Sample records for acidophilus lactobacillus plantarum

  1. Eruca sativa might influence the growth, survival under simulated gastrointestinal conditions and some biological features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus strains.

    PubMed

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-10-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power.

  2. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  3. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells.

    PubMed

    Wang, B; Chen, J; Wang, S; Zhao, X; Lu, G; Tang, X

    2017-05-30

    Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis and multiple organ dysfunction syndromes. Inflammatory cytokines increase paracellular permeability that allows increased luminal bacteria to translocate across mucosal epithelium and further deteriorate the gut barrier. In order to reduce this risk, the prophylactic use of probiotics has been recently addressed. In this paper, we investigate the protective role toward tumour necrosis factor (TNF)-α induced non-pathogenic Escherichia coli translocation across Caco-2 monolayers of Lactobacillus strains. According to our experimental data, Lactobacillus plantarum L9 and Lactobacillus acidophilus LA have good capacities to adhere to Caco-2 cells. Addition of L. plantarum L9 and L. acidophilus LA to the enterocyte monolayer surface result in significant inhibition of E. coli adhesion and cell internalisation. However, L. plantarum L9 and L. acidophilus LA did not inhibit the growth of the non-pathogenic E. coli B5 after 24 h incubation. Exposure to TNF-α for 6 h caused a dramatic increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability. Pretreatment with L. plantarum L9 prevent TNF-α induced transcellular bacterial translocation and IL-8 production in Caco-2 cells. L. plantarum L9 also did not affect the integrity of the monolayers, as indicated by lactate dehydrogenase release, horseradish peroxidase permeability, and transepithelial electrical resistance. L. plantarum L9 showed the potential to protect enterocytes from an acute inflammatory response and therefore could be good potential prophylactic agents in counteracting bacterial translocation.

  4. Influence of Lactobacillus acidophilus and Lactobacillus plantarum on wound healing in male Wistar rats - an experimental study.

    PubMed

    Gudadappanavar, Anupama M; Hombal, Prashant R; Timashetti, Somling S; Javali, S B

    2017-01-01

    Probiotics have been documented with various pleotropic effects other than improving general gut health, but the potential benefits of strain-specific Lactobacillus on wound healing are unknown. Hence, the objective of the study is to evaluate and compare the wound healing property of Lactobacillus acidophilus and Lactobacillus plantarum on various wound models in male Wistar rats. Excision wound, resutured incision wound, and dead space wounds were inflicted under light thiopentone anesthesia in male Wistar rats ( n = 6, in each group). The rats received one of the Lactobacillus orally as per their weight for a period of 10 days in resutured incision (assessed by wound breaking strength) and dead space wounds (granuloma dry weight, histopathology of granulation tissue, and biochemical hydroxyproline estimation), whereas in excision wounds, treatment was monitored by planimetry. Data were expressed as mean ± standard error of mean and analyzed by ANOVA followed by Tukey's multiple post hoc test. P < 0.05 was considered as statistically significant. L. acidophilus showed a significant difference ( P < 0.05) in all the three models, namely, enhanced wound contraction and decreased days for complete epithelization in excision wound; increased breaking strength in resutured incision wound; increased granuloma dry weight and cellular infiltration in granulation tissue with marked increase in collagen content indicating wound healing. The study suggests that the wound healing activity of L. acidophilus if could be extrapolated to clinical situations may decrease dosage and duration of treatment and can be a potential adjuvant to reduce hospitalization with efficient recovery after injury and sustained good health.

  5. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli.

    PubMed

    Kumar, Manesh; Dhaka, Pankaj; Vijay, Deepthi; Vergis, Jess; Mohan, Vysakh; Kumar, Ashok; Kurkure, Nitin V; Barbuddhe, Sukhadeo B; Malik, S V S; Rawool, Deepak B

    2016-09-01

    The in vitro and in vivo antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus were evaluated individually and synergistically against multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC). In vitro evaluation of each probiotic strain when co-cultured with MDR-EAEC isolates revealed a reduction in MDR-EAEC counts (eosin-methylene blue agar) in a dose- and time-dependent manner: probiotics at a dose rate of 10(10) CFU inhibited MDR-EAEC isolates at 72 h post-inoculation (PI), whereas at lower concentrations (10(8) and 10(9) CFU) MDR-EAEC isolates were inhibited at 96 h PI. The synergistic antimicrobial effect of both probiotic strains (each at 10(10) CFU) was highly significant (P < 0.01) and inhibited the growth of MDR-EAEC isolates at 24 h PI. For in vivo evaluation, weaned mice were fed orally with 10(7) CFU of MDR-EAEC. At Day 3 post-infection, treated mice were fed orally with the probiotic strains (each at 10(10) CFU). Compared with the control, post-treatment a significant (P < 0.01) reduction in MDR-EAEC counts was observed in faeces by Day 2 and in intestinal tissues of treated mice by Days 3 and 4 as evidenced by plate count (mean 2.71 log and 2.27 log, respectively) and real-time PCR (mean 1.62 log and 1.57 log, respectively) methods. Histopathologically, comparatively mild changes were observed in the ileum and colon from Days 3 to 5 post-treatment with probiotics; however, from Day 6 the changes were regenerative or normal. These observations suggest that these probiotic strains can serve as alternative therapeutics against MDR-EAEC-associated infections in humans and animals. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v.

    PubMed

    Molin, G

    2001-02-01

    Lactic acid fermentation is the simplest and safest way of preserving food and has probably always been used by humans. Species such as Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus acidophilus, and Lactobacillus salivarius are common in the human mucosa, from the mouth to the rectum. In food, L. paracasei and L. rhamnosus are usually associated with dairy products whereas L. plantarum is found in fermented foods of plant origin. A probiotic food product containing no milk constituent was launched in Sweden in 1994. The product is a lactic acid fermented oatmeal gruel that is mixed in a fruit drink. It contains approximately 5 x 10(10) colony-forming units of L. plantarum 299v/L. The strain L. plantarum 299v originates from the human intestinal mucosa and has been shown in rats to decrease translocation, improve mucosal status, improve liver status, improve the immunologic status of the mucosa, and reduce mucosal inflammation. In humans, L. plantarum 299v can increase the concentration of carboxylic acids in feces and decrease abdominal bloating in patients with irritable bowel disease. It can also decrease fibrinogen concentrations in blood. Should probiotics be administrated through foods, the probiotic organism must remain vigorous in the food until consumption and the food must remain palatable, ie, the food carrier and the organism must suit each other. L. plantarum 299v not only affects the bacterial flora of the intestinal mucosa but may also regulate the host's immunologic defense. The mechanisms involved need to be clarified.

  8. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics.

    PubMed

    Cho, Jenny G; Gebhart, Connie J; Furrow, Eva; Lulich, Jody P

    2015-09-01

    To culture Lactobacillus spp from veterinary probiotics and measure their in vitro oxalate-degrading capacity. 2 commercial veterinary probiotics containing Lactobacillus spp. Lactobacillus spp were cultured anaerobically on selective deMan, Rogosa, Sharpe agar medium and subcultured for speciation by 16S rDNA gene sequencing. Isolates were inoculated into broth containing sodium oxalate (5 mg/L) and incubated anaerobically for 72 hours. An oxalate-degrading isolate of Lactobacillus acidophilus (American Type Culture Collection [ATCC] 53544) was the positive control sample; sterile broth containing a known quantity of sodium oxalate was the negative control sample. Oxalate concentrations were detected with ion chromatography. Oxalate degradation was assessed with Dunnett tests to detect differences in mean oxalate concentration for each isolate, compared with results for the negative control. Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei or Lactobacillus zeae (too closely related to differentiate) were isolated from probiotic 1, and L plantarum was isolated from probiotic 2. Sequencing of the 16S rDNA gene confirmed 100% homology to type species. Lactobacillus acidophilus (ATCC 53544) and L acidophilus from probiotic 1 significantly decreased oxalate concentrations by 85.3 and 161.9 mg/L, respectively. Lactobacillus plantarum from probiotics 1 and 2 significantly increased oxalate concentrations by 56.1 and 36.1 mg/L, respectively. Lactobacillus casei did not alter oxalate concentrations. Lactobacillus acidophilus isolates significantly reduced oxalate concentrations. In vivo studies are needed to determine whether probiotics containing L acidophilus decrease urine oxalate concentrations and reduce risk of urolith recurrence in dogs with a history of calcium oxalate urolithiasis.

  9. A food additive with prebiotic properties of an α-d-glucan from lactobacillus plantarum DM5.

    PubMed

    Das, Deeplina; Baruah, Rwivoo; Goyal, Arun

    2014-08-01

    An α-d-glucan produced by Lactobacillus plantarum DM5 was explored for in vitro prebiotic activities. Glucan-DM5 demonstrated 21.6% solubility, 316.9% water holding capacity, 86.2% flocculation activity, 71.4% emulsification activity and a degradation temperature (Td) of 292.2°C. Glucan-DM5 exhibited lowest digestibility of 0.54% by artificial gastric juice, 0.21% by intestinal fluid and 0.32% by α-amylase whereas the standard prebiotic inulin, showed 25.23%, 5.97% and 19.13%, hydrolysis, respectively. Prebiotic activity assay of glucan-DM5 displayed increased growth of probiotic bacteria such as Bifidobacterium infantis and Lactobacillus acidophilus, but did not support the growth of non-probiotic bacteria such as Escherichia coli and Enterobacter aerogenes. The overall findings indicated that glucan from L. plantarum DM5 can serve as a potential prebiotic additive for food products. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system.

    PubMed

    Halbmayr, Elisabeth; Mathiesen, Geir; Nguyen, Thu-Ha; Maischberger, Thomas; Peterbauer, Clemens K; Eijsink, Vincent G H; Haltrich, Dietmar

    2008-06-25

    This work presents the cloning and expression of the genes encoding heterodimeric beta-galactosidases from Lactobacillus reuteri L103, Lactobacillus acidophilus R22, Lactobacillus plantarum WCFS1, and Lactobacillus sakei Lb790. These enzymes consist of two subunits of approximately 73 and 35 kDa, which are encoded by two overlapping genes, lacL and lacM, respectively. We have cloned these genes into the lactobacillal expression vectors pSIP403 and pSIP409, which are based on the sakacin P operon of L. sakei ( Sørvig et al. Microbiology 2005, 151, 2439- 2449 ), and expressed them in the host strains L. plantarum WCFS1 and L. sakei Lb790. Results varied considerably, ranging from 2.23 to 61.1 U/mg of beta-galactosidase activity, depending on the origin of the lacLM genes, the host strain, and the expression vector used. Highest expression levels were obtained in a laboratory cultivation of L. plantarum WCFS1 harboring the plasmid pEH3R containing the lacLM gene from L. reuteri L103. These cultivations yielded approximately 23 000 U of beta-galactosidase activity per liter, corresponding to the formation of roughly 100 mg of recombinant protein per liter of fermentation medium, and beta-galactosidase levels amounted to 55% of the total intracellular protein of the host organism. To further verify the suitability of this expression system, recombinant beta-galactosidase from L. reuteri was purified to apparent homogeneity. The properties of the purified enzyme were essentially identical with the properties of purified native beta-galactosidase from L. reuteri L103. The presented results lead the way to efficient overproduction of beta-galactosidase in a food-grade expression system, which is of high interest for applications in food industry.

  11. The Effect of Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM Fermentation on Antioxidant Properties of Selected in Vitro Sprout Culture of Orthosiphon aristatus (Java Tea) as a Model Study

    PubMed Central

    Hunaefi, Dase; Akumo, Divine N.; Riedel, Heidi; Smetanska, Iryna

    2012-01-01

    High rosmarinic acid (RA) productivity has been achieved by applying jasmonic acid and yeast extract elicitors to the in vitro sprout culture of Orthosiphon aritatus (IOSC). The highest RA accumulation from three solvents was detected in IOSC after treatment with yeast extract (5 g/L). HPLC analysis clearly confirmed a drastic increase in RA subjected to yeast extract elicitation. Therefore, this yeast extract elicited IOSC was chosen for a lactic acid bacteria (LAB) fermentation study as a model system. This selected IOSC was subjected to different types of LAB fermentations (Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM) for different periods of time 24, 48 and 72 h. The LAB fermentations consisted of solid state fermentations (SSF) and liquid state fermentations (LSF) in a Digital Control Unit (DCU) fermenter system. The aim was to determine the effect of fermentation on the antioxidant properties of the plant extract. Results indicated that all types of LAB fermentation decreased the level of RA and total phenolics, however, a slight increase in total flavonoids and flavonols was observed in SSF samples. HPLC results confirmed that the longer the fermentation, the greater the reduction in RA content. The highest reduction was obtained in the sample of LSF inoculated with L. plantarum for a period of 72 h. The temperature of fermentation (37 °C) was predicted as contributing to the declining level in RA content. The loss in RA was concomitant with a loss of total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, Trolox Equivalent Antioxidant Capacity (TEAC), and Superoxide Dismutase (SOD)-like activity). These results indicate that RA is the major contributor to the antioxidant activity of this plant. PMID:26787613

  12. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats.

    PubMed

    Amdekar, Sarika; Singh, Vinod; Kumar, Avnish; Sharma, Poonam; Singh, Rambir

    2013-01-01

    In view of well-established immunomodulatory properties of Lactobacillus, present investigation was carried out to evaluate antioxidant and anti-inflammatory potential of Lactobacillus casei and Lactobacillus acidophilus, against inflammatory pathway and oxidative stress developed in an experimental model of arthritis. Collagen-induced arthritis (CIA) model was used. Oral administration of L. casei, L. acidophilus, standard antiarthritic drug indomethacin, and vehicle were started after induced arthritis and continued up to day 28. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-17, IL-4, and IL-10 levels were estimated in serum. In parallel, oxidative stress parameters were also measured from synovial effsuate. All rats were graded for arthritis score at the end of each week. L. casei, L. acidophilus, and indomethacin treatment significantly downregulated proinflammatory and upregulated anti-inflammatory cytokines at P<0.0001. They have significantly decreased oxidative stress in synovial effsuate (P<0.0001) and also arthritis score (P<0.05). Protection provided by L. casei and L. acidophilus was more pronounced than that of indomethacin. These lines of evidence suggest that L. casei and L. acidophilus exert potent protective effect against CIA. It further establishes effective anti-inflammatory and antioxidant properties of Lactobacillus. However, additional clinical investigations are needed to prove the efficacy of Lactobacillus in treatment/management of rheumatoid arthritis.

  13. Lactobacillus acidophilus modulates the virulence of Clostridium difficile.

    PubMed

    Yun, B; Oh, S; Griffiths, M W

    2014-01-01

    Clostridium difficile is a spore-forming, toxin-producing, anaerobic bacterium that colonizes the human gastrointestinal tract. This pathogen causes antibiotic-associated diarrhea and colitis in animals and humans. Antibiotic-associated diseases may be treated with probiotics, and interest is increasing in such uses of probiotics. This study investigated the effect of Lactobacillus strains on the quorum-sensing signals and toxin production of C. difficile. In addition, an in vivo experiment was designed to assess whether Lactobacillus acidophilus GP1B is able to control C. difficile-associated disease. Autoinducer-2 activity was measured for C. difficile using the Vibrio harveyi coupled bioluminescent assay. Cell extract (10μg/mL) of L. acidophilus GP1B exhibited the highest inhibitory activity among 5 to 40μg/mL cell-extract concentrations. Real-time PCR data indicated decreased transcriptional levels in luxS, tcdA, tcdB, and txeR genes in the presence of 10μg/mL of cell extract of L. acidophilus GP1B. Survival rates at 5d for mice given the pathogen alone with L. acidophilus GP1B cell extract or L. acidophilus GP1B were 10, 70, and 80%, respectively. In addition, the lactic acid-produced L. acidophilus GP1B exhibits an inhibitory effect against the growth of C. difficile. Both the L. acidophilus GP1B and GP1B cell extract have significant antipathogenic effects on C. difficile. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides.

    PubMed

    Knockaert, Dries; Raes, Katleen; Wille, Christophe; Struijs, Karin; Van Camp, John

    2012-08-30

    Food-isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L⁻¹), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4-vinylguaiacol (4-VG) and hydroferulic acid (HFA). Conversion to 4-VG started simultaneously with the degradation of FA, while formation of HFA started in the mid-exponential phase. Lactobacillus collinoides only formed 4-VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry.

  15. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  16. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    PubMed

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  17. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  18. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    PubMed

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  19. Characterization of Selected Lactobacillus Strains for Use as Probiotics

    PubMed Central

    Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong

    2015-01-01

    The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products. PMID:26761878

  20. Genotyping by randomly amplified polymorphic DNA of bacteriocin producing Lactobacillus acidophilus strains from Nigeria.

    PubMed

    Alli, John Adeolu; Iwalokun, Bamidele A; Oluwadun, Afolabi; Okonko, Iheanyi Omezuruike

    2015-01-01

    Yogurt and starter culture producers are still searching strains of Lactobacillus acidophilus to produce healthier yogurt with a longer shelf life and better texture, taste, and quality. This study determined the genotyping of bacteriocin producing Lactobacillus acidophilus strains recovered from Nigerian yogurts. Yogurt samples were collected from four different states of South West regions of Nigeria. Isolates were obtained from MRS Medium and biochemically characterized. This was further confirmed by API50CH. The bacteriocin positivity and activity was determined. Genomic characterization of our Lactobacillus acidophilus strains was done with randomly amplified polymorphic DNA-PCR. All yogurt samples containing Lactobacillus acidophilus strains meet the probiotic requirement of ≥10(6) cfu/mL. The gel picture revealed 6 RAPD clonal types of Lactobacillus acidophilus strains with RAPD type C observed to be more common. Significant differences existed in the mean growth inhibition zone (t = -7.32, P < 0.05 for E. coli ATCC; t = -6.19, P < 0.05 for E. coli clinical isolates; t = -6.16, P < 0.05 for Enterobacter sp; t = -11.92, P < 0.05 for Salmonella typhi, t = -1.10, P > 0.05 Staphylococcus aureus). No correlation between the bacteriocin production, activity, and their RAPD clonal division (X(2) = 7.49, P = 0.1610, df = 5). In conclusion, L. acidophilus isolated in Nigeria samples met the probiotic requirements of ≥10(6) cfu/mL and produce bacteriocins with good spectrum of activity.

  1. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  2. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    PubMed

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  3. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success.

    PubMed

    Bull, Matthew; Plummer, Sue; Marchesi, Julian; Mahenthiralingam, Eshwar

    2013-12-01

    Lactobacillus acidophilus is a commercially significant bacterial probiotic, originally isolated from the human gastrointestinal tract and designated Bacillus acidophilus in 1900. Throughout the development of methods to identify and characterise bacteria, L. acidophilus has undergone multiple taxonomic revisions and is now the type species of a phylogenetic subgroup in the highly diverse and heterogeneous Lactobacillus genus. As a result of the limitations of differentiating phenotypically similar species by morphological and biochemical means and revisionary nature of Lactobacillus taxonomy, the characterisation of L. acidophilus has struggled with misidentification and misrepresentation. In contrast, due to its global use as a probiotic supplement in functional foods, L. acidophilus sensu stricto is now one of the most well-characterised Lactobacillus species. Here, we establish the provenance of L. acidophilus strains, unpicking historical and current misidentifications of L. acidophilus, and reviewing the probiotic, genomic and physiological characteristics of this important Lactobacillus species. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Lactobacillus acidophilus contributes to a healthy environment for vaginal epithelial cells.

    PubMed

    Pi, Woojin; Ryu, Jae-Sook; Roh, Jaesook

    2011-09-01

    Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.

  5. Different immune regulatory potential of Lactobacillus plantarum and Lactobacillus sakei isolated from Kimchi.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Rim; Gim, Min Geun; Chung, Dae Kyun

    2014-12-28

    It is known that lactic acid bacteria (LAB) have many beneficial health effects, including antioxidative activity and immune regulation. In this study, the immune regulatory effects of Lactobacillus sakei and Lactobacillus plantarum, which are found in different types of kimchi, were evaluated. L. sakei and its lipoteichoic acid (LTA) have greater immune stimulating potential in IL-12, IFN-γ, and TNF-α production as compared with L. plantarum in an in vitro condition. On the other hand, L. plantarum is assumed to repress the Th1 immune response in murine experiments. After being injected with LPS, L. plantarum-fed mice maintained a healthier state, and the level of TNF-α in their blood was lower than in other bacterial strainfed mice and in the LPS-only control mice. Additionally, IL-12 production was significantly decreased and the production of IL-4 was greatly increased in the splenocytes from L. plantarum-fed mice. Further experiments revealed that the pre-injection of purified LTA from L. plantarum (pLTA), L. sakei (sLTA), and S. aureus (aLTA) decreased TNF-α and IL-4 production in LPS-injected mice. Mouse IL-12, however, was significantly increased by aLTA pre-injection. In conclusion, the L. sakei and L. plantarum strains have immune regulation effects, but the effects differ in cytokine production and the regulatory effects of the Th1/Th2 immune response.

  6. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus.

    PubMed

    Ricciardi, Annamaria; Parente, Eugenio; Guidone, Angela; Ianniello, Rocco Gerardo; Zotta, Teresa; Abu Sayem, S M; Varcamonti, Mario

    2012-07-02

    Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L

  7. Lactobacillus plantarum culture supernatants improve intestinal tissue exposed to deoxynivalenol.

    PubMed

    Maidana, L G; Gerez, J; Pinho, F; Garcia, S; Bracarense, A P F L

    2017-10-02

    In the present study, histological, morphometrical and ultrastructural analysis were performed to investigate intestinal mucosa changes in piglets exposed to deoxynivalenol alone or associated with two strains of Lactobacillus plantarum and the respective culture supernatants. Jejunal explants were incubated for 4h in culture medium with a) only culture medium (DMEM, control group), b) deoxynivalenol (DON, 10μM), c) heat-inactivated Lactobacillus plantarum strain1 - LP1 (1.1×10 8 CFU/ml) plus DON, d) heat-inactivated Lactobacillus plantarum strain2-LP2 (2.0×10 9 CFU/ml) plus DON, e) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON, and f) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON. Explants exposed to DON and DON plus LP1 and LP2 showed a significant increase in histological changes (mainly villi atrophy and apical necrosis) and a significant decrease in villi height when compared to unexposed explants. However, explants treated with CS1+DON and CS2+DON remained similar to the control group both in histological and morphometrical aspects. DON also induced a significant decrease in goblet cell density compared to control whereas CS1+DON treatment induced an increase in the number of goblet cells in comparison to DON explants. In addition, ultrastructural assessment showed control, CS1+DON and CS2+DON explants with well delineated finger shape villi, meanwhile DON-treated, LP1+DON and LP2+DON explants showed a severe villi atrophy with leukocytes exudation on the intestinal surface. Taken together, our results indicate that the culture supernatant treatment reduced the toxic effects induced by DON on intestinal tissue and may contribute as an alternative strategy to reduce mycotoxin toxicity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum.

    PubMed

    Rud, Ida; Jensen, Peter Ruhdal; Naterstad, Kristine; Axelsson, Lars

    2006-04-01

    A synthetic promoter library (SPL) for Lactobacillus plantarum has been developed, which generalizes the approach for obtaining synthetic promoters. The consensus sequence, derived from rRNA promoters extracted from the L. plantarum WCFS1 genome, was kept constant, and the non-consensus sequences were randomized. Construction of the SPL was performed in a vector (pSIP409) previously developed for high-level, inducible gene expression in L. plantarum and Lactobacillus sakei. A wide range of promoter strengths was obtained with the approach, covering 3-4 logs of expression levels in small increments of activity. The SPL was evaluated for the ability to drive beta-glucuronidase (GusA) and aminopeptidase N (PepN) expression. Protein production from the synthetic promoters was constitutive, and the most potent promoters gave high protein production with levels comparable to those of native rRNA promoters, and production of PepN protein corresponding to approximately 10-15 % of the total cellular protein. High correlation was obtained between the activities of promoters when tested in L. sakei and L. plantarum, which indicates the potential of the SPL for other Lactobacillus species. The SPL enables fine-tuning of stable gene expression for various applications in L. plantarum.

  9. Lactobacillus plantarum and Its Probiotic and Food Potentialities.

    PubMed

    Seddik, Hamza Ait; Bendali, Farida; Gancel, Frédérique; Fliss, Ismail; Spano, Giuseppe; Drider, Djamel

    2017-06-01

    The number of studies claiming probiotic health effects of Lactobacillus plantarum is escalating. Lb. plantarum is a lactic acid bacterium found in diverse ecological niches, highlighting its particular capabilities of adaptation and genome plasticity. Another function that needs to be underlined is the capabilities of Lb. plantarum to produce diverse and potent bacteriocins, which are antimicrobial peptides with possible applications as food preservative or antibiotic complementary agents. Taken together, all these characteristics design Lb. plantarum as a genuine model for academic research and viable biological agent with promising applications. The present review aims at shedding light on the safety of Lb. plantarum and run through the main studies underpinning its beneficial claims. The mechanisms explaining probiotic-related features are discussed.

  10. Optimization of the medium for Lactobacillus acidophilus by Plackett-Burman and steepest ascent experiment.

    PubMed

    Chen, He; Niu, Jinfeng; Qin, Tao; Ma, Qi; Wang, Lei; Shu, Guowei

    2015-01-01

    Lactobacillus acidophilus not only improves the intestinal flora balance but also inhabits the growth of undesirable microorganisms in intestine, which is benefit to the health of humans and animals. Plackett-Burman and steepest ascent experiment are the rapid and concise ways of screening the main effective factors. This study is aimed to select the main influence factors and optimize the medium for Lactobacillus acidophilus by Plackett-Burman experiment and steepest ascent experiment. The ideal carbon source was screened among glucose, maltose, lactose and whey powder, and the ideal nitrogen source was screened among casein hydrolysate, peptone, yeast extract powder, fish meal, carbamide, ammonium sulfate and sodium nitrate by single factor experiment. Plackett-Burman and steepest ascent experiment were applied to screen the main effective factors of Lactobacillus acidophilus among peptone, beef extract, yeast extract powder, glucose, K2HPO4, C6H14O7N2, CH3COONa, MgSO4 and Tween-80. Result. The results indicated that glucose (p = 0.01510) as negative factor and K2HPO4 (p = 0.02017) as positive effect were the significant growth factors of Lactobacillus acidophilus, CH3COONa (p = 0.09273) as positive effect was an important factor, and the optimized medium was as follows: glucose - 21 g/L, K2HPO4 - 3.5 g/L, CH3COONa - 6.5 g/L, peptone - 10 g/L, beef extract - 8 g/L, yeast extract pow. nd. Lactobacillus acidophilus not only improves the intestinal flora balance but also inhabits the growth of undesirable microorganisms in intestine, which is benefit to the health of humans and animals. Plackett-Burman and steepest ascent experiment are the rapid and concise ways of screening the main effective factors. This study is aimed to select the main influence factors and optimize the medium for Lactobacillus acidophilus by Plackett-Burman experiment and steepest ascent experiment. Material and methods. The ideal carbon source was screened among glucose, maltose, lactose and

  11. Lactobacillus acidophilus Suppresses Colitis-Associated Activation of the IL-23/Th17 Axis

    PubMed Central

    Chen, Linlin; Zou, Yiyou; Peng, Jie; Lu, Fanggen; Yin, Yani; Li, Fujun; Yang, Junwen

    2015-01-01

    The aim of this paper is to determine the modulatory effects of Lactobacillus acidophilus on the IL-23/Th17 immune axis in experimental colitis. DSS-induced mouse models of UC were to be saline, hormones, and different concentrations of Lactobacillus acidophilus intervention. The expression of interleukin- (IL-) 17, tumor necrosis factor α (TNFα), IL-23, transforming growth factor β1 (TGFβ1), signal transducer and activator of transcription 3 (STAT3), and phosphorylated (p)-STAT3 was examined by RT-PCR, Western blotting, and immunohistochemical analysis. And the results showed that administration of L. acidophilus suppressed Th17 cell-mediated secretion of proinflammatory cytokine IL-17 through downregulation of IL-23 and TGFβ1 expression and downstream phosphorylation of p-STAT3. PMID:25973440

  12. Viability and Stress Response of Putative Probiotic Lactobacillus plantarum Strains in Honey Environment.

    PubMed

    Landry, Bemmo Kamdem Ulrich; François, Zambou Ngoufack; Wang, Rui-Yan; Taicheng, Zhu; Li, Yin

    2017-12-01

    Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04 × 10 6  CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86 × 10 4  CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~ 50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.

  13. Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels.

    PubMed

    Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A

    2018-03-01

    To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.

  14. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt.

    PubMed

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage.

  15. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  16. Lactobacillus acidophilus Mixture in Treatment of Children Hospitalized With Acute Diarrhea.

    PubMed

    Pinto, Jamie M; Petrova, Anna

    2016-11-01

    Despite unproven effectiveness, Lactobacillus acidophilus is a widely used probiotic in the treatment of pediatric diarrhea. In this report, we evaluated the association between length of stay (LOS) for 290 young children hospitalized with acute diarrhea and adjuvant therapy with a probiotic mixture containing 80% L acidophilus that was included in treatment for 22.4% of them. Overall, no association between LOS and use of L acidophilus was recorded after controlling for age, length of diarrhea symptoms, duration of intravenous fluids, and prior exposure to antibiotic. However, LOS was directly associated with use of L acidophilus in children with negative stool studies, and no such association was recorded in children with positive stool for rotavirus or other infections. We concluded that adjuvant therapy with L acidophilus mixture is not beneficial for young children hospitalized with acute diarrhea. © The Author(s) 2015.

  17. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  18. Carrageenan :the difference between PNG and KCL gel precipitation method as Lactobacillus acidophilus encapsulation material

    NASA Astrophysics Data System (ADS)

    Setijawati, D.; Nursyam, H.; Salis, H.

    2018-04-01

    The study on the effects of using of materials and methods in the preparation of the microcapsules Lactobacillus acidophilus towards the viability has been done. The research method used is experimental laboratory design. Variable research was kind of material (A) as the first factor with sub factor (A1 = Eucheuma cottonii) (A2 = Eucheuma spinosum) (A3 = mixture of Eucheuma cottonii and Eucheuma spinosum 1:1 ratio), while the second factor is a method of extraction to produce caragenan (B) with sub factor (B1 = Philipine Natural Grade modification) (B2 = KCl gel Press Precipitation). Analysis of different influences uses Analysis Of Varians followed by Fisher’s test. Analysis of data uses Mini tab 16. The results shows that the kind of extraction factors and methods gave significantly different effects on the viability of Lactobacillus acidophilus. The highest mean of Viablity obtained in the treatment of materials with a mixture of Eucheuma cottonii and Eucheuma spinosum and used KCl Gel Press method is equal to 7.14 log (CFU / mL). It is ssuggested using of kappa-iota carrageenanmixture asencapsulation material with KCl Gel Press method on Lactobacillus acidophilus microencapsulation process because it treatment gavethe highest average of Lactobacillus acidophilus viability.

  19. Effects of Lactobacillus acidophilus supplementation on growth performance, nutrient digestibility, fecal microbial and noxious gas emission in weaning pigs.

    PubMed

    Lan, Ruixia; Koo, Jinmo; Kim, Inho

    2017-03-01

    Antibiotics used as growth promoters in livestock have been banned in the European Union since 2006. Antibiotics alternatives have focused on probiotics, such as Lactobacillus acidophilus. The concentration of L. acidophilus is considered crucial for obtaining the desired effects. However, limited studies have been conducted to test the dose-dependent effects of L. acidophilus. Therefore, the present study aimed to test the dose-dependent effects of L. acidophilus on growth performance, nutrient digestibility, fecal microbial flora and fecal noxious gas emission in weaning pigs. Lactobacillus acidophilus supplementation increased (P < 0.05) average daily gain, average daily feed intake, apparent nutrient digestibility of dry matter, nitrogen and gross energy, and Lactobacillus counts compared to the basal diet treatment, and a linear effect (P < 0.05) was observed on those criteria. Escherichia coli counts and NH 3 emission were decreased (P < 0.05) by L. acidophilus supplementation, and a linear effect (P < 0.05) was observed on E. coli counts. These results suggest that L. acidophilus could be used as an antibiotic alternative by improving growth performance, nutrient digestibility and gut balance (i.e. increased Lactobacillus counts and decreased E. coli counts), and decreasing NH3 emission, of weaning pigs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Influence of the Probiotic Lactobacillus acidophilus NCFM
and Lactobacillus rhamnosus HN001 on Proteolysis Patterns
of Edam Cheese

    PubMed Central

    Cichosz, Grażyna; Nalepa, Beata; Kowalska, Marika

    2014-01-01

    Summary The objective of this study is to determine the viability of Lactobacillus acidophilus NCFM and Lactobacillus rhamnosus HN001 in Edam cheese as well as the effect of probiotic bacteria on paracasein proteolysis and changes in the water activity during ripening. The use of probiotics L. rhamnosus HN001 and L. acidophilus NCFM in Edam cheese slightly changed its chemical composition, but the change was not significant. The pH values were significantly correlated with the changes in Lactobacillus count (R=–0.807) and the level of phosphotungstic acid-soluble nitrogen compounds in total nitrogen (PTA-SN/TN) (R=0.775). After 10 weeks of ripening, the highest level of trichloroacetic acid-soluble nitrogen compounds in total nitrogen (TCA-SN/TN) was observed in the cheese containing L. rhamnosus HN001 (11.87%) and slightly lower level in the cheese containing L. acidophilus NCFM (7.60%) and control cheese (6.24%). The highest level of PTA-SN/TN fraction was noted in cheese containing L. acidophilus NCFM (3.48%) but the lowest level was observed in control cheese (2.24%) after ten weeks of ripening. The changes in the levels of PTA-SN/TN (R=–0.813) and TCA-SN/TN (R=–0.717) fractions were significantly (p<0.05) correlated with the viability of probiotic counts. Water activity (aw) strongly correlated with the PTA-SN/TN level (R=–0.824) and bacteria viability (R=–0.728). All of the analyzed cheeses were characterized by high counts of L. rhamnosus HN001 and L. acidophilus NCFM during ten weeks of ripening. PMID:27904317

  1. Enteric coating of granules containing the probiotic Lactobacillus acidophilus.

    PubMed

    Pyar, Hassan; Peh, Kok-Khiang

    2014-06-01

    In the present study, a capsule formulation composed of enteric coated granules of Lactobacillus acidophilus ATCC 4962 was developed using Eudragit L30D-55 as enteric polymer. Optimization of the capsule formulation was achieved with a maximum viable cell count after 2 h of incubation in acid medium and disintegration time of 1 h in buffer pH 6.8. The amount of Eudragit L30D-55 in the capsules correlated with gastric juice resistance. The best protective qualities against artificial gastric juice were observed when capsules were prepared from granules composed of L. acidophilus, corn starch, lactose monohydrate, polyvinylpyrrolidone and coated with 12.5 % (m/V) of Eudragit L30D-55. Capsule formulation of L. acidophilus in edible broth medium suspension serves as a cheap alternative to the expensive freeze-drying procedure for preparing L. acidophilus. In addition, the enteric coating using Eudragit L30D-55 could protect probiotics from the acidic gastric environment and enhance the bioactivity of probiotics along with replacement of pathogenic microbes in human intestine.

  2. Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action

    PubMed Central

    Todorov, Svetoslav D.

    2009-01-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented. PMID:24031346

  3. Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces

    PubMed Central

    Park, Sun-Young; Cho, Seong-A; Kim, Sae-Hun; Lim, Sang-Dong

    2014-01-01

    Obesity is strongly associated with several metabolic and chronic diseases and has become a major public health problem of worldwide concern. This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum Q180. Lactobacillus plantarum Q180 was isolated from the faces of healthy adults and found to have a lipase inhibitory activity of 83.61±2.32% and inhibited adipocyte differentiation of 3T3-L1 cells (14.63±1.37%) at a concentration of 100 μg/mL. The strain was investigated for its physiological characteristics. The optimum growth temperature of L. plantarum Q180 was 37℃. Lactobacillus plantarum Q180 showed higher sensitivity to novobiocin in a comparison of fifteen different antibiotics and showed the highest resistance to rifampicin, polymyxin B and vancomycin. The strain showed higher β-galactosidase and N-acetyl-β-glucosaminidase activities. It also did not produce carcinogenic enzymes such as β-glucuronidase. The survival rate of L. plantarum Q180 in MRS broth containing 0.3% bile was 97.8%. Moreover, the strain showed a 97.2% survival rate after incubation for 3 h in pH 2.0. Lactobacillus plantarum Q180 was displayed resistance to Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus with rates of 55.6%, 38.0% and 47.6%, respectively. These results demonstrate that L. plantarum Q180 has potential as a probiotic with anti-obesity effects. PMID:26761499

  4. Characterization of Two Virulent Phages of Lactobacillus plantarum

    PubMed Central

    Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea

    2012-01-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172

  5. Effects of lactobacillus plantarum ZJ316 on pig growth and pork quality

    PubMed Central

    2012-01-01

    Background Lactobacillus plantarum is a plant-associated bacterial species but it has also been found in human, mouse and porcine gastrointestinal tracts. It can ferment a broad spectrum of plant carbohydrates; it is tolerant of bile salts and low pH, and it has antagonistic potential against intestinal pathogens. However, experiments reporting the use of L. plantarum as a probiotic are limited. In this study, the effects of L. plantarum ZJ316 isolated from infant fecal samples on pig growth and pork quality were investigated. Results One hundred and fifty newly weaned pigs were selected randomly and divided into five groups. Group 1 was fed a diet supplemented with the antibiotic mequindox; Groups 2, 3 and 4 were fed a diet supplemented with L. plantarum and no antibiotic; and Group 5 was fed a mixture of mequindox and L. plantarum. After a 60 days initial treatment, samples were collected for evaluation. The results showed that, the L. plantarum ZJ316 has probiotic effects on pig growth and that these effects are dose dependent. The effects of a dose of 1 × 109 CFU/d were more pronounced than those of a dose of 5 × 109 CFU/d or 1 × 1010 CFU/d. In Group 2 (1 × 109 CFU/d), the diarrhea (p = 0.000) and mortality rates (p = 0.448) were lower than in antibiotic-treated pigs (Group 1), and the daily weight gain (p = 0.001) and food conversion ratios were better (p = 0.005). Improved pork quality was associated with Lactobacillus treatment. pH (45 min, p = 0.020), hardness (p = 0.000), stickiness (p = 0.044), chewiness (p = 0.000), gumminess (p = 0.000) and restoring force (p = 0.004) were all significantly improved in Lactobacillus-treated pigs (Group 2). Although we found that L. plantarum exerted probiotic effects on pig growth and pork quality, the mechanisms underlying its action require further study. Polymerase chain reaction-denaturing gradient gel electrophoresis results showed that the gut

  6. Simulated microgravity affects some biological characteristics of Lactobacillus acidophilus.

    PubMed

    Shao, Dongyan; Yao, Linbo; Riaz, Muhammad Shahid; Zhu, Jing; Shi, Junling; Jin, Mingliang; Huang, Qingsheng; Yang, Hui

    2017-04-01

    The effects of weightlessness on enteric microorganisms have been extensively studied, but have mainly been focused on pathogens. As a major component of the microbiome of the human intestinal tract, probiotics are important to keep the host healthy. Accordingly, understanding their changes under weightlessness conditions has substantial value. This study was carried out to investigate the characteristics of Lactobacillus acidophilus, a typical probiotic for humans, under simulated microgravity (SMG) conditions. The results revealed that SMG had no significant impact on the morphology of L. acidophilus, but markedly shortened its lag phase, enhanced its growth rate, acid tolerance ability up to pH < 2.5, and the bile resistance at the bile concentration of <0.05%. SMG also decreased the sensitivity of L. acidophilus to cefalexin, sulfur gentamicin, and sodium penicillin. No obvious effect of SMG was observed on the adhesion ability of L. acidophilus to Caco-2 cells. Moreover, after SMG treatment, both the culture of L. acidophilus and its liquid phase exhibited higher antibacterial activity against S. typhimurium and S. aureus in a time-dependent manner. The SMG treatment also increased the in vitro cholesterol-lowering ability of L. acidophilus by regulating the expression of the key cholesterol metabolism genes CYP7A1, ABCB11, LDLR, and HMGCR in the HepG2 cell line. Thus, the SMG treatment did have considerable influence on some biological activities and characteristics of L. acidophilus related to human health. These findings provided valuable information for understanding the influence of probiotics on human health under simulated microgravity conditions, at least.

  7. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037.

    PubMed

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias; Vernoux, Jean-Paul

    2013-05-23

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem.

  8. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella.

    PubMed

    Vilela, Simone F G; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia C A; Anbinder, Ana Lia; Jorge, Antonio O C; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.

  9. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella

    PubMed Central

    Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Anbinder, Ana Lia; Jorge, Antonio OC; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo. PMID:25654408

  10. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    PubMed

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  11. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens

    PubMed Central

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-01-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis (Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis (Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment. PMID:28580872

  12. Functional and Probiotic Attributes of an Indigenous Isolate of Lactobacillus plantarum

    PubMed Central

    Kaushik, Jai K.; Kumar, Ashutosh; Duary, Raj K.; Mohanty, Ashok K.; Grover, Sunita; Batish, Virender K.

    2009-01-01

    Background Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt. Methods and Findings An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5–2.0 and toxicity of 1.5–2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of ∼37% and autoaggregation of ∼31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4±1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus. Conclusion The indigenous Lactobacillus plantarum Lp

  13. Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum.

    PubMed

    Kaushik, Jai K; Kumar, Ashutosh; Duary, Raj K; Mohanty, Ashok K; Grover, Sunita; Batish, Virender K

    2009-12-01

    Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt. An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5-2.0 and toxicity of 1.5-2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of approximately 37% and autoaggregation of approximately 31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4+/-1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus. The indigenous Lactobacillus plantarum Lp9 exhibited high

  14. Discrimination and divergence among Lactobacillus plantarum-group (LPG) isolates with reference to their probiotic functionalities from vegetable origin.

    PubMed

    Devi, Sundru Manjulata; Aishwarya, Subramanian; Halami, Prakash M

    2016-12-01

    The present study was aimed to evaluate the diversity and probiotic properties of Lactobacillus plantarum-group cultures from vegetable origin. First, genotypic diversity of L. plantarum (n=34) was achieved by PCR of Random Amplified Polymorphic DNA and recA gene-specific multiplex PCR. The isolates were segregated into five groups namely, Lactobacillus pentosus, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus plantarum subsp. plantarum and argentoratensis. Further discrimination was achieved by restriction fragment length polymorphism of probiotic adhesion genes viz.fbp, mub and msa gene. As determined by nucleotide sequence analysis and bioinformatics Pfam database, the putative Fbp protein had only one FBP domain, whereas Mub protein had 8-10 MUB domain repeats. However, L. pentosus (except CFR MFT9), L. plantarum subsp. argentoratensis (except CFR MFT5) and L. arizonensis (except CFR MFT2) isolates gave no amplicon for the tested marker genes. Selected cultures (n=15) showed tolerance to simulated digestive fluids (20-85%), exhibited auto-aggregation (10-77%), cellular hydrophobicity (12-78%), and broad spectrum of anti-microbial activity. Concurrently, high adherence capacity to mucin was achieved for L. plantarum subsp. plantarum (MCC 2974 and CFR MFT1) and L. paraplantarum (MTCC 9483, MCC 2977, MCC 2978), which had an additional MUB domain repeat. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content.

    PubMed

    Boekhorst, Jos; Siezen, Roland J; Zwahlen, Marie-Camille; Vilanova, David; Pridmore, Raymond D; Mercenier, Annick; Kleerebezem, Michiel; de Vos, Willem M; Brüssow, Harald; Desiere, Frank

    2004-11-01

    The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of Lactobacillus plantarum (3.3 Mb) and Lactobacillus johnsonii (2.0 Mb). L. johnsonii is predominantly found in the gastrointestinal tract, while L. plantarum is also found on plants and plant-derived material, and is used in a variety of industrial fermentations. The L. plantarum and L. johnsonii chromosomes have only 28 regions with conservation of gene order, totalling about 0.75 Mb; these regions are not co-linear, indicating major chromosomal rearrangements. Metabolic reconstruction indicates many differences between L. johnsonii and L. plantarum: numerous enzymes involved in sugar metabolism and in biosynthesis of amino acids, nucleotides, fatty acids and cofactors are lacking in L. johnsonii. Major differences were seen in the number and types of putative extracellular proteins, which are of interest because of their possible role in host-microbe interactions. The differences between L. plantarum and L. johnsonii, both in genome organization and gene content, are exceptionally large for two bacteria of the same genus, emphasizing the difficulty in taxonomic classification of lactobacilli.

  16. Characterization of a Feruloyl Esterase from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626

  17. Characterization of a feruloyl esterase from Lactobacillus plantarum.

    PubMed

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de Las Rivas, Blanca; Muñoz, Rosario

    2013-09-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species.

  18. [Diversity of Lactobacillus in vagina of vulvovaginal candidiasis].

    PubMed

    2015-04-07

    To investigate the Lactobacillus species in the vaginas of vulvovaginal candidiasis and to assess the prevalence of each Lactobacillus species in vulvovaginal candidiasis. 154 vaginal samples were analyzed, 92 of which were from fertile healthy women, and 62 of which were from women with vulvovaginal candidiasis; and species-specific PCR showed the prevalence of each Lactobacillus species Species-specific PCR was used to investigate the prevalence of each Lactobacillus species in healthy Chinese women and the women with vulvovaginal candidiasis. In women with vulvovaginal candidiasis: L. iners (6.5%), L. cripatus (79.0%), L. gasseri (37.1%), L. jensenii (74.2%), L. acidophilus (16.1%), L. brevis (19.4%), L. plantarum (1.6%), L. johnsonii (51.6%), L. fermentum (8.1%), L. salivarius (9.7%), L. reuter (1.6%), L. paracasei (8.1%), L. delbrueckii (3. 2% ) ; More than two different Lactobacillus species coexisted in 98% of women with vulvovaginal candidiasis, and no anyone species existed in 2% of them; In fertile women: L. iners (82.6%), L. cripatus (70.7%), L. gasseri (67.4%), L. jensenii (40.2%), L. acidophilus (39.1%), L. brevis (23.9%), L. plantarum (5.4%), L. rhamnosus (1.1%), L. paracasei (1.1%), L. reuter (1.1%) i, L. johnsonii (3.3%), L. fermentum (2.2%), L. salivarius (2.2%); More than two different Lactobacillus species coexisted in 97% of fertile women, and only one species existed in 3% of fertile women. Species of lactobacillus in women with vulvovaginal candidiasis did not significantly reduced compared with healthy women. Lactobacillus inert may be a marker of the change of vaginal microenvironment; Lactobacillus crispatus is a dominant lactobacillus in the vaginal of fertile healthy women, pregnant women and women with vulvovaginal candidiasis.

  19. Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88

    PubMed Central

    Ladero, Victor; Alvarez-Sieiro, Patricia; Redruello, Begoña; del Rio, Beatriz; Linares, Daniel M.; Martin, M. Cruz; Fernández, María

    2013-01-01

    Here, we report a 3.2-Mbp draft assembly for the genome of Lactobacillus plantarum IPLA 88. The sequence of this sourdough isolate provides insight into the adaptation of this versatile species to different environments. PMID:23887921

  20. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups.

    PubMed

    Ricciardi, A; Ianniello, R G; Parente, E; Zotta, T

    2015-09-01

    Members of the Lactobacillus casei and Lactobacillus plantarum groups are capable of aerobic and respiratory growth. However, they grow poorly in aerobiosis in the currently available chemically defined media, suggesting that aerobic and respiratory growth require further supplementation. The effect of Tween 80, L-alanine, L-asparagine, L-aspartate, L-proline and L-serine on anaerobic and respiratory growth of Lact. casei N87 was investigated using a 2(5) factorial design. The effectiveness of modified CDM (mCDM) was validated on 21 strains of Lact. casei and Lact. plantarum groups. Tween 80 supplementation did not affect anaerobic growth, but improved respiratory growth. L-asparagine, L-proline and L-serine were stimulatory for respiring cells, while the presence of L-aspartate, generally, impaired biomass production. mCDM promoted the growth of Lact. casei and Lact. plantarum, with best results for strains showing a respiratory phenotype. The nutritional requirements of anaerobic and respiratory cultures of members of the Lact. casei and Lact. plantarum groups differ. Tween 80 and selected amino acids derived from pathways related to TCA cycle, pyruvate conversion and NADH recycling are required for respiration. The availability of mCDM will facilitate the study of aerobic metabolism of lactobacilli under controlled conditions. © 2015 The Society for Applied Microbiology.

  1. Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity

    NASA Astrophysics Data System (ADS)

    Castro-Wallace, Sarah; Stahl, Sarah; Voorhies, Alexander; Lorenzi, Hernan; Douglas, Grace L.

    2017-10-01

    The introduction of probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and gene expression of probiotic bacteria must be investigated to confirm that benefits of selected strains will still be conveyed under microgravity conditions. The goal of this study was to evaluate the characteristics of the probiotic bacteria Lactobacillus acidophilus ATCC 4356 in a microgravity analog environment. L. acidophilus was cultured anaerobically under modeled microgravity conditions and assessed for differences in growth, survival through stress challenge, and gene expression compared to control cultures. No significant differences were observed between the modeled microgravity and control grown L. acidophilus, suggesting that this strain will behave similarly in spaceflight.

  2. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens

    PubMed Central

    Shokouhfard, Maliheh; Kermanshahi, Rouha Kasra; Shahandashti, Roya Vahedi; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2015-01-01

    Objective(s): Serratia marcescens is one of the nosocomial pathogen with the ability to form biofilm which is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356 was selected as a probiotic strain for biosurfactant production. Anti-adhesive activities was determined by pre-coating and co- incubating methods in 96-well culture plates. Results: The FTIR analysis of derived biosurfactant revealed the composition as protein component. Due to the release of such biosurfactants, L. acidophilus was able to interfere with the adhesion and biofilm formation of the S. marcescens strains. In co-incubation method, this biosurfactant in 2.5 mg/ml concentration showed anti-adhesive activity against all tested strains of S. marcescens (P<0.05). Conclusion: Our results show that the anti-adhesive properties of L. acidophilus biosurfactant has the potential to be used against microorganisms responsible for infections in the urinary, vaginal and gastrointestinal tracts, as well as skin, making it a suitable alternative to conventional antibiotics. PMID:26730335

  3. Mixed Lactobacillus plantarum Strains Inhibit Staphylococcus aureus Induced Inflammation and Ameliorate Intestinal Microflora in Mice.

    PubMed

    Ren, Dayong; Gong, Shengjie; Shu, Jingyan; Zhu, Jianwei; Rong, Fengjun; Zhang, Zhenye; Wang, Di; Gao, Liangfeng; Qu, Tianming; Liu, Hongyan; Chen, Ping

    2017-01-01

    Objective . Staphylococcus aureus is an important pathogen that causes intestinal infection. We examined the immunomodulatory function of single and mixed Lactobacillus plantarum strains, as well as their impacts on the structure of the microbiome in mice infected with Staphylococcus aureus . The experiment was divided into three groups: protection, treatment, and control. Serum IFN- γ and IL-4 levels, as well as intestinal sIgA levels, were measured during and 1 week after infection with Staphylococcus aureus with and without Lactobacillus plantarum treatment. We used 16s rRNA tagged sequencing to analyze microbiome composition. IFN- γ /IL-4 ratio decreased significantly from infection to convalescence, especially in the mixed Lactobacillus plantarum group. In the mixed Lactobacillus plantarum group the secretion of sIgA in the intestine of mice (9.4-9.7 ug/mL) was significantly higher than in the single lactic acid bacteria group. The dominant phyla in mice are Firmicutes , Bacteroidetes , and Proteobacteria . Treatment with mixed lactic acid bacteria increased the anti-inflammatory factor and the secretion of sIgA in the intestine of mice infected with Staphylococcus aureus and inhibited inflammation.

  4. Heterologous expression of Oenococcus oeni malolactic enzyme in Lactobacillus plantarum for improved malolactic fermentation

    PubMed Central

    2012-01-01

    Lactobacillus plantarum is involved in a multitude of food related industrial fermentation processes including the malolactic fermentation (MLF) of wine. This work is the first report on a recombinant L. plantarum strain successfully conducting MLF. The malolactic enzyme (MLE) from Oenococcus oeni was cloned into the lactobacillal expression vector pSIP409 which is based on the sakacin P operon of Lactobacillus sakei and expressed in the host strain L. plantarum WCFS1. Both recombinant and wild-type L. plantarum strains were tested for MLF using a buffered malic acid solution in absence of glucose. Under the conditions with L-malic acid as the only energy source and in presence of Mn2+ and NAD+, the recombinant L. plantarum and the wild-type strain converted 85% (2.5 g/l) and 51% (1.5 g/l), respectively, of L-malic acid in 3.5 days. Furthermore, the recombinant L. plantarum cells converted in a modified wine 15% (0.4 g/l) of initial L-malic acid concentration in 2 days. In conclusion, recombinant L. plantarum cells expressing MLE accelerate the malolactic fermentation. PMID:22452826

  5. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.

  6. A Reference Proteomic Database of Lactobacillus plantarum CMCC-P0002

    PubMed Central

    Tian, Wanhong; Yu, Gang; Liu, Xiankai; Wang, Jie; Feng, Erling; Zhang, Xuemin; Chen, Bei; Zeng, Ming; Wang, Hengliang

    2011-01-01

    Lactobacillus plantarum is a widespread probiotic bacteria found in many fermented food products. In this study, the whole-cell proteins and secretory proteins of L. plantarum were separated by two-dimensional electrophoresis method. A total of 434 proteins were identified by tandem mass spectrometry, including a plasmid-encoded hypothetical protein pLP9000_05. The information of first 20 highest abundance proteins was listed for the further genetic manipulation of L. plantarum, such as construction of high-level expressions system. Furthermore, the first interaction map of L. plantarum was established by Blue-Native/SDS-PAGE technique. A heterodimeric complex composed of maltose phosphorylase Map3 and Map2, and two homodimeric complexes composed of Map3 and Map2 respectively, were identified at the same time, indicating the important roles of these proteins. These findings provided valuable information for the further proteomic researches of L. plantarum. PMID:21998671

  7. A reference proteomic database of Lactobacillus plantarum CMCC-P0002.

    PubMed

    Zhu, Li; Hu, Wei; Liu, Datao; Tian, Wanhong; Yu, Gang; Liu, Xiankai; Wang, Jie; Feng, Erling; Zhang, Xuemin; Chen, Bei; Zeng, Ming; Wang, Hengliang

    2011-01-01

    Lactobacillus plantarum is a widespread probiotic bacteria found in many fermented food products. In this study, the whole-cell proteins and secretory proteins of L. plantarum were separated by two-dimensional electrophoresis method. A total of 434 proteins were identified by tandem mass spectrometry, including a plasmid-encoded hypothetical protein pLP9000_05. The information of first 20 highest abundance proteins was listed for the further genetic manipulation of L. plantarum, such as construction of high-level expressions system. Furthermore, the first interaction map of L. plantarum was established by Blue-Native/SDS-PAGE technique. A heterodimeric complex composed of maltose phosphorylase Map3 and Map2, and two homodimeric complexes composed of Map3 and Map2 respectively, were identified at the same time, indicating the important roles of these proteins. These findings provided valuable information for the further proteomic researches of L. plantarum.

  8. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

    PubMed

    Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin

    2015-01-01

    The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.

  9. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model

    PubMed Central

    Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci

    2015-01-01

    Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI. PMID:26030918

  10. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model.

    PubMed

    Sun, Bo; Hu, Chen; Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci

    2015-01-01

    Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.

  11. Lactobacillus acidophilus ATCC 4356 Prevents Atherosclerosis via Inhibition of Intestinal Cholesterol Absorption in Apolipoprotein E-Knockout Mice

    PubMed Central

    Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-01-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE−/−) mice. Eight-week-old ApoE−/− mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE−/− mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. PMID:25261526

  12. The effects of Lactobacillus Acidophilus fermentation products as an alternative to antibiotics

    USDA-ARS?s Scientific Manuscript database

    This experiment compared the effects of Lactobacillus acidophilus fermentation products (LAFP) to carbadox and copper sulfate on growth performance and complete blood counts (CBC). Eight hundred pigs were weaned at 24 d of age and utilized in a randomized block design (4 farrowing groups, blocked by...

  13. Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringens.

    PubMed

    Li, Zhui; Wang, Weiwei; Liu, Dan; Guo, Yuming

    2018-01-01

    Clostridium perfringens is the main etiological agent of necrotic enteritis. Lactobacilli show beneficial effects on intestinal health in infectious disease, but the protective functions of lactobacilli in C. perfringens -infected chickens are scarcely described. This study examined the effects of Lactobacillus acidophilus ( L. acidophilus ) on the growth performance and intestinal health of broiler chickens challenged with Clostridium perfringens ( C. perfringens ) over a 28-day period. Using a 2 × 2 factorial arrangement of treatments, a total of 308 1-day-old male Arbor Acres broiler chicks were included to investigate the effects of Lactobacillus acidophilus ( L. acidophilus ) on the growth performance and intestinal health of broiler chickens challenged with Clostridium perfringens ( C. perfringens ) during a 28-day trial. During infection (d 14-21), C. perfringens challenge decreased the average daily gain ( P  <  0.05), and increased feed conversion ratio and the mortality rate ( P  <  0.05). However, dietary supplementation with L. acidophilus increased the body weight of C. perfringens -infected broilers on d 21 ( P  <  0.05), and tended to decrease the mortality ( P  = 0.061). C. perfringens challenge decreased the villus height ( P  <  0.05), the ratio of villus height to crypt depth ( P  <  0.05) and OCLN (occludin) mRNA expression ( P  <  0.05), and increased the pro-inflammatory cytokine expression in the spleen and jejunum, the intestinal populations of C. perfringens and Escherichia ( P  < 0.05), and the serum content of endotoxin ( P  < 0.05), regardless of L. acidophilus supplementation. In contrast, dietary L. acidophilus reducedthe intestinal lesion score of challenged broilers ( P  < 0.05), the mRNA expression of pro-inflammatory cytokines, ileal populations of Escherichia and serum endotoxin content ( P  < 0.05), but increased the intestinal Lactobacillus populations ( P  < 0

  14. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice.

    PubMed

    Tian, Fengwei; Zhai, Qixiao; Zhao, Jianxin; Liu, Xiaoming; Wang, Gang; Zhang, Hao; Zhang, Heping; Chen, Wei

    2012-12-01

    Lead causes a broad range of adverse effects in humans and animals. The objective was to evaluate the potency of lactobacilli to bind lead in vitro and the protective effects of a selected Lactobacillus plantarum CCFM8661 against lead-induced toxicity in mice. Nine strains of bacteria were used to investigate their binding abilities of lead in vitro, and L. plantarum CCFM8661 was selected for animal experiments because of its excellent lead binding capacity. Both living and dead L. plantarum CCFM8661 were used to treat 90 male Kunming mice during or after the exposure to 1 g/L lead acetate in drinking water. The results showed oral administration of both living and dead L. plantarum CCFM8661 offered a significant protective effect against lead toxicity by recovering blood δ-aminolevulinic acid dehydratase activity, decreasing the lead levels in blood and tissues, and preventing alterations in the levels of glutathione, glutathione peroxidase, malondialdehyde, superoxide dismutase, and reactive oxygen species caused by lead exposure. Moreover, L. plantarum CCFM8661 was more effective when administered consistently during the entire lead exposure, not after the exposure. Our results suggest that L. plantarum CCFM8661 has the potency to provide a dietary strategy against lead toxicity.

  15. Antimicrobial activity of lactobacillus strains against uropathogens.

    PubMed

    Shim, Yoon Hee; Lee, Seung Joo; Lee, Jung Won

    2016-10-01

    The use of lactobacillus probiotics has been proposed as an alternative to prophylactic antibiotics for preventing urinary tract infection (UTI) in the era of antibiotic resistance. In this study, the antimicrobial activity of lactobacillus strains against uropathogens, was evaluated and compared with that of antibiotics. To evaluate inhibitory activities of lactobacilli against uropathogens, six lactobacillus strains (L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, L. acidophilus) and four representative uropathogens of infantile UTI (extended-spectrum beta-lactamase [ESBL](-) Escherichia coli, ESBL(+) E. coli, Proteus vulgaris, Enterococcus fecalis) were selected. Lactobacillus strain in vitro inhibition of each uropathogen was evaluated on MRS agar well diffusion assay and compared with that of commercial antibiotic discs. Average inhibitory zone for each of the six lactobacillus strains against the four uropathogens showed slightly different but consistent inhibition (inhibitory zone diameter, 10.5-20.0 mm). This was different to that of the antibiotic discs, which had a wider range of inhibition (inhibitory zone diameter, <6.0-27.5 mm) depending on the uropathogen resistance pattern. The inhibitory zone of the six lactobacillus strains was between that of sensitive and resistant antibiotics (P < 0.05). Lactobacillus strains had similar moderate antimicrobial activities against uropathogens. Further research is needed to ascertain the strains with the best probiotic potential. © 2016 Japan Pediatric Society.

  16. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Lactobacillus acidophilus-Rutin Interplay Investigated by Proteomics.

    PubMed

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus.

  18. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    PubMed

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L. plantarum

  19. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice.

    PubMed

    Song, M; Park, S; Lee, H; Min, B; Jung, S; Park, S; Kim, E; Oh, S

    2015-03-01

    We investigated the probiotic properties of Lactobacillus acidophilus NS1, such as acid resistance, bile tolerance, adherence to HT-29 cells, and cholesterol assimilation activity. In an animal study, 7-wk-old male C57BL/6 mice were fed a normal diet, a high-fat diet (HFD), or an HFD with L. acidophilus NS1 (ca. 1.0×10(8) cfu/mL) for 10 wk. Total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly lower in mice fed an HFD with L. acidophilus NS1 than in those fed an HFD only, whereas high-density lipoprotein cholesterol levels were similar between these 2 groups. To understand the mechanism of the cholesterol-lowering effect of L. acidophilus NS1 on the HFD-mediated increase in plasma cholesterol levels, we determined mRNA levels of genes involved in cholesterol homeostasis in the liver. Expression of sterol regulatory element-binding protein 2 (Srebp2) and LDL receptor (Ldlr) in the liver was dramatically reduced in mice fed a HFD compared with those fed a normal diet. When L. acidophilus NS1 was administered orally to HFD-fed mice, an HFD-induced suppression of Srebp2 and Ldlr expression in the liver was abolished. These results suggest that the oral administration of L. acidophilus NS1 to mice fed an HFD increased the expression of Srebp2 and Ldlr in the liver, which was inhibited by high fat intake, thus leading to a decrease in plasma cholesterol levels. Lactobacillus acidophilus NS1 could be a useful probiotic microorganism for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer.

    PubMed

    Siezen, Roland J; van Hylckama Vlieg, Johan E T

    2011-08-30

    In the past decade it has become clear that the lactic acid bacterium Lactobacillus plantarum occupies a diverse range of environmental niches and has an enormous diversity in phenotypic properties, metabolic capacity and industrial applications. In this review, we describe how genome sequencing, comparative genome hybridization and comparative genomics has provided insight into the underlying genomic diversity and versatility of L. plantarum. One of the main features appears to be genomic life-style islands consisting of numerous functional gene cassettes, in particular for carbohydrates utilization, which can be acquired, shuffled, substituted or deleted in response to niche requirements. In this sense, L. plantarum can be considered a "natural metabolic engineer".

  1. Effect of aqueous and alcoholic Stevia (Stevia rebaudiana) extracts against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine: An in vitro study

    PubMed Central

    Ajagannanavar, Sunil Lingaraj; Shamarao, Supreetha; Battur, Hemant; Tikare, Shreyas; Al-Kheraif, Abdulaziz Abdullah; Al Sayed, Mohammed Sayed Al Esawy

    2014-01-01

    Introduction: Stevia (S. rebaudiana) a herb which has medicinal value and was used in ancient times as a remedy for a great diversity of ailments and sweetener. Leaves of Stevia contain a high concentration of Stevioside and Rebaudioside which are supposed to be sweetening agents. Aim: To compare the efficacy of aqueous and alcoholic S. rebaudiana extract against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine. Materials and Methods: In the first part of the study, various concentrations of aqueous and ethanolic Stevia extract were prepared in the laboratory of Pharmacy College. It was then subjected to microbiological assay to determine its zone of inhibition using Agar disk diffusion test and minimum inhibitory concentration (MIC) using serial broth dilution method against Streptococcus mutans and Lactobacillus acidophilus. Chlorhexidine was used as a positive control. One way Analysis of Variance (ANOVA) test was used for multiple group comparisons followed by Tukey post hoc for group wise comparisons. Results: Minimum inhibitory concentration (MIC) of aqueous and ethnolic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus were 25% and 12.5% respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Streptococcus mutans at 48 hours were 22.8 mm and 26.7 mm respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Lactobacillus acidophilus at 48 hours were 14.4 mm and 15.1 mm respectively. Mean zone of inhibition of the chlorhexidine against Streptococcus mutans and Lactobacillus acidophilus at 48 hours was 20.5 and 13.2 respectively. Conclusion: The inhibitory effect shown by alcoholic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus was superior when compared with that of aqueous form and was inferior when compared with Chlorhexidine. PMID:25558451

  2. Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals.

    PubMed

    Theilmann, Mia C; Goh, Yong Jun; Nielsen, Kristian Fog; Klaenhammer, Todd R; Barrangou, Rodolphe; Abou Hachem, Maher

    2017-11-21

    Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these

  3. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus.

    PubMed

    Ansari, Fereshteh; Pourjafar, Hadi; Jodat, Vahid; Sahebi, Javad; Ataei, Amir

    2017-12-01

    In this study, we examined a novel method of microencapsulation with calcium alginate-chitosan and Eudragit S100 nanoparticles for the improving viability of probiotic bacteria, Lactobacillus acidophilus and Lactobacillus rhamnosus. Extrusion technique was carried out in microencapsulation process. The viability of two probiotics in single coated beads (with only chitosan), double coated beads (with chitosan and Eudragit nanoparticles), and as free cells (unencapsulated) were conducted in simulated gastric juice (pH 1.55, without pepsin) followed by incubation in simulated intestinal juice (pH 7.5, with 1% bile salt). In case of single coated beads, presumably, lack of sufficient strength of chitosan under simulated gastric condition was the main reason of 4-log and 5-log reduction of the counts of the L. acidophilus and L. rhamnosus respectively. The results showed that with the second coat forming (Eudragit nanoparticles) over the first coat (chitosan), the strength of the beads and then viability rate of the bacteria were increased in comparison with the single coated beads.

  4. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Weckx, Stefan

    2015-10-12

    Lactobacillus fermentum 222 and Lactobacillus plantarum 80, isolates from a spontaneous Ghanaian cocoa bean fermentation process, proved to be interesting functional starter culture strains for cocoa bean fermentations. Lactobacillus fermentum 222 is a thermotolerant strain, able to dominate the fermentation process, thereby converting citrate and producing mannitol. Lactobacillus plantarum 80 is an acid-tolerant and facultative heterofermentative strain that is competitive during cocoa bean fermentation processes. In this study, whole-genome sequencing and comparative genome analysis was used to investigate the mechanisms of these strains to dominate the cocoa bean fermentation process. Through functional annotation and analysis of the high-coverage contigs obtained through 454 pyrosequencing, plantaricin production was predicted for L. plantarum 80. For L. fermentum 222, genes encoding a complete arginine deiminase pathway were attributed. Further, in-depth functional analysis revealed the capacities of these strains associated with carbohydrate and amino acid metabolism, such as the ability to use alternative external electron acceptors, the presence of an extended pyruvate metabolism, and the occurrence of several amino acid conversion pathways. A comparative genome sequence analysis using publicly available genome sequences of strains of the species L. plantarum and L. fermentum revealed unique features of both strains studied. Indeed, L. fermentum 222 possessed genes encoding additional citrate transporters and enzymes involved in amino acid conversions, whereas L. plantarum 80 is the only member of this species that harboured a gene cluster involved in uptake and consumption of fructose and/or sorbose. In-depth genome sequence analysis of the candidate functional starter culture strains L. fermentum 222 and L. plantarum 80 revealed their metabolic capacities, niche adaptations and functionalities that enable them to dominate the cocoa bean fermentation

  5. Production and physicochemical properties of recombinant Lactobacillus plantarum tannase.

    PubMed

    Curiel, José Antonio; Rodríguez, Héctor; Acebrón, Iván; Mancheño, José Miguel; De Las Rivas, Blanca; Muñoz, Rosario

    2009-07-22

    Tannase is an enzyme with important biotechnological applications in the food industry. Previous studies have identified the tannase encoding gene in Lactobacillus plantarum and also have reported the description of the purification of recombinant L. plantarum tannase through a protocol involving several chromatographic steps. Here, we describe the high-yield production of pure recombinant tannase (17 mg/L) by a one-step affinity procedure. The purified recombinant tannase exhibits optimal activity at pH 7 and 40 degrees C. Addition of Ca(2+) to the reaction mixture greatly increased tannase activity. The enzymatic activity of tannase was assayed against 18 simple phenolic acid esters. Only esters derived from gallic acid and protocatechuic acid were hydrolyzed. In addition, tannase activity was also assayed against the tannins tannic acid, gallocatechin gallate, and epigallocatechin gallate. Despite L. plantarum tannase representing a novel family of tannases, which shows no significant similarity to tannases from fungal sources, both families of enzymes shared similar substrate specificity range. The physicochemical characteristics exhibited by L. plantarum recombinant tannase make it an adequate alternative to the currently used fungal tannases.

  6. [Expression, purification and activity analysis of GGDEF and EAL domain-containing proteins from Lactobacillus acidophilus].

    PubMed

    He, Jia-Hui; Sun, Jie-Li; Yan, Wen-Juan; Wang, Fang

    2017-05-20

    To identify the functions of the proteins containing the GGDEF or EAL domain in Lactobacillus acidophilus for investigation of the regulatory mechanism of c-di-GMP in this strain. The DNA fragments of NH13_07045-GGDEF, NH13_07050 and NH13_07055 from Lactobacillus acidophilus ATCC4356 were amplified by PCR and cloned into the expression vector pMAL-His-c2. After sequencing, the recombinant plasmids were transformed into competent Escherichia coli cells, which were induced by IPTG to express the recombinant proteins fused with maltose binding protein (MBP). The fusion proteins were purified using amylose resin column for diguanylate cyclase (DGC) or phosphodiesterase (PDE) activity assays in vitro followed by analysis with high-performance liquid chromatography (HPLC). The target DNA fragments were obtained by PCR, and their sequences were all identical to that in GenBank. The purified and concentrated fusion proteins, which were identified by SDS-PAGE and Western blotting, had relative molecular masses of 59 kD, 67 kD and 72 kD. HPLC analysis showed no DGC activity in NH13_07045-GGDEF, while PDE activity was found in NH13_07050 but not in NH13_07055. We obtained the protein encoded by NH13_07050 that possesses PDE activity in vitro. This protein may facilitate the evaluation of the regulatory function of c-di-GMP in Lactobacillus acidophilus.

  7. Inhibition of Insulin Degrading Enzyme and Insulin Degradation by UV-Killed Lactobacillus acidophilus.

    PubMed

    Neyazi, Nadia; Motevaseli, Elahe; Khorramizadeh, Mohammad Reza; Mohammadi Farsani, Taiebeh; Nouri, Zahra; Nasli Esfahani, Ensieh; Ghahremani, Mohammad Hossein

    2018-05-11

    Probiotics have beneficial effects on management of type 2 diabetes (T2D). The major hallmarks of T2D are insulin deficiency and insulin resistance which emphasize insulin therapy in onset of disease. Lactobacilli such as Lactobacillus acidophilus ( L. acidophilus ) have well known properties on prevention of T2D and insulin resistance but not on insulin degradation. Insulin-degrading enzyme (IDE) degrades insulin in the human body. We studied the effects of cell-free supernatant (CFS) and ultraviolet (UV)-killed L. acidophilus (ATCC 314) on IDE activity and insulin degradation in vitro. Cell growth inhibition by CFS and UV-killed L. acidophilus (ATCC 314) was studied and Western blotting and a fluoregenic assay was performed to determine IDE expression and its activity, respectively. Insulin degradation was evaluated by sandwich enzyme-linked immunosorbent assay(ELISA). IDE expression and activity was reduced by CFS and UV-killed L. acidophilus (ATCC 314). Although, decreased enzyme expression and activity was not significant for CFS in contrast to MRL (MRS with same pH as CFS). Also, reduction in IDE activity was not statistically considerable when compared to IDE expression. Insulin degradation was increased by CFS but decreased by UV-killed L. acidophilus (ATCC 314).

  8. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A mild pulsed electric field condition that improves acid tolerance, growth, and protease activity of Lactobacillus acidophilus LA-K and Lactobacillus delbrueckii subspecies bulgaricus LB-12.

    PubMed

    Najim, N; Aryana, Kayanush J

    2013-06-01

    Pulsed electric field (PEF) processing involves the application of pulses of voltage for less than 1 s to fluid products placed between 2 electrodes. The effect of mild PEF on beneficial characteristics of probiotic bacteria Lactobacillus acidophilus and Lactobacillus delbrueckii ssp. bulgaricus is not clearly understood. The objective of this study was to determine the influence of mild PEF conditions on acid tolerance, growth, and protease activity of Lb. acidophilus LA-K and Lactobacillus delbrueckii ssp. bulgaricus LB-12. A pilot plant PEF system (OSU-4M; The Ohio State University, Columbus) was used. The PEF treatments were positive square unipolar pulse width of 3 µs, pulse period of 0.5s, electric field strength of 1 kV/cm, delay time of 20 µs, flow rate of 60 mL/min, and 40.5°C PEF treatment temperature. Both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 subjected to mild PEF conditions were acid tolerant until the end of the 120 min of incubation, unlike the Lb. bulgaricus control, which was not acid tolerant after 30 min. The mild PEF-treated Lb. acidophilus LA-K and Lb. bulgaricus LB-12 reached the logarithmic phase of growth an hour earlier than the control. Mild PEF conditions studied significantly improved acid tolerance, exponential growth, and protease activity of both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 compared with the control. The mild PEF conditions studied can be recommended for pretreating cultures to enhance these desirable attributes. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    PubMed

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  11. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer

    PubMed Central

    2011-01-01

    In the past decade it has become clear that the lactic acid bacterium Lactobacillus plantarum occupies a diverse range of environmental niches and has an enormous diversity in phenotypic properties, metabolic capacity and industrial applications. In this review, we describe how genome sequencing, comparative genome hybridization and comparative genomics has provided insight into the underlying genomic diversity and versatility of L. plantarum. One of the main features appears to be genomic life-style islands consisting of numerous functional gene cassettes, in particular for carbohydrates utilization, which can be acquired, shuffled, substituted or deleted in response to niche requirements. In this sense, L. plantarum can be considered a “natural metabolic engineer”. PMID:21995294

  12. Strain-specific inhibition of the adherence of uropathogenic bacteria to bladder cells by probiotic Lactobacillus spp.

    PubMed

    de Llano, Dolores González; Arroyo, Amalia; Cárdenas, Nivia; Rodríguez, Juan Miguel; Moreno-Arribas, M Victoria; Bartolomé, Begoña

    2017-06-01

    Urinary tract infections (UTIs), one of most common infections worldwide, face high recurrence rates and increasing antimicrobial resistance. Probiotic bacteria, especially of the genus Lactobacillus, are considered a promising preventive and/or treatment therapy against UTIs. In order to elucidate the mechanisms involved in these beneficial effects, we studied the impact of different Lactobacillus strains (Lactobacillus salivarius UCM572, L. plantarum CLC17 and L. acidophilus 01) in the adherence of reference and clinical uropathogenic strains (Escherichia coli ATCC® 53503, E. coli 10791, Enterococcus faecalis 04-1, En. faecalis 08-1 and Staphylococcus epidermidis 08-3) to T24 epithelial bladder cells. In general, the Lactobacillus strains with previous in vivo evidence of beneficial effects against UTIs (L. salivarius UCM572 and L. acidophilus 01) significantly inhibited the adherence of the five uropathogens to T24 cells, displaying percentages of inhibition ranging between 22.2% and 43.9%, and between 16.5% and 53.7%, respectively. On the other hand, L. plantarum CLC17, a strain with no expected effects on UTIs, showed almost negligible anti-adherence effects.Therefore, these in vitro results suggest that inhibition of the adherence of uropathogens to epithelial bladder cells may be one of the mechanisms involved in the potential beneficial effects of probiotics against UTIs in vivo. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Comparison of the antimicrobial efficacy of photodynamic therapy with two mediators against Lactobacillus acidophilus in vitro.

    PubMed

    Azizi, Arash; Mousavian, Shiva; Taheri, Soudabeh; Lawaf, Shirin; Gonoudi, Elnaz; Rahimi, Arash

    2018-03-01

    Lactobacillus is a cariogenic microorganism. Different therapeutic approaches including photodynamic therapy (PDT) have been suggested for treatment of bacterial infection. The purpose of the current study was to compare the effects of PDT with Indocyanine green (ICG) and Methylene blue (MB) photosensitizers (PSs) on Lactobacillus acidophilus (L. acidophilus). In this in-vitro experimental study, 84 samples of L. acidophilus (1 McFarland standard) were compared in 14 experimental groups including: MB, ICG, 660-nm laser, 808-nm laser (pulsed, 74s/continuous-wave, 37s), different combinations of lasers and PSs, Chlorhexidine (CHX) 0.2%, sodium hypochlorite (NaOCl) 2.5%, penicillin 6.3.3 and control groups. The samples were cultured in microplates containing blood agar culture medium. After incubation at 37 °C for 48 h, the colony forming units (CFUs) of L. acidophilus were counted and compared before and after therapeutic interventions. Data were analyzed using SPSS19 software program according to one-way ANOVA test. This study showed that the separate use of ICG, 660- and 808-nm lasers (pulsed, 74s/continuous-wave, 37s), and the combined use of 808-nm laser (pulsed, 74s/continuous-wave, 37s) and ICG have no significant inhibitory effect on L. acidophilus colonies (P > 0.05), whereas the separate use of MB and the combined use of 660-nm laser (continuous-wave, 37s/pulsed, 74s) and MB significantly inhibited the growth of L. acidophilus in comparison with the control group (p < 0.05). Likewise, CHX 0.2%, NaOCl 2.5% and penicillin 6.3.3 significantly inhibited the bacterial growth (p < 0.05). The results showed that separate use of MB and combined use of 660-nm laser and MB have a significant inhibitory effect on L. acidophilus growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability.

    PubMed

    Mangell, Peter; Nejdfors, Pernilla; Wang, Mei; Ahrné, Siv; Weström, Bjorn; Thorlacius, Henrik; Jeppsson, Bengt

    2002-03-01

    The purpose of this work was to investigate whether a probiotic bacterium, Lactobacillus plantarum 299v, could affect Escherichia coli-induced passage of mannitol across the intestinal wall. Sprague-Dawley rats were pretreated for one week by either tube feeding with L. plantarum 299v twice daily, free access to L. plantarum 299v by adding the bacterium in the drinking water, or negative control receiving regular feeding. Intestinal segments were mounted in Ussing chambers and the mucosa was exposed to control medium, E. coli, and L. plantarum 299v (alone or together). [14C]Mannitol was added as a marker of intestinal permeability and samples were taken from the serosal side. E. coli exposure induced a 53% increase in mannitol passage across the intestinal wall (P < 0.05). One week of pretreatment with L. plantarum 299v in the drinking water abolished the E. coli-induced increase in permeability. Tube feeding for one week or short-term addition of L. plantarum 299v in the Ussing chambers had no effect on the permeability provoked by E. coli challenge. Notably, L. plantanum 299v itself did not change the intestinal passage of mannitol. These data demonstrate that pretreatment with L. plantarum 299v, which is a probiotic bacterium, protects against E. coli-induced increase in intestinal permeability, and that L. plantarum 299v alone has no influence on the intestinal permeability. Thus, this study supports the concept that probiotics may exert beneficial effects in the gastrointestinal tract.

  15. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Targeting Mucosal Dendritic Cells with Microbial Antigens from Probiotic Lactic Acid Bacteria

    DTIC Science & Technology

    2008-03-01

    Lactoba- cillus gasseri, Lactobacillus plantarum , Lactobacillus delbreuckii, Lactobacillus rhamnosus, Lactobacillus salivarius and Lactobacillus ... Lactobacillus plantarum Helicobacter pylori UreB Mouse [105] S. pneumoniae PsaA Mouse [104] Lactococcus lactis C. tetani TTFC Mouse [81...anthracis (the causative agent of anthrax). An antigen-specific immune response can be elicited using specific strains of Lactobacillus acidophilus

  17. Lactobacillus plantarum as a Probiotic Potential from Kouzeh Cheese (Traditional Iranian Cheese) and Its Antimicrobial Activity.

    PubMed

    Jabbari, Vahid; Khiabani, Mahmoud Sowti; Mokarram, Reza Rezaei; Hassanzadeh, Azad Mohammad; Ahmadi, Elham; Gharenaghadeh, Sasan; Karimi, Nayyer; Kafil, Hossein Samadi

    2017-06-01

    The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.

  18. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages

    PubMed Central

    Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent. PMID:27120199

  19. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent.

  20. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk.

    PubMed

    Jiang, Meiling; Zhang, Fen; Wan, Cuixiang; Xiong, Yonghua; Shah, Nagendra P; Wei, Hua; Tao, Xueying

    2016-03-01

    Lactobacillus plantarum WLPL04, a specific strain isolated from human breast milk, was investigated for its survival capacity (acid and bile salt tolerance, survival in simulated gastrointestinal tract, inhibition of pathogens, antibiotic susceptibility, yield of exopolysaccharides) and probiotic properties (antiadhesion of pathogens, protection from harmful effect of sodium dodecyl sulfate, and antiinflammatory stress on Caco-2 cells). The results showed that Lb. plantarum WLPL04 had broad-spectrum activity against gram-positive strains (Listeria monocytogenes CMCC54007, Bacillus cereus ATCC14579, and Staphylococcus aureus CMCC26003) and gram-negative strains (Pseudomonas aeruginosa MCC10104, Shigella sonnei ATCC25931, Enterobacter sakazakii ATCC29544, Salmonella typhimurium ATCC13311, and Escherichia coli O157:H7). Antibiotic susceptibility tests showed that Lb. plantarum WLPL04 was susceptible to 8 of 14 antibiotics (e.g., erythromycin and nitrofurantoin) and resistant to 6 of 14 antibiotics (e.g., kanamycin and bacitracin). Lactobacillus plantarum WLPL04 was able to survive at pH 2.5 for 3h and at 0.45% bile salt for 12h, suggesting that it can survive well in the gastrointestinal tract. In addition, the exopolysaccharide yield of Lb. plantarum WLPL04 reached 426.73 ± 65.56 mg/L at 24h. With strategies of competition, inhibition, and displacement, Lb. plantarum WLPL04 reduced the adhesion of E. coli O157:H7 (35.51%), Sal. typhimurium ATCC 13311 (8.10%), and Staph. aureus CMCC 26003 (40.30%) on Caco-2 cells by competition, and subsequently by 59.80, 62.50, and 42.60%, respectively, for the 3 pathogens through inhibition, and by 75.23, 39.97, and 52.88%, respectively, through displacement. Lactobacillus plantarum WLPL04 attenuated the acute stress induced by sodium dodecyl sulfate on Caco-2 cells and significantly inhibited the expression of inflammatory cytokines (IL-6, IL-8 and tumor necrosis factor-α) on Caco-2 cells but increased IL-10 expression in vitro

  1. Genetic Variation of pln Loci Among Probiotic Lactobacillus plantarum Group Strains with Antioxidant and Cholesterol-Lowering Ability.

    PubMed

    Devi, Sundru Manjulata; Halami, Prakash M

    2017-10-13

    In the present study, 14 different plantaricin-encoding genes of pln loci were studied and compared to available sequences from public domain database of probiotic Lactobacillus plantarum strains. Based upon the presence and absence of selected genes, pln locus was grouped into eight clusters. Further, quantitative real-time PCR (qRT-PCR) analysis for seven genes has discriminated the complex pln locus into five types which includes WCFS1 (in Lactobacillus plantarum subsp. plantarum MCC 2976 and MCC 2974 and Lactobacillus paraplantarum MCC 2978), closely related to J51 (in Lb. paraplantarum MCC 2973 and MCC 2977), J23 (in Lb. plantarum MTCC 5422), NC8 (in Lb. paraplantarum MTCC 9483), and a new E1 type (in Lb. plantarum subsp. plantarum E1). It was observed that the plnA, EF, NC8βα, NC81F, NC8HK, and G were expressed in E1 strain. Further, southern hybridization confirmed the chromosome-encoded plantaricin in Lb. plantarum group (LPG) strains. Several PCR assays and DNA sequence analysis of the regions amplified in pln loci of E1 isolate suggested a hybrid variant of NC8 and J51 plantaritypes. This indicates the wide distribution of plantaricin with remarkable variation, diversity, and plasticity among the LPG strains of vegetable origin. Further, the selected strains were able to reduce the growth of Kocuria rhizophila ATCC 9341 by 40-54% within 6 h of co-incubation under in vitro pathogen exclusion assay. These isolates also possessed cholesterol-lowering and antioxidant activity suggesting their application in the development of functional foods.

  2. Milk production response to feeding alfalfa silage inoculated with Lactobacillus plantarum

    USDA-ARS?s Scientific Manuscript database

    In mini-silo trials, silages treated with a Lactobacillus plantarum silage inoculant (Ecosyl, Yorkshire, UK) had increased in vitro rumen microbial biomass production compared to untreated. Our objective was to determine if alfalfa silage treated with this inoculant could produce a milk production r...

  3. Effects of mannan-oligosaccharides and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves.

    PubMed

    Sharma, A N; Kumar, S; Tyagi, A K

    2018-06-01

    A study of 120 days was undertaken to ascertain the effect of mannan-oligosaccharides (MOS) and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. Twenty Murrah buffalo calves of 5-7 days old and 31 ± 2.0 kg of body weight (BW) were randomly assigned into four groups. Group I served as the control (CON) in which only basal diet (concentrate mixture and green fodder) was provided, without any supplementation. Mannan-oligosaccharides at 4 g/calf/day were supplemented as prebiotic to Group II (PRE), whereas Group III (PRO) received Lactobacillus acidophilus in the form of fermented milk as probiotic at 200 ml/calf/day having 10 8  CFU/ml and Group IV (SYN) was supplemented with both MOS and Lactobacillus acidophilus as synbiotic at similar dose. Final BW (kg), dry matter intake, average daily gain, feed conversion efficiency and structural growth measurements were improved (p < .05) in the treatment groups compared to control. Digestibility of neutral detergent fibre was higher (p < .05) in SYN followed by PRE and PRO than control. The faecal lactobacilli and bifidobacterium population was higher (p < .05) in all the supplemented groups with a concomitant reduction in faecal coliform count as compared to control. Faecal ammonia, lactate and pH were also altered favourably (p < .05) in all the supplemented groups as compared to CON. The faecal volatile fatty acids were higher (p < .05) in PRE, PRO and SYN group than CON. The incorporation of MOS and Lactobacillus acidophilus in diet either individually or in combination as synbiotic has the potential to improve the performance and faecal characteristics in Murrah buffalo calves; however, the observed responses among the treatment groups were more evident in the synbiotic fed group compared to individual supplementation of MOS and Lactobacillus acidophilus. © 2018 Blackwell Verlag GmbH.

  4. Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals

    PubMed Central

    Theilmann, Mia C.; Nielsen, Kristian Fog; Klaenhammer, Todd R.

    2017-01-01

    ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. PMID:29162708

  5. Biochemical characterization of a recombinant Lactobacillus acidophilus strain expressing exogenous FomA protein.

    PubMed

    Ma, Li; Li, Fei; Zhang, Xiangyu; Feng, Xiping

    2018-04-30

    In previous research, to combine the immunogenicity of Fusobacterium nucleatum (F. nucleatum) and the probiotic properties of Lactobacillus acidophilus (L. acidophilus), we constructed a FomA-expressing L. acidophilus strain and assessed its immunogenicity. Our findings indicated that oral administration of the recombinant L. acidophilus strain reduced the risk of periodontal infection by Porphyromonas gingivalis (P. gingivalis) and F. nucleatum. However, because the exogenous FomA is an heterologous protein for the original bacterium, in this study, we assessed whether the biochemical characteristics of the recombinant L. acidophilus strain change due to the expression of the exogenous FomA protein. To test the biochemical characteristics of a recombinant L. acidophilus strain expressing exogenous FomA and assess its antibiotic sensitivity. We assessed the colony morphology, growth, acid production, and carbohydrate fermentation abilities of the recombinant L. acidophilus strain. In addition, we tested the adhesive ability and antimicrobial activity of the recombinant and assessed its antibiotic sensitivity through a drug susceptibility test. The experimental results showed that the colony and microscopic morphology of the recombinant L. acidophilus strain was consistent with the original strain, and the recombinant strain grew well when cultured under aerobic or anaerobic conditions, exhibiting a growth rate that was identical to that of the standard strain. Similarly, the supernatants of the recombinant L. acidophilus can inhibit the growth of E. coli and P. gingivalis at different concentrations, and the recombinant strain displayed essentially the same drug sensitivity profile as the original L. acidophilus. However, to our surprise, the recombinant strains exhibited a greater adhesion ability than the reference strain. Our study demonstrated that, in addition to an increased adhesion ability, the recombinant L. acidophilus strain maintained the basic

  6. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  7. Efficacy profiles for different concentrations of Lactobacillus acidophilus in experimental colitis.

    PubMed

    Chen, Lin-Lin; Zou, Yi-You; Lu, Fang-Gen; Li, Fu-Jun; Lian, Guang-Hui

    2013-08-28

    To determine the efficacy profiles of different concentrations of Lactobacillus acidophilus (L. acidophilus) for treating colitis using an experimental murine model. Colitis was established in 64 BALB/c mice by adding 5% dextran sodium sulfate (DSS) to the drinking water and allowing ad libitum access for 7 d. The mice were then randomly divided into the following control and experimental model groups (n = 8 each; day 0): untreated model control; negative-treatment model control (administered gavage of 1 mL/10 g normal saline); experimental-treatment models C4-C8 (administered gavage of 10(4), 10(5), 10(6), 10(7), or 10(8) CFU/10 g L. acidophilus, respectively); positive-treatment model control (administration of the anti-inflammatory agent prednisone acetate at 45 μg/10 g). Eight mice given regular water (no DSS) and no subsequent treatments served as the normal control group. Body weight, fecal traits, and presence of fecal occult blood were assessed daily. All animals were sacrificed on post-treatment day 7 to measure colonic length, perform histological scoring, and quantify the major bacteria in the proximal and distal colon. Intergroup differences were determined by one-way ANOVA and post-hoc Student-Newman-Keuls comparison. All treatments (L. acidophilus and prednisone acetate) protected against colitis-induced weight loss (P < 0.05 vs model and normal control groups). The extent of colitis-induced colonic shortening was significantly reduced by all treatments (prednisone acetate > C4 > C5 > C7 > C8 > C6; P < 0.05 vs untreated model group), and the C6 group showed colonic length similar to that of the normal control group (P > 0.05). The C6 group also had the lowest disease activity index scores among the model groups. The bacterial profiles in the proximal colon were similar between all of the experimental-treatment model groups (all P > 0.05). In contrast, the bacterial profile in the distal colon of the C6 group showed the distinctive features (P < 0

  8. Spectrum of bacteriocin activity of Lactobacillus plantarum BS and fingerprinting by RAPD-PCR.

    PubMed

    Elegado, Francisco B; Guerra, Marie Antonette Ruth V; Macayan, Rommel A; Mendoza, Helen A; Lirazan, Marcelina B

    2004-08-15

    The spectrum of antimicrobial activity of Lactobacillus plantarum BS against representative bacterial species was established through deferred assay and 'spot-on-lawn' assay using actively growing cells and partially purified bacteriocin extract, respectively. Only lactobacilli, pediococci, enterococci, bacilli and Listeria were inhibited from the test microorganisms. Slight bacteriocinogenic activity through 'spot-on-lawn' assay was detected against Staphylococcus aureus and Escherichia coli O157:H7. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis was used to compare the fingerprint of L. plantarum BS with other strains of L. plantarum. Using the 16S rRNA-based primer, P32, the bacteriocinogenic isolate exhibited identical RAPD-PCR fingerprints to L. plantarum ATCC 14917. Dendrograms derived from the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) were constructed to show the similarity relationships among the investigated strains based on RAPD-PCR analysis. Bands differentiating L. plantarum BS from L. plantarum ATCC 14917 were also identified by varying the annealing temperature.

  9. Modulation of the Lactobacillus acidophilus La-5 lipidome by different growth conditions.

    PubMed

    Hansen, Marie-Louise R W; Clausen, Anders; Ejsing, Christer S; Risbo, Jens

    2015-10-01

    Probiotics are bacteria used in the food industry due to their potential health benefits. In this study, the plasma membrane of the probiotic Lactobacillus acidophilus La-5 was investigated using state-of-the-art high-resolution shotgun lipidomics. Comparisons of the lipidome of the plasma membrane were done after altering the fatty acid composition by supplementing L. acidophilus La-5 with saturated, mono-, di- and tri-unsaturated fatty acids during fermentation. The plasma membrane with the highest degree of saturation resulted in a lipid composition with the highest proportion of cardiolipin (CL) and lowest proportion of monolysocardiolipin (MLCL). No significant changes were found for other lipid classes. The bacteria grown with di- and tri-unsaturated fatty acids were expected to have more unsaturated plasma membranes than bacteria grown with mono-unsaturated fatty acids. This was also the case for MLCL, but the numbers of double bonds for CL were quite similar for these three samples. The results indicate that L. acidophilus La-5 possesses a molecular mechanism for remodelling and optimizing the fatty acid composition of CL and MLCL species and the molar ratio of CL and MLCL. This study contributes new knowledge on the previously uninvestigated lipidome of L. acidophilus La-5.

  10. Efficacy of supercritical carbon dioxide for inactivating Lactobacillus plantarum in apple cider

    USDA-ARS?s Scientific Manuscript database

    Juice makers have traditionally used thermal pasteurization to prevent deterioration by spoilage bacteria such as Lactobacillus plantarum; however this thermal processing causes adverse effects on product quality such as undesirable taste and destruction of heat sensitive nutrients. For this reason,...

  11. In vitro importance of probiotic Lactobacillus plantarum related to medical field

    PubMed Central

    Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Ilavenil, Soundharrajan; Choi, Ki Choon; Srigopalram, Srisesharam

    2015-01-01

    Lactobacillus plantarum is a Gram positive lactic acid bacterium commonly found in fermented food and in the gastro intestinal tract and is commonly used in the food industry as a potential starter probiotic. Recently, the consumption of food together with probiotics has tremendously increased. Among the lactic acid bacteria, L. plantarum attracted many researchers because of its wide applications in the medical field with antioxidant, anticancer, anti-inflammatory, antiproliferative, anti-obesity and antidiabetic properties. The present study aimed to investigate the in vitro importance of L. plantarum toward medical applications. Moreover, this report short listed various reports related to the applications of this promising strain. In conclusion, this study would attract the researchers in commercializing this strain toward the welfare of humans related to medical needs. PMID:26858567

  12. The effect of a probiotic strain (Lactobacillus acidophilus) on the plaque formation of oral Streptococci.

    PubMed

    Tahmourespour, Arezoo; Kermanshahi, Rooha Kasra

    2011-02-01

    The objective of this study was to investigate the ability of biofilm formation among mutans and non mutans oral streptococci and to determine the effect of Lactobacillus acidophilus DSM 20079 as a probiotic strain on the adhesion of selected streptococcal strains on the surfaces. The sample comprised 40 isolates of oral streptococci from dental plaque and caries of volunteer persons. Streptococcus mutans ATCC35668 (no24) was as an standard strain. The probiotic strain was Lactobacillus acidophilus DSM 20079. The ability of biofilm formation was investigated with colorimetric method and the strongest isolates were selected. Then the effect of probiotic strain on the adhesion of streptococci isolates was determined in polystyrene microtiter plate simultaneously and 30 minutes before streptococci entrance to the system. The results showed that 42% of mutans streptococci were strongly adherent (SA) and in non mutans streptococci, only 23.5% of isolates were found strongly adherent. The strong biofilm forming bacterium isolated was Streptococcus mutans strain22. In the next step, in the presence of probiotic strain the streptococcal adhesion were reduced, and this reduction was non significantly stronger if the probiotic strain was inoculated to the system before the oral bacteria. The Lactobacillus acidophilus had more effect on adherence of mutans streptococci than non mutans streptococci with significant difference (p < 0.05). Adhesion reduction is likely due to bacterial interactions and colonization of adhesion sites with probiotic strain before the presence of streptococci. Adhesion reduction can be an effective way on decreasing cariogenic potential of oral streptococci.

  13. Mobile group II intron based gene targeting in Lactobacillus plantarum WCFS1.

    PubMed

    Sasikumar, Ponnusamy; Paul, Eldho; Gomathi, Sivasamy; Abhishek, Albert; Sasikumar, Sundaresan; Selvam, Govindan Sadasivam

    2016-10-01

    The usage of recombinant lactic acid bacteria for delivery of therapeutic proteins to the mucosa has been emerging. In the present study, an attempt was made to engineer a thyA mutant of Lactobacillus plantarum (L. plantarum) using lactococcal group II intron Ll.LtrB for the development of biologically contained recombinant L. plantarum for prevention of calcium oxalate stone disease. The 3 kb Ll.LtrB intron donor cassettes from the source vector pACD4C was PCR amplified, ligated into pSIP series of lactobacillus vector pLp_3050sAmyA, yielding a novel vector pLpACD4C (8.6 kb). The quantitative real-time PCR experiment shows 94-fold increased expression of Ll.LtrB intron and 14-fold increased expression of ltrA gene in recombinant L. plantarum containing pLpACD4C. In order to target the thyA gene, the potential intron RNA binding sites in the thyA gene of L. plantarum was predicted with help of computer algorithm. The insertion location 188|189s of thyA gene (lowest E-0.134) was chosen and the wild type intron Ll.LtrB was PCR modified, yielding a retargeted intron of pLpACDthyA. The retargeted intron was expressed by using induction peptide (sppIP), subsequently the integration of intron in thyA gene was identified by PCR screening and finally ThyA - mutant of L. plantarum (ThyA18) was detected. In vitro growth curve result showed that in the absence of thymidine, colony forming units of mutant ThyA18 was decreased, whereas high thymidine concentration (10 μM) supported the growth of the culture until saturation. In conclusion, ThyA - mutant of L. plantarum (ThyA18) constructed in this study will be used as a biologically contained recombinant probiotic to deliver oxalate decarboxylase into the lumen for treatment of hyperoxaluria and calcium oxalate stone deposition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β.

    PubMed

    Boye, Louise; Welsby, Iain; Lund, Lisbeth Drozd; Goriely, Stanislas; Frøkiaer, Hanne

    2016-11-01

    Lactobacillus acidophilus induces a potent interferon-β (IFN-β) response in dendritic cells (DCs) by a Toll-like receptor 2 (TLR2) -dependent mechanism, in turn leading to strong interleukin-12 (IL-12) production. In the present study, we investigated the involvement of different types of endocytosis in the L. acidophilus-induced IFN-β and IL-12 responses and how TLR2 or TLR4 ligation by lipopolysaccharide and Pam3/4CSK4 influenced endocytosis of L. acidophilus and the induced IFN-β and IL-12 production. Lactobacillus acidophilus was endocytosed by constitutive macropinocytosis taking place in the immature cells as well as by spleen tyrosine kinase (Syk) -dependent phagocytosis but without involvement of plasma membrane TLR2. Stimulation with TLR2 or TLR4 ligands increased macropinocytosis in a Syk-independent manner. As a consequence, incubation of DCs with TLR ligands before incubation with L. acidophilus enhanced the uptake of the bacteria. However, in these experimental conditions, induction of IFN-β and IL-12 was strongly inhibited. As L. acidophilus-induced IFN-β depends on endocytosis and endosomal degradation before signalling and as TLR stimulation from the plasma membrane leading to increased macropinocytosis abrogates IFN-β induction we conclude that plasma membrane TLR stimulation leading to increased macropinocytosis decreases endosomal induction of IFN-β and speculate that this is due to competition between compartments for molecules involved in the signal pathways. In summary, endosomal signalling by L. acidophilus that leads to IFN-β and IL-12 production is inhibited by TLR stimulation from the plasma membrane. © 2016 John Wiley & Sons Ltd.

  15. Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean.

    PubMed

    Liu, Chen-Jian; Wang, Rui; Gong, Fu-Ming; Liu, Xiao-Feng; Zheng, Hua-Jun; Luo, Yi-Yong; Li, Xiao-Ran

    2015-12-01

    Lactobacillus plantarum is an important probiotic and is mostly isolated from fermented foods. We sequenced the genome of L. plantarum strain 5-2, which was derived from fermented soybean isolated from Yunnan province, China. The strain was determined to contain 3114 genes. Fourteen complete insertion sequence (IS) elements were found in 5-2 chromosome. There were 24 DNA replication proteins and 76 DNA repair proteins in the 5-2 genome. Consistent with the classification of L. plantarum as a facultative heterofermentative lactobacillus, the 5-2 genome encodes key enzymes required for the EMP (Embden-Meyerhof-Parnas) and phosphoketolase (PK) pathways. Several components of the secretion machinery are found in the 5-2 genome, which was compared with L. plantarum ST-III, JDM1 and WCFS1. Most of the specific proteins in the four genomes appeared to be related to their prophage elements. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Survival, Intestinal Mucosa Adhesion, and Immunomodulatory Potential of Lactobacillus plantarum Strains.

    PubMed

    Santarmaki, Valentini; Kourkoutas, Yiannis; Zoumpopoulou, Georgia; Mavrogonatou, Eleni; Kiourtzidis, Mikis; Chorianopoulos, Nikos; Tassou, Chrysoula; Tsakalidou, Effie; Simopoulos, Constantinos; Ypsilantis, Petros

    2017-09-01

    Survival during transit through the gastrointestinal track, intestinal mucosa adhesion, and a potential immunomodulatory effect of Lactobacillus plantarum strains 2035 and ACA-DC 2640 were investigated in a rat model. According to microbiological and multiplex PCR analysis, both strains were detected in feces 24 h after either single-dose or daily administration for 7 days. Intestinal mucosa adhesion of L. plantarum 2035 was noted in the large intestine at 24 h after single-dose administration, while it was not detected at 48 h. Daily dosing, prolonged detection of the strain up to 48 h post-administration, and expanded adhesion to the small intestine. Adhesion of L. plantarum ACA-DC 2640 to the intestinal mucosa after single-dose administration was prolonged and more extended compared to L. plantarum 2035. Daily dosing increased both the levels and the rate of positive cultures of the strains compared to those of the single-dose scheme. In addition, both strains increased total IgG while decreased IgM and IgA serum levels. In conclusion, L. plantarum 2035 and L. plantarum ACA-DC 2640 survived transit through the gastrointestinal track, exhibited transient distinct adhesion to the intestinal mucosa and modulated the systemic immune response.

  17. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield

    USDA-ARS?s Scientific Manuscript database

    Four alfalfa trials, one corn, and one bmr corn were treated with no inoculant (Control), Lactobacillus plantarum (MTD/1) and formic acid (FA), ensiled in 1-L mini-silos, and fermented for 60 d at room temperature (22 C). Mini-silos were opened and analyzed for fermentation characteristics and solub...

  18. The protective effect of recombinant FomA-expressing Lactobacillus acidophilus against periodontal infection.

    PubMed

    Ma, Li; Ding, Qinfeng; Feng, Xiping; Li, Fei

    2013-10-01

    A number of studies have shown that the outer membrane protein FomA found in Fusobacterium nucleatum demonstrates great potential as an immune target for combating periodontitis. Lactobacillus acidophilus is a useful antigen delivery vehicle for mucosal immunisation, and previous studies by our group have shown that L. acidophilus acts as a protective factor in periodontal health. In this study, making use of the immunogenicity of FomA and the probiotic properties of L. acidophilus, we constructed a recombinant form of L. acidophilus expressing the FomA protein and detected the FomA-specific IgG in the serum and sIgA in the saliva of mice through oral administration with the recombinant strains. When serum containing FomA-specific antibodies was incubated with the F. nucleatum in vitro, the number of Porphyromonas gingivalis cells that coaggregated with the F. nucleatum cells was significantly reduced. Furthermore, a mouse gum abscess model was successfully generated, and the range of gingival abscesses in the immune mice was relatively limited compared with the control group. The level of IL-1β in the serum and local gum tissues of the immune mice was consistently lower than in the control group. Our findings indicated that oral administration of the recombinant L. acidophilus reduced the risk of periodontal infection with P. gingivalis and F. nucleatum.

  19. Potential Fate of Ingested Lactobacillus plantarum and Its Occurrence in Human Feces

    PubMed Central

    Marcelino-Guimarães, Francismar Corrêa; Vilas-Bôas, Gislayne Trindade; Matsuo, Tiemi; Miglioranza, Lucia Helena S.

    2014-01-01

    Lactobacillus plantarum has been used in human clinical trials to promote beneficial effects in the immune system, to alleviate intestinal disorders, and to reduce the risk of cardiovascular disease. It is also involved in many fermentation processes in the food industry. However, information on the fate of ingested L. plantarum is limited. In this study, 61 subjects received daily doses of fermented milk containing 2 × 1011 cells of L. plantarum Lp115 for different periods of time. The target microorganism was monitored in the fecal microbiota via quantitative PCR (qPCR). L. plantarum was detected and quantified in all of the subjects during the ingestion periods. The differences between the L. plantarum levels at time zero and during all the different ingestion periods were statistically significant (P = 0.001). However, at 15 and 45 days after discontinuing supplementation, the number of lactobacilli was reduced to the baseline level (those at time zero). A longer period with L. plantarum in the diet did not result in increased levels of this bacterium in the stool, based on postconsumption evaluations (P = 0.001). The qPCR method was specific and sensitive for L. plantarum quantification in such a complex microbial environment as the gastrointestinal tract. PMID:24271176

  20. Inactivation of Lactobacillus plantarum in apple cider using radio frequency electric fields

    USDA-ARS?s Scientific Manuscript database

    Radio frequency electric fields (RFEF) processing is effective at inactivating Gram negative bacteria in fruit juices at moderately low temperatures, but has yet to be shown to be effective at reducing Gram positive bacteria. Lactobacillus plantarum ATCC 49445, a Gram positive bacterium, was inocula...

  1. Potential for tyndalized Lactobacillus acidophilus as an effective component in moisturizing skin and anti-wrinkle products.

    PubMed

    Im, A-Rang; Kim, Hui Seong; Hyun, Jin Won; Chae, Sungwook

    2016-08-01

    It is widely accepted that ultraviolet (UV) irradiation induces skin damage. In the present study, a UVB-induced hairless mouse model of skin photoaging was developed to determine whether tyndalized Lactobacillus acidophilus was able to significantly enhance the repair of photodamaged skin. To evaluate the effects of tyndalized L. acidophilus on UVB-induced skin-wrinkle formation in vivo , HR-1 hairless male mice were exposed to UVB radiation and orally administered tyndalized L. acidophilus . Compared with the control group, the UVB irradiation mice displayed a significant increase in transepidermal water loss and a reduction in skin hydration. In mice with UVB-induced photodamage, the effacement of the fine wrinkles by tyndalized L. acidophilus was correlated with dermal collagen synthesis, accompanied by histological changes. Furthermore, western blotting was performed to investigate the protein expression levels of matrix metalloproteinases (MMPs) and mitogen-activated protein kinase. Notably, orally administered tyndalized L. acidophilus reduced the expression levels of MMP-1 and MMP-9. Based upon the aforementioned results, it was determined that tyndalized L. acidophilus effectively inhibited the wrinkle formation induced by UVB irradiation, and that this may be attributed to the downregulation of MMPs. Therefore, tyndalized L. acidophilus may be considered a potential agent for preventing skin photoaging and wrinkle formation.

  2. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-zhe; Chen, Hsin-Chih; Chiang, Yu-Cheng; Tsen, Hau-Yang

    2009-01-01

    PCR primers specific for the detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum were designed based on the elongation factor Tu gene (tuf). The specificity of these four primer sets were confirmed by PCR with 88 bacterial strains of Lactobacillus, Enterococcus, Bifidobacterium, and other bacterial species. Results indicated that these primer sets generated predicted PCR products of 397, 230, 202, and 161 bp for L. acidophilus, L. delbrueckii, L. casei group, and B. longum, respectively. Bacterial species other than the target organisms tested did not generate false-positive results. When these four primer sets were combined for the simultaneous detection of the lactic acid bacteria (LAB) in fermented milk products including yogurt, the LAB species listed on the labels of these products could be identified without the preenrichment step. The identification limit for each LAB strain with this multiplex PCR method was N X 10(3) CFU/ml in milk samples. The results of our multiplex PCR method were confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. When this multiplex PCR method was used with the determination of counts of total viable LAB and bifidobacteria, the quality of commercial fermented milk products could be assured.

  3. Isolation and characterization of antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties.

    PubMed

    Valan Arasu, M; Jung, M-W; Ilavenil, S; Jane, M; Kim, D-H; Lee, K-D; Park, H-S; Hur, T-Y; Choi, G-J; Lim, Y-C; Al-Dhabi, N A; Choi, K-C

    2013-11-01

    The purpose of this study was to isolate, identify and characterize an antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties. The 16S rRNA gene-based phylogenetic affiliation was determined using bioinformatic tools and identified as Lactobacillus sp. KCC-10 with 100% sequence similarity to L. plantarum. The antifungal substances were extracted with ethyl acetate from spent medium in which Lactobacillus sp. KCC-10 was cultivated. Antifungal activity was assessed using the broth microdilution technique. The compounds were obtained by eluting the crude extract with various concentrations of solvents followed by chromatographic purification. Based on the infrared, (13) C nuclear magnetic resonance (NMR) and (1) H NMR spectral data, the compound was identified as a phenolic-related antibiotic. The minimum inhibitory concentration of the compound against Aspergillus clavatus, A. oryzae, Botrytis elliptica and Scytalidium vaccinii was 2.5 mg ml(-1) and that against A. fumigatus, A. niger and S. fusca was 5.0 mg ml(-1) , respectively. In addition, Lactobacillus sp. KCC-10 was highly sensitive towards oxgall (0.3%) but grew well in the presence of sodium taurocholate (0.3%). An antimicrobial susceptibility pattern was an intrinsic feature of this strain; thus, consumption does not represent a health risk to humans or animals. Novel L. plantarum KCC-10 with antifungal and potential probiotic properties was characterized for use in animal food. This study revealed that L. plantarum KCC-10 exhibited good antifungal activity similar to that of probiotic Lactobacillus strains. © 2013 The Society for Applied Microbiology.

  4. Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults.

    PubMed

    Ait Seddik, Hamza; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2017-04-01

    Sixty-seven (67) lactic acid bacteria (LAB) isolates belonging to Lactobacillus genus were isolated from human feces and tested for their auto-aggregation and cell surface hydrophobicity in order to establish their adhesion capabilities, a prerequisite for probiotic selection. Strains with the upmost auto-aggregation and cell surface hydrophobicity scores were identified by MALDI-TOF spectrometry and 16S rDNA sequencing as Lactobacillus plantarum (p25lb1 and p98lb1) and Lactobacillus salivarius (p85lb1 and p104lb1). These strains were also able to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells, with percentages ranging from 4.68 to 9.59%. They displayed good survival under conditions mimicking the gastrointestinal environment and remarkably impeded adhesion and invasion of human Caco-2 by Listeria monocytogenes and Enteropathogenic Escherichia coli. It should also be noted that Lb. plantarum p98lb1 was able to reduce in vitro cholesterol concentration by about 32%, offering an additional health attribute. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins.

    PubMed

    Gbassi, Gildas Komenan; Vandamme, Thierry; Ennahar, Saïd; Marchioni, Eric

    2009-01-31

    Whey proteins were used as a coating material to improve encapsulation of Lactobacillus plantarum strains in calcium alginate beads. L. plantarum 299v, L. plantarum 800 and L. plantarum CIP A159 were used in this study. Inactivation experiments were carried out in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Cross-sections of freeze-dried beads revealed the random distribution of bacteria throughout the alginate network. From an initial count of 10.04+/-0.01 log(10) CFU g(-1) for L. plantarum 299v, 10.12+/-0.04 for L. plantarum CIP A159 and 10.03+/-0.01 for L. plantarum 800, bacteria in coated beads and incubated in SGF (37 degrees C, 60 min) showed a better survival for L. plantarum 299v, L. plantarum CIP A159 and L. plantarum 800 (respectively 7.76+/-0.12, 6.67+/-0.08 and 5.81+/-0.25 log(10) CFU g(-1)) when compared to uncoated beads (2.19+/-0.09, 1.89+/-0.09 and 1.65+/-0.10 log(10) CFU g(-1)) (p<0.05). Only bacteria in the coated beads survived in the SIF medium (37 degrees C, 180 min) after SGF treatment. This preliminary work showed that whey proteins are a convenient, cheap and efficient material for coating alginate beads loaded with bacteria.

  6. In Vitro Evaluation of Beneficial Properties of Bacteriocinogenic Lactobacillus plantarum ST8Sh.

    PubMed

    Todorov, Svetoslav Dimitrov; Holzapfel, Wilhelm; Nero, Luis Augusto

    2017-06-01

    Lactobacillus plantarum ST8Sh, isolated from Bulgarian salami "shpek" and previously characterized as bacteriocin producer, was evaluated for its beneficial properties. Based on the PCR analysis, Lb. plantarum ST8Sh was shown to host a gene related to the production of adhesion proteins such as Mab, Mub, EF, and PrgB. Genetic and physiological tests suggest Lb. plantarum ST8Sh to represent a potential probiotic candidate, including survival in the presence of low levels of pH and high levels of ox bile, production of β-galactosidase, bile salt deconjugation, high level of hydrophobicity, functional auto- and co-aggregation properties, and adhesion to cell lines. Application of semi-purified bacteriocin produced by Lb. plantarum ST8Sh in combination with ciprofloxacin presented synergistic effect on inhibition of Listeria monocytogenes Scott A. Based on observed properties, Lb. plantarum ST8Sh can be considered as a potential probiotic candidate with additional bacteriocinogenic properties.

  7. Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia.

    PubMed

    Choi, Il-Dong; Kim, Sung-Hwan; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Hong, Seong Soo; Sim, Jae-Hun; Ahn, Young-Tae

    2016-03-01

    The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 X 10(9) CFU/day of L. plantarum KY1032 and 5 X 10(9) CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR.

  8. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    PubMed Central

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C.; Chorianopoulos, Nikos

    2015-01-01

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry. PMID:26506345

  9. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers.

    PubMed

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C; Chorianopoulos, Nikos

    2015-10-22

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  10. Lactobacillus acidophilus Improves Intestinal Inflammation in an Acute Colitis Mouse Model by Regulation of Th17 and Treg Cell Balance and Fibrosis Development.

    PubMed

    Park, Jin-Sil; Choi, Jeong Won; Jhun, JooYeon; Kwon, Ji Ye; Lee, Bo-In; Yang, Chul Woo; Park, Sung-Hwan; Cho, Mi-La

    2018-03-01

    Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). Probiotics exert protective effects against IBD, and probiotic commensal Lactobacillus species are common inhabitants of the natural microbiota, especially in the gut. To investigate the effects of Lactobacillus acidophilus on the development of IBD, L. acidophilus was administered orally in mice with dextran sodium sulfate (DSS)-induced colitis. DSS-induced damage and the therapeutic effect of L. acidophilus were investigated. Treatment with L. acidophilus attenuated the severity of DSS-induced colitis. Specifically, it suppressed proinflammatory cytokines such as interleukin (IL)-6, tumor necrosis factor-α, IL-1β, and IL-17 in the colon tissues, which are produced by T helper (Th) 17 cells. Moreover, in vitro L. acidophilus treatment directly induced T regulatory (Treg) cells and the production of IL-10, whereas the production of IL-17 was suppressed in splenocytes. In addition, we found that L. acidophilus treatment decreased the levels of α-smooth muscle actin, a marker of activated myofibroblasts, and type I collagen compared with control mice. These results suggest that L. acidophilus may be a novel treatment for IBD by modulating the balance between Th17 and Treg cells, as well as fibrosis development.

  11. Availability of Essential B-Group Vitamins to Lactobacillus plantarum in Green Olive Fermentation Brines

    PubMed Central

    Ruiz-Barba, J. L.; Jimenez-Diaz, R.

    1995-01-01

    The availability throughout the traditional Spanish-style green olive fermentation of four vitamins that are essential for the growth of Lactobacillus plantarum was studied. It was found that nicotinic and pantothenic acids, biotin, and vitamin B(inf6) were available in the fermentation brines within the first few days of the process, and their levels throughout the fermentative process were well above those required by L. plantarum to grow at its maximum growth rate. In laboratory medium, various yeast strains isolated from the fermentations were found to produce these vitamins in amounts several times that required by L. plantarum. This finding suggests that some yeast species might play a role in encouraging the growth of L. plantarum in Spanish-style green olive fermentation. PMID:16534988

  12. Activities of free and encapsulated Lactobacillus acidophilus LA5 or Lactobacillus casei 01 in processed longan juices on exposure to simulated gastrointestinal tract.

    PubMed

    Chaikham, Pittaya; Apichartsrangkoon, Arunee; Worametrachanon, Srivilai; Supraditareporn, Wissanee; Chokiatirote, Ekachai; Van der Wiele, Tom

    2013-07-01

    Fruit drinks containing probiotics are gaining interest in the global marketplace. For example, longan juice, containing carbohydrate and various bioactive components, is a potentially health-promoting beverage as well as probiotic carrier for human consumption. In this study, high-pressure and thermal processes were applied to eliminate competitive micro-organisms in longan juice prior to the addition of Lactobacillus acidophilus LA5 or Lactobacillus casei 01. The activities of these probiotics in a simulated gastrointestinal tract were also investigated. Encapsulated probiotics could survive in the acidic environment of the stomach and small intestine, while the free cells were completely eliminated. In the colon experiment, the influence of encapsulated L. casei 01 on colon lactobacilli was significantly greater than that of encapsulated L. acidophilus LA5. Both encapsulated probiotics suspended in processed longan juices led to extensive increases in the formation of lactic acid and short-chain fatty acids (SCFA). Acetate was the major SCFA produced by colon bacteria, followed by propionate and butyrate. The discernible clear zone suggested that L. casei 01 provided greater antibacterial activity than L. acidophilus LA5. Both encapsulated probiotics along with processed longan juice led to significant increases in colon lactobacilli, lactic acid and SCFA formation. © 2012 Society of Chemical Industry.

  13. d-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate.

    PubMed

    Jayamuthunagai, J; Srisowmeya, G; Chakravarthy, M; Gautam, P

    2017-07-01

    The aim of the work is to produce d-Tagatose by direct addition of alginate immobilized Lactobacillus plantarum cells to lactose hydrolysed whey permeate. The cells were untreated and immobilized (UIC), permeabilized and immobilized (PIC) and the relative activities were compared with purified l-arabinose isomerase (l-AI) for d-galactose isomerization. Successive lactose hydrolysis by β-galactosidase from Escherichia coli and d-galactose isomerization using l-AI from Lactobacillus plantarum was performed to investigate the in vivo production of d-tagatose in whey permeate. In whey permeate, maximum conversion of 38% and 33% (w/w) d-galactose isomerization by PIC and UIC has been obtained. 162mg/g and 141mg/g of d-tagatose production was recorded in a 48h reaction time at 50°C, pH 7.0 with 5mM Mn 2+ ion concentration in the initial substrate mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens

    PubMed Central

    Kleiveland, Charlotte R.; Minic, Rajna; Moen, Lars F.; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Eijsink, Vincent G. H.

    2016-01-01

    ABSTRACT Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum. The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo. The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. IMPORTANCE This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and

  15. Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens.

    PubMed

    Kuczkowska, Katarzyna; Kleiveland, Charlotte R; Minic, Rajna; Moen, Lars F; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Mathiesen, Geir; Eijsink, Vincent G H

    2017-01-15

    Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this

  16. Potential of Lactobacillus plantarum IBB3036 and Lactobacillus salivarius IBB3154 to persistence in chicken after in ovo delivery.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Puzia, Weronika; Żylińska, Joanna; Cieśla, Jarosław; Gulewicz, Krzysztof A; Bardowski, Jacek K; Górecki, Roman K

    2018-03-25

    The aim of this study was to characterize and compare selected Lactobacillus strains originating from different environments (cow milk and hen feces) with respect to their applicative potential to colonize gastrointestinal track of chickens before hatching from an egg. In vitro phenotypic characterization of lactobacilli strains included the investigation of the important prerequisites for persistence in gastrointestinal tract, such as a capability to survive in the presence of bile salts and at low pH, enzymatic and sugar metabolic profiles, adhesion abilities, and resistance to osmolytes, temperature, and antibiotics. Regarding the resistance of lactobacilli to most of the various stress factors tested, the milk isolate Lactobacillus plantarum IBB3036 showed better abilities than the chicken feces isolate Lactobacillus salivarius IBB3154. However, regarding the acidification tolerance and adherence ability, L. salivarius IBB3154 revealed better characteristics. Use of these two selected lactobacilli isolates together with proper prebiotics resulted in the preparation of two S1 and S2 bioformulations, which were injected in ovo into hen Cobb500 FF fertilized eggs. Furthermore, in vivo tests assessing the persistence of L. plantarum IBB3036 and L. salivarius IBB3154 in the chicken gastrointestinal tract was monitored by PCR-based classical and quantitative techniques and revealed the presence of both strains in fecal samples collected 3 days after hatching. Subsequently, the number of L. salivarius IBB3154 increased significantly in the chicken intestine, whereas the presence of L. plantarum IBB3036 was gradually decreased. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Escherichia coli-Derived Uracil Increases the Antibacterial Activity and Growth Rate of Lactobacillus plantarum.

    PubMed

    Ha, Eun-Mi

    2016-05-28

    Lactobacillus plantarum (L. plantarum) is a representative probiotic. In particular, L. plantarum is the first commensal bacterium to colonize the intestine of infants. For this reason, the initial settlement of L. plantarum can play an important role in determining an infant's health as well as their eventual health status as an adult. In addition, L. plantarum combats pathogenic infections (such as Escherichia coli (E. coli), one of the early pathogenic colonizers in an unhealthy infant gut) by secreting antimicrobial substances. The aim of this research was to determine how L. plantarum combats E. coli infection and why it is a representative probiotic in the intestine. Consequently, this research observed that E. coli releases uracil. L. plantarum specifically recognizes E. coli-derived uracil, which increases the growth rate and production of antimicrobial substance of L. plantarum. In addition, through the inhibitory activity test, this study postulates that the antimicrobial substance is a protein and can be considered a bacteriocin-like substance. Therefore, this research assumes that L. plantarum exerts its antibacterial ability by recognizing E. coli and increasing its growth rate as a result, and this phenomenon could be one of the reasons for L. plantarum settling in the intestine of infants as a beneficial bacterium.

  18. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  19. Growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model.

    PubMed

    Bergamini, C V; Peralta, G H; Milesi, M M; Hynes, E R

    2013-09-01

    In this work, we studied the growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model consisting of a sterile extract of Reggianito cheese. To assess the influence of the primary starter and initial proteolysis level on these parameters, we prepared the extracts with cheeses that were produced using 2 different starter strains of Lactobacillus helveticus 138 or 209 (Lh138 or Lh209) at 3 ripening times: 3, 90, and 180 d. The experimental extracts were inoculated with Lb. plantarum I91; the control extracts were not inoculated and the blank extracts were heat-treated to inactivate enzymes and were not inoculated. All extracts were incubated at 34°C for 21 d, and then the pH, microbiological counts, and proteolysis profiles were determined. The basal proteolysis profiles in the extracts of young cheeses made with either strain tested were similar, but many differences between the proteolysis profiles of the extracts of the Lh138 and Lh209 cheeses were found when riper cheeses were used. The pH values in the blank and control extracts did not change, and no microbial growth was detected. In contrast, the pH value in experimental extracts decreased, and this decrease was more pronounced in extracts obtained from either of the young cheeses and from the Lh209 cheese at any stage of ripening. Lactobacillus plantarum I91 grew up to 8 log during the first days of incubation in all of the extracts, but then the number of viable cells decreased, the extent of which depended on the starter strain and the age of the cheese used for the extract. The decrease in the counts of Lb. plantarum I91 was observed mainly in the extracts in which the pH had diminished the most. In addition, the extracts that best supported the viability of Lb. plantarum I91 during incubation had the highest free amino acids content. The effect of Lb. plantarum I91 on the proteolysis profile of the extracts was marginal. Significant changes in the content of free

  20. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus.

    PubMed

    Ng, Elizabeth W; Yeung, Marie; Tong, Phillip S

    2011-01-31

    Recognized to confer health benefits to consumers, probiotics such as Lactobacillus acidophilus are commonly incorporated into fermented dairy products worldwide; among which yogurt is a popular delivery vehicle. To materialize most of the putative health benefits associated with probiotics, an adequate amount of viable cells must be delivered at the time of consumption. However, the loss in their viabilities during refrigerated storage has been demonstrated previously. This study focused on the effects of yogurt starter cultures on the survival of five strains of L. acidophilus, with emphases on low pH and acid production. Differential survival behavior between L. acidophilus strains was further analyzed. To this end, viable cell counts of L. acidophilus were determined weekly during 4°C storage in various types of yogurts made with Streptococcus thermophilus alone, L. delbrueckii ssp. bulgaricus alone, both species of the starter cultures, or glucono-delta-lactone (GDL). All yogurt types, except for pasteurized yogurts, were co-fermented with L. acidophilus. Yogurt filtrate was analyzed for the presence of any inhibitory substance and for the amount of hydrogen peroxide. Multiplication of L. acidophilus was not affected by the starter cultures as all strains reached high level on day 0 of the storage period. Throughout the 28-day storage period, cell counts of L. acidophilus PIM703 and SBT2062 remained steady (~6 × 10(7)CFU/g) in yogurts made with both starter cultures, whereas those of ATCC 700396 and NCFM were reduced by a maximum of 3 and 4.6 logs, respectively. When starter cultures were replaced by GDL, all strains survived well, suggesting that a low pH was not a critical factor dictating their survival. In addition, the filtrate collected from yogurts made with starter cultures appeared to have higher inhibitory activities against L. acidophilus than that made with GDL. The presence of viable starter cultures was necessary to adversely affect the

  1. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice

    PubMed Central

    Zhou, Yu-Kun; Qin, Huan-Long; Zhang, Ming; Shen, Tong-Yi; Chen, Hong-Qi; Ma, Yan-Lei; Chu, Zhao-Xin; Zhang, Peng; Liu, Zhi-Hua

    2012-01-01

    AIM: To investigate the mechanisms of Lactobacillus plantarum (L. plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats. METHODS: Forty rats were randomly divided into groups of sham-operation, bile duct ligation (BDL), BDL + L. plantarum, BDL + internal biliary drainage (IBD), and BDL + IBD + L. plantarum. Ten days after L. plantarum administration, blood and ileal samples were collected from the rats for morphological examination, and intestinal barrier function, liver function, intestinal oxidative stress and protein kinase C (PKC) activity measurement. The distribution and expression of the PKC and tight junction (TJ) proteins, such as occludin, zonula occludens-1, claudin-1, claudin-4, junction adhesion molecule-A and F-actin, were examined by confocal laser scanning microscopy, immunohistochemistry, Western blotting, real-time fluorescent quantitative polymerase chain reaction assay. RESULTS: L. plantarum administration substantially restored gut barrier, decreased enterocyte apoptosis, improved intestinal oxidative stress, promoted the activity and expression of protein kinase (BDL vs BDL + L. plantarum, 0.295 ± 0.007 vs 0.349 ± 0.003, P < 0.05; BDL + IBD vs BDL + IBD + L. plantarum, 0.407 ± 0.046 vs 0.465 ± 0.135, P < 0.05), and particularly enhanced the expression and phosphorylation of TJ proteins in the experimental obstructive jaundice (BDL vs BDL + L. plantarum, 0.266 ± 0.118 vs 0.326 ± 0.009, P < 0.05). The protective effect of L. plantarum was more prominent after internal biliary drainage ( BDL + IBD vs BDL + IBD + L. plantarum, 0.415 ± 0.105 vs 0.494 ± 0.145, P < 0.05). CONCLUSION: L. plantarum can decrease intestinal epithelial cell apoptosis, reduce oxidative stress, and prevent TJ disruption in biliary obstruction by activating the PKC pathway. PMID:22912548

  2. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice.

    PubMed

    Zhou, Yu-Kun; Qin, Huan-Long; Zhang, Ming; Shen, Tong-Yi; Chen, Hong-Qi; Ma, Yan-Lei; Chu, Zhao-Xin; Zhang, Peng; Liu, Zhi-Hua

    2012-08-14

    To investigate the mechanisms of Lactobacillus plantarum (L. plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats. Forty rats were randomly divided into groups of sham-operation, bile duct ligation (BDL), BDL + L. plantarum, BDL + internal biliary drainage (IBD), and BDL + IBD + L. plantarum. Ten days after L. plantarum administration, blood and ileal samples were collected from the rats for morphological examination, and intestinal barrier function, liver function, intestinal oxidative stress and protein kinase C (PKC) activity measurement. The distribution and expression of the PKC and tight junction (TJ) proteins, such as occludin, zonula occludens-1, claudin-1, claudin-4, junction adhesion molecule-A and F-actin, were examined by confocal laser scanning microscopy, immunohistochemistry, Western blotting, real-time fluorescent quantitative polymerase chain reaction assay. L. plantarum administration substantially restored gut barrier, decreased enterocyte apoptosis, improved intestinal oxidative stress, promoted the activity and expression of protein kinase (BDL vs BDL + L. plantarum, 0.295 ± 0.007 vs 0.349 ± 0.003, P < 0.05; BDL + IBD vs BDL + IBD + L. plantarum, 0.407 ± 0.046 vs 0.465 ± 0.135, P < 0.05), and particularly enhanced the expression and phosphorylation of TJ proteins in the experimental obstructive jaundice (BDL vs BDL + L. plantarum, 0.266 ± 0.118 vs 0.326 ± 0.009, P < 0.05). The protective effect of L. plantarum was more prominent after internal biliary drainage ( BDL + IBD vs BDL + IBD + L. plantarum, 0.415 ± 0.105 vs 0.494 ± 0.145, P < 0.05). L. plantarum can decrease intestinal epithelial cell apoptosis, reduce oxidative stress, and prevent TJ disruption in biliary obstruction by activating the PKC pathway.

  3. Use of Lactobacillus acidophilus and Lactobacillus casei for a potential probiotic legume-based fermented product using pigeon pea (Cajanus cajan).

    PubMed

    Parra, K; Ferrer, M; Piñero, M; Barboza, Y; Medina, L M

    2013-02-01

    The aim of the present study was to evaluate the use of pigeon pea (Cajanus cajan) as an appropriate substrate in the production of a legume-based fermented product with Lactobacillus acidophilus ATCC 314 or Lactobacillus casei ATCC 393 and then to ascertain the effects of the addition of ingredients such as powdered milk and banana or strawberry sauce. The products were analyzed for viable cell counts, pH, and sensory attributes during product manufacture and throughout the refrigerated storage period at 3, 7, 14, 21, and 28 days. Nine types of products were produced. At the end of the storage period, the viability of L. acidophilus was above 7 log CFU/g in the presence of milk and 20% sucrose fruit sauce. For products with L. casei, the lack of ingredients such as milk caused no significant loss in viability; however, a high concentration of sucrose in the fruit sauce was an important factor in maintaining a high L. casei population. L. casei had high viability and good sensory attributes. Both strains could be considered suitable for a pigeon pea-based fermented potential probiotic product and a low-cost protein source.

  4. Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20.

    PubMed

    Imran, Mohamed Yousuff Mohamed; Reehana, Nazar; Jayaraj, K Arumugam; Ahamed, Abdul Azees Parveez; Dhanasekaran, Dharmadurai; Thajuddin, Nooruddin; Alharbi, Naiyf S; Muralitharan, Gangatharan

    2016-12-01

    In this study, 27 strains of Lactic acid bacteria (LAB) were isolated and identified from different milk sources. All the isolates were biochemically characterized and screened for their ability to produce exopolysaccharides (EPS), among which two isolates namely Lactobacillus plantarum NTMI05 (197mg/L) and Lactobacillus plantarum NTMI20 (187mg/L) showed higher EPS production. Both the isolates were molecular characterized and tested for their probiotic properties. The chemical composition of EPS from L. plantarum NTMI05 and NTMI20 revealed the presence of 95.45% and 92.35% carbohydrates, 14±0.1and 11±0.15mg/L lactic acid, 10.5±0.2 and 9±0.1mg/mL of reducing sugar, respectively. HPLC analysis showed galactose at the retention time of 2.29.The maximum EPS yield was optimized for the media components like glucose (20g/L), yeast extract (25g/L) and ammonium sulphate (2g/L) using Central Composite Design and Response Surface Methodology (RSM). Under optimum conditions the predicted maximum EPS production was 0.891g/L, 0.797g/L, while the actual experimental value was 0.956g/L and 0.827g/L for L. plantarum NTMI05 and NTMI20, respectively. The antioxidant capacity was also evaluated by DPPH and reducing power assay proving the potentiality of these organisms in food and dairy industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus

    PubMed Central

    Selle, Kurt; Goh, Yong J.; Johnson, Brant R.; O’Flaherty, Sarah; Andersen, Joakim M.; Barrangou, Rodolphe; Klaenhammer, Todd R.

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus. Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus, suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall. PMID:28443071

  6. Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus.

    PubMed

    Selle, Kurt; Goh, Yong J; Johnson, Brant R; O'Flaherty, Sarah; Andersen, Joakim M; Barrangou, Rodolphe; Klaenhammer, Todd R

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus . Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus , suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall.

  7. Antibacterial effect of propolis derived from tribal region on Streptococcus mutans and Lactobacillus acidophilus: An in vitro study.

    PubMed

    Airen, Bhuvnesh; Sarkar, Priyanka Airen; Tomar, Urvashi; Bishen, Kundendu Arya

    2018-01-01

    The study aimed at investigating in vitro antimicrobial activity of ethanolic extract of propolis (EEP) and water extract of propolis against two main cariogenic oral pathogens: Streptococcus mutans and Lactobacillus acidophilus. Propolis was obtained from beehives in the Jhabua region of India. Ethanolic and water extracts were prepared at concentrations of 5% and 20% weight/volume (w/v). To support the results, a positive control (chlorhexidine 0.2%) and a negative control (distilled water) were used. S. mutans was cultured on brain-heart infusion agar and L. acidophilus was cultured on De Man, Rogosa, and Sharpe agar. The results showed that at concentrations of 5% and 20%, EEP was effective against S. mutans and L. acidophilus. However, at similar concentrations, water extract was effective only against L. acidophilus. The highest activity was shown by chlorhexidine (0.2%) with mean zones of inhibition of 13.9 mm and 15.1 mm against S. mutans and L. acidophilus, respectively. It can be concluded that the propolis extracted from tribal regions of Jhabua possesses antibacterial efficacy against S. mutans and L. acidophilus.

  8. Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice.

    PubMed

    Justino, Priscilla F C; Melo, Luis F M; Nogueira, Andre F; Morais, Cecila M; Mendes, Walber O; Franco, Alvaro X; Souza, Emmanuel P; Ribeiro, Ronaldo A; Souza, Marcellus H L P; Soares, Pedro Marcos Gomes

    2015-03-01

    Lactobacillus acidophilus is widely used for gastrointestinal disorders, but its role in inflammatory conditions like in chemotherapy-induced mucositis is unclear. Here, we report the effect of L. acidophilus on 5-fluorouracil-induced (5-FU) intestinal mucositis in mice. Mice weighing 25-30 g (n = 8) were separated into three groups, saline, 5-FU, and 5-FU + L. acidophilus (5-FU-La) (16 × 10(9) CFU/kg). In the 5-FU-La group, L. acidophilus was administered concomitantly with 5-FU on the first day and alone for two additional days. Three days after the last administration of L. acidophilus, the animals were euthanized and the jejunum and ileum were removed for histopathological assessment and for evaluation of levels of myeloperoxidase activity, sulfhydryl groups, nitrite, and cytokines (TNF-α, IL-1β, CXCL-1, and IL-10). In addition, we investigated gastric emptying using spectrophotometry after feeding a 1.5-ml test meal by gavage and euthanasia. Data were submitted to ANOVA and Bonferroni's test, with the level of significance at p < 0.05. Intestinal mucositis induced by 5-FU significantly (p < 0.05) reduced the villus height-crypt depth ratio and GSH concentration and increased myeloperoxidase activity and the nitrite concentrations compared with the control group. Furthermore, 5-FU significantly (p < 0.05) increased cytokine (TNF-α, IL-1β, and CXCL-1) concentrations and decreased IL-10 concentrations compared with the control group. 5-FU also significantly (p < 0.05) delayed gastric emptying and gastrointestinal transit compared with the control group. All of these changes were significantly (p < 0.05) reversed by treatment with L. acidophilus. Lactobacillus acidophilus improves the inflammatory and functional aspects of intestinal mucositis induced by 5-FU.

  9. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation.

    PubMed

    Berbegal, Carmen; Peña, Nuria; Russo, Pasquale; Grieco, Francesco; Pardo, Isabel; Ferrer, Sergi; Spano, Giuseppe; Capozzi, Vittorio

    2016-08-01

    Malolactic fermentation (MLF) is a secondary fermentation in wine that usually takes place during or at the end of alcoholic fermentation. Lactobacillus plantarum is able to conduct MLF (particularly under high pH conditions and in co-inoculation with yeasts), and some strains are commercially used as MLF starter cultures. Recent evidences suggest a further use of selected L. plantarum strains for the pre-alcoholic acidification of grape must. In this study, we have carried out an integrated (molecular, technological, and biotechnological) characterization of L. plantarum strains isolated from Apulian wines in order to combine the two protechnological features (MLF performances and must acidification aptitudes). Several parameters such as sugar, pH and ethanol tolerance, resistance to lyophilisation and behaviour in grape must were evaluated. Moreover, the expression of stress gene markers was investigated and was linked to the ability of L. plantarum strains to grow and perform MLF. Co-inoculation of Saccharomyces cerevisiae and L. plantarum in grape must improves the bacterial adaptation to harsh conditions of wine and reduced total fermentation time. For the first time, we applied a polyphasic approach for the characterization of L. plantarum in reason of the MLF performances. The proposed procedure can be generalized as a standard method for the selection of bacterial resources for the design of MLF starter cultures tailored for high pH must. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2.

    PubMed

    Tang, Wei; Xing, Zhuqing; Li, Chao; Wang, Jinju; Wang, Yanping

    2017-04-15

    Lactobacillus plantarum MA2 was isolated from Chinese traditional Tibetan kefir grains. The antioxidant activities in vitro of this strain were evaluated extensively. The results showed that L. plantarum MA2 can tolerate hydrogen peroxide up to 2.0mM, and its fermentate (fermented supernatant, intact cell and cell-free extract) had strong reducing capacities, lipid peroxidation inhibition capacities, Fe 2+ -chelating abilities, as well as various free radical scavenging capacities. Additionally, both the fermented supernatant and cell homogenate exhibited glutathione peroxidase activity and superoxide dismutase activity. In order to investigate the antioxidant mechanism of L. plantarum MA2 at the molecular level, eight antioxidant-related genes were identified, and further analyzed. Three groups of genes cat, gshR and npx, were found up-regulated under H 2 O 2 challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Unravelling the reduction pathway as alternative metabolic route to hydroxycinnamate decarboxylation in Lactobacillus plantarum.

    PubMed

    Santamaría, Laura; Reverón, Inés; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2018-05-18

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in plant-food fermentations where hydroxycinnamic acids are abundant. L. plantarum efficiently decarboxylates these compounds, and also reduces them, yielding substituted phenylpropionic acids. Although the reduction step is known to be induced by a hydroxycinnamic acid, the enzymatic machinery responsible for this reduction pathway has not been yet identified and characterized. A previous study on the transcriptomic response of L. plantarum to p -coumaric acid revealed a marked induction of two contiguous genes lp_1424 and lp_1425, encoding putative reductases. In this work, disruption of these genes abolished the hydroxycinnamate reductase activity of L. plantarum, supporting their involvement in such chemical activity. Functional in vitro studies reveal that Lp_1425 (HcrB) exhibits hydroxycinnamate reductase activity but was unstable in solution. In contrast, Lp_1424 (HcrA) was inactive but showed high stability. When the hcrAB genes were co-overexpressed, formation of an active heterodimer (HcrAB) was observed. Since L. plantarum reductase activity was only observed on hydroxycinnamic acids ( o -coumaric, m -coumaric, p -coumaric, caffeic, ferulic, and sinapic acids), the presence of a hydroxyl group substituent on the benzene ring appears to be required for activity. In addition, hydroxycinnamate reductase activity was not widely present among lactic acid bacteria, and it was associated to the presence of hcrAB genes. This study revealed that L. plantarum hydroxycinnamate reductase is a heterodimeric NADH-dependent coumarate reductase acting on a carbon-carbon double bond. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables where hydroxycinnamic acids are present. The bacterial metabolism on these compounds during fermentation plays a fundamental role on the biological activity of hydroxycinnamates. L. plantarum strains

  12. Purification and characterization of plantaricin Y, a novel bacteriocin produced by Lactobacillus plantarum 510.

    PubMed

    Chen, Yi-sheng; Wang, Yan-chong; Chow, Yiou-shing; Yanagida, Fujitoshi; Liao, Chen-chung; Chiu, Chi-ming

    2014-03-01

    Lactobacillus plantarum 510, previously isolated from a koshu vineyard in Japan, was found to produce a bacteriocin-like inhibitory substance which was purified and characterized. Mass spectrometry analysis showed that the mass of this bacteriocin is 4,296.65 Da. A partial sequence, NH2- SSSLLNTAWRKFG, was obtained by N-terminal amino acid sequence analysis. A BLAST search revealed that this is a unique sequence; this peptide is thus a novel bacteriocin produced by Lactobacillus plantarum 510 and was termed plantaricin Y. Plantaricin Y shows strong inhibitory activity against Listeria monocytogenes BCRC 14845, but no activity against other pathogens tested. Bacteriocin activity decreased slightly after autoclaving (121 °C for 15 min), but was completely inactivated by protease K. Furthermore, trypsin-digested bacteriocin product fragments retained activity against L. monocytogenes BCRC 14845 and exhibited a different inhibitory spectrum.

  13. Combined effect of Lactobacillus acidophilus and β-cyclodextrin on serum cholesterol in pigs.

    PubMed

    Alonso, L; Fontecha, J; Cuesta, P

    2016-01-14

    A total of twenty-four Yorkshire gilt pigs of 6-7 weeks of age were used in a 2×2 factorial experiment to determine the individual and combined effects of the inclusion of two dietary factors (cholesterol rich, 3% β-cyclodextrin (BCD) and Lactobacillus acidophilus cultures) on total cholesterol and LDL-cholesterol levels in blood serum. Pigs were assigned randomly to treatment groups (n 6). Total serum cholesterol concentrations decreased after 3 weeks in all the experimental treatment groups, including diets with BCD, L. acidophilus or both. Similar trends were observed for serum LDL-cholesterol concentrations among the experimental treatments. No statistically significant differences from the control group were observed in either total serum cholesterol or LDL-cholesterol concentrations (P<0·05) for each of the individual treatment groups: BCD or L. acidophilus. However, significant differences in total serum cholesterol concentrations were observed when comparing the combined treatment group (BCD and L. acidophilus) with the control group, which consisted of a basal diet and sterile milk. The combined treatment group exhibited 17·9% lower total serum cholesterol concentration after 3 weeks. Similar significant differences were observed when comparing the combined effect experimental group with the control group after 3 weeks. The combined treatment group exhibited 27·9% lower serum LDL-cholesterol concentrations.

  14. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  15. Characterization of a Novel Maltose-Forming α-Amylase from Lactobacillus plantarum subsp. plantarum ST-III.

    PubMed

    Jeon, Hye-Yeon; Kim, Na-Ri; Lee, Hye-Won; Choi, Hye-Jeong; Choung, Woo-Jae; Koo, Ye-Seul; Ko, Dam-Seul; Shim, Jae-Hoon

    2016-03-23

    A novel maltose (G2)-forming α-amylase from Lactobacillus plantarum subsp. plantarum ST-III was expressed in Escherichia coli and characterized. Analysis of conserved amino acid sequence alignments showed that L. plantarum maltose-producing α-amylase (LpMA) belongs to glycoside hydrolase family 13. The recombinant enzyme (LpMA) was a novel G2-producing α-amylase. The properties of purified LpMA were investigated following enzyme purification. LpMA exhibited optimal activity at 30 °C and pH 3.0. It produced only G2 from the hydrolysis of various substrates, including maltotriose (G3), maltopentaose (G5), maltosyl β-cyclodextrin (G2-β-CD), amylose, amylopectin, and starch. However, LpMA was unable to hydrolyze cyclodextrins. Reaction pattern analysis using 4-nitrophenyl-α-d-maltopentaoside (pNPG5) demonstrated that LpMA hydrolyzed pNPG5 from the nonreducing end, indicating that LpMA is an exotype α-amylase. Kinetic analysis revealed that LpMA had the highest catalytic efficiency (kcat/Km ratio) toward G2-β-CD. Compared with β-amylase, a well-known G2-producing enzyme, LpMA produced G2 more efficiently from liquefied corn starch due to its ability to hydrolyze G3.

  16. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    PubMed Central

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  17. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion off bpB lost the ability to adhere to mucin and fibronectin in vitro Homologues off bpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilus homology group. Copyright © 2016 Hymes et al.

  18. Manganese acquisition by Lactobacillus plantarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, F.S.; Duong, M.N.

    1984-04-01

    Lactobacillus plantarum has an unusually high Mn(II) requirement for growth and accumulated over 30 mM intracellular Mn(II). The acquisition of Mn(II) by L. plantarum occurred via a specific active transport system powered by the transmembrane proton gradient. The Mn(II) uptake system has a K/sub m/ of 0.2 ..mu..M and a V/sub max/ of 24 nmol mg/sup -1/ of protein min/sup -1/. Above a medium Mn(II) concentration of 200 ..mu..M, the intracellular Mn(II) level was independent of the medium Mn(II) and unresponsive to oxygen stresses but was reduced by phosphate limitation. At a pH of 5.5, citrate, isocitrate, and cis-aconitate effectivelymore » promoted MN(II) uptake, although measurable levels of 1,5-(/sup 14/C)citrate were not accumulated. When cells were presented with equimolar Mn(II) and Cd(II), Cd(II) was preferentially taken up by the Mn(II) transport system. Both Mn(II) and Cd(II) uptake were greatly increased by Mn(II) starvation. Mn(II) uptake by Mn(II)-starved cells was subject to a negative feedback regulatory mechanism functioning less than 1 min after exposure of the cells to Mn(II) and independent of protein synthesis. When presented with a relatively large amount of exogenous Mn(II), Mn(II)-starved cells exhibited a measurable efflux of their internal Mn(II), but the rate was only a small fraction of the maximal Mn(II) uptake rate.« less

  19. An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus

    PubMed Central

    Møller, Marie S.; Rasmussen, Kasper Bøwig; Cypryk, Wojciech; Celebioglu, Hasan Ufuk; Klaenhammer, Todd R.; Svensson, Birte

    2017-01-01

    ABSTRACT Of the few predicted extracellular glycan-active enzymes, glycoside hydrolase family 13 subfamily 14 (GH13_14) pullulanases are the most common in human gut lactobacilli. These enzymes share a unique modular organization, not observed in other bacteria, featuring a catalytic module, two starch binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here, we explore the specificity of a representative of this group of pullulanases, Lactobacillus acidophilus Pul13_14 (LaPul13_14), and its role in branched α-glucan metabolism in the well-characterized Lactobacillus acidophilus NCFM, which is widely used as a probiotic. Growth experiments with L. acidophilus NCFM on starch-derived branched substrates revealed a preference for α-glucans with short branches of about two to three glucosyl moieties over amylopectin with longer branches. Cell-attached debranching activity was measurable in the presence of α-glucans but was repressed by glucose. The debranching activity is conferred exclusively by LaPul13_14 and is abolished in a mutant strain lacking a functional LaPul13_14 gene. Hydrolysis kinetics of recombinant LaPul13_14 confirmed the preference for short-branched α-glucan oligomers consistent with the growth data. Curiously, this enzyme displayed the highest catalytic efficiency and the lowest Km reported for a pullulanase. Inhibition kinetics revealed mixed inhibition by β-cyclodextrin, suggesting the presence of additional glucan binding sites besides the active site of the enzyme, which may contribute to the unprecedented substrate affinity. The enzyme also displays high thermostability and higher activity in the acidic pH range, reflecting adaptation to the physiologically challenging conditions in the human gut. IMPORTANCE Starch is one of the most abundant glycans in the human diet. Branched α-1,6-glucans in dietary starch and glycogen are nondegradable by human enzymes and constitute a

  20. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms

    PubMed Central

    Arena, Mattia Pia; Silvain, Amandine; Normanno, Giovanni; Grieco, Francesco; Drider, Djamel; Spano, Giuseppe; Fiocco, Daniela

    2016-01-01

    Lactobacillus plantarum is one of the most versatile species extensively used in the food industry both as microbial starters and probiotic microorganisms. Several L. plantarum strains have been shown to produce different antimicrobial compounds such as organic acids, hydrogen peroxide, diacetyl, and also bacteriocins and antimicrobial peptides, both denoted by a variable spectrum of action. In recent decades, the selection of microbial molecules and/or bacterial strains able to produce antagonistic molecules to be used as antimicrobials and preservatives has been attracting scientific interest, in order to eliminate or reduce chemical additives, because of the growing attention of consumers for healthy and natural food products. The aim of this work was to investigate the antimicrobial activity of several food-isolated L. plantarum strains, analyzed against the pathogenic bacteria Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7 and Staphylococcus aureus. Antagonistic activity was assayed by agar spot test and revealed that strain L. plantarum 105 had the strongest ability to contrast the growth of L. monocytogenes, while strains L. plantarum 106 and 107 were the most active microorganisms against E. coli O157:H7. The antimicrobial ability was also screened by well diffusion assay and broth micro-dilution method using cell-free supernatants (CFS) from each Lactobacillus strain. Moreover, the chemical nature of the molecules released in the CFS, and possibly underlying the antagonistic activity, was preliminary characterized by exposure to different constraints such as pH neutralization, heating, catalase, and proteinase treatments. Our data suggest that the ability of L. plantarum cultures to contrast pathogens growth in vitro depends, at least in part, on a pH-lowering effect of supernatants and/or on the presence of organic acids. Cluster analysis was performed in order to group L. plantarum strains according to their antimicrobial effect

  1. Effect of complexation conditions on microcapsulation of Lactobacillus acidophilus in xanthan-chitosan polyelectrolyte complex gels.

    PubMed

    Chen, He; Song, Yajuan; Liu, Nina; Wan, Hongchang; Shu, Guowei; Liao, Na

    2015-01-01

    Lactobacillus acidophilus has become increasingly popular because of their beneficial effects on health of their host, and are called proboscis. In order to exert beneficial effects for probiotics, they must be able to tolerate the acidic conditions of the stomach environment and the bile in the small intestine. Microencapsulated form has received reasonable attention, since it can protect probiotic organisms against an unfavourable environment, and to allow their release in a viable and metabolically active state in the intestine. The aim of this study was to investigate some factores, such as chitosan solution pH and concentration, xanthan concentration, cell suspension-xanthan ratio, mixed bacteria glue liquid-chitosan ratio, which impacted the process of microencapsulation of L. acidophilus. In this study, L. acidophilus was immobilized with xanthan⁄chitosan gel using extrusion method. The viable counts and encapsulation yield of L. acidophilus encapsulated in different chitosan solution pH (4.5, 5, 5.5 and 6), in different chitosan concentration (0.5%, 0.7%, 0.9% and 1.1%), in different xanthan concentration (0.5%, 0.7%, 0.9% and 1.1%), in different cell suspension-xanthan ratios (1:5, 1:10, 1:15 and 1:20), in different mixed bacteria glue liquid-chitosan ratios (1:3, 1:4, 1:5 and 1:6), have been investigated by single factor experiment method. The optimum conditions of microencapsulated L. acidophilus have been observed. The optimum chitosan solution pH for L. acidophilus was 5.5; the optimum chitosan concentration was 0.9%; the optimum xanthan concentration was 0.7%; the optimum cell suspension-xanthan ratio was 1:10; the optimum mixed bacteria glue liquid-chitosan ratio was 1:3. These results will be helpful to further optimize the process of L. acidophilus microencapsulation, and provide reference for obtaining higher viable counts and entrapped yield of L. acidophilus microcapsules.

  2. Genome shuffling of Lactobacillus plantarum C88 improves adhesion.

    PubMed

    Zhao, Yujuan; Duan, Cuicui; Gao, Lei; Yu, Xue; Niu, Chunhua; Li, Shengyu

    2017-01-01

    Genome shuffling is an important method for rapid improvement in microbial strains for desired phenotypes. In this study, ultraviolet irradiation and nitrosoguanidine were used as mutagens to enhance the adhesion of the wild-type Lactobacillus plantarum C88. Four strains with better property were screened after mutagenesis to develop a library of parent strains for three rounds of genome shuffling. Fusants F3-1, F3-2, F3-3, and F3-4 were screened as the improved strains. The in vivo and in vitro tests results indicated that the population after three rounds of genome shuffling exhibited improved adhesive property. Random Amplified Polymorphic DNA results showed significant differences between the parent strain and recombinant strains at DNA level. These results suggest that the adhesive property of L. plantarum C88 can be significantly improved by genome shuffling. Improvement in the adhesive property of bacterial cells by genome shuffling enhances the colonization of probiotic strains which further benefits to exist probiotic function.

  3. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material.

    PubMed

    Jiang, Yujun; Zheng, Zhe; Zhang, Tiehua; Hendricks, Gregory; Guo, Mingruo

    2016-09-01

    Survivability of probiotics in foods is essential for developing functional food containing probiotics. We investigated polymerized whey protein (PWP)-based microencapsulation process which is developed for protecting probiotics like Lactobacillus acidophilus NCFM and compared with the method using sodium alginate (SA). The entrapment rate was 89.3 ± 4.8% using PWP, while it was 73.2 ± 1.4% for SA. The microencapsulated NCFM by PWP and SA were separately subjected to digestion juices and post-fermentation storage of fermented cows' and goats' milk using the encapsulated culture. The log viable count of NCFM in PWP-based microencapsulation was 4.56, compared with that of 4.26 in SA-based ones and 3.13 for free culture. Compared with using SA as wall material, PWP was more effective in protecting probiotic. Microencapsulation of L. acidophilus NCFM using PWP as wall material can be exploited in the development of fermented dairy products with better survivability of probiotic organism.

  5. Effects of Lactobacillus acidophilus on gut microbiota composition in broilers challenged with Clostridium perfringens

    PubMed Central

    Wang, Weiwei; Liu, Dan; Guo, Yuming

    2017-01-01

    This study shows the effects of dietary supplementation with Lactobacillus acidophilus on the gut microbiota of broiler chickens challenged with Clostridium perfringens infection during a 21-day period according to pyrosequencing of the 16S ribosomal RNA gene. In a 2 × 2 factorial arrangement of treatments, 308 1-day-old male Arbor Acres broiler chicks were analyzed for the effects of the probiotic (groups without or with L. acidophilus supplementation), pathogen challenge (groups without or with C. perfringens), and the effects of interaction. The infection decreased the number of Observed species, Chao1, and ACE of ileal microbiota and increased Chao1 of cecal microbiota of broilers, whereas L. acidophilus supplementation decreased the Shannon index of the ileal microbiota. Shannon index and Simpson indices were lower in the ileal microbiota than in the cecal microbiota. In the ileal microbiota, the control group had higher relative abundance of Lachnospiraceae and Ruminococcaceae in comparison with the other groups; however, the relative abundance of Gammaproteobacteria was significantly higher in the challenge group than in the other groups. C. perfringens infection tended to increase lactate concentration and decreasedconcentrations of formate, acetate and propionate in the ileum; decreased isobutyrate concentration; and tended to decrease isovalerate concentration in the cecum. Besides, L. acidophilus supplementation increased the concentration of lactate and butyrate and decreased concentrations of formate and propionate in the ileum, and increased concentrations of lactate and valerate in the cecum. In conclusion, C. perfringens infection and/or dietary supplementation with L. acidophilus modulated the relative abundance of some bacteria taxa, and the L. acidophilus supplementation helped to restore the microbial community disrupted by C. perfringens infection. PMID:29190649

  6. Effects of Lactobacillus acidophilus on gut microbiota composition in broilers challenged with Clostridium perfringens.

    PubMed

    Li, Zhui; Wang, Weiwei; Liu, Dan; Guo, Yuming

    2017-01-01

    This study shows the effects of dietary supplementation with Lactobacillus acidophilus on the gut microbiota of broiler chickens challenged with Clostridium perfringens infection during a 21-day period according to pyrosequencing of the 16S ribosomal RNA gene. In a 2 × 2 factorial arrangement of treatments, 308 1-day-old male Arbor Acres broiler chicks were analyzed for the effects of the probiotic (groups without or with L. acidophilus supplementation), pathogen challenge (groups without or with C. perfringens), and the effects of interaction. The infection decreased the number of Observed species, Chao1, and ACE of ileal microbiota and increased Chao1 of cecal microbiota of broilers, whereas L. acidophilus supplementation decreased the Shannon index of the ileal microbiota. Shannon index and Simpson indices were lower in the ileal microbiota than in the cecal microbiota. In the ileal microbiota, the control group had higher relative abundance of Lachnospiraceae and Ruminococcaceae in comparison with the other groups; however, the relative abundance of Gammaproteobacteria was significantly higher in the challenge group than in the other groups. C. perfringens infection tended to increase lactate concentration and decreasedconcentrations of formate, acetate and propionate in the ileum; decreased isobutyrate concentration; and tended to decrease isovalerate concentration in the cecum. Besides, L. acidophilus supplementation increased the concentration of lactate and butyrate and decreased concentrations of formate and propionate in the ileum, and increased concentrations of lactate and valerate in the cecum. In conclusion, C. perfringens infection and/or dietary supplementation with L. acidophilus modulated the relative abundance of some bacteria taxa, and the L. acidophilus supplementation helped to restore the microbial community disrupted by C. perfringens infection.

  7. More Protection of Lactobacillus acidophilus Than Bifidobacterium bifidum Probiotics on Azoxymethane-Induced Mouse Colon Cancer.

    PubMed

    Agah, Shahram; Alizadeh, Ali Mohammad; Mosavi, Maryam; Ranji, Peyman; Khavari-Daneshvar, Hossein; Ghasemian, Farnaz; Bahmani, Sahar; Tavassoli, Abbas

    2018-04-22

    Based on the ability of the probiotics in the gut microflora modification, they can have the beneficial effects on diseases in the short and/or the long term. In previous study, we revealed that unlike Bifidobacterium bifidum, the amount of Lactobacillus acidophilus remained almost unchanged in mice gut microflora in the long term, indicating more stability of L. acidophilus than B. bifidum which can be used to prevent some incurable diseases such as cancer. Thirty-eight male BALB/c mice were divided into four groups, control, azoxymethane (AOM), L. acidophilus, and B. bifidum probiotics, to evaluate the protective effects of the probiotics on AOM-induced mouse colon cancer. Except for the control group, the rest of the animals were weekly given AOM (15 mg/kg, s.c) in three consecutive weeks. Colon lesion incidence was 74% in the AOM group in comparison with the control (0%) (P < 0.05). The lesions were varied from mild to severe dysplasia and colonic adenocarcinoma. Administration of the probiotics inhibited the incidence of colonic lesions by about 57% in L. acidophilus (P < 0.05) and 27% in B. bifidum (P > 0.05) compared to the AOM group. The serum levels of CEA and CA19-9 tumor markers were significantly decreased in L. acidophilus in comparison with the AOM group (P < 0.05). Moreover, the serum levels of IFN-γ and IL-10 and the number of CD4 + and CD8 + cells were significantly increased in L. acidophilus compared to AOM (P < 0.05). Our study highlighted the more potential effects of L. acidophilus probiotic than B. bifidum on mouse colon cancer.

  8. Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; van Valenberg, Hein J F; Gazi, Inge; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J

    2016-10-01

    The objectives of this study were to evaluate the growth and survival of the model probiotic strain Lactobacillus plantarum WCFS1 in co-culture with traditional yoghurt starters and to investigate the impact of preculturing on their survival and metabolite formation in set-yoghurt. L. plantarum WCFS1 was precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor before inoculation in milk. Adaptive responses of L. plantarum WCFS1 were evaluated by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated that sublethal preculturing did not significantly affect survival of L. plantarum WCFS1. On the other hand, incorporation of sublethally precultured L. plantarum WCFS1 significantly impaired the survival of Lactobacillus delbrueckii subsp. bulgaricus which consequently reduced the post-acidification of yoghurt during refrigerated storage. A complementary metabolomics approach using headspace SPME-GC/MS and (1)H NMR combined with multivariate statistical analysis revealed substantial impact of sublethally precultured L. plantarum WCFS1 on the metabolite profiles of set-yoghurt. This study provides insight in the technological implications of non-dairy model probiotic strain L. plantarum WCFS1, such as its good stability in fermented milk and the inhibitory effect on post-acidification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Construction of a food-grade cloning vector for Lactobacillus plantarum and its utilization in a food model.

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2012-01-01

    The development of Lactobacillus plantarum to be used in starter cultures in the food industry has been limited because of the lack of a food-grade cloning vector for the bacterium. In this study, the plasmid pFLP1 was constructed by joining 2 DNA fragments derived from food-approved organisms. The 5.2-kb BamHI/KpnI DNA fragment of pRV566 containing the theta-type replicon of Lactobacillus sakei was ligated to the BamHI/KpnI DNA fragment of a 2.9-kb lactococcal cadmium resistance determinant amplified from pND918. The 8.1-kb newly constructed plasmid could transform L. plantarum N014, a bacteriocin-producing bacteria originally isolated from nham, a traditional Thai fermented sausage. The resulting transformant, L. plantarum N014-FLP, and its parent strain were shown to be very similar in growth rate and bacteriocin activity. In addition, the plasmid was very stable in its host bacteria under nonselective pressure for 100 generations in MRS medium and for 5 days in a nham model. These results suggest that pFLP1 is a potential food-grade cloning vector for L. plantarum.

  10. Characterization of the triple-component linoleic acid isomerase in Lactobacillus plantarum ZS2058 by genetic manipulation.

    PubMed

    Yang, B; Qi, H; Gu, Z; Zhang, H; Chen, W; Chen, H; Chen, Y Q

    2017-11-01

    To assess the mechanism for conjugated linoleic acid (CLA) production in Lactobacillus plantarum ZS2058. CLA has attracted great interests for decades due to its health-associated benefits including anticancer, anti-atherogenic, anti-obesity and modulation of the immune system. A number of microbial CLA producers were widely reported including lactic acid bacteria. Lactobacillus plantarum ZS2058, an isolate from Chinese traditional fermented food, could convert LA to CLA with various intermediates. To characterize the genetic determinants for generating CLA, a cre-lox-based system was utilized to delete the genes encoding myosin cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC) in Lact. plantarum ZS2058, respectively. Neither intermediate was detected in the corresponding gene deletion mutant. Meanwhile all those mutants could recover the ability to convert linoleic acid to CLA when the corresponding gene was completed. The results indicated that CLA production was a multiple-step reaction catalysed by triple-component linoleate isomerase system encoded by mcra, dh and dc. Multicomponent linoleic acid isomerase provided important results for illustration unique mechanism for CLA production in Lact. plantarum ZS2058. Lactobacilli with CLA production ability offer novel opportunities for functional food development. © 2017 The Society for Applied Microbiology.

  11. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains.

    PubMed

    Jiménez, Natalia; Esteban-Torres, María; Mancheño, José Miguel; de Las Rivas, Blanca; Muñoz, Rosario

    2014-05-01

    Lactobacillus plantarum is frequently isolated from the fermentation of plant material where tannins are abundant. L. plantarum strains possess tannase activity to degrade plant tannins. An L. plantarum tannase (TanBLp, formerly called TanLp1) was previously identified and biochemically characterized. In this study, we report the identification and characterization of a novel tannase (TanALp). While all 29 L. plantarum strains analyzed in the study possess the tanBLp gene, the gene tanALp was present in only four strains. Upon methyl gallate exposure, the expression of tanBLp was induced, whereas tanALp expression was not affected. TanALp showed only 27% sequence identity to TanBLp, but the residues involved in tannase activity are conserved. Optimum activity for TanALp was observed at 30°C and pH 6 in the presence of Ca(2+) ions. TanALp was able to hydrolyze gallate and protocatechuate esters with a short aliphatic alcohol substituent. Moreover, TanALp was able to fully hydrolyze complex gallotannins, such as tannic acid. The presence of the extracellular TanALp tannase in some L. plantarum strains provides them an advantage for the initial degradation of complex tannins present in plant environments.

  12. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    PubMed

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Lactobacillus plantarum WCFS1 and its host interaction: a dozen years after the genome.

    PubMed

    van den Nieuwboer, Maurits; van Hemert, Saskia; Claassen, Eric; de Vos, Willem M

    2016-07-01

    Lactobacillus plantarum WCFS1 is one of the best studied Lactobacilli, notably as its genome was unravelled over 12 years ago. L. plantarum WCFS1 can be grown to high densities, is amenable to genetic transformation and highly robust with a relatively high survival rate during the gastrointestinal passage. In this review, we present and discuss the main insights provided by the functional genomics research on L. plantarum WCFS1 with specific attention for the molecular mechanisms related to its interaction with the human host and its potential to modify the immune system, and induce other health-related benefits. Whereas most insight has been gained in mouse and other model studies, only five human studies have been reported with L. plantarum WCFS1. Hence NCIMB 8826 (the parental strain of L. plantarum WCFS1) in human trials as to capitalize on the wealth of knowledge that is summarized here. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi

    PubMed Central

    Yadav, Ruby; Puniya, Anil K.; Shukla, Pratyoosh

    2016-01-01

    Present study documents the potential probiotic Lactobacillus isolated from indigenous fermented beverage Raabadi, consumed during summers in Haryana and Rajasthan regions of India. A total of five Raabadi samples were collected aseptically and 54 isolates were purified using MRS medium. All the isolates were assessed for tolerance to low pH and bile salts. It was observed that out of 54 only 24 isolates could survive the simulated gastric conditions. These isolates were further evaluated in vitro for cell surface hydrophobicity, cell surface hydrophobicity, hypocholesteramic activity, anti-oxidative potential, BSH activity, antagonistic activity, and antibiotic resistance profile. In addition, the confirmation of phenol resistance was also done. On the basis of results obtained, the survival rate of isolates was noted and six isolates were finally selected for further studies. Among them Lactobacillus plantarum RYPR1 and RYPC7 showed good survival at pH 2 which shows good acid tolerance. Moreover, L. plantarum RYPR1 showed the highest hydrophobicity (79.13%) and represented the deconjugation of bile salts, which help in their adhesion to epithelial cells and colonization. Furthermore, RYPR1 also exhibited highest cholesterol reduction (59%) and subsequent analysis of results revealed that the above mentioned isolates further exhibit a good hypocholesterolemic effect and could be possibly used to prevent hypercholesterolemia. The present study divulges that L. plantarum RYPR1 has an excellent probiotic potential. PMID:27818658

  15. Treatment of Experimental Acute Radiation Disease in Mice with Probiotics, Quinolones, and General Gnotobiological Isolation

    DTIC Science & Technology

    1998-09-01

    the respective groups of microorganisms. The results were presented as the number of isolates of Because the only strain ( Lactobacillus plantarum ...after single oral administration of Lactobacillus strains -Strain administered Microorganisms L acidophilus 5/4 L plantarum 18/4 _ _ recovered Test group...immunoglobulins, and nonpatho- ..o11 genic anaerobes such as Bifidobacterium and Lactobacillus , and also suppres- sion of gastrointestinal pathogens. Indeed, the

  16. Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B

    PubMed Central

    Lavermicocca, Paola; Valerio, Francesca; Evidente, Antonio; Lazzaroni, Silvia; Corsetti, Aldo; Gobbetti, Marco

    2000-01-01

    Sourdough lactic acid bacteria were selected for antifungal activity by a conidial germination assay. The 10-fold-concentrated culture filtrate of Lactobacillus plantarum 21B grown in wheat flour hydrolysate almost completely inhibited Eurotium repens IBT18000, Eurotium rubrum FTDC3228, Penicillium corylophilum IBT6978, Penicillium roqueforti IBT18687, Penicillium expansum IDM/FS2, Endomyces fibuliger IBT605 and IDM3812, Aspergillus niger FTDC3227 and IDM1, Aspergillus flavus FTDC3226, Monilia sitophila IDM/FS5, and Fusarium graminearum IDM623. The nonconcentrated culture filtrate of L. plantarum 21B grown in whole wheat flour hydrolysate had similar inhibitory activity. The activity was fungicidal. Calcium propionate at 3 mg ml−1 was not effective under the same assay conditions, while sodium benzoate caused inhibition similar to L. plantarum 21B. After extraction with ethyl acetate, preparative silica gel thin-layer chromatography, and chromatographic and spectroscopic analyses, novel antifungal compounds such as phenyllactic and 4-hydroxy-phenyllactic acids were identified in the culture filtrate of L. plantarum 21B. Phenyllactic acid was contained at the highest concentration in the bacterial culture filtrate and had the highest activity. It inhibited all the fungi tested at a concentration of 50 mg ml−1 except for P. roqueforti IBT18687 and P. corylophilum IBT6978 (inhibitory concentration, 166 mg ml−1). L. plantarum 20B, which showed high antimold activity, was also selected. Preliminary studies showed that phenyllactic and 4-hydroxy-phenyllactic acids were also contained in the bacterial culture filtrate of strain 20B. Growth of A. niger FTDC3227 occurred after 2 days in breads started with Saccharomyces cerevisiae 141 alone or with S. cerevisiae and Lactobacillus brevis 1D, an unselected but acidifying lactic acid bacterium, while the onset of fungal growth was delayed for 7 days in bread started with S. cerevisiae and selected L. plantarum 21B. PMID

  17. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B.

    PubMed

    Lavermicocca, P; Valerio, F; Evidente, A; Lazzaroni, S; Corsetti, A; Gobbetti, M

    2000-09-01

    Sourdough lactic acid bacteria were selected for antifungal activity by a conidial germination assay. The 10-fold-concentrated culture filtrate of Lactobacillus plantarum 21B grown in wheat flour hydrolysate almost completely inhibited Eurotium repens IBT18000, Eurotium rubrum FTDC3228, Penicillium corylophilum IBT6978, Penicillium roqueforti IBT18687, Penicillium expansum IDM/FS2, Endomyces fibuliger IBT605 and IDM3812, Aspergillus niger FTDC3227 and IDM1, Aspergillus flavus FTDC3226, Monilia sitophila IDM/FS5, and Fusarium graminearum IDM623. The nonconcentrated culture filtrate of L. plantarum 21B grown in whole wheat flour hydrolysate had similar inhibitory activity. The activity was fungicidal. Calcium propionate at 3 mg ml(-1) was not effective under the same assay conditions, while sodium benzoate caused inhibition similar to L. plantarum 21B. After extraction with ethyl acetate, preparative silica gel thin-layer chromatography, and chromatographic and spectroscopic analyses, novel antifungal compounds such as phenyllactic and 4-hydroxy-phenyllactic acids were identified in the culture filtrate of L. plantarum 21B. Phenyllactic acid was contained at the highest concentration in the bacterial culture filtrate and had the highest activity. It inhibited all the fungi tested at a concentration of 50 mg ml(-1) except for P. roqueforti IBT18687 and P. corylophilum IBT6978 (inhibitory concentration, 166 mg ml(-1)). L. plantarum 20B, which showed high antimold activity, was also selected. Preliminary studies showed that phenyllactic and 4-hydroxy-phenyllactic acids were also contained in the bacterial culture filtrate of strain 20B. Growth of A. niger FTDC3227 occurred after 2 days in breads started with Saccharomyces cerevisiae 141 alone or with S. cerevisiae and Lactobacillus brevis 1D, an unselected but acidifying lactic acid bacterium, while the onset of fungal growth was delayed for 7 days in bread started with S. cerevisiae and selected L. plantarum 21B.

  18. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  19. AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.

    2016-01-01

    ABSTRACT Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus. Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro. These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. IMPORTANCE Lactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of

  20. AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM.

    PubMed

    Johnson, Brant R; Klaenhammer, Todd R

    2016-09-15

    Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. Lactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of the mucosal immune

  1. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    PubMed

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Enhancing Activity and Stability of Uricase from Lactobacillus plantarum by Zeolite immobilization

    NASA Astrophysics Data System (ADS)

    Iswantini, D.; Nurhidayat, N.; Sarah

    2017-03-01

    Lactobacillus plantarum has been known be able to produce uricase for uric acid biosensor. Durability and stability of L. plantarum in generating uricase enzyme was low. Hence, we tried to enhance its durability and stability by immobilizing it onto activated 250 mg zeolite at room temperature using 100 μL L.plantarum suspension and 2.87 mM uric acid, while Michaelis-Menten constant (KM) and Vmax were obtained at 6.7431 mM and 0.9171 µA consecutively, and the linearity range was 0.1-3.3 mM (R2 = 0.9667). Limit of detection (LOD) and limit of quantification (LOQ) value of the measurement were 0.4827 mM and 1.6092 mM respectively. Biosensor stability treatment was carried out in two different treatments, using the same electrode and using disposable electrode. The disposable electrode stability showed better result based on repeated measurements, but stability was still need improvement.

  3. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity.

    PubMed

    Lee, Ayoung; Lee, Young Ju; Yoo, Hye Jin; Kim, Minkyung; Chang, Yeeun; Lee, Dong Seog; Lee, Jong Ho

    2017-05-31

    The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei ( L. paracasei ), Bifidobacterium animalis ssp. lactis ( B. lactis ) and heat-treated Lactobacillus plantarum ( L. plantarum ) on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK) cell activity, interleukin (IL)-12 and immunoglobulin (Ig) G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN)-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei , B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425).

  4. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity

    PubMed Central

    Lee, Ayoung; Lee, Young Ju; Yoo, Hye Jin; Kim, Minkyung; Chang, Yeeun; Lee, Dong Seog; Lee, Jong Ho

    2017-01-01

    The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei (L. paracasei), Bifidobacterium animalis ssp. lactis (B. lactis) and heat-treated Lactobacillus plantarum (L. plantarum) on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK) cell activity, interleukin (IL)-12 and immunoglobulin (Ig) G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN)-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei, B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425). PMID:28561762

  5. Lactobacillus plantarum MTD/1, Its Impact on Silage and In vitro Rumen Fermentation

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to quantify the impact of Lactobacillus plantarum MTD/1 on silage and in vitro rumen fermentation on alfalfa and corn silage. Four trials were conducted in alfalfa in second (35 and 32% DM) and third harvest (38 and 31% DM), and two in forage corn, hybrids Mycogen 797...

  6. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Design and evaluation of an oral multiparticulate system for dual delivery of amoxicillin and Lactobacillus acidophilus.

    PubMed

    Govender, Mershen; Choonara, Yahya E; van Vuuren, Sandy; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-09-01

    A delayed-release dual delivery system for amoxicillin and the probiotic Lactobacillus acidophilus was developed and evaluated. Statistical optimization of a cross-linked denatured ovalbumin protective matrix was first synthesized using a Box-Behnken experimental design prior to encapsulation with glyceryl monostereate. The encapsulated ovalbumin matrix was thereafter incorporated with amoxicillin in a gastro-resistant capsule. In vitro characterization and stability analysis of the ovalbumin and encapsulated components were also performed Results: Protection of L. acidophilus probiotic against the bactericidal effects of amoxicillin within the dual formulation was determined. The dual formulation in this study proved effective and provides insight into current microbiome research to identify, classify and use functional healthy bacteria to develop novel probiotic delivery technologies.

  8. Technological and molecular diversity of Lactobacillus plantarum strains isolated from naturally fermented sourdoughs.

    PubMed

    Pepe, Olimpia; Blaiotta, Giuseppe; Anastasio, Marilena; Moschetti, Giancarlo; Ercolini, Danilo; Villani, Francesco

    2004-08-01

    Thirty Lactobacillus (L.) plantarum strains, isolated from sourdough, were identified by biochemical tests as well as 16S rDNA sequencing and differentiated on the basis of technological properties, such as amylase, protease, phytase and antirope activities. These properties were shown to be widely differing among the strains, indicating a significant technological diversity. Genetic differentiation was achieved by restriction endonuclease analysis-pulsed field gel electrophoresis (REA-PFGE) that allowed the L. plantarum strains to be divided into 10 different genomic groups. Moreover, 32 different starters were employed in dough making experiments; each starter consisted of a single strain of L. plantarum associated with a maltose positive or a maltose negative yeast. The technological properties of the doughs were greatly influenced by the type of strain included in the starter. The time of leavening and the acidification activities detected in the dough were enhanced by the presence of L. plantarum strains. The bacterial and yeast contents and fermentation properties were statistically treated by principal component analysis (PCA), which allowed the discrimination of different typologies of dough. The study of the peculiar characteristics of different strains of L. plantarum is fundamental for a better understanding of their potential in affecting the nutritional value, quality and stability of the baked goods. L. plantarum strains are able to differentially influence the dough quality when employed as starters.

  9. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM.

    PubMed

    Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie; Lahtinen, Sampo J; Brix, Susanne; Abou Hachem, Maher; Svensson, Birte

    2017-06-23

    Adhesion to intestinal mucosa is a crucial property for probiotic bacteria. Adhesion is thought to increase host-bacterial interactions, thus potentially enabling health benefits to the host. Molecular events connected with adhesion and surface proteome changes were investigated for the probiotic Lactobacillus acidophilus NCFM cultured with established or emerging prebiotic carbohydrates as carbon source and in the presence of mucin, the glycoprotein of the epithelial mucus layer. Variation in adhesion to HT29-cells and mucin was associated with carbon source and mucin-induced subproteome abundancy differences. Specifically, while growth on fructooligosaccharides (FOS) only stimulated adhesion to intestinal HT-29 cells, cellobiose and polydextrose in addition increased adhesion to mucin. Adhesion to HT-29 cells increased by about 2-fold for bacteria grown on mucin-supplemented glucose. Comparative 2DE-MS surface proteome analysis showed different proteins in energy metabolism appearing on the surface, suggesting they exert moonlighting functions. Mucin-supplemented bacteria had relative abundance of pyruvate kinase and fructose-bisphosphate aldolase increased by about 2-fold while six spots with 3.2-2.1 fold reduced relative abundance comprised elongation factor G, phosphoglycerate kinase, BipAEFTU family GTP-binding protein, ribonucleoside triphosphate reductase, adenylosuccinate synthetase, 30S ribosomal protein S1, and manganese-dependent inorganic pyrophosphatase. Surface proteome of cellobiose- compared to glucose-grown L. acidophilus NCFM had phosphate starvation inducible protein stress-related, thermostable pullulanase, and elongation factor G increasing 4.4-2.4 fold, while GAPDH, elongation factor Ts, and pyruvate kinase were reduced by 2.0-1.5 fold in relative abundance. Addition of recombinant L. acidophilus NCFM elongation factor G and pyruvate kinase to a coated mucin layer significantly suppressed subsequent adhesion of the bacterium. Human diet is

  10. An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus.

    PubMed

    Møller, Marie S; Goh, Yong Jun; Rasmussen, Kasper Bøwig; Cypryk, Wojciech; Celebioglu, Hasan Ufuk; Klaenhammer, Todd R; Svensson, Birte; Abou Hachem, Maher

    2017-06-15

    Of the few predicted extracellular glycan-active enzymes, glycoside hydrolase family 13 subfamily 14 (GH13_14) pullulanases are the most common in human gut lactobacilli. These enzymes share a unique modular organization, not observed in other bacteria, featuring a catalytic module, two starch binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here, we explore the specificity of a representative of this group of pullulanases, Lactobacillus acidophilus Pul13_14 ( La Pul13_14), and its role in branched α-glucan metabolism in the well-characterized Lactobacillus acidophilus NCFM, which is widely used as a probiotic. Growth experiments with L. acidophilus NCFM on starch-derived branched substrates revealed a preference for α-glucans with short branches of about two to three glucosyl moieties over amylopectin with longer branches. Cell-attached debranching activity was measurable in the presence of α-glucans but was repressed by glucose. The debranching activity is conferred exclusively by La Pul13_14 and is abolished in a mutant strain lacking a functional La Pul13_14 gene. Hydrolysis kinetics of recombinant La Pul13_14 confirmed the preference for short-branched α-glucan oligomers consistent with the growth data. Curiously, this enzyme displayed the highest catalytic efficiency and the lowest K m reported for a pullulanase. Inhibition kinetics revealed mixed inhibition by β-cyclodextrin, suggesting the presence of additional glucan binding sites besides the active site of the enzyme, which may contribute to the unprecedented substrate affinity. The enzyme also displays high thermostability and higher activity in the acidic pH range, reflecting adaptation to the physiologically challenging conditions in the human gut. IMPORTANCE Starch is one of the most abundant glycans in the human diet. Branched α-1,6-glucans in dietary starch and glycogen are nondegradable by human enzymes and constitute a

  11. Development of a quantitative PCR for detection of Lactobacillus plantarum starters during wine malolactic fermentation.

    PubMed

    Cho, Gyu-Sung; Krauss, Sabrina; Huch, Melanie; Du Toit, Maret; Franz, Charles M A P

    2011-12-01

    A quantitative, real-time PCR method was developed to enumerate Lactobacillus plantarum IWBT B 188 during the malolactic fermentation (MLF) in Grauburgunder wine. The qRT-PCR was strain-specific, as it was based on primers targeting a plasmid DNA sequence, or it was L. plantarum-specific, as it targeted a chromosomally located plantaricin gene sequence. Two 50 l wine fermentations were prepared. One was inoculated with 15 g/hl Saccharomyces cerevisiae, followed by L. plantarum IWBT B 188 at 3.6 × 10(6) CFU/ml, whereas the other was not inoculated (control). Viable cell counts were performed for up to 25 days on MRS agar, and the same cells were enumerated by qRT-PCR with both the plasmid or chromosomally encoded gene primers. The L. plantarum strain survived under the harsh conditions in the wine fermentation at levels above 10(5)/ml for approx. 10 days, after which cell numbers decreased to levels of 10(3) CFU/ml at day 25, and to below the detection limit after day 25. In the control, no lactic acid bacteria could be detected throughout the fermentation, with the exception of two sampling points where ca. 1 × 10(2) CFU/ml was detected. The minimum detection level for quantitative PCR in this study was 1 × 10(2) to 1 × 10(3) CFU/ml. The qRT-PCR results determined generally overestimated the plate count results by about 1 log unit, probably as a result of the presence of DNA from dead cells. Overall, qRT-PCR appeared to be well suited for specifically enumerating Lactobacillus plantarum starter cultures in the MLF in wine.

  12. The potential risks of probiotics among HIV-infected persons: Bacteraemia due to Lactobacillus acidophilus and review of the literature.

    PubMed

    Haghighat, Leila; Crum-Cianflone, Nancy F

    2016-11-01

    Lactobacillus sp. are commensal organisms that are increasingly reported to cause invasive infections among immunosuppressed persons. However, few data exist regarding the occurrence and risk factors of these infections among HIV-infected persons. Further, the safety of products that contain lactobacilli (e.g. probiotics) in certain populations, including those with HIV/AIDS, is unclear. We report a case of Lactobacillus acidophilus bacteraemia in a patient with AIDS temporally related to excessive consumption of probiotic-enriched yogurt, and provide a comprehensive review of the literature of Lactobacillus sp. infections among HIV-infected persons. © The Author(s) 2015.

  13. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen.

    PubMed

    Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar

    2013-12-14

    Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Intraspecies cellular fatty acids heterogeneity of Lactobacillus plantarum strains isolated from fermented foods in Ukraine.

    PubMed

    Garmasheva, I; Vasyliuk, O; Kovalenko, N; Ostapchuk, A; Oleschenko, L

    2015-09-01

    The intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains isolated from Ukrainian traditional fermented foods was examined. Seven cellular fatty acids were identified. All Lact. plantarum strains investigated contained C16:0 (from 7·54 to 49·83% of total fatty acids), cC18:1 (3·23-38·67% of total fatty acids) and cycC19:0 acids (9·03-67·68% of total fatty acids) as the major fatty acids. The tC18:1 acid made up 1·47-22·0% of the total fatty acids. The C14:0 and C16:1 acids were present in small amounts (0·22-6·96% and 0·66-7·42% respectively) in most Lact. plantarum strains. Differences in relative contents of some fatty acids between Lact. plantarum strains depending on the source isolation were found. Isolates of dairy origin contained slightly greater levels of the C16:0 and tC18:1 fatty acids and lower levels of the cC18:1 than strains obtained from fermented vegetables. The origin of Lact. plantarum strains affects their fatty acids composition, which in turn, appears to be related to their ability to growth under stress factors. Cellular fatty acids composition is an important chemotaxonomic characteristic of bacterial cells. At the same time cellular fatty acids play a key role in maintaining the viability of micro-organisms in different environmental conditions. In this study, intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains was examined. This work provides novel and important information about a relationship between cellular fatty acids composition of Lact. plantarum strains and source of isolation or stress resistance profile. Our results showed that cellular fatty acids composition is quite diverse among Lact. plantarum strains derived from different sources and may reflect previous cell's history. Our findings should be considered in chemotaxonomic studies of lactic acid bacteria and its ecology. © 2015 The Society for Applied Microbiology.

  15. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome.

    PubMed

    Ducrotté, Philippe; Sawant, Prabha; Jayanthi, Venkataraman

    2012-08-14

    To assess the symptomatic efficacy of Lactobacillus plantarum 299v (L. plantarum 299v) (DSM 9843) for the relief of abdominal symptoms in a large subset of irritable bowel syndrome (IBS) patients fulfilling the Rome III criteria. In this double blind, placebo-controlled, parallel-designed study, subjects were randomized to daily receive either one capsule of L. plantarum 299v (DSM 9843) or placebo for 4 wk. Frequency and intensity of abdominal pain, bloating and feeling of incomplete rectal emptying were assessed weekly on a visual analogue scale while stool frequency was calculated. Two hundred and fourteen IBS patients were recruited. After 4 wk, both pain severity (0.68 + 0.53 vs 0.92 + 0.57, P < 0.05) and daily frequency (1.01 + 0.77 vs 1.71 + 0.93, P < 0.05) were lower with L. plantarum 299v (DSM 9843) than with placebo. Similar results were obtained for bloating. At week 4, 78.1 % of the patients scored the L. plantarum 299v (DSM 9843) symptomatic effect as excellent or good vs only 8.1 % for placebo (P < 0.01). A 4-wk treatment with L. plantarum 299v (DSM 9843) provided effective symptom relief, particularly of abdominal pain and bloating, in IBS patients fulfilling the Rome III criteria.

  16. Supplementation with a Lactobacillus acidophilus fermentation product alters the metabolic response following a lipopolysaccharide challenge in weaned pigs

    USDA-ARS?s Scientific Manuscript database

    This study was designed to determine if feeding a Lactobacillus acidophilus fermentation product to weaned pigs would alter the metabolic response following a lipopolysaccharide (LPS) challenge. Pigs (n=30; 6.4+/-0.1 kg BW) were housed individually with ad libitum access to feed and water. Pigs were...

  17. Supplementation of Lactobacillus acidophilus fermentation product can attenuate the acute phase response following a lipopolysaccharide challenge in pigs.

    USDA-ARS?s Scientific Manuscript database

    This study was designed to determine if feeding a Lactobacillus acidophilus fermentation product to weaned pigs would reduce stress and acute phase responses (APR) following a lipopolysaccharide (LPS) challenge. Pigs (n=30; 6.4±0.1 kilograms body weight) were housed individually in pens with ad libi...

  18. Prevention of Mycobacterium avium subsp. paratuberculosis Infection in BALB/c Mice by Feeding Lactobacillus acidophilus Strain NP-51

    USDA-ARS?s Scientific Manuscript database

    The immune responses of 390 BALB/c mice fed the probiotic Lactobacillus acidophilus strain NP51® and infected with Mycobacterium avium subspecies paratuberculosis (MAP) were evaluated in a 6-month trial. Mice were randomized to nine treatment groups fed either viable- or heat-killed NP51 and inocula...

  19. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice.

    PubMed

    Kwaw, Emmanuel; Ma, Yongkun; Tchabo, William; Apaliya, Maurice Tibiru; Wu, Meng; Sackey, Augustina Sackle; Xiao, Lulu; Tahir, Haroon Elrasheid

    2018-06-01

    This study was conducted to investigate the effect of lactic acid bacteria (LAB) strains on color properties, phenolic profile and antioxidant activities of mulberry juice. Mulberry juice was separately fermented at 37 °C for 36 h using Lactobacillus plantarum, Lactobacillus acidophilus and Lactobacillus paracasei. The results showed that lactic acid fermentation impacted on the color of the juice. Moreover, the study demonstrated that LABs impacted on the phenolic profile of the juice. Syringic acid, cyanidin-3-O-rutinoside and quercetin were the predominant phenolic acid, anthocyanin and flavonol respectively in the lactic-acid-fermented mulberry juice. The degree of radical scavenging activity was species-specific with the L. plantarum fermented juice having the highest radical scavenging activities. The correlation analysis demonstrated that flavonols and anthocyanins were mostly responsible for the increased in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity while phenolic acids and flavonols were responsible for 2,2-diphenyl-1-picrylhydrazyl scavenging activity and reducing power capacity of the fermented juice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Tannin Degradation by a Novel Tannase Enzyme Present in Some Lactobacillus plantarum Strains

    PubMed Central

    Jiménez, Natalia; Esteban-Torres, María; Mancheño, José Miguel; de las Rivas, Blanca

    2014-01-01

    Lactobacillus plantarum is frequently isolated from the fermentation of plant material where tannins are abundant. L. plantarum strains possess tannase activity to degrade plant tannins. An L. plantarum tannase (TanBLp, formerly called TanLp1) was previously identified and biochemically characterized. In this study, we report the identification and characterization of a novel tannase (TanALp). While all 29 L. plantarum strains analyzed in the study possess the tanBLp gene, the gene tanALp was present in only four strains. Upon methyl gallate exposure, the expression of tanBLp was induced, whereas tanALp expression was not affected. TanALp showed only 27% sequence identity to TanBLp, but the residues involved in tannase activity are conserved. Optimum activity for TanALp was observed at 30°C and pH 6 in the presence of Ca2+ ions. TanALp was able to hydrolyze gallate and protocatechuate esters with a short aliphatic alcohol substituent. Moreover, TanALp was able to fully hydrolyze complex gallotannins, such as tannic acid. The presence of the extracellular TanALp tannase in some L. plantarum strains provides them an advantage for the initial degradation of complex tannins present in plant environments. PMID:24610854

  1. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium.

    PubMed

    Gross, Gabriele; van der Meulen, Jan; Snel, Johannes; van der Meer, Roelof; Kleerebezem, Michiel; Niewold, Theo A; Hulst, Marcel M; Smits, Mari A

    2008-11-01

    Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using an in situ pig Small Intestinal Segment Perfusion model. The effects of L. plantarum 299v wild-type strain were compared with those of two corresponding mutant strains either lacking the gene encoding for the mannose-specific adhesin (msa) or sortase (srtA; responsible for anchoring of cell surface proteins like Msa to the cell wall). A slight enrichment of the wild-type strain associated with the intestinal surface could be observed after 8 h of perfusion when a mixture of wild-type and msa-mutant strain had been applied. In contrast to the mutant strains, the L. plantarum wild-type strain tended to induce a decrease in jejunal net fluid absorption compared with control conditions. Furthermore, after 8 h of perfusion expression of the host gene encoding pancreatitis-associated protein, a protein with proposed bactericidal properties, was found to be upregulated by the wild-type strain only. These observations suggest a role of Msa in the induction of host responses in the pig intestine.

  2. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats.

    PubMed

    Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L A; Wold, A E

    1999-05-01

    We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R alpha-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum + E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity.

  3. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats

    PubMed Central

    Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L Å; Wold, A E

    1999-01-01

    We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R α-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum+ E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity. PMID:10337020

  4. Activity and Stability of Biofilm Uricase of Lactobacillus plantarum for Uric Acid Biosensor

    NASA Astrophysics Data System (ADS)

    Iswantini, Dyah; Rachmatia, Rescy; Diana, Novita Rose; Nurhidayat, Novik; Akhiruddin; Saprudin, Deden

    2016-01-01

    Research of uric acid biosensor used a Lactobacillus plantarum was successfully conducted. Lactobacillus plantarum could produce uricase that could be used as uric acid biosensor. Therefore, lifetime of bacteria were quite short that caused the bacteria could not detect uric acid for a long time. To avoid this problem, development of biofilm for uric acid biosensor is important. Biofilms is a structured community of bacterial cells, stick together and are able to maintain a bacteria in an extreme environments. The purpose of present study was to determine and compare the activity of uricase produced by L. plantarum, deposited whithin biofilm and planktonic bacteria on glassy carbon electrode (GCEb & GCE), also to determine the stability of biofilm. The optimization process was conducted by using temperature, pH, and substrate concentration as the parameters. It showed that the activity of uricase within biofilm was able to increase the oxidation current. GCEb and GCE yielded the oxidation current in the amount of 47.24 μA and 23.04 μA, respectively, under the same condition. Results indicated that the optimum condition for uric acid biosensor using biofilm were pH 10, temperature of 40 oC, and uric acid concentration of 5 mM. The stability of GCEb decreased after 10 hours used, with decreasing percentage over 86.33%. This low stability probably caused by the unprotected active site of the enzyme that the enzyme is easier to experience the denaturation.

  5. Protective effects of Lactobacillus plantarum against epithelial barrier dysfunction of human colon cell line NCM460

    PubMed Central

    Liu, Zhi-Hua; Shen, Tong-Yi; Zhang, Peng; Ma, Yan-Lei; Moyer, Mary Pat; Qin, Huan-Long

    2010-01-01

    AIM: To investigate the effects of Lactobacillus plantarum (L. plantarum) in the intestinal permeability and expression of tight junction (TJ) using the normal human colon cell line NCM460. METHODS: Paracellular permeability of NCM460 monolayers was determined by transepithelial electrical resistance and dextran permeability. Expression of TJ proteins in NCM460 cell monolayers was detected by Western blotting and quantitative real-time polymerase chain reaction. RESULTS: L. plantarum played an important role in increasing transepithelial electrical resistance and decreasing the permeability to macromolecules of NCM460 monolayers against the disruption caused by enteropathogenic Escherichia coli (E. coli) or enteroinvasive E. coli. L. plantarum also prevented the decrease in the expression of TJ proteins and F-actin in NCM460 cells. CONCLUSION: L. plantarum can protect against dysfunction of NCM460 intestinal epithelial barrier caused by enteropathogenic E. coli or enteroinvasive E. coli, and thus can be a potential candidate of therapeutic agents for the treatment of intestinal diseases. PMID:21128328

  6. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) Infection in BALB/c Mice by Feeding Probiotic Lactobacillus acidophilus NP-51

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP). Mice were randomized to ten treatment groups; sentinels, control, heat-killed MAP, viable MAP, heat-killed NP51, viable ...

  7. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) infection in BALB/c mice by feeding probiotic Lactobacillus acidophilus NP-51

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP). Mice were randomized to ten treatment groups; sentinels, control, heat-killed MAP, viable MAP, heat-killed NP51, viable ...

  8. Purification of Lactobacillus acidophilus surface-layer protein and its immunomodulatory effects on RAW264.7 cells.

    PubMed

    Zhang, Dandan; Wu, Mengting; Guo, Yuxing; Xun, Mingyue; Wang, Wenwen; Wu, Zhen; Pan, Daodong

    2017-09-01

    Surface-layer proteins (SLP) have been found in the outermost layer of the cell wall in many types of lactobacillus are considered to be an important factor with respect to intestinal immunity. The present study compared the effects of SLP extracted by different concentrations of LiCl and carbamide, and subsequently identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism and differential scanning calorimetry. Furthermore, RAW 264.7 cells were used to evaluate the immunomodulatory effects of SLP. SLP were derived from Lactobacillus acidophilus CICC6074 with a molecular weight of 46 kDa, and consisted of 16.9% α-helix, 42.3% β-sheet, 20.8% β-turns and 22.5% random coils. SLP promoted NO secretion and higher quantities of NO were produced as the SLP concentrations increased. SLP concentrations over 50 µg mL -1 significantly decreased the amount of tumor necrosis factor-α secreted by RAW264.7 cells. SLP can trigger immunomodulatory effects in RAW 264.7 cells. This provides crucial information that will enable the further use of L. acidophilus in food, medicine and other products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  10. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  11. Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus

    PubMed Central

    2014-01-01

    Background Tannase (tannin acyl hydrolase, EC 3.1.1.20) specifically catalyzes the hydrolysis of the galloyl ester bonds in hydrolyzable tannins to release gallic acid. The enzyme was found not only in fungal species but also many bacterial species including Lactobacillus plantarum, L. paraplantarum, and L. pentosus. Recently, we identified and expressed a tannase gene of L. plantarum, tanLpl, to show remarkable differences to characterized fungal tannases. However, little is known about genes responsible for tannase activities of L. paraplantarum and L. pentosus. We here identify the tannase genes (i.e. tanLpa and tanLpe) of the above lactobacilli species, and describe their molecular diversity among the strains as well as enzymological difference between species inclusive of L. plantarum. Results The genes encoding tannase, designated tanLpa and tanLpe, were cloned from Lactobacillus paraplantarum NSO120 and Lactobacillus pentosus 21A-3, which shared 88% and 72% amino acid identity with TanLpl, cloned from Lactobacillus plantarum ATCC 14917T, respectively. These three enzymes could comprise a novel tannase subfamily of independent lineage, because no other tannases in the databases share significant sequence similarity with them. Each of tanLpl, tanLpa, and tanLpe was expressed in Bacillus subtilis RIK 1285 and recombinant enzymes were secreted and purified. The Km values of the enzymes on each galloyl ester were comparable; however, the kcat/Km values of TanLpa for EGCg, ECg, Cg, and GCg were markedly higher than those for TanLpl and TanLpe. Their enzymological properties were compared to reveal differences at least in substrate specificity. Conclusion Two tannase genes responsible for tannase activities of L. paraplantarum and L. pentosus were identified and characterized. TanLpl, TanLpa and TanLpe forming a phylogenetic cluster in the known bacterial tannase genes and had a limited diversity in each other. Their enzymological properties were compared to reveal

  12. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2015-08-01

    The aim of the current study was to investigate the effect of varying sodium chloride concentrations (0-5%) on viability and membrane integrity of three probiotic bacteria, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum, using conventional technique and flow cytometry. Double staining of cells by carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) enabled to evaluate the effect of NaCl on cell esterase activity and membrane integrity. Observations from conventional culture technique were compared with findings from flow cytometric analysis on the metabolic activities of the cells and a correlation was observed between culturability and dye extrusion ability of L. casei and B. longum. However, a certain population of L. acidophilus was viable as per the plate count method but its efflux activity was compromised. Esterase activity of most bacteria reduced significantly (P < 0.05) during one week storage at NaCl concentrations greater than 3.5%. The study revealed that L. casei was least affected by higher NaCl concentrations among the three probiotic bacteria, as opposed to B. longum where the cF extrusion performance was greatly reduced during 1 wk storage. The metabolic activity and salt resistance of L. casei was found to be highest among the bacteria studied. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Some low homogenization pressures improve certain probiotic characteristics of yogurt culture bacteria and Lactobacillus acidophilus LA-K.

    PubMed

    Muramalla, T; Aryana, K J

    2011-08-01

    Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus salivarius ssp. thermophilus, and Lactobacillus acidophilus are dairy cultures widely used in the manufacture of cultured dairy products. Commonly used homogenization pressures in the dairy industry are 13.80 MPa or less. It is not known whether low homogenization pressures can stimulate bacteria to improve their probiotic characteristics. Objectives were to determine the effect of homogenization at 0, 3.45, 6.90, 10.34, and 13.80 MPa on acid tolerance, bile tolerance, protease activity, and growth of L. delbrueckii ssp. bulgaricus LB-12, S. salivarius ssp. thermophilus ST-M5, and L. acidophilus LA-K. The cultures were individually inoculated in cool autoclaved skim milk (4°C) and homogenized for 5 continuous passes. Growth and bile tolerance of samples were determined hourly for 10h of incubation. Acid tolerance was determined every 20 min for 120 min of incubation. Protease activity was determined at 0, 12, and 24h of incubation. All homogenization pressures studied improved acid tolerance of L. delbrueckii ssp. bulgaricus LB-12 but had no beneficial effect on protease activity and had negative effects on growth and bile tolerance. A pressure of 6.90 MPa improved acid tolerance, bile tolerance, and protease activity of S. salivarius ssp. thermophilus ST-M5, but none of the homogenization pressures studied had an effect on its growth. Homogenization pressures of 13.80 and 6.90 MPa improved acid tolerance and bile tolerance, respectively, of L. acidophilus LA-K but had no effect on protease activity and its growth. Some low homogenization pressures positively influenced some characteristics of yogurt culture bacteria and L. acidophilus LA-K. Culture pretreatment with some low homogenization pressures can be recommended for improvement of certain probiotic characteristics. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Preparation of a Lactobacillus plantarum starter culture for cucumber fermentations that can meet kosher guidelines

    USDA-ARS?s Scientific Manuscript database

    A method is described for growth of a Lactobacillus plantarum starter culture in jars of commercially available pasteurized fresh-pack kosher dill cucumbers so that jars can be used to inoculate commercial scale cucumber fermentation tanks. A procedure is also described to transfer lactic acid bacte...

  15. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker.

    PubMed

    Fu, X; Xu, J G

    2000-01-01

    A chromosome-plasmid balanced lethal gene delivery system for Lactobacillus acidophilus based on the thyA gene was developed. The selected L. acidophilus DOM La strain carries a mutated thyA gene and has an obligate requirement for thymidine. This strain can be used as a host for the constructed shuttle vector pFXL03, lacking antibiotic-resistant markers but having the wild-type thyA gene from L. casei which complements the thyA chromosomal mutation. The vector also contains the replicon region from plasmid pUC19 and that of the Lactococcus plasmid pWV01, which allows the transfer between Escherichia coli, L. casei and L. acidophilus. Eight unique restriction sites (i.e., PstI, HindIII, SphI, SalI, AccI, XbaI, KpnI and SacI) are available for cloning. After 40-time transfers in modified MRS medium, no plasmid loss was observed. The vector pFXL03 is potentially useful as a food-grade vaccine delivery system for L. acidophilus.

  16. Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Zhu, Jiamin; Zhang, Chengcheng; Li, Tianqi; Liu, Xiaoming; Zhao, Jianxin; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2017-09-01

    We investigated the protection offered by the probiotic Lactobacillus plantarum CCFM639 against waterborne Al exposure in tilapia. Fish were allocated to control, CCFM639-only, Al-only or Al plus CCFM639 groups. The fish were exposed to 2.73mg/L Al ions for 4 weeks. The probiotic was incorporated into the fish diet at 10 8 CFU/g and provided twice daily. Our results showed that L. plantarum CCFM639 significantly enhanced feed utilization, growth performance and antioxidant ability in the absence of waterborne Al exposure. When fish were exposed to Al, dietary supplementation with the strain effectively decreased the death rate and accumulation of Al in tissues, and enhanced growth performance. Moreover, Al-induced changes in hematobiochemical parameters and hepatic oxidative stress and histopathology were also alleviated. Therefore, L. plantarum CCFM639 may be a novel dietary supplement for fish to enhance growth performance and prevent aquaculture and food safety problems induced by Al pollution. Copyright © 2017. Published by Elsevier Inc.

  17. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) infection in Balb/c mice by feeding probiotic Lactobacillus acidophilus NP-51

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease. We hypothesized that feeding NP51 would increase Th-1 responses and decrease prog...

  18. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) Infection in Balb/c Mice by Feeding Probiotic Lactobacillus acidophilus NP-51

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease. We hypothesized that feeding NP51 would increase Th-1 responses and decrease prog...

  19. Effects of Lactobacillus acidophilus dietary supplementation on the performance, intestinal barrier function, rectal microflora and serum immune function in weaned piglets challenged with Escherichia coli lipopolysaccharide.

    PubMed

    Qiao, Jiayun; Li, Haihua; Wang, Zhixiang; Wang, Wenjie

    2015-04-01

    This study was conducted with a lipopolysaccharide (LPS)-challenged piglet model to determine the effects of diets containing Lactobacillus acidophilus on the performance, intestinal barrier function, rectal microflora and serum immune function. A total of 150 piglets (initial body weight (BW) 7.53 ± 0.21 kg) were allotted to one of the following diets, including a basal diet, a basal diet supplemented with 250 mg/kg Flavomycin, or basal diet plus 0.05, 0.1 or 0.2 % L. acidophilus. On day 28 of the trial, the pigs were given an intraperitoneal injection of LPS (200 μg/kg body weight) followed by blood collection 3 h later. Diets with either antibiotics, 0.1 or 0.2 % Lactobacillus increased (P < 0.05) the final BW and decreased (P < 0.05) feed gain ratio (F/G) compared with the control group. Pigs fed diets containing antibiotic or Lactobacillus had greater average daily gain (ADG) (P < 0.05) than pigs fed the control diet. The rectal content Lactobacillus counts for pigs fed diet containing Lactobacillus were significant higher (P < 0.01) than those fed antibiotic or control diet. Feeding the Lactobacillus diets decreased the Escherichia coli counts of rectal content (P < 0.01). Pigs fed diets containing 0.1 or 0.2 % Lactobacillus decreased serum DAO activity (P < 0.05) compared with pigs fed the control diet. Serum IL-10 concentration was enhanced in pigs fed the diet with Lactobacillus compared to pigs fed the control diet and antibiotic diet. Feeding a diet with Lactobacillus reduced (P < 0.05) IFN-γ concentration compared to the control diet. Inclusion of Lactobacillus in diets fed to pigs reduced TNF-α concentration compared with pigs fed no Lactobacillus (P < 0.05). These results indicate that feeding with L. acidophilus improved growth performance and protected against LPS-induced inflammatory status.

  20. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein.

    PubMed

    Song, S; Oh, S; Lim, K-T

    2015-06-01

    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition

  1. Plantaricyclin A, a Novel Circular Bacteriocin Produced by Lactobacillus plantarum NI326: Purification, Characterization, and Heterologous Production

    PubMed Central

    Borrero, Juan; Kelly, Eoin; O'Connor, Paula M.; Kelleher, Philip; Scully, Colm; Cotter, Paul D.; Mahony, Jennifer

    2017-01-01

    ABSTRACT Bacteriocins from lactic acid bacteria (LAB) are of increasing interest in recent years due to their potential as natural preservatives against food and beverage spoilage microorganisms. In a screening study for LAB, we isolated from olives a strain, Lactobacillus plantarum NI326, with activity against the beverage-spoilage bacterium Alicyclobacillus acidoterrestris. Genome sequencing of NI326 enabled the identification of a gene cluster (designated plc) encoding a putative circular bacteriocin and proteins involved in its modification, transport, and immunity. This novel bacteriocin, named plantaricyclin A (PlcA), was grouped into the circular bacteriocin subgroup II due to its high degree of similarity with other gassericin A-like bacteriocins. Purification of PlcA from the supernatant of Lb. plantarum NI326 resulted in an active peptide with a molecular mass of 5,570 Da, corresponding to that predicted from the (processed) PlcA amino acid sequence. The plc gene cluster was cloned and expressed in Lactococcus lactis NZ9000, resulting in the production of an active 5,570-Da bacteriocin in the supernatant. PlcA is believed to be produced as a 91-amino-acid precursor with a 33-amino-acid leader peptide, which is predicted to be removed, followed by joining of the N and C termini via a covalent linkage to form the mature 58-amino-acid circular bacteriocin PlcA. We report the characterization of a circular bacteriocin produced by Lb. plantarum. The inhibition displayed against A. acidoterrestris highlights its potential use as a preservative in food and beverages. IMPORTANCE In this work, we describe the purification and characterization of an antimicrobial peptide, termed plantaricyclin A (PlcA), produced by a Lactobacillus plantarum strain isolated from olives. This peptide has a circular structure, and all genes involved in its production, circularization, and secretion were identified. PlcA shows antimicrobial activity against different strains, including

  2. Lactobacillus plantarum B7 inhibits Helicobacter pylori growth and attenuates gastric inflammation

    PubMed Central

    Sunanliganon, Chompoonut; Thong-Ngam, Duangporn; Tumwasorn, Somying; Klaikeaw, Naruemon

    2012-01-01

    AIM: To determine the anti-Helicobacter property of Lactobacillus plantarum B7 (L. plantarum) B7 supernatants in vitro and the protective effects of L. plantarum B7 on serum tumor necrosis factor-alpha (TNF-α), gastric malondialdehyde (MDA) level, apoptosis, and histopathology in Helicobacter pylori (H. pylori)-induced gastric inflammation in rats. METHODS: In vitro, the inhibition of H. pylori growth was examined using L. plantarum B7 supernatants at pH 4 and pH 7 and at the concentration of 1×, 5× and 10× on plates inoculated with H. pylori. The inhibitory effect of H. pylori was interpreted by the size of the inhibition zone. In vitro, male Sprague-Dawley rats were randomly divided into four groups including group 1 (control group), group 2 (H. pylori infected group), group 3 (H. pylori infected with L. plantarum B7 106 CFUs/mL treated group) and group 4 (H. pylori infected with L. plantarum B7 1010 CFUs/mL treated group). One week after H. pylori inoculation, L. plantarum B7 106 CFUs/mL or 1010 CFUs/mL were fed once daily to group 3 and group 4, respectively, for one week. Blood and gastric samples were collected at the end of the study. RESULTS: In vitro, at intact pH 4, mean inhibitory zone diameters of 8.5 mm and 13 mm were noted at concentrations of 5× and 10× of L. plantarum B7 supernatant disks, respectively. At adjusted pH 7, L. plantarum B7 supernatants at concentrations of 5× and 10× yielded mean inhibitory zone diameters of 6.5 mm and 11 mm, respectively. In the in vitro study, in group 2, stomach histopathology revealed mild to moderate H. pylori colonization and inflammation. The level of gastric MDA and epithelial cell apoptosis were significantly increased compared with group 1. The serum TNF-α level was significant decreased in group 3 compared with group 2 (P < 0.05). In addition, L. plantarum B7 treatments resulted in a significant improvement in stomach pathology, and decreased gastric MDA level and apoptotic epithelial cells

  3. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome

    PubMed Central

    Ducrotté, Philippe; Sawant, Prabha; Jayanthi, Venkataraman

    2012-01-01

    AIM: To assess the symptomatic efficacy of Lactobacillus plantarum 299v (L. plantarum 299v) (DSM 9843) for the relief of abdominal symptoms in a large subset of irritable bowel syndrome (IBS) patients fulfilling the Rome III criteria. METHODS: In this double blind, placebo-controlled, parallel-designed study, subjects were randomized to daily receive either one capsule of L. plantarum 299v (DSM 9843) or placebo for 4 wk. Frequency and intensity of abdominal pain, bloating and feeling of incomplete rectal emptying were assessed weekly on a visual analogue scale while stool frequency was calculated. RESULTS: Two hundred and fourteen IBS patients were recruited. After 4 wk, both pain severity (0.68 + 0.53 vs 0.92 + 0.57, P < 0.05) and daily frequency (1.01 + 0.77 vs 1.71 + 0.93, P < 0.05) were lower with L. plantarum 299v (DSM 9843) than with placebo. Similar results were obtained for bloating. At week 4, 78.1 % of the patients scored the L. plantarum 299v (DSM 9843) symptomatic effect as excellent or good vs only 8.1 % for placebo (P < 0.01). CONCLUSION: A 4-wk treatment with L. plantarum 299v (DSM 9843) provided effective symptom relief, particularly of abdominal pain and bloating, in IBS patients fulfilling the Rome III criteria. PMID:22912552

  4. Crystallographic and mutational analyses of tannase from Lactobacillus plantarum.

    PubMed

    Matoba, Yasuyuki; Tanaka, Naomi; Noda, Masafumi; Higashikawa, Fumiko; Kumagai, Takanori; Sugiyama, Masanori

    2013-11-01

    Tannin acylhydrolase (EC 3.1.1.20) referred commonly as tannase catalyzes the hydrolysis of the galloyl ester bond of tannins to release gallic acid. Although the enzyme is useful for various industries, the tertiary structure is not yet determined. In this study, we determined the crystal structure of tannase produced by Lactobacillus plantarum. The tannase structure belongs to a member of α/β-hydrolase superfamily with an additional "lid" domain. A glycerol molecule derived from cryoprotectant solution was accommodated into the tannase active site. The binding manner of glycerol to tannase seems to be similar to that of the galloyl moiety in the substrate. Copyright © 2013 Wiley Periodicals, Inc.

  5. Inhibitory effects of antiseptic mouthrinses on Streptococcus mutans, Streptococcus sanguinis and Lactobacillus acidophilus.

    PubMed

    Evans, A; Leishman, S J; Walsh, L J; Seow, W K

    2015-06-01

    Oral antiseptics are valuable in controlling oral infections caused by cariogenic bacteria. The aim of this study was to investigate the effects of mouthrinses and pure antiseptic compounds on Streptococcus mutans and non-mutans bacteria (Streptococcus sanguinis and Lactobacillus acidophilus). The agar diffusion assay was employed to determine bacterial growth inhibition. Commercial mouthrinses containing chlorhexidine gluconate (0.2%), cetylpyridinium chloride (0.05%) and sodium fluoride (0.05%) produced statistically similar growth inhibition of S. mutans, S. sanguinis and L. acidophilus (with zones of inhibition ranging from 7.56 ± 0.52 mm to 7.39 ± 0.53 mm, 17.44 ± 0.94 mm to 18.31 ± 0.62 mm and 8.61 ± 1.43 to 8.67 ± 1.43 mm respectively, p > 0.05). The chlorhexidine mouthwash produced the greatest mean growth inhibition of S. sanguinis and S. mutans compared to all other mouthrinses tested (p < 0.01). The minimum concentrations at which inhibition against S. mutans could be detected were chlorhexidine gluconate at 0.005% (wt/vol), cetylpyridinium chloride 0.01% (wt/ vol), povidone iodine 10% (wt/vol) and sodium hypochlorite 0.5% (vol/vol). Chlorhexidine (0.01%), cetylpyridinium chloride (0.01%), povidone iodine (10%) and sodium hypochlorite (0.5%) are effective at inhibiting the growth of S. mutans, S. sanguinis and L. acidophilus. © 2015 Australian Dental Association.

  6. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging.

    PubMed

    Kim, Hyun Mee; Lee, Dong Eun; Park, Soo Dong; Kim, Yong-Tae; Kim, Yu Jin; Jeong, Ji Woong; Jang, Sung Sik; Ahn, Young-Tae; Sim, Jae-Hun; Huh, Chul-Sung; Chung, Dae Kyun; Lee, Jung-Hee

    2014-11-28

    Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVBinduced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.

  7. The anti-allergic activity of Lactobacillus plantarum L67 and its application to yogurt.

    PubMed

    Song, Sooyeon; Lee, Sei-Jung; Park, Dong-June; Oh, Sejong; Lim, Kye-Taek

    2016-12-01

    Recently, interest in the beneficial role of probiotics in the protection and management of allergic diseases caused by immune disorders has been increasing. This study investigated the inhibitory effect of Lactobacillus plantarum L67 on induced allergic inflammatory response in bisphenol A-treated rat basophilic leukemia 2H3 (RBL-2H3) cells and mouse splenocytes. We also evaluated the applicability of L. plantarum L67 as a yogurt starter culture. We measured the ability of Lactobacillus strains to induce the production of IL-12 and IFN- γ in cultured splenocytes by ELISA. Bisphenol A (50μM)-treated RBL-2H3 cells were cotreated with a glycoprotein (18kDa) isolated from L. plantarum L67 (5-100µg/mL) for 30min. We measured the expression of mitogen-activated protein kinase (ERK and p38), AP-1 (c-Fos and c-Jun), T-bet, and GATA-binding protein 3 (GATA-3) using Western blotting to examine the differentiation of T helper cells. Furthermore, we evaluated the gene expression of IL-1β, IL-6, and IL-10 using real-time quantitative PCR. Finally, we evaluated the applicability of L. plantarum L67 as a yogurt starter by measuring pH, enumeration of bacteria, and sensory scores. Our results showed that L67 protein inhibited the phosphorylation of ERK and p38 mitogen-activated protein kinase through the transcriptional activation of AP-1 in bisphenol A-treated RBL-2H3 cells. During differentiation of T helper cells, the expression of transcription factor GATA-3 was significantly suppressed by L67 protein (100µg/mL) treatment, whereas expression of transcription factor T-bet was increased. In addition, the L67 protein significantly attenuated the expression of T helper 2-linked cytokines IL-1β, IL-6, and IL-10. These results indicate that L. plantarum L67, made available as yogurt starters and dietary supplements, has the potential to prevent allergy-related immune disorders. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  8. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process.

    PubMed

    Chen, Lihua; Liu, Wenen; Li, Yanming; Luo, San; Liu, Qingxia; Zhong, Yiming; Jian, Zijuan; Bao, Meihua

    2013-09-01

    The aim of this study was to investigate the effect of Lactobacillus (L.) acidophilus ATCC 4356 on the progression of atherosclerosis in Apoliprotein-E knockout (ApoE(-/-)) mice and the underlying mechanisms. Eight week-old ApoE(-/-) mice were treated with L. acidophilus ATCC 4356 daily for 12 weeks. The wild type (WT) mice or ApoE(-/-) mice in the vehicle group were treated with saline only. Body weights, serum lipid levels, aortic atherosclerotic lesions, and tissue oxidative and inflammatory statuses were examined among the groups. As compared to ApoE(-/-) mice in the vehicle group, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 had no changes in body weights and serum lipid profiles, but showed decreased atherosclerotic lesion size in en face aorta. In comparison with WT mice, ApoE(-/-) mice in the vehicle group showed higher levels of serum malondialdehyde (MDA), oxidized low density lipoprotein (oxLDL) and tumor necrosis factor-alpha (TNF-α), but lower levels of interleukin-10 (IL-10) and superoxide dismutase (SOD) activities in serum. Administration of L. acidophilus ATCC 4356 could reverse these trends in a dose-dependent manner in ApoE(-/-) mice. Furthermore, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 showed an inhibition of translocation of NF-κB p65 from cytoplasm to nucleus, suppression of degradation of aortic IκB-α, and improvements of gut microbiota distribution, as compared to ApoE(-/-) mice in the vehicle group. Our findings suggest that administration of L. acidophilus ATCC 4356 can attenuate the development of atherosclerotic lesions in ApoE(-/-) mice through reducing oxidative stress and inflammatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis.

    PubMed

    Ashida, Nobuhisa; Yanagihara, Sae; Shinoda, Tadashi; Yamamoto, Naoyuki

    2011-10-01

    The adhesive activities of eight Lactobacillus acidophilus strains toward intestinal epithelial Caco-2 cells were studied to understand the probiotic characteristics of the L. acidophilus L-92 strain. Most of the strains, including L-92, showed high adhesive activity; CP23 showed the lowest adhesive activity. CP23 was selected for comparative analysis of cell wall-associated proteins versus the L-92 strain. Cell wall-associated proteins extracted from L-92 and CP23 were subjected to two-dimensional electrophoresis, and major spots observed in the former were compared to the corresponding spots in the latter. To understand the effects of key components of L-92 on its adhesion to Caco-2 cells, 18 spots with stronger signals in L-92 than those in CP23 were identified by a MALDI-TOF/TOF of Ultraflex analysis. Among the identified proteins of L-92, surface-layer protein A (SlpA) was considered strongly involved in adhesion in the eight L. acidophilus strains. To study the importance of SlpA in the adhesion of L. acidophilus, the amounts of SlpA proteins in LiCl extracts of the eight strains were compared by SDSpolyacrylamide gel electrophoresis. As a result, the adhesive abilities of L. acidophilus strains to Caco-2 cells correlated closely to the amount of SlpA in the cells and the productivity of IL-12, an inflammatory cytokine, in all eight strains. These results strongly suggested that SlpA in L. acidophilus might play a key role in its attachment to Caco-2 cells and in the release of IL-12 from dendritic cells.

  10. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide.

    PubMed

    Yang, Guilian; Yao, Jiayun; Yang, Wentao; Jiang, Yanlong; Du, Jinfen; Huang, Haibin; Gu, Wei; Hu, Jingtao; Ye, Liping; Shi, Chunwei; Shan, Baolong; Wang, Chunfeng

    2017-03-15

    The coccidiosis caused by Eimeria tenella (coccidian) and other species is a serious parasitic disease that affects the global poultry breeding industry. Lactobacillus strains exhibit a number of properties that make them attractive candidates as delivery vehicles for presentation to the mucosa of compounds with pharmaceutical interest, particularly vaccines. Here, the recombinant Lactobacillus plantarum (co-expressing SO7 and DCpep gene) was constructed, and its efficacy against E. tenella challenge was evaluated in this study. Broiler chickens were orally immunized with live recombinant L. plantarum NC8-pSIP409-SO7-DCpep for two weeks and were then challenged with 5×10 4 E.tenella sporulated oocysts per chicken. During the experiment, body weight gains, cecum lesion scores, fecal oocyst shedding and antibody responses in serum and intestinal washes were assessed as measures of protective immunity. The results indicated that chickens immunized with live recombinant L. plantarum can increase body weight gains and serum antibody responses compared to the control groups. Meanwhile, fecal oocyst shedding in the immunized group was significantly reduced (p<0.01). Moreover, recombinant L. plantarum can significantly relieve pathological damage in cecum, according to lesion scores and histopathologic cecum sections (p<0.01). Therefore, these results indicate that recombinant L. plantarum NC8-pSIP409-SO7-DCpep could become a promising oral vaccine candidate against E. tenella infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value andmore » dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.« less

  12. Impact of oral Lactobacillus acidophilus gavage on rooster seminal and cloacal Lactobacilli concentrations.

    PubMed

    Kiess, A S; Hirai, J H; Triplett, M D; Parker, H M; McDaniel, C D

    2016-08-01

    The use of antibiotics in poultry is being heavily scrutinized, therefore alternatives such as probiotics are being investigated. Lactobacilli spp. are a commonly used bacteria in formulating probiotics, and the addition of Lactobacilli to broiler diets has demonstrated increased growth rates, stimulated immune systems, and reduced pathogen loads in the gastro-intestinal tract ( GI: ) tract. However, previous research has shown that when rooster semen is directly exposed to Lactobacillus acidophilus (L. acidophilus) sperm quality is reduced. Therefore, the objective of the current study was to determine if oral administration of L. acidophilus increases the concentration of Lactobacilli in semen as well as the cloaca. A total of 30 roosters were used: 15 roosters were gavaged with 1X PBS (Control) and 15 roosters were gavaged with 10(7) cfu/mL of L. acidophilus (Treated). All roosters were gavaged for 14 consecutive days. Semen was collected on a 3 d interval, and cloacal swabs were collected on a 2 d interval, beginning on the first day prior to oral administration. Semen and cloacal swabs were serial diluted, and 100 μL of each dilution was then plated on Man, Rogosa, Sharpe ( MRS: ) agar plates. All plates were incubated for 48 h at 37°C under anaerobic conditions and counted. All Lactobacilli counts were first log transformed, then log transformed (day 0) pre-counts were subtracted from the log transformed day counts providing log differences for the analysis. Seminal Lactobacilli counts were not altered by treatments. However, the main effect of treatment (P = 0.026) for cloacal counts indicated that roosters gavaged with Lactobacilli yielded higher counts than the controls. Additionally, cloaca samples also demonstrated a treatment by day interaction trend (P = 0.082), where Lactobacilli was higher in the L. acidophilus gavaged roosters than the controls only on days 3, 5, 13, and 15. In conclusion, the addition of L. acidophilus to the male breeder diet

  13. Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract.

    PubMed

    Tang, Wei; Xing, Zhuqing; Hu, Wei; Li, Chao; Wang, Jinju; Wang, Yanping

    2016-08-01

    Lactobacillus plantarum MA2 was isolated from traditional Chinese Tibet kefir grains, which possess several excellent properties and functions. We previously demonstrated the antioxidant activities of this bacterium in vitro. However, the maintenance and survival of L. plantarum MA2 inside the murine intestinal tract, where it exerts its probiotic properties, and whether its effects are elicited directly on the host remain unknown. Therefore, this study investigated the mechanisms of L. plantarum MA2 in aging mice following D-galactose administration. The levels of malondialdehyde decreased significantly in the L. plantarum MA2 groups after oral ingestion compared to the D-galactose model group, and total antioxidant capacity and glutathione peroxidase and superoxide dismutase activities increased significantly in the serum and liver. We combined fluorescein isothiocyanate labeling and green fluorescent protein expression to dynamically monitor the colonization and distribution of L. plantarum MA2 in the murine intestinal tract. The results indicated that L. plantarum MA2 was detected in the ileum, colon, and feces after single and continuous oral administration at day 21 and was maintained at 10(4)-10(5) CFU/g. These results suggest that L. plantarum MA2 colonizes and survives in the murine intestinal tract to exert its antioxidative effects.

  14. Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    NASA Technical Reports Server (NTRS)

    Stahl, S.; Voorhies, A.; Lorenzi, H.; Castro-Wallace, S.; Douglas, G.

    2016-01-01

    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits.

  15. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    PubMed Central

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535

  16. Three New Lactobacillus plantarum Strains in the Probiotic Toolbox against Gut Pathogen Salmonella enterica Serotype Typhimurium

    PubMed Central

    Potočnjak, Mia; Pušić, Petra; Frece, Jadranka; Abram, Maja; Janković, Tamara

    2017-01-01

    Summary The benefits of probiotic bacteria have been widely explored. However, fermented foods and digestive system of humans and animals are an inexhaustible source of new potentially probiotic microorganisms. In this study we present three new Lactobacillus plantarum strains isolated from different dairy products: cow′s cheese, sheep′s cheese and whey. In order to determine the antibacterial activity of yet unexplored L. plantarum strains against Salmonella enterica serotype Typhimurium, in vitro competition and co-culture tests were done. Furthermore, adhesion of these strains to Caco-2 cells and their influence on the adhesion of Salmonella were tested. Results showed the potential probiotic activity of isolated strains. L. plantarum strains survived in the presence of 1% bile salts, they possessed acidification ability, antibacterial activity and significantly attenuated the growth of S. Typhimurium in brain heart infusion broth. All tested L. plantarum strains were able to adhere to Caco-2 cells and significantly impair the adhesion of S. Typhimurium. All three L. plantarum strains exhibited significant probiotic potential and anti-Salmonella activity; therefore, further testing on in vivo models should follow. PMID:28559733

  17. Enhancement of tannase production by Lactobacillus plantarum CIR1: validation in gas-lift bioreactor.

    PubMed

    Aguilar-Zarate, Pedro; Cruz-Hernandez, Mario A; Montañez, Julio C; Belmares-Cerda, Ruth E; Aguilar, Cristobal N

    2014-11-01

    The optimization of tannase production by Lactobacillus plantarum CIR1 was carried out following the Taguchi methodology. The orthogonal array employed was L18 (2(1) × 3(5)) considering six important factors (pH and temperature, also phosphate, nitrogen, magnesium, and carbon sources) for tannase biosynthesis. The experimental results obtained from 18 trials were processed using the software Statistical version 7.1 using the character higher the better. Optimal culture conditions were pH, 6; temperature, 40 °C; tannic acid, 15.0 g/L; KH2PO4, 1.5 g/L; NH4Cl, 7.0 g/L; and MgSO4, 1.5 g/L which were obtained and further validated resulting in an enhance tannase yield of 2.52-fold compared with unoptimized conditions. Tannase production was further carried out in a 1-L gas-lift bioreactor where two nitrogen flows (0.5 and 1.0 vvm) were used to provide anaerobic conditions. Taguchi methodology allowed obtaining the optimal culture conditions for the production of tannase by L. plantarum CIR1. At the gas-lift bioreactor the tannase productivity yields increase 5.17 and 8.08-fold for the flow rates of 0.5 and 1.0 vvm, respectively. Lactobacillus plantarum CIR1 has the capability to produce tannase at laboratory-scale. This is the first report for bacterial tannase production using a gas-lift bioreactor.

  18. Helicobacter pylori VacA Suppresses Lactobacillus acidophilus-Induced Interferon Beta Signaling in Macrophages via Alterations in the Endocytic Pathway

    PubMed Central

    Weiss, Gudrun; Forster, Sam; Irving, Aaron; Tate, Michelle; Ferrero, Richard L.; Hertzog, Paul; Frøkiær, Hanne; Kaparakis-Liaskos, Maria

    2013-01-01

    ABSTRACT Helicobacter pylori causes chronic gastritis and avoids elimination by the immune system of the infected host. The commensal bacterium Lactobacillus acidophilus has been suggested to exert beneficial effects as a supplement during H. pylori eradication therapy. In the present study, we applied whole-genome microarray analysis to compare the immune responses induced in murine bone marrow-derived macrophages (BMDMs) stimulated with L. acidophilus, H. pylori, or both bacteria in combination. While L. acidophilus induced a Th1-polarizing response characterized by high expression of interferon beta (IFN-β) and interleukin 12 (IL-12), H. pylori strongly induced the innate cytokines IL-1β and IL-1α. In BMDMs prestimulated with L. acidophilus, H. pylori blocked the expression of L. acidophilus-induced IFN-β and IL-12 and suppressed the expression of key regulators of the Rho, Rac, and Cdc42 GTPases. The inhibition of L. acidophilus-induced IFN-β was independent of H. pylori viability and the virulence factor CagPAI; however, a vacuolating cytotoxin (vacA) mutant was unable to block IFN-β. Confocal microscopy demonstrated that the addition of H. pylori to L. acidophilus-stimulated BMDMs redirects intracellular processing, leading to an accumulation of L. acidophilus in the endosomal and lysosomal compartments. Thus, our findings indicate that H. pylori inhibits the development of a strong Th1-polarizing response in BMDMs stimulated with L. acidophilus by blocking the production of IFN-β in a VacA-dependent manner. We suggest that this abrogation is caused by a redirection of the endocytotic pathway in the processing of L. acidophilus. PMID:23760466

  19. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1.

    PubMed

    Wang, S; Peng, Q; Jia, H M; Zeng, X F; Zhu, J L; Hou, C L; Liu, X T; Yang, F J; Qiao, S Y

    2017-08-01

    Two studies were performed to assess the efficacy of Lactobacillus plantarum B1 in prevention of pathogenic Escherichia coli K88 gastrointestinal infection in broilers. In an in vitro study, L. plantarum B1 showed resistance to acid and bile and inhibited the growth of E. coli K88. Additionally, L. plantarum B1 exhibited high ability to adhere to broiler embryo ileal epithelium. In an animal trial, 240 broilers at 1 d of age were randomly assigned to one of 4 treatment arms: negative control (NC) broilers fed a basal diet and not challenged; positive control (PC) broilers fed a basal diet and challenged with E. coli K88; L. plantarum (LP) treatment broilers fed a basal diet containing 2 × 109 cfu/kg L. plantarum B1 and challenged with E. coli K88; and antibiotic treatment (Anti) broilers fed a basal diet supplemented with colistin sulfate (20 mg/kg) and challenged with E. coli K88. Broilers fed L. plantarum B1 had greater (P ≤ 0.05) BW than those in the PC treatment on d 14 and 28. Dietary L. plantarum B1 decreased (P < 0.05) E. coli counts in the cecal contents on d 10 and 14, and increased (P < 0.05) cecal lactic acid bacteria (LAB) on d 8, 10, 14, and 28 compared with the PC treatment. Dietary supplementation of L. plantarum B1 increased (P < 0.05) the ileal mucosal secretory IgA concentration and reduced (P < 0.05) IL-2, IL-4, IFN-γ, and tumor necrosis factor-α levels in the ileum. Overall, these results suggest dietary supplementation of L. plantarum B1 promotes growth performance, lowers cecal E. coli counts, and increases the population of cecal LAB, as well as improves intestinal mucosal immunity in E. coli K88-challenged broilers. © 2017 Poultry Science Association Inc.

  20. Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014

    PubMed Central

    Wang, HaiKuan; Yan, YanHua; Wang, JiaMing; Zhang, HePing; Qi, Wei

    2012-01-01

    Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds. PMID:22276116

  1. Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food.

    PubMed

    Hekmat, S; McMahon, D J

    1992-06-01

    Probiotic ice cream was made by fermenting a standard ice cream mix with Lactobacillus acidophilus and Bifidobacterium bifidum cultures and then freezing the mix in a batch freezer. Survival of the L. acidophilus and B. bifidum, as well as beta-galactosidase activity, was monitored during 17 wk of frozen storage at -29 degrees C. After freezing of the fermented mix, bacterial counts were 1.5 x 10(8) cfu/ml for L. acidophilus and 2.5 x 10(8) cfu/ml for B. bifidum. Seventeen weeks after freezing, these counts had decreased to 4 x 10(6) and 1 x 10(7) cfu/ml, respectively. During the same period, beta-galactosidase activity decreased from 1800 to 1300 units/ml. Probiotic ice cream was prepared at pH 5.0, 5.5, and 6.0 to determine consumer preferences and was compared with standard Utah State University "Aggie" ice cream. All samples were strawberry-flavored and were evaluated by 88 judges. The preferred pH of probiotic ice cream, based on overall acceptance, was pH 5.5. We demonstrated that probiotic ice cream is a suitable vehicle for delivering beneficial microorganisms such as L. acidophilus and B. bifidum to consumers. The bacteria can be grown to high numbers in ice cream mix and remain viable during frozen storage.

  2. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats.

    PubMed

    Li, Chuan; Ding, Qiao; Nie, Shao-Ping; Zhang, Yan-Song; Xiong, Tao; Xie, Ming-Yong

    2014-12-10

    The effect of carrot juice fermented with Lactobacillus plantarum NCU116 on high-fat and low-dose streptozotocin (STZ)-induced type 2 diabetes in rats was studied. Rats were randomly divided into five groups: non-diabetes mellitus (NDM), untreated diabetes mellitus (DM), DM plus L. plantarum NCU116 (NCU), DM plus fermented carrot juice with L. plantarum NCU116 (FCJ), and DM plus non-fermented carrot juice (NFCJ). Treatments of NCU and FCJ for 5 weeks were found to favorably regulate blood glucose, hormones, and lipid metabolism in the diabetic rats, accompanied by an increase in short-chain fatty acid (SCFA) in the colon. In addition, NCU and FCJ had restored the antioxidant capacity and morphology of the pancreas and kidney and upregulated mRNA of low-density lipoprotein (LDL) receptor, cholesterol 7α-hydroxylase (CYP7A1), glucose transporter-4 (GLUT-4), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ). These results have for the first time demonstrated that L. plantarum NCU116 and the fermented carrot juice had the potential ability to ameliorate type 2 diabetes in rats.

  3. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish.

    PubMed

    Davis, Daniel J; Doerr, Holly M; Grzelak, Agata K; Busi, Susheel B; Jasarevic, Eldin; Ericsson, Aaron C; Bryda, Elizabeth C

    2016-09-19

    The consumption of probiotics has become increasingly popular as a means to try to improve health and well-being. Not only are probiotics considered beneficial to digestive health, but increasing evidence suggests direct and indirect interactions between gut microbiota (GM) and the central nervous system (CNS). Here, adult zebrafish were supplemented with Lactobacillus plantarum to determine the effects of probiotic treatment on structural and functional changes of the GM, as well as host neurological and behavioral changes. L. plantarum administration altered the β-diversity of the GM while leaving the major core architecture intact. These minor structural changes were accompanied by significant enrichment of several predicted metabolic pathways. In addition to GM modifications, L. plantarum treatment also significantly reduced anxiety-related behavior and altered GABAergic and serotonergic signaling in the brain. Lastly, L. plantarum supplementation provided protection against stress-induced dysbiosis of the GM. These results underscore the influence commensal microbes have on physiological function in the host, and demonstrate bidirectional communication between the GM and the host.

  4. Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula

    PubMed Central

    Haarman, Monique; Knol, Jan

    2006-01-01

    The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants. PMID:16597930

  5. Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells.

    PubMed

    Nami, Yousef; Abdullah, Norhafizah; Haghshenas, Babak; Radiah, Dayang; Rosli, Rozita; Khosroushahi, Ahmad Yari

    2014-08-01

    Lactobacillus acidophilus is categorized as a probiotic strain because of its beneficial effects in human health and prevention of disease transmission. This study is aimed to characterize the probiotic potential of L. acidophilus 36YL originally isolated from the vagina of healthy and fertile Iranian women. The L. acidophilus 36YL strain was identified using 16S rDNA gene sequencing and characterized by biochemical methodologies, such as antibiotics susceptibility, antimicrobial activity, and acid and bile resistance. The bioactivity of the secretion of this strain on four human cancer cell lines (AGS, HeLa, MCF-7, and HT-29) and one normal cell line (HUVEC) was evaluated by cytotoxicity assay and apoptosis analysis. This newly isolated strain was found to exhibit notable probiotic properties, such as admirable antibiotic susceptibility, good antimicrobial activity, and favorable resistance to acid and bile salt. The results of bioactivity assessment demonstrated acceptable anticancer effects on the four tested cancer cell lines and negligible side effects on the assayed normal cell line. Our findings revealed that the anticancer effect of L. acidophilus 36YL strain secretions depends on the induction of apoptosis in cancer cells. L. acidophilus 36YL strain is considered as a nutraceutical alternative or a topical medication with a potential therapeutic index because of the absence of cytotoxicity to normal cells, but effective toxicity to cancer cell lines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  7. The substitution of a traditional starter culture in mutton fermented sausages by Lactobacillus acidophilus and Bifidobacterium animalis.

    PubMed

    Holko, I; Hrabě, J; Šalaková, A; Rada, V

    2013-07-01

    Common starter cultures used in fermented mutton sausages were substituted by probiotic strains of Lactobacillus acidophilus CCDM 476 and Bifidobacterium animalis 241a. Technological properties of the traditional and the probiotic sausages were compared. The potential probiotic effect was evaluated by enumeration of bifidobacteria and lactobacilli in stool samples of 15 volunteers before and after a 14-day consumption period. The numbers of lactobacilli (10(7) cfu/g) and bifidobacteria (10(3) cfu/g) in the final product did not affect the technological properties. The use of L. acidophilus as a starter culture was found more beneficial than the use of B. animalis. Even after 60 days of storage, high counts of L. acidophilus (10(6) cfu/g) were detected; on the other hand, the counts of B. animalis were under the detection limit. Regarding sensory properties, the probiotic products showed better texture, and, curiously, a reduction of the typical smell of mutton. The numbers of lactobacilli in stool samples increased significantly after the consumption of the probiotic sausages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Adhesive capability of Lactobacillus plantarum 299v is important for preventing bacterial translocation in endotoxemic rats.

    PubMed

    Mangell, Peter; Lennernäs, Pernilla; Wang, Mei; Olsson, Crister; Ahrné, Siv; Molin, Göran; Thorlacius, Henrik; Jeppsson, Bengt

    2006-09-01

    The preventive effect of the probiotic Lactobacillus plantarum 299v on bacterial translocation (BT) and the role of adhesion were studied in septic rats. Five groups of rats were pretreated as follows: negative and positive control groups received regular drinking water; the oatmeal group received drinking water mixed with oatmeal; the Lp 299v group received drinking water mixed with oatmeal containing 10(9) colony-forming units (CFU) L. plantarum 299v/ml; the Lp 299v-adh(-) group received drinking water with oatmeal containing 10(9) CFU/ml of modified L. plantarum 299v (L. plantarum 299v-adh(-)) lacking adhesive properties to enterocytes. On day 8, all rats except the negative control group were given lipopolysaccharide (LPS) intraperitoneally. After 24 h, mesenteric lymph node (MLN), liver and ileum were harvested for culture. Incidence of BT after LPS challenge was 25% and 88% in MLN and liver, respectively. BT increased to 75% in MLN and 100% in liver of endotoxemic rats pretreated with oatmeal. Pretreatment with L. plantarum 299v reduced BT to 0% and 12% in MLN and liver, respectively. L. plantarum 299v-adh(-) did not prevent BT to MLN. Flow cytometry revealed reduced adherence of these bacteria to intestinal epithelial cells compared to L. plantarum 299v. Thus, L. plantarum 299v prevents BT in septic rats, an effect probably dependent on bacterial adherence to the intestinal mucosa. Further, our findings indicate that oatmeal (prebiotics) without probiotics does not prevent BT during sepsis.

  9. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.

    PubMed

    Shan, Y; Man, C X; Han, X; Li, L; Guo, Y; Deng, Y; Li, T; Zhang, L W; Jiang, Y J

    2015-04-01

    Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Plantaricyclin A, a Novel Circular Bacteriocin Produced by Lactobacillus plantarum NI326: Purification, Characterization, and Heterologous Production.

    PubMed

    Borrero, Juan; Kelly, Eoin; O'Connor, Paula M; Kelleher, Philip; Scully, Colm; Cotter, Paul D; Mahony, Jennifer; van Sinderen, Douwe

    2018-01-01

    Bacteriocins from lactic acid bacteria (LAB) are of increasing interest in recent years due to their potential as natural preservatives against food and beverage spoilage microorganisms. In a screening study for LAB, we isolated from olives a strain, Lactobacillus plantarum NI326, with activity against the beverage-spoilage bacterium Alicyclobacillus acidoterrestris Genome sequencing of NI326 enabled the identification of a gene cluster (designated plc ) encoding a putative circular bacteriocin and proteins involved in its modification, transport, and immunity. This novel bacteriocin, named plantaricyclin A (PlcA), was grouped into the circular bacteriocin subgroup II due to its high degree of similarity with other gassericin A-like bacteriocins. Purification of PlcA from the supernatant of Lb. plantarum NI326 resulted in an active peptide with a molecular mass of 5,570 Da, corresponding to that predicted from the (processed) PlcA amino acid sequence. The plc gene cluster was cloned and expressed in Lactococcus lactis NZ9000, resulting in the production of an active 5,570-Da bacteriocin in the supernatant. PlcA is believed to be produced as a 91-amino-acid precursor with a 33-amino-acid leader peptide, which is predicted to be removed, followed by joining of the N and C termini via a covalent linkage to form the mature 58-amino-acid circular bacteriocin PlcA. We report the characterization of a circular bacteriocin produced by Lb. plantarum The inhibition displayed against A. acidoterrestris highlights its potential use as a preservative in food and beverages. IMPORTANCE In this work, we describe the purification and characterization of an antimicrobial peptide, termed plantaricyclin A (PlcA), produced by a Lactobacillus plantarum strain isolated from olives. This peptide has a circular structure, and all genes involved in its production, circularization, and secretion were identified. PlcA shows antimicrobial activity against different strains, including

  11. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  12. Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the mannose-adhesin.

    PubMed

    Gross, G; Snel, J; Boekhorst, J; Smits, M A; Kleerebezem, M

    2010-03-01

    Recently, we have identified the mannose-specific adhesin encoding gene (msa) of Lactobacillus plantarum. In the current study, structure and function of this potentially probiotic effector gene were further investigated, exploring genetic diversity of msa in L. plantarum in relation to mannose adhesion capacity. The results demonstrate that there is considerable variation in quantitative in vitro mannose adhesion capacity, which is paralleled by msa gene sequence variation. The msa genes of different L. plantarum strains encode proteins with variable domain composition. Construction of L. plantarum 299v mutant strains revealed that the msa gene product is the key-protein for mannose adhesion, also in a strain with high mannose adhering capacity. However, no straightforward correlation between adhesion capacity and domain composition of Msa in L. plantarum could be identified. Nevertheless, differences in Msa sequences in combination with variable genetic background of specific bacterial strains appears to determine mannose adhesion capacity and potentially affects probiotic properties. These findings exemplify the strain-specificity of probiotic characteristics and illustrate the need for careful and molecular selection of new candidate probiotics.

  13. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice.

    PubMed

    Schultz, Michael; Veltkamp, Claudia; Dieleman, Levinus A; Grenther, Wetonia B; Wyrick, Pricilla B; Tonkonogy, Susan L; Sartor, R Balfour

    2002-03-01

    Interleukin (IL)-10-deficient (IL-10-/-) mice develop colitis under specific pathogen-free (SPF) conditions and remain disease free if kept sterile (germ free [GF]). We used four different protocols that varied the time-points of oral administration of Lactobacillus plantarum 299v (L. plantarum) relative to colonization with SPF bacteria to determine whether L. plantarum could prevent and treat colitis induced by SPF bacteria in IL-10-/- mice and evaluated the effect of this probiotic organism on mucosal immune activation. Assessment of colitis included blinded histologic scores, measurements of secreted colonic immunoglobulin isotypes, IL-12 (p40 subunit), and interferon (IFN)-gamma production by anti-CD3-stimulated mesenteric lymph node cells. Treating SPF IL-10-/- mice with L. plantarum attenuated previously established colonic inflammation as manifested by decreased mucosal IL-12, IFN-gamma, and immunoglobulin G2a levels. Colonizing GF animals with L. plantarum and SPF flora simultaneously had no protective effects. Gnotobiotic IL-10-/- mice monoassociated with L. plantarum exhibited mild immune system activation but no colitis. Pretreatment of GF mice by colonization with L. plantarum, then exposure to SPF flora and continued probiotic therapy significantly decreased histologic colitis scores. These results demonstrate that L. plantarum can attenuate immune-mediated colitis and suggest a potential therapeutic role for this agent in clinical inflammatory bowel diseases.

  14. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    PubMed

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Genetic modification of Lactobacillus plantarum by heterologous gene integration in a not functional region of the chromosome.

    PubMed

    Rossi, Franca; Capodaglio, Alessandro; Dellaglio, Franco

    2008-08-01

    This report describes the vector-free engineering of Lactobacillus plantarum by chromosomal integration of an exogenous gene without inactivation of physiological traits. The integrative plasmid vector pP7B6 was derived from pGIP73 by replacing the cbh site, encoding the L. plantarum conjugated bile salt hydrolase, with the prophage fragment P7B6, from L. plantarum Lp80 (DSM 4229). Plasmid pP7B6NI was obtained by inserting the nisin immunity gene nisI of Lactococcus lactis subsp. lactis DSM 20729, preceded by the constitutive promoter P32 from the same strain, in a unique XbaI site of fragment P7B6 and was used to electrotransform L. plantarum Lp80. A food grade recombinant L. plantarum Lp80NI, with 480-fold higher immunity to nisin than the wild type, was derived by integration of pP7B6NI followed by the excision of pP7B6. Polymerase chain reaction tests demonstrated that the integration of nisI in the prophage region had occurred and that the erythromycin resistance marker from pP7B6 was lost. Fifteen among 31 L. plantarum strains tested hybridized with P7B6, indicating that the integration of pP7B6-derived vectors might occur in some other L. plantarum strains. This was experimentally confirmed by constructing the recombinant strain L. plantarum LZNI from the dairy isolate L. plantarum LZ (LMG 24600).

  16. Strain-Specific Features of Extracellular Polysaccharides and Their Impact on Lactobacillus plantarum-Host Interactions.

    PubMed

    Lee, I-Chiao; Caggianiello, Graziano; van Swam, Iris I; Taverne, Nico; Meijerink, Marjolein; Bron, Peter A; Spano, Giuseppe; Kleerebezem, Michiel

    2016-07-01

    Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment, including their

  17. Strain-Specific Features of Extracellular Polysaccharides and Their Impact on Lactobacillus plantarum-Host Interactions

    PubMed Central

    Lee, I-Chiao; Caggianiello, Graziano; van Swam, Iris I.; Taverne, Nico; Meijerink, Marjolein; Bron, Peter A.; Spano, Giuseppe

    2016-01-01

    ABSTRACT Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. IMPORTANCE This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment

  18. Role of luxS in Stress Tolerance and Adhesion Ability in Lactobacillus plantarum KLDS1.0391

    PubMed Central

    Jia, Fang-Fang; Zheng, Hui-Qi; Sun, Si-Rui; Pang, Xue-Hui; Liang, Yu; Shang, Jia-Cui; Zhu, Zong-Tao

    2018-01-01

    Lactobacillus plantarum, a probiotic, has a high survival rate and high colonization ability in the gastrointestinal tract. Tolerance to the gastrointestinal environment and adhesion to intestinal epithelial cells by some Lactobacillus species (excluding L. plantarum) are related to luxS/AI-2. Here, the role of luxS in tolerance to simulated digestive juice (SDJ) and adhesion to Caco-2 cells by L. plantarum KLDS1.0391 (hereafter, KLDS1.0391) was investigated. The KLDS1.0391 luxS mutant strain was constructed by homologous recombination. When luxS was deleted, acid and bile salt tolerance and survival rates in SDJ significantly decreased (p < 0.05 for all). The ability of the luxS deletion strain to adhere to Caco-2 cells was markedly lower than that of the wild-type strain (p < 0.05). The ability of the luxS mutant strain to adhere (competition, exclusion, and displacement) to Escherichia coli ATCC 25922 was significantly lower than that of the wild-type strain (p < 0.05 for all). A significant decrease was noted only in the exclusion adhesion inhibition of the luxS mutant strain to Salmonella typhimurium ATCC 14028 (p < 0.05). These results indicate that the luxS gene plays an important role in the gastrointestinal environment tolerance and adhesion ability of KLDS1.0391. PMID:29651434

  19. Impact of Lactobacillus plantarum Sortase on Target Protein Sorting, Gastrointestinal Persistence, and Host Immune Response Modulation

    PubMed Central

    Remus, Daniela M.; Bongers, Roger S.; Meijerink, Marjolein; Fusetti, Fabrizia; Poolman, Bert; de Vos, Paul; Wells, Jerry M.; Bron, Peter A.

    2013-01-01

    Sortases are transpeptidases that couple surface proteins to the peptidoglycan of Gram-positive bacteria, and several sortase-dependent proteins (SDPs) have been demonstrated to be crucial for the interactions of pathogenic and nonpathogenic bacteria with their hosts. Here, we studied the role of sortase A (SrtA) in Lactobacillus plantarum WCFS1, a model Lactobacillus for probiotic organisms. An isogenic srtA deletion derivative was constructed which did not show residual SrtA activity. DNA microarray-based transcriptome analysis revealed that the srtA deletion had only minor impact on the full-genome transcriptome of L. plantarum, while the expression of SDP-encoding genes remained completely unaffected. Mass spectrometry analysis of the bacterial cell surface proteome, which was assessed by trypsinization of intact bacterial cells and by LiCl protein extraction, revealed that SrtA is required for the appropriate subcellular location of specific SDPs and for their covalent coupling to the cell envelope, respectively. We further found that SrtA deficiency did not affect the persistence and/or survival of L. plantarum in the gastrointestinal tract of mice. In addition, an in vitro immature dendritic cell (iDC) assay revealed that the removal of surface proteins by LiCl strongly affected the proinflammatory signaling properties of the SrtA-deficient strain but not of the wild type, which suggests a role of SDPs in host immune response modulation. PMID:23175652

  20. Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137.

    PubMed

    Kim, Jong-Hyun; Sunako, Michihiro; Ono, Hisayo; Murooka, Yoshikatsu; Fukusaki, Eiichiro; Yamashita, Mitsuo

    2008-11-01

    A starch-hydrolyzing lactic acid bacterium, Lactobacillus plantarum L137, was isolated from traditional fermented food made from fish and rice in the Philippines. A gene (apuA) encoding an amylolytic enzyme from Lactobacillus plantarum L137 was cloned, and its nucleotide sequence was determined. The apuA gene consisted of an open reading frame of 6171 bp encoding a protein of 2056 amino acids, the molecular mass of which was calculated to be 215,625 Da. The catalytic domains of amylase and pullulanase were located in the same region within the middle of the N-terminal region. The deduced amino acid sequence revealed four highly conserved regions that are common among amylolytic enzymes. In the N-terminal region, a six-amino-acid sequence (Asp-Ala/Thr-Ala-Asn-Ser-Thr) is repeated 39 times, and a three-amino-acid sequence (Gln-Pro-Thr) is repeated 50 times in the C-terminal region. The apuA gene was subcloned in L. plantarum NCL21, which is a plasmid-cured derivative of the wild-type L137 strain and has no amylopullulanase activity, and the gene was overexpressed under the control of its own promoter. The ApuA enzyme from this recombinant L. plantarum NCL21 harboring apuA gene was purified. The enzyme has both alpha-amylase and pullulanase activities. The N-terminal sequence of the purified enzyme showed that the signal peptide was cleaved at Ala(36) and the molecular mass of the mature extracellular enzyme is 211,537 Da. The major reaction products from soluble starch were maltotriose (G3) and maltotetraose (G4). Only maltotriose (G3) was produced from pullulan. From these results, we concluded that ApuA is an amylolytic enzyme belonging to the amylopullulanase family.

  1. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi.

    PubMed

    Ryu, Eun Hye; Yang, Eun Ju; Woo, Eun Rhan; Chang, Hae Choon

    2014-08-01

    Strain HD1 with antifungal activity was isolated from kimchi and identified as Lactobacillus plantarum. Antifungal compounds from Lb. plantarum HD1 were active against food- and feed-borne filamentous fungi and yeasts in a spot-on-the-lawn assay. Antifungal activity of Lb. plantarum HD1 was stronger against filamentous fungi than yeast. Antifungal compounds were purified using solid phase extraction (SPE) and recycling preparative-HPLC. Structures of the antifungal compounds were elucidated by electrospray ionization-mass spectrometry and nuclear magnetic resonance. Active compounds from Lb. plantarum HD1 were identified as 5-oxododecanoic acid (MW 214), 3-hydroxy decanoic acid (MW 188), and 3-hydroxy-5-dodecenoic acid (MW 214). To investigate the potential application of these antifungal compounds for reduction of fungal spoilage in foods, Korean draft rice wine was used as a food model. White film-forming yeasts were observed in control draft rice wine after 11 days of incubation. However, film-forming yeasts were not observed in draft rice wine treated with SPE-prepared culture supernatant of Lb. plantarum HD1 (equivalent to 2.5% addition of culture supernatant) until 27 days of incubation. The addition of antifungal compounds to Korean draft rice wine extended shelf-life up to 27 days at 10 °C without any sterilization process. Therefore, the antifungal activity of Lb. plantarum HD1 may lead to the development of powerful biopreservative systems capable of preventing food- and feed-borne fungal spoilage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Rapid molecular identification and characteristics of Lactobacillus strains.

    PubMed

    Markiewicz, L H; Biedrzycka, E; Wasilewska, E; Bielecka, M

    2010-09-01

    Eleven type strains and 24 Lactobacillus isolates, preliminarily classified to the species due to phenotypic features, were investigated. Standard methods of identification with species-specific PCRs and typing with PFGE (with ApaI, NotI and SmaI restriction enzymes) allowed us to distinguish 16 unique strains belonging to 5 species (L. acidophilus, L. delbrueckii ssp. bulgaricus, L. plantarum, L. rhamnosus, L. salivarius). Alternative approach with 16S-23S rDNA ARDRA identification (with merely two restrictases, BsuRI and TaqI) and PCR-based typing (RAPD with two random- and rep-PCR with (GTG)(5) primers) showed to be more discriminative, i.e. 21 unique strains were classified in the same species as above. As a result, 7 out of 24 phenotypically species-assigned isolates were reclassified. The alternative procedure of rapid identification and typing of Lactobacillus isolates appeared to be equally effective and shortened from 1 week to 2-3 d (in comparison to the standard methods).

  3. In vitro probiotic characteristics of Lactobacillus plantarum ZDY 2013 and its modulatory effect on gut microbiota of mice.

    PubMed

    Huang, Renhui; Tao, Xueying; Wan, Cuixiang; Li, Shengjie; Xu, Hengyi; Xu, Feng; Shah, Nagendra P; Wei, Hua

    2015-09-01

    Lactobacillus plantarum ZDY 2013, a novel strain isolated from Chinese traditional fermented acid beans, was systematically evaluated for its survival capacity under stress conditions (pH, bile salt, simulated gastrointestinal tract, and antibiotics), production of exopolysaccharide and antagonism against 8 pathogens. Its effect on mice gut microbiota was also investigated by quantitative PCR and PCR-denaturing gradient gel electrophoresis. The results showed that ZDY 2013 can grow at pH 3.5 and survive at pH 2.0 for 6 h and at 0.45% bile salt for 3 h. The exopolysaccharide yield was up to 204±7.68 mg/L. The survival rate of ZDY 2013 in a simulated gastrointestinal tract was as high as 65.84%. Antagonism test with a supernatant of ZDY 2013 showed maximum halo of 28 mm against Listeria monocytogenes. The inhibition order was as follows: Listeria monocytogenes, Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Shigella sonnei, Enterobacter sakazakii, and Staphylococcus aureus. Lactobacillus plantarum ZDY 2013 was sensitive to some antibiotics (e.g., macrolide, sulfonamides, aminoglycoside, tetracyclines and β-lactams), whereas it was resistant to glycopeptides, quinolones, and cephalosporins antibiotics. Denaturing gradient gel electrophoresis profile demonstrated that ZDY 2013 administration altered the composition of the microbiota at various intestinal loci of the mice. Moreover, the quantitative PCR test showed that the administration of ZDY 2013 enhanced the populations of Bifidobacterium and Lactobacillus in either the colon or cecum, and reduced the potential enteropathogenic bacteria (e.g., Enterococcus, Enterobacterium, and Clostridium perfringens). Lactobacillus plantarum ZDY 2013 exhibited high resistance against low pH, bile salt, and gastrointestinal fluid, and possessed antibacterial and gut microbiota modulation properties with a potential application in the development of dairy food and nutraceuticals. Copyright © 2015 American

  4. Lactobacillus paracasei and Lactobacillus plantarum strains downregulate proinflammatory genes in an ex vivo system of cultured human colonic mucosa.

    PubMed

    Bäuerl, Christine; Llopis, Marta; Antolín, María; Monedero, Vicente; Mata, Manuel; Zúñiga, Manuel; Guarner, Francisco; Pérez Martínez, Gaspar

    2013-03-01

    Significant health benefits have been demonstrated for certain probiotic strains through intervention studies; however, there is a shortage of experimental evidence relative to the mechanisms of action. Here, noninvasive experimental procedure based on a colon organ culture system has been used that, in contrast to most experimental in vitro models reported, can preserve natural immunohistochemical features of the human mucosa. This system has been used to test whether commensal lactobacilli (Lactobacillus paracasei BL23, Lactobacillus plantarum 299v and L. plantarum 299v (A(-))) were able to hinder inflammation-like signals induced by phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO). Whole genome microarrays have been applied to analyze expression differences, from which mRNA markers could be inferred to monitor the effect of putative probiotic strains under such conditions. Regarding the gene expression, PMA/IO treatment induced not only interleukin (IL)-2 and interferon gamma (IFN-γ), as expected, but also other relevant genes related to immune response and inflammation, such as IL-17A, chemokine (C-X-C motif) ligand (CXCL) 9 and CXCL11. The ex vivo culturing did not modify the pattern of expression of those genes or others related to inflammation. Interestingly, this study demonstrated that lactobacilli downregulated those genes and triggered a global change of the transcriptional profile that indicated a clear homeostasis restoring effect and a decrease in signals produced by activated T cells.

  5. Effects of salt concentration and pH on structural and functional properties of Lactobacillus acidophilus: FT-IR spectroscopic analysis.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-03-03

    The effects of sodium chloride concentration and varying pH levels on the structural and functional properties of Lactobacillus acidophilus were investigated. Reconstituted skim milk was inoculated with Lb. acidophilus at varying salt concentrations (0, 1, 2, 5 and 10% NaCl) and pH levels (4.0, 5.0 and 6.0) and ACE-inhibitory activity and proteolytic activity were determined and the viable cell count was enumerated after 24h of fermentation at 37 °C. The degree of proteolysis exhibited an increase with higher salt concentration at pH 5.0 and 6.0. ACE-inhibitory activity was found to be the highest at pH 5.0 at all salt concentrations. Fourier transform infrared spectroscopy results demonstrated significant changes occurring beyond 2% NaCl particularly at low pH (4.0). The findings revealed that significant changes occurred in amide I and amide III regions when Lb. acidophilus was subjected to varying salt concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers.

    PubMed

    Naruszewicz, Marek; Johansson, Marie-Louise; Zapolska-Downar, Danuta; Bukowska, Hanna

    2002-12-01

    The short-chain fatty acids formed in the human colon by the bacterial fermentation of fiber may have an antiinflammatory effect, may reduce insulin production, and may improve lipid metabolism. We previously showed in hypercholesterolemic patients that supplementation with the probiotic bacteria Lactobacillus plantarum 299v significantly lowers concentrations of LDL cholesterol and fibrinogen. We determined the influence of a functional food product containing L. plantarum 299v on lipid profiles, inflammatory markers, and monocyte function in heavy smokers. Thirty-six healthy volunteers (18 women and 18 men) aged 35-45 y participated in a controlled, randomized, double-blind trial. The experimental group drank 400 mL/d of a rose-hip drink containing L. plantarum 299v (5 x 10(7) colony-forming units/mL); the control group consumed the same volume of product without bacteria. The experiment lasted 6 wk and entailed no changes in lifestyle. Significant decreases in systolic blood pressure (P < 0.000), leptin (P < 0.000), and fibrinogen (P < 0.001) were recorded in the experimental group. No such changes were observed in the control group. Decreases in F(2)-isoprostanes (37%) and interleukin 6 (42%) were also noted in the experimental group in comparison with baseline. Monocytes isolated from subjects treated with L. plantarum showed significantly reduced adhesion (P < 0.001) to native and stimulated human umbilical vein endothelial cells. L. plantarum administration leads to a reduction in cardiovascular disease risk factors and could be useful as a protective agent in the primary prevention of atherosclerosis in smokers.

  7. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis

    PubMed Central

    Moshiri, Mona; Dallal, Mohammad Mehdi Soltan; Rezaei, Farhad; Douraghi, Masoumeh; Sharifi, Laleh; Noroozbabaei, Zahra; Gholami, Mehrdad; Mirshafiey, Abbas

    2017-01-01

    Objectives Gastrointestinal disorders caused by Salmonella enterica serovar Enteritidis (SesE) are a significant health problem around the globe. Probiotic bacteria have been shown to have positive effects on the immune responses. Lactobacillus acidophilus was examined for its capability to influence the innate immune response of HT29 intestinal epithelial cells towards SesE. The purpose of this work was to assess the effect of L. acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with SesE. Methods HT29 cells were cultured in Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were treated with L. acidophilus PTCC 1643 after or before challenge with SesE. At 2 and 4 hours post-infection, we measured changes in the expression levels of TLR2 and TLR4 via real-time polymerase chain reaction. Results Treatment with L. acidophilus inhibited SesE-induced increases in TLR2 and TLR4 expression in the infected HT29 cells. Moreover, the expression of TLR2 and TLR4 in cells that were pretreated with L. acidophilus and then infected with SesE was significantly higher than that in cells infected with SesE without pretreatment. Taken together, the results indicated that L. acidophilus had an anti-inflammatory effect and modulated the innate immune response to SesE by influencing TLR2 and TLR4 expression. Conclusion Our findings suggested that L. acidophilus PTCC 1643 was able to suppress inflammation caused by SesE infection in HT29 cells and reduce TLR2 and TLR4 expression. Additional in vivo and in vitro studies are required to further elucidate the mechanisms underlying this anti-inflammatory effect. PMID:28443224

  8. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis.

    PubMed

    Moshiri, Mona; Dallal, Mohammad Mehdi Soltan; Rezaei, Farhad; Douraghi, Masoumeh; Sharifi, Laleh; Noroozbabaei, Zahra; Gholami, Mehrdad; Mirshafiey, Abbas

    2017-02-01

    Gastrointestinal disorders caused by Salmonella enterica serovar Enteritidis ( Se sE) are a significant health problem around the globe. Probiotic bacteria have been shown to have positive effects on the immune responses. Lactobacillus acidophilus was examined for its capability to influence the innate immune response of HT29 intestinal epithelial cells towards Se sE. The purpose of this work was to assess the effect of L. acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with Se sE. HT29 cells were cultured in Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were treated with L. acidophilus PTCC 1643 after or before challenge with Se sE. At 2 and 4 hours post-infection, we measured changes in the expression levels of TLR2 and TLR4 via real-time polymerase chain reaction. Treatment with L. acidophilus inhibited Se sE-induced increases in TLR2 and TLR4 expression in the infected HT29 cells. Moreover, the expression of TLR2 and TLR4 in cells that were pretreated with L. acidophilus and then infected with Se sE was significantly higher than that in cells infected with Se sE without pretreatment. Taken together, the results indicated that L. acidophilus had an anti-inflammatory effect and modulated the innate immune response to Se sE by influencing TLR2 and TLR4 expression. Our findings suggested that L. acidophilus PTCC 1643 was able to suppress inflammation caused by Se sE infection in HT29 cells and reduce TLR2 and TLR4 expression. Additional in vivo and in vitro studies are required to further elucidate the mechanisms underlying this anti-inflammatory effect.

  9. Characteristic odor components of volatile oil from the cultivation medium of Lactobacillus acidophilus.

    PubMed

    Ono, Toshirou; Yonejima, Yasunori; Ikeda, Atsushi; Kashima, Yusei; Nakaya, Satoshi; Miyazawa, Mitsuo

    2014-01-01

    Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of Lactobacillus acidophilus were isolated by hydrodistillation (HD) and analyzed to investigate the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 46 and 19 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were fatty acids, including pentanoic acid (12.75%), heptanoic acid (14.05%), and nonanoic acid (14.04%). The important aroma-active compounds in the oils were detected by GC-MS/Olfactometry (GC-O), and their intensity of aroma were measured by aroma extraction dilution analysis (AEDA). Pyrazines were determined as key aroma components; in particular, 2-ethyl-5-methylpyrazine was the most primary aroma-active compound in MAI oil. In addition, as the characteristic aroma-active compounds, 3-(methylthio)-propanal, trimethylpyrazine, and pentanoic acid were also detected in MAI oil. These results imply that the waste medium after incubation of L. acidophilus may be utilized as a source of volatile oils.

  10. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    PubMed Central

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  11. Lactobacillus plantarum with Broad Antifungal Activity as a Protective Starter Culture for Bread Production

    PubMed Central

    Russo, Pasquale; Longo, Angela; Spano, Giuseppe; Capozzi, Vittorio

    2017-01-01

    Bread is a staple food consumed worldwide on a daily basis. Fungal contamination of bread is a critical concern for producers since it is related to important economic losses and safety hazards due to the negative impact of sensorial quality and to the potential occurrence of mycotoxins. In this work, Lactobacillus plantarum UFG 121, a strain with characterized broad antifungal activity, was analyzed as a potential protective culture for bread production. Six different molds belonging to Aspergillus spp., Penicillium spp., and Fusarium culmorum were used to artificially contaminate bread produced with two experimental modes: (i) inoculation of the dough with a commercial Saccharomyces cerevisiae strain (control) and (ii) co-inoculation of the dough with the commercial S. cerevisiae strain and with L. plantarum UFG 121. L. plantarum strain completely inhibited the growth of F. culmorum after one week of storage. The lactic acid bacterium modulated the mold growth in samples contaminated with Aspergillus flavus, Penicillium chrysogenum, and Penicillium expansum, while no antagonistic effect was found against Aspergillus niger and Penicillium roqueforti. These results indicate the potential of L. plantarum UFG 121 as a biocontrol agent in bread production and suggest a species- or strain-depending sensitivity of the molds to the same microbial-based control strategy. PMID:29232917

  12. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative.

    PubMed

    Ahmad Rather, I; Seo, B J; Rejish Kumar, V J; Choi, U-H; Choi, K-H; Lim, J H; Park, Y-H

    2013-07-01

    Korean kimchi is known for its myriad of lactic acid bacteria (LAB) with diverse bioactive compounds. This study was undertaken to isolate an efficient antifungal LAB strain among the isolated kimchi LABs. One thousand and four hundred LABs isolated from different kimchi samples were initially screened against Aspergillus niger. The strain exhibiting the highest antifungal activity was identified as Lactobacillus plantarum YML007 by 16S rRNA sequencing and biochemical assays using API 50 CHL kit. Lact. plantarum YML007 was further screened against Aspergillus oryzae, Aspergillus flavus, Fusarium oxysporum and other pathogenic bacteria. The morphological changes during the inhibition were assessed by scanning electron microscopy. Preliminary studies on the antifungal compound demonstrated its proteinaceous nature with a molecular weight of 1256·617 Da, analysed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF). The biopreservative activity of Lact. plantarum YML007 was evaluated using dried soybeans. Spores of A. niger were observed in the negative control after 15 days of incubation. However, fungal growth was not observed in the soybeans treated with fivefold concentrated cell-free supernatant of Lact. plantarum YML007. The broad activity of Lact. plantarum YML007 against various food spoilage moulds and bacteria suggests its scope as a food preservative. After screening 1400 kimchi bacterial isolates, strain Lactobacillus plantarum YML007 was selected with strong antifungal activity against various foodborne pathogens. From the preliminary studies, it was found that the bioactive compound is a low molecular weight novel protein of 1256·617 Da. Biopreservative potential of Lact. plantarum YML007 was demonstrated on soybean grains, and the results point out YML007 as a potent biopreservative having broad antimicrobial activity against various foodborne pathogens. © 2013 The Society for Applied Microbiology.

  13. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    PubMed Central

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  14. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles.

    PubMed

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-Yu; Zhang, Xiao-Mei; Song, Da-Feng; Zhang, Chen

    2016-08-01

    In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate.

  15. Observational prospective study on Lactobacillus plantarum P 17630 in the prevention of vaginal infections, during and after systemic antibiotic therapy or in women with recurrent vaginal or genitourinary infections.

    PubMed

    Cianci, Antonio; Cicinelli, Ettore; De Leo, Vincenzo; Fruzzetti, Franca; Massaro, Maria Giulia; Bulfoni, Alessandro; Parazzini, Fabio; Perino, Antonio

    2018-07-01

    We performed a prospective cohort parallel observational study on the use of Lactobacillus plantarum P 17630 in the prevention of vaginal infections. Eligible were women with a diagnosis of bacterial vaginosis (<15 days) and documented history of recurrent vaginal infections; and/or cystitis (<15 days); and/or treatment with antibiotics for bacterial respiratory tract infections during the week before the study entry. Study subjects were prescribed Lactobacillus plantarum P 17630 > 100.000.000 UFC one vaginal capsule per day for 6 days, then a capsule per week for 16 weeks. Eligible subjects were enrolled in two parallel cohorts: 85 women using (group A) and 39 not using (group B) Lactobacillus plantarum P 17630. The risk of recurrent infection within 4 months from the study entry, was higher among untreated women: multivariate OR 2.6 (95%CI 0.7-9.4). The modification of presence/intensity or symptoms was significant in both the study groups (p < .001). Impact statement What is already known on this subject? The Lactobacillus plantarum P 17630 has been shown to be active in the treatment of bacterial vaginosis and vaginal candidiasis. No data are available on its efficacy in the prevention of recurrent vaginal or urological infection or as a prevention strategy during systemic treatment with antibiotics. What do the results of this study add? This observational study suggests that Lactobacillus plantarum given for 4 months may lower the risk of recurrent infection in women with recurrent vaginal or genitourinary infection or after antibiotic systemic treatment for bacterial respiratory tract infection. The finding, however, is not statistically significant, possibly due to the lower than expected rate of infection observed in our population and consequently the limited power of the study. What are the implications of these findings for clinical practice and/or further research? New studies are needed in order to evaluate in different populations

  16. Bacteriocins from Lactobacillus plantarum - production, genetic organization and mode of action: produção, organização genética e modo de ação.

    PubMed

    Todorov, Svetoslav D

    2009-04-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented.

  17. Behavior of Lactobacillus plantarum and Saccharomyces cerevisiae in fresh and thermally processed orange juice.

    PubMed

    Alwazeer, Duried; Cachon, Remy; Divies, Charles

    2002-10-01

    Lactobacillus plantarum and Saccharomyces cerevisiae are acid-tolerant microorganisms that are able to spoil citrus juices before and after pasteurization. The growth of these microorganisms in orange juice with and without pasteurization was investigated. Two samples of orange juice were inoculated with ca. 10(5) CFU/ml of each microorganism. Others were inoculated with ca. 10(7) CFU/ml of each microorganism and then thermally treated. L. plantarum populations were reduced by 2.5 and <1 log10 CFU/ml at 60 degrees C for 40 s and at 55 degrees C for 40 s, respectively. For the same treatments, S. cerevisiae populations were reduced by >6 and 2 log10 CFU/ml, respectively. Samples of heated and nonheated juice were incubated at 15 degrees C for 20 days. Injured populations of L. plantarum decreased by ca. 2 log10 CFU/ml during the first 70 h of storage, but those of S. cerevisiae did not decrease. The length of the lag phase after pasteurization increased 6.2-fold for L. plantarum and 1.9-fold for S. cerevisiae, and generation times increased by 41 and 86%, respectively. The results of this study demonstrate the differences in the capabilities of intact and injured cells of spoilage microorganisms to spoil citrus juice and the different thermal resistance levels of cells. While L. plantarum was more resistant to heat treatment than S. cerevisiae was, growth recovery after pasteurization was faster for the latter microorganism.

  18. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene.

    PubMed

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling

    2012-10-01

    To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.

  19. Lactobacillus plantarum IS-10506 supplementation reduced SCORAD in children with atopic dermatitis.

    PubMed

    Prakoeswa, C R S; Herwanto, N; Prameswari, R; Astari, L; Sawitri, S; Hidayati, A N; Indramaya, D M; Kusumowidagdo, E R; Surono, I S

    2017-10-13

    Lactobacillus plantarum IS-10506 is a novel probiotic isolated from dadih, an Indonesian traditional fermented buffalo milk. It's in vitro and in vivo probiotic properties have been assessed. Probiotic function has been shown in vivo by the suppression of allergic reactions in BALB/c mice through the action of T-regulatory cells cytokines by balancing Th1 and Th2 immune response. Atopic dermatitis (AD) is a chronic recurrent inflammatory skin disease characterised by the imbalance of Th1 and Th2. The aim of the study was to assess the probiotic function of L. plantarum IS-10506 in children with mild and moderate AD. A randomised double-blind placebo-controlled trial comparing microencapsulated L. plantarum IS-10506 (10 10 cfu/day) and placebo (skim milk-Avicel) twice daily for 12 weeks was conducted in an outpatient clinic on children with mild and moderate AD. The trial included 22 AD children divided into intervention and control groups of n=12 and n=10 patients, respectively. Scoring Atopic Dermatitis Index (SCORAD) and serum immunoglobulin E (IgE), interleukin (IL)-4, interferon gamma (IFN-γ), forkhead box P3 (Foxp3+)/IL-10, and IL-17 levels were assessed. Demographic and baseline characteristics were not significantly different between the two groups. SCORAD and levels of IL-4, IFN-γ, and IL-17 were significantly lower in the probiotic group than those in the placebo group, while the IgE levels were not significantly changed. The ratio of Foxp3+ to IL-10 was significantly higher in the probiotic group than that in placebo group. Supplementation with the probiotic L. plantarum IS-10506 offered a potential treatment for children with AD. Further long-term studies with a larger sample size are required to confirm the therapeutic efficacy of L. plantarum IS-10506 in AD.

  20. Feed supplementation of Lactobacillus plantarum PCA 236 modulates gut microbiota and milk fatty acid composition in dairy goats--a preliminary study.

    PubMed

    Maragkoudakis, Petros A; Mountzouris, Konstantinos C; Rosu, Craita; Zoumpopoulou, Georgia; Papadimitriou, Konstantinos; Dalaka, Eleni; Hadjipetrou, Andreas; Theofanous, Giorgos; Strozzi, Gian Paolo; Carlini, Nancy; Zervas, George; Tsakalidou, Effie

    2010-07-31

    This study aimed to evaluate the potential of a promising Lactobacillus plantarum isolate (PCA 236) from cheese as a probiotic feed supplement in lactating goats. The ability of L. plantarum to survive transit through the goat gastrointestinal tract and to modulate selected constituents of the gut microbiota composition, monitored at faecal level was assessed. In addition, L. plantarum effects on plasma immunoglobulins and antioxidant capacity of the animals as well as on the milk fatty acid composition were determined. For the purpose of the experiment a field study was designed, involving 24 dairy goats of the Damascus breed, kept in a sheep and goat dairy farm. The goats were divided in terms of body weight in two treatments of 12 goats each, namely: control (CON) without addition of L. plantarum and probiotic (PRO) treatment with in feed administration of L. plantarum so that the goats would intake 12 log CFU/day. The experiment lasted 5 weeks and at weekly time intervals individual faecal, blood and milk samples were collected and analysed. All faecal samples were examined for the presence of L. plantarum PCA 236. In addition, the culturable population levels of mesophilic aerobes, coliforms lactic acid bacteria (LAB), Streptococcus, Enterococcus, mesophilic anaerobes, Clostridium and Bacteroides in faeces were also determined by enumeration on specific culture media. In parallel, plasma IgA, IgM and IgG and antioxidant capacity of plasma and milk were determined. No adverse effects were observed in the animals receiving the lactobacillus during the experiment. Lactobacillus plantarum PCA 236 was recovered in the faeces of all animals in the PRO treatment. In addition, PRO treatment resulted in a significant (P

  1. Homodimeric β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: Expression in Lactobacillus plantarum and Biochemical Characterization

    PubMed Central

    2012-01-01

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ∼170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS. PMID:22283494

  2. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.

    PubMed

    Nguyen, Tien-Thanh; Nguyen, Hoang Anh; Arreola, Sheryl Lozel; Mlynek, Georg; Djinović-Carugo, Kristina; Mathiesen, Geir; Nguyen, Thu-Ha; Haltrich, Dietmar

    2012-02-22

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.

  3. Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches

    PubMed Central

    Filannino, Pasquale; Di Cagno, Raffaella; Crecchio, Carmine; De Virgilio, Caterina; De Angelis, Maria; Gobbetti, Marco

    2016-01-01

    Lactobacillus plantarum has been isolated from a large variety of ecological niches, thus highlighting its remarkable environmental adaptability as a generalist. Plant fermentation conditions markedly affect the functional features of L. plantarum strains. We investigated the plant niche-specific traits of L. plantarum through whole-transcriptome and phenotypic microarray profiles. Carrot (CJ) and pineapple (PJ) juices were chosen as model systems, and MRS broth was used as a control. A set of 3,122 genes was expressed, and 21 to 31% of genes were differentially expressed depending on the plant niche and cell physiological state. L. plantarum C2 seemed to specifically respond to plant media conditions. When L. plantarum was cultured in CJ, useful pathways were activated, which were aimed to sense the environment, save energy and adopt alternative routes for NAD+ regeneration. In PJ the acidic environment caused a transcriptional switching, which was network-linked to an acid tolerance response involving carbohydrate flow, amino acid and protein metabolism, pH homeostasis and membrane fluidity. The most prominent phenotypic dissimilarities observed in cells grown in CJ and PJ were related to carbon and nitrogen metabolism, respectively. Summarising, a snapshot of a carrot and pineapple sensing and adaptive regulation model for L. plantarum C2 was proposed. PMID:27273017

  4. Effects of the Peptide Pheromone Plantaricin A and Cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the Exoproteome and the Adhesion Capacity of Lactobacillus plantarum DC400

    PubMed Central

    Calasso, Maria; Di Cagno, Raffaella; Campanella, Daniela; Minervini, Fabio; Gobbetti, Marco

    2013-01-01

    This study aimed at investigating the extracellular and cell wall-associated proteins (exoproteome) of Lactobacillus plantarum DC400 when cultivated on modified chemically defined medium (CDM) supplemented with the chemically synthesized pheromone plantaricin A (PlnA) or cocultured with L. plantarum DPPMA20 or Lactobacillus sanfranciscensis DPPMA174. Compared to monoculture, two-dimensional gel electrophoresis (2-DE) analysis showed that the exoproteome of L. plantarum DC400 was affected by PlnA and cocultivation with strains DPPMA20 and, especially, DPPMA174. The highest similarity of the 2-DE maps was found between DC400 cells cultivated in monoculture and in coculture with strain DPPMA20. Almost all extracellular proteins (22 spots) and cell wall-associated proteins (40 spots) which showed decreased or increased levels of synthesis during growth in CDM supplemented with PlnA and/or in coculture with strain DPPMA20 or DPPMA174 were identified. On the basis of the sequences in the Kyoto Encyclopedia of Genes and Genomes database, changes to the exoproteome concerned proteins involved in quorum sensing (QS), the transport system, stress response, carbohydrate metabolism and glycolysis, oxidation/reduction processes, the proteolytic system, amino acid metabolism, cell wall and catabolic processes, and cell shape, growth, and division. Cultivation with PlnA and cocultivation with strains DPPMA20 and, especially, DPMMA174 markedly increased the capacity of L. plantarum DC400 to form biofilms, to adhere to human Caco-2 cells, and to prevent the adhesion of potential intestinal pathogens. These phenotypic traits were in part related to oversynthesized moonlighting proteins (e.g., DnaK and GroEL, pyruvate kinase, enolase, and glyceraldehyde-3-phosphate dehydrogenase) in response to QS mechanisms and interaction with L. plantarum DPPMA20 and, especially, L. sanfranciscensis DPPMA174. PMID:23396346

  5. Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must.

    PubMed

    Rojo-Bezares, Beatriz; Sáenz, Yolanda; Navarro, Laura; Zarazaga, Myriam; Ruiz-Larrea, Fernanda; Torres, Carmen

    2007-08-01

    Detection and characterization of bacteriocin production by Lactobacillus plantarum strain J23, recovered from a grape must sample in Spain, have been carried out. Bacteriocin activity was degraded by proteolytic enzymes (trypsin, alfa-chymotrypsin, papaine, protease, proteinase K and acid proteases), and it was stable at high temperatures (121 degrees C, 20min), in a wide range of pH (1-12), and after treatment with organic solvents. L. plantarum J23 showed antimicrobial activity against Oenococcus oeni, and a range of Lactobacillus and Pediococcus species. Bacteriocin production was detected in liquid media only when J23 was cocultivated with some inducing bacteria, and induction took place when intact cells or 55 degrees C heated cells of the inducer were cocultivated with J23, but not with their autoclaved cells. Bacteriocin activity of J23 was not induced by high initial J23 inocula, and it was detected in cocultures during the exponential phase. The presence of ethanol or acidic pH in the media reduced bacteriocin production in the cocultures of J23 with the inducing bacteria. The presence of plantaricin-related plnEF and plnJ genes was detected by PCR and sequencing. Nevertheless, negative results were obtained for plnA, plnK, plNC8, plS and plW genes.

  6. Lactobacillus plantarum 299v for the treatment of recurrent Clostridium difficile-associated diarrhoea: a double-blind, placebo-controlled trial.

    PubMed

    Wullt, Marlene; Hagslätt, Marie-Louise Johansson; Odenholt, Inga

    2003-01-01

    A double-blind, placebo-controlled trial was performed to analyse the ability of Lactobacillus plantarum 299v to prevent further recurrent episodes of Clostridium difficile-associated diarrhoea (RCDAD). Recurrence of clinical symptoms (main outcome) was seen in 4 of 11 patients who received metronidazole in combination with L. plantarum 299v and in 6 of 9 treated with metronidazole in combination with placebo. The lactobacilli treatment had no side-effects. Although the small sample size does not allow any conclusion to be drawn concerning the efficacy of L. plantarum in patients with RCDAD, these results may contribute to the ongoing discussion about the benefits of probiotics in patients with RCDAD and encourage the performance of larger multicentre studies.

  7. Intake of Lactobacillus plantarum reduces certain gastrointestinal symptoms during treatment with antibiotics.

    PubMed

    Lönnermark, Elisabet; Friman, Vanda; Lappas, Georg; Sandberg, Torsten; Berggren, Anna; Adlerberth, Ingegerd

    2010-02-01

    To examine if intake of Lactobacillus plantarum can prevent gastrointestinal side effects in antibiotic-treated patients. Diarrhea is a common side effect of treatment with antibiotics. Some studies indicate that the risk of antibiotic-associated diarrhea can be reduced by administration of certain probiotic microorganisms. Patients treated for infections at a university hospital infectious diseases clinic were randomized to daily intake of either a fruit drink with L. plantarum 299v (10(10) colony forming units/d) or a placebo drink, until a week after termination of antibiotic treatment. Subjects recorded the number and consistency of stools as well as gastrointestinal symptoms until up to 3 weeks after last intake of test drink. Fecal samples were collected before the first intake of test drink and after termination of antibiotic therapy and analyzed for Clostridium difficile toxin. Clinical characteristics on admission were similar in the 2 groups. The overall risk of developing loose or watery stools was significantly lower among those receiving L. plantarum [odds ratio (OR), 0.69; 95% confidence interval (CI), 0.52-0.92; P=0.012], as was development of nausea (OR, 0.51; 95% CI, 0.30-0.85; P=0.0097). Diarrhea defined as > or =3 loose stools/24 h for > or =2 consecutive days was unaffected by the treatment (OR, 1.4; 95% CI, 0.33-6.0; P=0.86). No significant differences regarding carriage of toxin producing C. difficile were observed between the groups. Our results indicate that intake of L. plantarum could have a preventive effect on milder gastrointestinal symptoms during treatment with antibiotics.

  8. Reversal in fatigued athletes of a defect in interferon gamma secretion after administration of Lactobacillus acidophilus.

    PubMed

    Clancy, R L; Gleeson, M; Cox, A; Callister, R; Dorrington, M; D'Este, C; Pang, G; Pyne, D; Fricker, P; Henriksson, A

    2006-04-01

    Fatigue and impaired performance in athletes is well recognised and has been loosely linked to "overtraining". Reduced concentration of IgA in the saliva and increased shedding of Epstein Barr virus (EBV) have been associated with intense training in elite athletes. To determine whether athletes presenting with fatigue and impaired performance had an immune defect relevant to defective containment of EBV infection, and whether a probiotic preparation (Lactobacillus acidophilus) shown to enhance mucosal immunity in animal models could reverse any detected abnormality. The fatigued athletes had clinical characteristics consistent with re-activation of EBV infection and significantly (p = 0.02) less secretion of interferon (IFN) gamma from blood CD4 positive T cells. After one month of daily capsules containing 2 x 10(10) colony forming units of L acidophilus, secretion of IFNgamma from T cells had increased significantly (p = 0.01) to levels found in healthy control athletes. A significant (p = 0.03) increase in salivary IFNgamma concentrations in healthy control athletes after the one month course of L acidophilus demonstrated in man the capacity for this probiotic to enhance the mucosal IFNgamma concentration. This is the first evidence of a T cell defect in fatigued athletes, and of its reversal following probiotic therapy.

  9. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats.

    PubMed

    Martino, Maria Elena; Bayjanov, Jumamurat R; Caffrey, Brian E; Wels, Michiel; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; van Hijum, Sacha A F T; Leulier, François

    2016-12-01

    The ability of bacteria to adapt to diverse environmental conditions is well-known. The process of bacterial adaptation to a niche has been linked to large changes in the genome content, showing that many bacterial genomes reflect the constraints imposed by their habitat. However, some highly versatile bacteria are found in diverse habitats that almost share nothing in common. Lactobacillus plantarum is a lactic acid bacterium that is found in a large variety of habitat. With the aim of unravelling the link between evolution and ecological versatility of L. plantarum, we analysed the genomes of 54 L. plantarum strains isolated from different environments. Comparative genome analysis identified a high level of genomic diversity and plasticity among the strains analysed. Phylogenomic and functional divergence studies coupled with gene-trait matching analyses revealed a mixed distribution of the strains, which was uncoupled from their environmental origin. Our findings revealed the absence of specific genomic signatures marking adaptations of L. plantarum towards the diverse habitats it is associated with. This suggests fundamentally similar trends of genome evolution in L. plantarum, which occur in a manner that is apparently uncoupled from ecological constraint and reflects the nomadic lifestyle of this species. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Allosteric Regulation of Lactobacillus plantarum Xylulose 5-Phosphate/Fructose 6-Phosphate Phosphoketolase (Xfp)

    PubMed Central

    Glenn, Katie

    2015-01-01

    ABSTRACT Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp), which catalyzes the conversion of xylulose 5-phosphate (X5P) or fructose 6-phosphate (F6P) to acetyl phosphate, plays a key role in carbohydrate metabolism in a number of bacteria. Recently, we demonstrated that the fungal Cryptococcus neoformans Xfp2 exhibits both substrate cooperativity for all substrates (X5P, F6P, and Pi) and allosteric regulation in the forms of inhibition by phosphoenolpyruvate (PEP), oxaloacetic acid (OAA), and ATP and activation by AMP (K. Glenn, C. Ingram-Smith, and K. S. Smith. Eukaryot Cell 13:657–663, 2014). Allosteric regulation has not been reported previously for the characterized bacterial Xfps. Here, we report the discovery of substrate cooperativity and allosteric regulation among bacterial Xfps, specifically the Lactobacillus plantarum Xfp. L. plantarum Xfp is an allosteric enzyme inhibited by PEP, OAA, and glyoxylate but unaffected by the presence of ATP or AMP. Glyoxylate is an additional inhibitor to those previously reported for C. neoformans Xfp2. As with C. neoformans Xfp2, PEP and OAA share the same or possess overlapping sites on L. plantarum Xfp. Glyoxylate, which had the lowest half-maximal inhibitory concentration of the three inhibitors, binds at a separate site. This study demonstrates that substrate cooperativity and allosteric regulation may be common properties among bacterial and eukaryotic Xfp enzymes, yet important differences exist between the enzymes in these two domains. IMPORTANCE Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) plays a key role in carbohydrate metabolism in a number of bacteria. Although we recently demonstrated that the fungal Cryptococcus Xfp is subject to substrate cooperativity and allosteric regulation, neither phenomenon has been reported for a bacterial Xfp. Here, we report that the Lactobacillus plantarum Xfp displays substrate cooperativity and is allosterically inhibited by

  11. Allosteric regulation of Lactobacillus plantarum xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp).

    PubMed

    Glenn, Katie; Smith, Kerry S

    2015-04-01

    Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp), which catalyzes the conversion of xylulose 5-phosphate (X5P) or fructose 6-phosphate (F6P) to acetyl phosphate, plays a key role in carbohydrate metabolism in a number of bacteria. Recently, we demonstrated that the fungal Cryptococcus neoformans Xfp2 exhibits both substrate cooperativity for all substrates (X5P, F6P, and Pi) and allosteric regulation in the forms of inhibition by phosphoenolpyruvate (PEP), oxaloacetic acid (OAA), and ATP and activation by AMP (K. Glenn, C. Ingram-Smith, and K. S. Smith. Eukaryot Cell 13: 657-663, 2014). Allosteric regulation has not been reported previously for the characterized bacterial Xfps. Here, we report the discovery of substrate cooperativity and allosteric regulation among bacterial Xfps, specifically the Lactobacillus plantarum Xfp. L. plantarum Xfp is an allosteric enzyme inhibited by PEP, OAA, and glyoxylate but unaffected by the presence of ATP or AMP. Glyoxylate is an additional inhibitor to those previously reported for C. neoformans Xfp2. As with C. neoformans Xfp2, PEP and OAA share the same or possess overlapping sites on L. plantarum Xfp. Glyoxylate, which had the lowest half-maximal inhibitory concentration of the three inhibitors, binds at a separate site. This study demonstrates that substrate cooperativity and allosteric regulation may be common properties among bacterial and eukaryotic Xfp enzymes, yet important differences exist between the enzymes in these two domains. Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) plays a key role in carbohydrate metabolism in a number of bacteria. Although we recently demonstrated that the fungal Cryptococcus Xfp is subject to substrate cooperativity and allosteric regulation, neither phenomenon has been reported for a bacterial Xfp. Here, we report that the Lactobacillus plantarum Xfp displays substrate cooperativity and is allosterically inhibited by phosphoenolpyruvate and oxaloacetate

  12. Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens.

    PubMed

    Forte, C; Manuali, E; Abbate, Y; Papa, P; Vieceli, L; Tentellini, M; Trabalza-Marinucci, M; Moscati, L

    2018-03-01

    In a market undergoing constant evolution, the production of chicken meat that consumers would perceive as "natural" and "animal friendly" is crucial. The use of probiotics in rurally reared chickens could represent a major opportunity to achieve mutual benefit for both the industry and consumers. A total of 264 male Kabir chicks were randomly distributed to one of 2 dietary treatments: the L group received a commercial feed supplemented with 2.0 g/100 kg of Lactobacillus acidophilus D2/CSL, while the C group received the same basal diet without the additive. To assess the effects of probiotic supplementation in the chickens' diet, productive performance was evaluated at d 21 and 42, whereas microbiological analyses of the intestinal content and intestinal histology and morphometry were performed at the end of the trial (d 42). At d 21 and 42, L birds showed better (P < 0.001) performance in terms of body weight, average daily gain, and feed conversion ratio. Enterococci, staphylococci, and Escherichia coli populations were not influenced by dietary treatment. On the contrary, Lactobacillus population increased (P = 0.032) in the L group. Furthermore, a tendency (P = 0.069) was observed for the coliforms to be influenced by diet, with lower values in the L group in comparison to the C group. Histological techniques revealed that the number of goblet cell containing neutral mucins was lower in the C group. Morphometric evaluations demonstrated that the probiotic supplementation increased the height of the mucosal layer by improving (P = 0.040) villus height, while crypt depth was unaffected. In conclusion, the results obtained in this study demonstrate that it is possible to use Lactobacillus acidophilus D2/CSL (CECT 4529) in rurally reared chicken breeds with positive effects on performance and gut health.

  13. Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens

    PubMed Central

    Forte, C; Manuali, E; Abbate, Y; Papa, P; Vieceli, L; Tentellini, M; Trabalza-Marinucci, M; Moscati, L

    2018-01-01

    Abstract In a market undergoing constant evolution, the production of chicken meat that consumers would perceive as “natural” and “animal friendly” is crucial. The use of probiotics in rurally reared chickens could represent a major opportunity to achieve mutual benefit for both the industry and consumers. A total of 264 male Kabir chicks were randomly distributed to one of 2 dietary treatments: the L group received a commercial feed supplemented with 2.0 g/100 kg of Lactobacillus acidophilus D2/CSL, while the C group received the same basal diet without the additive. To assess the effects of probiotic supplementation in the chickens’ diet, productive performance was evaluated at d 21 and 42, whereas microbiological analyses of the intestinal content and intestinal histology and morphometry were performed at the end of the trial (d 42). At d 21 and 42, L birds showed better (P < 0.001) performance in terms of body weight, average daily gain, and feed conversion ratio. Enterococci, staphylococci, and Escherichia coli populations were not influenced by dietary treatment. On the contrary, Lactobacillus population increased (P = 0.032) in the L group. Furthermore, a tendency (P = 0.069) was observed for the coliforms to be influenced by diet, with lower values in the L group in comparison to the C group. Histological techniques revealed that the number of goblet cell containing neutral mucins was lower in the C group. Morphometric evaluations demonstrated that the probiotic supplementation increased the height of the mucosal layer by improving (P = 0.040) villus height, while crypt depth was unaffected. In conclusion, the results obtained in this study demonstrate that it is possible to use Lactobacillus acidophilus D2/CSL (CECT 4529) in rurally reared chicken breeds with positive effects on performance and gut health. PMID:29294082

  14. Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage.

    PubMed

    Li, Changkun; Song, Jihong; Kwok, Lai-Yu; Wang, Jicheng; Dong, Yan; Yu, Haijing; Hou, Qiangchuan; Zhang, Heping; Chen, Yongfu

    2017-04-01

    This study aimed to evaluate the influence of 9 Lactobacillusplantarum with broad-spectrum antibacterial activity on fermented milk, including changes to the fermentation characteristics (pH, titration acidity, and viable counts), texture profile, relative content of volatile compounds, and sensory evaluation during 28-d storage at 4°C. First, L. plantarum IMAU80106, IMAU10216, and IMAU70095 were selected as candidates for further study because of their excellent coagulation and proteolytic activities. Subsequently, these L. plantarum strainswere supplemented to fermented milk produced by commercial yogurt starters (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus) and a panel of parameters reflecting product quality was subsequently monitored during 28 d of postfermentation storage. The pH value and titration acidity of the fermented milk mildly fluctuated, whereas the L. plantarum viable counts remained stable along the storage period. Fourteen key volatile compounds were detected in the fermented milk by gas chromatography-mass spectrometry, and some flavor compounds were uniquely present in the L. plantarum-supplemented fermented milk (including 2,3-pentanedione, acetaldehyde, and acetate). No significant difference was shown in the sensory evaluation scores between samples with or without L. plantarum supplementation, but a gradual decrease was observed over storage in all samples. However, when L. plantarum was added, apparent shifts were observed in the overall quality of the fermented milk based on principal component analysis and multivariate ANOVA, particularly in the texture (adhesiveness) and volatile flavor compound profiles (acetaldehyde). Compared with L. plantarum IMAU80106 and IMAU10216, both the texture and volatile flavor profiles of IMAU70095 were closest to those of the control without adding the adjunct bacteria, suggesting that IMAU70095 might be the most suitable strain for further application in functional dairy

  15. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-03

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. Copyright © 2011. Published by Elsevier B.V.

  16. Characterization of a cold-active esterase from Lactobacillus plantarum suitable for food fermentations.

    PubMed

    Esteban-Torres, María; Mancheño, José Miguel; de las Rivas, Blanca; Muñoz, Rosario

    2014-06-04

    Lactobacillus plantarum is a lactic acid bacteria that can be found in numerous fermented foods. Esterases from L. plantarum exert a fundamental role in food aroma. In the present study, the gene lp_2631 encoding a putative esterase was cloned and expressed in Escherichia coli BL21 (DE3) and the overproduced Lp_2631 protein has been biochemically characterized. Lp_2631 exhibited optimal esterase activity at 20 °C and more than 90% of maximal activity at 5 °C, being the first cold-active esterase described in a lactic acid bacteria. Lp_2631 exhibited 40% of its maximal activity after 2 h of incubation at 65 °C. Lp_2631 also showed marked activity in the presence of compounds commonly found in food fermentations, such as NaCl, ethanol, or lactic acid. The results suggest that Lp_2631 might be a useful esterase to be used in food fermentations.

  17. Quantifying Variability in Growth and Thermal Inactivation Kinetics of Lactobacillus plantarum.

    PubMed

    Aryani, D C; den Besten, H M W; Zwietering, M H

    2016-08-15

    The presence and growth of spoilage organisms in food might affect the shelf life. In this study, the effects of experimental, reproduction, and strain variabilities were quantified with respect to growth and thermal inactivation using 20 Lactobacillus plantarum strains. Also, the effect of growth history on thermal resistance was quantified. The strain variability in μmax was similar (P > 0.05) to reproduction variability as a function of pH, aw, and temperature, while being around half of the reproduction variability (P < 0.05) as a function of undissociated lactic acid concentration [HLa]. The cardinal growth parameters were estimated for the L. plantarum strains, and the pHmin was between 3.2 and 3.5, the aw,min was between 0.936 and 0.953, the [HLamax], at pH 4.5, was between 29 and 38 mM, and the Tmin was between 3.4 and 8.3°C. The average D values ranged from 0.80 min to 19 min at 55°C, 0.22 to 3.9 min at 58°C, 3.1 to 45 s at 60°C, and 1.8 to 19 s at 63°C. In contrast to growth, the strain variability in thermal resistance was on average six times higher than the reproduction variability and more than ten times higher than the experimental variability. The strain variability was also 1.8 times higher (P < 0.05) than the effect of growth history. The combined effects of strain variability and growth history on D value explained all of the variability as found in the literature, although with bias. Based on an illustrative milk-processing chain, strain variability caused ∼2-log10 differences in growth between the most and least robust strains and >10-log10 differences after thermal treatment. Accurate control and realistic prediction of shelf life is complicated by the natural diversity among microbial strains, and limited information on microbiological variability is available for spoilage microorganisms. Therefore, the objectives of the present study were to quantify strain variability, reproduction (biological) variability, and experimental

  18. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    USDA-ARS?s Scientific Manuscript database

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  19. Lactobacillus plantarum 29 inhibits Penicillium spp. involved in the spoilage of black truffles (Tuber aestivum).

    PubMed

    Sorrentino, Elena; Reale, Anna; Tremonte, Patrizio; Maiuro, Lucia; Succi, Mariantonietta; Tipaldi, Luca; Di Renzo, Tiziana; Pannella, Gianfranco; Coppola, Raffaele

    2013-08-01

    The effect of an antifungal culture of Lactobacillus plantarum to be used in the storage at refrigeration temperature of fresh black truffles was examined. The strain was selected among 29 lactobacilli isolated from foods and evaluated for their viability and acidification activity at 4 °C, as well as for their inhibitory activity against 11 Penicillium strains isolated from truffles stored at refrigeration temperature. Lb. plantarum 29 showed the ability to hold not only the growth of Penicillium isolated from truffles, but also that of P. digitatum DSM 2750, a green mold involved in the spoilage of truffles. The antifungal activity was observed in vitro and in situ, and the sensory characteristics of truffles were preserved during the cold storage. © 2013 Institute of Food Technologists®

  20. Lactobacillus plantarum (KACC 92189) as a Potential Probiotic Starter Culture for Quality Improvement of Fermented Sausages

    PubMed Central

    2018-01-01

    This study was conducted to evaluate the effects of fermenting temperature on the applicability of Lactobacillus plantarum for production of fermented sausages as starter cultures, and its applicable efficiency was also compared with those inoculated with commercial starter culture or non-inoculated control. The L. plantarum isolated from a naturally-fermented meat, identified by 16S rDNA sequencing and again identified by de novo Assembly Analysis method was used as a starter culture. Six treatments: 3 with L. plantarum at different fermenting temperatures (20, 25 and 30°C), and other 3 treatments (1 with commercial starter culture, 1 with its mixture with L. plantarum and 1 non-inoculated control) fermented under the same conditions (25°C) were prepared. Results revealed that the fermenting temperature considerably affected the pH change in samples added with L. plantarum; the highest pH drop rate (1.57 unit) was obtained on the samples fermented at 30°C, followed by those at 25°C (1.3 unit) and 20°C (0.99 unit) after 4 days fermentation. Increasing the temperature up to 30°C resulted in significantly lower spoilage bacteria count (5.15 log CFU/g) and lipid oxidation level in the products inoculated with L. plantarum. The sensory analysis also showed that the samples added with L. plantarum at 30°C had significantly higher odor, taste and acceptability scores than those fermented at lower temperatures. Under the same processing condition, although the L. plantarum showed slightly lower acidification than the commercial starter culture, however, it significantly improved the eating quality of the product. PMID:29725237

  1. Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Z.; Chen, S.; Wilson, D.B.

    1999-11-01

    An Mn{sup 2+} and Cd{sup 2+} uptake gene, mntA, was cloned from Lactobacillus plantarum ATCC 14917 into Escherichia coli. Its expression conferred on E. coli cells increased Cd{sup 2+} sensitivity as well as energy-dependent Cd{sup 2+} uptake activity. Both transcription and translation of mntA were induced by Mn{sup 2+} starvation in L. plantarum, as indicated by reverse transcriptase PCR and immunoblotting. Two Cd{sup 2+} uptake systems have been identified in L. plantarum: one is a high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system that is expressed in Mn{sup 2+}-starved cells, and the other is a nonsaturable Cd{sup 2+} uptake systemmore » that is expressed in Cd{sup 2+}-sufficient cells. MntA was not detected in an Mn{sup 2+}-dependent mutant of L. plantarum which had lost high-affinity Mn{sup 2+} and Cd{sup 2+} uptake activity. The results suggest that mntA is the gene encoding the high-affinity Mn{sup 2+} and Cd{sup 2+} transporter. On the basis of its predicted amino acid sequence, MntA belongs to the family of P-type cation-translocating ATPases. The topology and potential Mn{sup 2+}- and Cd{sup 2+}-binding sites of MntA are discussed. A second clone containing a low-affinity Cd{sup 2+} transport system was also isolated.« less

  2. Effect of Lactobacillus plantarum and chitosan in the reduction of browning of pericarp Rambutan (Nephelium lappaceum).

    PubMed

    Martínez-Castellanos, Gustavo; Shirai, Keiko; Pelayo-Zaldívar, Clara; Pérez-Flores, Laura J; Sepúlveda-Sánchez, José D

    2009-06-01

    The effects of Lactobacillus plantarum alone or in combination with chitosan were evaluated on quality and color retention in rambutan fruits (Nephelium lappaceum) stored at 25 degrees C and 10 degrees C with 75+/-2.5% of relative humidity for 10 and 15 days, respectively. The development of the microorganisms was evidenced by viability analyses and lactic acid production. The application of L. plantarum significantly improved color retention (a* and L*), and reduced weight losses. The lactobacilli, alone or in combination with chitosan, preserved fruit quality characteristics such as firmness, total soluble solids and titratable acidity. The lactobacilli application on rambutan pericarp produced acidification of pericarp and avoided the browning; thereby desiccation was prevented due to biofilm formation.

  3. Proteomics Analysis of the Adhesion Activity of Lactobacillus acidophilus ATCC 4356 Upon Growth in an Intestine-Like pH Environment.

    PubMed

    Wu, Zhen; Wang, Gang; Wang, Wenwen; Pan, Daodong; Peng, Liuyang; Lian, Liwei

    2018-03-01

    Many health effects of Lactobacillus acidophilus are desirable among these the adhesion ability is vital to enhance the possibility of colonization and stabilization associated with the gut mucosal barrier. In this study, the growth characteristics and the adhesion activity of L. acidophilus in the intestine-like pH environment (pH 7.5) are identified. The number of bacteria adhering to the HT-29 cells is found with a gradual increase trend (pH 5.5-7.5). This also leads to the morphological changes of L. acidophilus after exposure to different pH environments. Furthermore, with the help of the isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis, 207 proteins are detected differentially expressed at pH of 7.5. The use of GO analysis and KEGG analysis indicates three essential pathways related to the cell envelope peptide-glycan biosynthesis, carbohydrate metabolism, and amino acid metabolism are obviously changed. Adhesion related surface protein fmtB and PrtP are upregulated in pH 7.5 group. While the moonlight proteins like pyruvate kinase, which binds specifically to the mucin layer and inhibits the adhesive activity of L. acidophilus, is found downregulated. These results could be useful to understand the adhesion mechanism of L. acidophilus adapting for the gut mucosal barrier in the intestinal environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Astragalus Root and Elderberry Fruit Extracts Enhance the IFN-β Stimulatory Effects of Lactobacillus acidophilus in Murine-Derived Dendritic Cells

    PubMed Central

    Frøkiær, Hanne; Henningsen, Louise; Metzdorff, Stine Broeng; Weiss, Gudrun; Roller, Marc; Flanagan, John; Fromentin, Emilie; Ibarra, Alvin

    2012-01-01

    Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity. PMID:23118903

  5. Mutation and Selection of Lactobacillus plantarum Strains That Do Not Produce Carbon Dioxide from Malate †

    PubMed Central

    Daeschel, M. A.; McFeeters, R. F.; Fleming, H. P.; Klaenhammer, T. R.; Sanozky, R. B.

    1984-01-01

    A differential medium was developed to distinguish between malate-decarboxylating (MDC+) and -non-decarboxylating (MDC−) strains of Lactobacillus plantarum. MDC− strains produced a visible acid reaction in the medium, whereas MDC+ strains did not. Use of the medium allowed for rapid screening and isolation of mutagenized cells that had lost the ability to produce CO2 from malate. PMID:16346479

  6. Protection of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions with whey protein/pullulan microcapsules.

    PubMed

    Çabuk, Burcu; Tellioğlu Harsa, Şebnem

    2015-12-01

    In this research, whey protein/pullulan (WP/pullulan) microcapsules were developed in order to assess its protective effect on the viability of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions. Results demonstrated that WP/pullulan microencapsulated cells exhibited significantly (p ≤ 0.05) higher resistance to simulated gastric acid and bile salt. Pullulan incorporation into protein wall matrix resulted in improved survival as compared to free cells after 3 h incubation in simulated gastric solution. Moreover WP/pullulan microcapsules were found to release over 70% of encapsulated L. acidophilus NRRL-B 4495 cells within 1 h. The effect of encapsulation during refrigerated storage was also studied. Free bacteria exhibited 3.96 log reduction while, WP/pullulan encapsulated bacteria showed 1.64 log reduction after 4 weeks of storage. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Genomic diversity and immunomodulatory activity of Lactobacillus plantarum isolated from dairy products.

    PubMed

    Zago, M; Scaltriti, E; Bonvini, B; Fornasari, M E; Penna, G; Massimiliano, L; Carminati, D; Rescigno, M; Giraffa, G

    2017-08-24

    In this study, we aimed to investigate some functional characteristics and the immunomodulatory properties of three strains of Lactobacillus plantarum of dairy origin which, in a previous screening, showed to be candidate probiotics. Genome sequencing and comparative genomics, which confirmed the presence of genes involved in folate and riboflavin production and in the immune response of dendritic cells (DCs), prompted us to investigate the ability of the three strains to accumulate the two vitamins and their immunomodulation properties. The ability of the three strains to release antioxidant components in milk was also investigated. Small amounts of folate and riboflavin were produced by the three strains, while they showed a good antioxidant capacity in milk with FRAP method. The immune response experiments well correlated with the presence of candidate genes influencing in DCs cytokine response to L. plantarum. Specifically, the amounts of secreted cytokins by DCs after stimulation with cells of Lp790, Lp813 and Lp998 resulted pro-inflammatory whereas stimulation with culture supernatants (postbiotics) inhibited the release of interleukin (IL)-12p70 and increased the release of the anti-inflammatory IL-10 cytokine. This study adds further evidence on the importance of L. plantarum in human health. Understanding how probiotics (or postbiotics) work in preclinical models can allow a rational choice of the different strains for clinical and/or commercial use.

  8. Complexing of Green Tea Catechins with Food Constituents and Degradation of the Complexes by Lactobacillus plantarum

    PubMed Central

    HAYASHI, Taeko; UEDA, Shuhei; TSURUTA, Hiroki; KUWAHARA, Hiroshige; OSAWA, Ro

    2012-01-01

    Complexing of green tea catechins with food constituents and their hydrolysis by tannase-producing Lactobacillus plantarum strains, were investigated. Our observations indicated that 1) epigallocatechin gallate (EGCg) and other catechin galloyl esters bound with food ingredients (i.e., proteins) to form a complex that is likely to be unabsorbable through the intestinal wall, whereas most catechins not esterified with gallic acid (GA) remain in free form, not complexing with food ingredients; 2) tannase activity of L. plantarum is strain dependent, possibly grouped into those with high tannase activity hydrolyzing EGCg to epigallocatechin and GA and those with the low activity; and 3) L. plantarum strains with high tannase activity are capable of hydrolyzing not only intact EGCg but also EGCg and other catechin galloyl esters complexed with dietary proteins to free non-galloyl ester catechins and GA. The evidence suggests that L. plantarum with high tannase activity, if it colonizes the human intestine, would release free non-galloyl-ester catechins and GA that are readily absorbed through the human intestinal epithelia from the complexes, thereby ensuring maximum delivery of the bioactive polyphenols of green tea to the host. PMID:24936346

  9. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  10. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29.

    PubMed

    Adlerberth, I; Ahrne, S; Johansson, M L; Molin, G; Hanson, L A; Wold, A E

    1996-07-01

    Two Lactobacillus plantarum strains of human intestinal origin, strains 299 (= DSM 6595) and 299v (= DSM 9843), have proved to be efficient colonizers of the human intestine under experimental conditions. These strains and 17 other L. plantarum strains were tested for the ability to adhere to cells of the human colonic cell line HT-29.L.plantarum 299 and 299v and nine other L. plantarum strains, including all six strains that belong to the same genetic subgroup as L. plantarum 299 and 299v, adhered to HT-29 cells in a manner that could be inhibited by methyl-alpha-D-mannoside. The ability to adhere to HT-29 cells correlated with an ability to agglutinate cells of Saccharomyces cerevisiae and erythrocytes in a mannose-sensitive manner and with adherence to D-mannose-coated agarose beads. L. plantarum 299 and 299v adhered to freshly isolated human colonic and ileal enterocytes, but the binding was not significantly inhibited by methyl-alpha-D-mannoside. Periodate treatment of HT-29 cells abolished mannose-sensitive adherence, confirming that the cell-bound receptor was of carbohydrate nature. Proteinase K treatment of the bacteria also abolished adherence, indicating that the binding involved protein structures on the bacterial cell surface. Thus, a mannose-specific adhesin has been identified in L. plantarum; this adhesin could be involved in the ability to colonize the intestine.

  11. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells

    PubMed Central

    Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent GH; Peng, Qian; Sioud, Mouldy

    2015-01-01

    Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies. PMID:26185907

  12. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress.

    PubMed

    Wang, Wenwen; He, Jiayi; Pan, Daodong; Wu, Zhen; Guo, Yuxing; Zeng, Xiaoqun; Lian, Liwei

    2018-01-01

    The adhesion ability of Lactobacillus plantarum affects retention time in the human gastro-intestinal tract, as well as influencing the interaction with their host. In this study, the relationship between the adhesion activity of, and metabolic changes in, L. plantarum ATCC 14917 under initial acid and alkali stress was evaluated by analyzing auto-aggregation, protein adhesion and cell adhesion in vitro. Based on scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis, the morphology of the bacteria became thickset and the thickness of their cell walls decreased under initial alkali stress. The fold changes of auto-aggregation, adhere to mucin and HT-29 cell lines of L. plantarum ATCC 14917 in the acid group were increased by 1.141, 1.125 and 1.156, respectively. But decreased significantly in the alkali group (fold changes with 0.842, 0.728 and 0.667). Adhesion-related protein increased in the acid group but declined in the alkali group at the mRNA expression level according to real time polymerase chain reaction (RT-PCR) analysis. The changes in the metabolite profiles of L. plantarum ATCC 14917 were characterized using Ultra-Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight-mass spectrometry (UPLS-ESI-Q-TOF-MS). In the alkali group, the content of a lot of substances involved in the energy and amino acid metabolism decreased, but the content of some substances involved in the energy metabolism was slightly increased in the acid group. These findings demonstrate that energy metabolism is positively correlated with the adhesion ability of L. plantarum ATCC 14917. The amino-acids metabolism, especially the amino acids related to pH-homeostasis mechanisms (lysine, aspartic acid, arginine, proline and glutamic acid), showed an obvious effect on the adhesion ability of L. plantarum ATCC 14917. This investigation provides a better understanding of L. plantarum's adhesion mechanisms under initial pH stress.

  13. Gene expression of Lactobacillus plantarum and the commensal microbiota in the ileum of healthy and early SIV-infected rhesus macaques

    PubMed Central

    Golomb, Benjamin L.; Hirao, Lauren A.; Dandekar, Satya; Marco, Maria L.

    2016-01-01

    Chronic HIV infection results in impairment of gut-associated lymphoid tissue leading to systemic immune activation. We previously showed that in early SIV-infected rhesus macaques intestinal dysfunction is initiated with the induction of the IL-1β pathway in the small intestine and reversed by treatment with an exogenous Lactobacillus plantarum strain. Here, we provide evidence that the transcriptomes of L. plantarum and ileal microbiota are not altered shortly after SIV infection. L. plantarum adapts to the small intestine by expressing genes required for tolerating oxidative stress, modifying cell surface composition, and consumption of host glycans. The ileal microbiota of L. plantarum-containing healthy and SIV+ rhesus macaques also transcribed genes for host glycan metabolism as well as for cobalamin biosynthesis. Expression of these pathways by bacteria were proposed but not previously demonstrated in the mammalian small intestine. PMID:27102350

  14. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant.

    PubMed

    Keshri, Jitendra; Chen, Yaira; Pinto, Riky; Kroupitski, Yulia; Weinberg, Zwi G; Sela Saldinger, Shlomo

    2018-05-01

    Microbial population dynamics associated with corn silage, with and without Lactobacillus plantarum treatment, was studied. Whole crop corn was ensiled using laboratory silos and sampled at different times, up to 3 months. The dominant bacteria, before ensiling, were Acinetobacter (38.5%) and Klebsiella (16.3%), while the dominant fungi were Meyerozyma (53.5%) and Candida (27.7%). During ensiling, the microbial population shifted considerably, and Lactobacillus (> 94%) and Candida (> 74%) became the most dominant microbial genera in both treated and untreated silages. Yet, lactic acid content was higher in the treated silage, while the microbial diversity was lower than in the untreated silage. Upon aerobic exposure, spoilage occurred more rapidly in the treated silage, possibly due to the higher abundance of lactic acid-assimilating fungi, such as Candida. Our study is the first to describe microbial population dynamics during whole-crop corn ensiling and the results indicate that microbial diversity may be an indicator of aerobic stability.

  15. Characterization of a lactose-responsive promoter of ATP-binding cassette (ABC) transporter gene from Lactobacillus acidophilus 05-172.

    PubMed

    Zeng, Zhu; Zuo, Fanglei; Yu, Rui; Zhang, Bo; Ma, Huiqin; Chen, Shangwu

    2017-09-01

    A novel lactose-responsive promoter of the ATP-binding cassette (ABC) transporter gene Lba1680 of Lactobacillus acidophilus strain 05-172 isolated from a traditionally fermented dairy product koumiss was characterized. In L. acidophilus 05-172, expression of Lba1680 was induced by lactose, with lactose-induced transcription of Lba1680 being 6.1-fold higher than that induced by glucose. This is in contrast to L. acidophilus NCFM, a strain isolated from human feces, in which expression of Lba1680 and Lba1679 is induced by glucose. Both gene expression and enzyme activity assays in L. paracasei transformed with a vector containing the inducible Lba1680 promoter (PLba1680) of strain 05-172 and a heme-dependent catalase gene as reporter confirmed that PLba1680 is specifically induced by lactose. Its regulatory expression could not be repressed by glucose, and was independent of cAMP receptor protein. This lactose-responsive promoter might be used in the expression of functional genes in L. paracasei incorporated into a lactose-rich environment, such as dairy products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Potential of Zimbabwean commercial probiotic products and strains of Lactobacillus plantarum as prophylaxis and therapy against diarrhoea caused by Escherichia coli in children.

    PubMed

    Chingwaru, Walter; Vidmar, Jerneja

    2017-01-01

    To evaluate the potential of commercial fermented products sold in the country, and strains of Lactobacillus plantarum (L. plantarum) as prophylaxis and therapy against diarrhoea in children. The antimicrobial potential of cultures of lactobacilli enriched from 4 Zimbabwean commercial food/beverage products: Dairibord Lacto sour milk (DLSM), Probrand sour milk (PSM), Kefalos Vuka cheese (KVC) and Chibuku opaque beer (COB); and four strains of L. plantarum obtained from Balkan traditional cheeses against clinical strains of Escherichia coli (E. coli) was assayed using the well diffusion method. Three commercial paediatric antidiarrhoeal drug products: Biogaia (BG), Prolife (PL) and Probio Junior (PJ) and a mutant strain of E. coli [strain 11105 (ATCC) - a vitamin B-12 auxotroph and penicillin G acylase-producing strain] were used as controls. An agar diffusion assay and a competitive exclusion assay were carried out on Mueller Hinton agar. Crude cultures of putative lactobacillus strains obtained from Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer) had significantly higher antimicrobial activities against clinical strains of E. coli than strains of L. plantarum isolated from Balkan cheeses (CLP1, CLP2 or CLP3) and crude microbial cultures from commercial paediatric probiotic products (BG, PJ and PL) of a culture of Lactobacillus rhamnosus LGG (P < 0.05). The putative Lactobacilli from four commercial Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer), and three strains of L. plantarum from Balkan cheeses (CLP1, CLP2 or CLP3) exhibited high antibacterial activities that can be harnessed to control paediatric diarrhoea that is caused by pathogenic strains of E. coli. Studies to characterise the probiotic potential of the live cultures in the products and the new strains of L. plantarum are underway. Copyright © 2017 Hainan Medical University. Production and

  17. IS30-related transposon mediated insertional inactivation of bile salt hydrolase (bsh1) gene of Lactobacillus plantarum strain Lp20.

    PubMed

    Kumar, Rajesh; Grover, Sunita; Kaushik, Jai K; Batish, Virender Kumar

    2014-01-01

    Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota.

    PubMed

    Barroso, Elvira; Sánchez-Patán, Fernando; Martín-Alvarez, Pedro J; Bartolomé, Begoña; Moreno-Arribas, María Victoria; Peláez, Carmen; Requena, Teresa; van de Wiele, Tom; Martínez-Cuesta, M Carmen

    2013-10-23

    This work aimed to unravel the role of Lactobacillus plantarum IFPL935 strain in the colonic metabolism of a polyphenolic red wine extract, when added to a complex human colonic microbiota from the dynamic simulator of the human intestinal microbial ecosystem (SHIME). The concentration of microbial-derived phenolic metabolites and microbial community changes along with fermentative and proteolytic activities were monitored. The results showed that L. plantarum IFPL935 significantly increased the concentration of the initial microbial ring-fission catabolite of catechins and procyanidins, diphenylpropanol, and, similarly, 4-hydroxy-5-(3'-hydroxyphenyl)valeric acid production. Overall, the addition of L. plantarum IFPL935 did not have an impact on the total concentration of phenolic metabolites, except for batches inoculated with colonic microbiota from the effluent compartment (EC), where the figures were significantly higher when L. plantarum IFPL935 was added (24 h). In summary, the data highlighted that L. plantarum IFPL935 may have an impact on the bioavailability of these dietary polyphenols. Some of the microbial-derived metabolites may play a key role in the protective effects that have been linked to a polyphenol-rich diet.

  19. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model.

    PubMed

    Bhandari, Praveen; Prabha, Vijay

    2015-07-01

    Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 10 [6] cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (10 [8] cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (10 [8] cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (10 [6] cfu/20 µl) whereas for the therapeutic group vagina was colonized with (10 [6] cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in reinforcement of natural microflora and resurge fertility.

  20. Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions.

    PubMed

    Buriti, Flávia C A; Castro, Inar A; Saad, Susana M I

    2010-02-28

    The effects of refrigeration, freezing and substitution of milk fat by inulin and whey protein concentrate (WPC) on Lactobacillus acidophilus La-5 viability and resistance to gastric and enteric simulated conditions in synbiotic guava mousses effects were investigated. Refrigerated mousses supplemented with WPC presented the best probiotic viability, ranging from 7.77 to 6.24 log cfu/g during 28 days of storage. The highest probiotic populations, above 7.45 log cfu/g, were observed for all frozen mousses during 112 days of storage. Decreased L. acidophilus survival during the in vitro gastrointestinal simulation was observed both for refrigerated and frozen mousses. Nonetheless, for the refrigerated mousses, the addition of inulin enhanced the probiotic survival during the in vitro assays in the first week of storage. L. acidophilus survival in simulated gastrointestinal fluids was also improved through freezing. The frozen storage may be used to provide increased shelf-life for synbiotic guava mousses. Even though the protective effect of inulin and WPC on the probiotic microorganism tested was shown to be more specific for the refrigerated products, the partial replacement of milk fat by these ingredients may also help, as it improves the nutritional value of mousses in both storage conditions. (c) 2009 Elsevier B.V. All rights reserved.

  1. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.

  2. Oral administration of Lactobacillus plantarum CJLP133 and CJLP243 alleviates birch pollen-induced allergic rhinitis in mice.

    PubMed

    Choi, S-P; Oh, H-N; Choi, C-Y; Ahn, H; Yun, H S; Chung, Y M; Kim, B; Lee, S J; Chun, T

    2018-03-01

    In this study, we evaluated the therapeutic efficacy of selected probiotics in a mouse model of birch pollen (BP)-induced allergic rhinitis. Oral administration of Lactobacillus plantarum CJLP133 and CJLP243 ameliorated the symptoms of BP-induced allergic rhinitis by reducing airway hyperresponsiveness, and both the histological scores and the number of infiltrated cells in the nasal cavities and lungs. Compared with those from vehicle-treated mice, bronchoalveolar lavage fluid and draining lymph node samples from CJLP133 and CJLP243-administrated mice showed diminished numbers of immune cells, increased secretion of a Th1-type cytokine (IFN-γ) and decreased production of Th2-type cytokines (IL-4, IL-5 and IL-13). Consistent with these results, levels of IL-4, IL-5, IL-13, serum IgE and BP-specific serum IgG1 were decreased, whereas secretion of IFN-γ and BP-specific serum IgG2a was augmented upon administration of CJLP133 and CJLP243 in mice. Oral administration of L. plantarum CJLP133 and CJLP243 alleviates symptoms of BP-induced allergic rhinitis in mice by recovering Th1/Th2 balance via enhancement of the Th1-type immune response. Lactobacillus plantarum CJLP133 and CJLP243 have therapeutic effects on BP-induced allergic rhinitis in an animal model. © 2017 The Society for Applied Microbiology.

  3. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain

    PubMed Central

    Mallikarjuna, Nimgampalle; Praveen, Kukkarasapalli; Yellamma, Kuna

    2016-01-01

    Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder, clinically characterized by memory dysfunction and progressive loss of cognition. No curative therapeutic or drug is available for the complete cure of this disease. The present study was aimed to evaluate the efficacy of Lactobacillus plantarum MTCC1325 in ATPases activity in the selected brain regions of rats induced with Alzheimer’s. Methods: For the study, 48 healthy Wistar rats were divided into four groups: group I as control group, group II as AD model (AD induced by intraperitoneal injection of D-Galactose, 120 mg/kg body weight for 6 weeks), group III as normal control rats which were orally administered only with L. plantarum MTCC1325 for 60 days, and group IV where the AD-induced rats simultaneously received oral treatment of L. plantarum MTCC1325 (10ml/kg body weight, 12×108 CFU/mL) for 60 days. The well known membrane bound transport enzymes including Na+, K+-ATPases, Ca2+-ATPases, and Mg2+-ATPases were assayed in the selected brain regions of hippocampus and cerebral cortex in all four groups of rats at selected time intervals. Results: Chronic injection of D-Galactose caused lipid peroxidation, oxidative stress, and mitochondrial dysfunction leading to the damage of neurons in the brain, finally bringing a significant decrease (-20%) in the brain total membrane bound ATPases over the controls. Contrary to this, treatment of AD-induced rats with L. plantarum MTCC1325 reverted all the constituents of ATPase enzymes to near normal levels within 30 days. Conclusion: Lactobacillus plantarum MTCC1325 exerted a beneficial action on the entire ATPases system in AD-induced rat brain by delaying neurodegeneration. PMID:28265536

  4. Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin.

    PubMed

    Hu, B; Tian, F; Wang, G; Zhang, Q; Zhao, J; Zhang, H; Chen, W

    2015-07-01

    This study evaluated the effect of soy lecithin on the bile resistance of Lactobacillus plantarum. Six strains were cultured in MRS broth supplemented with soy lecithin at different concentrations. The strains incubated in MRS broth with 1·0% soy lecithin showed no inhibitory effect on cell growth. After culturing in MRS broth with 0·2-1·0% soy lecithin, the survival rate of harvested cells increased significantly (P < 0·05) in the 0·3% bile challenge compared with the no added soy lecithin group. The cells incubated with 0·6% soy lecithin were able to grow in an MRS broth with a higher bile salt content. The surface hydrophobicity and cell leakage in the bile challenge were assessed to reveal the physical changes caused by the addition of soy lecithin. The cell surface hydrophobicity was enhanced and the membrane integrity in the bile challenge increased after culturing with soy lecithin. A shift in the fatty acid composition was also observed, illustrating the cell membrane change in the soy lecithin culture. In this study, we report for the first time the beneficial effect of adding soy lecithin to an MRS broth on subsequent bile tolerance of Lactobacillus plantarum. Soy lecithin had no inhibitory effect on strain viability but significantly enhanced bile resistance. Surface hydrophobicity and cell integrity increased in strains cultured with soy lecithin. The observed shift in the cell fatty acid composition indicated changes to the cell membrane. As soy lecithin is safe for use in the food industry, its protective effects can be harnessed for the development of bile-sensitive strains with health-benefit functions for use in probiotic products. © 2015 The Society for Applied Microbiology.

  5. Lactobacillus acidophilus Induces Cytokine and Chemokine Production via NF-κB and p38 Mitogen-Activated Protein Kinase Signaling Pathways in Intestinal Epithelial Cells

    PubMed Central

    Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua

    2012-01-01

    Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649

  6. Lactobacillus plantarum and Streptococcus thermophilus as starter cultures for a donkey milk fermented beverage.

    PubMed

    Turchi, Barbara; Pedonese, Francesca; Torracca, Beatrice; Fratini, Filippo; Mancini, Simone; Galiero, Alessia; Montalbano, Benedetta; Cerri, Domenico; Nuvoloni, Roberta

    2017-09-01

    Donkey milk is recently gaining attention due to its nutraceutical properties. Its low casein content does not allow caseification, so the production of a fermented milk would represent an alternative way to increase donkey milk shelf life. The aim of this study was to investigate the possibility of employing selected Streptococcus thermophilus and Lactobacillus plantarum isolates for the production of a novel donkey milk fermented beverage. Lysozyme resistance and the ability to acidify donkey milk were chosen as main selection parameters. Different fermented beverages (C1-C9) were produced, each with a specific combination of isolates, and stored at refrigerated conditions for 35days. The pH values and viability of the isolates were weekly assessed. In addition, sensory analysis was performed. Both S. thermophilus and L.plantarum showed a high degree of resistance to lysozyme with a Minimum Bactericidal Concentration>6.4mg/mL for 100% of S. thermophilus and 96% of L. plantarum. S. thermophilus and L. plantarum showed the ability to acidify donkey milk in 24h at 37°C, with an average ΔpH value of 2.91±0.16 and 1.78±0.66, respectively. Four L. plantarum and two S. thermophilus were chosen for the production of fermented milks. Those containing the association S. thermophilus/L. plantarum (C1-C4) reached a pH lower than 4.5 after 18h of fermentation and showed microbial loads higher than 7.00logcfu/mL until the end of the storage period. Moreover, comparing the microbial loads of samples containing both species and those containing S. thermophilus alone (C5), we highlighted the ability of L. plantarum to stimulate S. thermophilus replication. This boosted replication of S. thermophilus allowed to reach an appropriate pH in a time frame fitting the production schedule. This was not observed for samples containing a single species (C5-C9). Thus, L. plantarum strains seem to be good candidates in the production of a novel type of fermented milk, not only for their

  7. Changes in gastric microbiota induced by Helicobacter pylori infection and preventive effects of Lactobacillus plantarum ZDY 2013 against such infection.

    PubMed

    Pan, Mingfang; Wan, Cuixiang; Xie, Qiong; Huang, Renhui; Tao, Xueying; Shah, Nagendra P; Wei, Hua

    2016-02-01

    Helicobacter pylori is a gram-negative pathogen linked to gastric ulcers and stomach cancer. Gastric microbiota might play an essential role in the pathogenesis of these stomach diseases. In this study, we investigated the preventive effect of a probiotic candidate Lactobacillus plantarum ZDY 2013 as a protective agent against the gastric mucosal inflammation and alteration of gastric microbiota induced by H. pylori infection in a mouse model. Prior to infection, mice were pretreated with or without 400 µL of L. plantarum ZDY 2013 at a concentration of 10(9) cfu/mL per mouse. At 6 wk postinfection, gastric mucosal immune response and alteration in gastric microbiota mice were examined by quantitative real-time PCR and high-throughput 16S rRNA gene amplicon sequencing, respectively. The results showed that L. plantarum ZDY 2013 pretreatment prevented increase in inflammatory cytokines (e.g., IL-1β and IFN-γ) and inflammatory cell infiltration in gastric lamina propria induced by H. pylori infection. Weighted UniFrac principal coordinate analysis showed that L. plantarum ZDY 2013 pretreatment prevented the alteration in gastric microbiota post-H. pylori infection. Linear discriminant analysis coupled with effect size identified 22 bacterial taxa (e.g., Pasteurellaceae, Erysipelotrichaceae, Halomonadaceae, Helicobacteraceae, and Spirochaetaceae) that overgrew in the gastric microbiota of H. pylori-infected mice, and most of them belonged to the Proteobacteria phylum. Lactobacillus plantarum ZDY 2013 pretreatment prevented this alteration; only 6 taxa (e.g., Lachnospiraceae, Ruminococcaceae, and Clostridiaceae), mainly from the taxa of Firmicutes and Bacteroidetes, were dominant in the gastric microbiota of the L. plantarum ZDY 2013 pretreated mice. Administration of L. plantarum ZDY 2013 for 3 wk led to increase in several bacterial taxa (e.g., Rikenella, Staphylococcus, Bifidobacterium), although a nonsignificant alteration was found in the gastric microbiota

  8. Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens.

    PubMed

    Peng, Q; Zeng, X F; Zhu, J L; Wang, S; Liu, X T; Hou, C L; Thacker, P A; Qiao, S Y

    2016-04-01

    Two experiments were conducted to determine the effects of Lactobacillus plantarum B1 on broiler performance, cecal bacteria, and ileal and cecal short chain fatty acids (SCFA). The study also determined whether it was necessary to feed Lactobacillus throughout the entire growth period or if the beneficial effects could be obtained by supplementation during the starter or finisher period only. Experiment 1 was conducted with 72 broilers assigned to 2 treatments (N=6). One treatment was the basal diet (Con), and the other was the basal diet supplemented with 2×10(9) cfu/kg L. plantarum B1 (Wh). In experiment 2, 144 one-day-old broilers were assigned to 4 treatments (N=6) including a basal diet (Con), the basal diet supplemented with 2×10(9) cfu/kgL. plantarum B1 during d one to 21 only (St), the basal diet supplemented with L. plantarum B1 during d 22 to 42 only (Fn), and, finally, the basal diet supplemented with L. plantarum B1 from d one to 42 (Wh). Experiment 1 showed that L. plantarum B1 enhanced broiler average daily gain (ADG) and feed conversion ratio (FCR). In experiment 2, during the starter period, broilers in the Wh and St treatments had higher ADG (P<0.05) than broilers in the Con and Fn, while during the finisher period, broilers in the Wh and Fn had higher ADG (P<0.01) and improved FCR (P<0.01) compared with broilers in the Con and St. On d 42, broilers in the Wh and Fn had decreased E. coli (P<0.05) and increased lactic acid bacteria (P<0.05) in their cecal digesta. L. plantarum B1 also increased (P<0.05) ileal mucosal sIgA as well as ileal and cecal SCFA. However, L. plantarum B1 had no effect on intestinal morphology. In conclusion,L. plantarum B1 plays a positive role in broilers. Supplementation during the finisher period or the entire growth period is superior to supplementation during the starter period only. © 2016 Poultry Science Association Inc.

  9. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum supplementation to standard triple therapy on Helicobacter pylori eradication and dynamic changes in intestinal flora.

    PubMed

    Wang, Yu-huan; Huang, Ying

    2014-03-01

    To investigate Lactobacillus acidophilus (L. acidophilus) and Bifidobacterium bifidum (B. bifidum) supplementation to triple therapy for Helicobacter pylori (H. pylori) eradication and dynamic changes in intestinal flora in children with H. pylori infection. One hundred H. pylori-infected children were randomly assigned to two groups: treatment group (n = 43), standard triple anti-H. pylori therapy plus probiotics of L. acidophilus and B. bifidum for 2 weeks followed by taking probiotics for another 4 weeks; control group (n = 45), standard triple anti-H. pylori therapy for 6 weeks. After 6-week treatment, ¹³C-urease breath test was performed and side effects were monitored during the observation period. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers was carried out for the analysis of human intestinal B. bifidum, L. acidophilus, and Escherichia coli (E. coli). As expected, treatment group could significantly enhance the H. pylori eradication rate (83.7 vs. 64.4 %, P < 0.05). B. bifidum, L. acidophilus, and E. coli showed no statistical difference before or after therapy in the treatment group. The number of B. bifidum and L. acidophilus was significantly decreased after 2-week treatment in the control group, but after 6-week treatment it significantly increased and nearly returned to the level before treatment. The number of E. coli increased significantly after 2-week treatment, while after 6-week treatment, it nearly decreased to the level before treatment. L. acidophilus and B. bifidum supplementation is effective for H. pylori eradication compared with triple therapy alone.

  10. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

    PubMed

    Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao

    2015-11-01

    During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Probiotic Lactobacillus plantarum 299v Does Not Counteract Unfavorable Phytohemagglutinin-Induced Changes in the Rat Intestinal Microbiota ▿

    PubMed Central

    Gross, Gabriele; Wildner, Jessica; Schonewille, Arjan; Rademaker, Jan L. W.; van der Meer, Roelof; Snel, Johannes

    2008-01-01

    Application of phytohemagglutinin (PHA) in weaning feed has been suggested to stimulate intestinal epithelium maturation. In this study, PHA strongly affected the fecal bacterial population structure of rats. Escherichia coli overgrowth was not prevented by probiotic mannose-adhering Lactobacillus plantarum 299v. Therefore, use of PHA in weaning feed deserves careful evaluation. PMID:18606805

  12. In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass (Lolium multiflorum) forage.

    PubMed

    Vijayakumar, Mayakrishnan; Ilavenil, Soundharrajan; Kim, Da Hye; Arasu, Mariadhas Valan; Priya, Kannappan; Choi, Ki Choon

    2015-04-01

    The aim of the present study was to determine the probiotic potential of the lactic acid bacteria Lactobacillus plantarum KCC-24 (L. plantarum KCC-24), that was isolated and characterized from Italian ryegrass (Lolium multiflorum) forage. The following experiments were performed to assess the probiotic characteristics such as antifungal activity, antibiotic susceptibility, resistance to low pH, stimulated gastric juice and bile salts, proteolytic activity, auto-aggregation, cell surface hydrophobicity, and in vitro antioxidant property. The isolated L. plantarum KCC-24 exhibited significant antifungal activity against the various fungal strains of Aspergillus fumigatus (73.43%), Penicillium chrysogenum (59.04%), Penicillium roqueforti (56.67%), Botrytis elliptica (40.23%), Fusarium oxysporum (52.47%) and it was susceptible to numerous antibiotics, survived in low pH, was resistant to stimulated gastric juices and bile salts (0.3% w/v). Moreover, L. plantarum KCC-24 exhibited good proteolytic activity. In addition L. plantarum KCC-24 showed potent antioxidant and hydrogen peroxide resistant property. In conclusion, the isolated L. plantarum KCC-24 exhibited several characteristics to prove it's excellent as a potential probiotic candidate for developing quality food for ruminant animals and human. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Antibacterial Activity of Probiotic Lactobacillus plantarum HK01: Effect of Divalent Metal Cations and Food Additives on Production Efficiency of Antibacterial Compounds.

    PubMed

    Sharafi, Hakimeh; Alidost, Leila; Lababpour, Abdolmajid; Shahbani Zahiri, Hossein; Abbasi, Habib; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2013-06-01

    One hundred and sixty lactic acid bacteria, isolated from Iranian traditional dairy products, were screened for antibacterial potential. Among them, an isolate showing remarkable antibacterial activity against both Staphylococcus aureus (PTCC 1112) and Escherichia coli (PTCC 1338) was selected based on minimum inhibitory concentration (AU/mL). The morphological and biochemical characteristics of the isolate matched the literature description about genus Lactobacillus. Partial sequencing of 16S rRNA gene and its alignment with other Lactobacillus strains revealed that the isolate was closely related to the Lactobacillus plantarum. The isolate also exhibited the highest similarity (>99 %) to L. plantarum. We thus tentatively classified the bacterial isolate as L. plantarum HK01. The antibacterial active compound from HK01 strain remained stable for 45 min at 121 °C, and it reached a maximum activity at the end of log phase and the early part of stationary phase. The antibacterial activity of the test isolate, its probiotic properties and production efficacy through addition of some divalent metal cations and food additives were studied as well. The study of bile salt hydrolase (BSH) activity as a function of growth revealed that HK01 strain hydrolysing up to 5 % of sodium salt of glycodeoxycholic acid, correlated with the presence of bsh gene in the isolate. HK01 strain showed high resistance to lysozyme, good adaptation to simulated gastric juice and a moderate bile tolerance. Results obtained from simulated gastric juice conditions showed no significant difference occured during the 70 min. HK01 strain was classified as a strain with low hydrophobicity (34.2 %). Addition of trisodium citrate dehydrates as a food-grade chelator of divalent cations restored antibacterial compound production in MRS broth. Antibacterial compounds of L. plantarum HK01 endured treatment with 10 g/L of SDS, Tween 20, Tween 80 and urea. Concerning food additives, the results

  14. Suitability of Bifidobacterium spp. and Lactobacillus plantarum as probiotics intended for fruit juices containing citrus extracts.

    PubMed

    Bevilacqua, Antonio; Campaniello, Daniela; Corbo, Maria Rosaria; Maddalena, Lucia; Sinigaglia, Milena

    2013-11-01

    A strain of Lactobacillus plantarum and 4 strains of bifidobacteria were inoculated in apple juice and in a commercial beverage labeled as "red-fruit juice," containing citrus extracts as natural preservatives; the suitability of the probiotics was evaluated in relation to their resistance to 2 kinds of citrus extracts (biocitro and lemon extract), survival in juices at 4 and 37 °C, and inhibition of Zygosaccharomyces bailii. Cell count of L. plantarum and bifidobacteria over time was fitted through the Weibull equation, for the evaluation of the first reduction time (δ), death time, and microbiological shelf life (the break-point was set to 7 log cfu/mL). Bifidobacterium animalis subsp. lactis experienced the highest δ-value (23.21 d) and death time (96.59 d) in the red-fruit juice at 4 °C, whereas L. plantarum was the most promising strain in apple juice at 37 °C. Biocitro and lemon extract did not exert a biocidal effect toward probiotics; moreover, the probiotics controlled the growth of Z. bailii and the combination of L. plantarum with 40 ppm of biocitro reduced the level of the yeast after 18 d by 2 log cfu/mL. © 2013 Institute of Food Technologists®

  15. Effects of encapsulated Lactobacillus acidophilus along with pasteurized longan juice on the colon microbiota residing in a dynamic simulator of the human intestinal microbial ecosystem.

    PubMed

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2014-01-01

    The effect of encapsulated Lactobacillus acidophilus LA5 along with pasteurized longan juice on the colon microbiota was investigated by applying a dynamic model of the human gastrointestinal tract. Encapsulated L. acidophilus LA5 in pasteurized longan juice or sole encapsulated L. acidophilus LA5 exhibited the efficiency of colonizing the colon and enabling the growth of colon lactobacilli as well as beneficial bifidobacteria but inhibited the growth of fecal coliforms and clostridia. Moreover, these treatments gave rise to a significant increase of lactic acid and short-chain fatty acids such as acetate, propionate, and butyrate. Although acetate displayed the highest quantity, it was likely that after incorporating encapsulated L. acidophilus LA5 plus pasteurized longan juice, quantity of butyrate exceed propionate, and acetate in comparison with their controls. Denaturant gradient gel electrophoresis patterns confirmed that various treatments affected the alteration of microbial community within the simulator of the human intestinal microbial ecosystem.

  16. Structural analysis of conjugated linoleic acid produced by Lactobacillus plantarum, and factors affecting isomer production.

    PubMed

    Kishino, Shigenobu; Ogawa, Jun; Ando, Akinori; Iwashita, Takashi; Fujita, Tsuyoshi; Kawashima, Hiroshi; Shimizu, Sakayu

    2003-01-01

    An isomer of the conjugated linoleic acid (CLA) produced from linoleic acid by Lactobacillus plantarum was identified as cis-9,trans-11-octadecadienoic acid by proton nuclear magnetic resonance spectroscopy. Together with earlier results, we concluded that the bacterium produces two CLA isomers, cis-9,trans-11- and trans-9,trans-11-octadecadienoic acid from linoleic acid. The addition of L-serine, glucose, AgNO3, or NaCl to the reaction mixture reduced production of the latter.

  17. Susceptibility of gut indigenous lactic acid bacteria in BALB/c mice to oral administered Lactobacillus plantarum.

    PubMed

    Kuda, Takashi; Yokota, Yasushi; Haraguchi, Yutaka; Takahashi, Hajime; Kimura, Bon

    2018-05-16

    Cells of Lactobacillus plantarum strains AN1 and Tennozu-SU2 exert anti-inflammatory responses in ICR mouse models of inflammatory bowel disease and protective effects against S. Typhimurium infection in BALB/c mice, respectively. To clarify the existence of L. plantarum-susceptible gut indigenous bacteria, AN1 and Tennozu-SU2 cells were administered to BALB/c mice via drinking water. Gene amplicon sequencing of 16S rRNA of caecal content revealed that the AN1 and Tennozu-SU2 cells affected the abundance of caecal indigenous lactobacilli, but the effect on the dominant Clostridiales and Bacteroidales was not clear. With Blood and Liver (BL) agar containing 5% v/v horse blood, six typical colonies from faecal samples were detected as the principal lactobacilli. Among them, two typical colonies were isolated and identified to be AN1 and Tennozu-SU2. Two and one typical colonies detected in all mice were identified to be L. reuteri and L. murinus, respectively. The other one was identified and estimated to be indigenous L. plantarum detected in the Tennozu-SU2 group.

  18. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    PubMed Central

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-01-01

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury. PMID:27918411

  19. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  20. Refrigerated Shelf Life of a Coconut Water-Oatmeal Mix and the Viability of Lactobacillus Plantarum Lp 115-400B.

    PubMed

    Dharmasena, Muthu; Barron, Felix; Fraser, Angela; Jiang, Xiuping

    2015-08-10

    Non-dairy probiotic products have the advantage of being lactose-free and can be manufactured to sustain the growth of probiotics. In this study, coconut water and oatmeal were used with the probiotic, Lactobacillus plantarum Lp 115-400B ( L. plantarum ) as a starter culture. Two separate treatments were carried out probiotic (P) and probiotic and prebiotic (PP) added. In both treatments, oatmeal-coconut water matrix was inoculated with 7 log CFU/g of L. plantarum and fermented at 27 °C for 10 h. For the PP treatment, 1 g of inulin/100 mL of the product was added additionally. The fermented products were then refrigerated (4 °C) and the viability of L. plantarum , pH, total acidity, and apparent viscosity of the matrix were monitored at selected time intervals. The shelf life to reach was defined by maintenance of L. plantarum count of 7 log CFU/g product. Refrigerated shelf life was determined to be seven-weeks for the P treatment and five-weeks for PP treatment. A significant reduction of pH was observed at the end of the considered shelf life; conversely, the apparent viscosity of the product did not change significantly.

  1. Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus

    PubMed Central

    Andersen, Joakim M.; Barrangou, Rodolphe; Abou Hachem, Maher; Lahtinen, Sampo; Goh, Yong Jun; Svensson, Birte; Klaenhammer, Todd R.

    2011-01-01

    Probiotic microbes rely on their ability to survive in the gastrointestinal tract, adhere to mucosal surfaces, and metabolize available energy sources from dietary compounds, including prebiotics. Genome sequencing projects have proposed models for understanding prebiotic catabolism, but mechanisms remain to be elucidated for many prebiotic substrates. Although β-galactooligosaccharides (GOS) are documented prebiotic compounds, little is known about their utilization by lactobacilli. This study aimed to identify genetic loci in Lactobacillus acidophilus NCFM responsible for the transport and catabolism of GOS. Whole-genome oligonucleotide microarrays were used to survey the differential global transcriptome during logarithmic growth of L. acidophilus NCFM using GOS or glucose as a sole source of carbohydrate. Within the 16.6-kbp gal-lac gene cluster, lacS, a galactoside-pentose-hexuronide permease-encoding gene, was up-regulated 5.1-fold in the presence of GOS. In addition, two β-galactosidases, LacA and LacLM, and enzymes in the Leloir pathway were also encoded by genes within this locus and up-regulated by GOS stimulation. Generation of a lacS-deficient mutant enabled phenotypic confirmation of the functional LacS permease not only for the utilization of lactose and GOS but also lactitol, suggesting a prominent role of LacS in the metabolism of a broad range of prebiotic β-galactosides, known to selectively modulate the beneficial gut microbiota. PMID:22006318

  2. Molecular cloning, expression and adhesion analysis of silent slpB of Lactobacillus acidophilus NCFM.

    PubMed

    Guo, Yuxing; Li, Xiangyue; Yang, Yao; Wu, Zhen; Zeng, Xiaoqun; Nadari, Fawze; Pan, Daodong

    2018-06-23

    The slpB gene of Lactobacillus acidophilus NCFM, which differs from the slpA gene and is silent under normal conditions, was successfully amplified and ligated to the corresponding available sites on a recombinant pET-28a vector. Then the pET-28a-slpB vector was transformed into Escherichia coli DH (DE3) and the fusion His-slpB protein was expressed by induction with 1 mM IPTG for 14 h at 37 °C. The resulting His-slpB protein (S B ) had a relative molecular weight of 48 kDa. It was purified using a Ni-NTA column and was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot contrastive analysis. The slpA protein (S A ) from L. acidophilus NCFM was extracted and purified. It had a relative molecular weight of 46 kDa. Circular dichroism measurements suggested that the two S-layer proteins had a high β-sheet content and a low α-helix structure content. In an adhesion experiment, S A displayed higher adhesive capability towards Caco-2 cells than did S B . The results suggest that these two S-layer proteins could have biotechnological applications.

  3. Comparative Genomic Analysis of Lactobacillus plantarum GB-LP1 Isolated from Traditional Korean Fermented Food.

    PubMed

    Yu, Jihyun; Ahn, Sojin; Kim, Kwondo; Caetano-Anolles, Kelsey; Lee, Chanho; Kang, Jungsun; Cho, Kyungjin; Yoon, Sook Hee; Kang, Dae-Kyung; Kim, Heebal

    2017-08-28

    As probiotics play an important role in maintaining a healthy gut flora environment through antitoxin activity and inhibition of pathogen colonization, they have been of interest to the medical research community for quite some time now. Probiotic bacteria such as Lactobacillus plantarum , which can be found in fermented food, are of particular interest given their easy accessibility. We performed whole-genome sequencing and genomic analysis on a GB-LP1 strain of L. plantarum isolated from Korean traditional fermented food; this strain is well known for its functions in immune response, suppression of pathogen growth, and antitoxin effects. The complete genome sequence of GB-LP1 is a single chromosome of 3,040,388 bp with 2,899 predicted open reading frames. Genomic analysis of GB-LP1 revealed two CRISPR regions and genes showing accelerated evolution, which may have antibiotic and antitoxin functions. The aim of the present study was to predict strain specific-genomic characteristics and assess the potential of this new strain as lactic acid bacteria at the genomic level using in silico analysis. These results provide insight into the L. plantarum species as well as confirm the possibility of its utility as a candidate probiotic.

  4. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems.

    PubMed

    Brinques, Graziela Brusch; do Carmo Peralba, Maria; Ayub, Marco Antônio Záchia

    2010-02-01

    Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett-Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l(-1) (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l(-1) (dw), with conversion rates of 0.10 g of cell g(-1) lactose and 1.08 g lactic acid g(-1) lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.

  5. Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum subsp. plantarum PTCC 1896.

    PubMed

    Bakhshi, Nafiseh; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud

    2017-06-01

    Currently, screening of microbial biosurfactants (BSs) is based on their equilibrium surface tension values obtained using static surface tension measurement. However, a good surfactant should not only have a low equilibrium surface tension, but its dynamic surface tension (DST) should also decrease rapidly with time. In this study, screening of BSs produced by Lactobacillus plantarum subsp. plantarum PTCC 1896 (probiotic) was performed based on their DST values measured by Wilhelmy plate tensiometry. The relationship between DST and structural and functional properties (anti-adhesive activity) of the BSs was investigated. The results showed that the changes in the yield, productivity and structure of the BSs were growth medium and incubation time dependent (p<0.05). Structurally different BSs produced exhibited identical equilibrium surface tension values. However, differences among the structure/yield of the BSs were observed through the measurement of their DST. The considerable dependence of DST on the concentration and composition of the BS proteins was observed (p<0.05). Moreover, the anti-adhesive activity of the BS was found to be positively correlated with its DST. The results suggest that the DST measurement could serve as an efficient method for the clever screening of BSs producer/production condition, and consequently, for the investigation of probiotic features of bacteria, since the anti-adhesive activity is an important criterion of probiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Genome Sequence of Lactobacillus plantarum 19L3, a Strain Proposed as a Starter Culture for Slovenská Bryndza Ovine Cheese

    PubMed Central

    Džunková, Mária; Moya, Andrés; Tomáška, Martin; Kološta, Miroslav; Kmet, Vladimir

    2014-01-01

    The genome sequence of Lactobacillus plantarum isolated from ovine cheese is presented here. This bacterium is proposed as a starter strain, named 19L3, for Slovenská bryndza cheese, a traditional Slovak cheese fulfilling European Food Safety Authority (EFSA) requirements. PMID:24762933

  7. Reduction of Biogenic Amines during Miso Fermentation by Lactobacillus plantarum as a Starter Culture.

    PubMed

    Lee, Yi-Chen; Kung, Hsien-Feng; Huang, Ya-Ling; Wu, Chien-Hui; Huang, Yu-Ru; Tsai, Yung-Hsiang

    2016-09-01

    Lactobacillus plantarum D-103 isolated from a miso product that possesses amine-degrading activity was used as a starter culture in miso fermentation (25°C for 120 days) in this study. The salt content in control samples (without starter culture) and inoculated samples (inoculated with L. plantarum D-103) remained constant at 10.4% of the original salt concentration throughout fermentation, whereas the pH value decreased from 6.2 to 4.6 during fermentation. The inoculated samples had significantly lower (P < 0.05) levels of total volatile basic nitrogen than control samples after 40 days of fermentation. After 120 days of fermentation, the histamine and overall biogenic amine contents in inoculated samples were reduced by 58 and 27%, respectively, compared with control samples. To our knowledge, this is the first report to demonstrate that application of a starter culture with amine-degrading activity in miso products was effective in reducing the accumulation of biogenic amines.

  8. Establishment of Lactobacillus plantarum strain in honey bee digestive tract monitored using gfp fluorescence.

    PubMed

    Javorský, P; Fecskeová, L Kolesár; Hrehová, L; Sabo, R; Legáth, J; Pristas, P

    2017-04-26

    Lactic acid bacteria are symbiotic bacteria that naturally reside in the gastrointestinal tract of honey bees. They serve a multitude of functions and are considered beneficial and completely harmless. In our experiments Lactobacillus plantarum strain B35, isolated from honey bee digestive tract, was modified using pAD43-25 plasmid carrying a functional GFP gene sequence (gfpmut3a) and used as a model for monitoring and optimisation of the mode of application. The establishment of this strain in honey bee digestive tract was monitored using GFP fluorescence. Three different modes of oral application of this strain were tested: water suspension of lyophilised bacteria, aerosol application of these bacteria and consumption of sugar honey paste containing the lyophilised lactobacilli. Two days after administration the L. plantarum B35-gfp was present throughout the honey bee digestive tract with 10 4 -10 5 cfu/bee with highest count observed for aerosol application.

  9. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus.

    PubMed

    Shah, Alok Girish; Shetty, Pradeep Chandra; Ramachandra, C S; Bhat, N Sham; Laxmikanth, S M

    2011-11-01

    To assess the antiadherent and antibacterial properties of surface modified stainless steel orthodontic brackets with photocatalytic titanium oxide (TiO(2)) against Lactobacillus acidophilus. This study was done on 120 specimens of stainless steel preadjusted edgewise appliance (PEA) orthodontic brackets. The specimens were divided into four test groups. Each group consisted of 30 specimens. Groups containing uncoated brackets acted as a control group for their respective experimental group containing coated brackets. Surface modification of brackets was carried out by the radiofrequency (RF) magnetron sputtering method with photocatalytic TiO(2). Brackets then were subjected to microbiological tests for assessment of the antiadherent and antibacterial properties of photocatalytic TiO(2) coating against L acidophilus. Orthodontic brackets coated with photocatalytic TiO(2) showed an antiadherent effect against L acidophilus compared with uncoated brackets. The bacterial mass that was bound to the TiO(2)-coated brackets was less when compared with the uncoated brackets. Furthermore, TiO(2)-coated brackets had a bactericidal effect on L acidophilus, which causes dental caries. Surface modification of orthodontic brackets with photocatalytic TiO(2) can be used to prevent the accumulation of dental plaque and the development of dental caries during orthodontic treatment.

  10. Short communication: Nutrient consumption patterns of Lactobacillus acidophilus KLDS 1.0738 in controlled pH batch fermentations.

    PubMed

    Lv, Xuepeng; Liu, Gefei; Sun, Xiaomei; Chen, Hongyu; Sun, Jiahui; Feng, Zhen

    2017-07-01

    This work focused on elucidating the nutrient consumption patterns of Lactobacillus acidophilus to guide the design of media for high-cell-density culture. We investigated the nutrient consumption patterns of L. acidophilus KLDS 1.0738 in chemically defined media in controlled pH batch fermentations. The most abundantly consumed amino acids, vitamins, ions, and purines and pyrimidines were Glu and Gly, pyridoxine and nicotinamide, K + and PO 4 3- , and guanine and uracil, respectively. The highest consumption rates for amino acids, vitamins, ions, and purines and pyrimidines were Asp and Arg, folic acid and pyridoxine, Fe 2+ and Mn 2+ , and uracil and thymine, respectively. Furthermore, most of the amino acids, as well as guanine, thymine, pyridoxine, folic acid, nicotinamide, Mg 2+ , PO 4 3- , and K + had the highest bioavailability from the end of the lag growth phase to the mid-exponential growth phase. The overall consumption of glucose, adenine nucleotides, 2'-deoxyguanosine monohydrate, calcium pantothenate, Fe 2+ and Mn 2+ decreased with increasing average growth rate, indicating more effective use of these nutritional components at a higher average growth rate, as biomass yield based on nutritional component consumption increased. Our findings help to formulate complex media for high-cell-density cultivation and provide a theoretical basis for L. acidophilus feeding strategies. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains.

    PubMed

    Gangoiti, M V; Puertas, A I; Hamet, M F; Peruzzo, P J; Llamas, M G; Medrano, M; Prieto, A; Dueñas, M T; Abraham, A G

    2017-08-15

    Lactobacillus plantarum CIDCA 8327 is an exopolysaccharide (EPS)-producer strain isolated from kefir with promising properties for the development of functional foods. The aim of the present study was to characterize the structure of the EPS synthesized by this strain grown in skim milk or semidefined medium (SDM). Additionally, genes involved in EPS synthesis were detected by PCR. L. plantarum produces an EPS with a molecular weight of 10 4 Da in both media. When grown in SDM produce an heteropolysaccharide composed mainly of glucose, glucosamine and rhamnose meanwhile the EPS produced in milk was composed exclusively of glucose indicating the influence of the sugar source. FTIR spectra of this EPS showed signals attributable to an α-glucan. Both by 1 H NMR and methylation analysis it was possible to determine that this polysaccharide is a branched α-(1→4)-d-glucan composed of 80% linear α-(1→4)-d-glucopyranosyl units and 19% (1→4)-d-glucopyranosyl units substituted at O-3 by single α-d-glucopyranosil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dietary Lactobacillus acidophilus modulated skin mucus protein profile, immune and appetite genes expression in gold fish (Carassius auratus gibelio).

    PubMed

    Hosseini, Marjan; Kolangi Miandare, Hamed; Shabani, Ali; Hoseinifar, Seyed Hossein; Yarahmadi, Peyman

    2016-12-01

    The objective of the present study was to investigate the effect of dietary Lactobacillus acidophilus on skin mucus protein pattern, immune and appetite related genes expression as well as growth performance in gold fish (Carassius auratus gibelio). Three hundred healthy gold fish (2.5 ± 0.05) juveniles were randomly distributed in 12 glass aquariums (400-L; 25 fish per aquaria) and fed experimental diets contain different levels of L. acidophilus (0, 1.5 × 10 8 , 3 × 10 8 and 6 × 10 8 ) for 8 weeks. SDS-PAGE analysis of skin mucus protein profile at the end of the feeding trial revealed differences in protein profile of probiotic fed fish and control group; even three new bands were observed in L. acidophilus treated groups. Furthermore, fish fed 6 × 10 8  CFU g -1 supplemented diet showed up-regulation of both TNF-1α and TNF-2α gene expression (P < 0.05). Evaluation of appetite related gene expression showed down-regulation of ghrelin in probiotic fed fish compared those of control treatment (P < 0.05). However, administration of different levels of L. acidophilus had no significant effects on growth performance (P > 0.05). These results demonstrated that while no beneficial effects on growth performance, dietary L. acidophilus affects immune and appetite related genes expression as well as skin mucus protein profile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quorum-Sensing Regulation of Constitutive Plantaricin by Lactobacillus plantarum Strains under a Model System for Vegetables and Fruits

    PubMed Central

    Rizzello, Carlo G.; Filannino, Pasquale; Calasso, Maria; Gobbetti, Marco

    2014-01-01

    This study aimed at investigating the regulatory system of bacteriocin synthesis by Lactobacillus plantarum strains in vegetables and fruits in a model system. Sterile and neutralized cell-free supernatant (CFS) from L. plantarum strains grown in MRS broth showed in vitro antimicrobial activities toward various indicator strains. The highest activity was that of L. plantarum C2. The antimicrobial activity was further assayed on vegetable and fruit agar plates (solid conditions) and in juices (liquid conditions). A regulatory mechanism of bacteriocin synthesis via quorum sensing was hypothesized. The synthesis of antimicrobial compounds seemed to be constitutive under solid conditions of growth on vegetable and fruit agar plates. In contrast, it depended on the size of the inoculum when L. plantarum C2 was grown in carrot juice. Only the inoculum of ca. 9.0 log CFU ml−1 produced detectable activity. The genes plnA, plnEF, plnG, and plnH were found in all L. plantarum strains. The genes plnJK and plnN were detected in only three or four strains. Reverse-phase high-performance liquid chromatography purification and mass spectrometry analysis revealed the presence of a mixture of eight peptides in the most active fraction of the CFS from L. plantarum C2. Active peptides were encrypted into bacteriocin precursors, such as plantaricins PlnJ/K and PlnH and PlnG, which are involved in the ABC transport system. A real-time PCR assay showed an increase in the expression of plnJK and plnG during growth of L. plantarum C2 in carrot juice. PMID:24242246

  14. Immunogenicity in Swine of Orally Administered Recombinant Lactobacillus plantarum Expressing Classical Swine Fever Virus E2 Protein in Conjunction with Thymosin α-1 as an Adjuvant

    PubMed Central

    Xu, Yi-Gang; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong

    2015-01-01

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV. PMID:25819954

  15. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus.

    PubMed

    O'Flaherty, Sarah; Klaenhammer, Todd R

    2016-10-15

    Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid

  16. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus

    PubMed Central

    Klaenhammer, Todd R.

    2016-01-01

    ABSTRACT Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is

  17. Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing.

    PubMed

    Song, Sooyeon; Bae, Dong-Won; Lim, Kwangsei; Griffiths, Mansel W; Oh, Sejong

    2014-11-17

    The stress resistance of bacteria is affected by the physiological status of the bacterial cell and environmental factors such as pH, salts and temperature. In this study, we report on the stress response of Lactobacillus plantarum L67 after four consecutive freeze-thaw cycles. The cold stress response of the cold-shock protein genes (cspC, cspL and cspP) and ATPase activities were then evaluated. The cold stress was adjusted to 5 °C when the bacteria were growing at the mid-exponential phase. A comparative proteomic analysis was performed with two-dimensional gel electrophoresis (2D SDS-PAGE) and a matrix assisted laser desorption/ionization-mass spectrometer. Only 56% of the L. plantarum L67 cells without prior exposure to cold stress survived after four consecutive freeze-thaw cycles. However, 78% of the L. plantarum L67 cells that were treated with cold stress at 5 °C for 6 h survived after freeze-thaw conditions. After applying cold stress to the culture for 6h, the cells were then stored for 60 days at 5 °C, 25 °C and 35 °C separately. The cold-stressed culture of L. plantarum L67 showed an 8% higher viability than the control culture. After applying cold stress for 6h, the transcript levels of two genes (cspP and cspL) were up-regulated 1.4 (cspP) and 1.2 (cspL) times compared to the control. However, cspC was not up-regulated. A proteomic analysis showed that the proteins increased after a reduction of the incubation temperature to 5 °C. The importance of the expression of 13 other relevant proteins was also determined through the study. The exposure of L. plantarum cells to low temperatures aids their ability to survive through subsequent freeze-thaw processes and lyophilization. Copyright © 2014. Published by Elsevier B.V.

  18. Mg2+ improves the thermotolerance of probiotic Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8.

    PubMed

    Yang, Y; Huang, S; Wang, J; Jan, G; Jeantet, R; Chen, X D

    2017-04-01

    Food-related carbohydrates and proteins are often used as thermoprotectants for probiotic lactobacilli during industrial production and processing. However, the effect of inorganic salts is rarely reported. Magnesium is the second-most abundant cation in bacteria, and commonly found in various foods. Mg 2+ homeostasis is important in Salmonella and has been reported to play a critical role in their thermotolerance. However, the role of Mg 2+ in thermotolerance of other bacteria, in particular probiotic bacteria, still remains a hypothesis. In this study, the effect of Mg 2+ on thermotolerance of probiotic lactobacilli was investigated in three well-documented probiotic strains, Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8, in comparison with Zn 2+ and Na + . Concentrations of Mg 2+ between 10 and 50 mmol l -1 were found to increase the bacterial survival upon heat challenge. Remarkably, Mg 2+ addition at 20 mmol l -1 led to a 100-fold higher survival of L. rhamnosus GG upon heat challenge. This preliminary study also showed that Mg 2+ shortened the heat-induced extended lag time of bacteria, which indicated the improvement in bacterial recovery from thermal injury. In order to improve the productivity and stability of live probiotics, extensive investigations have been carried out to improve thermotolerance of probiotics. However, most of these studies focused on the effects of carbohydrates, proteins or amino acids. The roles of inorganic salts in various food materials, which have rarely been reported, should be considered when incorporating probiotics into these foods. In this study, Mg 2+ was found to play a significant role in the thermotolerance of probiotic lactobacilli. A novel strategy may be available in the near future by employing magnesium salts as protective agents of probiotics during manufacturing process. © 2017 The Society for Applied Microbiology.

  19. Inhibitory activity of Lactobacillus plantarum TF711 against Clostridium sporogenes when used as adjunct culture in cheese manufacture.

    PubMed

    González, Lorena; Zárate, Victoria

    2015-05-01

    Bacteriocins produced by lactic acid bacteria are of great interest to the food-processing industry as natural preservatives. This work aimed to investigate the efficacy of bacteriocin-producing Lactobacillus plantarum TF711, isolated from artisanal Tenerife cheese, in controlling Clostridium sporogenes during cheese ripening. Cheeses were made from pasteurised milk artificially contaminated with 10(4) spores m/l C. sporogenes. Experimental cheeses were manufactured with Lb. plantarum TF711 added at 1% as adjunct to commercial starter culture. Cheeses made under the same conditions but without Lb. plantarum TF711 served as controls. Evolution of microbiological parameters, pH and NaCl content, as well as bacteriocin production was studied throughout 45 d of ripening. Addition of Lb. plantarum TF711 did not bring about any significant change in starter culture counts, NaCl content and pH, compared with control cheese. In contrast, clostridial spore count in experimental cheeses were significantly lower than in control cheeses from 7 d onwards, reaching a maximum reduction of 2·2 log units on day 21. Inhibition of clostridia found in experimental cheeses was mainly attributed to plantaricin activity, which in fact was recovered from these cheeses.

  20. [Influence of a low-calorie diet with inclusion of probiotic product containing bacterias Lactobacillus plantarum Tensia DSM 21380 on clinical and metabolic characteristics in patients with obesity and arterial hypertension].

    PubMed

    Sharafetdinov, Kh Kh; Plotnikova, O A; Alekseeva, R I; Sentsova, T B; Kaganov, B S

    2012-01-01

    In a number of studies it is shown that regular use of the probiotic products containing Lactobacillus plantarum Tensia DSM 21380 in complex dietary treatment, not only modulates intestinal microflora, but also has a positive influence on a functional condition of cardiovascular system including levelels of systolic and diastolic blood pressure. The aim of this research was to study the influence of dietotherapy with inclusion of the probiotic product containing Lactobacillus plantarum Tensia DSM 21380, on clinical and metabolic characteristics in patients with obesity and accompanying arterial hypertension (AH).

  1. Can Lactobacillus fermentum LF10 and Lactobacillus acidophilus LA02 in a slow-release vaginal product be useful for prevention of recurrent vulvovaginal candidiasis?: A clinical study.

    PubMed

    Murina, Filippo; Graziottin, Alessandra; Vicariotto, Franco; De Seta, Francesco

    2014-01-01

    To assess the effectiveness of the association of 2 specific strains, Lactobacillus fermentum LF10 (DSM 19187) and Lactobacillus acidophilus LA02 (DSM 21717), specifically formulated in slow-release effervescent tablets, in patients with recurrent vulvovaginal candidiasis. The study was a clinical trial of 58 women diagnosed with recurrent VVC (≥4 culture-confirmed episodes in a 12-mo period). All patients were given 200 mg of fluconazole orally as an induction dose for 3 alternate days during the first treatment week. Afterward, the patients were given a new product formulated in slow-release vaginal tablets containing at least 0.4 billion live cells of each of lactobacillus L. fermentum LF10 and L. acidophilus LA02 (first phase of the prophylactic period), on alternate days for 10 consecutive nights. Patients who were still free of symptoms were given 1 vaginal tablet every week for the next 10 weeks (second phase of the prophylactic period). Patients asymptomatic after the total duration of the observation phase (7 mo) were considered as responders. During the second 10-week prophylactic phase, 49 of 57 (86.0%) patients remained free of clinical recurrence, whereas symptomatic VVC occurred in 8 patients (14.0%). During the 7-month follow-up, 42 patients of 49 (85.7%) were symptom free at the end of the protocol, whereas clinical recurrences occurred in 7 women (14.3%). Overall, 42 of 58 women enrolled in the study (72.4%) experienced no clinical recurrence throughout the 7-month observation phase (responders). This study strengthens the evidence supporting the use of specific lactobacilli with well-demonstrated activities associated with the creation and maintenance of a vaginal biofilm that hinders the persistence of an infection caused by Candida.

  2. Immunogenicity of recombinant Lactobacillus plantarum NC8 expressing goose parvovirus VP2 gene in BALB/c mice

    PubMed Central

    Liu, Yu-Ying; Yang, Wen-Tao; Shi, Shao-Hua; Li, Ya-Jie; Zhao, Liang; Shi, Chun-Wei; Zhou, Fang-Yu; Jiang, Yan-Long; Hu, Jing-Tao; Gu, Wei

    2017-01-01

    Goose parvovirus (GPV) continues to be a threat to goose farms and has significant economic effects on the production of geese. Current commercially available vaccines only rarely prevent GPV infection. In our study, Lactobacillus (L.) plantarum NC8 was selected as a vector to express the VP2 gene of GPV, and recombinant L. plantarum pSIP409-VP2/NC8 was successfully constructed. The molecular weight of the expressed recombinant protein was approximately 70 kDa. Mice were immunized with a 2 × 109 colony-forming unit/200 µL dose of the recombinant L. plantarum strain, and the ratios and numbers of CD11c+, CD3+CD4+, CD3+CD8+, and interferon gamma- and tumor necrosis factor alpha-expressing spleen lymphocytes in the pSIP409-VP2/NC8 group were higher than those in the control groups. In addition, we assessed the capacity of L. plantarum SIP409-VP2/NC8 to induce secretory IgA production. We conclude that administered pSIP409-VP2/NC8 leads to relatively extensive cellular responses. This study provides information on GPV infection and offers a clear framework of options available for GPV control strategies. PMID:27456769

  3. Immunogenicity of recombinant Lactobacillus plantarum NC8 expressing goose parvovirus VP2 gene in BALB/c mice.

    PubMed

    Liu, Yu-Ying; Yang, Wen-Tao; Shi, Shao-Hua; Li, Ya-Jie; Zhao, Liang; Shi, Chun-Wei; Zhou, Fang-Yu; Jiang, Yan-Long; Hu, Jing-Tao; Gu, Wei; Yang, Gui-Lian; Wang, Chun-Feng

    2017-06-30

    Goose parvovirus (GPV) continues to be a threat to goose farms and has significant economic effects on the production of geese. Current commercially available vaccines only rarely prevent GPV infection. In our study, Lactobacillus (L.) plantarum NC8 was selected as a vector to express the VP2 gene of GPV, and recombinant L. plantarum pSIP409-VP2/NC8 was successfully constructed. The molecular weight of the expressed recombinant protein was approximately 70 kDa. Mice were immunized with a 2 × 10 9 colony-forming unit/200 μL dose of the recombinant L. plantarum strain, and the ratios and numbers of CD11c + , CD3 + CD4 + , CD3 + CD8 + , and interferon gamma- and tumor necrosis factor alpha-expressing spleen lymphocytes in the pSIP409-VP2/NC8 group were higher than those in the control groups. In addition, we assessed the capacity of L. plantarum SIP409-VP2/NC8 to induce secretory IgA production. We conclude that administered pSIP409-VP2/NC8 leads to relatively extensive cellular responses. This study provides information on GPV infection and offers a clear framework of options available for GPV control strategies.

  4. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats.

    PubMed

    Song, Jiao J; Tian, Wen J; Kwok, Lai-Yu; Wang, Ya L; Shang, Yi N; Menghe, Bilige; Wang, Jun G

    2017-10-01

    The in vivo effects of administering free and microencapsulated Lactobacillus plantarum LIP-1 cells (2·0×109 colony-forming units/d) were evaluated in high-fat-diet-induced hyperlipidaemic rats. Results from real-time quantitative PCR targeting to LIP-1 cells showed a higher colon colonisation count of LIP-1 in the rats receiving microencapsulated cells compared with free cells (P<0·05). Moreover, the microencapsulated LIP-1 treatment resulted in a more obvious lipid-lowering effect (P<0·05). Meanwhile, their faecal samples had significantly less lipopolysaccharide-producing bacteria (especially Bilophila, Sutterella and Oscillibacter) and mucosa-damaging bacteria (Bilophila and Akkermansia muciniphila), whereas significantly more SCFA-producing bacteria (P<0·05) (namely Lactobacillus, Alloprevotella, Coprococcus, Eubacterium and Ruminococcus) and bacteria that potentially possessed bile salt hydrolase activity (Bacteroides, Clostridium, Eubacterium and Lactobacillus), and other beneficial bacteria (Alistipes and Turicibacter). Further, Spearman's correlation analysis showed significant correlations between some of the modulated gut bacteria and the serum lipid levels. These results together confirm that microcapsulation enhanced the colon colonisation of LIP-1 cells, which subsequently exhibited more pronounced effects in improving the gut microbiota composition of hyperlipidaemic rats and lipid reduction.

  5. Refrigerated Shelf Life of a Coconut Water-Oatmeal Mix and the Viability of Lactobacillus Plantarum Lp 115-400B

    PubMed Central

    Dharmasena, Muthu; Barron, Felix; Fraser, Angela; Jiang, Xiuping

    2015-01-01

    Non-dairy probiotic products have the advantage of being lactose-free and can be manufactured to sustain the growth of probiotics. In this study, coconut water and oatmeal were used with the probiotic, Lactobacillus plantarum Lp 115-400B (L. plantarum) as a starter culture. Two separate treatments were carried out probiotic (P) and probiotic and prebiotic (PP) added. In both treatments, oatmeal-coconut water matrix was inoculated with 7 log CFU/g of L. plantarum and fermented at 27 °C for 10 h. For the PP treatment, 1 g of inulin/100 mL of the product was added additionally. The fermented products were then refrigerated (4 °C) and the viability of L. plantarum, pH, total acidity, and apparent viscosity of the matrix were monitored at selected time intervals. The shelf life to reach was defined by maintenance of L. plantarum count of 7 log CFU/g product. Refrigerated shelf life was determined to be seven-weeks for the P treatment and five-weeks for PP treatment. A significant reduction of pH was observed at the end of the considered shelf life; conversely, the apparent viscosity of the product did not change significantly. PMID:28231208

  6. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection.

    PubMed

    Auclair, Julie; Frappier, Martin; Millette, Mathieu

    2015-05-15

    A specific probiotic formulation composed of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+) has been marketed in North America since 1996. The strains and the commercial products have been evaluated for safety, identity, gastrointestinal survival, and stability throughout shelf life. The capacity of both the fermented beverages and the capsules to reduce incidences of antibiotic-associated diarrhea and Clostridium difficile infection (CDI) has been demonstrated in human clinical trials. Individual strains and the finished products have shown antimicrobial activity against C. difficile and toxin A/B neutralization capacity in vitro. The use of this specific probiotic formulation as part of a bundle of preventive measures to control CDI in healthcare settings is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells.

    PubMed

    Jia, Fang-Fang; Zhang, Lu-Ji; Pang, Xue-Hui; Gu, Xin-Xi; Abdelazez, Amro; Liang, Yu; Sun, Si-Rui; Meng, Xiang-Chen

    2017-10-01

    Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of Lactobacillus plantarum Tennozu-SU2 on Salmonella Typhimurium Infection in Human Enterocyte-Like HT-29-Luc Cells and BALB/c Mice.

    PubMed

    Hirano, Shino; Yokota, Yasushi; Eda, Mika; Kuda, Takashi; Shikano, Ayane; Takahashi, Hajime; Kimura, Bon

    2017-03-01

    The probiotic properties and inhibitory effect on Salmonella Typhimurium adhesion on human enterocyte-like HT-29-Luc cells of three Lactobacillus plantarum strains isolated from fermented fish, beach sand and a coastal plant were determined. Compared with the type strain L. plantarum NBRC 15891 T , which was isolated from pickled cabbage, L. plantarum Tennozu-SU2 isolated from the acorn of a coastal tree showed high autoaggregation in de Man, Rogosa and Sharpe (MRS) broth and an antagonistic effect against S. Typhimurium in brain heart infusion (BHI) broth. Furthermore, heat-killed L. plantarum Tennozu-SU2 cells inhibited S. Typhimurium adhesion on HT-29-Luc cells. Both live and heat-killed L. plantarum Tennozu-SU2 cells showed an inhibitory effect on gut colonisation in BALB/c mice, as assessed by viable Salmonella count in faecal samples and by invasion into liver and spleen tissues. The properties shown in this study suggest that L. plantarum Tennozu-SU2 is useful as a starter and probiotic bacteria in functional food material.

  9. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds

    PubMed Central

    Deepthi, B. V.; Poornachandra Rao, K.; Chennapa, G.; Naik, M. K.; Chandrashekara, K. T.; Sreenivasa, M. Y.

    2016-01-01

    Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production. PMID:27285317

  10. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds.

    PubMed

    Deepthi, B V; Poornachandra Rao, K; Chennapa, G; Naik, M K; Chandrashekara, K T; Sreenivasa, M Y

    2016-01-01

    Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production.

  11. Construction and immunogenicity of the recombinant Lactobacillus acidophilus pMG36e-E0-LA-5 of bovine viral diarrhea virus.

    PubMed

    Zhao, Yuelan; Jiang, Lufeng; Liu, Teng; Wang, Min; Cao, Wenbo; Bao, Yongzhan; Qin, Jianhua

    2015-12-01

    Bovine viral diarrhea/mucosal disease (BVD/MD) is an infectious disease of cattle with a worldwide distribution, creating a substantial economic impact. It is caused by bovine viral diarrhea virus (BVDV). This research was conducted to construct the recombinant Lactobacillus acidophilus (L. acidophilus) pMG36e-E0-LA-5 of BVDV E0 gene and to test its immunogenicity and protective efficacy against BVDV infection in the mice model. The BVDV E0 gene was sub-cloned into the expression vector and then transformed into the L. acidophilus LA-5 strain by electroporation. The recombinant L. acidophilus pMG36e-E0-LA-5 was confirmed by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. The mice were immunized orally with the recombinant L. acidophilus pMG36e-E0-LA-5. The serum IgG antibody and fecal sIgA antibody responses, expression levels of interleukin (IL)-12 (IL-12) and interferon gamma (IFN-γ) were detected respectively. On the 7th day after the last-immunization, the mice were inoculated with BVDV to evaluate the protective efficiency of the recombinant L. acidophilus pMG36e-E0-LA-5. The results showed that the expressed products protein E0 in the L. acidophilus LA-5 resulted in single band of 27kDa by SDS-PAGE and its strong reactivity with BVDV antibody was confirmed by Western blotting. The IgG and sIgA antibodies responses, IL-12 and IFN-γ expression levels in the vaccinated mice with recombinant L. acidophilus pMG36e-E0-LA-5 were significantly higher than those in the control mice. The protective rate of the vaccinated mice against BVDV increased significantly, and a 90.00% protection rate in virulent challenge was observed. These results indicated that the recombinant L. acidophilus pMG36e-E0-LA-5 strain was successfully constructed and it could effectively improve the immune response in mice and might provide protection against BVDV. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-β signaling.

    PubMed

    Huang, I-Fei; Lin, I-Chun; Liu, Pei-Feng; Cheng, Ming-Fang; Liu, Yen-Chen; Hsieh, Yao-Dung; Chen, Jih-Jung; Chen, Chun-Lin; Chang, Hsueh-Wei; Shu, Chih-Wen

    2015-10-07

    Salmonella is a common intestinal pathogen that causes acute and chronic inflammatory response. Probiotics reduce inflammatory cytokine production and serve as beneficial commensal microorganisms in the human gastrointestinal tract. TGF-β (transforming growth factor β)/SMAD and NF-κB signaling play important roles in inflammation in intestinal cells. However, the involvement of the signaling in regulating inflammation between Salmonella and probiotics is not fully understood. L. acidophilus and prebiotic inulin were used to treat human intestinal Caco-2 cells prior to infection with Salmonella. The cells were harvested to examine the cytokines and MIR21 expression with immunoblotting and real-time PCR. NF-κB and SMAD3/4 reporter vectors were transfected into cells to monitor inflammation and TGF-β1 signaling, respectively. In this study, we showed that the probiotic L. acidophilus decreased Salmonella-induced NF-κB activation in human intestinal Caco-2 cells. Expression of the inflammatory cytokines, TNF-α and IL-8, in L. acidophilus-pretreated cells was also significantly lower than that in cells infected with Salmonella alone. Moreover, TGF-β1 and MIR21 expression was elevated in cells pretreated with L. acidophilus or synbiotic, a combination of inulin and L. acidophilus, compared to that in untreated cells or cells infected with S. typhimurium alone. By contrast, expression of SMAD7, a target of MIR21, was accordingly reduced in cells treated with L. acidophilus or synbiotics. Consistent with TGF-β1/MIR21 and SMAD7 expression, SMAD3/4 transcriptional activity was significantly higher in the cells treated with L. acidophilus or synbiotics. Furthermore, TGF-β1 antibody antagonized the SMAD3/4 and NF-κB transcriptional activity modulated by L. acidophilus in intestinal cells. Our results suggest that the TGF-β1/MIR21 signaling pathway may be involved in the suppressive effects of L. acidophilus on inflammation caused by S. typhimurium in intestinal

  13. Surface layer protein from Lactobacillus acidophilus NCFM inhibit intestinal pathogen-induced apoptosis in HT-29 cells.

    PubMed

    Meng, Jun; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2017-03-01

    Intestinal pathogens have been proposed to adhere to epithelial cells and cause apoptosis. This study was to investigate the inhibitory effects of surface layer protein (SLP, 46kDa) from Lactobacillus acidophilus NCFM on Escherichia coli and Salmonella-induced apoptosis in HT-29 cells and the mechanism of the inhibition was also studied. The SLP could alleviate the chromatin condensation caused by intestinal pathogens as observed under fluorescent microscope. Flow cytometry analysis showed that the SLP decreased E. coli and Salmonella-induced apoptosis by 46% and 48%, respectively. The SLP could also inhibit the mitochondrial membrane potential reduction and Ca 2+ level increase in HT-29 cells. Furthermore, the activation of caspase-9 and caspase-3 induced by E. coli and Salmonella was significantly decreased by the addition of SLP. These results suggested that L. acidophilus NCFM SLP could protect HT-29 cells against intestinal pathogen-induced apoptosis through a mitochondria-mediated pathway. These findings may reveal a new method for the treatment of intestinal infection and provide a theoretical basis for the practical application of SLP in food, biological and pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Lactobacillus plantarum reduces infection of pancreatic necrosis in experimental acute pancreatitis.

    PubMed

    Mangiante, G; Colucci, G; Canepari, P; Bassi, C; Nicoli, N; Casaril, A; Marinello, P; Signoretto, C; Bengmark, S

    2001-01-01

    Infection is the commonest cause of death in acute pancreatitis. Early reduction of commensal flora (particularly Lactobacillus species) and, at the same time, overgrowth of Enterobacteriaceae, especially Escherichia coli, have recently been described during acute pancreatitis. Lactobacillus plantarum has been shown to be effective in reducing the egress of endotoxin and microbial translocation in several experimental models such as chemically induced hepatitis and ulcerative colitis. The aim of the study was to determine whether L. plantarum 299v (Lp 299v) is capable of effectively reducing microbial translocation in experimental pancreatitis. Acute pancreatitis was induced by isolation and ligation of the biliopancreatic duct in Lewis rats weighing 250-350 g. The animals were divided into 3 groups: group A, sham operation; group B, induction of pancreatitis and no further treatment, and group C, induction of pancreatitis + daily administration by gavage of a 5-ml/day suspension of Lp 299v at 0.5-1.0 x 10(9) bacteria/ml for 8 days, 4 days before and 4 days after induction of pancreatitis. All animals were sacrificed after 96 h. Histological studies and microbiological analyses were performed. At sacrifice, 40/55 animals showed signs of severe pancreatitis. Since acute pancreatitis was the specific disease investigated, only these animals were subjected to further study. In group B, we found pathogenic micro-organisms in the mesenteric lymph nodes in 14/20 animals and in the pancreatic tissue in 10/20. The bacterial flora consisted predominantly of E. coli, Enterococcus faecalis, Pseudomonas and Proteus species. In contrast, when the animals were kept under an 'umbrella' of Lp 299v, growth of E. faecalis or E. coli were detected only in 4/20 mesenteric lymph node cultures and in 3/20 pancreatic tissue cultures. Lp 299v is effective in reducing microbial translocation in experimental pancreatitis. Treatment with probiotic bacteria seems to be a promising alternative

  15. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  16. Anti-listerial Bactericidal Activity of Lactobacillus plantarum DM5 Isolated from Fermented Beverage Marcha.

    PubMed

    Das, Deeplina; Goyal, Arun

    2013-09-01

    The strain Lactobacillus plantarum DM5 was isolated from fermented beverage Marcha of Sikkim and explored for its antagonistic activity against food-borne pathogens. The cell-free supernatant of L. plantarum DM5 showed antibacterial activity of 6,400 AU/mL in MRS medium (pH 6.0) against the indicator strain Staphylococcus aureus. MRS medium supplemented with 15 g/L of maltose at 37 °C under static condition yielded highest antimicrobial activity (6,400 AU/mL) with 3 % increase in specific activity when compared to 20 g/L glucose. The antimicrobial compound was heat stable (60 min at 100 °C) and was active over a wide pH range. It showed bactericidal effect on S. aureus and Listeria monocytogenes by causing 96 and 98 % of cell lysis, respectively. The cell morphology of the treated S. aureus and L. monocytogenes was completely deformed as revealed by scanning electron microscopy, suggesting the high potential of L. plantarum DM5 as natural preservatives in food industry. The antimicrobial compound was purified by 80 % ammonium sulphate precipitation and showed antimicrobial activity of 12,800 AU/mL with 19-fold purification and a molecular mass of 15.2 kDa, indicating the proteinaceous nature of the compound.

  17. Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice

    PubMed Central

    Chen, Yi-Ming; Wei, Li; Chiu, Yen-Shuo; Hsu, Yi-Ju; Tsai, Tsung-Yu; Wang, Ming-Fu; Huang, Chi-Chang

    2016-01-01

    Lactobacillus plantarum (L. plantarum) is a well-known probiotic among the ingested-microorganism probiotics (i.e., ingested microorganisms associated with beneficial effects for the host). However, few studies have examined the effects of L. plantarum TWK10 (LP10) supplementation on exercise performance, physical fatigue, and gut microbial profile. Male Institute of Cancer Research (ICR) strain mice were divided into three groups (n = 8 per group) for oral administration of LP10 for six weeks at 0, 2.05 × 108, or 1.03 × 109 colony-forming units/kg/day, designated the vehicle, LP10-1X and LP10-5X groups, respectively. LP10 significantly decreased final body weight and increased relative muscle weight (%). LP10 supplementation dose-dependently increased grip strength (p < 0.0001) and endurance swimming time (p < 0.001) and decreased levels of serum lactate (p < 0.0001), ammonia (p < 0.0001), creatine kinase (p = 0.0118), and glucose (p = 0.0151) after acute exercise challenge. The number of type I fibers (slow muscle) in gastrocnemius muscle significantly increased with LP10 treatment. In addition, serum levels of albumin, blood urea nitrogen, creatinine, and triacylglycerol significantly decreased with LP10 treatment. Long-term supplementation with LP10 may increase muscle mass, enhance energy harvesting, and have health-promotion, performance-improvement, and anti-fatigue effects. PMID:27070637

  18. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents.

    PubMed

    Nicaise, Charles; Prozzi, Deborah; Viaene, Eric; Moreno, Christophe; Gustot, Thierry; Quertinmont, Eric; Demetter, Pieter; Suain, Valérie; Goffin, Philippe; Devière, Jacques; Hols, Pascal

    2008-10-01

    Hyperammonemia is a common complication of acute and chronic liver diseases. Often accompanied with side effects, therapeutic interventions such as antibiotics or lactulose are generally targeted to decrease the intestinal production and absorption of ammonia. In this study, we aimed to modulate hyperammonemia in three rodent models by administration of wild-type Lactobacillus plantarum, a genetically engineered ammonia hyperconsuming strain, and a strain deficient for the ammonia transporter. Wild-type and metabolically engineered L. plantarum strains were administered in ornithine transcarbamoylase-deficient Sparse-fur mice, a model of constitutive hyperammonemia, in a carbon tetrachloride rat model of chronic liver insufficiency and in a thioacetamide-induced acute liver failure mice model. Constitutive hyperammonemia in Sparse-fur mice and hyperammonemia in a rat model of chronic hepatic insufficiency were efficiently decreased by Lactobacillus administration. In a murine thioacetamide-induced model of acute liver failure, administration of probiotics significantly increased survival and decreased blood and fecal ammonia. The ammonia hyperconsuming strain exhibited a beneficial effect at a lower dose than its wild-type counterpart. Improved survival in the acute liver failure mice model was associated with lower blood ammonia levels but also with a decrease of astrocyte swelling in the brain cortex. Modulation of ammonia was abolished after administration of the strain deficient in the ammonium transporter. Intestinal pH was clearly lowered for all strains and no changes in gut flora were observed. Hyperammonemia in constitutive model or after acute or chronic induced liver failure can be controlled by the administration of L. plantarum with a significant effect on survival. The mechanism involved in this ammonia decrease implicates direct ammonia consumption in the gut.

  19. Michaelis kinetic analysis of extracellular cellulase and amylase excreted by Lactobacillus plantarum during cassava fermentation

    NASA Astrophysics Data System (ADS)

    Frediansyah, Andri; Kurniadi, Muhamad

    2017-01-01

    Our previous study reveal that single culture of Lactobacillus plantarum has ability to ferment cassava tuber in relation to produce modified cassava flour (mocaf). It was used to accelerate a fermentation process. L. plantarum grow well and produce some extracellular enzymes i.e. cellulase to change the structure and breakdown the cell wall of cassava tuber. Then, the starchy materials will be hydrolyzed by i.e. amylase into simple sugar and convert to organic acid. All of these process will give new characteristic of cassava i.e. lower fiber content, good flavor, taste, aroma and texture and the amount of cyanide acid is lower. Therefore this present study was to analyze Michaelis kinetics of extracellular carboxymethyl cellulase and amylase production by L. plantarum during cassava fermentation. The maximum carboxymethyl cellulase and amylase activity of 8.60 U/ml and 14.07 U/ml, respectively, were obtained from filtrate which has been incubated at 37°C for 18 h under stationary conditions. The Vmax and Km of CMCase were 0.8506 × 10-3 U/ml and 0.9594 × 10-3 g/mL, respectively. For amylase were 9.291 × 10-3 U/ml and 0.9163 × 10-3 g/ml, respectively.

  20. Functional properties of Lactobacillus plantarum strains isolated from Maasai traditional fermented milk products in Kenya.

    PubMed

    Mathara, Julius Maina; Schillinger, Ulrich; Kutima, Phillip M; Mbugua, Samuel K; Guigas, Claudia; Franz, Charles; Holzapfel, Wilhelm H

    2008-04-01

    Lactobacillus plantarum was the major species among the lactic acid bacterial strains isolated from traditional fermented milk of the Maasai in Kenya. Selected strains were characterized for their functional properties using in vitro standard procedures. All strains expressed acid tolerance at pH 2.0 after 2-h exposure of values that ranged from 1% to 100%, while bile tolerance of acid-stressed cells at 0.3% oxgal varied from 30% to 80%. In vitro adhesion to the mucus-secreting cell line HT 29 MTX and binding capacity to extracellular protein matrices was demonstrated for several strains. The four strains tested in a simulated stomach duodenum passage survived with recovery rates ranging from 17% to 100%. Strains were intrinsically resistant to several antibiotics tested. From these in vitro studies, a number of Lb. plantarum strains isolated from the Maasai traditional fermented milk showed probiotic potential. The strains are good candidates for multifunctional starter culture development.

  1. Impairment of Swimming Motility by Antidiarrheic Lactobacillus acidophilus Strain LB Retards Internalization of Salmonella enterica Serovar Typhimurium within Human Enterocyte-Like Cells▿

    PubMed Central

    Liévin-Le Moal, Vanessa; Amsellem, Raymonde; Servin, Alain L.

    2011-01-01

    We report that both culture and the cell-free culture supernatant (CFCS) of Lactobacillus acidophilus strain LB (Lactéol Boucard) have the ability (i) to delay the appearance of Salmonella enterica serovar Typhimurium strain SL1344-induced mobilization of F-actin and, subsequently, (ii) to retard cell entry by S. Typhimurium SL1344. Time-lapse imaging and Western immunoblotting showed that S. Typhimurium SL1344 swimming motility, as represented by cell tracks of various types, was rapidly but temporarily blocked without affecting the expression of FliC flagellar propeller protein. We show that the product(s) secreted by L. acidophilus LB that supports the inhibitory activity is heat stable and of low molecular weight. The product(s) caused rapid depolarization of the S. Typhimurium SL1344 cytoplasmic membrane without affecting bacterial viability. We identified inhibition of swimming motility as a newly discovered mechanism by which the secreted product(s) of L. acidophilus strain LB retards the internalization of the diarrhea-associated pathogen S. enterica serovar Typhimurium within cultured human enterocyte-like cells. PMID:21825295

  2. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses.

    PubMed

    Zago, Miriam; Fornasari, Maria Emanuela; Carminati, Domenico; Burns, Patricia; Suàrez, Viviana; Vinderola, Gabriel; Reinheimer, Jorge; Giraffa, Giorgio

    2011-08-01

    Ninety-eight Lactobacillus plantarum strains isolated from Italian and Argentinean cheeses were evaluated for probiotic potential. After a preliminary subtractive screening based on the presence of msa and bsh genes, 27 strains were characterized. In general, the selected strains showed high resistance to lysozyme, good adaptation to simulated gastric juice, and a moderate to low bile tolerance. The capacity to agglutinate yeast cells in a mannose-specific manner, as well as the cell surface hydrophobicity was found to be variable among strains. Very high β-galactosidase activity was shown by a considerable number of the tested strains, whereas variable prebiotic utilization ability was observed. Only tetracycline resistance was observed in two highly resistant strains which harbored the tetM gene, whereas none of the strains showed β-glucuronidase activity or was capable of inhibiting pathogens. Three strains (Lp790, Lp813, and Lp998) were tested by in vivo trials. A considerable heterogeneity was found among a number of L. plantarum strains screened in this study, leading to the design of multiple cultures to cooperatively link strains showing the widest range of useful traits. Among the selected strains, Lp790, Lp813, and Lp998 showed the best probiotic potential and would be promising candidates for inclusion as starter cultures for the manufacture of probiotic fermented foods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress

    PubMed Central

    Wang, Wenwen; He, Jiayi; Wu, Zhen; Guo, Yuxing; Zeng, Xiaoqun; Lian, Liwei

    2018-01-01

    The adhesion ability of Lactobacillus plantarum affects retention time in the human gastro-intestinal tract, as well as influencing the interaction with their host. In this study, the relationship between the adhesion activity of, and metabolic changes in, L. plantarum ATCC 14917 under initial acid and alkali stress was evaluated by analyzing auto-aggregation, protein adhesion and cell adhesion in vitro. Based on scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis, the morphology of the bacteria became thickset and the thickness of their cell walls decreased under initial alkali stress. The fold changes of auto-aggregation, adhere to mucin and HT-29 cell lines of L. plantarum ATCC 14917 in the acid group were increased by 1.141, 1.125 and 1.156, respectively. But decreased significantly in the alkali group (fold changes with 0.842, 0.728 and 0.667). Adhesion—related protein increased in the acid group but declined in the alkali group at the mRNA expression level according to real time polymerase chain reaction (RT-PCR) analysis. The changes in the metabolite profiles of L. plantarum ATCC 14917 were characterized using Ultra-Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight-mass spectrometry (UPLS-ESI-Q-TOF-MS). In the alkali group, the content of a lot of substances involved in the energy and amino acid metabolism decreased, but the content of some substances involved in the energy metabolism was slightly increased in the acid group. These findings demonstrate that energy metabolism is positively correlated with the adhesion ability of L. plantarum ATCC 14917. The amino-acids metabolism, especially the amino acids related to pH-homeostasis mechanisms (lysine, aspartic acid, arginine, proline and glutamic acid), showed an obvious effect on the adhesion ability of L. plantarum ATCC 14917. This investigation provides a better understanding of L. plantarum’s adhesion mechanisms under initial p

  4. Effects of protectant and rehydration conditions on the survival rate and malolactic fermentation efficiency of freeze-dried Lactobacillus plantarum JH287.

    PubMed

    Lee, Sae-Byuk; Kim, Dong-Hwan; Park, Heui-Dong

    2016-09-01

    In this study, Lactobacillus plantarum JH287 was used as a malolactic fermentation starter in Campbell Early wine production. L. plantarum JH287 was first lyophilized, and the malolactic fermentation potential of freeze-dried L. plantarum JH287 was investigated. Different protective media and rehydration conditions were tested to improve the survival rate of freeze-dried L. plantarum JH287. Optimal protective medium contained 10 % sorbitol and 10 % skim milk. The optimal rehydration condition was a 1-h rehydration time conducted in the same protective media, and the combination of these two methods produced a survival rate of 86.37 %. In addition, a 77.71 % survival rate was achieved using freeze-dried samples that were stored at 4 °C for 2 months. Freeze-dried L. plantarum JH287 and Saccharomyces cerevisiae Fermivin were used to inoculate the Campbell Early grape must to decrease its malic acid content. Using this mixed-fermentation method, wine showed a decrease in malic acid content after 9 days of fermentation. GC-MS analysis detected 15 volatile ester compounds in the wine. A sensory evaluation showed that the taste and aroma of mix-fermented wine were better than those of the control that had not been inoculated with L. plantarum JH287.

  5. In vitro fermentation of prebiotics by Lactobacillus plantarum CFR 2194: selectivity, viability and effect of metabolites on β-glucuronidase activity.

    PubMed

    Arenahalli Ningegowda, Madhu; Siddalingaiya Gurudutt, Prapulla

    2012-03-01

    Prebiotic Fructooligosaccharides (FOS) escape metabolism in upper GI tract undergo microbial metabolism in colon and thereby influence the nature, type and number of intestinal microbiota to improve host's health. The present study focuses on the ability of Lactobacillus plantarum CFR 2194 to utilize FOS as a selective carbon and energy source. The effect of fermentative metabolites of L. plantarum on the β-glucuronidase was also investigated. A total of 16 strains of lactobacilli were assessed for their ability to ferment oligosaccharides. L. plantarum CFR 2194, an isolate from kanjika was found to utilize FOS effectively. Lactic acid was the main metabolic end product, followed by acetic acid, butyric acid, formic acid and ethanol. The inhibitory effects of these metabolites have been confirmed through the reduction of β-glucuronidase activity. L. plantarum when co-cultured with β-glucuronidase producing E. coli, in a basal media containing FOS as an energy source, could inhibit the growth of the pathogen during the course of fermentation. The results showed that L. plantarum CFR 2194 has the ability to utilize the prebiotic FOS as a selective carbon and energy source. The organism could inhibit the growth of the pathogen which produces β-glucuronidase and lowered its activity by the metabolites of FOS which indicates the probable use of L. plantarum through dietary intervention in combating colon carcinogenesis.

  6. One-pot conjugated linoleic acid production from castor oil by Rhizopus oryzae lipase and resting cells of Lactobacillus plantarum.

    PubMed

    Khaskheli, Abid Ali; Talpur, Farah Naz; Cebeci Aydin, Aysun; Jawaid, Sana; Surhio, Muhammad Ali; Afridi, Hassan Imran

    2017-10-01

    Conjugated linoleic acid (CLA) has attracted as novel type of fatty acids having unusual health-promoting properties such as anticarcinogenic and antiobesitic effects. The present work employed castor oil as substrate for one-pot production of CLA using washed cells of Lactobacillus plantarum (L. plantarum) and lipases as catalysts. Among the screened lipases, the lipase Rhizopus oryzae (ROL) greatly assisted resting cells to produce CLA. Mass spectral analysis of the product showed that two major isomers of CLA were produced in the reaction mixture i.e. cis-9, trans-11 56.55% and trans-10, cis-12 43.45%. Optimum factors for CLA synthesis were found as substrate concentration (8 mg/mL), pH (6.5), washed cell concentration (12% w/v), and incubation time of 20 h. Hence, the combination of ROL with L. plantarum offers one pot production of CLA selectively using castor oil as a cost-effective substrate.

  7. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue.

    PubMed

    Coghetto, Chaline Caren; Vasconcelos, Carolina Bettker; Brinques, Graziela Brusch; Ayub, Marco Antônio Záchia

    In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87gL -1 , whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59gL -1 , corresponding to a productivity of 1.46gL -1 h -1 . This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity.

    PubMed

    Dallagnol, Andrea Micaela; Pescuma, Micaela; De Valdez, Graciela Font; Rollán, Graciela

    2013-04-01

    Quinoa fermentation by lactic acid bacteria (LAB) is an interesting alternative to produce new bakery products with high nutritional value; furthermore, they are suitable for celiac patients because this pseudo-cereal contains no gluten. Growth and lactic acid production during slurry fermentations by Lactobacillus plantarum CRL 778 were greater in quinoa (9.8 log cfu/mL, 23.1 g/L) than in wheat (8.9 log cfu/mL, 13.9 g/L). Lactic fermentation indirectly stimulated flour protein hydrolysis by endogenous proteases of both slurries. However, quinoa protein hydrolysis was faster, reaching 40-100% at 8 h of incubation, while wheat protein hydrolysis was only 0-20%. In addition, higher amounts of peptides (24) and free amino acids (5 g/L) were determined in quinoa compared to wheat. Consequently, greater concentrations (approx. 2.6-fold) of the antifungal compounds (phenyllactic and hydroxyphenyllactic acids) were synthesized from Phe and Tyr in quinoa by L. plantarum CRL 778, an antifungal strain. These promising results suggest that this LAB strain could be used in the formulation of quinoa sourdough to obtain baked goods with improved nutritional quality and shelf life, suitable for celiac patients.

  9. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge.

    PubMed

    Lee, Sang In; Kim, Hyun Soo; Koo, Jin Mo; Kim, In Ho

    2016-02-28

    A total of forty weaned pigs ((Landrace × Yorkshire) × Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1% L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1% L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC.

  10. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    PubMed

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are

  11. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation

    PubMed Central

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de las Rivas, Blanca

    2017-01-01

    ABSTRACT Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase (lpdC, or lp_2945) is only 6.5 kb distant from the gene encoding inducible tannase (L. plantarum tanB [tanBLp], or lp_2956). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B (lpdB, or lp_0271) and D (lpdD, or lp_0272) of the gallate decarboxylase are cotranscribed, whereas subunit C (lpdC, or lp_2945) is cotranscribed with a gene encoding a transport protein (gacP, or lp_2943). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator (lp_2942) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located

  12. Survival of spray-dried and free-cells of potential probiotic Lactobacillus plantarum 564 in soft goat cheese.

    PubMed

    Radulović, Zorica; Miočinović, Jelena; Mirković, Nemanja; Mirković, Milica; Paunović, Dušanka; Ivanović, Marina; Seratlić, Sanja

    2017-11-01

    A high viability of probiotics in food product, with a living cells threshold of 10 7 /cfu/g (colony-forming units/g) is a challenge to achieve in food production. Spray drying is an efficient and economic industrial method for probiotic bacterial preservation and its application in food products. In this study, the survival of free and spray-dried cells of potential probiotic strain Lactobacillus plantarum 564 after production and during 8 weeks of storage of soft acid coagulated goat cheese was investigated, as well as compositional and sensory quality of cheese. Total bacterial count of spray-dried Lb. plantarum 564 cells were maintained at the high level of 8.82 log/cfu/g in cheese after 8 weeks of storage, while free-cell number decreased to 6.9 log/cfu/g. However, the chemical composition, pH values and sensory evaluation between control cheese (C1 sample made with commercial starter culture) and treated cheese samples (C2 and C3, made with the same starter, with the addition of free and spray-dried Lb. plantarum 564 cells, respectively) did not significantly differ. High viability of potential probiotic bacteria and acceptable sensory properties indicate that spray-dried Lb. plantarum 564 strain could be successfully used in the production of soft acid coagulated goat cheeses. © 2017 Japanese Society of Animal Science.

  13. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Santamaría, Laura; Mancheño, José M.; de las Rivas, Blanca; Muñoz, Rosario

    2016-01-01

    Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions. PMID:27486450

  14. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  15. Oral Immunization with Recombinant Lactobacillus acidophilus Expressing the Adhesin Hp0410 of Helicobacter pylori Induces Mucosal and Systemic Immune Responses

    PubMed Central

    Hongying, Fan; Xianbo, Wu; Fang, Yu; Yang, Bai

    2014-01-01

    Helicobacter pylori infection is relatively common worldwide and is closely related to gastric mucosa-associated lymphoid tissue (MALT) lymphoma, chronic gastritis, and stomach ulcers. Therefore, a safe and effective method for preventing H. pylori infection is urgently needed. Given that developing an effective vaccine against H. pylori is one of the best alternatives, H. pylori adhesin Hp0410 was expressed in the food-grade bacterium Lactobacillus acidophilus. The recombinant live bacterial vaccine was then used to orally vaccinate mice, and the immunoprotective effects of Hp0410-producing strains were investigated. H. pylori colonization in the stomach of mice immunized with the recombinant L. acidophilus was significantly reduced, in comparison with that in control groups. Furthermore, mucosal secretory IgA antibodies were elicited in the mucosal tissue of mice immunized with the recombinant bacteria, and specific anti-Hp0410 IgG responses were also detected in mouse serum. There was a significant increase in the level of protection against gastric Helicobacter infection following a challenge with H. pylori Sydney strain 1 (SS1). Our results collectively indicate that adhesin Hp0410 is a promising candidate vaccine antigen, and recombinant L. acidophilus expressing Hp0410 is likely to constitute an effective, low-cost, live bacterial vaccine against H. pylori. PMID:24285819

  16. Lactobacillus plantarum isolated from kefir protects vero cells from cytotoxicity by type-II shiga toxin from Escherichia coli O157:H7.

    PubMed

    Kakisu, Emiliano; Abraham, Analía G; Farinati, Carla Tironi; Ibarra, Cristina; De Antoni, Graciela L

    2013-02-01

    Kefir is a fermented-milk beverage originating and widely consumed in the Caucasus as well as in Eastern Europe and is a source of bacteria with potential probiotic properties. Enterohaemorrhagic Escherichia coli producing Shiga toxin is commonly associated with food-transmitted diseases; the most prevalent serotype causing epidemics is Esch. coli O157:H7. The aim of this study was to evaluate the antagonism of Lactobacillus plantarum isolated from kefir against the action on Vero cells of supernatants of the Esch. coli O157:H7 strain 69160 expressing the type-II Shiga toxin (Stx2) and to study the role of the Lactobacillus cell wall in that inhibition. Spent culture supernatants of Esch. coli O157:H7 strain 69160 led to cytotoxic effects on cultured eukaryotic cells as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide-cleavage assay or by lactate-dehyrogenase release. Lb. plantarum CIDCA 83114 reduced the cytotoxic activity of Stx present in strain-69160 supernatants, and this protection was markedly higher than those of Lactobacillus kefir CIDCA 83113 and 8348 and Lb. delbrueckii subsp. bulgaricus CIDCA 333. This antagonism of cytotoxicity was mimicked by Lb. plantarum cell walls but was reduced after heating or protease treatments, thus indicating a protein or peptide as being involved in the protection mechanism. The cell surface of the lactobacilli bound the subunit B of Stx thereby decreasing the cytotoxicity. These interactions could constitute the first step in preventing the damage induced by Esch. coli O157:H7 supernatants, thus representing a valuable means of potentially mitigating the noxious effects of this food pathogen.

  17. Effects of dietary Lactobacillus plantarum and AHL lactonase on the control of Aeromonas hydrophila infection in tilapia.

    PubMed

    Liu, Wenshu; Ran, Chao; Liu, Zhi; Gao, Qian; Xu, Shude; Ringø, Einar; Myklebust, Reidar; Gu, Zemao; Zhou, Zhigang

    2016-08-01

    This study addressed the effects of dietary Lactobacillus plantarum or/and N-acylated homoserine lactonase (AHL lactonase) on controlling Aeromonas  hydrophila infection in juvenile hybrid tilapia (Oreochromis niloticus♀ × O. aureus ♂). Fish were fed Lb. plantarum subsp. plantarum strain JCM1149 (10(8)  CFU/g feed) or/and AHL lactonase AIO6 (4 U/g) and were exposed to a chronic challenge of A. hydrophila NJ-1 (10(5)  cells/mL) for 14 days. Intestinal (foregut) alkaline phosphatase (IAP) activities were evaluated 1 day post challenge to reflect the resistance of fish against A. hydrophila infection. Parallel groups of fish with the same dietary assignments while unchallenged were also included to investigate the effect of dietary Lb. plantarum or/and AIO6 supplementation on gut health of tilapia. The results showed that IAP activity was significantly lower in fish fed with diets supplemented with Lb. plantarum JCM1149 or the combination of Lb. plantarum JCM1149 and AIO6, indicating enhanced resistance against A. hydrophila. Light microscopy and transmission electron microscopy images of foregut revealed damage caused by A. hydrophila NJ-1, but dietary Lb. plantarumJCM1149 or/and AIO6 significantly alleviated the damages. Compared to the fish immersed in A. hydrophila NJ-1, dietary Lb. plantarum JCM1149 or AIO6 could maintain the microvilli length in the foregut of tilapia. However, among the unchallenged groups of fish, the microvilli length in the foregut of tilapia fed AIO6 (singly or combination) and the microvilli density of tilapia fed AIO6 (singly) were significantly lower than those of the control, though the microvilli density in the combination treatment was significantly improved. Additionally, the dietary Lb. plantarum JCM1149 could down-regulate the expression of stress-related gene in the gut after the acute phase. In conclusion, the dietary Lb. plantarum JCM1149 is recommended to control the A. hydrophila infection in

  18. Oral Administration of Lactobacillus plantarum Strain AYA Enhances IgA Secretion and Provides Survival Protection against Influenza Virus Infection in Mice

    PubMed Central

    Kikuchi, Yosuke; Kunitoh-Asari, Ayami; Hayakawa, Katsuyuki; Imai, Shinjiro; Kasuya, Kenji; Abe, Kimio; Adachi, Yu; Fukudome, Shin-ichi; Takahashi, Yoshimasa; Hachimura, Satoshi

    2014-01-01

    The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer’s patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer’s patch dendritic cells, with this production promoting IgA+ B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection. PMID:24466081

  19. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice.

    PubMed

    Kikuchi, Yosuke; Kunitoh-Asari, Ayami; Hayakawa, Katsuyuki; Imai, Shinjiro; Kasuya, Kenji; Abe, Kimio; Adachi, Yu; Fukudome, Shin-Ichi; Takahashi, Yoshimasa; Hachimura, Satoshi

    2014-01-01

    The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer's patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer's patch dendritic cells, with this production promoting IgA(+) B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection.

  20. Selection of mutants tolerant of oxidative stress from respiratory cultures of Lactobacillus plantarum C17.

    PubMed

    Zotta, T; Ianniello, R G; Guidone, A; Parente, E; Ricciardi, A

    2014-03-01

    Lactobacillus plantarum is a lactic acid bacterium involved in the production of many fermented foods. Recently, several studies have demonstrated that aerobic or respiratory metabolism in this species leads to improved technological and stress response properties. We investigated respiratory growth, metabolite production and stress resistance of Lact. plantarum C17 during batch, fed-batch and chemostat cultivations under respiratory conditions. Sixty mutants were selected for their ability to tolerate oxidative stress using H2 O2 and menadione as selective agents and further screened for their capability to growth under anaerobic, respiratory and oxidative stress conditions. Dilution rate clearly affected the physiological state of cells and, generally, slow-growing cultures had improved survival to stresses, catalase production and oxygen uptake. Most mutants were more competitive in terms of biomass production and ROS degradation compared with wild-type strain (wt) C17 and two of these (C17-m19 and C17-m58) were selected for further experiments. This work confirms that, in Lact. plantarum, respiration and low growth rates confer physiological and metabolic advantages compared with anaerobic cultivation. Our strategy of natural selection successfully provides a rapid and inexpensive screening for a large number of strains and represents a food-grade approach of practical relevance in the production of starter and probiotic cultures. © 2013 The Society for Applied Microbiology.

  1. Characterization and biocompatibility of glucan: a safe food additive from probiotic Lactobacillus plantarum DM5.

    PubMed

    Das, Deeplina; Goyal, Arun

    2014-03-15

    Exopolysaccharide produced by lactic acid bacteria are the subject of an increasing number of studies for their potential applications in the food industry as stabilizing, bio-thickening and immunostimulating agents. In this regard, the authors isolated an exopolysaccharide producing probiotic lactic acid bacterium from fermented beverage Marcha of north eastern Himalayas. The isolate Lactobacillus plantarum DM5 showed extracellular glucansucrase activity of 0.48 U mg⁻¹ by synthesizing natural exopolysaccharide glucan (1.87 mg mL⁻¹) from sucrose. Zymogram analysis of purified enzyme confirms the presence of glucosyltransferase of approximately 148 kDa with optimal activity of 18.7 U mg⁻¹ at 30 °C and pH 5.4. The exopolysaccharide was purified by gel permeation chromatography and had an average molecular weight of 1.11 × 10⁶ Da. Acid hydrolysis and structural characterization of exopolysaccharide revealed that it was composed of d-glucose residues, containing 86.5% of α-(1→6) and 13.5% of α-(1→3) linkages. Rheological study exhibited a shear thinning effect of glucan appropriate for food additives. A cytotoxicity test of glucan on human embryonic kidney 293 (HEK 293) and human cervical cancer (HeLa) cell lines revealed its nontoxic biocompatible nature. This is the first report on the structure and biocompatibility of homopolysaccharide α-D-glucan (dextran) from probiotic Lactobacillus plantarum strain and its unique physical and rheological properties that facilitate its application in the food industry as viscosifying and gelling agent. © 2013 Society of Chemical Industry.

  2. Microbiological and chemical profiles of elephant grass inoculated with and without Lactobacillus plantarum and Pediococcus acidilactici.

    PubMed

    Shah, Assar Ali; Xianjun, Yuan; Zhihao, Dong; Junfeng, Li; Sao, Tao

    2018-03-01

    The study was conducted to evaluate the microbiological and chemical profiles of elephant grass inoculated with and without different wild strains of lactic acid bacteria. Silage was prepared of four treatments and one control with three replicates as control (EKC, adding 2 ml/kg sterilizing water), Lactobacillus plantarum (USA commercial bacteria) (EKP), Lactobacillus plantarum (EKA), Pediococcus acidilactici (EKB), and Pediococcus acidilactici (SKD) isolated from King grass. Silage were prepared using polyethylene terephthalate bottles, and incubated at room temperature for different ensiling days. The pH and acetic acid (AA) were significantly (P < 0.05) reduced and lactic acid (LA), butyric acid (BA), and ethanol were significantly increased (P < 0.05) at 3, 5, 7, and 14 days in treatment groups as compared to control. Water-soluble carbohydrate (WSC) and NH 3 -N concentration was not affected at days 3, 5, and 7, but significantly (P < 0.05) reduced at 14 days in treatment groups as compared to control. The LA, BA, and ethanol were significantly (P < 0.05) increased and AA, WSC NH 3 -N, and yeast were significantly (P < 0.05) decreased at 30 days of ensiling in treatment groups as compared to control. It is recommended that the inoculation of LAB could improve the fermentation quality of elephant grass silage and further effort is needed to evaluate these effects on silage produced on farm scale and on animal production performance.

  3. Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS.

    PubMed

    Cai, Ruopeng; Jiang, Yanlong; Yang, Wei; Yang, Wentao; Shi, Shaohua; Shi, Chunwei; Hu, Jingtao; Gu, Wei; Ye, Liping; Zhou, Fangyu; Gong, Qinglong; Han, Wenyu; Yang, Guilian; Wang, Chunfeng

    2016-02-01

    Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surfacedisplayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA.

  4. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    PubMed Central

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  5. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    PubMed

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  6. Lactobacillus plantarum 299v surface-bound GAPDH: a new insight into enzyme cell walls location.

    PubMed

    Saad, N; Urdaci, M; Vignoles, C; Chaignepain, S; Tallon, R; Schmitter, J M; Bressollier, P

    2009-12-01

    The aim of this study was to provide new insight into the mechanism whereby the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) locates to cell walls of Lactobacillus plantarum 299v. After purification, cytosolic and cell wall GAPDH (cw-GAPDH) forms were characterized and shown to be identical homotetrameric active enzymes. GAPDH concentration on cell walls was growth-time dependent. Free GAPDH was not observed on the culture supernatant at any time during growth, and provoked cell lysis was not concomitant with any reassociation of GAPDH onto the cell surface. Hence, with the possibility of cw-GAPDH resulting from autolysis being unlikely, entrapment of intracellular GAPDH on the cell wall after a passive efflux through altered plasma membrane was investigated. Flow cytometry was used to assess L. plantarum 299v membrane permeabilization after labeling with propidium iodide (PI). By combining PI uptake and cw-GAPDH activity measurements, we demonstrate here that the increase in cw-GAPDH concentration from the early exponential phase to the late stationary phase is closely related to an increase in plasma membrane permeability during growth. Moreover, we observed that increases in both plasma membrane permeability and cw-GAPDH activity were delayed when glucose was added during L. plantarum 299v growth. Using a double labeling of L. plantarum 299v cells with anti-GAPDH antibodies and propidium iodide, we established unambiguously that cells with impaired membrane manifest five times more cw-GAPDH than unaltered cells. Our results show that plasma membrane permeability appears to be closely related to the efflux of GAPDH on the bacterial cell surface, offering new insight into the understanding of the cell wall location of this enzyme.

  7. Effect of Galacto-Oligosaccharides: Maltodextrin Matrices on the Recovery of Lactobacillus plantarum after Spray-Drying

    PubMed Central

    Sosa, Natalia; Gerbino, Esteban; Golowczyc, Marina A.; Schebor, Carolina; Gómez-Zavaglia, Andrea; Tymczyszyn, E. Elizabeth

    2016-01-01

    In this work maltodextrins were added to commercial galacto-oligosaccharides (GOS) in a 1:1 ratio and their thermophysical characteristics were analyzed. GOS:MD solutions were then used as matrices during spray-drying of Lactobacillus plantarum CIDCA 83114. The obtained powders were equilibrated at different relative humidities (RH) and stored at 5 and 20°C for 12 weeks, or at 30°C for 6 weeks. The Tgs of GOS:MD matrices were about 20–30°C higher than those of GOS at RH within 11 and 52%. A linear relation between the spin-spin relaxation time (T2) and T-Tg parameter was observed for GOS:MD matrices equilibrated at 11, 22, 33, and 44% RH at 5, 20, and 30°C. Spray-drying of L. plantarum CIDCA 83114 in GOS:MD matrices allowed the recovery of 93% microorganisms. In contrast, only 64% microorganisms were recovered when no GOS were included in the dehydration medium. Survival of L. plantarum CIDCA 83114 during storage showed the best performance for bacteria stored at 5°C. In a further step, the slopes of the linear regressions provided information about the rate of microbial inactivation for each storage condition (k values). This information can be useful to calculate the shelf-life of spray-dried starters stored at different temperatures and RH. Using GOS:MD matrices as a dehydration medium enhanced the recovery of L. plantarum CIDCA 83114 after spray-drying. This strategy allowed for the first time the spray-drying stabilization of a potentially probiotic strain in the presence of GOS. PMID:27199918

  8. Chlorogenic Acid Combined with Lactobacillus plantarum 2142 Reduced LPS-Induced Intestinal Inflammation and Oxidative Stress in IPEC-J2 Cells.

    PubMed

    Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter; Farkas, Orsolya

    2016-01-01

    This study was carried out to investigate protective effect of chlorogenic acid against lipopolysaccharide-induced inflammation and oxidative stress in intestinal epithelial cells. As a marker of inflammatory response, IL-6, IL-8, TNF-α mRNA and protein levels, furthermore, COX-2 mRNA level were followed up. Intracellular redox status and extracellular H2O2 level were also monitored by two fluorescent assays (DCFH-DA, Amplex Red). Moreover, the effect of gut microbiota metabolites in the above mentioned processes was taken into account in our model using Lactobacillus plantarum 2142 bacterial strain. Our data revealed that chlorogenic acid had significant lowering effect on the inflammatory response. Treatment with chlorogenic acid (25-50 μM) significantly decreased gene expression and concentration of proinflammatory cytokines IL-6 and IL-8 compared to LPS-treated cells. COX-2 and TNF-α mRNA levels were also reduced. Furthermore, chlorogenic acid reduced the level of reactive oxygen species in IPEC-J2 cells. Simultaneous application of chlorogenic acid and Lactobacillus plantarum 2142 supernatant resulted protective effect against LPS-induced inflammation and oxidative stress as well.

  9. Chlorogenic Acid Combined with Lactobacillus plantarum 2142 Reduced LPS-Induced Intestinal Inflammation and Oxidative Stress in IPEC-J2 Cells

    PubMed Central

    Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2016-01-01

    This study was carried out to investigate protective effect of chlorogenic acid against lipopolysaccharide-induced inflammation and oxidative stress in intestinal epithelial cells. As a marker of inflammatory response, IL-6, IL-8, TNF-α mRNA and protein levels, furthermore, COX-2 mRNA level were followed up. Intracellular redox status and extracellular H2O2 level were also monitored by two fluorescent assays (DCFH-DA, Amplex Red). Moreover, the effect of gut microbiota metabolites in the above mentioned processes was taken into account in our model using Lactobacillus plantarum 2142 bacterial strain. Our data revealed that chlorogenic acid had significant lowering effect on the inflammatory response. Treatment with chlorogenic acid (25–50 μM) significantly decreased gene expression and concentration of proinflammatory cytokines IL-6 and IL-8 compared to LPS-treated cells. COX-2 and TNF-α mRNA levels were also reduced. Furthermore, chlorogenic acid reduced the level of reactive oxygen species in IPEC-J2 cells. Simultaneous application of chlorogenic acid and Lactobacillus plantarum 2142 supernatant resulted protective effect against LPS-induced inflammation and oxidative stress as well. PMID:27861533

  10. Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats.

    PubMed

    Buntin, Nirunya; de Vos, Willem M; Hongpattarakere, Tipparat

    2017-10-01

    The adhesion ability to mucin varied greatly among 18 Lactobacillus plantarum isolates depending on their isolation habitats. Such ability remained at high level even though they were sequentially exposed to the gastrointestinal (GI) stresses. The majority of L. plantarum isolated from shrimp intestine and about half of food isolates exhibited adhesion ability (51.06-55.04%) about the same as the well-known adhesive L. plantarum 299v. Interestingly, five infant isolates of CIF17A2, CIF17A4, CIF17A5, CIF17AN2, and CIF17AN8 exhibited extremely high adhesion ranging from 62.69 to 72.06%. Such highly adhesive property correlating to distinctively high cell surface hydrophobicity was significantly weaken after pretreatment with LiCl and guanidine-HCl confirming the entailment of protein moiety. Regarding the draft genome information, all molecular structures of major cell wall-anchored proteins involved in the adhesion based on L. plantarum WCSF1, including lp_0964, lp_1643, lp_3114, lp_2486, lp_3127, and lp_3059 orthologues were detected in all isolates. Exceptionally, the gene-trait matching between yeast agglutination assay and the relevant mannose-specific adhesin (lp_1229) encoding gene confirmed the Msa absence in five infant isolates expressed distinctively high adhesion. Interestingly, the predicted flagellin encoding genes (fliC) firstly revealed in lp_1643, lp_2486, and lp_3114 orthologues may potentially contribute to such highly adhesive property of these isolates.

  11. [Sorption properties of various polysaccharide matrixes to Lactobacillus plantarum 8RA-3 bacteria].

    PubMed

    Bondarenko, V M; Larionov, I V; Rybal'chenko, O V; Potokin, I L; Ryzhankova, A V

    2011-01-01

    Study of sorption properties of various spherical polysaccharide matrixes designated as Spherocell to probiotic Lactobacillus plantarum 8RA-3 bacteria. Industrial strain of L. plantarum 8PA-3 was used. The process of immobilization of lactobacilli on 3 variants of spherical sorbents was studied. The first sorbent - neutral, composed of nonpolar cellulose matrix with ("0") charge, the second--DEAE obtained by modification of cellulose by diethylaminoethyl groups with positive ("+") charge and the third--CM (carboxymethyl) with negative ("-") charge. Cellulose matrixes were designated by us by the term Spherocell. Immobilization of bacterial cells on Spherocell was performed by addition of suspension containing 1.0 x 10(9) CFU/ml. The effect of bacterial immobilization was evaluated by CFU/ ml titration and by electron microscopy. The dependence on matrix charge of adsorption immobilization on sorbent granules of lactobacilli cells was shown. At certain equal parameters (granule size, surface characteristics, charge value) the positively charged matrix sorbed 3-10 times more cells than neutral and 20-25 times more than negatively charged matrix. Each 100-180 microm Spherocell DEAE particle could sorb more than 1000 viable bacterial cells. Positively charged polysaccharide matrix Spherocell DEAE obtained by modification of cellulose by diethylaminoethyl groups is promising for creation of immobilized probiotic preparations.

  12. An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling.

    PubMed

    Buntin, Nirunya; Hongpattarakere, Tipparat; Ritari, Jarmo; Douillard, François P; Paulin, Lars; Boeren, Sjef; Shetty, Sudarshan A; de Vos, Willem M

    2017-01-15

    The draft genomes of Lactobacillus plantarum strains isolated from Asian fermented foods, infant feces, and shrimp intestines were sequenced and compared to those of well-studied strains. Among 28 strains of L. plantarum, variations in the genomic features involved in ecological adaptation were elucidated. The genome sizes ranged from approximately 3.1 to 3.5 Mb, of which about 2,932 to 3,345 protein-coding sequences (CDS) were predicted. The food-derived isolates contained a higher number of carbohydrate metabolism-associated genes than those from infant feces. This observation correlated to their phenotypic carbohydrate metabolic profile, indicating their ability to metabolize the largest range of sugars. Surprisingly, two strains (P14 and P76) isolated from fermented fish utilized inulin. β-Fructosidase, the inulin-degrading enzyme, was detected in the supernatants and cell wall extracts of both strains. No activity was observed in the cytoplasmic fraction, indicating that this key enzyme was either membrane-bound or extracellularly secreted. From genomic mining analysis, a predicted inulin operon of fosRABCDXE, which encodes β-fructosidase and many fructose transporting proteins, was found within the genomes of strains P14 and P76. Moreover, pts1BCA genes, encoding sucrose-specific IIBCA components involved in sucrose transport, were also identified. The proteomic analysis revealed the mechanism and functional characteristic of the fosRABCDXE operon involved in the inulin utilization of L. plantarum The expression levels of the fos operon and pst genes were upregulated at mid-log phase. FosE and the LPXTG-motif cell wall anchored β-fructosidase were induced to a high abundance when inulin was present as a carbon source. Inulin is a long-chain carbohydrate that may act as a prebiotic, which provides many health benefits to the host by selectively stimulating the growth and activity of beneficial bacteria in the colon. While certain lactobacilli can catabolize

  13. An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling

    PubMed Central

    Buntin, Nirunya; Hongpattarakere, Tipparat; Ritari, Jarmo; Douillard, François P.; Paulin, Lars; Boeren, Sjef; Shetty, Sudarshan A.

    2016-01-01

    ABSTRACT The draft genomes of Lactobacillus plantarum strains isolated from Asian fermented foods, infant feces, and shrimp intestines were sequenced and compared to those of well-studied strains. Among 28 strains of L. plantarum, variations in the genomic features involved in ecological adaptation were elucidated. The genome sizes ranged from approximately 3.1 to 3.5 Mb, of which about 2,932 to 3,345 protein-coding sequences (CDS) were predicted. The food-derived isolates contained a higher number of carbohydrate metabolism-associated genes than those from infant feces. This observation correlated to their phenotypic carbohydrate metabolic profile, indicating their ability to metabolize the largest range of sugars. Surprisingly, two strains (P14 and P76) isolated from fermented fish utilized inulin. β-Fructosidase, the inulin-degrading enzyme, was detected in the supernatants and cell wall extracts of both strains. No activity was observed in the cytoplasmic fraction, indicating that this key enzyme was either membrane-bound or extracellularly secreted. From genomic mining analysis, a predicted inulin operon of fosRABCDXE, which encodes β-fructosidase and many fructose transporting proteins, was found within the genomes of strains P14 and P76. Moreover, pts1BCA genes, encoding sucrose-specific IIBCA components involved in sucrose transport, were also identified. The proteomic analysis revealed the mechanism and functional characteristic of the fosRABCDXE operon involved in the inulin utilization of L. plantarum. The expression levels of the fos operon and pst genes were upregulated at mid-log phase. FosE and the LPXTG-motif cell wall anchored β-fructosidase were induced to a high abundance when inulin was present as a carbon source. IMPORTANCE Inulin is a long-chain carbohydrate that may act as a prebiotic, which provides many health benefits to the host by selectively stimulating the growth and activity of beneficial bacteria in the colon. While certain

  14. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri).

    PubMed

    Hoseinifar, Seyed Hossein; Roosta, Zahra; Hajimoradloo, Abdolmajid; Vakili, Farzaneh

    2015-02-01

    The present study evaluates the effects of different levels of dietary Lactobacillus acidophilus as feed supplement on intestinal microbiota, skin mucus immune parameters and salinity stress resistance as well as growth performance of black swordtail (Xiphophorus helleri). One-thousand and eight hundred healthy black swordtail larvae (0.03 ± 0.001 g) were randomly distributed in 12 tanks (100 L) at a density of 150 fish per aquaria and fed different levels of dietary L. acidophilus (0, 1.5 × 10(8), 3 × 10(8) and 6 × 10(8) CFU g(-1)) for 10 weeks. At the end of trial, there were significant differences among antibacterial activity of skin mucus in probiotic fed fish and control group (P < 0.05). Furthermore, the skin mucus protein level and alkaline phosphatase activity in control group were significantly lower than those of L. acidophilus fed fish (P < 0.05). Microbiological assessments revealed that feeding with probiotic supplemented diet remarkably increased total autochthonous bacteria and autochthonous lactic acid bacteria levels (P < 0.05). The results showed that dietary administration of L. acidophilus significantly elevated black swordtail resistance against salinity stress (i.e survival %) (P < 0.05). Also, dietary administration of different levels of L. acidophilus improved weight gain, SGR, FCR compared to fish fed unsupplemented diet (P < 0.05). These results demonstrate beneficial effects of dietary L. acidophilus on mucosal immune parameters, intestinal microbiota, stress resistance and growth parameters of black swordtail and the appropriate inclusion is 6 × 10(8) CFU g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Screening, Isolation and Identification of Probiotic Producing Lactobacillus acidophilus Strains EMBS081 & EMBS082 by 16S rRNA Gene Sequencing.

    PubMed

    Chandok, Harshpreet; Shah, Pratik; Akare, Uday Raj; Hindala, Maliram; Bhadoriya, Sneha Singh; Ravi, G V; Sharma, Varsha; Bandaru, Srinivas; Rathore, Pragya; Nayarisseri, Anuraj

    2015-09-01

    16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.

  16. Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria.

    PubMed

    Aween, Mohamed Mustafa; Hassan, Zaiton; Muhialdin, Belal J; Eljamel, Yossra A; Al-Mabrok, Asma Saleh W; Lani, Mohd Nizam

    2012-07-01

    A total of 32 lactic acid bacteria (LAB) were isolated from 13 honey samples commercially marketed in Malaysia, 6 strains identified as Lactobacillus acidophilus by API CHL50. The isolates had antibacterial activities against multiple antibiotic resistant's Staphylococcus aureus (25 to 32 mm), Staphylococcus epidermis (14 to 22 mm) and Bacillus subtilis (12 to 19 mm) in the agar overlay method after 24 h incubation at 30 °C. The crude supernatant was heat stable at 90 °C and 121 °C for 1 h. Treatment with proteinase K and RNase II maintained the antimicrobial activity of all the supernatants except sample H006-A and H010-G. All the supernatants showed antimicrobial activities against target bacteria at pH 3 and pH 5 but not at pH 6 within 72 h incubation at 30 °C. S. aureus was not inhibited by sample H006-A isolated from Libyan honey and sample H008-D isolated from Malaysian honey at pH 5, compared to supernatants from other L. acidophilus isolates. The presence of different strains of L. acidophilus in honey obtained from different sources may contribute to the differences in the antimicrobial properties of honey. © 2012 Institute of Food Technologists®

  17. Effects of 4 Probiotic Strains in Coculture with Traditional Starters on the Flavor Profile of Yogurt.

    PubMed

    Tian, Huaixiang; Shen, Yongbo; Yu, Haiyan; He, Yujie; Chen, Chen

    2017-07-01

    To study the influence of probiotics on the flavor profile of yogurt, 4 probiotics, including Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus casei, were cofermented with traditional starters. The changes of bacterial growth, acid contents and volatile compounds of yogurt were investigated during fermentation and refrigerated storage. The strains that exhibited a low growth rate in milk did not significantly affect the bacterial population dynamics, acidity, or organic acid content during fermentation and storage. However, high viability and enhancement of postacidification were clearly observed in the samples that contained strains with a high growth rate in milk, particularly L. casei. A total of 45 volatile compounds, detected in most samples, were identified by headspace solid-phase micro-extraction followed by gas chromatography-mass spectrometry. Among these compounds, ketones and aldehydes were the most abundant. The presence of either L. rhamnosus or L. plantarum did not significantly affect the major volatile compounds, while contributions of L. casei and L. acidophilus were found in the formation of minor volatile metabolites. Electronic nose measurements exhibited a good discrimination of samples that contained different probiotics during refrigerated storage. © 2017 Institute of Food Technologists®.

  18. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM.

    PubMed

    Møller, Marie S; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N; Lo Leggio, Leila; Svensson, Birte; Abou Hachem, Maher

    2012-08-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents.

  19. Enzymology and Structure of the GH13_31 Glucan 1,6-α-Glucosidase That Confers Isomaltooligosaccharide Utilization in the Probiotic Lactobacillus acidophilus NCFM

    PubMed Central

    Møller, Marie S.; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N.; Lo Leggio, Leila; Svensson, Birte

    2012-01-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents. PMID:22685275

  20. Nutritional comparison of Spirulina sp powder by solid-state fermentation using Aspergillus sp (FNCL 6088) and Lactobacillus plantarum (FNCL 0127)

    NASA Astrophysics Data System (ADS)

    Dewi, E. N.; Amalia, U.

    2018-01-01

    The Spirulina sp powder contains high levels of protein and Solid-State Fermentation (SSF) improved protein level. The aims of the study was to find the proximate contents in Spirulina sp’s powder fermentation. The experiments were conducted by SSF of Spirulina sp’s powder using fungi Aspergillus sp (FNCL 6088) and lactic acid bacteria Lactobacillus plantarum (FNCL 0127). SSF was carried out for 10 days at 35% moisture level. The protein contents of Spirulina sp’s powder fermented by L. plantarum were consistently lower (p < 0.05) about 43.28% than compare with the other one about 46.12% (SSF by Aspergillus sp) until the end of fermentation. The Spirulina sp fermented products contained the highest level of protein after 6 days.

  1. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    PubMed

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  2. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.

    PubMed

    Rao, K Poornachandra; Chennappa, G; Suraj, U; Nagaraja, H; Raj, A P Charith; Sreenivasa, M Y

    2015-06-01

    Sorghum-based traditional fermented food was screened for potential probiotic lactic acid bacteria. The isolates were identified by biochemical, physiological and genetic methods. Species identification was done by 16s rRNA sequence analysis. The functional probiotic potential of the two Lactobacillus species viz., Lactobacillus plantarum (Lact. plantarum) and Lactobacillus pentosus (Lact. pentosus) was assessed by different standard parameters. The strains were tolerant to pH 2 for 1 h and resistant to methicillin, kanamycin, vancomycin and norfloxacin. Two (Lact. plantarum COORG-3 and Lact. pentosus COORG-8) out of eight isolates recorded the cell surface hydrophobicity to be 59.12 and 64.06%, respectively. All the strains showed tolerance to artificial duodenum juice (pH 2) for 3 h, positive for bile salt hydrolase test and negative for haemolytic test. The neutralized cell-free supernatant of the strains Lact. pentosus COORG-4, Lact. plantarum COORG-1, Lact. plantarum COORG-7, Lact. pentosus COORG-8 and Lact. plantarum COORG-3 showed good antibiofilm activity. Lact. pentosus COORG-8 exhibited 74% activity against Pseudomonas aeruginosa-MTCC 7903 and Lact. plantarum COORG-7 showed 68% inhibition of biofilm against Klebsiella pneumonia MTCC 7407. Three (Lact. plantarum COORG-7, Lact. pentosus COORG-5 and Lact. pentosus COORG 8) out of eight isolates exhibited a good antimicrobial activity against Listeria monocytogenes and five isolates (Lact. pentosus COORG 2, Lact. plantarum COORG 1, Lact. plantarum COORG 4, Lact. pentosus COORG 3 and Lact. plantarum COORG 6) are active against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumonia, Enterococcus faecalis. The study also evaluated the cholesterol lowering property of the Lactobacillus strains using hen egg yolk as the cholesterol source. The cholesterol in hen egg yolk was assimilated by 74.12 and 68.26% by Lact. plantarum COORG 4 and Lact. pentosus COORG 7

  3. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet.

    PubMed

    Wang, Yanping; Xu, Nv; Xi, Aodeng; Ahmed, Zaheer; Zhang, Bin; Bai, Xiaojia

    2009-08-01

    The objective of this study was to evaluate the effects of Lactobacillus plantarum MA2, an isolate from Chinese traditional Tibet kefir, on cholesterol-lowering and microflora of rat in vivo. Rats were fed on cholesterol-enriched experimental diet, supplemented with lyophilized L. plantarum MA2 powder, with a dose of 10(11) cells/day per mice. The results showed that L. plantarum MA2 feeding significantly lowered serum total cholesterol, low-density lipoprotein cholesterol, and triglycerides level, while there was no change in high-density lipoprotein cholesterol. In addition, liver total cholesterol and triglycerides was also decreased. However, fecal cholesterol and triglycerides was increased significantly (P < 0.05) in comparison with the control. Also, L. plantarum MA2 increased the population of lactic acid bacteria and bifidobacteria in the fecal, but it did not change the number of Escherichia coli as compared to control. Moreover, pH, moisture, and organic acids in the fecal were also measured. The present results indicate the probiotic potential of the L. plantarum MA2 strain in hypocholesterolemic effect and also increasing the probiotic count in the intestine.

  4. Characterization of a noncytotoxic bacteriocin from probiotic Lactobacillus plantarum DM5 with potential as a food preservative.

    PubMed

    Das, Deeplina; Goyal, Arun

    2014-10-01

    The aim of this work was to purify and characterize the bacteriocin produced by probiotic Lactobacillus plantarum DM5 in order to evaluate its potential as nutraceuticals. Lb. plantarum DM5 exhibited in vitro probiotic properties such as high resistance to gastric juice and bile salt, adherence to human adenocarcinoma (HT-29) cells, bile salt hydrolase and cholesterol assimilation activity. Moreover, Lb. plantarum DM5 showed bacteriocin activity against several major food borne pathogens. Zymogram analysis of purified bacteriocin (plantaricin DM5) showed a molecular size of ∼15.2 kDa. Plantaricin DM5 was sensitive to proteolytic enzymes but stable in the pH range of 2.0-10.0, and it was heat resistant (121 °C for 15 min) and remained active upon treatment with surfactants and detergents. Cytotoxicity analysis of plantaricin DM5 on human embryonic kidney 293 (HEK 293) and human cervical cancer (HeLa) cell lines revealed its nontoxic and biocompatible nature. To the best of our knowledge, this is the first study on the isolated strain expressing probiotic properties and broad antimicrobial activity without any cytotoxic effect on mammalian cells from indigenous fermented beverage Marcha from India, and thus contributes to the food industry as a novel bio-preservant.

  5. Transcriptome-Based Analysis in Lactobacillus plantarum WCFS1 Reveals New Insights into Resveratrol Effects at System Level.

    PubMed

    Reverón, Inés; Plaza-Vinuesa, Laura; Franch, Mónica; de Las Rivas, Blanca; Muñoz, Rosario; López de Felipe, Félix

    2018-05-01

    This study was undertaken to expand our insights into the mechanisms involved in the tolerance to resveratrol (RSV) that operate at system-level in gut microorganisms and advance knowledge on new RSV-responsive gene circuits. Whole genome transcriptional profiling was used to characterize the molecular response of Lactobacillus plantarum WCFS1 to RSV. DNA repair mechanisms were induced by RSV and responses were triggered to decrease the load of copper, a metal required for RSV-mediated DNA cleavage, and H 2 S, a genotoxic gas. To counter the effects of RSV, L. plantarum strongly up- or downregulated efflux systems and ABC transporters pointing to transport control of RSV across the membrane as a key mechanism for RSV tolerance. L. plantarum also downregulated tRNAs, induced chaperones, and reprogrammed its transcriptome to tightly control ammonia levels. RSV induced a probiotic effector gene and a likely deoxycholate transporter, two functions that improve the host health status. Our data identify novel protective mechanisms involved in RSV tolerance operating at system level in a gut microbe. These insights could influence the way RSV is used for a better management of gut microbial ecosystems to obtain associated health benefits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bio-transformation of agri-food wastes by newly isolated Neurospora crassa and Lactobacillus plantarum for egg production.

    PubMed

    Liu, P; Li, J; Deng, Z

    2016-03-01

    Using bio-transferred feedstuff was a cost-effective approach to improve egg quality and production; particularly, the nutritive diet came from agri-food wastes. In this study, optimization of fermentation conditions and co-cultivation of Neurospora crassa with Lactobacillus plantarum was performed in a simple bioreactor. The optimized fermentation of beer lees substrates through N. crassa led to the hydrolysis rates of crude fiber increasing to 43.27%. Compared to that of using N. crassa alone, the combination of N. crassa and L. plantarum enhanced the content of amino acids (13,120 to 18,032 mg/100 g) on oil-tea seed cake substrates particularly. When hens were fed 10% fermented oil-tea seedcake substrate, the ratio of feed to egg decreased from 3.1 to 2.6, egg production ratio increased from 65.71 to 80.10%, and color of vitelline (Roche) increased from 8.20 to 10.20. Fifteen kinds of carotenoids were identified by HPLC in fermented oil-tea seed cake substrates. The results of this study highlighted that the mixed-fermentation by N. crassa and L. plantarum may be an effective way to convert agri-food wastes into high-valued biomass products, which could have a positive effect on hens and their eggs. © 2016 Poultry Science Association Inc.

  7. Reduction of Aflatoxin B1 Toxicity by Lactobacillus plantarum C88: A Potential Probiotic Strain Isolated from Chinese Traditional Fermented Food "Tofu".

    PubMed

    Huang, Li; Duan, Cuicui; Zhao, Yujuan; Gao, Lei; Niu, Chunhua; Xu, Jingbo; Li, Shengyu

    2017-01-01

    In this study, we investigated the potential of Lactobacillus plantarum isolated from Chinese traditional fermented foods to reduce the toxicity of aflatoxin B1 (AFB1), and its subsequent detoxification mechanism. Among all the investigated L. plantarum strains, L. plantarum C88 showed the strongest AFB1 binding capacity in vitro, and was orally administered to mice with liver oxidative damage induced by AFB1. In the therapy groups, the mice that received L. plantarum C88, especially heat-killed L. plantarum C88, after a single dose of AFB1 exposure, showed an increase in unabsorbed AFB1 in the feces. Moreover, the effects of L. plantarum C88 on the enzymes and non-enzymes antioxidant abilities in serum and liver, histological alterations of liver were assayed. The results indicated that compared to the control group, L. plantarum C88 alone administration induced significant increase of antioxidant capacity, but did not induce any significant changes in the histological picture. Compared to the mice that received AFB1 only, L. plantarum C88 treatment could weaken oxidative stress by enhancing the activity of antioxidant enzymes and elevating the expression of Glutathione S-transferase (GST) A3 through Nuclear factor erythroid (derived factor 2) related factor 2 (Nrf2) pathway. Furthermore, cytochrome P450 (CYP 450) 1A2 and CYP 3A4 expression was inhibited by L. plantarum C88, and urinary aflatoxin B1-N7-guanine (AFB-N7-guanine), a AFB1 metabolite formed by CYP 1A2 and CYP 3A4, was significantly reduced by the presence of viable L. plantarum C88. Meanwhile, the significant improvements were showed in histological pictures of the liver tissues in mice orally administered with viable L. plantarum C88. Collectively, L. plantarum C88 may alleviate AFB1 toxicity by increasing fecal AFB1 excretion, reversing deficits in antioxidant defense systems and regulating the metabolism of AFB1.

  8. Optimization of Lactobacillus acidophilus cultivation using taro waste and evaluation of its biological activity.

    PubMed

    Hsieh, Shu-Chen; Liu, Jui-Ming; Pua, Xiao-Hui; Ting, Yuwen; Hsu, Ren-Jun; Cheng, Kuan-Chen

    2016-03-01

    In this study, taro waste (TW) was utilized for Lactobacillus acidophilus BCRC 14079 cultivation and the anti-tumor and immune-modulatory properties of heat-killed cells (HKCs), cytoplasmic fraction (CF), and exopolysaccharide (EPS) were evaluated. The optimum liquefaction enzyme dosage, temperature, and time determined by Box-Behnken design response surface methodology (BBD-RSM) were 9 mL/L of α-amylase, 79.2 °C, and 5 h of reaction, respectively. The optimum temperature and reaction time for saccharification were determined as 60 °C and 3 h. The optimum medium, CGMY1 medium, constitutes of TW hydrolysate containing 37 g/L of glucose, 25 g/L of corn gluten meal (CGM), and 1 g/L of yeast extract (YE). Results of MTT assay showed that HKCs and EPS from CGM medium exhibited the highest anti-proliferative in HT-29 (IC50 of HKCs, 467.25 μg/mL; EPS, 716.10 μg/mL) and in Caco-2 cells (IC50 of EPS, 741.60 μg/mL). Luciferase-based NF-ΚB and COX-2 systems indicated HKCs from CGM medium stimulated the highest expression of luciferin in both systems. The luciferase activities by using 100 and 500 μg/mL of HKCs from CGM were 24.30- and 45.83-fold in NF-ΚB system and 11.54- and 4.93-fold in COX-2 system higher than the control. In conclusion, this study demonstrated the potential of TW medium for L. acidophilus cultivation and the production of non-viable probiotics with enhanced biological activities.

  9. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R and Lactobacillus rhamnosus CLR2 improve quality-of-life and IBS symptoms: a double-blind, randomised, placebo-controlled study.

    PubMed

    Preston, K; Krumian, R; Hattner, J; de Montigny, D; Stewart, M; Gaddam, S

    2018-06-11

    A combination of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R and Lactobacillus rhamnosus CLR2 was compared to placebo for relief of symptoms of irritable bowel syndrome (IBS). A total of 113 subjects at 3 clinical sites were randomised in a 2:1 ratio and followed for 12 weeks. Subjects ingested either 2 capsules of active study product, containing 50×10 9 cfu of live organisms, or 2 placebo capsules daily. Endpoints included improvement in abdominal pain, days of pain, distention, stool consistency and frequency, quality of life (QOL), and adequate relief (AR) of IBS symptoms. IBS subtypes constipation (IBS-C), diarrhoea (IBS-D), and mixed (IBS-M) were evaluated separately; the effect of gender was also examined. For all efficacy endpoints improvement of 30% or more vs placebo was considered clinically significant. With the exception of pain intensity and AR, the endpoints demonstrated a therapeutic advantage of active over placebo for IBS symptoms in at least some subject subgroups. The IBS-D and female subgroups showed the largest and most consistent effects. Stool frequency and consistency were evaluated in the IBS-C and IBS-D subgroups, and improvement of active vs placebo was noted in both. QOL improvement was seen overall and in specific domains. Adverse events (AEs) were limited to 7 subjects; all were of mild or moderate intensity except one, severe cramping. Four AEs in the same subject in the placebo group were judged to be related to study product; these resolved by the end of study. There were no serious AEs.

  10. Distinct Immunomodulation of Bone Marrow-Derived Dendritic Cell Responses to Lactobacillus plantarum WCFS1 by Two Different Polysaccharides Isolated from Lactobacillus rhamnosus LOCK 0900

    PubMed Central

    Jachymek, Wojciech; Srutkova, Dagmar; Brzozowska, Ewa; Kozakova, Hana; Gamian, Andrzej

    2014-01-01

    The structures of polysaccharides (PS) isolated from Lactobacillus rhamnosus LOCK 0900 and results from stimulation of mouse bone marrow-derived dendritic cells (BM-DC) and human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR) upon exposure to these antigens were studied. L. rhamnosus LOCK 0900 produces PS that differ greatly in their structure. The polymer L900/2, with a high average molecular mass of 830 kDa, is a branched heteropolysaccharide with a unique repeating unit consisting of seven sugar residues and pyruvic acid, whereas L900/3 has a low average molecular mass of 18 kDa and contains a pentasaccharide repeating unit and phosphorus. Furthermore, we found that both described PS neither induce cytokine production and maturation of mouse BM-DC nor induce signaling through TLR2/TLR4 receptors. However, they differ profoundly in their abilities to modulate the BM-DC immune response to the well-characterized human isolate Lactobacillus plantarum WCFS1. Exposure to L900/2 enhanced interleukin-10 (IL-10) production induced by L. plantarum WCFS1, while in contrast, L900/3 enhanced the production of IL-12p70. We conclude that PS, probably due to their chemical features, are able to modulate the immune responses to third-party antigens. The ability to induce regulatory IL-10 by L900/2 opens up the possibility to use this PS in therapy of inflammatory conditions, such as inflammatory bowel disease, whereas L900/3 might be useful in reverting the antigen-dependent Th2-skewed immune responses in allergies. PMID:25107979

  11. The other way around: Probiotic lactobacillus acidophilus NP51 restricts progression of Mycobacterium avium subspecies paratuberculosis (MAP) infection in Balb/c mice through activation of CD8+ T cell-mediated immunity

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine immune effects of feeding novel probiotic Lactobacillus acidophilus strain NP51 to specific pathogen-free Balb/c mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease (JD). We hypothesized that fe...

  12. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens.

    PubMed

    Zhang, Zhihong; Tao, Xueying; Shah, Nagendra P; Wei, Hua

    2016-04-01

    Lactobacillus plantarum ZDY2013 is a potential probiotic isolated from fermented bean acid. In this study, we aimed to evaluate the in vitro antimicrobial activity of this organism against Bacillus cereus in milk fermentation, the antiadhesion ability on intestinal epithelial cells, as well as its ability to abrogate the cytotoxic effect and expression levels of genes. We found no antimicrobial activity produced by L. plantarum once the pH was adjusted to 6.0 and 7.0. The pH decreased continuously when L. plantarum and B. cereus were co-incubated during milk fermentation, which caused a decrease in the B. cereus counts. Antiadhesion assays showed that L. plantarum can significantly inhibit the adhesion of enterotoxin-producing B. cereus ATCC14579 and pathogenic B. cereus HN001 by inhibition, competition, and displacement. The supernatants of B. cereus, either alone or in conjunction with L. plantarum, caused damage to the membrane integrity of Caco-2 cells to release lactate dehydrogenase. In addition, L. plantarum tended to attenuate proinflammatory cytokine and oxidative stress gene expression on Caco-2 cells, inducing with B. cereus HN001 supernatants. This study provided systematic insights into the antagonistic effect of L. plantarum ZDY2013, and the information may be helpful to explore potential control measures for preventing food poisoning by lactic acid bacteria. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia.

    PubMed

    Ahn, Hyeon Yeong; Kim, Minjoo; Chae, Jey Sook; Ahn, Young-Tae; Sim, Jae-Hun; Choi, Il-Dong; Lee, Sang-Hyun; Lee, Jong Ho

    2015-08-01

    Previous studies have indicated that supplementation with probiotics might improve lipid metabolism. The objective of the study was to evaluate the effect of supplementation with probiotic strains Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 on triglyceride (TG) and apolipoprotein A-V (apo A-V) levels. A randomized, double-blinded, placebo-controlled study was conducted with 128 non-diabetic subjects with hypertriglyceridemia. Over a 12-week test period, the probiotic group consumed 2 g/day of a powdered supplement containing L. curvatus HY7601 and L. plantarum KY1032, whereas the placebo group consumed a powder lacking probiotics. After the treatment, the probiotic group showed an 18.3% (P < 0.001) reduction in TGs and increases of 21.1% (P = 0.001) and 15.6% (P < 0.001) in the apo A-V and LDL particle size, respectively. The probiotic group had a significant reduction in TGs (P = 0.040) and increases in the plasma apo A-V (P = 0.003) and LDL particle size (P < 0.001) compared with the placebo group. In the probiotic group, the reduction in the TG levels was negatively correlated with changes in the apo A-V and baseline TGs, regardless of the APOA5 -1131T > C genotype. The consumption of two probiotic strains for 12 weeks reduced TGs and increased the apo A-V and LDL particle size in hypertriglyceridemic subjects. This effect was more pronounced in subjects with higher levels of fasting TGs regardless of their APOA5 -1131T > C genotype. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Cytokine production in vitro and in rat model of colitis in response to Lactobacillus plantarum LS/07.

    PubMed

    Štofilová, Jana; Langerholc, Tomaž; Botta, Cristian; Treven, Primož; Gradišnik, Lidija; Salaj, Rastislav; Šoltésová, Alena; Bertková, Izabela; Hertelyová, Zdenka; Bomba, Alojz

    2017-10-01

    Over the past decade, it has become clear that specific probiotic lactobacilli are valuable in the prevention and treatment of infectious and inflammatory diseases of gastrointestinal tract but their successful application would benefit greatly from a better understanding of the mechanisms of individual strains. Hence, each probiotic strain should be characterized for their immune activity before being proposed for clinical applications. The aim of the study was to characterize the immunomodulatory activity of the strain Lactobacillus (L.) plantarum LS/07 in vitro using functional gut model and to study its anti-inflammatory potential in dextran sulphate sodium (DSS)-induced colitis in rats. We showed that L. plantarum LS/07 induced production of IL-10 in macrophages derived from blood monocytes as well as monocyte/macrophages cell line stimulated indirectly via enterocytes in vitro. In rat model of colitis, L. plantarum LS/07 attenuated the DSS-induced signs of inflammatory process in colon such as weight loss, diarrhoea, infiltration of inflammatory cells associated with decreased colon weight/length ratio, inhibited gut mucosa destruction and depletion of goblet cells. Moreover, the strain increased the concentration of anti-inflammatory cytokine IL-10 in mucosal tissue. In conclusion, the protective effects of L. plantarum LS/07 in the DSS-induced colitis model seem to be related to the stimulation of IL-10 and the restoration of goblet cells and indicate it as a good candidate to prevent and treat diseases associated with inflammation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Determination of the Use of Lactobacillus plantarum and Propionibacterium freudenreichii Application on Fermentation Profile and Chemical Composition of Corn Silage.

    PubMed

    Abdul Rahman, Norafizah; Abd Halim, Mohd Ridzwan; Mahawi, Noraniza; Hasnudin, Hazira; Al-Obaidi, Jameel R; Abdullah, Norhani

    2017-01-01

    Corn was inoculated with Lactobacillus plantarum and Propionibacterium freudenreichii subsp. shermanii either independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32-37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1 (L. plantarum) , B2 ( P. freudenreichii subsp. shermanii ), and B3 (combination of L. plantarum and P. freudenreichii subsp. shermanii ). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 10 5  cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage. L. plantarum alone increased crude protein (CP) and reduced pH rapidly. In a mixture with P. freudenreichii , the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated with L. plantarum or P. freudenreichii either alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage.

  16. Determination of the Use of Lactobacillus plantarum and Propionibacterium freudenreichii Application on Fermentation Profile and Chemical Composition of Corn Silage

    PubMed Central

    Abdul Rahman, Norafizah; Abd Halim, Mohd Ridzwan; Mahawi, Noraniza; Hasnudin, Hazira

    2017-01-01

    Corn was inoculated with Lactobacillus plantarum and Propionibacterium freudenreichii subsp. shermanii either independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32–37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1 (L. plantarum), B2 (P. freudenreichii subsp. shermanii), and B3 (combination of L. plantarum and P. freudenreichii subsp. shermanii). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 105 cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage. L. plantarum alone increased crude protein (CP) and reduced pH rapidly. In a mixture with P. freudenreichii, the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated with L. plantarum or P. freudenreichii either alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage. PMID:28503566

  17. Tannic Acid-Dependent Modulation of Selected Lactobacillus plantarum Traits Linked to Gastrointestinal Survival

    PubMed Central

    Reverón, Inés; Rodríguez, Héctor; Campos, Gema; Curiel, José Antonio; Ascaso, Carmen; Carrascosa, Alfonso V.; Prieto, Alicia; de las Rivas, Blanca; Muñoz, Rosario; de Felipe, Félix López

    2013-01-01

    Background Owing to its antimicrobial properties dietary tannins may alter the functional efficacy of probiotic lactobacilli in the gastrointestinal (GI)-tract influencing their growth, viability and molecular adaptation to the intestinal environment. Methods and Findings The effects of tannic acid on Lactobacillus plantarum WCFS1 were studied by in vitro growth monitoring and visualizing the morphological alteration on the cell wall using transmission electron microscopy. Growth upon tannic acid was characterized by dose-dependent reductions of initial viable counts and extended lag phases. Lag phase-cells growing upon 0.5 mM tannic acid were abnormally shaped and experienced disturbance on the cell wall such as roughness, occasional leakage and release of cell debris, but resumed growth later at tannic acid concentrations high as 2.5 mM. To gain insight on how the response to tannic acid influenced the molecular adaptation of L. plantarum to the GI-tract conditions, gene expression of selected biomarkers for GI-survival was assessed by RT-qPCR on cDNA templates synthetized from mRNA samples obtained from cells treated with 0.5 or 2 mM tannic acid. Tannic acid-dependent gene induction was confirmed for selected genes highly expressed in the gut or with confirmed roles in GI-survival. No differential expression was observed for the pbp2A gene, a biomarker negatively related with GI-survival. However PBP2A was not labeled by Bocillin FL, a fluorescent dye-labeled penicillin V derivative, in the presence of tannic acid which suggests for enhanced GI-survival reportedly associated with the inactivation of this function. Conclusions Probiotic L. plantarum WCFS1 is able to overcome the toxic effects of tannic acid. This dietary constituent modulates molecular traits linked to the adaptation to intestinal environment in ways previously shown to enhance GI-survival. PMID:23776675

  18. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice.

    PubMed

    Jang, Se-Eun; Jeong, Jin-Ju; Choi, Su-Young; Kim, Hyunji; Han, Myung Joo; Kim, Dong-Hyun

    2017-05-23

    Oral administration of a probiotic mixture (PM; Respecta ® ) consisting of Lactobacillus rhamnosus HN001 (L1), Lactobacillus acidophilus La-14 (L2), and lactoferrin RCXTM results in colonization of these probiotics in the vagina of healthy women. Therefore, we examined whether vaginal colonization of the PM ingredients L1 and L2 could attenuate bacterial vaginosis (BV). BV was induced in mice via β-estradiol-3-benzoate-induced immunosuppression and intravaginal inoculation with Gardnerella vaginalis (GV). Inflammatory markers were analyzed using enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reaction, and flow cytometry. Oral or intravaginal administration of PM resulted in colonization of L1 and L2 in the vagina. Oral or intravaginal administration of L1, L2, or PM significantly inhibited GV-induced epithelial cell disruption, myeloperoxidase activity, NF-κB activation, and IL-1β and TNF-α expression ( p < 0.05). Administration of these probiotics also inhibited IL-17 and RORγt expression but increased IL-10 and Foxp3 expression. Of these probiotics, L2 most effectively attenuated GV-induced BV, followed by L1 and PM. Oral administration was more effective against GV-induced BV than intravaginal administration. L1 and L2 also significantly inhibited the adherence of GV to HeLa cells (a human cervical cancer cell line) and GV growth in vitro. In addition, L1 and L2 inhibited lipopolysaccharide-induced NF-κB activation in macrophages and the differentiation of splenocytes into Th17 cells in vitro, but increased their differentiation into Treg cells. Our study suggests that L1, L2, and PM attenuated GV-induced vaginosis by regulating both vaginal and systemic innate and adaptive immune responses rather than direct competition or killing of GV in the vagina.

  19. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice

    PubMed Central

    Jang, Se-Eun; Jeong, Jin-Ju; Choi, Su-Young; Kim, Hyunji; Han, Myung Joo; Kim, Dong-Hyun

    2017-01-01

    Oral administration of a probiotic mixture (PM; Respecta®) consisting of Lactobacillus rhamnosus HN001 (L1), Lactobacillus acidophilus La-14 (L2), and lactoferrin RCXTM results in colonization of these probiotics in the vagina of healthy women. Therefore, we examined whether vaginal colonization of the PM ingredients L1 and L2 could attenuate bacterial vaginosis (BV). BV was induced in mice via β-estradiol-3-benzoate-induced immunosuppression and intravaginal inoculation with Gardnerella vaginalis (GV). Inflammatory markers were analyzed using enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reaction, and flow cytometry. Oral or intravaginal administration of PM resulted in colonization of L1 and L2 in the vagina. Oral or intravaginal administration of L1, L2, or PM significantly inhibited GV-induced epithelial cell disruption, myeloperoxidase activity, NF-κB activation, and IL-1β and TNF-α expression (p < 0.05). Administration of these probiotics also inhibited IL-17 and RORγt expression but increased IL-10 and Foxp3 expression. Of these probiotics, L2 most effectively attenuated GV-induced BV, followed by L1 and PM. Oral administration was more effective against GV-induced BV than intravaginal administration. L1 and L2 also significantly inhibited the adherence of GV to HeLa cells (a human cervical cancer cell line) and GV growth in vitro. In addition, L1 and L2 inhibited lipopolysaccharide-induced NF-κB activation in macrophages and the differentiation of splenocytes into Th17 cells in vitro, but increased their differentiation into Treg cells. Our study suggests that L1, L2, and PM attenuated GV-induced vaginosis by regulating both vaginal and systemic innate and adaptive immune responses rather than direct competition or killing of GV in the vagina. PMID:28545241

  20. Techno-functional differentiation of two vitamin B12 producing Lactobacillus plantarum strains: an elucidation for diverse future use.

    PubMed

    Bhushan, Bharat; Tomar, S K; Chauhan, Arun

    2017-01-01

    An appropriate selection of Lactobacillus strain (probiotic/starter/functional) on the basis of its techno-functional characteristics is required before developing a novel fermented functional food. We compared vitamin B 12 (B 12 , cobalamin) producing Lactobacillus plantarum isolates, BHM10 and BCF20, for functional (vitamin over-production, genomic insight to B 12 structural genes, and probiotic attributes) and technological [milks (skim and soy) fermentation and B 12 bio-fortification] characteristics. Addition of B 12 precursors (5-amonolevulinate and dimethylbenzimidazole) to cobalamin-free fermentation medium increased vitamin production in BHM10, BCF20, and DSM20016 (a positive standard) by 3.4-, 4.4-, and 3.86-folds, respectively. Three important B 12 structural genes were detected in L. plantarum species (strains BHM10 and BCF20) by PCR for the first time. The gene sequences were submitted to NCBI GenBank and found phylogenetically closer to respective sequences in B 12 producing Lactobacillus reuteri strains. During comparative probiotic testing, BCF20 showed significantly higher (p < 0.05 to p < 0.001) gastrointestinal tolerance and cell surface hydrophobicity (p < 0.05) than BHM10. Moreover, only BCF20 was found positive for BSH activity and also exhibited comparatively better antagonistic potential against potent pathogens. Conversely, high acid and bile susceptible strain BHM10 displayed significantly higher soy milk fermentation and resultant B 12 bio-fortification abilities during technological testing. Two B 12 quantification techniques, UFLC and competitive immunoassay, confirmed the in vitro and in situ bio-production of bio-available form of B 12 after BHM10 fermentation. Conclusively, techno-functional differentiation of two B 12 producing strains elucidates their diverse future use; BCF20 either for B 12 over-production (in vitro) or as a probiotic candidate, while BHM10 for cobalamin bio-fortification (in situ) in soy milk.

  1. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis.

    PubMed

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-04-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3(-/-) mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. © 2015 The Authors.

  2. A Decade of Experience in Primary Prevention of Clostridium difficile Infection at a Community Hospital Using the Probiotic Combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+).

    PubMed

    Maziade, Pierre-Jean; Pereira, Pascale; Goldstein, Ellie J C

    2015-05-15

    In August 2003, the 284-bed community hospital Pierre-Le Gardeur (PLGH) in Quebec experienced a major outbreak associated with the Clostridium difficile NAP1/027/BI strain. Augmented standard preventive measures (SPMs) were not able to control this outbreak. It was decided in February 2004 to give to every adult inpatient on antibiotics, without any exclusion, a probiotic (Bio-K+: Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2) within 12 hours of the antibiotic prescription. Augmented SPMs were continued. The use of the probiotic in addition to SPMs was associated with a marked reduction of C. difficile infection (CDI). During the 10 years of observation, 44 835 inpatients received Bio-K+, and the CDI rate at PLGH declined from 18.0 cases per 10,000 patient-days and remained at low mean levels of 2.3 cases per 10,000 patient-days. Additionally, 10-year data collected by the Ministry of Health in Quebec comparing the CDI rate between Quebec hospitals showed that CDI rates at PLGH were consistently and continuously lower compared with those at similar hospitals. Blood cultures were monitored at PLGH for Lactobacillus bacteremia through the 10 years' experience, and no Lactobacillus bacteremias were detected. Despite the limitation of an observational study, we concluded that the probiotic Bio-K+ was safe and effective in decreasing our primary CDI rate. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum.

    PubMed

    Wu, Mingbo; Peng, Xiaohong; Wen, Hua; Wang, Qin; Chen, Qianming; McKinstry, William J; Ren, Bin

    2013-04-01

    Tannase catalyses the hydrolysis of the galloyl ester bond of tannins to release gallic acid. It belongs to the serine esterases and has wide applications in the food, feed, beverage, pharmaceutical and chemical industries. The tannase from Lactobacillus plantarum was cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method with microseeding. The crystals belonged to space group P1, with unit-cell parameters a = 46.5, b = 62.8, c = 83.8 Å, α = 70.4, β = 86.0, γ = 79.4°. Although the enzyme exists mainly as a monomer in solution, it forms a dimer in the asymmetric unit of the crystal. The crystals diffracted to beyond 1.60 Å resolution using synchrotron radiation and a complete data set was collected to 1.65 Å resolution.

  4. Lactobacillus plantarum 299v Prevents Caspase-Dependent Apoptosis In Vitro.

    PubMed

    Dykstra, Natalie S; Hyde, Lucie; MacKenzie, Alexander; Mack, David R

    2011-03-01

    Selective microbes used as probiotics can enhance epithelial cell protection. We have previously shown that a Lactobacillus plantarum strain 299v (Lp299v) has the ability to induce mucin genes. In the current study, we utilized a cytokine model of inflammation in cell culture to study the modulation of apoptosis by this probiotic. HT-29 cells were pre-incubated with the Lp299v or L. plantarum strain adh- (Lpadh-), a non-adherent derivative of Lp299v. Cells were challenged with a mixture of cytokines (TNF-α, IFN-γ, and IL-1a) to imitate conditions of inflammation. To assess for cell death, we evaluated TUNEL, multi-caspase, and caspase-3 and caspase-7 activity assays. There was a marked decrease in apoptosis as measured by TUNEL(+) cells in samples pre-treated with Lp299v (18.7 ± 4.1%, p < 0.01) and Lpadh- (16.6 ± 3.2%, p < 0.05) prior to cytokine exposure when compared to cells (43.6 ± 6.2%) exposed to the cytokine mixture. Lp299v pre-incubation with HT-29 cells reduced caspase(+) cells in the multi-caspase activity assay (3.6 ± 0.6%, p < 0.05) compared to cells exposed to cytokines (68.9 ± 5.1%) whereas Lpadh- did not (46.8 ± 17.5%, p > 0.05). Similarly, caspase-3, caspase-7 activity was also reduced by Lp299v. Selected probiotics may confer an exogenous protective effect at the mucosal-luminal interface for intestinal epithelial cells via alteration of caspase-dependent apoptotic pathways.

  5. Production of optically pure D-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Hama, Shinji; Kihara, Maki; Noda, Hideo; Tanaka, Tsutomu; Kondo, Akihiko

    2017-03-01

    Simultaneous saccharification and fermentation (SSF) of D-lactic acid was performed using brown rice as both a substrate and a nutrient source. An engineered Lactobacillus plantarum NCIMB 8826 strain, in which the ʟ-lactate dehydrogenase gene was disrupted, produced 97.7 g/L D-lactic acid from 20% (w/v) brown rice without any nutrient supplementation. However, a significant amount of glucose remained unconsumed and the yield of lactic acid was as low as 0.75 (g/g-glucose contained in brown rice). Interestingly, the glucose consumption was significantly improved by adapting L. plantarum cells to the low-pH condition during the early stage of SSF (8-17 h). As a result, 117.1 g/L D-lactic acid was produced with a high yield of 0.93 and an optical purity of 99.6% after 144 h of fermentation. SSF experiments were repeatedly performed for ten times and D-lactic acid was stably produced using recycled cells (118.4-129.8 g/L). On average, D-lactic acid was produced with a volumetric productivity of 2.18 g/L/h over 48 h.

  6. Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese

    PubMed Central

    2011-01-01

    Lactobacillus plantarum LMG P-26358 isolated from a soft French artisanal cheese produces a potent class IIa bacteriocin with 100% homology to plantaricin 423 and bacteriocidal activity against Listeria innocua and Listeria monocytogenes. The bacteriocin was found to be highly stable at temperatures as high as 100°C and pH ranges from 1-10. While this relatively narrow spectrum bacteriocin also exhibited antimicrobial activity against species of enterococci, it did not inhibit dairy starters including lactococci and lactobacilli when tested by well diffusion assay (WDA). In order to test the suitability of Lb. plantarum LMG P-26358 as an anti-listerial adjunct with nisin-producing lactococci, laboratory-scale cheeses were manufactured. Results indicated that combining Lb. plantarum LMG P-26358 (at 108 colony forming units (cfu)/ml) with a nisin producer is an effective strategy to eliminate the biological indicator strain, L. innocua. Moreover, industrial-scale cheeses also demonstrated that Lb. plantarum LMG P-26358 was much more effective than the nisin producer alone for protection against the indicator. MALDI-TOF mass spectrometry confirmed the presence of plantaricin 423 and nisin in the appropriate cheeses over an 18 week ripening period. A spray-dried fermentate of Lb. plantarum LMG P-26358 also demonstrated potent anti-listerial activity in vitro using L. innocua. Overall, the results suggest that Lb. plantarum LMG P-26358 is a suitable adjunct for use with nisin-producing cultures to improve the safety and quality of dairy products. PMID:21995443

  7. Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese

    PubMed Central

    Ołdak, Aleksandra; Rzepkowska, Anna

    2017-01-01

    Oscypek and korycinski are traditional Polish cheeses, exclusively produced in Tatra and in Podlasie region, respectively, produced from raw, unpasteurized milk. The 29 Lactobacillus plantarum strains were isolated on MRS agar from 12 cheese samples and used as a material for study. The main purpose of the work was to assess the antimicrobial properties and recognition of selected strains for the unique antagonistic activity and preservation role in food. It has been found that the highest antimicrobial activity was observed in the case of L. monocytogenes strains; however, the level of that activity was different depending on the Lb. plantarum strain. Strains from oscypek produced broad spectrum, and a few strains isolated from korycinski cheese produced a narrow spectrum of antimicrobial compounds, other than organic acids and hydrogen peroxide. Moreover, the antagonistic activity shown by Lb. plantarum strains is connected with the source from which a given strain was isolated. Strains isolated from oscypek cheese represented stronger activity against L. monocytogenes, whereas strains isolated from korycinski cheese were more active against E. coli. Strains Lb. plantarum Os13 and Kor14 could be considered as good candidates for protective cultures to extend durability of food products. PMID:28626762

  8. Lactulose and Lactobacillus plantarum, a Potential Complementary Synbiotic To Control Postweaning Colibacillosis in Piglets

    PubMed Central

    Guerra-Ordaz, A. A.; González-Ortiz, G.; La Ragione, R. M.; Woodward, M. J.; Collins, J. W.; Pérez, J. F.

    2014-01-01

    The potential of a prebiotic oligosaccharide lactulose, a probiotic strain of Lactobacillus plantarum, or their synbiotic combination to control postweaning colibacillosis in pigs was evaluated using an enterotoxigenic Escherichia coli (ETEC) K88 oral challenge. Seventy-two weanlings were fed four diets: a control diet (CTR), that diet supplemented with L. plantarum (2 × 1010 CFU · day−1) (LPN), that diet supplemented with 10 g · kg−1 lactulose (LAC), or a combination of the two treatments (SYN). After 7 days, the pigs were orally challenged. Six pigs per treatment were euthanized on days 6 and 10 postchallenge (PC). Inclusion of lactulose improved the average daily gain (ADG) (P < 0.05) and increased lactobacilli (P < 0.05) and the percentage of butyric acid (P < 0.02) in the colon. An increase in the ileum villous height (P < 0.05) and a reduction of the pig major acute-phase protein (Pig-MAP) in serum (P < 0.01) were observed also. The inclusion of the probiotic increased numbers of L. plantarum bacteria in the ileum and colon (P < 0.05) and in the total lactobacilli in the colon and showed a trend to reduce diarrhea (P = 0.09). The concentrations of ammonia in ileal and colonic digesta were decreased (P < 0.05), and the villous height (P < 0.01) and number of ileal goblet cells (P < 0.05) increased, at day 10 PC. A decrease in plasmatic tumor necrosis factor alpha (TNF-α) (P < 0.01) was also seen. The positive effects of the two additives were combined in the SYN treatment, resulting in a complementary synbiotic with potential to be used to control postweaning colibacillosis. PMID:24907322

  9. Bifidobacterium longum PL03, Lactobacillus rhamnosus KL53A, and Lactobacillus plantarum PL02 in the prevention of antibiotic-associated diarrhea in children: a randomized controlled pilot trial.

    PubMed

    Szymański, Henryk; Armańska, Małgorzata; Kowalska-Duplaga, Kinga; Szajewska, Hania

    2008-01-01

    To determine the efficacy of a combination of Bifidobacterium longum PL03, Lactobacillus rhamnosus KL53A and Lactobacillus plantarum PL02 for the prevention of antibiotic-associated diarrhea in children. Seventy-eight children (age: 5 months to 16 years) with otitis media, and/or respiratory tract infections, and/or urinary tract infections were enrolled in a double-blind randomized control trial in which they received standard antibiotic treatment plus a food supplement containing 10(8) colony-forming units of B. longum, L. rhamnosus and L. plantarum (n = 40) or a placebo (n = 38) orally twice daily for the duration of antibiotic treatment. Patients receiving probiotics had a similar rate of diarrhea (> or =3 loose or watery stools/day for > or =48 h occurring during or up to 2 weeks after the antibiotic therapy) as those receiving placebo (relative risk 0.5, 95% CI 0.06-3.5). The mean number of stools per day was significantly lower in the experimental group (mean difference -0.3 stool/day, 95% CI -0.5 to -0.07). No adverse events were reported. The administration of the 3 probiotics did not significantly alter the rate of diarrhea, although it reduced the frequency of stools per day. As the overall frequency of diarrhea was surprisingly low, these results should be interpreted with caution. 2008 S. Karger AG, Basel.

  10. “Direct cloning in Lactobacillus plantarum: Electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete”

    PubMed Central

    2012-01-01

    Background Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Results Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 109 colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Conclusions Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or

  11. Effect of probiotic strain Lactobacillus acidophilus (LBKV-3) on fecal residual lactase activity in undernourished children below 10 years.

    PubMed

    Hajare, Sunil Tulshiram; Bekele, Genene

    2017-01-01

    Clinically proven Lactobacillus acidophilus strain LBKV-3 intended as probiotic for humans was used to test its effect on fecal residual lactase activity in undernourished children below 10 years of age. The children were selected from malnutrition-declared area of Maharashtra (India). One of the major causes of malnutrition is lactose intolerance which leads to diarrhea. The basic consideration in selecting the probiotic strain of L. acidophilus (LBKV-3) in this investigation was the fact that the organism is isolated from human vaginal surface swab and it was found extensively studied for probiotic characteristic. LBKB 3 is tested by several workers as probiotic for hypocholesterolemic activity, implantation ability, therapeutic effects on gastrointestinal (GI) and related ailments. The results of present investigation have shown that the fecal residual lactase activity significantly increased than its initial value (which was almost zero). It appeared that the fecal residual β-galactosidase activity is an indication of positive implementation abilities of the cultures under investigation. These trends were compared with the control and blank group of children receiving Dahi and buffalo milk (BM). It was observed that both these products failed to exert any significant impact on increase in residual lactase activity.

  12. Phage adsorption to Lactobacillus plantarum: influence of physiological and environmental factors.

    PubMed

    Marcó, M Briggiler; Reinheimer, J A; Quiberoni, A

    2010-04-15

    Bacteriophage infection of lactic acid bacteria (LAB) constitutes one of the major problems in the dairy industry, causing economic losses and a constant risk of low quality and/or unsafe foods. The first step in the phage biology is the adsorption on the host cell surface. In a previous study, a remarkable thermal, chemical and photocatalytic resistance was demonstrated by four phages of Lactobacillus plantarum (ATCC 8014-B1, ATCC 8014-B2, FAGK1 and FAGK2). In the present work, these phages were used to characterize the adsorption process on L. plantarum ATCC 8014. Clearly, the characterization of this process could increase the possibilities of design useful strategies in order to prevent phage infections. The influence of Ca(2+), temperature, pH and physiological cell state on phage adsorption was investigated. Burst sizes of phages ATCC 8014-B1 and ATCC 8014-B2 were 60 and 83 PFU/infective centre, respectively. The four phages exhibited a high infectivity even at pH 4 and pH 11. Calcium or magnesium ions were not indispensable for cell lysis and plaque formation, and more than 99% of phage particles were adsorbed either in the presence or absence of Ca(2+), after 15 min at 37 degrees C. Phage adsorption was only partially affected at 50 degrees C, while reached its maximum between 30 and 42 degrees C. The highest adsorption values (99.9%) were observed from pH 5 to 7, after 30 min at 37 degrees C. Adsorption rates decreased after the thermal inactivation of cells, though, when 20 microg/ml of chloramphenicol was used, adsorption values were similar on treated and untreated cells. All these results showed that the adsorption process was only partially affected by a few conditions: thermally killed host cells, an incubation temperature of 50 degrees C and pH values of 9 and 10. Nevertheless, and unfortunately, those conditions are not commonly applied during fermented food manufacturing, thus restricting highly the application of strategies currently available to

  13. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production

    PubMed Central

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid

    2015-01-01

    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. PMID:25757029

  14. Display of a β-mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalysts.

    PubMed

    Nguyen, Hoang-Minh; Mathiesen, Geir; Stelzer, Elena Maria; Pham, Mai Lan; Kuczkowska, Katarzyna; Mackenzie, Alasdair; Agger, Jane W; Eijsink, Vincent G H; Yamabhai, Montarop; Peterbauer, Clemens K; Haltrich, Dietmar; Nguyen, Thu-Ha

    2016-10-04

    Lactobacillus plantarum is considered as a potential cell factory because of its GRAS (generally recognized as safe) status and long history of use in food applications. Its possible applications include in situ delivery of proteins to a host, based on its ability to persist at mucosal surfaces of the human intestine, and the production of food-related enzymes. By displaying different enzymes on the surface of L. plantarum cells these could be used as whole-cell biocatalysts for the production of oligosaccharides. In this present study, we aimed to express and display a mannanase and a chitosanase on the cell surface of L. plantarum. ManB, a mannanase from Bacillus licheniformis DSM13, and CsnA, a chitosanase from Bacillus subtilis ATCC 23857 were fused to different anchoring motifs of L. plantarum for covalent attachment to the cell surface, either via an N-terminal lipoprotein anchor (Lp_1261) or a C-terminal cell wall anchor (Lp_2578), and the resulting fusion proteins were expressed in L. plantarum WCFS1. The localization of the recombinant proteins on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest mannanase and chitosanase activities obtained for displaying L. plantarum cells were 890 U and 1360 U g dry cell weight, respectively. In reactions with chitosan and galactomannans, L. plantarum CsnA- and ManB-displaying cells produced chito- and manno-oligosaccharides, respectively, as analyzed by high performance anion exchange chromatography (HPAEC) and mass spectrometry (MS). Surface-displayed ManB is able to break down galactomannan (LBG) into smaller manno-oligosaccharides, which can support growth of L. plantarum. This study shows that mannanolytic and chitinolytic enzymes can be anchored to the cell surface of L. plantarum in active forms. L. plantarum chitosanase- and mannanase-displaying cells should be of interest for the production of potentially 'prebiotic' oligosaccharides. This approach

  15. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains.

    PubMed

    Aguilar-Toalá, J E; Santiago-López, L; Peres, C M; Peres, C; Garcia, H S; Vallejo-Cordoba, B; González-Córdova, A F; Hernández-Mendoza, A

    2017-01-01

    Milk-derived bioactive peptides with a single activity (e.g., antioxidant, immunomodulatory, or antimicrobial) have been previously well documented; however, few studies describe multifunctional bioactive peptides, which may be preferred over single-activity peptides, as they can simultaneously trigger, modulate, or inhibit multiple physiological pathways. Hence, the aim of this study was to assess the anti-inflammatory, antihemolytic, antioxidant, antimutagenic, and antimicrobial activities of crude extracts (CE) and peptide fractions (<3 and 3-10 kDa) obtained from fermented milks with specific Lactobacillus plantarum strains. Overall, CE showed higher activity than both peptide fractions (<3 and 3-10 kDa) in most of the activities assessed. Furthermore, activity of <3 kDa was generally higher, or at least equal, to the 3 to 10 kDa peptide fractions. In particular, L. plantarum 55 crude extract or their fractions showed the higher anti-inflammatory (723.68-1,759.43μg/mL of diclofenac sodium equivalents), antihemolytic (36.65-74.45% of inhibition), and antioxidant activity [282.8-362.3µmol of Trolox (Sigma-Aldrich, St. Louis, MO) equivalents]. These results provide valuable evidence of multifunctional role of peptides derived of fermented milk by the action of specific L. plantarum strains. Thus, they may be considered for the development of biotechnological products to be used to reduce the risk of disease or to enhance a certain physiological function. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Comparative genome analysis of Lactobacillus plantarum GB-LP3 provides candidates of survival-related genetic factors.

    PubMed

    Jeon, Soomin; Jung, Jaehoon; Kim, Kwondo; Yoo, DongAhn; Lee, Chanho; Kang, Jungsun; Cho, Kyungjin; Kang, Dae-Kyung; Kwak, Woori; Yoon, Sook Hee; Kim, Heebal; Cho, Seoae

    2017-09-01

    Lactobacillus plantarum is found in various environmental niches such as in the gastrointestinal tract of an animal host or a fermented food. This species isolated from a certain environment is known to possess a variety of properties according to inhabited environment's adaptation. However, a causal relationship of a genetic factor and phenotype affected by a specific environment has not been systematically comprehended. L. plantarum GB-LP3 strain was isolated from Korean traditional fermented vegetable and the whole genome of GB-LP3 was sequenced. Comparative genome analysis of GB-LP3, with other 14 L. plantarum strains, was conducted. In addition, genomic island regions were investigated. The assembled whole GB-LP3 genome contained a single circular chromosome of 3,206,111bp with the GC content of 44.7%. In the phylogenetic tree analysis, GB-LP3 was in the closest distance from ZJ316. The genomes of GB-LP3 and ZJ316 have the high level of synteny. Functional genes that are related to prophage, bacteriocin, and quorum sensing were found through comparative genomic analysis with ZJ316 and investigation of genomic islands. dN/dS analysis identified that the gene coding for phosphonate ABC transporter ATP-binding protein is evolutionarily accelerated in GB-LP3. Our study found that potential candidate genes that are affected by environmental adaptation in Korea traditional fermented vegetable. Copyright © 2017. Published by Elsevier B.V.

  17. Transcriptome signatures of class I and III stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation

    PubMed Central

    2013-01-01

    Background To cope with environmental challenges bacteria possess sophisticated defense mechanisms that involve stress-induced adaptive responses. The canonical stress regulators CtsR and HrcA play a central role in the adaptations to a plethora of stresses in a variety of organisms. Here, we determined the CtsR and HrcA regulons of the lactic acid bacterium Lactobacillus plantarum WCFS1 grown under reference (28°C) and elevated (40°C) temperatures, using ctsR, hrcA, and ctsR-hrcA deletion mutants. Results While the maximum specific growth rates of the mutants and the parental strain were similar at both temperatures (0.33 ± 0.02 h-1 and 0.34 ± 0.03 h-1, respectively), DNA microarray analyses revealed that the CtsR or HrcA deficient strains displayed altered transcription patterns of genes encoding functions involved in transport and binding of sugars and other compounds, primary metabolism, transcription regulation, capsular polysaccharide biosynthesis, as well as fatty acid metabolism. These transcriptional signatures enabled the refinement of the gene repertoire that is directly or indirectly controlled by CtsR and HrcA of L. plantarum. Deletion of both regulators, elicited transcriptional changes of a large variety of additional genes in a temperature-dependent manner, including genes encoding functions involved in cell-envelope remodeling. Moreover, phenotypic assays revealed that both transcription regulators contribute to regulation of resistance to hydrogen peroxide stress. The integration of these results allowed the reconstruction of CtsR and HrcA regulatory networks in L. plantarum, highlighting the significant intertwinement of class I and III stress regulons. Conclusions Taken together, our results enabled the refinement of the CtsR and HrcA regulatory networks in L. plantarum, illustrating the complex nature of adaptive stress responses in this bacterium. PMID:24238744

  18. The other way around: probiotic Lactobacillus acidophilus NP51 restrict progression of Mycobacterium avium subspecies paratuberculosis (MAP) infection in Balb/c mice via activiation of CD8 alpha+ immune cell-mediated immunity

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine the immune-modulating effects of feeding a novel probiotic Lactobacillus acidophilus strain NP51 to specific pathogen-free Balb/c mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease (JD) in rumi...

  19. Comparison of the Growth of Lactobacillus delbrueckii, L. paracasei and L. plantarum on Inulin in Co-culture Systems.

    PubMed

    Takagi, Risa; Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2014-01-01

    Lactobacillus delbrueckii TU-1, which apparently takes intact inulin into its cells and then degrades it intracellularly, was co-cultured in vitro with L. paracasei KTN-5, an extracellular inulin degrader; or L. plantarum 22A-3, a strain that is able to utilize fructose but not inulin; or both in order to prequalify inulin as a prebiotic agent in vivo. When L. delbrueckii TU-1 was co-cultured with L. paracasei KTN-5 on fructose or inulin, the growth of L. delbrueckii TU-1 on inulin was markedly higher than that of L. paracasei KTN-5, whereas the growth of L. delbrueckii TU-1 on fructose was much lower than that of L. paracasei KTN-5. These results suggest that L. delbrueckii TU-1 and L. paracasei KTN-5 were efficient at utilizing inulin and fructose, respectively. When L. plantarum 22A-3 was co-cultured with L. delbrueckii TU-1 on inulin, the growth of L. plantarum 22A-3 was enhanced by L. paracasei KTN-5 but not by L. delbrueckii TU-1, suggesting that the fructose moiety that L. paracasei KTN-5 released temporarily into the medium was "scavenged" by L. plantarum 22A-3. Thus, L. delbrueckii TU-1, L. paracasei KTN-5, and L. plantarum 22A-3 were then cultured altogether on inulin. The growth of L. delbrueckii TU-1 was unaffected but that of L. paracasei KTN-5 was markedly suppressed. This evidence suggests that prebiotic use of inulin supported the selective growth of intracellular inulin degraders such as L. delbrueckii rather than extracellular inulin degraders such as L. paracasei in the host microbiota.

  20. Comparison of the Growth of Lactobacillus delbrueckii, L. paracasei and L. plantarum on Inulin in Co-culture Systems

    PubMed Central

    TAKAGI, Risa; TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2014-01-01

    Lactobacillus delbrueckii TU-1, which apparently takes intact inulin into its cells and then degrades it intracellularly, was co-cultured in vitro with L. paracasei KTN-5, an extracellular inulin degrader; or L. plantarum 22A-3, a strain that is able to utilize fructose but not inulin; or both in order to prequalify inulin as a prebiotic agent in vivo. When L. delbrueckii TU-1 was co-cultured with L. paracasei KTN-5 on fructose or inulin, the growth of L. delbrueckii TU-1 on inulin was markedly higher than that of L. paracasei KTN-5, whereas the growth of L. delbrueckii TU-1 on fructose was much lower than that of L. paracasei KTN-5. These results suggest that L. delbrueckii TU-1 and L. paracasei KTN-5 were efficient at utilizing inulin and fructose, respectively. When L. plantarum 22A-3 was co-cultured with L. delbrueckii TU-1 on inulin, the growth of L. plantarum 22A-3 was enhanced by L. paracasei KTN-5 but not by L. delbrueckii TU-1, suggesting that the fructose moiety that L. paracasei KTN-5 released temporarily into the medium was “scavenged” by L. plantarum 22A-3. Thus, L. delbrueckii TU-1, L. paracasei KTN-5, and L. plantarum 22A-3 were then cultured altogether on inulin. The growth of L. delbrueckii TU-1 was unaffected but that of L. paracasei KTN-5 was markedly suppressed. This evidence suggests that prebiotic use of inulin supported the selective growth of intracellular inulin degraders such as L. delbrueckii rather than extracellular inulin degraders such as L. paracasei in the host microbiota. PMID:25379361

  1. Proteomic analysis of proteins increased or reduced by ethanol of Lactobacillus plantarum ST4 isolated from Makgeolli, traditional Korean rice wine.

    PubMed

    Lee, Seung Gyu; Lee, Kang Wook; Park, Tae Heung; Park, Ji Yeong; Han, Nam Soo; Kim, Jeong Hwan

    2012-04-01

    LAB were isolated from makgeolli locally produced around Jinju, Gyeongnam, S. Korea during spring of 2011. Randomly selected 11 isolates from MRS agar plates were identified first by API CHL 50 kits and then 16S rRNA gene sequencing. All 11 isolates were identified as Lactobacillus plantarum. Among them, ST4 grew in MRS broth with ethanol up to 10%, showing the highest alcohol resistance. L. plantarum ST4 was moderately resistant against acid and bile salts. When cellular proteins of L. plantarum ST4 under ethanol stress were analyzed by two-dimensional gel electrophoresis (2DE), the intensities of 6 spots increased, whereas 22 spots decreased at least 2-fold. Those 28 spots were identified by peptide mass fingerprinting (PMF). FusA2 (elongation factor G) increased 18.8-fold (6% ethanol) compared with control. Other proteins were AtpD (ATP synthase subunit beta), DnaK, GroEL, Tuf (elongation factor Tu), and Npr2 (NADH peroxidase), respectively. Among the 22 proteins decreased in intensities, lactate dehydrogenases (LdhD and LdhL1) were included.

  2. Crystal structure of tannase from Lactobacillus plantarum.

    PubMed

    Ren, Bin; Wu, Mingbo; Wang, Qin; Peng, Xiaohong; Wen, Hua; McKinstry, William J; Chen, Qianming

    2013-08-09

    Tannins are water-soluble polyphenolic compounds in plants. Hydrolyzable tannins are derivatives of gallic acid (3,4,5-trihydroxybenzoic acid) or its meta-depsidic forms that are esterified to polyol, catechin, or triterpenoid units. Tannases are a family of esterases that catalyze the hydrolysis of the galloyl ester bond in hydrolyzable tannins to release gallic acid. The enzymes have found wide applications in food, feed, beverage, pharmaceutical, and chemical industries since their discovery more than a century ago, although little is known about them at the molecular level, including the details of the catalytic and substrate binding sites. Here, we report the first three-dimensional structure of a tannase from Lactobacillus plantarum. The enzyme displays an α/β structure, featured by a large cap domain inserted into the classical serine hydrolase fold. A catalytic triad was identified in the structure, which is composed of Ser163, His451, and Asp419. During the binding of gallic acid, the carboxyl group of the molecule forges hydrogen-bonding interactions with the catalytic triad of the enzyme while the three hydroxyl groups make contacts with Asp421, Lys343, and Glu357 to form another hydrogen-bonding network. Mutagenesis studies demonstrated that these residues are indispensable for the activity of the enzyme. Structural studies of the enzyme in complex with a number of substrates indicated that the interactions at the galloyl binding site are the determinant force for the binding of substrates. The single galloyl binding site is responsible for the esterase and depsidase activities of the enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The triglyceride-lowering effect of supplementation with dual probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032: Reduction of fasting plasma lysophosphatidylcholines in nondiabetic and hypertriglyceridemic subjects.

    PubMed

    Ahn, H Y; Kim, M; Ahn, Y-T; Sim, J-H; Choi, I-D; Lee, S-H; Lee, J H

    2015-08-01

    This study evaluated the triglyceride (TG)-lowering effects of consuming dual probiotic strains of Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 on the fasting plasma metabolome. A randomized, double-blind, placebo-controlled study was conducted on 92 participants with hypertriglyceridemia but without diabetes. Over a 12-week testing period, the probiotic group consumed 2 g of powder containing 5 × 10(9) colony-forming units (cfu) of L. curvatus HY7601 and 5 × 10(9) cfu of L. plantarum KY1032 each day, whereas the placebo group consumed the same product without probiotics. Fasting plasma metabolomes were profiled using UPLC-LTQ-Orbitrap MS. After 12 weeks of treatment, the probiotic group displayed a 20% reduction (p = 0.001) in serum TGs and 25% increases (p=0.001) in apolipoprotein A-V (apoA-V). At the 12-week follow-up assessment, the following 11 plasma metabolites were significantly reduced in the probiotic group than the placebo group: palmitoleamide, palmitic amide, oleamide, and lysophosphatidyl choline (lysoPC) containing C14:0, C16:1, C16:0, C17:0, C18:3, C18:2, C18:1, and C20:3. In the probiotic group, changes (▵) in TG were negatively correlated with ▵ apoA-V, which was positively correlated with ▵ FFA. In addition, ▵ FFA was strongly and positively correlated with ▵ lysoPCs in the probiotic group but not the placebo group. The triglyceride-lowering effects of probiotic supplementation, partly through elevated apoA-V, in borderline to moderate hypertriglyceridemic subjects showed reductions in plasma metabolites, fatty acid primary amides and lysoPCs (NCT02215694; http://www.clinicaltrials.gov). Clinical trials: NCT02215694; http://www.clinicaltrials.gov. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    PubMed Central

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H. M.; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A. M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP104448, TIFN101 or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.06 ± 0.04 to 0.10 ± 0.06, p = 0.001), but was not significantly affected by the bacterial interventions. However, analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated gene transcription pathways related to cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific gene transcriptional effects on repair processes in the compromised intestine of healthy subjects. PMID:28045137

  5. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults

    PubMed Central

    Buttarazzi, Ivan; Kolida, Sofia; Quercia, Sara; Baldini, Jessica; Swann, Jonathan R.; Brigidi, Patrizia; Gibson, Glenn R.

    2017-01-01

    Coronary heart disease (CHD) is one of the major causes of death and disability in industrialised countries, with elevated blood cholesterol an established risk factor. Total plasma cholesterol reduction in populations suffering from primary hypercholesterolemia may lower CHD incidence. This study investigated the cholesterol reducing capacity of Lactobacillus plantarum ECGC 13110402, a strain selected for its high bile salt hydrolase activity, in 49 normal to mildly hypercholesterolaemic adults. Primary efficacy outcomes included effect on blood lipids (total cholesterol (TC), low density lipoproteins (LDL-C), high density lipoproteins (HDL-C) and triacylgycerides (TAG), inflammatory biomarkers and occurrence/severity of gastrointestinal side effects to establish safety and tolerance of the intervention. Secondary outcomes included blood pressure, immune biomarkers, gut microbiota characterisation and metabonome changes. The study was run in a parallel, double blind, placebo controlled, randomised design in which the active group ingested 2x109 CFU encapsulated Lactobacillus plantarum ECGC 13110402 twice daily. Daily ingestion of the active treatment resulted in a statistically significant reduction in LDL-C in volunteers with baseline TC<5mM during the 0–12 week period (13.9%, P = 0.030), a significant reduction in TC in volunteers with baseline TC≥6mM in the 0–6 week period (37.6%, P = 0.045), a significant decrease in TAG (53.9% P = 0.030) and an increase in HDL-C (14.7%, P = 0.007) in the over 60 years population in the 6–12 week period. A statistically significant reduction in systolic blood pressure was also observed across the active study group in the 6-12-week period (6.6%, P = 0.003). No impact on gastrointestinal function and side effects was observed during the study. Similar to blood and urine metabonomic analyses, faecal metagenomics did not reveal significant changes upon active or placebo intake. The results of this study suggest that

  6. Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity.

    PubMed

    Zago, Miriam; Lanza, Barbara; Rossetti, Lia; Muzzalupo, Innocenzo; Carminati, Domenico; Giraffa, Giorgio

    2013-05-01

    Fermented table olives (Olea europaea L.) are largely diffused in the Mediterranean area. Olives are picked at different stages of maturity and after harvesting, processed to eliminate the characteristic bitterness caused by the presence of the oleuropein glucoside and to become suitable for human consumption. The spontaneous fermentation of table olives mainly depends on lactic acid bacteria (LAB), and in particular on Lactobacillus plantarum which plays an important role in the degradation of oleuropein. The hydrolysis of oleuropein is attributed to the β-glucosidase and esterase activities of the indigenous LAB microflora. This study investigated the potential of L. plantarum strains isolated from dairy products and olives to be used as starters for fermented table olives. Forty-nine strains were typed by RAPD-PCR and investigated for the presence of the β-glucosidase (bglH) gene. The full sequence of the bglH gene was carried out. All the 49 L. plantarum strains were also tested for phage resistance. A total of six strains were selected on the basis of genotypic polymorphism, bglH gene sequence analysis, and phage resistance profile. These strains were further characterized to assess the acidifying capability, the growth at different temperatures, the tolerance to different NaCl concentrations, and the oleuropeinolytic activity. Although further characterizations are required, especially concerning the influence on sensory properties, L. plantarum proved to have the potential to be used as a debittering and fermentative agent in starter culture for fermented table olives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The Highly Autoaggregative and Adhesive Phenotype of the Vaginal Lactobacillus plantarum Strain CMPG5300 Is Sortase Dependent

    PubMed Central

    Malik, Shweta; Petrova, Mariya I.; Claes, Ingmar J. J.; Verhoeven, Tine L. A.; Busschaert, Pieter; Vaneechoutte, Mario; Lievens, Bart; Lambrichts, Ivo; Siezen, Roland J.; Balzarini, Jan; Vanderleyden, Jos

    2013-01-01

    Lactobacilli are important for the maintenance of a healthy ecosystem in the human vagina. Various mechanisms are postulated but so far are poorly substantiated by molecular studies, such as mutant analysis. Bacterial autoaggregation is an interesting phenomenon that can promote adhesion to host cells and displacement of pathogens. In this study, we report on the identification of a human vaginal isolate, Lactobacillus plantarum strain CMPG5300, which shows high autoaggregative and adhesive capacity. To investigate the importance of sortase-dependent proteins (SDPs) in these phenotypes, a gene deletion mutant was constructed for srtA, the gene encoding the housekeeping sortase that covalently anchors these SDPs to the cell surface. This mutant lost the capacity to autoaggregate, showed a decrease in adhesion to vaginal epithelial cells, and lost biofilm-forming capacity under the conditions tested. These results indicate that the housekeeping sortase SrtA of CMPG5300 is a key determinant of the peculiar surface properties of this vaginal Lactobacillus strain. PMID:23709503

  8. Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum

    PubMed Central

    Wu, Mingbo; Peng, Xiaohong; Wen, Hua; Wang, Qin; Chen, Qianming; McKinstry, William J.; Ren, Bin

    2013-01-01

    Tannase catalyses the hydrolysis of the galloyl ester bond of tannins to release gallic acid. It belongs to the serine esterases and has wide applications in the food, feed, beverage, pharmaceutical and chemical industries. The tannase from Lactobacillus plantarum was cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method with microseeding. The crystals belonged to space group P1, with unit-cell paramters a = 46.5, b = 62.8, c = 83.8 Å, α = 70.4, β = 86.0, γ = 79.4°. Although the enzyme exists mainly as a monomer in solution, it forms a dimer in the asymmetric unit of the crystal. The crystals diffracted to beyond 1.60 Å resolution using synchrotron radiation and a complete data set was collected to 1.65 Å resolution. PMID:23545659

  9. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V; Kumar, Amit; Hardwidge, Philip R; Govind, Revathi; Tanaka, Tsutomu; Kondo, Akihiko

    2016-01-01

    D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g(-1). Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L(-1) of D-lactic acid was produced from 37.5 g L(-1) glucose and 19.7 g L(-1) xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L(-1) D-lactic acid with an overall yield of 0.77 g g(-1). All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.

  10. Biosynthesis of tellurium nanoparticles by Lactobacillus plantarum and the effect of nanoparticle-enriched probiotics on the lipid profiles of mice.

    PubMed

    Mirjani, Ruholah; Faramarzi, Mohammad Ali; Sharifzadeh, Mohammad; Setayesh, Neda; Khoshayand, Mohammad Reza; Shahverdi, Ahmad Reza

    2015-10-01

    Hypercholesterolemia is an important risk factor contributing to atherosclerosis and coronary heart disease. Lactic acid bacteria have attracted much attention regarding their promising effect on serum cholesterol levels. Tellurium (Te) is a rare element that has also gained considerable interest for its biological effects. There have been some recent in vivo reports on the reduction effect of Te on cholesterol content. In this study, Lactobacillus plantarum PTCC 1058 was employed for the intracellular biosynthesis of Te NPs. The UV-visible spectrum of purified NPs showed a peak at 214 nm related to the surface plasmon resonance of the Te NPs. Transmission electron microscopy showed that spherical nanoparticles without aggregation had the average size of 45.7 nm as determined by the laser scattering method. The energy dispersive X-ray pattern confirmed the presence of Te atoms without any impurities. A significant reduction was observed in group which received L. plantarum with or without Te NPs during propylthiouracil and cholesterol diet in compare with the control group which received just propylthiouracil and cholesterol. The levels of triglycerides also remarkably decrease (p<0.05) in mice given L. plantarum with intracellular Te NPs.

  11. GtfA and GtfB Are Both Required for Protein O-Glycosylation in Lactobacillus plantarum

    PubMed Central

    Lee, I-Chiao; van Swam, Iris I.; Tomita, Satoru; Morsomme, Pierre; Rolain, Thomas; Hols, Pascal; Bron, Peter A.

    2014-01-01

    Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L. plantarum WCFS1 genes with significant homology to Gtf1, namely, tagE1 to tagE6. These candidate genes were targeted by systematic gene deletion, followed by assessment of the consequences on glycosylation of Acm2. We observed a changed mobility of Acm2 on SDS-PAGE in the tagE5E6 deletion strain, while deletion of other tagE genes resulted in Acm2 mobility comparable to that of the wild type. Subsequent mass spectrometry analysis of excised and in-gel-digested Acm2 confirmed the loss of glycosylation on Acm2 in the tagE5E6 deletion mutant, whereas a lectin blot using GlcNAc-specific succinylated wheat germ agglutinin (sWGA) revealed that besides Acm2, tagE5E6 deletion also abolished all but one other sWGA-reactive, protease-sensitive signal. Only complementation of both tagE5 and tagE6 restored those sWGA lectin signals, establishing that TagE5 and TagE6 are both required for the glycosylation of Acm2 as well as the vast majority of other sWGA-reactive proteins. Finally, sWGA lectin blotting experiments using a panel of 8 other L. plantarum strains revealed that protein glycosylation is a common feature in L. plantarum strains. With the establishment of these enzymes as protein glycosyltransferases, we propose to rename TagE5 and TagE6 as GtfA and GtfB, respectively. PMID:24532775

  12. Genetic and biochemical characterization of an oligo-α-1,6-glucosidase from Lactobacillus plantarum.

    PubMed

    Delgado, Susana; Flórez, Ana Belén; Guadamuro, Lucía; Mayo, Baltasar

    2017-04-04

    Although encoded in the genome of many Lactobacillus spp. strains, α-glucosidases have received little attention compared to other glycosyl hydrolases. In this study, a putative oligosaccharide(oligo)-α-1,6-glucosidase-encoding gene (malL) was identified in the genome of Lactobacillus plantarum LL441. malL coded for 572 amino acid residues with a calculated total molecular mass of 66.31kDa. No predicted signal peptide was observed, suggesting this enzyme to be localized within the cytoplasm of the cell. Homology studies of the deduced amino acid sequence in the area of its active sites classified the enzyme as a member of the α-amylase (AmyAC) superfamily of glycosyl hydrolases (GH), family 13 (GH13), subfamily 31 (GH13_31). malL was cloned in Escherichia coli and the coded enzyme overexpressed as a histidine-tagged protein (MalL His ). It was then purified and characterized. MalL His protein showed strong hydrolytic activity towards 4-nitrophenyl-α-d-glucopyranoside (pNP-α-Glu) but not to other pNP-α-d- or pNP-β-d-derivatives. When using pNP-α-Glu as a substrate, MalL His showed similar specific activities between pH5.0 and 6.0, and between 20 and 42°C (optimum 30°C). Among the natural carbohydrates assayed, MalL His showed specificity towards isomaltose (V max and K m values of 40.64μmolmin -1 mg -1 and 6.22mM) and much less to isomaltulose (V max and K m values of 168.86μmolmin -1 mg -1 and 244.52mM). However, under the conditions of the assay, the enzyme showed no transglycosylation activity. Characterization of the entire complement of glycosidases in L. plantarum might reveal how strains of this species could be used in new biotechnological applications or in the development of functional foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp.

    PubMed Central

    do Carmo, Monique S.; Noronha, Francisca M. F.; Arruda, Mariana O.; Costa, Ênnio P. da Silva; Bomfim, Maria R. Q.; Monteiro, Andrea S.; Ferro, Thiago A. F.; Fernandes, Elizabeth S.; Girón, Jorge A.; Monteiro-Neto, Valério

    2016-01-01

    Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains. PMID:27833605

  14. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis

    PubMed Central

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. PMID:25666591

  15. Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMA- Differentiated THP-1 Cells

    PubMed Central

    Maghsood, Faezeh; Mirshafiey, Abbas; Farahani, Mohadese M.; Modarressi, Mohammad Hossein; Jafari, Parvaneh; Motevaseli, Elahe

    2018-01-01

    Objective Recent studies have reported dysregulated expression of matrix metalloproteinases (MMPs), especially MMP-2, MMP-9, tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, TIMP-2), and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in activated macrophages of patients with inflammatory diseases. Therefore, MMP-2, MMP-9, and their regulators may represent a new target for treatment of inflammatory diseases. Probiotics, which are comprised of lactic acid bacteria, have the potential to modulate inflammatory responses. In this experimental study, we investigated the anti-inflammatory effects of cell-free supernatants (CFS) from Lactobacillus acidophilus (L. acidophilus) and L. rhamnosus GG (LGG) in phorbol myristate acetate (PMA)-differentiated THP-1 cells. Materials and Methods In this experimental study, PMA-differentiated THP-1 cells were treated with CFS from L. acidophilus, LGG and uninoculated bacterial growth media (as a control). The expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNAs were determined using real-time quantitative reverse transcription polymerase chain reaction (RT- PCR). The levels of cellular surface expression of CD147 were assessed by flow cytometry, and the gelatinolytic activity of MMP-2 and MMP-9 were determined by zymography. Results Our results showed that CFS from both L. acidophilus and LGG significantly inhibited the gene expression of MMP-9 (P=0.0011 and P=0.0005, respectively), increased the expression of TIMP-1 (P<0.0001), decreased the cell surface expression of CD147 (P=0.0307 and P=0.0054, respectively), and inhibited the gelatinolytic activity of MMP-9 (P=0.0003 and P<0.0001, respectively) in PMA-differentiated THP-1 cells. Although, MMP-2 expression and activity and TIMP-2 expression remained unchanged. Conclusion Our results indicate that CFS from L. acidophilus and LGG possess anti-inflammatory properties and can modulate the inflammatory response. PMID:29105390

  16. USSR Report. Space Biology and Aerospace Medicine. Volume 15, Number 4, July-August 1981.

    DTIC Science & Technology

    1981-09-28

    of 411 strains: 112 from saliva and 299 from feces. They con- sisted of 6 species: Lactobacillus acidophilus (58), L. salivarius (94), L. casei 48 (137...supspecies casei 70, subsp. rhamnosus 54, subsp. alactosus 13), L. plantarum (19), L. fermentum (62) and L. brevis (41).* Table 1. Characteristics...Oleandomycin " 15 Furadantin Lachema Co. 100 Table 2. We tested lactobacillus sensitivity to Evaluation of results 19 products (Table 1). We used the

  17. Lipoteichoic Acid of Probiotic Lactobacillus plantarum Attenuates Poly I:C-Induced IL-8 Production in Porcine Intestinal Epithelial Cells

    PubMed Central

    Kim, Kyoung Whun; Kang, Seok-Seong; Woo, Sun-Je; Park, Ok-Jin; Ahn, Ki Bum; Song, Ki-Duk; Lee, Hak-Kyo; Yun, Cheol-Heui; Han, Seung Hyun

    2017-01-01

    Probiotics in livestock feed supplements are considered a replacement for antibiotics that enhance gastrointestinal immunity. Although bacterial cell wall components have been proposed to be associated with probiotic function, little evidence demonstrates that they are responsible for probiotic functions in livestock. The present study demonstrated that lipoteichoic acid (LTA) of Lactobacillus plantarum (Lp.LTA) confers anti-inflammatory responses in porcine intestinal epithelial cell line, IPEC-J2. A synthetic analog of viral double-stranded RNA, poly I:C, dose-dependently induced IL-8 production at the mRNA and protein levels in IPEC-J2 cells. Lp.LTA, but not lipoprotein or peptidoglycan from L. plantarum, exclusively suppressed poly I:C-induced IL-8 production. Compared with LTAs from other probiotic Lactobacillus strains including L. delbrueckii, L. sakei, and L. rhamnosus GG, Lp.LTA had higher potential to suppress poly I:C-induced IL-8 production. Dealanylated or deacylated Lp.LTA did not suppress poly I:C-induced IL-8 production, suggesting that D-alanine and lipid moieties in the Lp.LTA structure were responsible for the inhibition. Furthermore, Lp.LTA attenuated the phosphorylation of ERK and p38 kinase as well as the activation of NF-κB, resulting in decreased IL-8 production. Taken together, these results suggest that Lp.LTA acts as an effector molecule to inhibit viral pathogen-induced inflammatory responses in porcine intestinal epithelial cells. PMID:28983294

  18. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    PubMed

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  19. Solution Structure of Acidocin B, a Circular Bacteriocin Produced by Lactobacillus acidophilus M46

    PubMed Central

    Acedo, Jeella Z.; van Belkum, Marco J.; Lohans, Christopher T.; McKay, Ryan T.; Miskolzie, Mark

    2015-01-01

    Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation. PMID:25681186

  20. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    PubMed

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. In vitro and in vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities.

    PubMed

    Ojekunle, O; Banwo, K; Sanni, A I

    2017-05-01

    Thirty-two lactic acid bacteria (LAB) isolates were obtained from fermenting cassava mash and wara (African soft cheese) and screened for their resistance to cadmium and lead toxicities at 550-1050 mg l -1 and probiotic potentials. Four LAB strains that tolerated the heavy metals at 1050 mg l -1 were selected for antioxidative capacities, tolerance to acid, bile salts and simulated gastric and intestinal tract and safety status. The results revealed that Weissella cibaria WD2 and Lactobacillus plantarum CaD1 exhibited comparatively higher antioxidative capacities, survived in simulated gastric and intestinal transit, tolerated acid and bile salt and possessed safety status. The two strains were employed for the in vivo studies, which was monitored in male albino Wistar rats using skim milk as a carrier for the cultures over a period of 28 days. The rats given the cultures of W. cibaria WD2 and L. plantarum CaD1 in addition with the administration of heavy metals had improved renal and hepatic impairment, while damage was observed in rats fed with cadmium and lead only. Weissella cibaria WD2 and L. plantarum CaD1 demonstrated probiotic potentials and safety status. These strains can be used to effectively amend hepatic and renal histopathological alterations in rats caused by ingestion of cadmium and lead. This present study highlights the presence of lactic acid bacteria (LAB) from traditional fermented foods that were cadmium and lead resistant and possessed probiotic potentials. Weissella cibaria WD2 and Lactobacillus plantarum CaD1 selected for the in vivo studies ameliorated the build-up of cadmium and lead in the organs of the animals. This indicated that good cadmium and lead binding and probiotic lactic acid bacteria can be used to prevent exposure to these heavy metals. © 2017 The Society for Applied Microbiology.

  2. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products.

    PubMed

    Russo, Pasquale; Arena, Mattia Pia; Fiocco, Daniela; Capozzi, Vittorio; Drider, Djamel; Spano, Giuseppe

    2017-04-17

    Cereal-based fermented products are worldwide diffused staple food resources and cereal-based beverages represent a promising innovative field in the food market. Contamination and development of spoilage filamentous fungi can result in loss of cereal-based food products and it is a critical safety concern due to their potential ability to produce mycotoxins. Lactic Acid Bacteria (LAB) have been proposed as green strategy for the control of the moulds in the food industry due to their ability to produce antifungal metabolites. In this work, eighty-eight Lactobacillus plantarum strains were screened for their antifungal activity against Aspergillus niger, Aspergillus flavus, Fusarium culmorum, Penicillium roqueforti, Penicillium expansum, Penicillium chrysogenum, and Cladosporium spp. The overlayed method was used for a preliminary discrimination of the strains as no, mild and strong inhibitors. L. plantarum isolates that displayed broad antifungal spectrum activity were further screened based on the antifungal properties of their cell-free supernatant (CFS). CFSs from L. plantarum UFG 108 and L. plantarum UFG 121, in reason of their antifungal potential, were characterized and analyzed by HPLC. Results indicated that lactic acid was produced at high concentration during the growth phase, suggesting that this metabolic aptitude, associated with the low pH, contributed to explain the highlighted antifungal phenotype. Production of phenyllactic acid was also observed. Finally, a new oat-based beverage was obtained by fermentation with the strongest antifungal strain L. plantarum UFG 121. This product was submitted or not to a thermal stabilization and artificially contaminated with F. culmorum. Samples containing L. plantarum UFG 121 showed the best biopreservative effects, since that no differences were observed in terms of some qualitative features between not or contaminated samples with F. culmorum. Here we demonstrate, for the first time, the suitability of LAB

  3. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins.

    PubMed

    Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren

    2013-06-12

    An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    PubMed

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile. Copyright © 2013. Published by Elsevier GmbH.

  5. Cloning, expression and characterization of a mucin-binding GAPDH from Lactobacillus acidophilus.

    PubMed

    Patel, Dhaval K; Shah, Kunal R; Pappachan, Anju; Gupta, Sarita; Singh, Desh Deepak

    2016-10-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in glycolysis. It is also referred to as a moonlighting protein as it has many diverse functions like regulation of apoptosis, iron homeostasis, cell-matrix interactions, adherence to human colon etc. apart from its principal role in glycolysis. Lactobacilli are lactic acid bacteria which colonize the human gut and confer various health benefits to humans. In the present study, we have cloned, expressed and purified the GAPDH from Lactobacillus acidophilus to get a recombinant product (r-LaGAPDH) and characterized it. Size exclusion chromatography shows that r-LaGAPDH exists as a tetramer in solution and have a mucin binding and hemagglutination activity indicating carbohydrate like binding adhesion mechanism. Fluorescence spectroscopy studies showed an interaction of r-LaGAPDH with mannose, galactose, N-acetylgalactosamine and N-acetylglucosamine with a Kd of 3.6±0.7×10(-3)M, 4.34±0.09×10(-3)M, 4±0.87×10(-3)M and 3.7±0.28×10(-3)M respectively. We hope that this preliminary data will generate more interest in further elucidation of the roles of GAPDH in the adhesion processes of the bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Anti-arthritic activity of cell wall content of Lactobacillus plantarum in freund's adjuvant-induced arthritic rats: involvement of cellular inflammatory mediators and other biomarkers.

    PubMed

    Gohil, Priyanshee; Patel, Vimal; Deshpande, Shrikalp; Chorawala, Mehul; Shah, Gaurang

    2018-02-01

    Alteration of microbiota is related with rheumatoid arthritis (RA) and administration of certain probiotics showed an improvement in RA. The present study was designed to find out the anti-arthritic activity of cell wall content of Lactobacillus plantarum in complete Freund's adjuvant (CFA)-induced arthritis in rats. Freund's adjuvant was injected into the left footpad in female rats on day 0 and dexamethasone (1 mg kg -1 , s.c.) & cell wall content of L. plantarum (10 5 , 10 7 , and 10 9  cfu/animal, s.c.) treatment were given from day 7 to 21. The change in body weight, paw volume and arthritic index, joint stiffness, gait test, mobility test, erythrocyte sedimentation rate (ESR), serum C-reactive protein (CRP) level, serum rheumatoid factor (RF), and serum TNF-α was measured on day 21. Cell wall content of L. plantarum treated animals showed improvement in all the parameters as compared to that in CFA-treated animals and exert anti-arthritic activity.

  7. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion☆

    PubMed Central

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion. PMID:24748900

  8. Effects of ethanol, molasses and Lactobacillus plantarum on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration silages in the Tibetan plateau of China.

    PubMed

    Yuan, Xianjun; Wen, Aiyou; Wang, Jian; Guo, Gang; Desta, Seare T; Shao, Tao

    2016-05-01

    In Tibet, it is common practice to make and relocate total mixed ration (TMR) silages before feeding due to the uneven distribution of forages temporally and spatially. This study was conducted to investigate the effects of Lactobacillus plantarum (L), molasses (M) or ethanol (E) on the fermentation quality and aerobic stability of local adaptive TMR silage. After 45 days of ensiling, pH and ammonia nitrogen in inoculated TMR silages were significantly lower than control. During the first 6 days of the aerobic exposure test, a small fluctuation in lactic acid concentration for all TMR silages was observed, and then silages with ethanol continued this trend, while lactic acid in silage without ethanol sharply decreased until the end of the aerobic exposure period. Meanwhile, pH gradually increased along the aerobic exposure; silages treated with ethanol showed lower pH after 9 days of aerobic exposure. The population of yeast gradually increased during 6 days of aerobic exposure, after that an accelerated rise was observed in TMR silages without ethanol. The combinational beneficial effect of L. plantarum and ethanol was found in combined addition of ethanol and Lactobacillus plantarum silages (EL), indicated by intermediate fermentation quality and higher aerobic stability. © 2015 Japanese Society of Animal Science.

  9. Improving in vivo conversion of oleuropein into hydroxytyrosol by oral granules containing probiotic Lactobacillus plantarum 299v and an Olea europaea standardized extract.

    PubMed

    Aponte, Maria; Ungaro, Francesca; d'Angelo, Ivana; De Caro, Carmen; Russo, Roberto; Blaiotta, Giuseppe; Dal Piaz, Fabrizio; Calignano, Antonio; Miro, Agnese

    2018-05-30

    This study reports novel food-grade granules for co-delivery of L. plantarum 299v and a standardized extract of Olea europaea leaves (Phenolea®) as oral carrier of probiotics and hydroxytyrosol. Different granule formulations containing either L. plantarum 299v (Lac), or the olive leave extract (Phe) or their combination (Lac-Phe) have been successfully produced through wet granulation employing excipients generally regarded as safe as granulating/binding agents. L. plantarum cells withstood the manufacturing process and were stable upon storage at 4 °C for more than 6 months. In vitro dissolution studies in simulated gastro-intestinal fluids showed the capability of the granules to rapidly dissolve and deliver both olive leave phenols and living L. plantarum cells. In simulated digestion conditions, Lac and Lac-Phe granules protected L. plantarum against the harsh environment of the gastro-intestinal tract. Co-administration of Lac and Phe oral granules to healthy mice provided for higher amounts of hydroxytyrosol in urines as compared to Phe granules alone, suggesting that L. plantarum 299v boosted in vivo conversion of oleuropein to hydroxytyrosol. On the other hand, PCR-assisted profiling of the Lactobacillus population in faeces obtained from mice treated with Lac or Lac plus Phe confirmed that the probiotic arrived alive to colon and was there able to exert a sort of perturbing effect on the climax colonic microflora. Overall, these results pave the way towards the development of a nutraceutical useful for combined delivery of bioactive hydroxytyrosol and probiotics to colon site. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Survival of Lactobacillus plantarum 44a after spraying and drying in feed and during exposure to gastrointestinal tract fluids in vitro.

    PubMed

    Bucio, Adolfo; Hartemink, Ralf; Schrama, Johan W; Verreth, Johan; Rombouts, Frank M

    2005-08-01

    A good probiotic strain should be able to survive the conditions of handling and storage to be delivered in high concentration to the host. That is especially important when stressful conditions are prevalent in the carrier, for instance in low water content foods like animal feed. The aim of this research was to study the survival of the probiotic candidate Lactobacillus plantarum 44a after spraying and drying in feed, and during storage and exposure to gastrointestinal tract fluids in vitro. In addition, the viability of the strain during exposure to distilled water and 2% NaCl was studied. Feed was sprayed with a suspension of asymptotically equal to 2 x 10(10) CFU of L. plantarum 44a in 10, 15, 20, 25 and 30% v/w of the feed and dried to constant weight (6% moisture) in a convective oven at 25 degrees C. L. plantarum 44a survived 14.67, 36, 51.86, 78.9 and 105.3% respectively in relation to the original % v/w of the feed. After 3 weeks of storage at 25 degrees C, survival was similarly low in all the treatments. L. plantarum 44a stored in feed containing 13% moisture, vacuum-packaged and stored in refrigeration, maintained high viability (approximately 100%) after 1 year of storage. Survival was not affected after feed-containing lactobacilli was exposed to gastrointestinal fluids in a simulation model. Viability of L. plantarum 44a as a cell suspension in PBS added directly to distilled water or distilled water with 2% NaCl was maintained up to 48 h; after 72 h, viability started to decline. It is concluded that L. plantarum 44a maintained high viability after being dried and stored in feed even after exposure to gastric and intestinal fluids in vitro.

  11. Malting of barley with combinations of Lactobacillus plantarum, Aspergillus niger, Trichoderma reesei, Rhizopus oligosporus and Geotrichum candidum to enhance malt quality.

    PubMed

    Hattingh, M; Alexander, A; Meijering, I; van Reenen, C A; Dicks, L M T

    2014-03-03

    Good quality malt is characterised by the presence of high levels of fermentable sugars, amino acids and vitamins. To reach the starch-rich endosperm of the kernel, β-glucan- and arabinoxylan-rich cell walls have to be degraded. β-Glucanase is synthesized in vast quantities by the aleurone layer and scutellum during germination. Secretion of hydrolytic enzymes is often stimulated by addition of the plant hormone gibberellic acid (GA3) during germination. We have shown an enhanced β-glucanase and α-amylase activity in malt when germinating barley was inoculated with a combination of Lactobacillus plantarum B.S1.6 and spores of Aspergillus niger MH1, Rhizopus oligosporus MH2 or Trichoderma reesei MH3, and L. plantarum B.S1.6 combined with cell-free culture supernatants from each of these fungi. Highest malt β-glucanase activity (414 Units/kg malt) was recorded with a combination of L. plantarum B.S1.6 and spores of A. niger MH1. Highest α-amylase activities were recorded with a combination of L. plantarum B.S1.6 and spores of R. oligosporus MH2 (373 Ceralpha Units/g malt). Highest FAN levels were recorded when L. plantarum was inoculated in combination with spores of either R. oligosporus MH2 or T. reesei MH3 (259 and 260 ppm, respectively). This is the first study showing that cell-free culture supernatants of Aspergillus, Rhizopus and Trichoderma have a stimulating effect on β-glucanase and α-amylase production during malting. A combination of L. plantarum B.S1.6, and spores of A. niger MH1 and R. oligosporus MH2 may be used as starter cultures to enhance malt quality. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Lactobacillus acidophilus CP23 with weak immunomodulatory activity lacks anchoring structure for surface layer protein.

    PubMed

    Yanagihara, Sae; Kato, Shinji; Ashida, Nobuhisa; Yamamoto, Naoyuki

    2015-05-01

    To determine the reason for the low levels of Surface layer protein A (SlpA) on CP23 cells, which might play a crucial role in the immunomodulatory effect of Lactobacillus acidophilus, the DNA sequence of the slpA gene of CP23 and L-92 strains, including the upstream region, were analyzed. Unexpectedly, there was no significant difference in the predicted amino acid sequence of the C-terminus needed for cell anchoring, and only an additional Ala-Val-Ala sequence inserted in the N-terminal region of the mature CP23 protein. Therefore, anchoring of SlpA on the cell wall of CP23 and L-92 was evaluated by a reconstitution assay, which showed that SlpA released by LiCl treatment from both CP23 and L-92 was successfully anchored on LiCl-treated L-92 cells, but not on LiCl-treated CP23 cells. Moreover, quantitative analysis of SlpA protein in the culture medium of CP23 and L-92 by ELISA revealed higher levels of SlpA secretion in CP23 cells than in L-92 cells. Collectively, these results suggest that the lower levels of SlpA on the surface of CP23 cells might be caused by less cell wall capacity for SlpA anchoring, leading to an accumulation of SlpA in the culture medium of CP23 cells. The present study supports the importance of cell surface structure of L. acidophilus L-92 for SlpA anchoring on the cell surface needed for immunomodulatory effect. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Identification of Human Intestinal Bacteria that Promote or Inhibit Inflammation

    DTIC Science & Technology

    2012-11-01

    Lactobacillus "acidophilus" Lactobacillus " plantarum " ProvidenCa"sp." Enterobacter"aerogenes" Lactobacillus "paraalimentarius" Salmonella"typhi...8217 indica3ve’of’the’poten3al’of’these’microbes’to’induce’intes3nal’inflamma3on.’ 0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" no"bacteria" Lactobacillus "brevis" Escherichea"coli"(DH5a)" Klebsiella"pneumonia" Salmonella...only

  14. Effects of cadmium on the growth and uptake of cadmium by microorganisms. [Esherichia coli; Bacillus cereus; Lactobacillus acidophilus; Staphylococcus aureus; Streptococcus faecalis; Actinomyces niger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, J.J.; Marshall, R.T.; Pfander, W.H.

    1975-01-01

    Six species of microorganisms, Escherichia coli, Bacillus cereus, Lactobacillus acidophilus, Staphylococcus aureus, Streptococcus faecalis and Actinomyces niger, were grown under suitable conditions in appropriate media. Cadmium chloride was added to provide 0, 5, 10, 20, 40, and 80 ..mu..g of Cd per ml. At 40 and 80 ..mu..g of Cd per ml, E. coli and B. cereus grew well and the other species were repressed. Cd uptake patterns differed significantly among the species tested. The significance of these data with respect to Cd in food chains is discussed. 14 references, 3 tables.

  15. Quantitative assessment of viable cells of Lactobacillus plantarum strains in single, dual and multi-strain biofilms.

    PubMed

    Fernández Ramírez, Mónica D; Kostopoulos, Ioannis; Smid, Eddy J; Nierop Groot, Masja N; Abee, Tjakko

    2017-03-06

    Biofilms of Lactobacillus plantarum are a potential source for contamination and recontamination of food products. Although biofilms have been mostly studied using single species or even single strains, it is conceivable that in a range of environmental settings including food processing areas, biofilms are composed of multiple species with each species represented by multiple strains. In this study six spoilage related L. plantarum strains FBR1-FBR6 and the model strain L. plantarum WCFS1 were characterised in single, dual and multiple strain competition models. A quantitative PCR approach was used with added propidium monoazide (PMA) enabling quantification of intact cells in the biofilm, representing the viable cell fraction that determines the food spoilage risk. Our results show that the performance of individual strains in multi-strain cultures generally correlates with their performance in pure culture, and relative strain abundance in multi-strain biofilms positively correlated with the relative strain abundance in suspended (planktonic) cultures. Performance of individual strains in dual-strain biofilms was highly influenced by the presence of the secondary strain, and in most cases no correlation between the relative contributions of viable planktonic cells and viable cells in the biofilm was noted. The total biofilm quantified by CV staining of the dual and multi-strain biofilms formed was mainly correlated to CV values of the dominant strain obtained in single strain studies. However, the combination of strain FBR5 and strain WCFS1 showed significantly higher CV values compared to the individual performances of both strains indicating that total biofilm formation was higher in this specific condition. Notably, L. plantarum FBR5 was able to outgrow all other strains and showed the highest relative abundance in dual and multi-strain biofilms. All the dual and multi-strain biofilms contained a considerable number of viable cells, representing a potential

  16. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-08-01

    Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.

  17. Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus plantarum 163 isolated from traditional Chinese fermented vegetables.

    PubMed

    Hu, Meizhong; Zhao, Haizhen; Zhang, Chong; Yu, Jiansheng; Lu, Zhaoxin

    2013-11-27

    Presumptive lactic acid bacteria (LAB) strains isolated from traditional Chinese fermented vegetables were screened for bacteriocin production. A novel bacteriocin-producing strain, Lactobacillus plantarum 163, was identified on the basis of its physiobiochemical characteristics and characterized by 16S rDNA sequencing. The novel bacteriocin, plantaricin 163, produced by Lb. plantarum 163 was purified by salt precipitation, gel filtration, and reverse-phase high-performance liquid chromatography (RP-HPLC). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of plantaricin 163 revealed the molecular weight to be 3553.2 Da. The complete amino acid sequence showed VFHAYSARGNYYGNCPANWPSCRNNYKSAGGK, and no similarity to known bacteriocins was found. Plantaricin 163 was highly thermostable (20 min, 121 °C), active in the presence of acidic pH (3-5), sensitive to protease, and exhibited broad-spectrum antimicrobial activity against LAB and other tested Gram-positive and Gram-negative bacteria. The results suggest that plantaricin 163 may be employed as a biopreservative in the food industry.

  18. Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms.

    PubMed

    Li, Ping; Gu, Qing; Zhou, Qingqing

    2016-11-20

    Lactobacilli strains have been considered as important candidates for manufacturing "natural food", due to their antimicrobial properties and generally regarded as safe (GRAS) status. Lactobacillus plantarum LZ206 is a potential probiotic strain isolated from raw cow milk, with antimicrobial activity against various pathogens, including Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), Gram-negtive bacteria (Escherichia coli and Salmonella enterica), and fungus Candida albicans. To better understand molecular base for its antimicrobial activity, entire genome of LZ206 was sequenced. It was revealed that genome of LZ206 contained a circular 3,212,951-bp chromosome, two circular plasmids and one predicted linear plasmid. A plantaricin gene cluster, which is responsible for bacteriocins biosynthesis and could be associated with its broad-spectrum antimicrobial activity, was identified based on comparative genomic analysis. Whole genome sequencing of L. plantarum LZ206 might facilitate its applications to protect food products from pathogens' contamination in the dairy industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis

    PubMed Central

    2013-01-01

    Background Salmonella enterica serovar Enteritidis infections are known to exhibit worldwide prevalence with increased morbidity and mortality. The conventional strategies like antibiotic therapy and vaccination have not only proved to be of sub-optimal efficacy but also led to the development of multidrug resistant strains of Salmonella. Antimicrobial activities of probiotics against various enteropathogens and other health promoting effects have assumed greater significance in recent years. The present study aims to evaluate the efficacy of a Lactobacillus plantarum strain (KSBT 56, isolated from a traditional food product of India), in preventing Salmonella enterica serovar Enteritidis growth and pathogenicity in vitro. Methods and results The cell free culture supernatant (CFCS) of KSBT 56 strain notably inhibited the growth of Salmonella Enteritidis without affecting the growth of other gram-positive lactic acid bacteria. The isolated KSBT 56 strain produces lactic acid similar to other standard probiotic strains like Lactobacillus plantarum MTCC 1407. The free radical production by KSBT 56 strain was studied by using sodC mutant of S. Enteritidis, which exhibited reduced growth in the presence of CFCS of the KSBT 56 strain, indicating the inhibitory activity of free radicals on the growth of S. Enteritidis. Our results also showed a significant reduction in the biofilm forming ability of Salmonella Enteritidis in the presence of the KSBT 56 strain (2 log cfu/ml, p = 0.01). Further, the anti-infective characteristics of KSBT 56 strain was validated by gentamicin protection assay which revealed 80% reduction in the invasion of Salmonella Enteritidis to HCT-116 cell line (Salmonella Enteritidis and KSBT 56 in a 1:1 ratio) and delayed addition of Salmonella Enteritidis by 1 h. Similarly, the reduced adhesion of Salmonella to the HCT-116 cells was observed along with the down regulation of hilA gene of Salmonella Pathogenicity Island 1 (SPI1) indicating that they

  20. An acid/alkaline stress and the addition of amino acids induce a prolonged viability of Lactobacillus plantarum loaded into alginate gel.

    PubMed

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2010-08-15

    This study reports on the investigation on the effects of the conditions used throughout the step of biomass production on the survival of Lactobacillus plantarum loaded into alginate gels. L. plantarum was grown under different conditions (MRS or a laboratory medium-LB(2)-at acidic or alkaline pHs, with NaCl, phenols, vitamins or amino acids) and immobilized in sodium alginate; cell number was evaluated throughout the storage and death (delta(stand)) and first-reduction times (delta) were calculated. The storage of alginate gels at 4 degrees C prolonged cell viability up to 60 days (ca. 20 days for cells produced in MRS and stored at 30 degrees C); however, a similar prolongation was achieved for cells produced in LB(2) adjusted to pH 5.0 and 9.0 or added with amino acids (death time>50-60 days). Copyright 2010 Elsevier B.V. All rights reserved.