, Gabriel; Escobedo-Bretado, Miguel A; Lartundo-Rojas, Luis; Ponce-Peña, Patricia; Lara, René H

    2018-06-01

    Chemical and surface analyses are carried out using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS) and extracellular surface protein quantification to thoroughly investigate the effect of supplementary As(V) during biooxidation of arsenopyrite by Acidithiobacillus thiooxidans. It is revealed that arsenic can enhance bacterial reactions during bioleaching, which can strongly influence its mobility. Biofilms occur as compact-flattened microcolonies, being progressively covered by a significant amount of secondary compounds (S n 2- , S 0 , pyrite-like). Biooxidation mechanism is modified in the presence of supplementary As(V), as indicated by spectroscopic and microscopic studies. GDS confirms significant variations between abiotic control and biooxidized arsenopyrite in terms of surface reactivity and amount of secondary compounds with and without As(V) (i.e. 6 μm depth). CLSM and protein analyses indicate a rapid modification in biofilm from hydrophilic to hydrophobic character (i.e. 1-12 h), in spite of the decrease in extracellular surface proteins in the presence of supplementary As(V) (i.e. stressed biofilms).

  17. Classification of Nonomuraea sp. ATCC 39727, an actinomycete that produces the glycopeptide antibiotic A40926, as Nonomuraea gerenzanensis sp. nov.

    PubMed

    Dalmastri, Claudia; Gastaldo, Luciano; Marcone, Giorgia Letizia; Binda, Elisa; Congiu, Terenzio; Marinelli, Flavia

    2016-02-01

    Strain ATCC 39727, which produces the antibiotic A40926 (the natural precursor of the antibiotic dalbavancin), was isolated from a soil sample collected in India, and it was originally classified as a member of the genus Actinomadura on the base of morphology and cell-wall composition. A phylogenetic analysis based on 16S rRNA gene sequences indicates that the strain forms a distinct clade within the genus Nonomuraea, and it is most closely related to Nonomuraea angiospora DSM 43173T (98.72 % similarity) and Nonomuraea jabiensis A4036T (98.69 %). The strain forms an extensively branched substrate mycelium and aerial hyphae that form spiral chains of spores with ridged surfaces. The cell wall contains meso-diaminopimelic acid and the whole-cell sugars are glucose, ribose, galactose, mannose and madurose (madurose as the diagnostic sugar). The N-acyl type of muramic acid is acetyl. The predominant menaquinone is MK-9(H4), with minor amounts of MK-9(H2), MK-9(H6) and MK-9(H0). The polar-lipid profile includes diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxyphosphatidylmethylethanolamine, phosphatidylinositol and a series of uncharacterized phospholipids, glycolipids and phosphoglycolipids. The major cellular fatty acids are iso-C16 : 0 and 10-methyl C17 : 0. The genomic DNA G+C content is 71.2 mol%. Significant differences in the morphological, chemotaxonomic and biochemical data, together with DNA-DNA relatedness between strain ATCC 39727 and closely related type strains, clearly demonstrated that strain ATCC 39727 represents a novel species of the genus Nonomuraea, for which the name Nonomuraea gerenzanensis sp. nov. is proposed. The type strain is ATCC 39727T ( = DSM 100948T).

  18. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regionsmore » have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made

  19. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.

    PubMed

    Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  20. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella.

    PubMed

    Vilela, Simone F G; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia C A; Anbinder, Ana Lia; Jorge, Antonio O C; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.

  1. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella

    PubMed Central

    Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Anbinder, Ana Lia; Jorge, Antonio OC; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo. PMID:25654408

  2. SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  3. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    PubMed

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  4. Bioextraction of Copper from Printed Circuit Boards: Influence of Initial Concentration of Ferrous Iron

    NASA Astrophysics Data System (ADS)

    Yamane, Luciana Harue; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    Printed circuit boards are found in all electric and electronic equipment and are particularly problematic to recycle because of the heterogeneous mix of organic material, metals, and fiberglass. Additionally, printed circuit boards can be considered a secondary source of copper and bacterial leaching can be applied to copper recovery. This study investigated the influence of initial concentration of ferrous iron on bacterial leaching to recover copper from printed circuit boards using Acidithiobacillus ferrooxidans-LR. Printed circuit boards from computers were comminuted using a hammer mill. The powder obtained was magnetically separated and the non magnetic material used in this study. A shake flask study was carried out on the non magnetic material using a rotary shaker at 30°C, 170 rpm and different initial concentrations of ferrous iron (gL-1): 6.75; 13.57 and 16.97. Abiotic controls were also run in parallel. The monitored parameters were pH, Eh, ferrous iron concentration and copper extraction (spectroscopy of atomic absorption). The results showed that using initial concentration of ferrous iron of 6.75gL-1 were extracted 99% of copper by bacterial leaching.

  5. Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 Favorably Modulates Gut Microbiota and Reduces Circulating Endotoxins in F344 Rats

    PubMed Central

    Saha, Shyamali; Prakash, Satya

    2014-01-01

    The gut microbiota is a bacterial bioreactor whose composition is an asset for human health. However, circulating gut microbiota derived endotoxins cause metabolic endotoxemia, promoting metabolic and liver diseases. This study investigates the potential of orally delivered microencapsulated Bifidobacterium infantis ATCC 15697 to modulate the gut microbiota and reduce endotoxemia in F344 rats. The rats were gavaged daily with saline or microencapsulated B. infantis ATCC 15697. Following 38 days of supplementation, the treated rats showed a significant (P < 0.05) increase in fecal Bifidobacteria (4.34 ± 0.46 versus 2.45 ± 0.25% of total) and B. infantis (0.28 ± 0.21 versus 0.52 ± 0.12 % of total) and a significant (P < 0.05) decrease in fecal Enterobacteriaceae (0.80 ± 0.45 versus 2.83 ± 0.63% of total) compared to the saline control. In addition, supplementation with the probiotic formulation reduced fecal (10.52 ± 0.18 versus 11.29 ± 0.16 EU/mg; P = 0.01) and serum (0.33 ± 0.015 versus 0.30 ± 0.015 EU/mL; P = 0.25) endotoxins. Thus, microencapsulated B. infantis ATCC 15697 modulates the gut microbiota and reduces colonic and serum endotoxins. Future preclinical studies should investigate the potential of the novel probiotic formulation in metabolic and liver diseases. PMID:24967382

  6. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolf, Jeffrey D.; Bigelow, Lance; Chang, Changsoo

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA,more » is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.« less

  7. Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans.

    PubMed

    Ramírez-Aldaba, Hugo; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; García-Meza, Jessica Viridiana; Trejo-Córdova, Gabriel; Lara, René H

    2017-08-01

    Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS 2 )-like, S n 2- /S 0 , and As 2 S 3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.

  8. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.

    PubMed

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin

    2016-11-01

    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869.

    PubMed

    Jeong, Kyung Hun; Israr, Beenish; Shoemaker, Sharon P; Mills, David A; Kim, Jaehan

    2016-07-28

    Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite de-repressed (CCR) phenotype which has ability to consume fermentable sugar simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effect of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration has been reduced. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Moreover; utilization of other compounds were also observed along with hydrogen ion and lactic acid concentration simultaneously. It has been found that substrate preference changes significantly regarding to utilization of compounds in media. That could result into formation of two-carbon products. In particular, acetic acid present in the media as sodium acetate were consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

  10. Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334

    PubMed Central

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcón, Sergio

    2013-01-01

    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacillus casei ATCC 334 metabolized citrate in complex with Ca2+ and not as free citrate or the Mg2+-citrate complex, thereby identifying Ca2+-citrate as the substrate of the transporter CitH. The pathway was induced in the presence of Ca2+ and citrate during growth and repressed by the presence of glucose and of galactose, most likely by a carbon catabolite repression mechanism. The end products of Ca2+-citrate metabolism by resting cells of Lb. casei were pyruvate, acetate, and acetoin, demonstrating the activity of the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Following pyruvate, the pathway splits into two branches. One branch is the classical citrate fermentation pathway producing acetoin by α-acetolactate synthase and α-acetolactate decarboxylase. The other branch yields acetate, for which the route is still obscure. Ca2+-citrate metabolism in a modified MRS medium lacking a carbohydrate did not significantly affect the growth characteristics, and generation of metabolic energy in the form of proton motive force (PMF) was not observed in resting cells. In contrast, carbohydrate/Ca2+-citrate cometabolism resulted in a higher biomass yield in batch culture. However, also with these cells, no generation of PMF was associated with Ca2+-citrate metabolism. It is concluded that citrate metabolism in Lb. casei is beneficial when it counteracts acidification by carbohydrate metabolism in later growth stages. PMID:23709502

  11. Different nitrogen sources change the transcriptome of welan gum-producing strain Sphingomonas sp. ATCC 31555.

    PubMed

    Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhang, Hongtao; Zhan, Xiaobei

    2017-09-01

    To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.

  12. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity.

    PubMed

    Sun, Liang; Lu, Zhilong; Li, Jianxiu; Sun, Feifei; Huang, Ribo

    2018-02-01

    Mechanisms for high L-lactic acid production remain unclear in many bacteria. Lactobacillus rhamnosus SCT-10-10-60 was previously obtained from L. rhamnosus ATCC 11443 via mutagenesis and showed improved L-lactic acid production. In this study, the genomes of strains SCT-10-10-60 and ATCC 11443 were sequenced. Both genomes are a circular chromosome, 2.99 Mb in length with a GC content of approximately 46.8%. Eight split genes were identified in strain SCT-10-10-60, including two LytR family transcriptional regulators, two Rex redox-sensing transcriptional repressors, and four ABC transporters. In total, 60 significantly up-regulated genes (log 2 fold-change ≥ 2) and 39 significantly down-regulated genes (log 2 fold-change ≤ - 2) were identified by a transcriptome comparison between strains SCT-10-10-60 and ATCC 11443. KEGG pathway enrichment analysis revealed that "pyruvate metabolism" was significantly different (P < 0.05) between the two strains. The split genes and the differentially expressed genes involved in the "pyruvate metabolism" pathway are probably responsible for the increased L-lactic acid production by SCT-10-10-60. The genome and transcriptome sequencing information and comparison of SCT-10-10-60 with ATCC 11443 provide insights into the anabolism of L-lactic acid and a reference for improving L-lactic acid production using genetic engineering.

  13. Finished Genome Sequence of the Laboratory Strain Escherichia coli K-12 RV308 (ATCC 31608).

    PubMed

    Krempl, Peter M; Mairhofer, Juergen; Striedner, Gerald; Thallinger, Gerhard G

    2014-11-20

    Escherichia coli strain K-12 substrain RV308 is an engineered descendant of the K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is heavily used for the expression of single-chain variable fragments. Here, we report the complete genome sequence of E. coli K-12 RV308 (ATCC 31608). Copyright © 2014 Krempl et al.

  14. Effects of bilimbi (Averrhoa bilimbi L.) and tamarind (Tamarindus indica L.) juice on Listeria monocytogenes Scott A and Salmonella Typhimurium ATCC 14028 and the sensory properties of raw shrimps.

    PubMed

    Norhana, M N Wan; Azman, Mohd Nor A; Poole, Susan E; Deeth, Hilton C; Dykes, Gary A

    2009-11-30

    The potential of using juice of bilimbi (Averrhoa bilimbi L.) and tamarind (Tamarindus indica L.) to reduce Listeria monocytogenes Scott A and Salmonella Typhimurium ATCC 14028 populations on raw shrimps after washing and during storage (4 degrees C) was investigated. The uninoculated raw shrimps and those inoculated with approximately 9 log cfu/ml of L. monocytogenes Scott A and S. Typhimurium ATCC 14028 were washed (dipped or rubbed) in distilled water (SDW) (control), bilimbi or tamarind juice at 1:4 (w/v) concentrations for 10 and 5 min. Naturally occurring aerobic bacteria (APC), L. monocytogenes Scott A and S. Typhimurium ATCC 14028 counts, pH values and sensory analysis of washed shrimps were determined immediately after washing (day 0), and on days 3 and 7 of storage. Compared to SDW, bilimbi and tamarind juice significantly (p<0.05) reduced APC (0.40-0.70 log cfu/g), L. monocytogenes Scott A (0.84-1.58 log cfu/g) and S. Typhimurium ATCC 14028 (1.03-2.00 log cfu/g) populations immediately after washing (0 day). There was a significant difference (p<0.05) in bacterial reduction between the dipping (0.40-0.41 log for APC; 0.84 for L. monocytogenes Scott A and 1.03-1.09 log for S. Typhimurium ATCC 14028) and rubbing (0.68-0.70 log for APC; 1.34-1.58 for L. monocytogenes Scott A and 1.67-2.00 log for S. Typhimurium ATCC 14028) methods. Regardless of washing treatments or methods, populations of S. Typhimurium ATCC 14028 decreased slightly (5.10-6.29 log cfu/g on day 7 of storage) while populations of L. monocytogenes Scott A (8.74-9.20 log cfu/g) and APC (8.68-8.92 log cfu/g) increased significantly during refrigerated storage. The pH of experimental shrimps were significantly (p<0.05) decreased by 0.15-0.22 pH units after washing with bilimbi and tamarind juice. The control, bilimbi or tamarind-washed shrimps did not differ in sensory panellist acceptability (p>0.05) throughout the storage except for odour (p<0.05) attributes at 0 day when acidic or lemony

  15. Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicum ATCC 824 by a Putative Transcriptional Repressor

    PubMed Central

    Nair, Ramesh V.; Green, Edward M.; Watson, David E.; Bennett, George N.; Papoutsakis, Eleftherios T.

    1999-01-01

    A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871–885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transcriptional start site 35 bp upstream of the solR start codon. Amino acid comparisons of SolR identified a potential helix-turn-helix DNA-binding motif in the C-terminal half towards the center of the protein, suggesting a regulatory role. Overexpression of SolR in strain ATCC 824(pCO1) resulted in a solvent-negative phenotype owing to its deleterious effect on the transcription of the sol locus genes. Inactivation of solR in C. acetobutylicum via homologous recombination yielded mutants B and H (ATCC 824 solR::pO1X) which exhibited deregulated solvent production characterized by increased flux towards butanol and acetone formation, earlier induction of aad, lower overall acid production, markedly improved yields of solvents on glucose, a prolonged solvent production phase, and increased biomass accumulation compared to those of the wild-type strain. PMID:9864345

  16. Listeria monocytogenes ATCC 35152 and NCTC 7973 contain a nonhemolytic, nonvirulent variant.

    PubMed Central

    Pine, L; Weaver, R E; Carlone, G M; Pienta, P A; Rocourt, J; Goebel, W; Kathariou, S; Bibb, W F; Malcolm, G B

    1987-01-01

    Listeria monocytogenes NCTC 7973 and this same strain deposited as ATCC 35152 contain two phenotypes: hemolytic virulent colonies and nonvirulent colonies that show no zones of hemolysis when streaked on heart infusion agar containing 5% rabbit blood. Results of examinations of these virulent and nonvirulent strains by investigators at the Centers for Disease Control, Atlanta, Ga., the Pasteur Institute, Paris, France, and the University of Würzburg, Federal Republic of Germany, support the conclusion that the avirulent strain is a nonhemolytic mutant of the virulent strain and that hemolysin is a virulence factor for L. monocytogenes. Images PMID:3121669

  17. Draft Genome Sequence of Pseudomonas chlororaphis ATCC 9446, a Nonpathogenic Bacterium with Bioremediation and Industrial Potential.

    PubMed

    Moreno-Avitia, Fabian; Lozano, Luis; Utrilla, Jose; Bolívar, Francisco; Escalante, Adelfo

    2017-06-08

    Pseudomonas chlororaphis strain ATCC 9446 is a biocontrol-related organism. We report here its draft genome sequence assembled into 35 contigs consisting of 6,783,030 bp. Genome annotation predicted a total of 6,200 genes, 6,128 coding sequences, 81 pseudogenes, 58 tRNAs, 4 noncoding RNAs (ncRNAs), and 41 frameshifted genes. Copyright © 2017 Moreno-Avitia et al.

  18. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    NASA Astrophysics Data System (ADS)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  19. Development of a potential functional food prepared with pigeon pea (Cajanus cajan), oats and Lactobacillus reuteri ATCC 55730.

    PubMed

    Barboza, Yasmina; Márquez, Enrique; Parra, Katynna; Piñero, M Patricia; Medina, Luis M

    2012-11-01

    The purpose of this study was to investigate the survival of Lactobacillus reuteri ATCC 55730 in creams, prepared with pigeon peas and oat. Products were analysed to determine their content of protein, fibre, fat, carbohydrates and degree of likeness. Viable numbers of L. reuteri and pH were determined after 1, 7, 14, 21 and 28 days of storage at 4°C. Results showed significant differences (P < 0.05) in protein, fat, fibre and carbohydrate content between creams. No significant differences (P > 0.05) were found on sensory quality between control and creams with L. reuteri. After 28 days, the cell viability was above 7 log cfu/g in all creams. L. reuteri ATCC 55730 had the highest viability in cream with 40% pigeon pea and 20% oat (8.16 log cfu/g). In conclusion, due to its acceptability and highly nutritious value, the product could be used so as to support the growth of L. reuteri.

  20. Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in Acinetobacter baumannii ATCC 17978.

    PubMed

    Adams, Felise G; Stroeher, Uwe H; Hassan, Karl A; Marri, Shashikanth; Brown, Melissa H

    2018-01-01

    In recent years, effective treatment of infections caused by Acinetobacter baumannii has become challenging due to the ability of the bacterium to acquire or up-regulate antimicrobial resistance determinants. Two component signal transduction systems are known to regulate expression of virulence factors including multidrug efflux pumps. Here, we investigated the role of the AdeRS two component signal transduction system in regulating the AdeAB efflux system, determined whether AdeA and/or AdeB can individually confer antimicrobial resistance, and explored the interplay between pentamidine resistance and growth conditions in A. baumannii ATCC 17978. Results identified that deletion of adeRS affected resistance towards chlorhexidine and 4',6-diamidino-2-phenylindole dihydrochloride, two previously defined AdeABC substrates, and also identified an 8-fold decrease in resistance to pentamidine. Examination of ΔadeA, ΔadeB and ΔadeAB cells augmented results seen for ΔadeRS and identified a set of dicationic AdeAB substrates. RNA-sequencing of ΔadeRS revealed transcription of 290 genes were ≥2-fold altered compared to the wildtype. Pentamidine shock significantly increased adeA expression in the wildtype, but decreased it in ΔadeRS, implying that AdeRS activates adeAB transcription in ATCC 17978. Investigation under multiple growth conditions, including the use of Biolog phenotypic microarrays, revealed resistance to pentamidine in ATCC 17978 and mutants could be altered by bioavailability of iron or utilization of different carbon sources. In conclusion, the results of this study provide evidence that AdeAB in ATCC 17978 can confer intrinsic resistance to a subset of dicationic compounds and in particular, resistance to pentamidine can be significantly altered depending on the growth conditions.

  1. Solubilization of phosphorus from phosphate rocks with Acidithiobacillus thiooxidans following a growing-then-recovery process.

    PubMed

    Calle-Castañeda, Susana M; Márquez-Godoy, Marco A; Hernández-Ortiz, Juan P

    2017-12-29

    Phosphorus is an essential nutrient for the synthesis of biomolecules and is particularly important in agriculture, as soils must be constantly supplemented with its inorganic form to ensure high yields and productivity. In this paper, we propose a process to solubilize phosphorus from phosphate rocks, where Acidithiobacillus thiooxidans cultures are pre-cultivated to foster the acidic conditions for bioleaching-two-step "growing-then-recovery"-. Our method solubilizes 100% of phosphorus, whereas the traditional process without pre-cultivation-single-step "growing-and-recovery"-results in a maximum of 56% solubilization. As a proof of principle, we demonstrate that even at low concentrations of the phosphate rock, 1% w/v, the bacterial culture is unviable and biological activity is not observed during the single-step process. On the other hand, in our method, the bacteria are grown without the rock, ensuring high acid production. Once pH levels are below 0.7, the mineral is added to the culture, resulting in high yields of biological solubilization. According to the Fourier Transform Infrared Spectroscopy spectrums, gypsum is the dominant phosphate phase after both the single- and two-step methods. However, calcite and fluorapatite, dominant in the un-treated rock, are still present after the single-step, highlighting the differences between the chemical and the biological methods. Our process opens new avenues for biotechnologies to recover phosphorus in tropical soils and in low-grade phosphate rock reservoirs.

  2. Draft genome sequences of four uropathogenic escherichia coli 04:H5 isolates (ATCC 700414,700415,700416 and 700417)

    USDA-ARS?s Scientific Manuscript database

    Uropathogenic Escherichia coli O4: H5 isolates ATCC 700414, 700415, 700416, and 700417 were recovered from women with first-time urinary tract infections. Here, we report the draft genome sequences for these four E. coli isolates, which are currently being used to validate food safety processing tec...

  3. Alternative Sigma Factors SigF, SigE, and SigG Are Essential for Sporulation in Clostridium botulinum ATCC 3502

    PubMed Central

    Kirk, David G.; Zhang, Zhen; Korkeala, Hannu

    2014-01-01

    Clostridium botulinum produces heat-resistant endospores that may germinate and outgrow into neurotoxic cultures in foods. Sporulation is regulated by the transcription factor Spo0A and the alternative sigma factors SigF, SigE, SigG, and SigK in most spore formers studied to date. We constructed mutants of sigF, sigE, and sigG in C. botulinum ATCC 3502 and used quantitative reverse transcriptase PCR and electron microscopy to assess their expression of the sporulation pathway on transcriptional and morphological levels. In all three mutants the expression of spo0A was disrupted. The sigF and sigE mutants failed to induce sigG and sigK beyond exponential-phase levels and halted sporulation during asymmetric cell division. In the sigG mutant, peak transcription of sigE was delayed and sigK levels remained lower than that in the parent strain. The sigG mutant forespore was engulfed by the mother cell and possessed a spore coat but no peptidoglycan cortex. The findings suggest that SigF and SigE of C. botulinum ATCC 3502 are essential for early sporulation and late-stage induction of sigK, whereas SigG is essential for spore cortex formation but not for coat formation, as opposed to previous observations in B. subtilis sigG mutants. Our findings add to a growing body of evidence that regulation of sporulation in C. botulinum ATCC 3502, and among the clostridia, differs from the B. subtilis model. PMID:24928875

  4. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Marlen C.; Norton, Jeanette M.; Stein, Lisa Y.

    ABSTRACT Nitrosomonas cryotoleransATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO 2 fixation were identified.

  5. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    DOE PAGES

    Rice, Marlen C.; Norton, Jeanette M.; Stein, Lisa Y.; ...

    2017-03-16

    ABSTRACT Nitrosomonas cryotoleransATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO 2 fixation were identified.

  6. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.

    PubMed

    Lara, René H; García-Meza, J Viridiana; González, Ignacio; Cruz, Roel

    2013-03-01

    Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n(2-); elemental sulfur, S(0); and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n(2-)) to active (containing increasing amounts of S(0)) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n(2-)/S(0) speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n(2-) and S n(2-)/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S(0)). Furthermore, it was observed that cells were partially covered by CuS and S(0) phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n(2-)) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.

  7. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus brevis ATCC 8287, a surface (S-layer) strain, possesses a variety of functional properties that make it both a potential probiotic and a good vaccine vector candidate. With this in mind, our aim was to study the survival of L. brevis in the porcine gut and investigate the effect of th...

  8. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04.

    PubMed

    Liu, Xiangmei; Lin, Jianqun; Zhang, Zheng; Bian, Jiang; Zhao, Qing; Liu, Ying; Lin, Jianqiang; Yan, Wangming

    2007-01-01

    A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study.

  9. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites.

    PubMed

    Song, Ju Yeon; Yoo, Young Ji; Lim, Si-Kyu; Cha, Sun Ho; Kim, Ji-Eun; Roe, Jung-Hye; Kim, Jihyun F; Yoon, Yeo Joon

    2016-02-10

    Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase.

    PubMed

    Okai, Naoko; Masuda, Takaya; Takeshima, Yasunobu; Tanaka, Kosei; Yoshida, Ken-Ichi; Miyamoto, Masanori; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a lignin-derived phenolic compound abundant in plant biomass. The utilization of FA and its conversion to valuable compounds is desired. Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a precursor of polymers and plastics and a constituent of food. A microbial conversion system to produce PCA from FA was developed in this study using a PCA-producing strain of Corynebacterium glutamicum F (ATCC 21420). C. glutamicum strain F grown at 30 °C for 48 h utilized 2 mM each of FA and vanillic acid (4-hydroxy-3-methoxybenzoic acid, VA) to produce PCA, which was secreted into the medium. FA may be catabolized by C. glutamicum through proposed (I) non-β-oxidative, CoA-dependent or (II) β-oxidative, CoA-dependent phenylpropanoid pathways. The conversion of VA to PCA is the last step in each pathway. Therefore, the vanillate O-demethylase gene (vanAB) from Corynebacterium efficiens NBRC 100395 was expressed in C. glutamicum F (designated strain FVan) cultured at 30 °C in AF medium containing FA. Strain C. glutamicum FVan converted 4.57 ± 0.07 mM of FA into 2.87 ± 0.01 mM PCA after 48 h with yields of 62.8% (mol/mol), and 6.91 mM (1064 mg/L) of PCA was produced from 16.0 mM of FA after 12 h of fed-batch biotransformation. Genomic analysis of C. glutamicum ATCC 21420 revealed that the PCA-utilization genes (pca cluster) were conserved in strain ATCC 21420 and that mutations were present in the PCA importer gene pcaK.

  11. An ATP-Grasp Ligase Involved in the Last Biosynthetic Step of the Iminomycosporine Shinorine in Nostoc punctiforme ATCC 29133 ▿

    PubMed Central

    Gao, Qunjie; Garcia-Pichel, Ferran

    2011-01-01

    We investigated the genetic basis for mycosporine sunscreen biosynthesis by the cyanobacterium Nostoc punctiforme ATCC 29133. Heterologous expression in Escherichia coli of three contiguous N. punctiforme genes (NpR5600, NpR5599, and NpR5598, here named mysA, mysB, and mysC, respectively) led to the production of mycosporine-glycine, an oxomycosporine. Additional expression of gene NpF5597 (mysD) led to the conversion of mycosporine-glycine into iminomycosporines (preferentially shinorine but also others like mycosporine-2-glycine and porphyra-334). This represents a new mode of enzymatic synthesis for iminomycosporines, one that differs in genetic origin, mechanism, and apparent substrate specificity from that known in Anabaena variabilis ATCC 29413. These results add to the emerging profile of the protein family of ATP-dependent ligases, to which the mysC product belongs, as important condensation enzymes in microbial secondary metabolism. PMID:21890703

  12. Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride

    PubMed Central

    Lee, H.Y.; Chai, L.C.; Pui, C.F.; Mustafa, S.; Cheah, Y.K.; Nishibuchi, M.; Radu, S.

    2013-01-01

    Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1–10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress. PMID:24159283

  13. Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.

    PubMed

    Meng, Jianzhou; Wang, Huiyan; Liu, Xiangmei; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2013-10-01

    The genetic improvement of biomining bacteria including Acidithiobacillus caldus could facilitate the bioleaching process of sulfur-containing minerals. However, the available vectors for use in A. caldus are very scanty and limited to relatively large broad-host-range IncQ plasmids. In this study, a set of small, mobilizable plasmid vectors (pBBR1MCS-6, pMSD1 and pMSD2) were constructed based on plasmid pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups. The function of the tac promoter on 5.8-kb pMSD2 was determined by inserting a kanamycin-resistant reporter gene. The resulting recombinant pMSD2-Km was successfully transferred by conjugation into A. caldus MTH-04 with transfer frequency of 1.38±0.64×10(-5). The stability and plasmid copy number of pMSD2-Km in A. caldus MTH-04 were 75±2.7% and 5-6 copies per cell, respectively. By inserting an arsABC operon into pMSD2, an arsenic-resistant recombinant pMSD2-As was constructed and transferred into A. caldus MTH-04 by conjugation. The arsenic tolerance of A. caldus MTH-04 containing pMSD2-As was obviously increased up to 45mM of NaAsO2. These vectors could be applied in genetic improvement of A. caldus as well as other bioleaching bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Genome Sequence of Actinobacillus seminis Strain ATCC 15768, a Reference Strain of Ovine Pathogens That Causes Infections in Reproductive Organs

    PubMed Central

    Negrete-Abascal, Erasmo; Montes-Garcia, Fernando; Vaca-Pacheco, Sergio; Leyto-Gil, Abraham M.; Fragoso-Garcia, Edgar; Carvente-Garcia, Roberto; Perez-Agueros, Sandra; Castelan-Sanchez, Hugo G.; Garcia-Molina, Alejandra; Villamar, Tomas E.; Sánchez-Alonso, Patricia

    2018-01-01

    ABSTRACT The draft genome sequence of Actinobacillus seminis strain ATCC 15768 is reported here. The genome comprises 22 contigs corresponding to 2.36 Mb with 40.7% G+C content and contains several genes related to virulence, including a putative RTX protein. PMID:29326222

  15. Complete genome sequence of the thermotolerant foodborne pathogen Salmonella enterica serovar Senftenberg ATCC 43845 and phylogenetic analysis of loci encoding thermotolerance

    USDA-ARS?s Scientific Manuscript database

    Introduction: Previous studies in Cronobacter sakazakii, Klebsiella spp., and Escherichia coli have identified a genomic island that confers thermotolerance to its hosts. This island has recently been identified in Salmonella enterica serovar Senfentenberg ATCC 43845, a historically important, heat ...

  16. Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity

    NASA Astrophysics Data System (ADS)

    Castro-Wallace, Sarah; Stahl, Sarah; Voorhies, Alexander; Lorenzi, Hernan; Douglas, Grace L.

    2017-10-01

    The introduction of probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and gene expression of probiotic bacteria must be investigated to confirm that benefits of selected strains will still be conveyed under microgravity conditions. The goal of this study was to evaluate the characteristics of the probiotic bacteria Lactobacillus acidophilus ATCC 4356 in a microgravity analog environment. L. acidophilus was cultured anaerobically under modeled microgravity conditions and assessed for differences in growth, survival through stress challenge, and gene expression compared to control cultures. No significant differences were observed between the modeled microgravity and control grown L. acidophilus, suggesting that this strain will behave similarly in spaceflight.

  17. Purification and properties of aryl acylamidase from Pseudomonas fluorescens ATCC 39004.

    PubMed

    Hammond, P M; Price, C P; Scawen, M D

    1983-05-16

    Aryl acylamidase has been purified from a strain of Pseudomonas fluorescens ATCC 39004, selected from soil on the basis of its ability to utilise acylanilide compounds as a sole source of carbon. The enzyme was purified to homogeneity by a combination of ion-exchange, hydrophobic and gel-permeation chromatography. A relative molecular mass of about 52 500 was estimated by gel filtration. The native enzyme was shown to be a monomeric protein by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. The enzyme was maximally active at a pH of 8.6 and at a temperature of 45 degrees C. The enzyme shows Michaelis-Menten kinetics; Km values for nitroacetanilide (69 microM) and hydroxyacetanilide (6.1 microM) were low, indicating that the enzyme has a very high affinity for both substrates.

  18. The susceptibility of Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 cells to the bactericidal action of nanostructured Calopteryx haemorrhoidalis damselfly wing surfaces.

    PubMed

    Truong, Vi Khanh; Geeganagamage, Nipuni Mahanamanam; Baulin, Vladimir A; Vongsvivut, Jitraporn; Tobin, Mark J; Luque, Pere; Crawford, Russell J; Ivanova, Elena P

    2017-06-01

    Nanostructured insect wing surfaces have been reported to possess the ability to resist bacterial colonization through the mechanical rupture of bacterial cells coming into contact with the surface. In this work, the susceptibility of physiologically young, mature and old Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 bacterial cells, to the action of the bactericidal nano-pattern of damselfly Calopteryx haemorrhoidalis wing surfaces, was investigated. The results were obtained using several surface characterization techniques including optical profilometry, scanning electron microscopy, synchrotron-sourced Fourier transform infrared microspectroscopy, water contact angle measurements and antibacterial assays. The data indicated that the attachment propensity of physiologically young S. aureus CIP 65.8 T and mature P. aeruginosa ATCC 9721 bacterial cells was greater than that of the cells at other stages of growth. Both the S. aureus CIP 65.8 T and P. aeruginosa ATCC 9721 cells, grown at the early (1 h) and late stationary phase (24 h), were found to be most susceptible to the action of the wings, with up to 89.7 and 61.3% as well as 97.9 and 97.1% dead cells resulting from contact with the wing surface, respectively.

  19. Final Progress Report for Grant Number DE-SC0007229

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, Robert

    2016-08-18

    We exploited a novel spectrophotometer where the cuvette is a reflecting cavity completely filled with an absorbing suspension of live, intact bacteria to monitor the in situ absorbance changes in bacteria as they respired aerobically on soluble ferrous ions. Our prior observations suggested the following hypothesis: acidophilic bacteria that belong to different phyla express different types of electron transfer proteins to respire on extracellular iron. We tested this hypothesis using six different organisms that represented each of the six phyla of microorganisms that respire aerobically on iron. Each of these six organisms expressed spectrally different biomolecules that were redox-active duringmore » aerobic respiration on iron. In all six cases, compelling kinetic evidence was collected to indicate that the biomolecules in question were obligatory intermediates in their respective respiratory chains. Additional experiments with intact Acidithiobacillus ferrooxidans revealed that the crowded electron transport proteins in this organism’s periplasm constituted a semi-conducting medium where the network of protein interactions functioned in a concerted fashion as a single ensemble. Thus the molecular oxygen-dependent oxidation of the multi-center respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins’ individual redox potentials or their putative positions in the aerobic iron respiratory chain.« less

  20. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    NASA Astrophysics Data System (ADS)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  1. Involvement of Clostridium botulinum ATCC 3502 Sigma Factor K in Early-Stage Sporulation

    PubMed Central

    Kirk, David G.; Dahlsten, Elias; Zhang, Zhen; Korkeala, Hannu

    2012-01-01

    A key survival mechanism of Clostridium botulinum, the notorious neurotoxic food pathogen, is the ability to form heat-resistant spores. While the genetic mechanisms of sporulation are well understood in the model organism Bacillus subtilis, nothing is known about these mechanisms in C. botulinum. Using the ClosTron gene-knockout tool, sigK, encoding late-stage (stage IV) sporulation sigma factor K in B. subtilis, was disrupted in C. botulinum ATCC 3502 to produce two different mutants with distinct insertion sites and orientations. Both mutants were unable to form spores, and their elongated cell morphology suggested that the sporulation pathway was blocked at an early stage. In contrast, sigK-complemented mutants sporulated successfully. Quantitative real-time PCR analysis of sigK in the parent strain revealed expression at the late log growth phase in the parent strain. Analysis of spo0A, encoding the sporulation master switch, in the sigK mutant and the parent showed significantly reduced relative levels of spo0A expression in the sigK mutant compared to the parent strain. Similarly, sigF showed significantly lower relative transcription levels in the sigK mutant than the parent strain, suggesting that the sporulation pathway was blocked in the sigK mutant at an early stage. We conclude that σK is essential for early-stage sporulation in C. botulinum ATCC 3502, rather than being involved in late-stage sporulation, as reported for the sporulation model organism B. subtilis. Understanding the sporulation mechanism of C. botulinum provides keys to control the public health risks that the spores of this dangerous pathogen cause through foods. PMID:22544236

  2. Involvement of Clostridium botulinum ATCC 3502 sigma factor K in early-stage sporulation.

    PubMed

    Kirk, David G; Dahlsten, Elias; Zhang, Zhen; Korkeala, Hannu; Lindström, Miia

    2012-07-01

    A key survival mechanism of Clostridium botulinum, the notorious neurotoxic food pathogen, is the ability to form heat-resistant spores. While the genetic mechanisms of sporulation are well understood in the model organism Bacillus subtilis, nothing is known about these mechanisms in C. botulinum. Using the ClosTron gene-knockout tool, sigK, encoding late-stage (stage IV) sporulation sigma factor K in B. subtilis, was disrupted in C. botulinum ATCC 3502 to produce two different mutants with distinct insertion sites and orientations. Both mutants were unable to form spores, and their elongated cell morphology suggested that the sporulation pathway was blocked at an early stage. In contrast, sigK-complemented mutants sporulated successfully. Quantitative real-time PCR analysis of sigK in the parent strain revealed expression at the late log growth phase in the parent strain. Analysis of spo0A, encoding the sporulation master switch, in the sigK mutant and the parent showed significantly reduced relative levels of spo0A expression in the sigK mutant compared to the parent strain. Similarly, sigF showed significantly lower relative transcription levels in the sigK mutant than the parent strain, suggesting that the sporulation pathway was blocked in the sigK mutant at an early stage. We conclude that σ(K) is essential for early-stage sporulation in C. botulinum ATCC 3502, rather than being involved in late-stage sporulation, as reported for the sporulation model organism B. subtilis. Understanding the sporulation mechanism of C. botulinum provides keys to control the public health risks that the spores of this dangerous pathogen cause through foods.

  3. Copper isotope fractionation in acid mine drainage

    USGS Publications Warehouse

    Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.

    2009-01-01

    We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? < ??65Cu < 1???). These mineral samples show lower ??65Cu values than stream waters (1.38??? ??? ??65Cu ??? 1.69???). The average isotopic fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures

  4. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin

    2016-01-01

    Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus

  5. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    PubMed

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  6. Genome sequences of three tunicamycin-producing Streptomyces strains; S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396

    USDA-ARS?s Scientific Manuscript database

    S. chartreusis strains NRRL 12338 and NRRL 3882, S. clavuligerus NRRL 3585, and S. lysosuperificus ATCC 31396, are known producers of tunicamycins, and also of charteusins, clavulinate, cephalosporins, holomycins, and calcimycin. Here we announce the sequencing of the S. lysosuperificus and the two...

  7. Genome Sequence of Actinobacillus seminis Strain ATCC 15768, a Reference Strain of Ovine Pathogens That Causes Infections in Reproductive Organs.

    PubMed

    Negrete-Abascal, Erasmo; Montes-Garcia, Fernando; Vaca-Pacheco, Sergio; Leyto-Gil, Abraham M; Fragoso-Garcia, Edgar; Carvente-Garcia, Roberto; Perez-Agueros, Sandra; Castelan-Sanchez, Hugo G; Garcia-Molina, Alejandra; Villamar, Tomas E; Sánchez-Alonso, Patricia; Vazquez-Cruz, Candelario

    2018-01-11

    The draft genome sequence of Actinobacillus seminis strain ATCC 15768 is reported here. The genome comprises 22 contigs corresponding to 2.36 Mb with 40.7% G+C content and contains several genes related to virulence, including a putative RTX protein. Copyright © 2018 Negrete-Abascal et al.

  8. Role of Acinetobactin-Mediated Iron Acquisition Functions in the Interaction of Acinetobacter baumannii Strain ATCC 19606T with Human Lung Epithelial Cells, Galleria mellonella Caterpillars, and Mice

    PubMed Central

    Gaddy, Jennifer A.; Arivett, Brock A.; McConnell, Michael J.; López-Rojas, Rafael; Pachón, Jerónimo

    2012-01-01

    Acinetobacter baumannii, which causes serious infections in immunocompromised patients, expresses high-affinity iron acquisition functions needed for growth under iron-limiting laboratory conditions. In this study, we determined that the initial interaction of the ATCC 19606T type strain with A549 human alveolar epithelial cells is independent of the production of BasD and BauA, proteins needed for acinetobactin biosynthesis and transport, respectively. In contrast, these proteins are required for this strain to persist within epithelial cells and cause their apoptotic death. Infection assays using Galleria mellonella larvae showed that impairment of acinetobactin biosynthesis and transport functions significantly reduces the ability of ATCC 19606T cells to persist and kill this host, a defect that was corrected by adding inorganic iron to the inocula. The results obtained with these ex vivo and in vivo approaches were validated using a mouse sepsis model, which showed that expression of the acinetobactin-mediated iron acquisition system is critical for ATCC 19606T to establish an infection and kill this vertebrate host. These observations demonstrate that the virulence of the ATCC 19606T strain depends on the expression of a fully active acinetobactin-mediated system. Interestingly, the three models also showed that impairment of BasD production results in an intermediate virulence phenotype compared to those of the parental strain and the BauA mutant. This observation suggests that acinetobactin intermediates or precursors play a virulence role, although their contribution to iron acquisition is less relevant than that of mature acinetobactin. PMID:22232188

  9. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  10. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Bernstein, Hans C.; Melnicki, Matthew R.

    ABSTRACT Photobiologically synthesized hydrogen (H 2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H 2production, a highly perplexing phenomenon because H 2evolving enzymes are O 2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve tomore » prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.« less

  11. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11.

    PubMed

    Lee, Eun Young; Lee, Nae Yoon; Cho, Kyung-Suk; Ryu, Hee Wook

    2006-04-01

    Toxic H2S gas is an important industrial pollutant that is applied to biofiltration. Here, we examined the effects of factors such as inlet concentration and space velocity on the removal efficiency of a bacterial strain capable of tolerating high sulfate concentrations and low pH conditions. We examined three strains of Acidithiobacillus thiooxidans known to have sulfur-oxidizing activity, and identified strain AZ11 as having the highest tolerance for sulfate. A. thiooxidans AZ11 could grow at pH 0.2 in the presence of 74 g l(-1) sulfate, the final oxidation product of elemental sulfur, in the culture broth. Under these conditions, the specific sulfur oxidation rate was 2.9 g-S g-DCW (dry cell weight)(-1) d(-1). The maximum specific sulfur oxidation rate of A. thiooxidans AZ11 was 21.2 g-S g-DCW(-1) d(-1), which was observed in the presence of 4.2 g-SO4(2-) l(-1) and pH 1.5, in the culture medium. To test the effects of various factors on biofiltration by this strain, A. thiooxidans AZ11 was inoculated into a porous ceramic biofilter. First, a maximum inlet loading of 670 g-S m(-3) h(-1) was applied with a constant space velocity (SV) of 200 h(-1) (residence time, 18 s) and the inlet concentration of H2S was experimentally increased from 200 ppmv to 2200 ppmv. Under these conditions, less than 0.1 ppmv H2S was detected at the biofilter outlet. When the inlet H2S was maintained at a constant concentration of 200 ppmv and the SV was increased from 200 h(-1) to 400 h(-1) (residence time, 9 s), an H2S removal of 99.9% was obtained. However, H2S removal efficiencies decreased to 98% and 94% when the SV was set to 500 h(-1) (residence time, 7.2 s) and 600 h(-1) (residence time, 6 s), respectively. The critical elimination capacity guaranteeing 96% removal of the inlet H2S was determined to be 160 g-S m(-3) h(-1) at a space velocity of 600 h(-1). Collectively, these findings show for the first time that a sulfur oxidizing bacterium has a high sulfate tolerance and a high

  12. Complete Genome Sequence of Spiroplasma floricola 23-6T (ATCC 29989), a Bacterium Isolated from a Tulip Tree (Liriodendron tulipifera L.).

    PubMed

    Tsai, Yi-Ming; Wu, Pei-Shan; Lo, Wen-Sui; Kuo, Chih-Horng

    2018-04-19

    Spiroplasma floricola 23-6 T (ATCC 29989) was isolated from the flower surface of a tulip tree ( Liriodendron tulipifera L.). Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species. Copyright © 2018 Tsai et al.

  13. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808

    PubMed Central

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-01-01

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed. PMID:24400001

  14. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808.

    PubMed

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-12-24

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  15. Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of D-lactic acid by genome shuffling.

    PubMed

    Zheng, Huijie; Gong, Jixian; Chen, Tao; Chen, Xun; Zhao, Xueming

    2010-02-01

    Improvement of acid tolerance and production of D-lactic acid by Sporolactobacillus inulinus ATCC 15538 was performed by using recursive protoplast fusion in a genome shuffling format. The starting population was generated by ultraviolet irradiation, diethyl sulfate mutagenesis, and pH-gradient filter and then, subjected for the recursive protoplast fusion. The concentration of lysozyme, time, and temperature for enzyme treatment were optimized by response surface methodology based on the central composite design. Based on contour plots and variance analysis, the model predicted a maximum Y (multiply protoplasts formation ratio by protoplasts regeneration ratio), 60.4%, and the corresponding above used values were 7.75 mg/ml lysozyme, 1.59 h, and 38 degrees C. A pH-5-resistant recombinant, F3-4, was obtained after three rounds of genome shuffling and its production of D-lactic acid reached 93.4 g/l in a 5 L bioreactor, which was increased by 39.8% and 119% in comparison with that of UV generated strain and the original strain S. inulinus ATCC 15538, respectively. The subculture experiments indicated that F3-4 was genetically stable.

  16. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  17. Complete genome sequence of Campylobacter concisus ATCC 33237T and draft genome sequences for an additional eight well-characterized C. concisus strains

    USDA-ARS?s Scientific Manuscript database

    This report includes the complete genome of the Campylobacter concisus type strain ATCC 33237T and the draft genomes of eight additional well characterized C. concisus genomes. C. concisus has been shown to be a genetically heterogeneous species and these nine genomes provide valuable information re...

  18. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobiumerdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobiumjarvisii sp. nov.

    PubMed

    Martínez-Hidalgo, Pilar; Ramírez-Bahena, Martha Helena; Flores-Félix, José David; Rivas, Raúl; Igual, José M; Mateos, Pedro F; Martínez-Molina, Eustoquio; León-Barrios, Milagros; Peix, Álvaro; Velázquez, Encarna

    2015-06-01

    The species Mesorhizobim loti was isolated from nodules of Lotus corniculatus and its type strain deposited in several collections. Some of these type strains, such as those deposited in the USDA and ATCC collections before 1990, are not coincident with the original strain, NZP 2213T, deposited in the NZP culture collection. The analysis of the 16S rRNA gene showed that strains USDA 3471T and ATCC 33669T formed independent branches from that occupied by Mesorhizobium loti NZP 2213T and related to those occupied by Mesorhizobium opportunistum WSM2075T and Mesorhizobium huakuii IFO 15243T, respectively, with 99.9 % similarity in both cases. However, the analysis of concatenated recA, atpD and glnII genes with similarities lower than 96, 98 and 94 %, respectively, between strains USDA 3471T and M. opportunistum WSM2075T and between strains ATCC 33669T and M. huakuii IFO 15243T, indicated that the strains USDA 3471T and ATCC 33669T represent different species of the genus Mesorhizobium. These results were confirmed by DNA-DNA hybridization experiments and phenotypic characterization. Therefore, the two strains were reclassified as representatives of the two species Mesorhizobium erdmanii sp. nov. (type strain USDA 3471T = CECT 8631T = LMG 17826t2T) and Mesorhizobium jarvisii sp. nov. (type strain ATCC 33669T = CECT 8632T = LMG 28313T).

  19. Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405).

    PubMed

    Ellis, Lucas D; Holwerda, Evert K; Hogsett, David; Rogers, Steve; Shao, Xiongjun; Tschaplinski, Timothy; Thorne, Phil; Lynd, Lee R

    2012-01-01

    Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, ≥92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products--ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Microbial conversion of ethylbenzene to 1-phenethanol and acetophenone by Nocardia tartaricans ATCC 31190.

    PubMed Central

    Cox, D P; Goldsmith, C D

    1979-01-01

    A culture of Nocardia tartaricans ATCC 31190 was capable of catalyzing the conversion of ethylbenzene to 1-phenethanol and acetophenone while growing in a shake flask culture with hexadecane as the source of carbon and energy. This subterminal oxidative reaction with ethylbenzene appears not to have been previously reported for Nocardia species. When N. tartaricans was grown on glucose as its source of carbon and energy and ethylbenzene was added, no subsequent production of 1-phenethanol or acetophenone was observed. The mechanisms of 1-phenethanol and acetophenone production from ethylbenzene are thought to involve a subterminal oxidation of the alpha-carbon of the alkyl group to 1-phenethanol followed by biological oxidation of the latter to acetophenone. PMID:93878

  1. Microbial conversion of ethylbenzene to 1-phenethanol and acetophenone by Nocardia tartaricans ATCC 31190.

    PubMed

    Cox, D P; Goldsmith, C D

    1979-09-01

    A culture of Nocardia tartaricans ATCC 31190 was capable of catalyzing the conversion of ethylbenzene to 1-phenethanol and acetophenone while growing in a shake flask culture with hexadecane as the source of carbon and energy. This subterminal oxidative reaction with ethylbenzene appears not to have been previously reported for Nocardia species. When N. tartaricans was grown on glucose as its source of carbon and energy and ethylbenzene was added, no subsequent production of 1-phenethanol or acetophenone was observed. The mechanisms of 1-phenethanol and acetophenone production from ethylbenzene are thought to involve a subterminal oxidation of the alpha-carbon of the alkyl group to 1-phenethanol followed by biological oxidation of the latter to acetophenone.

  2. Antibacterial Efficacy of Dihydroxylated Chalcones in Binary and Ternary Combinations with Nalidixic Acid and Nalidix Acid-Rutin Against Escherichia coli ATCC 25 922.

    PubMed

    Talia, Juan Manuel; Tonn, Carlos Eugenio; Debattista, Nora Beatriz; Pappano, Nora Beatriz

    2012-12-01

    In order to determine the existence of synergism, the bacteriostatic action of flavonoids against Escherichia coli ATCC 25 922 between dihydroxylated chalcones and a clinically interesting conventional antibiotic, binary combinations of 2',3-dihydroxychalcone, 2',4-dihydroxychalcone and 2',4'-dihydroxychalcone with nalidixic acid and its ternary combinations with rutin (inactive flavonoid) were assayed against this Gram negative bacterium. Using a kinetic-turbidimetric method, growth kinetics were monitored in broths containing variable amounts of dihydroxychalcone alone, combinations of dihydroxychalcone variable concentration-nalidixic acid constant concentration and dihydroxychalcone variable concentration-nalidixic acid constant concentration-rutin constant concentration, respectively. The minimum inhibitory concentrations of dihydroxychalcones alone and its binary and ternary combinations were evaluated. All chalcones, and their binary and ternary combinations showed antibacterial activity, being rutin an excellent synergizing for the dihydroxychalcone-nalidixic acid binary combination against E. coli ATCC 25 922. Thus, this synergistic effect is an important way that could lead to the development of new combination antibiotics against infections caused by E. coli.

  3. Molecular cloning and heterologous expression of the isopullulanase gene from Aspergillus niger A.T.C.C. 9642.

    PubMed Central

    Aoki, H; Yopi; Sakano, Y

    1997-01-01

    Isopullulanase (IPU) from Aspergillus niger A.T.C.C. (American Type Culture Collection) 9642 hydrolyses pullulan to isopanose. IPU is important for the production of isopanose and is used in the structural analysis of oligosaccharides with alpha-1,4 and alpha-1,6 glucosidic linkages. We have isolated the ipuA gene encoding IPU from the filamentous fungi A. niger A.T.C.C. 9642. The ipuA gene encodes an open reading frame of 1695 bp (564 amino acids). IPU contained a signal sequence of 19 amino acids, and the molecular mass of the mature form was calculated to be 59 kDa. IPU has no amino-acid-sequence similarity with the other pullulan-hydrolysing enzymes, which are pullulanase, neopullulanase and glucoamylase. However, IPU showed a high amino-acid-sequence similarity with dextranases from Penicillium minioluteum (61%) and Arthrobacter sp. (56%). When the ipuA gene was expressed in Aspergillus oryzae, the expressed protein (recombinant IPU) had IPU activity and was immunologically reactive with antibodies raised against native IPU. The substrate specificity, thermostability and pH profile of recombinant IPU were identical with those of the native enzyme, but recombinant IPU (90 kDa) was larger than the native enzyme (69-71 kDa). After deglycosylation with peptide-N-glycosidase F, the deglycosylated recombinant IPU had the same molecular mass as deglycosylated native enzyme (59 kDa). This result suggests that the carbohydrate chain of recombinant IPU differed from that of the native enzyme. PMID:9169610

  4. Enhanced butyric acid tolerance and production by Class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755.

    PubMed

    Suo, Yukai; Luo, Sheng; Zhang, Yanan; Liao, Zhengping; Wang, Jufang

    2017-08-01

    The response of Clostridium tyrobutyricum to butyric acid stress involves various stress-related genes, and therefore overexpression of stress-related genes can improve butyric acid tolerance and yield. Class I heat shock proteins (HSPs) play an important role in the process of protecting bacteria from sudden changes of extracellular stress by assisting protein folding correctly. The results of quantitative real-time PCR indicated that the Class I HSGs grpE, dnaK, dnaJ, groEL, groES, and htpG were significantly upregulated under butyric acid stress, especially the dnaK and groE operons. Overexpression of groESL and htpG could significantly improve the tolerance of C. tyrobutyricum to butyric acid, while overexpression of dnaK and dnaJ showed negative effects on butyric acid tolerance. Acid production was also significantly promoted by increased GroESL expression levels; the final butyric acid and acetic acid concentrations were 28.2 and 38% higher for C. tyrobutyricum ATCC 25755/groESL than for the wild-type strain. In addition, when fed-batch fermentation was carried out using cell immobilization in a fibrous-bed bioreactor, the butyric acid yield produced by C. tyrobutyricum ATCC 25755/groESL reached 52.2 g/L, much higher than that for the control. The improved butyric acid yield is probably attributable to the high GroES and GroEL levels, which can stabilize the biosynthetic machinery of C. tyrobutyricum under extracellular butyric acid stress.

  5. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum ATCC 49418(T.).

    PubMed

    Wu, Anson Kk; Kropinski, Andrew M; Lumsden, John S; Dixon, Brian; MacInnes, Janet I

    2015-01-01

    Flavobacterium psychrophilum is the causative agent of bacterial cold water disease and rainbow trout fry mortality syndrome in salmonid fishes and is associated with significant losses in the aquaculture industry. The virulence factors and molecular mechanisms of pathogenesis of F. psychrophilum are poorly understood. Moreover, at the present time, there are no effective vaccines and control using antimicrobial agents is problematic due to growing antimicrobial resistance and the fact that sick fish don't eat. In the hopes of identifying vaccine and therapeutic targets, we sequenced the genome of the type strain ATCC 49418 which was isolated from the kidney of a Coho salmon (Oncorhychus kisutch) in Washington State (U.S.A.) in 1989. The genome is 2,715,909 bp with a G+C content of 32.75%. It contains 6 rRNA operons, 49 tRNA genes, and is predicted to encode 2,329 proteins.

  6. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum ATCC 49418T

    PubMed Central

    2015-01-01

    Flavobacterium psychrophilum is the causative agent of bacterial cold water disease and rainbow trout fry mortality syndrome in salmonid fishes and is associated with significant losses in the aquaculture industry. The virulence factors and molecular mechanisms of pathogenesis of F. psychrophilum are poorly understood. Moreover, at the present time, there are no effective vaccines and control using antimicrobial agents is problematic due to growing antimicrobial resistance and the fact that sick fish don’t eat. In the hopes of identifying vaccine and therapeutic targets, we sequenced the genome of the type strain ATCC 49418 which was isolated from the kidney of a Coho salmon (Oncorhychus kisutch) in Washington State (U.S.A.) in 1989. The genome is 2,715,909 bp with a G+C content of 32.75%. It contains 6 rRNA operons, 49 tRNA genes, and is predicted to encode 2,329 proteins. PMID:25685258

  7. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron.

    PubMed

    Jones, Rose M; Johnson, D Barrie

    2015-01-01

    A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic stream draining an abandoned copper mine in north Wales. The isolate (PY-F3) was demonstrated to be a heterotroph that catalyzed the oxidation of ferrous iron (but not of sulfur or hydrogen) under aerobic conditions, and the reduction of ferric iron under micro-aerobic and anaerobic conditions. PY-F3 formed long entangled filaments of cells (>50 μm long) during active growth phases, though these degenerated into smaller fragments and single cells in late stationary phase. Although isolate PY-F3 was not observed to grow below pH 2.0 and 10 °C, harvested biomass was found to oxidize ferrous iron at relatively fast rates at pH 1.5 and 5 °C. Phylogenetic analysis, based on comparisons of 16S rRNA gene sequences, showed that isolate PY-F3 has 91-93% gene similarity to those of the four classified genera and species of acidophilic Actinobacteria, and therefore is a representative of a novel genus. The binomial Acidithrix ferrooxidans is proposed for this new species, with PY-F3 as the designated type strain (=DSM 28176(T), =JCM 19728(T)). Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  9. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH.

    PubMed

    Liu, Fenwu; Zhou, Lixiang; Zhou, Jun; Song, Xingwei; Wang, Dianzhan

    2012-06-30

    Bio-acidification caused by bio-oxidation of energy substances during bioleaching is widely known to play an important role in improving sludge-borne metals removal. Here we report that bioleaching also drastically enhances sludge dewaterability in a suitable pH level. To obtain the optimum initial concentrations of energy substances and pH values for sludge dewaterability during bioleaching, bio-oxidation of Fe(2+) and S(0) under co-inoculation with Acidithiobacillus thiooxidans TS6 and Acidothiobacillus ferrooxidans LX5 and their effects on sludge dewaterability and metals removal during sludge bioleaching were investigated. Results indicated that the dosage of energy substances with 2g/L S(0) and 2g/L Fe(2+) could obtain bio-oxidation efficiencies of up to 100% for Fe(2+) and 50% for S(0) and were the optimal dosages for sludge bioleaching. The removal efficiencies of sludge-borne Cu and Cr could reach above 85% and 40%, respectively, and capillary suction time (CST) of bioleached sludge decreased to as low as ∼10s from initial 48.9s for fresh sludge when sludge pH declined to ∼2.4 through bioleaching. These results confirm the potential of bioleaching as a novel method for improving sludge dewaterability as well as removal of metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Sequencing and analysis of the resistome of Streptomyces fradiae ATCC19609 in order to develop a test system for screening of new antimicrobial agents].

    PubMed

    Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N

    2016-06-01

    The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.

  11. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Passel, Mark W.J.; Kant, Ravi; Palva, Airi

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  12. Difference in cellular damage and cell death in thermal death time disks and high hydrostatic pressure treated Salmonella Enteritidis (ATCC13076) in liquid whole egg

    USDA-ARS?s Scientific Manuscript database

    Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella Enteritidis (ATCC13076) in liquid whole egg (LWE) following thermal-death-time (TDT) disk and high hydrostatic pressure treatments were examined. Salmonella enteritidis was inoculated ...

  13. Direct observation of redox reactions in Candida parapsilosis ATCC 7330 by Confocal microscopic studies.

    PubMed

    Venkataraman, Sowmyalakshmi; Narayan, Shoba; Chadha, Anju

    2016-10-14

    Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC.

  14. Putative Inv Is Essential for Basolateral Invasion of Caco-2 Cells and Acts Synergistically with OmpA To Affect In Vitro and In Vivo Virulence of Cronobacter sakazakii ATCC 29544

    PubMed Central

    Chandrapala, Dilini; Kim, Kyumson; Choi, Younho; Senevirathne, Amal; Kang, Dong-Hyun; Ryu, Sangryeol

    2014-01-01

    Cronobacter sakazakii is an opportunistic pathogen that causes neonatal meningitis and necrotizing enterocolitis. Its interaction with intestinal epithelium is important in the pathogenesis of enteric infections. In this study, we investigated the involvement of the inv gene in the virulence of C. sakazakii ATCC 29544 in vitro and in vivo. Sequence analysis of C. sakazakii ATCC 29544 inv revealed that it is different from other C. sakazakii isolates. In various cell culture models, an Δinv deletion mutant showed significantly lowered invasion efficiency, which was restored upon genetic complementation. Studying invasion potentials using tight-junction-disrupted Caco-2 cells suggested that the inv gene product mediates basolateral invasion of C. sakazakii ATCC 29544. In addition, comparison of invasion potentials of double mutant (ΔompA Δinv) and single mutants (ΔompA and Δinv) provided evidence for an additive effect of the two putative outer membrane proteins. Finally, the importance of inv and the additive effect of putative Inv and OmpA were also proven in an in vivo rat pup model. This report is the first to demonstrate two proteins working synergistically in vitro, as well as in vivo in C. sakazakii pathogenesis. PMID:24549330

  15. Putative Inv is essential for basolateral invasion of Caco-2 cells and acts synergistically with OmpA to affect in vitro and in vivo virulence of Cronobacter sakazakii ATCC 29544.

    PubMed

    Chandrapala, Dilini; Kim, Kyumson; Choi, Younho; Senevirathne, Amal; Kang, Dong-Hyun; Ryu, Sangryeol; Kim, Kwang-Pyo

    2014-05-01

    Cronobacter sakazakii is an opportunistic pathogen that causes neonatal meningitis and necrotizing enterocolitis. Its interaction with intestinal epithelium is important in the pathogenesis of enteric infections. In this study, we investigated the involvement of the inv gene in the virulence of C. sakazakii ATCC 29544 in vitro and in vivo. Sequence analysis of C. sakazakii ATCC 29544 inv revealed that it is different from other C. sakazakii isolates. In various cell culture models, an Δinv deletion mutant showed significantly lowered invasion efficiency, which was restored upon genetic complementation. Studying invasion potentials using tight-junction-disrupted Caco-2 cells suggested that the inv gene product mediates basolateral invasion of C. sakazakii ATCC 29544. In addition, comparison of invasion potentials of double mutant (ΔompA Δinv) and single mutants (ΔompA and Δinv) provided evidence for an additive effect of the two putative outer membrane proteins. Finally, the importance of inv and the additive effect of putative Inv and OmpA were also proven in an in vivo rat pup model. This report is the first to demonstrate two proteins working synergistically in vitro, as well as in vivo in C. sakazakii pathogenesis.

  16. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.

    PubMed

    Chen, Cheng; Li, Yanyan; Hu, Jinyu; Dong, Xunyan; Wang, Xiaoyuan

    2015-05-01

    In this study, an L-valine-producing strain was developed from Corynebacterium glutamicum ATCC13869 through deletion of the three genes aceE, alaT and ilvA combined with the overexpression of six genes ilvB, ilvN, ilvC, lrp1, brnF and brnE. Overexpression of lrp1 alone increased L-valine production by 16-fold. Deletion of the aceE, alaT and ilvA increased L-valine production by 44-fold. Overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnE and brnF in the triple deletion mutant WCC003 further increased L-valine production. The strain WCC003/pJYW-4-ilvBNC1-lrp1-brnFE produced 243mM L-valine in flask cultivation and 437mM (51g/L) L-valine in fed-batch fermentation and lacked detectable amino-acid byproduct such as l-alanine and l-isoleucine that are usually found in the fermentation of L-valine-producing C. glutamicum. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. The coxBAC Operon Encodes a Cytochrome c Oxidase Required for Heterotrophic Growth in the Cyanobacterium Anabaena variabilis Strain ATCC 29413

    PubMed Central

    Schmetterer, Georg; Valladares, Ana; Pils, Dietmar; Steinbach, Susanne; Pacher, Margit; Muro-Pastor, Alicia M.; Flores, Enrique; Herrero, Antonia

    2001-01-01

    Three genes, coxB, coxA, and coxC, found in a clone from a gene library of the cyanobacterium Anabaena variabilis strain ATCC 29413, were identified by hybridization with an oligonucleotide specific for aa3-type cytochrome c oxidases. Deletion of these genes from the genome of A. variabilis strain ATCC 29413 FD yielded strain CSW1, which displayed no chemoheterotrophic growth and an impaired cytochrome c oxidase activity. Photoautotrophic growth of CSW1, however, was unchanged, even with dinitrogen as the nitrogen source. A higher cytochrome c oxidase activity was detected in membrane preparations from dinitrogen-grown CSW1 than from nitrate-grown CSW1, but comparable activities of respiratory oxygen uptake were found in the wild type and in CSW1. Our data indicate that the identified cox gene cluster is essential for fructose-dependent growth in the dark, but not for growth on dinitrogen, and that other terminal respiratory oxidases are expressed in this cyanobacterium. Transcription analysis showed that coxBAC constitutes an operon which is expressed from two transcriptional start points. The use of one of them was stimulated by fructose. PMID:11591688

  18. Isolation and Purification of Complex II from Proteus Mirabilis Strain ATCC 29245

    PubMed Central

    Shabbiri, Khadija; Ahmad, Waqar; Syed, Quratulain; Adnan, Ahmad

    2010-01-01

    A respiratory complex was isolated from plasma membrane of pathogenic Proteus mirabilis strain ATCC 29245. It was identified as complex II consisting of succinate:quinone oxidoreductase (EC 1.3.5.1) containing single heme b. The complex II was purified by ion-exchange chromatography and gel filtration. The molecular weight of purified complex was 116.5 kDa and it was composed of three subunits with molecular weights of 19 kDa, 29 kDa and 68.5 kDa. The complex II contained 9.5 nmoles of cytochrome b per mg protein. Heme staining indicated that the 19 kDa subunit was cytochrome b. Its reduced form showed absorptions peaks at 557.0, 524.8 and 424.4 nm. The α-band was shifted from 557.0 nm to 556.8 nm in pyridine ferrohemochrome spectrum. The succinate: quinone oxidoreductase activity was found to be high in this microorganism. PMID:24031557

  19. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    PubMed Central

    Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; van de Vondervoort, Peter J.I.; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; van Dijck, Piet W.M.; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert J.J.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noël N.M.E.; Roubos, Johannes A.; Nielsen, Jens; Baker, Scott E.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi. PMID:21543515

  20. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    PubMed Central

    Senedese, Ana Lívia Chemeli; Maciel Filho, Rubens; Maciel, Maria Regina Wolf

    2015-01-01

    Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid). L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses) and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v) inoculum). Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid. PMID:25922852

  1. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants.

    PubMed

    Liffourrena, Andrés S; Lucchesi, Gloria I

    2018-04-30

    Microbial immobilization can be used to prepare encapsulated inoculants. Here, we characterize and describe the preparation of Ca-alginate-perlite microbeads loaded with cells of plant growth-promoting Pseudomonas putida A (ATCC 12633), for their future application as agricultural inoculants. The microbeads were prepared by dropwise addition of a CaCl 2 -paraffin emulsion mixture to an emulsion containing alginate 2% (w/v), perlite 0.1-0.4% (w/v) and bacterial suspension in 0.9% NaCl (10 10  CFU/mL). For all perlite concentrations used, microbead size was 90-120 μm, the trapped population was 10 8  CFU/g microbeads and the increase in mechanical stability was proportional to perlite concentration. Microbeads containing 0.4% (w/v) perlite were able to release bacteria into the medium after 30 days of incubation. When we evaluated how P. putida A (ATCC 12633) entrapped in Ca-alginate-perlite (0.4% (w/v)) microbeads colonized the Arabidopsis thaliana rhizosphere, an increase in colonization over time was detected (from an initial 2.1 × 10 4 to 9.2 × 10 5  CFU/g soil after 21 days). With this treatment, growth promotion of A. thaliana occurred with an increase in the amount of proteins, and in root and leaf biomass. It was concluded that the microbeads could be applied as possible inoculants, since they provide protection and a controlled release of microorganisms into the rhizosphere. Copyright © 2018. Published by Elsevier B.V.

  2. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil; Servinsky, Matthew D.; Gerlach, Elliot S.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes themore » unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  3. Mini-Tn7 Insertion in Bacteria With Multiple glmS-Linked attTn7 Sites: Example Burkholderia Mallei ATCC 23344

    DTIC Science & Technology

    2006-06-27

    INTRODUCTION Burkholderia mallei is the etiological agent of glanders and a highly evolved obligate zoonotic mammalian pathogen that naturally affects horses...mini-Tn7 insertion in bacteria with multiple glmS-linked attTn7 sites: example Burkholderia mallei ATCC 23344 Kyoung-Hee Choi1, David DeShazer2... glanders is a rare disease, B. mallei has received renewed attention because of its listing as a category B agent by the Centers for Disease Control

  4. Experimental production of indicators for microbial sulfur metabolism in the Chelyabinsk LL5 chondrite: meteorites as standards for biomarker detection on Mars

    NASA Astrophysics Data System (ADS)

    Tait, A. W.; Wilson, S. A.; Tomkins, A. G.; Gagen, E. J.; Southam, G.

    2016-12-01

    One hurdle to finding evidence for life beyond Earth is being able to identify its chemical, textural and isotopic fingerprints. This is a challenge in environments that can mask biomarker discovery and/or where geochemical and mineralogical limits are still being established. An ideal solution would be to use standards with known chemical and isotopic compositions to reduce/remove any ambiguity of detection. We propose that chondritic meteorites are ideal standards. Chondrites have narrow ranges in mineralogical, chemical and isotopic compositions, including δ34S values. As such, they could preserve biomarkers of theorized sulfur-based metabolisms on Mars. Here, we demonstrate that bacteria can alter the chemistry of chondrites in a detectable and recognisable manner. We exposed polished fragments of the Chelyabinsk LL5 chondrite to an inoculum of the sulfur/iron oxidising bacterium, Acidithiobacillus ferrooxidans. Cell counts and aqueous sulfate concentrations were recorded over the course of a month. Meteorite samples were taken after one, two and four week exposures for FEG-SEM and FIB-SEM imaging, XRD phase analysis, and stable isotope (δ34S) geochemistry. Our electron microscopy work shows that bacteria and associated extracellular polymeric substances coat grains of troilite (FeS) and FeNi alloys. Decreasing aqueous sulfate concentrations, compared to increasing sulfate in abiotic controls, suggests that A. ferrooxidans may have been assimilating the sulfur released by oxidation of troilite. Also, low abundances of secondary minerals that are capable of recording biological fractionation of stable sulfur and/or iron isotopes were also produced: rozenite, gypsum, goethite, lepidocrocite, and jarosite, and may explain the reduction in soluble sulfur. Our FIB-SEM results show that nutrients (e.g., carbon, sulfur and nitrogen) become concentrated in layers at the surfaces of troilite and FeNi alloys within 1 week of incubation. These nutrient-rich regions are

  5. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  6. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John E. Aston; William A. Apel; Brady D. Lee

    2010-12-01

    This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells atmore » pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.« less

  7. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor.

    PubMed

    Fang, Di; Zhou, Li-Xiang

    2007-09-01

    Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment.

  8. [Application of immunologic methods to the analysis of bio-leaching bacteria].

    PubMed

    Coto, O; Fernández, A I; León, T; Rodríguez, D

    1994-09-01

    Pure cultures of Thiobacillus ferrooxidans and mixed cultures of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans isolated from the Matahambre mine (Cuba) were used to fit immunodiffusion and immunoelectron microscopy to the study of iron oxidizing bacteria. The possibilities, advantages and limits of those techniques have been studied from both the identification and the serological characterization points of view. Finally, the efficiency of these methods was tested by applying them to the identification of microorganisms from acidic waters from the mine.

  9. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    PubMed Central

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-01-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%–6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration. PMID:25633028

  10. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage.

    PubMed

    Peng, Tangjian; Ma, Liyuan; Feng, Xue; Tao, Jiemeng; Nan, Meihua; Liu, Yuandong; Li, Jiaokun; Shen, Li; Wu, Xueling; Yu, Runlan; Liu, Xueduan; Qiu, Guanzhou; Zeng, Weimin

    2017-01-01

    Acidithiobacillus ferrivorans is an acidophile that often occurs in low temperature acid mine drainage, e.g., that located at high altitude. Being able to inhabit the extreme environment, the bacterium must possess strategies to copy with the survival stress. Nonetheless, information on the strategies is in demand. Here, genomic and transcriptomic assays were performed to illuminate the adaptation mechanisms of an A. ferrivorans strain YL15, to the alpine acid mine drainage environment in Yulong copper mine in southwest China. Genomic analysis revealed that strain has a gene repertoire for metal-resistance, e.g., genes coding for the mer operon and a variety of transporters/efflux proteins, and for low pH adaptation, such as genes for hopanoid-synthesis and the sodium:proton antiporter. Genes for various DNA repair enzymes and synthesis of UV-absorbing mycosporine-like amino acids precursor indicated hypothetical UV radiation-resistance mechanisms in strain YL15. In addition, it has two types of the acquired immune system-type III-B and type I-F CRISPR/Cas modules against invasion of foreign genetic elements. RNA-seq based analysis uncovered that strain YL15 uses a set of mechanisms to adapt to low temperature. Genes involved in protein synthesis, transmembrane transport, energy metabolism and chemotaxis showed increased levels of RNA transcripts. Furthermore, a bacterioferritin Dps gene had higher RNA transcript counts at 6°C, possibly implicated in protecting DNA against oxidative stress at low temperature. The study represents the first to comprehensively unveil the adaptation mechanisms of an acidophilic bacterium to the acid mine drainage in alpine regions.

  11. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage

    PubMed Central

    Ma, Liyuan; Feng, Xue; Tao, Jiemeng; Nan, Meihua; Liu, Yuandong; Li, Jiaokun; Shen, Li; Wu, Xueling; Yu, Runlan; Liu, Xueduan; Qiu, Guanzhou; Zeng, Weimin

    2017-01-01

    Acidithiobacillus ferrivorans is an acidophile that often occurs in low temperature acid mine drainage, e.g., that located at high altitude. Being able to inhabit the extreme environment, the bacterium must possess strategies to copy with the survival stress. Nonetheless, information on the strategies is in demand. Here, genomic and transcriptomic assays were performed to illuminate the adaptation mechanisms of an A. ferrivorans strain YL15, to the alpine acid mine drainage environment in Yulong copper mine in southwest China. Genomic analysis revealed that strain has a gene repertoire for metal-resistance, e.g., genes coding for the mer operon and a variety of transporters/efflux proteins, and for low pH adaptation, such as genes for hopanoid-synthesis and the sodium:proton antiporter. Genes for various DNA repair enzymes and synthesis of UV-absorbing mycosporine-like amino acids precursor indicated hypothetical UV radiation—resistance mechanisms in strain YL15. In addition, it has two types of the acquired immune system–type III-B and type I-F CRISPR/Cas modules against invasion of foreign genetic elements. RNA-seq based analysis uncovered that strain YL15 uses a set of mechanisms to adapt to low temperature. Genes involved in protein synthesis, transmembrane transport, energy metabolism and chemotaxis showed increased levels of RNA transcripts. Furthermore, a bacterioferritin Dps gene had higher RNA transcript counts at 6°C, possibly implicated in protecting DNA against oxidative stress at low temperature. The study represents the first to comprehensively unveil the adaptation mechanisms of an acidophilic bacterium to the acid mine drainage in alpine regions. PMID:28542527

  12. Bacterial CS2 Hydrolases from Acidithiobacillus thiooxidans Strains Are Homologous to the Archaeal Catenane CS2 Hydrolase

    PubMed Central

    Smeulders, Marjan J.; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R. M.; Hermans, John; Jetten, Mike S. M.

    2013-01-01

    Carbon disulfide (CS2) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS2 is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO2) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS2-polluted airstreams. We report on the mechanism of bacterial CS2 conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS2 hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS2 hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS2 hydrolases within the β-CA family. Unlike CAs, the CS2 hydrolases did not hydrate CO2 but converted CS2 and COS with H2O to H2S and CO2. The CS2 hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS2 hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS2 hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS2 hydrolases based on the structure of Acidianus strain A1-3 CS2 hydrolase suggest that the A. thiooxidans strain G8 CS2 hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation. PMID:23836868

  13. Mutual Cross-Feeding Interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 Explain the Bifidogenic and Butyrogenic Effects of Arabinoxylan Oligosaccharides

    PubMed Central

    Rivière, Audrey; Gagnon, Mérilie; Weckx, Stefan; Roy, Denis

    2015-01-01

    Arabinoxylan oligosaccharides (AXOS) are a promising class of prebiotics that have the potential to stimulate the growth of bifidobacteria and the production of butyrate in the human colon, known as the bifidogenic and butyrogenic effects, respectively. Although these dual effects of AXOS are considered beneficial for human health, their underlying mechanisms are still far from being understood. Therefore, this study investigated the metabolic interactions between Bifidobacterium longum subsp. longum NCC2705 (B. longum NCC2705), an acetate producer and arabinose substituent degrader of AXOS, and Eubacterium rectale ATCC 33656, an acetate-converting butyrate producer. Both strains belong to prevalent species of the human colon microbiota. The strains were grown on AXOS during mono- and coculture fermentations, and their growth, AXOS consumption, metabolite production, and expression of key genes were monitored. The results showed that the growth of both strains and gene expression in both strains were affected by cocultivation and that these effects could be linked to changes in carbohydrate consumption and concomitant metabolite production. The consumption of the arabinose substituents of AXOS by B. longum NCC2705 with the concomitant production of acetate allowed E. rectale ATCC 33656 to produce butyrate (by means of a butyryl coenzyme A [CoA]:acetate CoA-transferase), explaining the butyrogenic effect of AXOS. Eubacterium rectale ATCC 33656 released xylose from the AXOS substrate, which favored the B. longum NCC2705 production of acetate, explaining the bifidogenic effect of AXOS. Hence, those interactions represent mutual cross-feeding mechanisms that favor the coexistence of bifidobacterial strains and butyrate producers in the same ecological niche. In conclusion, this study provides new insights into the bifidogenic and butyrogenic effects of AXOS. PMID:26319874

  14. The desA and desB genes from Clostridium scindens ATCC 35704 encode steroid-17,20-desmolase.

    PubMed

    Devendran, Saravanan; Mythen, Sean M; Ridlon, Jason M

    2018-06-01

    Clostridium scindens is a gut microbe capable of removing the side-chain of cortisol, forming 11β-hydro-xyandrostenedione. A cortisol-inducible operon ( desABCD ) was previously identified in C. scindens ATCC 35704 by RNA-Seq. The desC gene was shown to encode a cortisol 20α-hydroxysteroid dehydrogenase (20α-HSDH). The desD encodes a protein annotated as a member of the major facilitator family, predicted to function as a cortisol transporter. The desA and desB genes are annotated as N-terminal and C-terminal transketolases, respectively. We hypothesized that the DesAB forms a complex and has steroid-17,20-desmolase activity. We cloned the desA and desB genes from C. scindens ATCC 35704 in pETDuet for overexpression in Escherichia coli The purified recombinant DesAB was determined to be a 142 ± 5.4 kDa heterotetramer. We developed an enzyme-linked continuous spectrophotometric assay to quantify steroid-17,20-desmolase. This was achieved by coupling DesAB-dependent formation of 11β-hydroxyandrostenedione with the NADPH-dependent reduction of the steroid 17-keto group by a recombinant 17β-HSDH from the filamentous fungus, Cochliobolus lunatus The pH optimum for the coupled assay was 7.0 and kinetic constants using cortisol as substrate were K m of 4.96 ± 0.57 µM and k cat of 0.87 ± 0.076 min -1 Substrate-specificity studies revealed that rDesAB recognized substrates regardless of 11β-hydroxylation, but had an absolute requirement for 17,21-dihydroxy 20-ketosteroids. Copyright © 2018 Devendran et al.

  15. Influence of temperature on flavour compound production from citrate by Lactobacillus rhamnosus ATCC 7469.

    PubMed

    De Figueroa, R M; Oliver, G; Benito de Cárdenas, I L

    2001-03-01

    The citrate utilization by Lactobacillus rhamnosus ATCC 7469 was found to be temperature-dependent. The maximum citrate utilization and incorporation of [1,5-14C]citrate rate were observed at 37 degreesC. At this temperature, maximum citrate lyase activity and specific diacetyl and acetoin production (Y(DA%)) were observed. The high levels of alpha-acetolactate synthase and low levels of diacetyl reductase, acetoin reductase and L-lactate dehydrogenase found at 37 degreesC led to an accumulation of diacetyl and acetoin. Optimum lactic acid production was observed at 45 degreesC, according to the high lactate dehydrogenase activity. The NADH oxidase activity increased with increasing culture temperature from 22 degreesC to 37 degreesC. Thus there are greater quantities of pyruvate available for the production of alpha-acetolactate, diacetyl and aceotin, and less diacetyl and acetoin are reduced.

  16. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.

    PubMed

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-05-01

    This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.

  17. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

    PubMed Central

    Jiang, Huidan; Liang, Yili; Yin, Huaqun; Xiao, Yunhua; Guo, Xue; Xu, Ying; Hu, Qi; Liu, Hongwei; Liu, Xueduan

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination. PMID:26064886

  18. Biochemical and Genetic Characterization of the vanC-2 Vancomycin Resistance Gene Cluster of Enterococcus casseliflavus ATCC 25788

    PubMed Central

    Dutta, Ireena; Reynolds, Peter E.

    2002-01-01

    The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXYC-2, vanTC-2, vanRC-2, and vanSC-2) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative d,d-dipeptidase-d,d-carboxypeptidase, VanXYC-2, exhibited 81% amino acid identity to VanXYC, and VanTC-2 displayed 65% amino acid identity to the serine racemase, VanT. VanRC-2 and VanSC-2 displayed high degrees of identity to VanRC and VanSC, respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-l-Ala-δ-d-Glu-l-Lys-d-Ala-d-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanTC-2 gene, encoding a putative serine racemase, and the presence of supplementary d-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of d-serine plays an important role in the induction process. PMID:12234834

  19. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeygunawardana, C.; Bush, C.A.; Cisar, J.O.

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra ofmore » the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.« less

  20. Enzymatic dehalogenation of pentachlorophenol by extracts from Arthrobacter sp. strain ATCC 33790.

    PubMed Central

    Schenk, T; Müller, R; Mörsberger, F; Otto, M K; Lingens, F

    1989-01-01

    Arthrobacter sp. strain ATCC 33790 was grown with pentachlorophenol (PCP) as the sole source of carbon and energy. Crude extracts, which were prepared by disruption of the bacteria with a French pressure cell, showed no dehalogenating activity with PCP as the substrate. After sucrose density ultracentrifugation of the crude extract at 145,000 x g, various layers were found in the gradient. One yellow layer showed enzymatic conversion of PCP. One chloride ion was released per molecule of PCP. The product of the enzymatic conversion was tetrachlorohydroquinone. NADPH and oxygen were essential for this reaction. EDTA stimulated the enzymatic activity by 67%. The optimum pH for the enzyme activity was 7.5, and the temperature optimum was 25 degrees C. Enzymatic activity was also detected with 2,4,5-trichlorophenol, 2,3,4-trichlorophenol, 2,4,6-trichlorophenol, and 2,3,4,5-tetrachlorophenol as substrates, whereas 3,4,5-trichlorophenol, 2,4-dichlorophenol, 3,4-dichlorophenol, and 4-chlorophenol did not serve as substrates. PMID:2793827

  1. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA.

    PubMed Central

    Monedero, V; Gosalbes, M J; Pérez-Martínez, G

    1997-01-01

    The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria. PMID:9352913

  2. The Genome Sequence of Bacillus cereus ATCC 10987 Reveals Metabolic Adaptations and a Large Plasmid Related to Bacillus anthracis pXO1

    DTIC Science & Technology

    2004-01-01

    Flagellar genes Presentb Presentc Presentc Tagatose utilization genes Absent Present Partiald Functional PlcR Absente Presente Presente Mobile genetic...closely related and one that is divergent (Supplementary ®g. S3). dThere are similar tagatose utilization genes in B.cereus ATCC 14579; however, they...replacement responsible for the transport and utilization of the carbohydrate tagatose (BCE1896±BCE1912). The corres- ponding 5.0 kb region in

  3. Batch production of Pyranose 2-oxidase from Trametes versicolor (ATCC 11235) in medium with a lignocellulosic substrate and enzymatic bleaching of cotton fabrics.

    PubMed

    Pazarlioglu, Nurdan Kasikara; Erden, Emre; Ucar, M Cigdem; Akkaya, Alper; Sariisik, A Merih

    2012-04-01

    The aim of this work was to determine new, different and low-cost substrates that can be used for enzyme production from the white rot fungus Trametes versicolor (ATCC 11235) by taking advantage of the broad substrate specificity of pyranose 2-oxidase. In this report, we investigated the production of pyranose 2-oxidase from T. versicolor (ATCC 11235) using ten different agricultural residues such as clover straw, almond shells, hazelnut cobs, grass and others. Pyranose 2-oxidase activity was determined as 2.332 U/g at the 9th day in a submerged culture containing clover straw and tap water shaken at 150 rpm and 26°C, and the optimum clover straw concentration was determined to be 12 g/l. The effects of different glucose, nitrogen and phosphate sources on the production of pyranose 2-oxidase were studied in the clover straw medium. Analyses of biomass, protein, reduced sugar and nitrogen concentrations were also monitored in a clover straw medium that did not contain carbon or nitrogen and phosphate sources under the parameters determined. The produced pyranose 2-oxidase was used for improving the properties of cotton fabrics.

  4. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions.

    PubMed

    Zhang, Hong-Tao; Zhan, Xiao-Bei; Zheng, Zhi-Yong; Wu, Jian-Rong; Yu, Xiao-Bin; Jiang, Yun; Lin, Chi-Chung

    2011-07-01

    Expression at the mRNA level of ten selected genes in Agrobacterium sp. ATCC 31749 under various dissolved oxygen (DO) levels during curdlan fermentation related to electron transfer chain (ETC), tricarboxylic acid (TCA) cycle, peptidoglycan/lipopolysaccharide biosynthesis, and uridine diphosphate (UDP)-glucose biosynthesis were determined by qRT-PCR. Experiments were performed at DO levels of 30%, 50%, and 75%, as well as under low-oxygen conditions. The effect of high cell density on transcriptional response of the above genes under low oxygen was also studied. Besides cytochrome d (cyd A), the transcription levels of all the other genes were increased at higher DO and reached maximum at 50% DO. Under 75% DO, the transcriptional levels of all the genes were repressed. In addition, transcription levels of icd, sdh, cyo A, and fix N genes did not exhibit significant fluctuation with high cell density culture under low oxygen. These results suggested a mechanism for DO regulation of curdlan synthesis through regulation of transcriptional levels of ETCs, TCA, and UDP-glucose synthesis genes during curdlan fermentation. To our knowledge, this is the first report that DO concentration apparently regulates curdlan biosynthesis in Agrobacterium sp. ATCC 31749 providing essential lead for the optimization of the fermentation at the industrial scale.

  5. Application of the Response Surface Methodology to Optimize the Fermentation Parameters for Enhanced Docosahexaenoic Acid (DHA) Production by Thraustochytrium sp. ATCC 26185.

    PubMed

    Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan

    2018-04-22

    The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.

  6. Homologous stress adaptation, antibiotic resistance, and biofilm forming ability of Salmonella enterica serovar Heidelberg (ATCC8326) on different food-contact surfaces following exposure to sub-lethal chlorine concentrations

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Heidelberg (American Type Culture Collection; ATCC 8326) was examined for the ability to adapt to the homologous stress of chlorine through exposure to increasing chlorine concentrations (25 ppm daily increments) in tryptic soy broth (TSB). The tested strain exhibited an ...

  7. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    PubMed

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  8. Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species.

    PubMed

    Zammit, Carla M; Mangold, Stefanie; Jonna, Venkateswara rao; Mutch, Lesley A; Watling, Helen R; Dopson, Mark; Watkin, Elizabeth L J

    2012-01-01

    High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L(-1) NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress.

  9. Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity.

    PubMed

    Fang, Yun; Zhu, Chunjie; Chen, Xingjuan; Wang, Yan; Xu, Meiying; Sun, Guoping; Guo, Jun; Yoo, Jinnon; Tie, Cuijuan; Jiang, Xin; Li, Xianqiang

    2018-05-16

    The key component in bacteria-based biosensors is a transcriptional reporter employed to monitor induction or repression of a reporter gene corresponding to environmental change. In this study, we made a series of reporters in order to achieve highly sensitive detection of arsenite. From these reporters, two biosensors were developed by transformation of Escherichia coli DH5α with pLHPars9 and pLLPars9, consisting of either a high or low copy number plasmid, along with common elements of ArsR-luciferase fusion and addition of two binding sequences, one each from E. coli and Acidithiobacillus ferrooxidans chromosome, in front of the R773 ArsR operon. Both of them were highly sensitive to arsenite, with a low detection limit of 0.04 μM arsenite (~ 5 μg/L). They showed a wide dynamic range of detection up to 50 μM using high copy number pLHPars9 and 100 μM using low copy number pLLPars9. Significantly, they differ in metal specificity, pLLPars9 more specific to arsenite, while pLHPars9 to both arsenite and antimonite. The only difference between pLHPars9 and pLLPars9 is their copy numbers of plasmid and corresponding ratios of ArsR to its binding promoter/operator sequence. Therefore, we propose a working model in which DNA bound-ArsR is different from its free form in metal specificity.

  10. Silane-based coatings on the pyrite for remediation of acid mine drainage.

    PubMed

    Diao, Zenghui; Shi, Taihong; Wang, Shizhong; Huang, Xiongfei; Zhang, Tao; Tang, Yetao; Zhang, Xiaying; Qiu, Rongliang

    2013-09-01

    Acid mine drainage (AMD) resulting from the oxidation of pyrite and other metal sulfides has caused significant environmental problems, including acidification of rivers and streams as well as leaching of toxic metals. With the goal of controlling AMD at the source, we evaluated the potential of tetraethylorthosilicate (TEOS) and n-propyltrimethoxysilane (NPS) coatings to suppress pyrite oxidation. The release of total Fe and SO4(-2) from uncoated and coated pyrite in the presence of a chemical oxidizing agent (H2O2) or iron-oxidizing bacteria (Acidithiobacillus ferrooxidans) was measured. Results showed that TEOS- and NPS-based coatings reduced chemical oxidation of pyrite by as much as 59 and 96% (based on Fe release), respectively, while biological oxidation of pyrite was reduced by 69 and 95%, respectively. These results were attributed to the formation of a dense network of Fe-O-Si and Si-O-Si bonds on the pyrite surface that limited permeation of oxygen, water, and bacteria. Compared with results for TEOS-coated pyrite, higher pH and lower concentrations of total Fe and SO4(-2) were observed for oxidation of NPS-coated pyrite, which was attributed to its crack-free morphology and the presence of hydrophobic groups on the NPS-based coating surface. The silane-based NPS coating was shown to be highly effective in suppressing pyrite oxidation, making it a promising alternative for remediation of AMD at its source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources

    PubMed Central

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe2+ ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD+ through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  12. Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals.

    PubMed

    Guan, Jingyang; Berlinger, Sarah A; Li, Xiaozheng; Chao, Zhongmou; Sousa E Silva, Victor; Banta, Scott; West, Alan C

    2017-03-10

    Electrofuels processes are potentially promising platforms for biochemical production from CO 2 using renewable energy. When coupled to solar panels, this approach could avoid the inefficiencies of photosynthesis and there is no competition with food agriculture. In addition, these systems could potentially be used to store intermittent or stranded electricity generated from other renewable sources. Here we develop reactor configurations for continuous electrofuels processes to convert electricity and CO 2 to isobutyric acid (IBA) using genetically modified (GM) chemolithoautotrophic Acidithiobacillus ferrooxidans. These cells oxidize ferrous iron which can be electrochemically reduced. During two weeks of cultivation on ferrous iron, stable cell growth and continuous IBA production from CO 2 were achieved in a process where media was circulated between electrochemical and biochemical rectors. An alternative process with an additional electrochemical cell for accelerated ferrous production was developed, and this system achieved an almost three-fold increase in steady state cell densities, and an almost 4-fold increase in the ferrous iron oxidation rate. Combined, this led to an almost 8-fold increase in the steady state volumetric productivity of IBA up to 0.063±0.012mg/L/h, without a decline in energy efficiency from previous work. Continued development of reactor configurations which can increase the delivery of energy to the genetically modified cells will be required to increase product titers and volumetric productivities. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788.

    PubMed

    Dutta, Ireena; Reynolds, Peter E

    2002-10-01

    The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXY(C-2), vanT(C-2), vanR(C-2), and vanS(C-2)) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative D,D-dipeptidase-D,D-carboxypeptidase, VanXY(C-2), exhibited 81% amino acid identity to VanXY(C), and VanT(C-2) displayed 65% amino acid identity to the serine racemase, VanT. VanR(C-2) and VanS(C-2) displayed high degrees of identity to VanR(C) and VanS(C), respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-L-Ala-delta-D-Glu-L-Lys-D-Ala-D-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanT(C-2) gene, encoding a putative serine racemase, and the presence of supplementary D-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of D-serine plays an important role in the induction process.

  14. Characterisation and bioactivity of protein-bound polysaccharides from submerged-culture fermentation of Coriolus versicolor Wr-74 and ATCC-20545 strains.

    PubMed

    Cui, Jian; Goh, Kelvin Kim Tha; Archer, Richard; Singh, Harjinder

    2007-05-01

    The protein-bound polysaccharides of Coriolus versicolor (CPS) have been reported to stimulate overall immune functions against cancers and various infectious diseases by activating specific cell functions. A New Zealand isolate (Wr-74) and a patented strain (ATCC-20545) of C. versicolor were compared in this study. The fruit bodies of both strains were grown for visual verification. Both strains were grown in submerged-culture using an airlift fermentor with milk permeate as the base medium supplemented with glucose, yeast extract and salt. Metabolic profiles of both strains obtained over 7-day fermentation showed very similar trends in terms of biomass production (8.9-10.6 mg/ml), amounts of extracellular polysaccharide (EPS) from the culture medium (1150-1132 microg/ml), and intracellular polysaccharide (IPS) from the mycelium (80-100 microg/ml). Glucose was the dominant sugar in both EPS and IPS, and the polymers each consisted of three molecular weight fractions ranging from 2 x 10(6) to 3 x 10(3 )Da. Both the EPS and IPS were able to significantly induce cytokine production (interleukin 12 and gamma interferon) in murine splenocytes in vitro. Highest levels of interleukin 12 (291 pg/ml) and gamma interferon (6,159 pg/ml) were obtained from samples containing Wr-74 IPS (0.06 microg/ml) and ATCC 20545 IPS (0.1 microg/ml), respectively. The results indicated that lower levels of EPS and IPS generally resulted in higher immune responses than did higher polymer concentrations.

  15. No evidence of harms of probiotic Lactobacillus rhamnosus GG ATCC 53103 in healthy elderly-a Phase I Open Label Study to assess safety, tolerability and cytokine responses

    USDA-ARS?s Scientific Manuscript database

    Although Lactobacillus rhamnosus GG ATCC 53103 (LGG) has been consumed since the mid 1990s by between 2 and 5 million people daily, the scientific literature lacks rigorous clinical trials that describe the potential harms of LGG, particularly in the elderly. The primary objective of this open label...

  16. The genome of the insecticidal Chromobacterium subtsugae PRAA4-1 and its comparison with that of Chromobacterium violaceum ATCC 12472.

    PubMed

    Blackburn, Michael B; Sparks, Michael E; Gundersen-Rindal, Dawn E

    2016-12-01

    The genome of Chromobacterium subtsugae strain PRAA4-1, a betaproteobacterium producing insecticidal compounds, was sequenced and compared with the genome of C. violaceum ATCC 12472. The genome of C. subtsugae displayed a reduction in genes devoted to capsular and extracellular polysaccharide, possessed no genes encoding nitrate reductases, and exhibited many more phage-related sequences than were observed for C. violaceum. The genomes of both species possess a number of gene clusters predicted to encode biosynthetic complexes for secondary metabolites; these clusters suggest they produce overlapping, but distinct assortments of metabolites.

  17. Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    NASA Technical Reports Server (NTRS)

    Stahl, S.; Voorhies, A.; Lorenzi, H.; Castro-Wallace, S.; Douglas, G.

    2016-01-01

    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits.

  18. Complete annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono).

    PubMed

    Miyoshi-Akiyama, Tohru; Satou, Kazuhito; Kato, Masako; Shiroma, Akino; Matsumura, Kazunori; Tamotsu, Hinako; Iwai, Hiroki; Teruya, Kuniko; Funatogawa, Keiji; Hirano, Takashi; Kirikae, Teruo

    2015-01-01

    We report the completely annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono), which is a used for virulence and/or immunization studies. The complete genome sequence of M. tuberculosis Kurono was determined with a length of 4,415,078 bp and a G+C content of 65.60%. The chromosome was shown to contain a total of 4,340 protein-coding genes, 53 tRNA genes, one transfer messenger RNA for all amino acids, and 1 rrn operon. Lineage analysis based on large sequence polymorphisms indicated that M. tuberculosis Kurono belongs to the Euro-American lineage (lineage 4). Phylogenetic analysis using whole genome sequences of M. tuberculosis Kurono in addition to 22 M. tuberculosis complex strains indicated that H37Rv is the closest relative of Kurono based on the results of phylogenetic analysis. These findings provide a basis for research using M. tuberculosis Kurono, especially in animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801.

    PubMed

    Rau, Udo; Kuenz, Anja; Wray, Victor; Nimtz, Manfred; Wrenger, Julika; Cicek, Hasan

    2009-01-01

    Trametes versicolor ATCC 200801 secretes 4.1 g L(-1) of exopolysaccharide (EPS) when synthetic minimal medium and low-shear bioreactor cultivation technique are used. Structural and compositional analyses by thin layer chromatography, gas chromatography-mass spectrometry, electrospray ionization tandem mass spectrometry, and nuclear magnetic resonance spectroscopy yielded predominantly glucose and small amounts of galactose, mannose, arabinose, and xylose. The main EPS is composed of beta-1,3/beta-1,6-linked D-glucose molecules which is identical with Schizophyllan but does not possess a triple helical arrangement as secondary structure. Two molar mass fractions were detected by size exclusion chromatography yielding weight-average molecular weights of 4,100 and 2.6 kDa. Protein content varies between 2-3.6% (w/w). The exopolysaccharide is different in the nature of the glycosidic linkage, composition of monosaccharides, protein content, and weight-average molecular weight compared to the well-known polysaccharopeptide (PSP) and polysaccharopeptide Krestin (PSK).

  20. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.

    PubMed

    Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika

    2017-03-16

    Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.

  1. Detecting protein-protein interactions in the intact cell of Bacillus subtilis (ATCC 6633).

    PubMed

    Winters, Michael S; Day, R A

    2003-07-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C(2)N(2)) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques applied to peptides derived from them. The cyanogen-linked proteins were isolated by polyacrylamide gel electrophoresis. Digestion of the isolated proteins with proteases of known specificity afforded sets of peptides that could be analyzed by mass spectrometry. These data were compared with those derived theoretically from the Swiss Protein Database by computer-based comparisons (Protein Prospector; http://prospector.ucsf.edu). Identification of associated proteins in the ribosome of Bacillus subtilis strain ATCC 6633 showed that there is an association homology with the association patterns of the ribosomal proteins of Haloarcula marismortui and Thermus thermophilus. In addition, other proteins involved in protein biosynthesis were shown to be associated with ribosomal proteins.

  2. Detecting Protein-Protein Interactions in the Intact Cell of Bacillus subtilis (ATCC 6633)

    PubMed Central

    Winters, Michael S.; Day, R. A.

    2003-01-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C2N2) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques applied to peptides derived from them. The cyanogen-linked proteins were isolated by polyacrylamide gel electrophoresis. Digestion of the isolated proteins with proteases of known specificity afforded sets of peptides that could be analyzed by mass spectrometry. These data were compared with those derived theoretically from the Swiss Protein Database by computer-based comparisons (Protein Prospector; http://prospector.ucsf.edu). Identification of associated proteins in the ribosome of Bacillus subtilis strain ATCC 6633 showed that there is an association homology with the association patterns of the ribosomal proteins of Haloarcula marismortui and Thermus thermophilus. In addition, other proteins involved in protein biosynthesis were shown to be associated with ribosomal proteins. PMID:12837803

  3. Compositional and toxicological evaluation of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; McKeehen, J. D.; Stephens, S. D.; Nielsen, S. S.; Saha, P. R.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Compositional analyses of Cyanothece sp. strain ATCC 51142 showed high protein (50-60%) and low fat (0.4-1%) content, and the ability to synthesize vitamin B12. The amino acid profile indicated that Cyanothece sp. was a balanced protein source. Fatty acids of the 18:3n-3 type were also present. Mineral analyses indicated that the cellular biomass may be a good source of Fe, Zn and Na. Caloric content was 4.5 to 5.1 kcal g dry weight-1 and the carbon content was approximately 40% on a dry weight basis. Nitrogen content was 8 to 9% on a dry weight basis and total nucleic acids were 1.3% on a dry weight basis. Short-term feeding studies in rats followed by histopathology found no toxicity or dietary incompatibility problems. The level of uric acid and allantoin in urine and tissues was low, suggesting no excess of nucleic acids, as sometimes reported in the past for a cyanobacteria-containing diet. The current work discusses the potential implications of these results for human nutrition applications.

  4. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic.

    PubMed

    Ramírez-Aldaba, Hugo; Valles, O Paola; Vazquez-Arenas, Jorge; Rojas-Contreras, J Antonio; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Meraz-Rodríguez, Mónica; Sosa-Rodríguez, Fabiola S; Rodríguez, Ángel G; Lara, René H

    2016-10-01

    Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Synthesis of a hybrid polymer-inorganic biomimetic support incorporating in situ pectinase from Aspergillus niger ATCC 9642.

    PubMed

    Bustamante-Vargas, Cindy Elena; Mignoni, Marcelo Luis; de Oliveira, Débora; Venquiaruto, Luciana Dornelles; Valduga, Eunice; Toniazzo, Geciane; Dallago, Rogério Marcos

    2015-08-01

    The hybrid alginate/gelatin/calcium oxalate (AGOCa) support was successfully synthesized through the biomimetic mineralization method for immobilization in situ of a pectinolytic extract from Aspergillus niger ATCC 9642 via entrapment technique. The efficiency of immobilization reached 72.7%. Sodium oxalate buffer (100 mM, pH 5.5) was selected as adjuvant of the immobilization process by allowing the formation of a calcified shell around the calcium alginate capsule, significantly increasing the stability to storage, thermal and recycling of the enzymatic immobilized pectinolytic extract. The pH and temperature for maximum activity were from 5.0 to 6.0 and 60 to 80 °C, respectively. The new hybrid support can be a potential alternative to obtain immobilized pectinases with properties for advantageous industrial applications.

  7. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    PubMed

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Survival of Escherichia coli O157:H7 ATCC 43895 in a Model Apple Juice Medium with Different Concentrations of Proline and Caffeic Acid

    PubMed Central

    Reinders, Robert D.; Biesterveld, Steef; Bijker, Peter G. H.

    2001-01-01

    The effects of proline and caffeic acid on the survival of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strain ATCC 43895 in a model apple juice medium were studied. It is hypothesized that the inhibitory effect of caffeic acid may explain why almost all outbreaks of STEC O157:H7 infections linked to apple juice or cider have occurred in October or November. PMID:11375209

  9. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.

  10. A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277

    PubMed Central

    Ludwig, B.; Akundi, A.; Kendall, K.

    1995-01-01

    A NAD-dependent secondary alcohol dehydrogenase has been purified from the alkane-degrading bacterium, Rhodococcus erythropolis ATCC 4277. The enzyme was found to be active against a broad range of substrates, particularly long-chain secondary aliphatic alcohols. Although optimal activity was observed with linear 2-alcohols containing between 6 and 11 carbon atoms, secondary alcohols as long as 2-tetradecanol were oxidized at 25% of the rate seen with mid-range alcohols. The purified enzyme was specific for the S-(+) stereoisomer of 2-octanol and had a specific activity for 2-octanol of over 200 (mu)mol/min/mg of protein at pH 9 and 37(deg)C, 25-fold higher than that of any previously reported S-(+) secondary alcohol dehydrogenase. Linear primary alcohols containing between 3 and 13 carbon atoms were utilized 20- to 40-fold less efficiently than the corresponding secondary alcohols. The apparent K(infm) value for NAD(sup+) with 2-octanol as the substrate was 260 (mu)M, whereas the apparent K(infm) values for the 2-alcohols ranged from over 5 mM for 2-pentanol to less than 2 (mu)M for 2-tetradecanol. The enzyme showed moderate thermostability (half-life of 4 h at 60(deg)C) and could potentially be useful for the synthesis of optically pure stereoisomers of secondary alcohols. PMID:16535152

  11. LpxK Is Essential for Growth of Acinetobacter baumannii ATCC 19606: Relationship to Toxic Accumulation of Lipid A Pathway Intermediates

    PubMed Central

    Wei, Jun-Rong; Richie, Daryl L.; Mostafavi, Mina; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Takeoka, Kenneth T.

    2017-01-01

    ABSTRACT Acinetobacter baumannii ATCC 19606 can grow without lipid A, the major component of lipooligosaccharide. However, we previously reported that depletion of LpxH (the fourth enzyme in the lipid A biosynthetic pathway) prevented growth of this strain due to toxic accumulation of lipid A pathway intermediates. Here, we explored whether a similar phenomenon occurred with depletion of LpxK, a kinase that phosphorylates disaccharide 1-monophosphate (DSMP) at the 4′ position to yield lipid IVA. An A. baumannii ATCC 19606 derivative with LpxK expression under the control of an isopropyl β-d-1-thiogalactopyranoside (IPTG)-regulated expression system failed to grow without induction, indicating that LpxK is essential for growth. Light and electron microscopy of LpxK-depleted cells revealed morphological changes relating to the cell envelope, consistent with toxic accumulation of lipid A pathway intermediates disrupting cell membranes. Using liquid chromatography-mass spectrometry (LCMS), cellular accumulation of the detergent-like pathway intermediates DSMP and lipid X was shown. Toxic accumulation was further supported by restoration of growth upon chemical inhibition of LpxC (upstream of LpxK and the first committed step of lipid A biosynthesis) using CHIR-090. Inhibitors of fatty acid synthesis also abrogated the requirement for LpxK expression. Growth rescue with these inhibitors was possible on Mueller-Hinton agar but not on MacConkey agar. The latter contains outer membrane-impermeable bile salts, suggesting that despite growth restoration, the cell membrane permeability barrier was not restored. Therefore, LpxK is essential for growth of A. baumannii, since loss of LpxK causes accumulation of detergent-like pathway intermediates that inhibit cell growth. IMPORTANCE Acinetobacter baumannii is a Gram-negative pathogen for which new therapies are needed. The lipid A biosynthetic pathway has several potential enzyme targets for the development of anti

  12. Enzyme-Linked Immunofiltration Assay To Estimate Attachment of Thiobacilli to Pyrite

    PubMed Central

    Dziurla, Marie-Antoinette; Achouak, Wafa; Lam, Bach-Tuyet; Heulin, Thierry; Berthelin, Jacques

    1998-01-01

    An enzyme-linked immunofiltration assay (ELIFA) has been developed in order to estimate directly and specifically Thiobacillus ferrooxidans attachment on sulfide minerals. This method derives from the enzyme-linked immunosorbent assay but is performed on filtration membranes which allow the retention of mineral particles for a subsequent immunoenzymatic reaction in microtiter plates. The polyclonal antiserum used in this study was raised against T. ferrooxidans DSM 583 and recognized cell surface antigens present on bacteria belonging to the genus Thiobacillus. This antiserum and the ELIFA allowed the direct quantification of attached bacteria with high sensitivity (104 bacteria were detected per well of the microtiter plate). The mean value of bacterial attachment has been estimated to be about 105 bacteria mg−1 of pyrite at a particle size of 56 to 65 μm. The geometric coverage ratio of pyrite by T. ferrooxidans ranged from 0.25 to 2.25%. This suggests an attachment of T. ferrooxidans on the pyrite surface to well-defined limited sites with specific electrochemical or surface properties. ELIFA was shown to be compatible with the measurement of variable levels of adhesion. Therefore, this method may be used to establish adhesion isotherms of T. ferrooxidans on various sulfide minerals exhibiting different physicochemical properties in order to understand the mechanisms of bacterial interaction with mineral surfaces. PMID:9687454

  13. Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642.

    PubMed

    Miyazaki, Takatsugu; Matsumoto, Yuji; Matsuda, Kana; Kurakata, Yuma; Matsuo, Ichiro; Ito, Yukishige; Nishikawa, Atsushi; Tonozuka, Takashi

    2011-12-01

    A gene for processing α-glucosidase I from a filamentous fungus, Aspergillus brasiliensis (formerly called Aspergillus niger) ATCC 9642 was cloned and fused to a glutathione S-transferase tag. The active construct with the highest production level was a truncation mutant deleting the first 16 residues of the hydrophobic N-terminal domain. This fusion enzyme hydrolyzed pyridylaminated (PA-) oligosaccharides Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA and the products were identified as Glc(2)Man(9)GlcNAc(2)-PA and Glc(2)Man(4)-PA, respectively. Saturation curves were obtained for both Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA, and the K (m) values for both substrates were estimated in the micromolar range. When 1 μM Glc(3)Man(4)-PA was used as a substrate, the inhibitors kojibiose and 1-deoxynojirimycin had similar effects on the enzyme; at 20 μM concentration, both inhibitors reduced activity by 50%. © Springer Science+Business Media, LLC 2011

  14. Heterologous expression and localization of gentisate transporter Ncg12922 from Corynebacterium glutamicum ATCC 13032

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Ying; Graduate School of Chinese Academy of Sciences, Beijing 100049; Yan Dazhong

    2006-07-28

    Ralstonia sp. strain U2 metabolizes naphthalene via gentisate (2,5-dihydroxybenzoate) to central metabolites, but it was found unable to utilize gentisate as growth substrate. A putative gentisate transporter encoded by ncg12922 from Corynebacterium glutamicum ATCC 13032 was functionally expressed in Ralstonia sp. strain U2, converting strain U2 to a gentisate utilizer. After ncg12922 was inserted into plasmid pGFPe with green fluorescence protein gene gfp, the expressed fusion protein Ncg12922-GFP could be visualized in the periphery of Escherichia coli cells under confocal microscope, consistent with a cytoplasmic membrane location. In contrast, GFP was ubiquitous in the cytoplasm of E. coli cells carryingmore » pGFPe only. Gentisate 1,2-dioxygenase activity was present in the cell extract from strain U2 induced with gentisate but at a much lower level (one-fifth) than that obtained with salicylate. However, it exhibited a similar level in strain U2 containing Ncg12922 induced either by salicylate or gentisate.« less

  15. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606

    PubMed Central

    Richie, Daryl L.; Takeoka, Kenneth T.; Bojkovic, Jade; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Wei, Jun-Rong; Dean, Charles R.

    2016-01-01

    The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195

  16. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste.

    PubMed

    Diaby, Nouhou; Dold, Bernhard; Pfeifer, Hans-Rudolf; Holliger, Christof; Johnson, D Barrie; Hallberg, Kevin B

    2007-02-01

    The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) 'oxidation zone' characterized by low-pH (2.5-4), a 'neutralization zone' (70-80 to 300-400 cm) and an unaltered 'primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.

  18. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    PubMed Central

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  19. A role for the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, in nitrogen cycling for CELSS applications.

    PubMed

    Schneegurt, M A; Sherman, L A

    1996-01-01

    Simple calculations show that fixed nitrogen regeneration in a CELSS may not be as efficient as stowage and resupply of fixed nitrogen compounds. However, fixed nitrogen regeneration may be important for the sustainability and safety of a deployed CELSS. Cyanothece sp. strain ATCC 51142, a unicellular, aerobic, diazotrophic cyanobacterium, with high growth rates and a robust metabolism, is a reasonable candidate organism for a biological, fixed nitrogen regeneration system. In addition, Cyanothece sp. cultures may be used to balance gas exchange ratio imparities between plants and humans. The regeneration of fixed nitrogen compounds by cyanobacterial cultures was examined in the context of a broad computer model/simulation (called CELSS-3D). When cyanothece sp. cultures were used to balance gas exchange imparities, the biomass harvested could supply as much as half of the total fixed nitrogen needed for plant biomass production.

  20. Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE).

    PubMed

    Garrido, A; Pashley, R M; Ninham, B W

    2017-03-01

    In the treatment of household wastewater viruses are hard to eliminate. A new technique is described which tackles this major problem. The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses by a hot (150°C) air bubble column evaporator (HBCE) system Its surface charging properties obtained by dynamic light scattering, have been studied in a range of aqueous salt solutions and secondary treated synthetic sewage water. A combination of MS2 virus surface charge properties with thermal inactivation rates, and an improved double layer plaque assay technique, allows an assessment of the efficiency of the HBCE process for virus removal in water. The system is a new energy efficient treatment for water reuse applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multi-Omic Dynamics Associate Oxygenic Photosynthesis with Nitrogenase-Mediated H2 Production in Cyanothece sp. ATCC 51142.

    PubMed

    Bernstein, Hans C; Charania, Moiz A; McClure, Ryan S; Sadler, Natalie C; Melnicki, Matthew R; Hill, Eric A; Markillie, Lye Meng; Nicora, Carrie D; Wright, Aaron T; Romine, Margaret F; Beliaev, Alexander S

    2015-11-03

    To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process.

  2. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276.

    PubMed

    Furlan, Valcenir Júnior Mendes; Maus, Victor; Batista, Irineu; Bandarra, Narcisa Maria

    The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. The Zur regulon of Corynebacterium glutamicum ATCC 13032

    PubMed Central

    2010-01-01

    Background Zinc is considered as an essential element for all living organisms, but it can be toxic at large concentrations. Bacteria therefore tightly regulate zinc metabolism. The Cg2502 protein of Corynebacterium glutamicum was a candidate to control zinc metabolism in this species, since it was classified as metalloregulator of the zinc uptake regulator (Zur) subgroup of the ferric uptake regulator (Fur) family of DNA-binding transcription regulators. Results The cg2502 (zur) gene was deleted in the chromosome of C. glutamicum ATCC 13032 by an allelic exchange procedure to generate the zur-deficient mutant C. glutamicum JS2502. Whole-genome DNA microarray hybridizations and real-time RT-PCR assays comparing the gene expression in C. glutamicum JS2502 with that of the wild-type strain detected 18 genes with enhanced expression in the zur mutant. The expression data were combined with results from cross-genome comparisons of shared regulatory sites, revealing the presence of candidate Zur-binding sites in the mapped promoter regions of five transcription units encoding components of potential zinc ABC-type transporters (cg0041-cg0042/cg0043; cg2911-cg2912-cg2913), a putative secreted protein (cg0040), a putative oxidoreductase (cg0795), and a putative P-loop GTPase of the COG0523 protein family (cg0794). Enhanced transcript levels of the respective genes in C. glutamicum JS2502 were verified by real-time RT-PCR, and complementation of the mutant with a wild-type zur gene reversed the effect of differential gene expression. The zinc-dependent expression of the putative cg0042 and cg2911 operons was detected in vivo with a gfp reporter system. Moreover, the zinc-dependent binding of purified Zur protein to double-stranded 40-mer oligonucleotides containing candidate Zur-binding sites was demonstrated in vitro by DNA band shift assays. Conclusion Whole-genome expression profiling and DNA band shift assays demonstrated that Zur directly represses in a zinc

  4. Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978

    PubMed Central

    Pérez, Astrid; Gómez, Manuel J.; Gayoso, Carmen; Vallejo, Juan A.; Ohneck, Emily J.; Valle, Jaione; Actis, Luis A.; Beceiro, Alejandro; Bou, Germán

    2017-01-01

    Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978. PMID:28763494

  5. Effects of ferrous sulfate, inoculum history, and anionic form on lead, zinc, and copper toxicity to Acidithiobacillus caldus strain BC13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John E. Aston; William A. Apel; Brady D. Lee

    2010-12-01

    The current study reports the single and combined toxicities of Pb, Zn, and Cu to Acidithiobacillus caldus strain BC13. The observed half-maximal inhibitory concentrations (IC50),?±?95% confidence intervals, for Pb, Zn, and Cu were 0.9?±?0.1?mM, 39?±?0.5?mM, and 120?±?8?mM, respectively. The observed minimum inhibitory concentrations (MIC) for Pb, Zn, and Cu were 7.5?mM, 75?mM, and 250?mM, respectively. When metals were presented in binary mixtures, the toxicities were less than additive. For example, when 50% of the Pb MIC and 50% of the Cu MIC were presented together, the specific growth rate was inhibited by only 59?±?3%, rather than 100%. In addition, themore » presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A. caldus strain BC13. The importance of inoculum history was evaluated by pre-adapting cultures through subsequent transfers in the presence of Pb, Zn, and Cu at their respective IC50s. After pre-adaptation, cultures had specific growth rates 39?±?11, 32?±?7, and 28?±?12% higher in the presence of Pb, Zn, and Cu IC50s, respectively, compared with cultures that had not been pre-adapted. In addition, when cells exposed to the MICs of Pb, Zn, and Cu were harvested, washed, and re-inoculated into fresh, metal-free medium, they grew, showing that the cells remained viable with little residual toxicity. Finally, metal chlorides showed more toxicity than metal sulfates, and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities. Environ. Toxicol. Chem. 2010;29:2669–2675. © 2010 SETAC« less

  6. Effects of ferrous sulfate, inoculum history, and anionic form on lead, zinc, and copper toxicity to Acidithiobacillus caldus strain BC13.

    PubMed

    Aston, John E; Peyton, Brent M; Lee, Brady D; Apel, William A

    2010-12-01

    The current study reports the single and combined toxicities of Pb, Zn, and Cu to Acidithiobacillus caldus strain BC13. The observed half-maximal inhibitory concentrations (IC50), ± 95% confidence intervals, for Pb, Zn, and Cu were 0.9 ± 0.1 mM, 39 ± 0.5 mM, and 120 ± 8 mM, respectively. The observed minimum inhibitory concentrations (MIC) for Pb, Zn, and Cu were 7.5 mM, 75 mM, and 250 mM, respectively. When metals were presented in binary mixtures, the toxicities were less than additive. For example, when 50% of the Pb MIC and 50% of the Cu MIC were presented together, the specific growth rate was inhibited by only 59 ± 3%, rather than 100%. In addition, the presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A. caldus strain BC13. The importance of inoculum history was evaluated by pre-adapting cultures through subsequent transfers in the presence of Pb, Zn, and Cu at their respective IC50s. After pre-adaptation, cultures had specific growth rates 39 ± 11, 32 ± 7, and 28 ± 12% higher in the presence of Pb, Zn, and Cu IC50s, respectively, compared with cultures that had not been pre-adapted. In addition, when cells exposed to the MICs of Pb, Zn, and Cu were harvested, washed, and re-inoculated into fresh, metal-free medium, they grew, showing that the cells remained viable with little residual toxicity. Finally, metal chlorides showed more toxicity than metal sulfates, and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities. Copyright © 2010 SETAC.

  7. Time-course proteomics dataset to monitor protein-bound methionine oxidation in Bacillus cereus ATCC 14579.

    PubMed

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Duport, Catherine

    2018-06-01

    Aerobic respiratory growth generates endogenous reactive oxygen species (ROS). ROS oxidize protein-bound methionine residues into methionine sulfoxide. Methionine sulfoxide reductases catalyze the reduction of methionine sulfoxide to methionine in proteins. Here, we use high-throughput nanoLC-MS/MS methodology to establish detailed maps of oxidized proteins from Bacillus cereus ATCC 14579 ΔpBClin15 and its mutant for which the methionine sulfoxide reductase AB gene ( msrAB ) has been inactivated (Madeira et al., 2017) [1]. Lists of oxidized peptides and proteins identified at early exponential, late exponential and stationary growth phases are supplied in this article as data files. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers, PXD006169 and PDX006205 (http://www.ebi.ac/uk). Given the importance of methionine oxidation in several key cellular processes and its impact in the field of medical and food microbiology, this paper should be useful for further insightful redox studies in B. cereus and its numerous relatives.

  8. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions.

    PubMed

    Alagesan, Swathi; Gaudana, Sandeep B; Sinha, Avinash; Wangikar, Pramod P

    2013-11-01

    Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.

  9. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur

    USGS Publications Warehouse

    Balci, N.; Mayer, B.; Shanks, Wayne C.; Mandernack, K.W.

    2012-01-01

    Studies of metal sulfide oxidation in acid mine drainage (AMD) systems have primarily focused on pyrite oxidation, although acid soluble sulfides (e.g., ZnS) are predominantly responsible for the release of toxic metals. We conducted a series of biological and abiotic laboratory oxidation experiments with pure and Fe-bearing sphalerite (ZnS & Zn 0.88Fe 0.12S), respectively, in order to better understand the effects of sulfide mineralogy and associated biogeochemical controls of oxidation on the resultant ?? 34S and ?? 18O values of the sulfate produced. The minerals were incubated in the presence and absence of Acidithiobacillus ferrooxidans at an initial solution pH of 3 and with water of varying ?? 18O values to determine the relative contributions of H 2O-derived and O 2-derived oxygen in the newly formed sulfate. Experiments were conducted under aerobic and anaerobic conditions using O 2 and Fe(III) aq as the oxidants, respectively. Aerobic incubations with A. ferrooxidans, and S o as the sole energy source were also conducted. The ??34SSO4 values from both the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq produced sulfur isotope fractionations (??34SSO4-ZnS) of up to -2.6???, suggesting the accumulation of sulfur intermediates during incomplete oxidation of the sulfide. No significant sulfur isotope fractionation was observed from any of the aerobic experiments. Negative sulfur isotope enrichment factors (??34SSO4-ZnS) in AMD systems could reflect anaerobic, rather than aerobic pathways of oxidation. During the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq all of the sulfate oxygen was derived from water, with measured ?? 18OSO 4-H 2O values of 8.2??0.2??? and 7.5??0.1???, respectively. Also, during the aerobic oxidation of ZnS Fe and S o by A. ferrooxidans, all of the sulfate oxygen was derived from water with similar measured ?? 18OSO 4-H 2O values of 8.1??0.1??? and 8.3??0.3???, respectively. During biological oxidation

  10. Organization and characterization of genetic regions in Bacillus subtilis subsp. krictiensis ATCC55079 associated with the biosynthesis of iturin and surfactin compounds

    PubMed Central

    Kim, Sung Eun; Lee, Won Jung; Moon, Jae Sun; Cho, Min Seop; Park, Ho-Yong; Hwang, Ingyu

    2017-01-01

    Bacillus subtilis subsp. krictiensis ATCC55079 produces the cyclic lipopeptide antibiotics iturin A–F as well as several surfactins. Here, we analyzed and characterized the biosynthetic genes associated with iturin and surfactin production in this strain. We aligned the sequences of each iturin and surfactin synthetase ORF obtained from a genomic library screen and next generation sequencing. The resulting 37,249-bp and 37,645-bp sequences associated with iturin and surfactin production, respectively, contained several ORFs that are predicted to encode proteins involved in iturin and surfactin biosynthesis. These ORFs showed higher sequence homologies with the respective iturin and surfactin synthetase genes of B. methylotrophicus CAU B946 than with those of B. subtilis RB14 and B. subtilis ATCC6633. Moreover, comparative analysis of the secondary metabolites produced by the wild-type and surfactin-less mutant (with a spectinomycin resistance cassette inserted into the srfAB gene within the putative surfactin gene region) strains demonstrated that the mutant strain showed significantly higher antifungal activity against Fusarium oxysporum than the wild-type strain. In addition, the wild-type strain-specific surfactin high performance liquid chromatography (HPLC) peaks were not observed in the surfactin-less mutant strain. In contrast, the iturin A peak detected by HPLC and liquid chromatography-mass spectrometry (LC/MS) in the surfactin-less mutant strain was 30% greater than that in the wild-type strain. These results suggested that the gene cluster we identified is involved in surfactin biosynthesis, and the biosynthetic pathways for iturin and surfactin in Bacillus strains producing both iturin and surfactin may utilize a common pathway. PMID:29267290

  11. Transcriptome Sequence and Plasmid Copy Number Analysis of the Brewery Isolate Pediococcus claussenii ATCC BAA-344T during Growth in Beer

    PubMed Central

    Pittet, Vanessa; Phister, Trevor G.; Ziola, Barry

    2013-01-01

    Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344T (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P . claussenii ATCC BAA-344T genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria. PMID:24040005

  12. Lactobacillus rhamnosus ATCC 7469 exopolysaccharides synergizes with low level ionizing radiation to modulate signaling molecular targets in colorectal carcinogenesis in rats.

    PubMed

    Zahran, Walid E; Elsonbaty, Sawsan M; Moawed, Fatma S M

    2017-08-01

    Combination therapy that targets cellular signaling pathway represents an alternative therapy for the treatment of colon cancer (CRC). The present study was therefore aimed to investigate the probable interaction of Lactobacillus rhamnosus ATCC 7469 exopolysaccharides (EPS) with low level ionizing γ radiation (γ-R) exposure against dimethylhydrazine (DMH)- induced colorectal carcinogenesis in rats. Colon cancer was induced with 20mg DMH/kg BW. Rats received daily by gastric gavage 100mg EPS/Kg BW concomitant with 1Gy γ-R over two months. Colonic oxidative and inflammatory stresses were assessed. The change in the expression of p-p38 MAPK, p-STAT3, β-catenin, NF-kB, COX-2 and iNOS was evaluated by western blotting and q-PCR. It was found that DMH treatment significantly induced colon oxidative injury accompanied by inflammatory disturbance along with increased protein expression of the targeted signaling factors p-p38 MAPK, p-STAT3 and β-catenin. The mRNA gene expression of NF-kB, COX-2 and iNOS was significantly higher in DMH-treated animals. It's worthy to note that colon tissues with DMH treatment showed significant dysplasia and anaplasia of the glandular mucosal lining epithelium with loses of goblet cells formation, pleomorphism in the cells and hyperchromachia in nuclei. Interestingly, EPS treatment with γ-R exposure showed statistically significant amelioration of the oxidative and inflammatory biomarkers with modulated signaling molecular factors accompanied by improved histological structure against DMH-induced CRC. In conclusion, our findings showed that Lactobacillus rhamnosus ATCC 7469 EPS with low level γ-R in synergistic interaction are efficacious control against CRC progression throughout the modulation of key signaling growth factors associated with inflammation via antioxidant mediated anti-inflammatory and anti-proliferative activities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis.

    PubMed

    Celiberto, Larissa Sbaglia; Bedani, Raquel; Dejani, Naiara Naiana; Ivo de Medeiros, Alexandra; Sampaio Zuanon, José Antonio; Spolidorio, Luis Carlos; Tallarico Adorno, Maria Angela; Amâncio Varesche, Maria Bernadete; Carrilho Galvão, Fábio; Valentini, Sandro Roberto; Font de Valdez, Graciela; Rossi, Elizeu Antonio; Cavallini, Daniela Cardoso Umbelino

    2017-01-01

    Some probiotic strains have the potential to assist in relieving the symptoms of inflammatory bowel disease. The impact of daily ingestion of a soy-based product fermented by Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 with the addition of Bifidobacterium longum ATCC 15707 on chemically induced colitis has been investigated thereof within a period of 30 days. Colitis was induced by dextran sulfate sodium. The animals were randomly assigned into five groups: Group C: negative control; Group CL: positive control; Group CLF: DSS with the fermented product; Group CLP: DSS with the non-fermented product (placebo); Group CLS: DSS with sulfasalazine. The following parameters were monitored: disease activity index, fecal microbial analyses, gastrointestinal survival of probiotic microorganisms and short-chain fatty acids concentration in the feces. At the end of the protocol the animals' colons were removed so as to conduct a macroscopical and histopathological analysis, cytokines and nitrite quantification. Animals belonging to the CLF group showed fewer symptoms of colitis during the induction period and a lower degree of inflammation and ulceration in their colon compared to the CL, CLS and CLP groups (p<0.05). The colon of the animals in groups CL and CLS presented severe crypt damage, which was absent in CLF and CLP groups. A significant increase in the population of Lactobacillus spp. and Bifidobacterium spp. at the end of the protocol was verified only in the CLF animals (p<0.05). This group also showed an increase in short-chain fatty acids (propionate and acetate). Furthermore, the intestinal survival of E. faecium CRL 183 and B. longum ATCC 15707 in the CLF group has been confirmed by biochemical and molecular analyzes. The obtained results suggest that a regular intake of the probiotic product, and placebo to a lesser extent, can reduce the severity of DSS-induced colitis on rats.

  14. Succinate, iron chelation, and monovalent cations affect the transformation efficiency of Acinetobacter baylyi ATCC 33305 during growth in complex media.

    PubMed

    Leong, Colleen G; Boyd, Caroline M; Roush, Kaleb S; Tenente, Ricardo; Lang, Kristine M; Lostroh, C Phoebe

    2017-10-01

    Natural transformation is the acquisition of new genetic material via the uptake of exogenous DNA by competent bacteria. Acinetobacter baylyi is model for natural transformation. Here we focus on the natural transformation of A. baylyi ATCC 33305 grown in complex media and seek environmental conditions that appreciably affect transformation efficiency. We find that the transformation efficiency for A. baylyi is a resilient characteristic that remains high under most conditions tested. We do find several distinct conditions that alter natural transformation efficiency including addition of succinate, Fe 2+ (ferrous) iron chelation, and substitution of sodium ions with potassium ones. These distinct conditions could be useful to fine tune transformation efficiency for researchers using A. baylyi as a model organism to study natural transformation.

  15. Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774

    PubMed Central

    Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José

    2008-01-01

    Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes. PMID:18607083

  16. Multi-omic dynamics associate oxygenic photosynthesis with nitrogenase-mediated H 2 production in Cyanothece sp. ATCC 51142

    DOE PAGES

    Bernstein, Hans C.; Charania, Moiz A.; McClure, Ryan S.; ...

    2015-11-03

    This study combines transcriptomic and proteomic profiling to provide new insights on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H 2 production in the model cyanobacterium, Cyanothece sp. ATCC 51142. To date, the proposed mechanisms used to describe the energy metabolism processes that support H 2 production in Cyanothece 51142 have assumed that ATP and reductant requirements are derived solely from glycogen oxidation and/or cyclic-electron flow around photosystem I. The results from this study present and test an alternative hypothesis by showing that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and aremore » synchronized with nitrogenase expression and H 2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H 2 production and highlight the likely role of photocatalytic H 2O oxidation as a major participating process.« less

  17. Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243.

    PubMed

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2003-01-01

    The biosynthetic gene cluster for rebeccamycin, an indolocarbazole antibiotic, from Lechevalieria aerocolonigenes ATCC 39243 has 11 ORFs. To clarify their functions, mutants with rebG, rebD, rebC, rebP, rebM, rebR, rebH, rebT, or orfD2 disrupted were constructed, and the gene products were examined. rebP disruptants produced 11,11'-dichlorochromopyrrolic acid, found to be a biosynthetic intermediate by a bioconversion experiment. Other genes encoded N-glycosyltransferase (rebG), monooxygenase (rebC), methyltransferase (rebM), a transcriptional activator (rebR), and halogenase (rebH). rebT disruptants produced rebeccamycin as much as the wild strain, so rebT was probably not involved in rebeccamycin production. Biosynthetic genes of staurosporine, an another indolocarbazole antibiotic, were cloned from Streptomyces sp. TP-A0274. staO, staD, and staP were similar to rebO, rebD, and rebP, respectively, all of which are responsible for indolocarbazole biosynthesis, But a rebC homolog, encoding a putative enzyme oxidizing the C-7 site of pyrrole rings, was not found in the staurosporine biosynthetic gene cluster. These results suggest that indolocarbazole is constructed by oxidative decarboxylation of chromopyrrolic acid (11,11'-dichlorochromopyrrolic acid in rebeccamycin) generated from two molecules of tryptophan by coupling and that the oxidation state at the C-7 position depends on the additional enzyme(s) encoded by the biosynthetic genes.

  18. Proteome data to explore the impact of pBClin15 on Bacillus cereus ATCC 14579.

    PubMed

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Omer, Hélène; Duport, Catherine

    2016-09-01

    This data article reports changes in the cellular and exoproteome of B. cereus cured from pBClin15.Time-course changes of proteins were assessed by high-throughput nanoLC-MS/MS. We report all the peptides and proteins identified and quantified in B. cereus with and without pBClin15. Proteins were classified into functional groups using the information available in the KEGG classification and we reported their abundance in term of normalized spectral abundance factor. The repertoire of experimentally confirmed proteins of B. cereus presented here is the largest ever reported, and provides new insights into the interplay between pBClin15 and its host B. cereus ATCC 14579. The data reported here is related to a published shotgun proteomics analysis regarding the role of pBClin15, "Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics" Madeira et al. [1]. All the associated mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (http://www.ebi.ac.uk/pride/), with the dataset identifier PRIDE: PXD001568, PRIDE: PXD002788 and PRIDE: PXD002789.

  19. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    PubMed

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.

  20. A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp. ATCC 39116.

    PubMed

    Meyer, Florian; Netzer, Julius; Meinert, Christina; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2018-05-16

    The pseudonocardiate Amycolatopsis sp. ATCC 39116 is used for the biotechnical production of natural vanillin from ferulic acid. Our laboratory has performed genetic modifications of this strain previously, but there are still many gaps in our knowledge regarding its vanillin tolerance and the general metabolism. We performed cultivations with this bacterium and compared the proteomes of stationary phase cells before ferulic acid feeding with those during ferulic acid feeding. Thereby, we identified 143 differently expressed proteins. Deletion mutants were constructed and characterized to analyze the function of nine corresponding genes. Using these mutants, we identified an active ferulic acid β-oxidation pathway and the enzymes which constitute this pathway. A combined deletion mutant in which the β-oxidation as well as non-β-oxidation pathways of ferulic acid degradation were deleted was unable to grow on ferulic acid as the sole source of carbon and energy. This mutant differs from the single deletion mutants and was unable to grow on ferulic acid. Furthermore, we showed that the non-β-oxidation pathway is involved in caffeic acid degradation; however, its deletion is complemented even in the double deletion mutant. This shows that both pathways can complement each other. The β-oxidation deletion mutant produced significantly reduced amounts of vanillic acid (0.12 instead of 0.35 g/l). Therefore, the resulting mutant could be used as an improved production strain. The quinone oxidoreductase deletion mutant (ΔytfG) degraded ferulic acid slower at first but produced comparable amounts of vanillin and significantly less vanillyl alcohol when compared to the parent strain.