Science.gov

Sample records for acids inhibit growth

  1. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  2. Gymnemic Acids Inhibit Hyphal Growth and Virulence in Candida albicans

    PubMed Central

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d’Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  3. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    PubMed

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  4. In vitro inhibition of struvite crystal growth by acetohydroxamic acid.

    PubMed

    Downey, J A; Nickel, J C; Clapham, L; McLean, R J

    1992-10-01

    Struvite (MgNH4PO46H2O) crystals were produced by Proteus mirabilis growth in artificial urine, in the presence and absence of the urease inhibitor, acetohydroxamic acid (AHA). In the absence of AHA, struvite crystals assumed an "X-shaped" or dendritic crystal habit due to rapid growth along their 100 axis. When AHA was present, crystal growth, as monitored by phase contrast light microscopy, was greatly slowed, and the crystals assumed an octahedral crystal habit. Scanning electron microscopy revealed that crystals grown in the presence of AHA were pitted on their surface. This pitting was absent in control samples. While most of this inhibition by AHA was due to lowered urease activity, some crystal growth inhibition occurred in struvite produced in the absence of urease activity through NH4OH titration of artificial urine. We conclude that while AHA is primarily a urease inhibitor, it may also disrupt struvite growth and formation directly through interference with the molecular growth processes on crystal surfaces. PMID:1450840

  5. Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells.

    PubMed

    Meyer, Gary E; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A; Goldenberg, David D; Youngren, Jack F; Goldfine, Ira D; Weiss, William A; Matthay, Katherine K; Rosenthal, Stephen M

    2007-12-15

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  6. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  7. Transient growth inhibition of Escherichia coli K-12 by ion chelators: "in vivo" inhibition of ribonucleic acid synthesis.

    PubMed Central

    Collins, J J; Alder, C R; Fernandez-Pol, J A; Court, D; Johnson, G S

    1979-01-01

    The ion chelators picolinic acid, quinaldic acid, 1,10-phenanthroline, and 8-hydroxyquinoline, but not ethylenediaminetetraacetate, ethyleneglycol-bis-(beta-aminoethyl ether)-N,N-tetraacetate, or dipicolinic acid, rapidly but transiently arrest growth of Escherichia coli K-12. Cells adapt and become resistant to growth inhibition by these agents, a process which requires protein synthesis. Mn2+, at low concentrations, decreases the time required for resumption of growth. Proteins synthesized during the lag are quantitatively and qualitatively different from those synthesized during normal growth. Inhibition of growth can explained by an effect on RNA polymerase, a known metalloenzyme. Images PMID:110773

  8. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  9. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition.

    PubMed

    Hansen, H; Grossmann, K

    2000-11-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6, 6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mM IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [(3)H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA-deficient tomato mutants (notabilis, flacca, and sitiens), and quantification of xanthophylls indicate that ABA biosynthesis is influenced, probably through stimulated cleavage of xanthophylls to xanthoxal in shoot tissue. PMID:11080318

  10. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA-deficient tomato mutants (notabilis, flacca, and sitiens), and quantification of xanthophylls indicate that ABA biosynthesis is influenced, probably through stimulated cleavage of xanthophylls to xanthoxal in shoot tissue. PMID:11080318

  11. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Hoch, A. R.; Reddy, M. M.; Aiken, G. R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO 3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (? = 4.5), P CO2 (10 -3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not.

  12. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  13. Inhibition of the Anaerobic Growth of Brochothrix thermosphacta by Lactic Acid

    PubMed Central

    Grau, Frederick H.

    1980-01-01

    Brochothrix thermosphacta can grow aerobically in the presence of 210 mM l-lactate and anaerobically in its absence at pH values down to at least 5.5. Anaerobic growth is, however, inhibited by l-lactate, the concentration of undissociated lactic acid being the governing factor. Postrigor meat usually contains sufficient lactic acid to select against the anaerobic growth of B. thermosphacta. At least some Lactobacillaceae strains are more resistant to lactic acid and so their growth is favored on vacuum-packaged meat. PMID:16345623

  14. Galacturonic Acid Inhibits the Growth of Saccharomyces cerevisiae on Galactose, Xylose, and Arabinose

    PubMed Central

    Huisjes, Eline H.; de Hulster, Erik; van Dam, Jan C.; Pronk, Jack T.

    2012-01-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pKa value of galacturonic acid (3.51), the addition of 10 g liter?1 galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g liter?1 galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks. PMID:22582063

  15. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.

    PubMed

    Huisjes, Eline H; de Hulster, Erik; van Dam, Jan C; Pronk, Jack T; van Maris, Antonius J A

    2012-08-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks. PMID:22582063

  16. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae.

    PubMed

    Ullah, Azmat; Orij, Rick; Brul, Stanley; Smits, Gertien J

    2012-12-01

    Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids, but the exact mechanism is still unknown. We set out to quantitatively determine the contributions of various mechanisms of antifungal activity of these weak acids, as well as the mechanisms that yeast uses to counteract their effects. We analyzed the effects of four weak organic acids differing in lipophilicity (sorbic, benzoic, propionic, and acetic acids) on growth and intracellular pH (pH(i)) in Saccharomyces cerevisiae. Although lipophilicity of the acids correlated with the rate of acidification of the cytosol, our data confirmed that not initial acidification, but rather the cell's ability to restore pH(i), was a determinant for growth inhibition. This pH(i) recovery in turn depended on the nature of the organic anion. We identified long-term acidification as the major cause of growth inhibition under acetic acid stress. Restoration of pH(i), and consequently growth rate, in the presence of this weak acid required the full activity of the plasma membrane ATPase Pma1p. Surprisingly, the proposed anion export pump Pdr12p was shown to play an important role in the ability of yeast cells to restore the pH(i) upon lipophilic (sorbic and benzoic) acid stress, probably through a charge interaction of anion and proton transport. PMID:23001666

  17. Quantitative Analysis of the Modes of Growth Inhibition by Weak Organic Acids in Saccharomyces cerevisiae

    PubMed Central

    Ullah, Azmat; Orij, Rick; Brul, Stanley

    2012-01-01

    Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids, but the exact mechanism is still unknown. We set out to quantitatively determine the contributions of various mechanisms of antifungal activity of these weak acids, as well as the mechanisms that yeast uses to counteract their effects. We analyzed the effects of four weak organic acids differing in lipophilicity (sorbic, benzoic, propionic, and acetic acids) on growth and intracellular pH (pHi) in Saccharomyces cerevisiae. Although lipophilicity of the acids correlated with the rate of acidification of the cytosol, our data confirmed that not initial acidification, but rather the cell's ability to restore pHi, was a determinant for growth inhibition. This pHi recovery in turn depended on the nature of the organic anion. We identified long-term acidification as the major cause of growth inhibition under acetic acid stress. Restoration of pHi, and consequently growth rate, in the presence of this weak acid required the full activity of the plasma membrane ATPase Pma1p. Surprisingly, the proposed anion export pump Pdr12p was shown to play an important role in the ability of yeast cells to restore the pHi upon lipophilic (sorbic and benzoic) acid stress, probably through a charge interaction of anion and proton transport. PMID:23001666

  18. Conjugated linoleic acid (CLA) inhibits growth of Caco-2 colon cancer cells: possible mediation by oleamide.

    TOXLINE Toxicology Bibliographic Information

    Kim EJ; Jun JG; Park HS; Kim SM; Ha YL; Park JH

    2002-07-01

    We have previously observed that dietary conjugated linoleic acid (CLA) inhibited colon tumorigenesis induced by 1,2-dimethylhydrazine in rats. The present study was performed to determine the mechanisms by which CLA inhibits colon cancer cell growth. CLA markedly inhibited Caco-2 cell growth, while linoleic acid (LA) slightly increased growth. Both CLA and LA increased the production of material reactive to antibodies against prostaglandin (PG)E2 and leukotriene (LT)B4, estimated by a competitive enzyme immunoassays (EIA), in a dose-dependent manner. However, the magnitude of the increase was markedly higher with CLA than that with LA, suggesting that this material was not PGE2 or LTB4. The active compound was isolated by thin-layer chromatography and the nuclear magnetic resonance and infrared spectra revealed that the structure was identical to that of oleamide. The purified oleamide inhibited cell growth and cross-reacted with the EIA. These results indicate that inhibition of Caco-2 cell growth by CLA may be due in part to increased oleamide production.

  19. Conjugated linoleic acid (CLA) inhibits growth of Caco-2 colon cancer cells: possible mediation by oleamide.

    PubMed

    Kim, Eun Ji; Jun, Jong-Gab; Park, Hyun Suh; Kim, Si-Min; Ha, Yeong Lae; Park, Jung Han Yoon

    2002-01-01

    We have previously observed that dietary conjugated linoleic acid (CLA) inhibited colon tumorigenesis induced by 1,2-dimethylhydrazine in rats. The present study was performed to determine the mechanisms by which CLA inhibits colon cancer cell growth. CLA markedly inhibited Caco-2 cell growth, while linoleic acid (LA) slightly increased growth. Both CLA and LA increased the production of material reactive to antibodies against prostaglandin (PG)E2 and leukotriene (LT)B4, estimated by a competitive enzyme immunoassays (EIA), in a dose-dependent manner. However, the magnitude of the increase was markedly higher with CLA than that with LA, suggesting that this material was not PGE2 or LTB4. The active compound was isolated by thin-layer chromatography and the nuclear magnetic resonance and infrared spectra revealed that the structure was identical to that of oleamide. The purified oleamide inhibited cell growth and cross-reacted with the EIA. These results indicate that inhibition of Caco-2 cell growth by CLA may be due in part to increased oleamide production. PMID:12174903

  20. Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori.

    PubMed

    Yamashita, Shinpei; Igarashi, Masayuki; Hayashi, Chigusa; Shitara, Tetsuo; Nomoto, Akio; Mizote, Tomoko; Shibasaki, Masakatsu

    2015-06-01

    Helicobacter pylori growth medium is usually supplemented with horse serum (HS) or FCS. However, cyclodextrin derivatives or activated charcoal can replace serum. In this study, we purified self-growth-inhibiting (SGI) compounds from H. pylori growth medium. The compounds were recovered from porous resin, Diaion HP-20, which was added to the H. pylori growth medium instead of known supplements. These SGI compounds were also identified from 2,6-di-O-methyl-β-cyclodextrin, which was supplemented in a pleuropneumonia-like organisms broth. The growth-inhibiting compounds were identified as lauric acid (LA) and 7-(Z)-tetradecenoic acid [7-(Z)-TDA]. Although several fatty acids had been identified in H. pylori, these specific compounds were not previously found in this species. However, we confirmed that these fatty acids were universally present in the cultivation medium of the H. pylori strains examined in this study. A live/dead assay carried out without HS indicated that these compounds were bacteriostatic; however, no significant growth-inhibiting effect was observed against other tested bacterial species that constituted the indigenous bacterial flora. These findings suggested that LA and 7-(Z)-TDA might play important roles in the survival of H. pylori in human stomach epithelial cells. PMID:25767109

  1. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  2. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight. PMID:24077735

  3. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields. PMID:15898503

  4. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors

    PubMed Central

    2013-01-01

    Background It has been shown that proteasome inhibition leads to growth arrest in the G1 phase of the cell cycle and/or induction of apoptosis. However, it was found that some of these inhibitors do not induce apoptosis in several human normal cell lines. This selective activity makes proteasome inhibition a promising target for new generation of anticancer drugs. Clinical validation of the proteasome, as a therapeutic target in oncology, has been provided by the dipeptide boronic acid derivative; bortezomib. Bortezomib has proven to be effective as a single agent in multiple myeloma and some forms of non-Hodgkin’s lymphoma. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid, 1), a known phenolic acid, was isolated from the methanol extract of Tamarix aucheriana and was shown to possess proteasome inhibitory activity. Methods Using Surflex-Dock program interfaced with SYBYL, the docking affinities of syringic acid and its proposed derivatives to 20S proteasome were studied. Several derivatives were virtually proposed, however, five derivatives: benzyl 4-hydroxy-3,5-dimethoxybenzoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3), 3'-methoxybenzyl 3,5-dimethoxy-4-(3'-methoxybenzyloxy)benzoate (4), 3'-methoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (5) and 3',5'-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (6), were selected based on high docking scores, synthesized, and tested for their anti-mitogenic activity against human colorectal, breast and malignant melanoma cells as well as normal human fibroblast cells. Results Derivatives 2, 5, and 6 showed selective dose-dependent anti-mitogenic effect against human malignant melanoma cell lines HTB66 and HTB68 with minimal cytotoxicity on colorectal and breast cancer cells as well as normal human fibroblast cells. Derivatives 2, 5 and 6 significantly (p ≤ 0.0001) inhibited the various proteasomal chymotrypsin, PGPH, and trypsin like activities. They growth arrested the growth of HTB66 cells at G1 and G2-phases. They also arrested the growth of HTB68 cells at S- and G2-phase, respectively. Moreover, derivatives 2, 5, and 6 markedly induced apoptosis (≥ 90%) in both HTB66 and HTB68. Conclusions Computer-derived syringic acid derivatives possess selective anti-mitogenic activity on human malignant melanoma cells that may be attributed to perturbation of cell cycle, induction of apoptosis and inhibition of various 26S proteasomal activities. PMID:23958424

  5. Growth inhibitive effect of betulinic acid combined with tripterine on MSB-1 cells and its mechanism.

    PubMed

    An, N; Li, H Y; Zhang, X M

    2015-12-01

    Marek's disease (MD), a highly infectious lymphoproliferative disease in chickens, is caused by a cell-associated oncogenic herpesvirus, Marek's disease virus (MDV). MSB-1 is a MD-derived lymphoblastoid cell line and can induce tumors when inoculated into susceptible chickens. Betulinic acid, which is present as one of the major effective components in many traditional Chinese medicines, has recently been reported to inhibit growth of cancer cells and employed as a potential anticancer agent. Tripterine, a major active compound extracted from the Chinese herb Tripterygium wilfordii Hook F, has now also shown anti-tumor activities in various cancers. The aim of this study was to investigate the synergistic growth-inhibitive effect of betulinic acid combined with tripterine on MSB-1 cells and its mechanism. Viability of MSB-1 cells was assessed by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) method. Cell apoptotic analysis was performed by fluorescence detection. NF-κB transcription activity was detected by measuring luciferase activity. Western blotting was used to analyze the expression of p65, IκB and Meq. Our results showed that the proliferation in the combination group was significantly decreased as compared with that of monotherapy using betulinic acid or tripterine, accompanied by an induction of apoptosis, inhibition of NF-κB transcriptional activity and its targeting oncogenic gene Meq. The results suggest that the combination of betulinic acid and tripterine at lower concentration may produce a synergistic inhibitive effect on MSB-1 cells that warrants further investigation for its potential clinical applications. PMID:26467010

  6. Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi.

    PubMed

    Forchetti, Gabriela; Masciarelli, Oscar; Izaguirre, Mara J; Alemano, Sergio; Alvarez, Daniel; Abdala, Guillermina

    2010-12-01

    Endophytic bacterial strains SF2 (99.9% homology with Achromobacter xylosoxidans), and SF3 and SF4 (99.9% homology with Bacillus pumilus) isolated from sunflower grown under irrigation or drought were selected on the basis of plant growth-promoting bacteria (PGPB) characteristics. Aims of the study were to examine effects of inoculation with SF2, SF3, and SF4 on sunflower cultivated under water stress, to evaluate salicylic acid (SA) production by these strains in control medium or at ?a = -2.03 MPa, and to analyze effects of exogenously applied SA, jasmonic acid (JA), bacterial pellets, and bacterial supernatants on growth of pathogenic fungi Alternaria sp., Sclerotinia sp., and Verticillum sp. Growth response to bacterial inoculation was studied in two inbred lines (water stress-sensitive B59 and water stress-tolerant B71) and commercial hybrid Paraiso 24. Under both water stress and normal conditions, plant growth following inoculation was more strongly enhanced for Paraiso 24 and B71 than for B59. All three strains produced SA in control medium; levels for SF3 and SF4 were higher than for SF2. SA production was dramatically higher at ?a = -2.03 MPa. Exogenously applied SA or JA caused a significant reduction of growth for Sclerotinia and a lesser reduction for Alternaria and Verticillum. Fungal growth was more strongly inhibited by bacterial pellets than by bacterial supernatants. Our findings indicate that these endophytic bacteria enhance growth of sunflower seedlings under water stress, produce SA, and inhibit growth of pathogenic fungi. These characteristics are useful for formulation of inoculants to improve growth and yield of sunflower crops. PMID:20383767

  7. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth.

    PubMed

    Li, Li; Wei, Lihui; Shen, Aling; Chu, Jianfeng; Lin, Jiumao; Peng, Jun

    2015-12-01

    Due to drug resistance and unacceptable cytotoxicity of most currently-used cancer chemotherapies, naturally occurring products have gained attention in the field of anticancer treatment. Oleanolic acid (OA) is a natural pentacyclic triterpenoic acid and a principal active compound in many medicinal herbs that have long been used to clinically treat various types of human malignancies. Using a colorectal cancer (CRC) mouse xenograft model and the cell line HT-29, we evaluated the effect of OA on tumor growth in vivo and in vitro, and investigated the underlying molecular mechanisms in the present study. We found that OA significantly inhibited tumor growth in volume and weight in CRC xenograft mice. In addition, OA treatment led to the induction of apoptosis and inhibition of cell proliferation. OA significantly reduced the expression of Bcl-2, Cyclin D1 and CKD4, whereas Bax and p21 expression was profoundly increased after OA treatment. Furthermore, OA significantly suppressed the activation of Akt, p70S6K and MAPK signalings, but promoted p53 pathway activation. Collectively, findings from this study suggest that OA possesses a broad range of anticancer effects via modulation of multiple intracellular targets. PMID:26459864

  8. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.

    PubMed

    Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin

    2010-01-01

    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID:20706577

  9. Nordihydroguaiaretic acid inhibits transforming growth factor beta type 1 receptor activity and downstream signaling.

    PubMed

    Li, Fusheng; Pham, Johnny D; Anderson, Marc O; Youngren, Jack F

    2009-08-15

    It has been well documented that nordihydroguaiaretic acid (NDGA), a phenolic lignan isolated from the creosote bush, Larrea tridentate, has anti-cancer activity in vitro and in vivo. Several mechanisms have been identified that could contribute to these actions, as NDGA directly inhibits metabolic enzymes and receptor tyrosine kinases that are established anti-cancer targets. In the present study, we show that NDGA inhibits the transforming growth factor beta (TGF-beta) type I receptor, a serine threonine kinase receptor. In cultured cells, NDGA treatment repressed Smad2 phosphorylation induced by TGF-beta treatment and by a constitutively active mutant of TGF-beta type I receptor (T202D). NDGA also inhibited downstream transcriptional activation mediated by both TGF-beta treatment and the constitutively active mutant receptor. In vitro, NDGA inhibited TGF-beta type I receptor mediated Smad2 phosphorylation in crude cell lysates and in a purified preparation. Importantly, screening select analogs demonstrated that modification of NDGA's structure resulted in altered potency against the receptor. These results indicated that the structure of NDGA can be modified to achieve increased potency. Together our data provide a novel mechanism for NDGA activity which could help explain its anti-cancer activity, and suggest that NDGA could serve as a structural motif for developing serine/threonine kinase inhibitors with selectivity for TGF-beta type I receptor. PMID:19540220

  10. Nordihydroguaiaretic acid inhibits transforming growth factor β type 1 receptor activity and downstream signaling

    PubMed Central

    Li, Fusheng; Anderson, Marc O.; Youngren, Jack F.

    2009-01-01

    It has been well documented that nordihydroguaiaretic acid (NDGA), a phenolic lignan isolated from the creosote bush, Larrea tridentate, has anti-cancer activity in vitro and in vivo. Several mechanisms have been identified that could contribute to these actions, as NDGA directly inhibits metabolic enzymes and receptor tyrosine kinases that are established anti-cancer targets. In the present study, we show that NDGA inhibits the transforming growth factor β (TGF-β) type I receptor, a serine threonine kinase receptor. In cultured cells, NDGA treatment repressed Smad2 phosphorylation induced by TGF-β treatment and by a constitutively active mutant of TGF-β type I receptor (T202D). NDGA also inhibited downstream transcriptional activation mediated by both TGF-β treatment and the constitutively active mutant receptor. In vitro, NDGA inhibited TGF-β type I receptor mediated Smad2 phosphorylation in crude cell lysates and in a purified preparation. Importantly, screening select analogs demonstrated that modification of NDGA’s structure resulted in altered potency against the receptor. These results indicated that the structure of NDGA can be modified to achieve increased potency. Together our data provide a novel mechanism for NDGA activity which could help explain its anti-cancer activity, and suggest that NDGA could serve as a structural motif for developing serine/threonine kinase inhibitors with selectivity for TGF-β type I receptor. PMID:19540220

  11. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  12. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  13. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  14. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid.

    PubMed

    Meinelt, Thomas; Phan, Thy-My; Behrens, Sascha; Wienke, Andreas; Pedersen, Lars-Flemming; Liu, Dibo; Straus, David L

    2015-04-01

    Peracetic acid (PAA) is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harming the fish. Successful disinfectants (like PAA) should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of our study was to compare the effectiveness of 6 commercial PAA products with different molecular PAA:H2O2 ratios to reduce bacterial growth of Aeromonas salmonicida and Yersinia ruckeri and to determine effective concentrations and exposure times. All products reduced colony-forming units (CFUs) of A. salmonicida and Y. ruckeri. Products with higher molecular PAA:H2O2 ratios inhibited growth better than products with lower molecular PAA:H2O2 ratios at the same PAA concentration; this indicates that H2O2 is not the driving force in the reduction of A. salmonicida and Y. ruckeri growth by PAA in vitro. The practical application of the products with high molecular PAA:H2O2 ratios should be prioritized if these pathogens are diagnosed. PMID:25850398

  15. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  16. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    USGS Publications Warehouse

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  17. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2

    PubMed Central

    Parkinson, Eric Kenneth

    2013-01-01

    The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603

  18. Nordihydroguaiaretic acid (NDGA) and α-mangostin inhibit the growth of Mycobacterium tuberculosis by inducing autophagy.

    PubMed

    Guzmán-Beltrán, Silvia; Rubio-Badillo, Miguel Ángel; Juárez, Esmeralda; Hernández-Sánchez, Fernando; Torres, Martha

    2016-02-01

    Tuberculosis (TB) remains as a global health problem. The prevalence of this infection is related to the association with other diseases, such as HIV, neglect treatment and misuse of antibiotics. Hence, the identification of new drugs is required to eradicate TB. Possible alternatives to existing antibiotics include pure compounds extracted from medicinal plants, which are an important source of antimicrobial agents. The aim of this study was to evaluate the effect of nordihydroguaiaretic acid (NDGA) and α-mangostin on Mycobacterium tuberculosis growth and bacterial survival in infected macrophages derived from the human THP-1 cell line and monocytes. Our results show that both compounds directly inhibit M. tuberculosis growth in liquid medium with Minimal Inhibitory Concentrations (MIC) of 250 and 62μg/mL respectively, likely through preventing bacterial replication. In addition, NDGA and α-mangostin were able to induce autophagy in human cells at lower concentrations (7 and 6μg/mL, respectively) and contributed to the elimination of intracellular bacteria. NDGA and α-mangostin could be candidates for coadjuvant therapy in cases of drug-resistant TB, and their ability to enhance the immune response by promoting autophagy might contribute to TB treatment. PMID:26735610

  19. Reversal of Glyphosate Inhibition of Carrot Cell Culture Growth by Glycolytic Intermediates and Organic and Amino Acids 1

    PubMed Central

    Killmer, John; Widholm, Jack; Slife, Fred

    1981-01-01

    Various cytokinins and purines were ineffective in reversing glyphosate (0.25 millimolar)-induced growth inhibition of carrot (Daucus carota L.) cell suspension cultures. Aspartate was particularly effective in reversing glyphosate inhibition, but asparagine and various combinations of lysine, methionine, threonine, and homoserine (eventual products of aspartate metabolism) were not effective. When organic acids of the tricarboxylic acid cycle were added to the medium, particularly good reversal of inhibition could be obtained with α-ketoglutarate, succinate, and malate. Citrate provided only moderate reversal but the reversal given by glutamate was comparable to that of aspartate and the more effective tricarboxylic acid cycle intermediates. Pyruvate was somewhat toxic to cells when added early in the cell cycle but was most effective at reversing glyphosate inhibition when added at this time. If pyruvate addition was delayed, it was less toxic but was also a less effective reversing agent for glyphosate inhibition. All of the effective reversing agents for glyphosate inhibition found in this study can serve either directly or indirectly as carbon skeletons for respiration and ammonia assimilation and have previously been shown to be effective detoxifying agents for ammonia in cell culture systems. The results of this study suggest that glyphosate inhibition of growth in this system may be due to depletion of respiratory substrate which may eventually result in ammonia accumulation. PMID:16662096

  20. Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens.

    PubMed

    Piccart, K; Vásquez, A; Piepers, S; De Vliegher, S; Olofsson, T C

    2016-04-01

    Despite the increasing knowledge of prevention and control strategies, bovine mastitis remains one of the most challenging diseases in the dairy industry. This study investigated the antimicrobial activity of 13 species of lactic acid bacteria (LAB), previously isolated from the honey crop of the honeybee, on several mastitis pathogens. The viable LAB were first reintroduced into a sterilized heather honey matrix. More than 20 different bovine mastitis isolates were tested against the mixture of the 13 LAB species in the honey medium using a dual-culture overlay assay. The mastitis isolates were identified through bacteriological culturing, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Additionally, the mastitis isolates were subjected to antimicrobial susceptibility testing through disk diffusion. Growth of all tested mastitis pathogens, including the ones displaying antimicrobial resistance to one or more antimicrobial compounds, were inhibited to some extent by the honey and LAB combination. The antibacterial effect of these LAB opens up new perspectives on alternative treatment and prevention of bovine mastitis. PMID:26830735

  1. Growth inhibition of putrefactive anaerobe 3679 caused by stringent-type response induced by protonophoric activity of sorbic acid.

    PubMed Central

    Ronning, I E; Frank, H A

    1987-01-01

    The inhibitory effects of potassium sorbate on the bioenergetics, phenylalanine uptake, protein synthesis, and certain aspects of cell regulation were examined in putrefactive anaerobe 3679. Undissociated sorbic acid appeared to act as a protonophore by lowering the intracellular pH and dissipating the proton motive force of the membrane. Sorbate inhibited the uptake of phenylalanine, decreased the rate of protein synthesis, and altered patterns of phosphorylated nucleotide accumulation, resulting in increased intracellular concentrations of GTP, ppGpp, and an unidentified compound (possibly pppGpp). The addition of a noninhibitory amount of tetracycline released the inhibition of growth by sorbate. Based on these results, we concluded that the inhibition of putrefactive anaerobe 3679 by sorbate resulted from a stringent-type regulatory response induced by the protonophoric activity of sorbic acid. PMID:3606088

  2. Gambogic acid induces apoptosis and inhibits colorectal tumor growth via mitochondrial pathways

    PubMed Central

    Huang, Guang-Ming; Sun, Yu; Ge, Xin; Wan, Xin; Li, Chun-Bo

    2015-01-01

    AIM: To investigate the effect of gambogic acid (GA) on apoptosis in the HT-29 human colon cancer cell line. METHODS: H-29 cells were used for in vitro experiments in this study. Relative cell viability was assessed using MTT assays. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and Hoechst 33342 staining, and quantified by flow cytometry. Cellular ultrastructure was observed by transmission electron microscopy. Real-time PCR and Western blot analyses were used to evaluate gene and protein expression levels. For in vivo experiments, BALB/c nude mice received subcutaneous injections of HT-29 cells in the right armpit. When well-established xenografts were palpable with a tumor size of 75 mm3, mice were randomly assigned to a vehicle (negative) control, positive control or GA treatment group (n = 6 each). The animals in the treatment group received one of three dosages of GA (in saline; 5, 10 or 20 mg/kg) via the caudal vein twice weekly, whereas animals in the negative and positive control groups were given equal volumes of 0.9% saline or 10 mg/kg docetaxel, respectively, via the caudal vein once weekly. RESULTS: The cell viability assay showed that GA inhibited proliferation of HT-29 cells in a dose- and time-dependent manner after treatment with GA (0.00, 0.31, 0.62, 1.25, 2.50, 5.00 or 10.00 μmol/L) for 24, 48 or 72 h. After 48 h, the percentage of apoptotic cells in cells treated with 0.00, 1.25, 2.50 and 5.00 μmol/L GA was 1.4% ± 0.3%, 9.8% ± 1.2%, 25.7% ± 3.3% and 49.3% ± 5.8%, respectively. Ultrastructural analysis of HT-29 cells treated for 48 h with 2.5μmol/L GA revealed apoptotic bodies and condensed and fragmented nuclei. Levels of caspase-8, -9 and -3 mRNAs were significantly increased after treatment with GA (1.25, 2.50 or 5.00 μmol/L) for 48 h (P < 0.05 for all). Protein levels of apoptosis-related factors Fas, FasL, FADD, cytochrome c, and Apaf-1 were increased in GA-treated cells, whereas levels of pro-caspase-8, -9 and -3 were significantly decreased (P < 0.05 for all). Furthermore, GA significantly and dose-dependently inhibited the growth of HT-29 tumors in a mouse xenograft model (P < 0.05). CONCLUSION: GA inhibits HT-29 proliferation via induction of apoptosis. The anti-cancer effects are likely mediated by death receptor (extrinsic) and mitochondrial (intrinsic) pathways. PMID:26034354

  3. The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth.

    PubMed Central

    De Caro, A; Multigner, L; Lafont, H; Lombardo, D; Sarles, H

    1984-01-01

    A CaCO3-crystal-growth inhibitor was isolated from human pancreatic stones by using EDTA demineralization, followed by DEAE-Trisacryl chromatography. The isolated inhibitor was found to be a phosphoglycoprotein with Mr 14017 and having an unusual chemical composition. It is characterized by a high (42%) acidic amino acid content, but lacks methionine and gamma-carboxyglutamic acid. The protein contains 2.65 mol of P/mol of protein, as phosphoserine (2 mol) and phosphothreonine (0.5 mol). Isoelectric focusing of the protein yields one major band corresponding to an isoelectric point of 4.2. Immunochemical quantification of the crystal-growth inhibitor in pure pancreatic juice reveals that it constitutes 14% of the normal exocrine secretion. Our findings demonstrate that this is a novel secretory protein, which has no enzymic activity and which maintains pancreatic juice in a supersaturated state with respect to CaCO3. Images Fig. 3. Fig. 4. PMID:6487269

  4. Effect of osmotic, alkaline, acid or thermal stresses on the growth and inhibition of Listeria monocytogenes.

    PubMed

    Vasseur, C; Baverel, L; Hébraud, M; Labadie, J

    1999-03-01

    Five strains of Listeria monocytogenes (a, b, c, d and e) isolated from industrial plants have been subjected to different osmotic, alkaline, acid or thermal stresses. The effects of these treatments on lag-phase (L) and growth rate (mu) of cells in mid-log phase have been followed using an automated optical density monitoring system. Increasing the osmotic pressure by the addition of different amounts of NaCl increased the lag phase and decreased the growth rate. The same phenomena were observed after decreasing the pH of the medium to 5.8, 5.6 or 5.4 by addition of acetic, lactic or hydrochloric acids. The inhibitory effect was: acetic acid > lactic acid > hydrochloric acid. The addition of NaOH to attain pH values of 9.5, 10.0, 10.5 or 11.0 in the medium produced a dramatic increase of the lag phase at pH 10.5 and 11. Growth rates were also decreased while the maximal population increased with high pH values. These effects varied according to strains. Strains d and e were the most resistant to acidic and alkaline stresses, and e was the most affected by the addition of NaCl. A cold shock of 30 min at 0 degree C had limited effects on growth parameters. On the other hand, hyperthermal shocks (55 or 63 degrees C, 30 min) led to similar increased lag phases and to significant increases of the maximal population in all five strains. PMID:10196752

  5. A model of the specific growth rate inhibition by weak acids in yeasts based on energy requirements.

    PubMed

    Quintas, C; Leyva, J S; Sotoca, R; Loureiro-Dias, M C; Peinado, J M

    2005-04-15

    Zygosaccharomyces bailii, a spoilage yeast, capable of metabolic activity in food environments with low pH, low a(w) and in the presence of weak acid preservatives was chosen for a study on the effect of benzoic acid on growth parameters. In batch cultures, under controlled pH, this food preservative inhibited growth, decreasing the specific growth rate (mu) and the yield coefficient (Y(S)) on glucose. Data obtained at pH 3.5, 4.0 and 4.5 showed that this inhibition was exclusively promoted by the undissociated form of the acid since the effect was independent of pH when the concentration of the acid was expressed in this form. Moreover, the relationship between the values for mu and Y(S), provided evidence that the specific consumption rate of glucose (q(S)) was not affected by benzoic acid, indicating that the inhibition of growth should be completely explained by a decrease of Y(S). The outcome of parallel experiments performed in continuous culture was that the decrease of Y(S) was due to an increase of the maintenance coefficient (m), defined as the fraction of q(S) diverted from growth to cope with stress, represented in this case by the presence of the preservative. Based on these results a model was built, assuming that m increased hyperbolically with the concentration of benzoic acid, from zero in the absence of the acid up to q(S) when growth was completely inhibited. The concentration of the acid, for which m=q(S)/2, is a constant (K(W)), and represents a measure of the tolerance for a preservative, in this case benzoic acid. The simple equation mu/mu(0)=1+W/K(W) predicts the value of mu for a concentration (W) of the preservative, requiring the knowledge of two parameters: the specific growth rate in the absence of the preservative (mu(0)) and K(W). The equation fitted very well the data of the effect of benzoic acid on the specific growth rate of Z. bailii, having K(W)=0.96 mM benzoic acid. The model was also validated with other spoilage yeasts grown in the presence of benzoic acid in microtiter plates in an automated spectrophotometer. The values obtained for K(W) under these conditions confirm Z. bailii as the most tolerant (K(W)=2.1 mM) followed by Pichia sp. (K(W)=0.78 mM), Saccharomyces cerevisiae (K(W)=0.53 mM) and Debaryomyces hansenii (K(W)=0.11 mM). PMID:15854698

  6. Conjugated Linoleic Acid (CLA) inhibits expression of the Spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells

    PubMed Central

    Donnelly, Christina; Olsen, Arne M.; Lewis, Lionel D.; Eisenberg, Burton L.; Eastman, Alan; Kinlaw, William B.

    2010-01-01

    Spot 14 (THRSP, S14) is a nuclear protein involved in the regulation of genes required for fatty acid synthesis in normal and malignant mammary epithelial and adipose cells. Havartine and Bauman reported that conjugated linoleic acid (CLA) inhibits S14 gene expression in bovine mammary and mouse adipose tissues, and reduces milk fat production in cows. We hypothesized that CLA inhibits S14 gene expression in human breast cancer and liposarcoma cells, and that this will retard their growth. Exposure of T47D breast cancer cells to a mixture of CLA isomers reduced the expression of the S14 and fatty acid synthase (FAS) genes. The mixture caused a dose-related inhibition of T47D cell growth, as did pure c9, t11- and t10, c12-CLA, but not linoleic acid. Similar effects were observed in MDA-MB-231 breast cancer cells. Provision of 8 μM palmitate fully (CLA mix, t10, c12-CLA) or partially (c9, t11-CLA) reversed the antiproliferative effect in T47D cells. CLA likewise suppressed levels of S14 and FAS mRNAs in liposarcoma cells, and caused growth inhibition that was prevented by palmitic acid. CLA did not affect the growth of nonlipogenic HeLa cells or human fibroblasts. We conclude that, as in bovine mammary and mouse adipose cells, CLA suppresses S14 and FAS gene expression in human breast cancer and liposarcoma cells. Rescue from the antiproliferative effect of CLA by palmitic acid indicates that reduced tumor lipogenesis is a major mechanism for the anticancer effects of CLA. PMID:19116881

  7. Conjugated eicosapentaenoic acid (EPA) inhibits transplanted tumor growth via membrane lipid peroxidation in nude mice.

    PubMed

    Tsuzuki, Tsuyoshi; Igarashi, Miki; Miyazawa, Teruo

    2004-05-01

    Both conjugated linoleic acid (CLA) and eicosapentaenoic acid (EPA) have an antitumor effect. Hence, we hypothesized that a combination of conjugated double bonds and an (n-3) highly unsaturated fatty acid would produce stronger bioactivity. To verify the antitumor effect of conjugated EPA (CEPA), we transplanted DLD-1 human colon tumor cells into nude mice, and compared the tumor growth between CEPA-fed mice and CLA- and EPA-fed mice. After tumor cell inoculation, mice were assigned to 1 of 4 groups (control, CLA, EPA, and CEPA) consisting of 10 mice each. The control group received only safflower oil fatty acids, whereas the remaining groups received a mixture of safflower oil fatty acids and 20 g/100 g of total fatty acids as CLA, EPA, or CEPA. Mice were fed once every 2 d for 4 wk at a dose of 50 mg/mouse at each feeding. After 4 wk, tumor growth in CEPA-fed mice was significantly suppressed, compared with that in CLA- (P < 0.005) and EPA-fed mice (P < 0.001). DNA fragmentation in the tumor tissues of the CEPA-fed mice occurred more frequently than in the CLA- (P < 0.001) and EPA-fed mice (P < 0.001), suggesting that CEPA induced apoptosis in the tumor tissues. To further investigate the mechanism, the level of oxidative stress in the tumor tissues was determined. The CEPA-fed mice showed significant lipid peroxidation, compared with the CLA- (P < 0.001) and EPA-fed mice (P < 0.001). Therefore, we verified that CEPA has a stronger in vivo antitumor effect than EPA and CLA, and that CEPA acts through induction of apoptosis via lipid peroxidation. PMID:15113964

  8. Omega-3 Fatty Acids Inhibit Tumor Growth in a Rat Model of Bladder Cancer

    PubMed Central

    Parada, Belmiro; Reis, Flávio; Cerejo, Raquel; Garrido, Patrícia; Sereno, José; Xavier-Cunha, Maria; Neto, Paula; Mota, Alfredo; Figueiredo, Arnaldo; Teixeira, Frederico

    2013-01-01

    Omega-3 (ω-3) fatty acids have been tested on prevention and treatment of several cancer types, but the efficacy on “in vivo” bladder cancer has not been analyzed yet. This study aimed at evaluating the chemopreventive efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) mixture in an animal model of bladder cancer. Forty-four male Wistar rats were divided into 4 groups during a 20-week protocol: control; carcinogen—N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN); ω-3 (DHA + EPA); and ω-3 + BBN. BBN and ω-3 were given during the initial 8 weeks. At week 20 blood and bladder were collected and checked for the presence of urothelium lesions and tumors, markers of inflammation, proliferation, and redox status. Incidence of bladder carcinoma was, control (0%), ω-3 (0%), BBN (65%), and ω-3 + BBN (62.5%). The ω-3 + BBN group had no infiltrative tumors or carcinoma in situ, and tumor volume was significantly reduced compared to the BBN (0.9 ± 0.1 mm3 versus 112.5 ± 6.4 mm3). Also, it showed a reduced MDA/TAS ratio and BBN-induced serum CRP, TGF-β1, and CD31 were prevented. In conclusion, omega-3 fatty acids inhibit the development of premalignant and malignant lesions in a rat model of bladder cancer, which might be due to anti-inflammatory, antioxidant, anti-proliferative, and anti-angiogenic properties. PMID:23865049

  9. 5-Aminolevulinic Acid Thins Pear Fruits by Inhibiting Pollen Tube Growth via Ca(2+)-ATPase-Mediated Ca(2+) Efflux.

    PubMed

    An, Yuyan; Li, Jie; Duan, Chunhui; Liu, Longbo; Sun, Yongping; Cao, Rongxiang; Wang, Liangju

    2016-01-01

    Chemical fruit thinning has become a popular practice in modern fruit orchards for achieving high quality fruits, reducing costs of hand thinning and promoting return bloom. However, most of the suggested chemical thinners are often concerned for their detrimental effects and environmental problems. 5-Aminolevulic acid (ALA) is a natural, nontoxic, biodegradable, and environment-friendly plant growth regulator. One of its outstanding roles is improving plant photosynthesis and fruit quality. Here, results showed that applying 100-200 mg/L ALA at full bloom stage significantly reduced pear fruit set. Both in vivo and in vitro studies showed that ALA significantly inhibited pollen germination and tube growth. ALA decreased not only cytosolic Ca(2+) concentration ([Ca(2+)]cyt) but also "tip-focused" [Ca(2+)]cyt gradient, indicating that ALA inhibited pollen tube growth by down-regulating calcium signaling. ALA drastically enhanced pollen Ca(2+)-ATPase activity, suggesting that ALA-induced decrease of calcium signaling probably resulted from activating calcium pump. The significant negative correlations between Ca(2+)-ATPase activity and pollen germination or pollen tube length further demonstrated the critical role of calcium pump in ALA's negative effect on pollen germination. Taken together, our results suggest that ALA at low concentrations is a potential biochemical thinner, and it inhibits pollen germination and tube growth via Ca(2+) efflux by activating Ca(2+)-ATPase, thereby thinning fruits by preventing fertilization. PMID:26904082

  10. 5-Aminolevulinic Acid Thins Pear Fruits by Inhibiting Pollen Tube Growth via Ca2+-ATPase-Mediated Ca2+ Efflux

    PubMed Central

    An, Yuyan; Li, Jie; Duan, Chunhui; Liu, Longbo; Sun, Yongping; Cao, Rongxiang; Wang, Liangju

    2016-01-01

    Chemical fruit thinning has become a popular practice in modern fruit orchards for achieving high quality fruits, reducing costs of hand thinning and promoting return bloom. However, most of the suggested chemical thinners are often concerned for their detrimental effects and environmental problems. 5-Aminolevulic acid (ALA) is a natural, nontoxic, biodegradable, and environment-friendly plant growth regulator. One of its outstanding roles is improving plant photosynthesis and fruit quality. Here, results showed that applying 100–200 mg/L ALA at full bloom stage significantly reduced pear fruit set. Both in vivo and in vitro studies showed that ALA significantly inhibited pollen germination and tube growth. ALA decreased not only cytosolic Ca2+ concentration ([Ca2+]cyt) but also “tip-focused” [Ca2+]cyt gradient, indicating that ALA inhibited pollen tube growth by down-regulating calcium signaling. ALA drastically enhanced pollen Ca2+-ATPase activity, suggesting that ALA-induced decrease of calcium signaling probably resulted from activating calcium pump. The significant negative correlations between Ca2+-ATPase activity and pollen germination or pollen tube length further demonstrated the critical role of calcium pump in ALA's negative effect on pollen germination. Taken together, our results suggest that ALA at low concentrations is a potential biochemical thinner, and it inhibits pollen germination and tube growth via Ca2+ efflux by activating Ca2+-ATPase, thereby thinning fruits by preventing fertilization. PMID:26904082

  11. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis

    SciTech Connect

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C.; Jacobs, Jr, William R.; Kremer, Laurent

    2011-08-24

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA{_}T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development.

  12. All-trans retinoic acid inhibits tumor growth of human osteosarcoma by activating Smad signaling-induced osteogenic differentiation.

    PubMed

    Yang, Qiu-Jun; Zhou, Long-Yang; Mu, Yu-Qin; Zhou, Qi-Xin; Luo, Jin-Yong; Cheng, Lang; Deng, Zhong-Liang; He, Tong-Chuan; Haydon, Rex C; He, Bai-Cheng

    2012-07-01

    Osteosarcoma (OS) is one of the most common malignant bone tumors. Despite the advancement of diagnosis and treatment for OS, the prognosis remains poor. We investigated the proliferation inhibitory effect of all-trans retinoic acid (ATRA) for human OS and the possible mechanism underlying this effect. We examined the proliferation inhibition and apoptosis-inducing effects of ATRA in 143B OS cells. We validated this effect by exogenously expressing the retinoic acid receptor alpha (RARα) in 143B OS cells and injecting the cells into nude mice. We explored the possible mechanism for the proliferation inhibitory effect of ATRA on OS cells and multipotential progenitor cells by detecting osteogenic markers. We demonstrated that the endogenous retinoic acid receptor and retinoid X receptor are all detectable in the commercially available OS cell lines and in primary osteosarcoma cells. ATRA inhibits the proliferation of OS cells in a concentration-dependent manner, as well as induces apoptosis in 143B OS cells. The exogenous expression of RARα inhibits the tumor growth and cell proliferation in vivo. The alkaline phosphatase activity, protein levels of osteopontin (OPN) and osteocalcin (OCN) are all promoted by ATRA in OS cells and mouse embryonic fibroblasts (MEFs), at least by activating the Smad signaling pathway. Collectively, our results strongly indicate that ATRA can inhibit the tumor growth of OS by promoting osteogenic differentiation in OS cells, which is mediated in part by activating Smad signaling. Therefore, combination of ATRA with other current chemotherapy agents may be a promising therapy strategy for OS treatment. PMID:22485251

  13. The effect of pH on the inhibition of bacterial growth by physiological concentrations of butyric acid: implications for neonates fed on suckled milk.

    PubMed

    Sun, C Q; O'Connor, C J; Turner, S J; Lewis, G D; Stanley, R A; Roberton, A M

    1998-05-15

    Butyric acid is released from milk by pre-intestinal lipases during suckling. It is also known to inhibit bacterial growth. To investigate whether butyric acid may be a significant factor in controlling bacterial growth in the stomach of pre-weaned animals, the ability of butyric acid to inhibit growth of selected bacteria was tested over physiological ranges of pH and butyric acid concentrations. Six enteric and environmental strains of bacteria were used: two strains of Escherichia coli, Klebsiella pneumoniae, Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus. At pH 4.5 and 5.0, the growth of all organisms was significantly inhibited in the presence of butyrate, and in some cases growth was completely arrested. At pH 6.0, butyric acid did not affect bacterial growth until the concentration reached 40 mM. The maximum concentration of butyric acid available in cow's milk after incubation with pre-gastric lipase is approximately 16 mM, which would be sufficient to prevent growth of the organisms tested at pH values occurring in the stomach. Therefore, butyric acid inhibition of bacterial growth may explain in part, the role of pre-intestinal lipases in young animals' natural defenses against bacteria in ingested food prior to weaning. PMID:9717513

  14. Efficacy of organic acids, bacteriocins, and the lactoperoxidase system in inhibiting the growth of Cronobacter spp. in rehydrated infant formula.

    PubMed

    Oshima, Satoru; Rea, Mary C; Lothe, Sheba; Morgan, Sheila; Begley, Maire; O'Connor, Paula M; Fitzsimmons, Aidan; Kamikado, Hideaki; Walton, Richard; Ross, R Paul; Hill, Colin

    2012-10-01

    Thirty-three antimicrobial agents, including antimicrobial peptides (nisin, lacticin 3147, isracidin), organic acids, emulsifiers (organic acid esters), glycine, lysozyme, tocopherol, EDTA, milk fat globule membrane, and the lactoperoxidase system (LPOS) were screened for anti-Cronobacter sakazakii activity. The compounds were initially screened individually in parallel in synthetic media. Those showing antimicrobial activity were then tested in reconstituted whole milk and finally in reconstituted powdered infant formula (PIF), using mild temperatures of reconstitution and prolonged storage at room temperature. Propionic acid and monocaprylin (as POEM M-100) in combination showed inhibitory activity at sufficiently low concentrations (0.1 to 0.2%) in milk to be considered as potential antimicrobial additives for the inhibition of C. sakazakii in reconstituted PIF. More interestingly, LPOS, when combined with the broad-spectrum bacteriocins nisin or lacticin 3147, inhibited outgrowth of C. sakazakii at 37°C for 8 h. The combined effects of POEM M-100 and either acetate or propionate and LPOS with lacticin 3147 or nisin were evaluated under the Food and Agriculture Organization of the United Nations-World Health Organization high-risk scenario for PIF, i.e., low temperature of reconstitution and long storage or feeding times at ambient temperature. In the presence of LPOS and lacticin 3147, growth of Cronobacter spp. was inhibited for up to 12 h when the PIF was rehydrated at 40 or 50°C. These results highlight the potential of combinatory approaches to improving the safety of infant milk formula. PMID:23043820

  15. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells.

    PubMed

    Wen, Chuangyu; Huang, Lanlan; Chen, Junxiong; Lin, Mengmeng; Li, Wen; Lu, Biyan; Rutnam, Zina Jeyapalan; Iwamoto, Aikichi; Wang, Zhongyang; Yang, Xiangling; Liu, Huanliang

    2015-11-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  16. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation

    PubMed Central

    Rettig, I; Koeneke, E; Trippel, F; Mueller, W C; Burhenne, J; Kopp-Schneider, A; Fabian, J; Schober, A; Fernekorn, U; von Deimling, A; Deubzer, H E; Milde, T; Witt, O; Oehme, I

    2015-01-01

    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents. PMID:25695609

  17. The natural compound chebulagic acid inhibits vascular endothelial growth factor A mediated regulation of endothelial cell functions

    PubMed Central

    Lu, Kai; Basu, Sujit

    2015-01-01

    Vascular endothelial growth factor A (VEGFA) plays an important role in tumour angiogenesis and its angiogenic action is mainly mediated through its VEGF receptor 2 (VEGFR-2). Therefore drugs targeting VEGFA/VEGFR-2 are being presently used in the clinics for treatment of several types of solid malignant tumours. We here in report that low dose of chebulagic acid (CA), a hydrolysable tannin found in myrobalan fruits can inhibit VEGFA induced vascular permeability, endothelial cell proliferation, migration, tube formation and thereby, angiogenesis by suppressing VEGFR-2 phosphorylation. CA may thus be an effective and useful natural inhibitor of VEGFA mediated angiogenesis. PMID:25859636

  18. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    PubMed

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. PMID:16667248

  19. Betulinic Acid Inhibits Growth of Cultured Vascular Smooth Muscle Cells In Vitro by Inducing G1 Arrest and Apoptosis

    PubMed Central

    Vadivelu, Raja Kumar; Yeap, Swee Keong; Ali, Abdul Manaf; Hamid, Muhajir; Alitheen, Noorjahan Banu

    2012-01-01

    Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC) is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC50 of 3.8 μg/mL significantly (P < 0.05). Nevertheless, betulinic acid exhibited G1 cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G1 cell cycle arrest and dose-dependent DNA damage on VSMC. PMID:23056140

  20. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth: structure-activity relationships for betulinic acid analogues.

    PubMed

    Ziegler, Hanne L; Franzyk, Henrik; Sairafianpour, Majid; Tabatabai, Mehrnoush; Tehrani, Mahboubeh D; Bagherzadeh, Karim; Hägerstrand, Henry; Staerk, Dan; Jaroszewski, Jerzy W

    2004-01-01

    The natural triterpene betulinic acid and its analogues (betulinic aldehyde, lupeol, betulin, methyl betulinate and betulinic acid amide) caused concentration-dependent alterations of erythrocyte membrane shape towards stomatocytes or echinocytes according to their hydrogen bonding properties. Thus, the analogues with a functional group having a capacity of donating a hydrogen bond (COOH, CH(2)OH, CONH(2)) caused formation of echinocytes, whereas those lacking this ability (CH(3), CHO, COOCH(3)) induced formation of stomatocytes. Both kinds of erythrocyte alterations were prohibitive with respect to Plasmodium falciparum invasion and growth; all compounds were inhibitory with IC(50) values in the range 7-28 microM, and the growth inhibition correlated well with the extent of membrane curvature changes assessed by transmission electron microscopy. Erythrocytes pre-loaded with betulinic acid or its analogues and extensively washed in order to remove excess of the chemicals could not serve as hosts for P. falciparum parasites. Betulinic acid and congeners can be responsible for in vitro antiplasmodial activity of plant extracts, as shown for Zataria multiflora Boiss. (Labiatae) and Zizyphus vulgaris Lam. (Rhamnaceae). The activity is evidently due to the incorporation of the compounds into the lipid bilayer of erythrocytes, and may be caused by modifications of cholesterol-rich membrane rafts, recently shown to play an important role in parasite vacuolization. The established link between erythrocyte membrane modifications and antiplasmodial activity may provide a novel target for potential antimalarial drugs. PMID:14697777

  1. Inhibition of apatite crystal growth by the amino-terminal segment of human salivary acidic proline-rich proteins.

    PubMed

    Aoba, T; Moreno, E C; Hay, D I

    1984-12-01

    Inhibition of seeded apatitic crystal growth by human salivary acidic proline-rich phosphoproteins (PRP) has been related to their adsorption onto the apatite seeds. The amino-terminal 30-residue segment of the PRP makes an important contribution to this adsorption. This peptide (PRP1(T1] and its dephosphorylated analogue from PRP3 (PRP3(T1)DP) were prepared. They have identical sequences, except the phosphates at residues 8 and 22 in PRP1(T1) are absent from PRP3(T1)DP. Adsorption of these peptides onto hydroxyapatite and their effect on crystal growth from a defined supersaturated solution was studied. Adsorption behavior was adequately described by the Langmuir adsorption isotherm. The adsorption affinity constant of PRP1(T1) (K = 20,200 ml/mumol) was more than 10 times the corresponding value for PRP3(T1)DP (1,800 ml/mumol), and similar to that of the parent protein, PRP1 (26,200 ml/mumol). Inhibition of crystal growth by the peptides was interpreted in terms of the fractional coverage of the maximum number of adsorption sites (as derived from the adsorption isotherms), suggesting that the molecules block, by adsorption, specific growth sites on these surfaces. Comparison of precipitation kinetics showed that PRP1(T1) is a more effective inhibitor than PRP3(T1)DP at the same initial concentration (10(-6)-10(-7)M). However, on the basis of per mol adsorbed, PRP3(T1)DP displays a greater inhibitory activity; such a behavior is consistent with a more open molecular structure which blocks more growth sites per mol adsorbed than PRP1(T1).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6099209

  2. Pachymic Acid Inhibits Growth and Induces Apoptosis of Pancreatic Cancer In Vitro and In Vivo by Targeting ER Stress

    PubMed Central

    Cheng, Shujie; Swanson, Kristen; Eliaz, Isaac; McClintick, Jeanette N.; Sandusky, George E.; Sliva, Daniel

    2015-01-01

    Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer. PMID:25915041

  3. Linoleic Acid-Induced Growth Inhibition of Human Gastric Epithelial Adenocarcinoma AGS Cells is Associated with Down-Regulation of Prostaglandin E2 Synthesis and Telomerase Activity

    PubMed Central

    Choi, Yung Hyun

    2014-01-01

    Background: Linoleic acid is the most abundant polyunsaturated fatty acid in human nutrition and found in most vegetable oils and certain food products. In the present study, we investigated the effects of linoleic acid on the growth of human epithelial adenocarcinoma AGS cells. Methods: MTT assay, flow cytometry, RT-PCR and Western-blot analyses were used to investigate the effects and underlying mechanisms of linoleic acid on AGS cells. The effects of this compound were also tested on prostaglandin E2 (PGE2) production and telomerase activity. Results: Our data indicated that growth inhibition of AGS cells by linoleic acid treatment was associated with induction of apoptosis. Linoleic acid treatment decreased the expression levels of the cyclooxygenase (COX)-2 mRNA and protein without causing significant changes in the COX-1 levels, which was correlated with the inhibition of PGE2 synthesis. Linoleic acid treatment also decreased the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, and activity of telomerase, with inhibiting the expression of c-myc in a concentration-dependent manner. Conclusions: Taken together, our results indicate that linoleic acid inhibits the production of PGE2 and activity of telomerase by suppressing COX-2 and hTERT expression. PMID:25337570

  4. Identification of a molecular signature underlying inhibition of mammary carcinoma growth by dietary N-3 fatty acids.

    PubMed

    Jiang, Weiqin; Zhu, Zongjian; McGinley, John N; El Bayoumy, Karam; Manni, Andrea; Thompson, Henry J

    2012-08-01

    An increased ratio of dietary n-3 relative to n-6 fatty acids has been shown to inhibit the development of mammary cancer in animal models. However, the molecular mechanisms by which n-3 fatty acids affect tumor growth remain unknown. Here, we investigated the effects of varying dietary ratios of n-3:n-6 fatty acids on cell signaling in a rat model of chemically induced mammary carcinoma. Cell proliferation was reduced by 60% in carcinomas from the high n-3:n-6 treatment group compared with the low n-3:n-6 treatment group. These changes were associated with decreased cyclin-D1 and phospho-retinoblastoma protein expression and increased levels of cyclin-dependent kinase inhibitors, CIP1 (p21) and KIP1 (p27). In addition, the apoptotic index was increased in carcinomas from the high n-3:n-6 group and was associated with elevated apoptotic protease-activating factor 1 and a higher ratio of Bax/Bcl-2. Interestingly, changes in protein expression were consistent with reduced inflammation and suppressed mTOR activity, and the molecular signature associated with high n-3:n-6 treatment revealed changes in PPARγ activation and suppression of lipid synthesis. Together, our findings indicate that the molecular effects of high dietary n-3 to n-6 ratios are heterogeneous in nature but point to consistent changes in lipid metabolism pathways, which may serve as potential therapeutic targets for cancer prevention and control. This study identifies the pathways modulated by dietary fatty acid ratios in a rat model of breast cancer, with implications for cancer prevention. PMID:22651929

  5. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harmful effects to fish. These agents should not leave dangerous residues in the environment in order to successfully contribute to sustainable aq...

  6. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid is a therapeutic agent used for disinfection, but it must be investigated in order to mitigate diseases without harmful effects to the fish. These agents should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of ...

  7. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is an agent used for disinfection in aquaculture. PAA contributes to sustainable aquaculture, because it releases no harmful residue in the environment. However, there is lack of guideline about the effective application of different PAA products against various pathogens in p...

  8. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  9. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  10. Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines.

    PubMed Central

    Braakhuis, B. J.; Klaassen, I.; van der Leede, B. M.; Cloos, J.; Brakenhoff, R. H.; Copper, M. P.; Teerlink, T.; Hendriks, H. F.; van der Saag, P. T.; Snow, G. B.

    1997-01-01

    Retinoids can reverse potentially premalignant lesions and prevent second primary tumours in patients with head and neck squamous cell carcinoma (HNSCC). Furthermore, it has been reported that acquired resistance to all-trans retinoic acid (RA) in leukaemia is associated with decreased plasma peak levels, probably the result of enhanced retinoid metabolism. The aim of this study was to investigate the metabolism of retinoids and relate this to growth inhibition in HNSCC. Three HNSCC cell lines were selected on the basis of a large variation in the all-trans RA-induced growth inhibition. Cells were exposed to 9.5 nM (radioactive) for 4 and 24 h, and to 1 and 10 microM (nonradioactive) all-trans RA for 4, 24, 48 and 72 h, and medium and cells were analysed for retinoid metabolites. At all concentrations studied, the amount of growth inhibition was proportional to the extent at which all-trans-, 13- and 9-cis RA disappeared from the medium as well as from the cells. This turnover process coincided with the formation of a group of as yet unidentified polar retinoid metabolites. The level of mRNA of cellular RA-binding protein II (CRABP-II), involved in retinoid homeostasis, was inversely proportional to growth inhibition. These findings indicate that for HNSCC retinoid metabolism may be associated with growth inhibition. Images Figure 6 PMID:9231918

  11. Efficacy of washing meat surfaces with 2% levulinic, acetic, or lactic acid for pathogen decontamination and residual growth inhibition.

    PubMed

    Carpenter, C E; Smith, J V; Broadbent, J R

    2011-06-01

    We compared spray washing at 55.4 °C with 2% levulinic acid to that with lactic or acetic acid for decontamination of pathogenic bacteria inoculated onto meat surfaces, and their residual protection against later growth of pathogenic bacteria. The model systems included Escherichia coli O157:H7 on beef plate, Salmonella on chicken skin and pork belly, and Listeria monocytogenes on turkey roll. In the decontamination studies, acid washes lowered recoverable numbers of pathogens by 0.6 to 1 log/cm(2) as compared to no-wash controls, and only lactic acid lowered the number of pathogens recovered as compared to the water wash. Washing with levulinic acid at 68.3 or 76.7 °C did not result in additional decontamination of E. coli. Acetic acid prevented residual growth of E. coli and L. monocytogenes, and it reduced numbers of Salmonella on chicken skin to below recoverable levels. Overall, levulinic acid did not provide as effective decontamination as lactic acid nor residual protection as acetic acid. PMID:21251765

  12. n-3 polyunsaturated fatty acids abrogate mTORC1/2 signaling and inhibit adrenocortical carcinoma growth in vitro and in vivo.

    PubMed

    Liu, Jun; Xu, Meinian; Zhao, Yongbin; Ao, Chunping; Wu, Yukun; Chen, Zhenguo; Wang, Bangqi; Bai, Xiaochun; Li, Ming; Hu, Weilie

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs) are essential for human health and have been reported to reduce the risk of cancer, inhibit the growth of various types of tumors both in vitro and in vivo, and affect adrenal function. However, their effects on adrenocortical carcinoma (ACC) are not known. In the present study, we demonstrated that docosahexenoic acid (DHA) inhibited ACC cell proliferation, colony formation and cell cycle progression, and promoted apoptosis. In addition, ectopic expression of fat-1, a desaturase that converts n-6 to n-3 PUFAs endogenously, also inhibited ACC cell proliferation. Moreover, supplementing n-3 PUFAs in the diet efficiently prevented ACC cell growth in xenograft models. Notably, implanted ACC cells were unable to grow in fat-1 transgenic severe combined immune deficiency mice. Further study revealed that exogenous and endogenous n-3 PUFAs efficiently suppressed both mTOR complex 1 (mTORC1) and mTORC2 signaling in ACC in vitro and in vivo. Taken together, our findings provide comprehensive preclinical evidence that n-3 PUFAs efficiently prevent ACC growth by inhibiting mTORC1/2, which may have important implications in the treatment of ACC. PMID:27035283

  13. Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana.

    PubMed

    Hernández, Iker; Munné-Bosch, Sergi

    2012-12-01

    Flavonoids fulfill an enormous range of biological functions in plants. In seeds, these compounds play several roles; for instance proanthocyanidins protect them from moisture, pathogen attacks, mechanical stress, UV radiation, etc., and flavonols have been suggested to protect the embryo from oxidative stress. The present study aimed at determining the role of flavonoids in Arabidopsis thaliana (L.) seed germination, and the involvement of salicylic acid (SA) and auxin (indole-3-acetic acid), two phytohormones with the same biosynthetic origin as flavonoids, the shikimate pathway, in such a putative role. We show that naringenin, a flavanone, strongly inhibits the germination of A. thaliana seeds in a dose-dependent and SA-independent manner. Altered auxin levels do not affect seed germination in Arabidopsis, but impaired auxin transport does, although to a minor extent. Naringenin and N-1-naphthylphthalamic acid (NPA) impair auxin transport through the same mechanisms, so the inhibition of germination by naringenin might involve impaired auxin transport among other mechanisms. From the present study it is concluded that naringenin inhibits the germination of Arabidopsis seeds in a dose-dependent and SA-independent manner, and the results also suggest that such effects are exerted, at least to some extent, through impaired auxin transport, although additional mechanisms seem to operate as well. PMID:23031844

  14. Mechanism of Growth Inhibition of Human Cancer Cells by Conjugated Eicosapentaenoic Acid, an Inhibitor of DNA Polymerase and Topoisomerase

    PubMed Central

    Yonezawa, Yuko; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2007-01-01

    DNA topoisomerases (topos) and DNA polymerases (pols) are involved in many aspects of DNA metabolism such as replication reactions. We found that long chain unsaturated fatty acids such as polyunsaturated fatty acids (PUFA) (i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) inhibited the activities of eukaryotic pols and topos in vitro, and the inhibitory effect of conjugated fatty acids converted from EPA and DHA (cEPA and cDHA) on pols and topos was stronger than that of normal EPA and DHA. cEPA and cDHA did not affect the activities of plant and prokaryotic pols or other DNA metabolic enzymes tested. cEPA was a stronger inhibitor than cDHA with IC50 values for mammalian pols and human topos of 11.0 – 31.8 and 0.5 – 2.5 μM, respectively. cEPA inhibited the proliferation of two human leukemia cell lines, NALM-6, which is a p53-wild type, and HL-60, which is a p53-null mutant, and the inhibitory effect was stronger than that of normal EPA. In both cell lines, cEPA arrested in the G1 phase, and increased cyclin E protein levels, indicating that it blocks the primary step of in vivo DNA replication by inhibiting the activity of replicative pols rather than topos. DNA replication-related proteins, such as RPA70, ATR and phosphorylated-Chk1/2, were increased by cEPA treatment in the cell lines, suggesting that cEPA led to DNA replication fork stress inhibiting the activities of pols and topos, and the ATR-dependent DNA damage response pathway could respond to the inhibitor of DNA replication. The compound induced cell apoptosis through both p53-dependent and p53-independent pathways in cell lines NALM-6 and HL-60, respectively. These results suggested the therapeutic potential of conjugated PUFA, such as cEPA, as a leading anti-cancer compound that inhibited pols and topos activities.

  15. Nordihydroguaiaretic acid (NDGA) inhibits the IGF-1 and c-erbB2/HER2/neu receptors and suppresses growth in breast cancer cells.

    PubMed

    Youngren, Jack F; Gable, Karissa; Penaranda, Cristina; Maddux, Betty A; Zavodovskaya, Marianna; Lobo, Margaret; Campbell, Michael; Kerner, John; Goldfine, Ira D

    2005-11-01

    Nordihydroguaiaretic acid (NDGA) is a phenolic compound isolated from the creosote bush Larrea divaricatta that has anti-cancer activities both in vitro and in vivo. We can now attribute certain of these anti-cancer properties in breast cancer cells to the ability of NDGA to directly inhibit the function of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu (HER2/neu) receptor. In MCF-7 human breast cancer cells, low micromolar concentrations of NDGA inhibited activation of the IGF-1R, and downstream phosphorylation of both the Akt/PKB serine kinase and the pro-apoptotic protein BAD. In mouse MCNeuA cells, NDGA also inhibited ligand independent phosphorylation of HER2/neu. To study whether this inhibitory effect in cells was due to a direct action on these receptors, we studied the IGF-1-stimulated tyrosine kinase activity of isolated IGF-1R, which was inhibited by NDGA at 10 muM or less. NDGA was also effective at inhibiting autophosphorylation of the isolated HER2/neu receptor at similar concentrations. In addition, NDGA inhibited IGF-1 specific growth of cultured breast cancer cells with an IC50 of approximately 30 muM. NDGA treatment (intraperitoneal injection 3 times per week) also decreased the activity of the IGF-1R and the HER2/neu receptor in MCNeuA cells implanted into mice. This inhibition of RTK activity was associated with decreased growth rates of MCNeuA cells in vivo. These studies indicate that the anti-breast cancer properties of NDGA are related to the inhibition of two important RTKs. Agents of this class may therefore provide new insights into potential therapies for this disease. PMID:16142439

  16. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    SciTech Connect

    Ho, Hsieh-Hsun; Chang, Chi-Sen; Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan ; Ho, Wei-Chi; Liao, Sheng-You; Lin, Wea-Lung; Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan ; Wang, Chau-Jong; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  17. Gamma-interferon-induced inhibition of the growth of Rickettsia prowazekii in fibroblasts cannot be explained by the degradation of tryptophan or other amino acids.

    PubMed Central

    Turco, J; Winkler, H H

    1986-01-01

    We examined the role of amino acid deprivation in gamma-interferon-induced (IFN-gamma) suppression of the growth of Rickettsia prowazekii in mouse L929 cells and human fibroblasts by measuring the amino acid pools in untreated and IFN-gamma-treated cells. In recombinant IFN-gamma-treated cultures of human fibroblasts, tryptophan was undetectable in both the intracellular pool and the extracellular medium. In contrast, tryptophan was not depleted from the intracellular pool or the extracellular medium of L929 cells treated with recombinant IFN-gamma or crude mouse lymphokines. None of the other amino acids measured was severely depleted in IFN-gamma-treated L929 cells and human fibroblasts. Extracts prepared from IFN-gamma-treated human fibroblasts exhibited indoleamine 2,3-dioxygenase activity, converting tryptophan into products that cochromatographed with N-formylkynurenine and kynurenine; however, extracts prepared from untreated human fibroblasts, untreated L929 cells, recombinant IFN-gamma-treated L929 cells, and mouse lymphokine-treated L929 cells did not degrade tryptophan. Human HeLa cells resembled the human fibroblasts in that they degraded tryptophan after IFN-gamma treatment. Similarly, mouse 3T3-A31 cells and mouse embryo fibroblasts resembled mouse L929 cells in that they did not degrade tryptophan. Supplementation of the extracellular medium with additional tryptophan reconstituted the tryptophan pool in mock-infected and R. prowazekii-infected, X-irradiated, IFN-gamma-treated human fibroblasts to values greater than those observed in untreated control cultures. However, reconstitution of the tryptophan pool did not relieve IFN-gamma-induced inhibition of rickettsial growth. Addition of kynurenine or N-formylkynurenine to rickettsia-infected human fibroblasts at concentrations four times the usual tryptophan concentration did not inhibit growth of R. prowazekii. We conclude that neither tryptophan depletion nor depletion of the other amino acids studied explains the inhibitory effect of IFN-gamma on rickettsial growth in mouse L929 cells. In IFN-gamma-treated human fibroblasts, either tryptophan depletion is not involved in the inhibition of rickettsial growth or tryptophan depletion and some other mechanism(s) together contribute to the inhibition of rickettsial growth. PMID:3087883

  18. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    SciTech Connect

    Li, Ying; Zhao, Haixia; Wang, Yuzhong; Zheng, Hao; Yu, Wei; Chai, Hongyan; Zhang, Jing; Falck, John R.; Guo, Austin M.; Yue, Jiang; Peng, Renxiu; Yang, Jing

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. - Highlights: • Isoliquiritigenin induces growth inhibition and apoptosis in human breast cancer. • The proapoptotic action of isoliquiritigenin has been studied in vitro and in vivo. • Arachidonic acid metabolic network mediates isoliquiritigenin-induced apoptosis. • PI3K/Akt deactivation is asssociated with isoliquiritigenin-induced apoptosis. • Isoliquiritigenin may be a multi-target drug in the treatment of breast cancer.

  19. Inhibition of hepatocyte growth factor-induced motility and in vitro invasion of human colon cancer cells by gamma-linolenic acid.

    PubMed Central

    Jiang, W. G.; Hiscox, S.; Hallett, M. B.; Scott, C.; Horrobin, D. F.; Puntis, M. C.

    1995-01-01

    In this study we have determined the effects of the n-6 essential fatty acid gamma-linolenic acid (GLA) on the motility and invasive/metastatic nature of the human colon cancer cell lines HT115, HT29 and HRT18. Cell motility was induced by hepatocyte growth factor/scatter factor (HGF/SF) and measured by both colony scattering and dissociation from carrier beads. Invasiveness was measured in vitro by cellular invasion into extracellular matrix. At concentrations up to 100 microM (which had no effect on cell growth over the duration of the experiments) both cell motility and invasion induced by HGF/SF were markedly reduced by GLA and its lithium salt. The attachment of these cells to the extracellular matrix components (Matrigel and fibronectin) was also inhibited. There were also changes in the cell-surface E-cadherin, but not fibronectin receptor at similar concentrations. It is concluded that n-6 essential fatty acids have the ability to inhibit both motility and invasiveness of human colon cancer cells, perhaps by modifying cell-surface adhesion molecules. Images p745-a Figure 1 Figure 7 PMID:7710939

  20. Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells.

    PubMed

    Wang, Jian-Fa; Fu, Shou-Peng; Li, Su-Nan; Hu, Zhong-Ming; Xue, Wen-Jing; Li, Zhi-Qiang; Huang, Bing-Xu; Lv, Qing-Kang; Liu, Ju-Xiong; Wang, Wei

    2013-01-01

    Short-chain fatty acids (SCFAs) play a key role in altering carbohydrate and lipid metabolism, influence endocrine pancreas activity, and as a precursor of ruminant milk fat. However, the effect and detailed mechanisms by which SCFAs mediate bovine growth hormone (GH) and prolactin (PRL) gene transcription remain unclear. In this study, we detected the effects of SCFAs (acetate, propionate, and butyrate) on the activity of the cAMP/PKA/CREB signaling pathway, GH, PRL, and Pit-1 gene transcription in dairy cow anterior pituitary cells (DCAPCs). The results showed that SCFAs decreased intracellular cAMP levels and a subsequent reduction in PKA activity. Inhibition of PKA activity decreased CREB phosphorylation, thereby inhibiting GH and PRL gene transcription. Furthermore, PTX blocked SCFAs- inhibited cAMP/PKA/CREB signaling pathway. These data showed that the inhibition of GH and PRL gene transcription induced by SCFAs is mediated by Gi activation and that propionate is more potent than acetate and butyrate in inhibiting GH and PRL gene transcription. In conclusion, this study identifies a biochemical mechanism for the regulation of SCFAs on bovine GH and PRL gene transcription in DCAPCs, which may serve as one of the factors that regulate pituitary function in accordance with dietary intake. PMID:24177567

  1. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    PubMed

    Cao, Wenqing; Ma, ZhiFan; Rasenick, Mark M; Yeh, ShuYan; Yu, JiangZhou

    2012-01-01

    Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment. PMID:23285198

  2. Norstictic Acid Inhibits Breast Cancer Cell Proliferation, Migration, Invasion, and In Vivo Invasive Growth Through Targeting C-Met.

    PubMed

    Ebrahim, Hassan Y; Elsayed, Heba E; Mohyeldin, Mohamed M; Akl, Mohamed R; Bhattacharjee, Joydeep; Egbert, Susan; El Sayed, Khalid A

    2016-04-01

    Breast cancer is a major health problem affecting the female population worldwide. The triple-negative breast cancers (TNBCs) are characterized by malignant phenotypes, worse patient outcomes, poorest prognosis, and highest mortality rates. The proto-oncogenic receptor tyrosine kinase c-Met is usually dysregulated in TNBCs, contributing to their oncogenesis, tumor progression, and aggressive cellular invasiveness that is strongly linked to tumor metastasis. Therefore, c-Met is proposed as a promising candidate target for the control of TNBCs. Lichens-derived metabolites are characterized by their structural diversity, complexity, and novelty. The chemical space of lichen-derived metabolites has been extensively investigated, albeit their biological space is still not fully explored. The anticancer-guided fractionation of Usnea strigosa (Ach.) lichen extract led to the identification of the depsidone-derived norstictic acid as a novel bioactive hit against breast cancer cell lines. Norstictic acid significantly suppressed the TNBC MDA-MB-231 cell proliferation, migration, and invasion, with minimal toxicity to non-tumorigenic MCF-10A mammary epithelial cells. Molecular modeling, Z'-LYTE biochemical kinase assay and Western blot analysis identified c-Met as a potential macromolecular target. Norstictic acid treatment significantly suppressed MDA-MB-231/GFP tumor growth of a breast cancer xenograft model in athymic nude mice. Lichen-derived natural products are promising resources to discover novel c-Met inhibitors useful to control TNBCs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26744260

  3. A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions

    PubMed Central

    Planes, María D.; Niñoles, Regina; Rubio, Lourdes; Bissoli, Gaetano; Bueso, Eduardo; García-Sánchez, María J.; Alejandro, Santiago; Gonzalez-Guzmán, Miguel; Hedrich, Rainer; Rodriguez, Pedro L.; Fernández, José A.; Serrano, Ramón

    2015-01-01

    The stress hormone abscisic acid (ABA) induces expression of defence genes in many organs, modulates ion homeostasis and metabolism in guard cells, and inhibits germination and seedling growth. Concerning the latter effect, several mutants of Arabidopsis thaliana with improved capability for H+ efflux (wat1-1D, overexpression of AKT1 and ost2-1D) are less sensitive to inhibition by ABA than the wild type. This suggested that ABA could inhibit H+ efflux (H+-ATPase) and induce cytosolic acidification as a mechanism of growth inhibition. Measurements to test this hypothesis could not be done in germinating seeds and we used roots as the most convenient system. ABA inhibited the root plasma-membrane H+-ATPase measured in vitro (ATP hydrolysis by isolated vesicles) and in vivo (H+ efflux from seedling roots). This inhibition involved the core ABA signalling elements: PYR/PYL/RCAR ABA receptors, ABA-inhibited protein phosphatases (HAB1), and ABA-activated protein kinases (SnRK2.2 and SnRK2.3). Electrophysiological measurements in root epidermal cells indicated that ABA, acting through the PYR/PYL/RCAR receptors, induced membrane hyperpolarization (due to K+ efflux through the GORK channel) and cytosolic acidification. This acidification was not observed in the wat1-1D mutant. The mechanism of inhibition of the H+-ATPase by ABA and its effects on cytosolic pH and membrane potential in roots were different from those in guard cells. ABA did not affect the in vivo phosphorylation level of the known activating site (penultimate threonine) of H+-ATPase in roots, and SnRK2.2 phosphorylated in vitro the C-terminal regulatory domain of H+-ATPase while the guard-cell kinase SnRK2.6/OST1 did not. PMID:25371509

  4. Salvianolic Acid B Inhibits Growth of Head and Neck Squamous Cell Carcinoma in vitro and in vivo via Cyclooxygenase-2 and Apoptotic Pathways

    PubMed Central

    Hao, Yubin; Xie, Tianpei; Korotcov, Alexandru; Zhou, Yanfei; Pang, Xiaowu; Shan, Liang; Ji, Hongguang; Sridhar, Rajagopalan; Wang, Paul; Califano, Joseph; Gu, Xinbin

    2010-01-01

    Overexpression of cyclooxygenase-2 (COX-2) in oral mucosa has been associated with increased risk of head and neck squamous cell carcinoma (HNSCC). Celecoxib is a non steroidal anti-inflammatory drug, which inhibits COX-2 but not COX-1. This selective COX-2 inhibitor holds promise as a cancer preventive agent. Concerns about cardiotoxicity of celecoxib, limits its use in long term chemoprevention and therapy. Salvianolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bge, which is used for treating neoplastic and chronic inflammatory diseases in China. The purpose of this study was to investigate the mechanisms by which Sal-B inhibits HNSCC growth. Sal-B was isolated from Salvia miltiorrhiza Bge by solvent extraction followed by two chromatographic steps. Pharmacological activity of Sal-B was assessed in HNSCC and other cell lines by estimating COX-2 expression, cell viability and caspase-dependent apoptosis. Sal-B inhibited growth of HNSCC JHU-022 and JHU-013 cells with IC50 of 18 and 50 µM respectively. Nude mice with HNSCC solid tumor xenografts were treated with Sal-B (80mg/kg/day) or celecoxib (5mg/kg/day) for 25 days to investigate in vivo effects of the COX-2 inhibitors. Tumor volumes in Sal-B treated group were significantly lower than those in celecoxib treated or untreated control groups (p<0.05). Sal-B inhibited COX-2 expression in cultured HNSCC cells and in HNSCC cells isolated from tumor xenografts. Sal-B also caused dose-dependent inhibition of prostaglandin E2 synthesis, either with or without lipopolysaccharide stimulation. Taken together, Sal-B shows promise as a COX-2 targeted anticancer agent for HNSCC prevention and treatment. PMID:19123475

  5. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers.

    TOXLINE Toxicology Bibliographic Information

    Yadav VR; Prasad S; Sung B; Gelovani JG; Guha S; Krishnan S; Aggarwal BB

    2012-05-01

    Numerous cancer therapeutics were originally identified from natural products used in traditional medicine. One such agent is acetyl-11-keto-beta-boswellic acid (AKBA), derived from the gum resin of the Boswellia serrata known as Salai guggal or Indian frankincense. Traditionally, it has been used in Ayurvedic medicine to treat proinflammatory conditions. In this report, we hypothesized that AKBA can affect the growth and metastasis of colorectal cancer (CRC) in orthotopically implanted tumors in nude mice. We found that the oral administration of AKBA (50-200 mg/kg) dose-dependently inhibited the growth of CRC tumors in mice, resulting in decrease in tumor volumes than those seen in vehicle-treated mice without significant decreases in body weight. In addition, we observed that AKBA was highly effective in suppressing ascites and distant metastasis to the liver, lungs and spleen in orthotopically implanted tumors in nude mice. When examined for the mechanism, we found that markers of tumor proliferation index Ki-67 and the microvessel density cluster of differentiation (CD31) were significantly downregulated by AKBA treatment. We also found that AKBA significantly suppressed nuclear factor-κB (NF-κB) activation in the tumor tissue and expression of proinflammatory (cyclooxygenase-2), tumor survival (bcl-2, bcl-xL, inhibitor of apoptosis (IAP-1) and survivin), proliferative (cyclin D1), invasive (intercellular adhesion molecule 1 and matrix metalloproteinase-9) and angiogenic C-X-C (CXC) receptor 4 and vascular endothelial growth factor) biomarkers. When examined for serum and tissue levels of AKBA, a dose-dependent increase in the levels of the drug was detected, indicating its bioavailability. Thus, our findings suggest that this boswellic acid analog can inhibit the growth and metastasis of human CRC in vivo through downregulation of cancer-associated biomarkers.

  6. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers.

    PubMed

    Yadav, Vivek R; Prasad, Sahdeo; Sung, Bokyung; Gelovani, Juri G; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B

    2012-05-01

    Numerous cancer therapeutics were originally identified from natural products used in traditional medicine. One such agent is acetyl-11-keto-beta-boswellic acid (AKBA), derived from the gum resin of the Boswellia serrata known as Salai guggal or Indian frankincense. Traditionally, it has been used in Ayurvedic medicine to treat proinflammatory conditions. In this report, we hypothesized that AKBA can affect the growth and metastasis of colorectal cancer (CRC) in orthotopically implanted tumors in nude mice. We found that the oral administration of AKBA (50-200 mg/kg) dose-dependently inhibited the growth of CRC tumors in mice, resulting in decrease in tumor volumes than those seen in vehicle-treated mice without significant decreases in body weight. In addition, we observed that AKBA was highly effective in suppressing ascites and distant metastasis to the liver, lungs and spleen in orthotopically implanted tumors in nude mice. When examined for the mechanism, we found that markers of tumor proliferation index Ki-67 and the microvessel density cluster of differentiation (CD31) were significantly downregulated by AKBA treatment. We also found that AKBA significantly suppressed nuclear factor-?B (NF-?B) activation in the tumor tissue and expression of proinflammatory (cyclooxygenase-2), tumor survival (bcl-2, bcl-xL, inhibitor of apoptosis (IAP-1) and survivin), proliferative (cyclin D1), invasive (intercellular adhesion molecule 1 and matrix metalloproteinase-9) and angiogenic C-X-C (CXC) receptor 4 and vascular endothelial growth factor) biomarkers. When examined for serum and tissue levels of AKBA, a dose-dependent increase in the levels of the drug was detected, indicating its bioavailability. Thus, our findings suggest that this boswellic acid analog can inhibit the growth and metastasis of human CRC in vivo through downregulation of cancer-associated biomarkers. PMID:21702037

  7. Efficient delivery of ursolic acid by poly(N-vinylpyrrolidone)-block-poly (ε-caprolactone) nanoparticles for inhibiting the growth of hepatocellular carcinoma in vitro and in vivo

    PubMed Central

    Zhang, Hao; Zheng, Donghui; Ding, Jing; Xu, Huae; Li, Xiaolin; Sun, Weihao

    2015-01-01

    Previous reports have shown that ursolic acid (UA), a pentacyclic triterpenoid derived from Catharanthus trichophyllus roots, could inhibit the growth of a series of cancer cells. However, the potential for clinical application of UA is greatly hampered by its poor solubility, whereas the hydrophobicity of UA renders it a promising model drug for nanosized delivery systems. In the current study, we loaded UA into amphiphilic poly(N-vinylpyrrolidone)-block-poly (ε-caprolactone) nanoparticles and performed physiochemical characterization as well as analysis of the releasing capacity. In vitro experiments indicated that UA-NPs inhibited the growth of liver cancer cells and induced cellular apoptosis more efficiently than did free UA. Moreover, UA-NPs significantly delayed tumor growth and localized to the tumor site when compared with the equivalent dose of UA. In addition, both Western blotting and immunohistochemistry suggested that the possible mechanism of the superior efficiency of UA-NPs is mediation by the regulation of apoptosis-related proteins. Therefore, UA-NPs show potential as a promising nanosized drug system for liver cancer therapy. PMID:25792825

  8. Acid precipitation and food quality: Inhibition of growth and survival in black ducks and mallards by dietary aluminum, calcium and phosphorus

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    In areas impacted by acid precipitation, water chemistry of acidic ponds and streams often changes, resulting in increased mobilization of aluminum and decreased concentration of calcium carbonate. Aluminum binds with phosphorus and inhibits its uptake by organisms. Thus, invertebrate food organisms used by waterfowl may have inadequate Ca and P or elevated Al for normal growth and development. Acid rain and its effects may be one of the factors negatively impacting American black ducks (Anas rubripes) in eastern North America. One-day old mallards (A. platyrhynchos) and black ducks were placed on one of three Ca:P regimens: low:low (LL), normal:normal (NN), and low:high (LH) with each regimen divided further into three or four Al levels for 10 weeks. Forty-five % of the black ducks died on nine different diets whereas only 28% of the mallards died on three different diets. Mortality was significantly related to diet in both species. Growth rates for body weight, culmens, wings, and tarsi of both species on control diets exceeded those on many treatment diets but the differences were less apparent for mallards than for black ducks. Differences among treatments were due to both Ca:P and Al levels.

  9. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    SciTech Connect

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu; Department of Life Science, National Taiwan University, Taipei, Taiwan

    2013-08-02

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis.

  10. Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers

    PubMed Central

    Yadav, Vivek R.; Prasad, Sahdeo; Sung, Bokyung; Gelovani, Juri G.; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B.

    2011-01-01

    Numerous cancer therapeutics were originally identified from natural products used in traditional medicine. One such agent is acetyl-11-keto-beta-boswellic acid (AKBA), derived from the gum resin of the Boswellia serrata known as Salai guggal or Indian frankincense. Traditionally it has been used in Ayurvedic medicine to treat proinflammatory conditions. In the present report, we hypothesized that AKBA can affect the growth and metastasis of colorectal cancer (CRC) in orthotopically-implanted tumors in nude mice. We found that the oral administration of AKBA (50-200 mg/kg) dose-dependently inhibited the growth of CRC tumors in mice, resulting in decrease in tumor volumes than those seen in vehicle-treated mice without significant decreases in body weight. In addition, we observed that AKBA was highly effective in suppressing ascites and distant metastasis to the liver, lungs, and spleen in orthotopically-implanted tumors in nude mice. When examined for the mechanism, we found that markers of tumor proliferation index Ki-67 and the microvessel density CD31; were significantly downregulated by AKBA treatment. We also found that AKBA significantly suppressed NF-κB activation in the tumor tissue and expression of pro-inflammatory (COX2), tumor survival (bcl-2, bcl-xL, IAP-1, survivin), proliferative (cyclin D1), invasive (ICAM-1, MMP-9) and angiogenic (CXCR4 and VEGF) biomarkers. When examined for serum and tissue levels of AKBA, a dose-dependent increase in the levels of the drug was detected, indicating its bioavailability. Thus, our findings suggest that this boswellic acid analogue can inhibit the growth and metastasis of human CRC in vivo through downregulation of cancer-associated biomarkers. PMID:21702037

  11. Oleanolic Acid A-lactams Inhibit the Growth of HeLa, KB, MCF-7 and Hep-G2 Cancer Cell Lines at Micromolar Concentrations.

    PubMed

    Bednarczyk-Cwynar, Barbara; Ruszkowski, Piotr; Bobkiewicz-Kozlowska, Teresa; Zaprutko, Lucjusz

    2016-01-01

    Oleanolic acid ketones, oximes, lactams and nitriles were obtained. Complete spectral characterizations (IR, (1)H NMR, (13)C NMR, DEPT and MS) of the synthesized compounds are presented. The derivatives had oxo, hydroxyimino, lactam or nitrile functions at the C-3 position, an esterified or unmodified carboxyl group at the C- 17 location and, in some cases, an additional oxo function at the C-11 position. The new compounds were tested for cytotoxic activity on the HeLa, KB, MCF-7 and Hep-G2 cancer cell lines with the application of MTT [3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test. Among the tested compounds, some oximes and all lactams proved to be the most active cytotoxic agents. These triterpenes significantly inhibited the growth of the HeLa, KB, MCF-7 and Hep-G2 cancer cell lines at micromolar concentrations. PMID:26343139

  12. Ursolic acid inhibits the growth of human pancreatic cancer and enhances the antitumor potential of gemcitabine in an orthotopic mouse model through suppression of the inflammatory microenvironment.

    PubMed

    Prasad, Sahdeo; Yadav, Vivek R; Sung, Bokyung; Gupta, Subash C; Tyagi, Amit K; Aggarwal, Bharat B

    2016-03-15

    The development of chemoresistance in human pancreatic cancer is one reason for the poor survival rate for patients with this cancer. Because multiple gene products are linked with chemoresistance, we investigated the ability of ursolic acid (UA) to sensitize pancreatic cancer cells to gemcitabine, a standard drug used for the treatment of pancreatic cancer. These investigations were done in AsPC-1, MIA PaCa-2, and Panc-28 cells and in nude mice orthotopically implanted with Panc-28 cells. In vitro, UA inhibited proliferation, induced apoptosis, suppressed NF-κB activation and its regulated proliferative, metastatic, and angiogenic proteins. UA (20 μM) also enhanced gemcitabine (200 nM)-induced apoptosis and suppressed the expression of NF-κB-regulated proteins. In the nude mouse model, oral administration of UA (250 mg/kg) suppressed tumor growth and enhanced the effect of gemcitabine (25 mg/kg). Furthermore, the combination of UA and gemcitabine suppressed the metastasis of cancer cells to distant organs such as liver and spleen. Immunohistochemical analysis showed that biomarkers of proliferation (Ki-67) and microvessel density (CD31) were suppressed by the combination of UA and gemcitabine. UA inhibited the activation of NF-κB and STAT3 and the expression of tumorigenic proteins regulated by these inflammatory transcription factors in tumor tissue. Furthermore, the combination of two agents decreased the expression of miR-29a, closely linked with tumorigenesis, in the tumor tissue. UA was found to be bioavailable in animal serum and tumor tissue. These results suggest that UA can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing inflammatory biomarkers linked to proliferation, invasion, angiogenesis, and metastasis. PMID:26909608

  13. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers. PMID:21410712

  14. Retinoic acid receptor beta2 re-expression and growth inhibition in thyroid carcinoma cell lines after 5-aza-2'-deoxycytidine treatment.

    PubMed

    Miasaki, F Y; Vivaldi, A; Ciampi, R; Agate, L; Collecchi, P; Capodanno, A; Pinchera, A; Elisei, R

    2008-08-01

    The treatment of both undifferentiated and de-differentiated thyroid tumors, which are unresponsive to radioiodine, represents one of the biggest challenges for thyroidologists. The aim of the present study was to investigate in vitro the methylation status of retinoic acid receptors (RAR)beta2 promoter and the effect of the demethylating agent 5-aza-2'-deoxycytidine (5-Aza-CdR) on 5 human thyroid cancer cell lines. The methylation status of RARbeta2 promoter was analyzed by methylation-specific PCR. The effect of 5-Aza-CdR on cell growth and apoptosis was evaluated by cell counting, enzymelinked immunosorbent assay tests and fluorescence-activated cell sorting analysis, while the effect on the expression of RAR and thyroid-specific genes was measured by qualitative and quantitative RT-PCR. Methylation of RARbeta2 promoter was present only in ARO cells. 5-Aza-CdR determined growth inhibition in all cell lines, probably due to apoptosis in WRO, NPA, and ARO cells, and to inhibition of DNA synthesis in TT cells. Treatment with 5-Aza-CdR induced the expression of RARbeta mRNA in ARO and FRO cells, a slight increase of the expression of Tg, TPO and thyroid trancription factor 1 (TTF-1) mRNA and the new expression of low levels of NIS in TT cells. A significant increase of TTF-1 mRNA in FRO cells was also observed. In this study we demonstrated that RARbeta2 promoter was methylated in ARO cell line. However, the 5-Aza-CdR treatment induced RARbetamRNA expression not only in ARO but also in FRO and TT cell lines, whose RARbeta2 promoter was unmethylated. A significant reduction of cell growth, but not cell re-differentiation, was also observed after 5-Aza-CdR treatment. PMID:18852534

  15. Antisense growth inhibition of methicillin-resistant Staphylococcus aureus by locked nucleic acid conjugated with cell-penetrating peptide as a novel FtsZ inhibitor.

    PubMed

    Meng, Jingru; Da, Fei; Ma, Xue; Wang, Ning; Wang, Yukun; Zhang, Huinan; Li, Mingkai; Zhou, Ying; Xue, Xiaoyan; Hou, Zheng; Jia, Min; Luo, Xiaoxing

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections are becoming increasingly difficult to treat, owing to acquired antibiotic resistance. The emergence and spread of MRSA limit therapeutic options and require new therapeutic strategies, including novel MRSA-active antibiotics. Filamentous temperature-sensitive protein Z (FtsZ) is a highly conserved bacterial tubulin homologue that is essential for controlling the bacterial cell division process in different species of S. aureus. We conjugated a locked nucleic acid (LNA) that targeted ftsZ mRNA with the peptide (KFF)3K, to generate peptide-LNA (PLNA). The present study aimed to investigate whether PLNA could be used as a novel antibacterial agent. PLNA787, the most active agent synthesized, exhibited promising inhibitory effects on four pathogenic S. aureus strains in vitro. PLNA787 inhibited bacterial growth and resolved lethal Mu50 infections in epithelial cell cultures. PLNA787 also improved the survival rates of Mu50-infected mice and was associated with reductions of bacterial titers in several tissue types. The inhibitory effects on ftsZ mRNA and FtsZ protein expression and inhibition of the bacterial cell division process are considered to be the major mechanisms of PLNA. PLNA787 demonstrated activity against MRSA infections in vitro and in vivo. Our findings suggest that ftsZ mRNA is a promising new target for developing novel antisense antibiotics. PMID:25421468

  16. Phosphatidic Acid Increases Epidermal Growth Factor Receptor Expression by Stabilizing mRNA Decay and by Inhibiting Lysosomal and Proteasomal Degradation of the Internalized Receptor

    PubMed Central

    Hatton, Nathaniel; Lintz, Erin; Mahankali, Madhu; Henkels, Karen M.

    2015-01-01

    Overexpression of epidermal growth factor receptor (EGFR) is one of the frequent mechanisms implicated in cancer progression, and so is the overexpression of the enzyme phospholipase D (PLD) and its reaction product, phosphatidic acid (PA). However, an understanding of how these signaling molecules interact at the level of gene expression is lacking. Catalytically active PLD enhanced expression of EGFR in human breast cancer cells. Overexpression of the PLD2 isoform increased EGFR mRNA and protein expression. It also negated an EGFR downregulation mediated by small interfering RNA targeting EGFR (siEGFR). Several mechanisms contributed to the alteration in EGFR expression. First was the stabilization of EGFR transcripts as PLD2 delayed mRNA decay, which prolonged their half-lives. Second, RNase enzymatic activity was inhibited by PA. Third, protein stabilization also occurred, as indicated by PLD resistance to cycloheximide-induced EGFR protein degradation. Fourth, PA inhibited lysosomal and proteasomal degradation of internalized EGFR. PLD2 and EGFR colocalized at the cell membrane, and JAK3 phosphorylation at Tyr980/Tyr981 followed receptor endocytosis. Further, the presence of PLD2 increased stabilization of intracellular EGFR in large recycling vesicles at ∼15 min of EGF stimulation. Thus, PLD2-mediated production of PA contributed to the control of EGFR exposure to ligand through a multipronged transcriptional and posttranscriptional program during the out-of-control accumulation of EGFR signaling in cancer cells. PMID:26124282

  17. Examine growth inhibition pattern and lactic acid production in Streptococcus mutans using different concentrations of xylitol produced from Candida tropicalis by fermentation.

    PubMed

    Misra, Swati; Raghuwanshi, Shailendra; Gupta, Pritesh; Saxena, R K

    2012-06-01

    Twenty clinical isolates of Streptococcus sp. were isolated from six clinical samples of dental caries on MSFA. Amongst these isolates, five clinical isolates were identified as S treptococcus mutans on the basis of morphological, biochemical and 16S rDNA sequencing. The isolated strains of S. mutans were exposed to fermented and purified xylitol (0.25-15.0%) and tested for its anti-microbial effects against control medium (Brain Heart Infusion without xylitol) after 12 h. The plate assay was developed using bromocresol green as an indicator dye in order to study the relative growth inhibition pattern of clinical sample at different concentrations of an anti-microbial compound in a single petriplate. The morphology of S. mutans cells in brain heart infusion (BHI) medium containing xylitol resulted in a diffused cell wall as observed using gram staining technique. The minimum inhibitory concentration (MIC) is 0.25% for S. mutans obtained from different clinical samples. The MIC(50) and MIC(90) is 5.0% and 10.0% xylitol respectively of the selected S. mutans being designated as clinical isolate B (6). The zone of inhibition was 72 mm and lactic acid production was 0.010 g/l at 10% xylitol concentration in Brain Heart Infusion Broth. PMID:22440952

  18. Ascorbic acid mitigation of water stress-inhibition of root growth in association with oxidative defense in tall fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Xu, Yi; Xu, Qian; Huang, Bingru

    2015-01-01

    Root growth inhibition by water stress may be related to oxidative damages. The objectives of this study were to determine whether exogenous application of ascorbic acid (ASA) could mitigate root growth decline due to water stress and whether ASA effects on root growth could be regulated through activating non-enzymatic or enzymatic antioxidant systems in perennial grass species. Tall fescue (Festuca arundinacea Schreb. cv. “K-31”) plants were grown in nutrient solution, and polyethylene glycol (PEG)-8000 was added into the solution to induce water stress. For exogenous ASA treatment, ASA (5 mM) was added into the solution with or without PEG-8000. Plants treated with ASA under water stress showed significantly increased root growth rate, and those roots had significantly lower content of reactive oxygen species (ROS) (H2O2 and O2− content) than those without ASA treatment. Malondialdehyde content in root tips treated with ASA under water stress was also significantly reduced compared with those under water stress alone. In addition, free ascorbate and total ascorbate content were significantly higher in roots treated with ASA under water stress than those without ASA treatment. The enzymatic activities for ROS scavenging-related genes were not significantly altered by ASA treatment under water stress, while transcript abundances of genes encoding superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase showed significant decreases in the root elongation zone and significant increases in the root maturation zone treated with ASA under water stress. Transcripts of genes for expansins and xyloglucan endotransglycosylases showed increased abundances in ASA-treated root maturation zone under water stress, indicating that ASA could accelerated cell wall loosening and cell expansion. The results suggested that exogenous treatment of roots with ASA enhanced root elongation under water stress, which could be attributed by increasing non-enzymatic antioxidant production, suppressing ROS toxicity and up-regulating gene expression of cell-wall loosening proteins controlling cell expansion. PMID:26483821

  19. Ascorbic acid mitigation of water stress-inhibition of root growth in association with oxidative defense in tall fescue (Festuca arundinacea Schreb.).

    PubMed

    Xu, Yi; Xu, Qian; Huang, Bingru

    2015-01-01

    Root growth inhibition by water stress may be related to oxidative damages. The objectives of this study were to determine whether exogenous application of ascorbic acid (ASA) could mitigate root growth decline due to water stress and whether ASA effects on root growth could be regulated through activating non-enzymatic or enzymatic antioxidant systems in perennial grass species. Tall fescue (Festuca arundinacea Schreb. cv. "K-31") plants were grown in nutrient solution, and polyethylene glycol (PEG)-8000 was added into the solution to induce water stress. For exogenous ASA treatment, ASA (5 mM) was added into the solution with or without PEG-8000. Plants treated with ASA under water stress showed significantly increased root growth rate, and those roots had significantly lower content of reactive oxygen species (ROS) (H2O2 and O[Formula: see text] content) than those without ASA treatment. Malondialdehyde content in root tips treated with ASA under water stress was also significantly reduced compared with those under water stress alone. In addition, free ascorbate and total ascorbate content were significantly higher in roots treated with ASA under water stress than those without ASA treatment. The enzymatic activities for ROS scavenging-related genes were not significantly altered by ASA treatment under water stress, while transcript abundances of genes encoding superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase showed significant decreases in the root elongation zone and significant increases in the root maturation zone treated with ASA under water stress. Transcripts of genes for expansins and xyloglucan endotransglycosylases showed increased abundances in ASA-treated root maturation zone under water stress, indicating that ASA could accelerated cell wall loosening and cell expansion. The results suggested that exogenous treatment of roots with ASA enhanced root elongation under water stress, which could be attributed by increasing non-enzymatic antioxidant production, suppressing ROS toxicity and up-regulating gene expression of cell-wall loosening proteins controlling cell expansion. PMID:26483821

  20. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.).

    PubMed

    Zhang, Yongping; Xu, Shuang; Yang, Shaojun; Chen, Youyuan

    2015-05-01

    Cadmium (Cd) is a widespread toxic heavy metal that usually causes deleterious effects on plant growth and development. Salicylic acid (SA), a naturally existing phenolic compound, is involved in specific responses to various environmental stresses. To explore the role of SA in the tolerance of melon (Cucumis melo L.) to Cd stress, the influence of SA application on the growth and physiological processes was compared in the two melon cultivars Hamilv (Cd-tolerant) and Xiulv (Cd-sensitive) under Cd stress. Under 400-?M Cd treatment, Hamilv showed a higher biomass accumulation, more chlorophyll (Chl), greater photosynthesis, and less oxidative damage compared to Xiulv. Foliar spraying of 0.1 mM SA dramatically alleviated Cd-induced growth inhibition in the two melon genotypes. Simultaneously, SA pretreatment attenuated the decrease in Chl content, photosynthetic capacity, and PSII photochemistry efficiency in Cd-stressed plants. Furthermore, exogenous SA significantly reduced superoxide anion production and lipid peroxidation, followed by increase in the activities of antioxidant enzyme superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, and content of soluble protein and free proline in both the genotypes under Cd stress. The effect of SA was more conspicuous in Xiulv than Hamilv, reflected in the biomass, photosynthetic pigments, stomatal conductance, water use efficiency, and antioxidant enzymes. These results suggest that exogenous spray of SA can alleviate the adverse effects of Cd on the growth and photosynthesis of both the melon cultivars, mostly through promoting antioxidant defense capacity. It also indicates that SA-included protection against Cd damage is to a greater extent more pronounced in Cd-sensitive genotype than Cd-tolerant genotype. PMID:25398649

  1. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ).

    PubMed

    Zanetti, Adriana; Affatato, Roberta; Centritto, Floriana; Fratelli, Maddalena; Kurosaki, Mami; Barzago, Maria Monica; Bolis, Marco; Terao, Mineko; Garattini, Enrico; Paroni, Gabriela

    2015-07-17

    All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway. PMID:26018078

  2. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition.

    PubMed

    Yang, Yan; Qin, Shu-Kui; Wu, Qiong; Wang, Zi-Shu; Zheng, Rong-Sheng; Tong, Xu-Hui; Liu, Hao; Tao, Liang; He, Xian-Di

    2014-02-01

    Increasing gap junction activity in tumor cells provides a target by which to enhance antineoplastic therapies. Previously, several naturally occurring agents, including all-trans retinoic acid (ATRA) have been demonstrated to increase gap junctional intercellular communication (GJIC) in a number of types of cancer cells. In the present study, we investigated in vitro whether ATRA modulates the response of human hepatocellular carcinoma (HCC) cells to sorafenib, the only proven oral drug for advanced HCC, and the underlying mechanisms. HepG2 and SMMC-7721 cells were treated with sorafenib and/or ATRA, and cell proliferation and apoptosis were analyzed; the role of GJIC was also explored. We found that ATRA, at non-toxic concentrations, enhanced sorafenib-induced growth inhibition in both HCC cell lines, and this effect was abolished by two GJIC inhibitors, 18-α-GA and oleamide. Whereas lower concentrations of sorafenib (5 µM) or ATRA (0.1 or 10 µM) alone modestly induced GJIC activity, the combination of sorafenib plus ATRA resulted in a strong enhancement of GJIC. However, the action paradigm differed in the HepG2 and SMMC-7721 cells, with the dominant effect of GJIC dependent on the cell-specific connexin increase in protein amounts and relocalization. RT-PCR assay further revealed a transcriptional modification of the key structural connexin in the two cell lines. Thus, a connexin-dependent gap junction enhancement may play a central role in ATRA plus sorafenib synergy in inhibiting HCC cell growth. Since both agents are available for human use, the combination treatment represents a future profitable strategy for the treatment of advanced HCC. PMID:24317203

  3. Combination of Tolfenamic acid and curcumin induces colon cancer cell growth inhibition through modulating specific transcription factors and reactive oxygen species

    PubMed Central

    Sankpal, Umesh T.; Nagaraju, Ganji Purnachandra; Gottipolu, Sriharika R.; Hurtado, Myrna; Jordan, Christopher G.; Simecka, Jerry W.; Shoji, Mamoru; El-Rayes, Bassel; Basha, Riyaz

    2016-01-01

    Curcumin (Cur) has been extensively studied in several types of malignancies including colorectal cancer (CRC); however its clinical application is greatly affected by low bioavailability. Several strategies to improve the therapeutic response of Cur are being pursued, including its combination with small molecules and drugs. We investigated the therapeutic efficacy of Cur in combination with the small molecule tolfenamic acid (TA) in CRC cell lines. TA has been shown to inhibit the growth of human cancer cells in vitro and in vivo, via targeting the transcription factor specificity protein1 (Sp1) and suppressing survivin expression. CRC cell lines HCT116 and HT29 were treated with TA and/or Cur and cell viability was measured 24–72 hours post-treatment. While both agents caused a steady reduction in cell viability, following a clear dose/time-dependent response, the combination of TA+Cur showed higher growth inhibition when compared to either single agent. Effects on apoptosis were determined using flow cytometry (JC-1 staining to measure mitochondrial membrane potential), Western blot analysis (c-PARP expression) and caspase 3/7 activity. Reactive oxygen species (ROS) levels were measured by flow cytometry and the translocation of NF-kB into the nucleus was determined using immunofluorescence. Results showed that apoptotic markers and ROS activity were significantly upregulated following combination treatment, when compared to the individual agents. This was accompanied by decreased expression of Sp1, survivin and NF-kB translocation. The combination of TA+Cur was more effective in HCT116 cells than HT29 cells. These results demonstrate that TA may enhance the anti-proliferative efficacy of Cur in CRC cells. PMID:26672603

  4. Well having inhibited microbial growth

    DOEpatents

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  5. Epidermal growth factor inhibits radioiodine uptake but stimulates deoxyribonucleic acid synthesis in newborn rat thyroids grown in nude mice

    SciTech Connect

    Ozawa, S.; Spaulding, S.W. )

    1990-08-01

    We have studied the effect of altering the level of circulating epidermal growth factor (EGF) on the function and growth of newborn rat thyroids transplanted into nude mice. Preliminary studies confirmed that sialoadenectomy reduced circulating EGF levels in nude mice (from 0.17 +/- 0.02 to 0.09 +/- 0.02 ng/ml), and that ip injection of 5 micrograms EGF raised EGF levels (the peak level of 91.7 +/- 3.3 ng/ml was achieved at 30 min, with a subsequent half-life of about 1 h). The radioiodine uptake by newborn rat thyroid transplants in the sialoadenectomized and sham-operated animals correlated inversely with the circulating EGF levels determined when the mice were killed (r = -0.99). Low-dose TSH treatment (0.1 microU/day) generally stimulated the radioiodine uptake, but high-dose TSH groups (100 microU/day) were not significantly different from the control group. The 5-day nuclear (3H)thymidine labeling index was 6.8 +/- 0.5% IN newborn rat thyroid transplants grown in sialoadenectomized animals, 13.1 +/- 0.3% in sham-operated animals, and 16.8 +/- 0.5% in nude mice receiving 5 micrograms EGF ip daily. In general, both low-dose and high-dose TSH promoted DNA synthesis under low EGF conditions but were ineffective in the presence of higher levels of EGF. Adult rat thyroid transplants showed no significant responses. Although sialoadenectomy may alter other factors besides EGF, it appears that changes in the levels of circulating EGF within the physiological range affect the function and growth of newborn rat thyroid transplants. Circulating EGF may play a role in thyroid maturation and may also be involved in the regulation of thyroid function throughout life.

  6. Influence of ethylenediaminetetraacetic acid (EDTA) on the on the ability of fatty acids to inhibit the growth of bacteria associated with poultry processing.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of ethylenediaminetetraacetic acid (EDTA) on the bactericidal activity of alkaline salts of fatty acids was examined. A 0.5 M concentration of caproic, caprylic, capric, and lauric acids was dissolved in 1.0 M potassium hydroxide (KOH), and then supplemented with 0, 5, or 10 mM of EDTA. T...

  7. Predictive model for Clostridium perfringens growth in roast beef during cooling and inhibition of spore germination and outgrowth by organic acid salts.

    PubMed

    Sánchez-Plata, Marcos X; Amézquita, Alejandro; Blankenship, Erin; Burson, Dennis E; Juneja, Vijay; Thippareddi, Harshavardhan

    2005-12-01

    Spores of foodborne pathogens can survive traditional thermal processing schedules used in the manufacturing of processed meat products. Heat-activated spores can germinate and grow to hazardous levels when these products are improperly chilled. Germination and outgrowth of Clostridium perfringens spores in roast beef during chilling was studied following simulated cooling schedules normally used in the processed-meat industry. Inhibitory effects of organic acid salts on germination and outgrowth of C. perfringens spores during chilling and the survival of vegetative cells and spores under abusive refrigerated storage was also evaluated. Beef top rounds were formulated to contain a marinade (finished product concentrations: 1% salt, 0.2% potassium tetrapyrophosphate, and 0.2% starch) and then ground and mixed with antimicrobials (sodium lactate and sodium lactate plus 2.5% sodium diacetate and buffered sodium citrate and buffered sodium citrate plus 1.3% sodium diacetate). The ground product was inoculated with a three-strain cocktail of C. perfringens spores (NCTC 8238, NCTC 8239, and ATCC 10388), mixed, vacuum packaged, heat shocked for 20 min at 75 degrees C, and chilled exponentially from 54.5 to 7.2 degrees C in 9, 12, 15, 18, or 21 h. C. perfringens populations (total and spore) were enumerated after heat shock, during chilling, and during storage for up to 60 days at 10 degrees C using tryptose-sulfite-cycloserine agar. C. perfringens spores were able to germinate and grow in roast beef (control, without any antimicrobials) from an initial population of ca. 3.1 log CFU/g by 2.00, 3.44, 4.04, 4.86, and 5.72 log CFU/g after 9, 12, 15, 18, and 21 h of exponential chilling. A predictive model was developed to describe sigmoidal C. perfringens growth curves during cooling of roast beef from 54.5 to 7.2 degrees C within 9, 12, 15, 18, and 21 h. Addition of antimicrobials prevented germination and outgrowth of C. perfringens regardless of the chill times. C. perfringens spores could be recovered from samples containing organic acid salts that were stored up to 60 days at 10 degrees C. Extension of chilling time to > or =9 h resulted in >1 log CFU/g growth of C. perfringens under anaerobic conditions in roast beef. Organic acid salts inhibited outgrowth of C. perfringens spores during chilling of roast beef when extended chill rates were followed. Although C. perfringens spore germination is inhibited by the antimicrobials, this inhibition may represent a hazard when such products are incorporated into new products, such as soups and chili, that do not contain these antimicrobials, thus allowing spore germination and outgrowth under conditions of temperature abuse. PMID:16355831

  8. Methaneseleninic acid and γ-Tocopherol combination inhibits prostate tumor growth in Vivo in a xenograft mouse model

    PubMed Central

    Singh, Chandra K.; Ndiaye, Mary A.; Siddiqui, Imtiaz A.; Nihal, Minakshi; Havighurst, Thomas; Kim, KyungMann; Zhong, Weixiong; Mukhtar, Hasan; Ahmad, Nihal

    2014-01-01

    Studies have shown that vitamin E and selenium possess antiproliferative effects against prostate cancer (PCa). However, results from the Selenium and Vitamin E Cancer Prevention Trial (SELECT) suggest that vitamin E (α-tocopheryl acetate; 400 mg) and/or selenium (L-selenomethionine; 200 μg) were ineffective against PCa in humans. It is arguable that the selected dose/formulation of vitamin E/selenium were not optimal in SELECT. Thus, additional studies are needed to define the appropriate formulations/dose regimens of these agents. Here, we investigated the effect of methaneseleninic acid (MSA; 41 μg/kg) and/or γ-tocopherol (γT; 20.8 mg/kg or 41.7 mg/kg) in Nu/J mice implanted with 22Rν1 tumors. MSA (41 μg/kg) and γT (20.8 mg/kg) combination was most consistent in imparting anti-proliferative response; resulting in a significant decrease in i) tumor volume/weight, ii) serum PSA, and iii) Ki-67 immunostaining. Further, we observed i) an upregulation of pro-apoptosis Bax and a down-regulation of the pro-survival Bcl2, and ii) an increase in pro-apoptosis Bad. Furthermore, the combination resulted in a modulation of apolipoprotein E, selenoprotein P and Nrf2 in a fashion that favors antiproliferative responses. Overall, our study suggested that a combination of MSA and γT, at lower dose regimen, could be useful in PCa management. PMID:25004451

  9. Methaneseleninic acid and γ-Tocopherol combination inhibits prostate tumor growth in Vivo in a xenograft mouse model.

    PubMed

    Singh, Chandra K; Ndiaye, Mary A; Siddiqui, Imtiaz A; Nihal, Minakshi; Havighurst, Thomas; Kim, KyungMann; Zhong, Weixiong; Mukhtar, Hasan; Ahmad, Nihal

    2014-06-15

    Studies have shown that vitamin E and selenium possess antiproliferative effects against prostate cancer (PCa). However, results from the Selenium and Vitamin E Cancer Prevention Trial (SELECT) suggest that vitamin E (α-tocopheryl acetate; 400 mg) and/or selenium (L-selenomethionine; 200 μg) were ineffective against PCa in humans. It is arguable that the selected dose/formulation of vitamin E/selenium were not optimal in SELECT. Thus, additional studies are needed to define the appropriate formulations/dose regimens of these agents. Here, we investigated the effect of methaneseleninic acid (MSA; 41 µg/kg) and/or γ-tocopherol (γT; 20.8 mg/kg or 41.7 mg/kg) in Nu/J mice implanted with 22Rν1 tumors. MSA (41 µg/kg) and γT (20.8 mg/kg) combination was most consistent in imparting anti-proliferative response; resulting in a significant decrease in i) tumor volume/weight, ii) serum PSA, and iii) Ki-67 immunostaining. Further, we observed i) an upregulation of pro-apoptosis Bax and a down-regulation of the pro-survival Bcl2, and ii) an increase in pro-apoptosis Bad. Furthermore, the combination resulted in a modulation of apolipoprotein E, selenoprotein P and Nrf2 in a fashion that favors antiproliferative responses. Overall, our study suggested that a combination of MSA and γT, at lower dose regimen, could be useful in PCa management. PMID:25004451

  10. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor.

    PubMed

    Lee, Xiaoyun; Azevedo, Mark D; Armstrong, Donald J; Banowetz, Gary M; Reimmann, Cornelia

    2013-02-01

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) shares biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproducing AMB weakly interfered with seed germination of the grassy weed Poa annua and strongly inhibited growth of Erwinia amylovora, the causal agent of the devastating orchard crop disease known as fire blight. AMB was active against a 4-formylaminooxyvinylglycine-resistant isolate of E. amylovora, suggesting that the molecular targets of the two oxyvinylglycines in Erwinia do not, or not entirely, overlap. The AMB biosynthesis and transport genes were shown to be organized in two separate transcriptional units, ambA and ambBCDE, which were successfully expressed from IPTG-inducible tac promoters in the heterologous host P. fluorescens CHA0. Engineered AMB production enabled this model biocontrol strain to become inhibitory against E. amylovora and to weakly interfere with the germination of several graminaceous seeds. We conclude that AMB production requires no additional genes besides ambABCDE and we speculate that their expression in marketed fire blight biocontrol strains could potentially contribute to disease control. PMID:23757135

  11. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells.

    PubMed

    Rangarajan, Parthasarathy; Subramaniam, Dharmalingam; Paul, Santanu; Kwatra, Deep; Palaniyandi, Kanagaraj; Islam, Shamima; Harihar, Sitaram; Ramalingam, Satish; Gutheil, William; Putty, Sandeep; Pradhan, Rohan; Padhye, Subhash; Welch, Danny R; Anant, Shrikant; Dhar, Animesh

    2015-09-29

    Pancreatic cancer is the fourth leading cause of cancer deaths in the US and no significant treatment is currently available. Here, we describe the effect of crocetinic acid, which we purified from commercial saffron compound crocetin using high performance liquid chromatography. Crocetinic acid inhibits proliferation of pancreatic cancer cell lines in a dose- and time-dependent manner. In addition, it induced apoptosis. Moreover, the compound significantly inhibited epidermal growth factor receptor and Akt phosphorylation. Furthermore, crocetinic acid decreased the number and size of the pancospheres in a dose-dependent manner, and suppressed the expression of the marker protein DCLK-1 (Doublecortin Calcium/Calmodulin-Dependent Kinase-1) suggesting that crocetinic acid targets cancer stem cells (CSC). To understand the mechanism of CSC inhibition, the signaling pathways affected by purified crocetinic acid were dissected. Sonic hedgehog (Shh) upon binding to its cognate receptor patched, allows smoothened to accumulate and activate Gli transcription factor. Crocetinic acid inhibited the expression of both Shh and smoothened. Finally, these data were confirmed in vivo where the compound at a dose of 0.5 mg/Kg bw suppressed growth of tumor xenografts. Collectively, these data suggest that purified crocetinic acid inhibits pancreatic CSC, thereby inhibiting pancreatic tumorigenesis. PMID:26317547

  12. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells

    PubMed Central

    Rangarajan, Parthasarathy; Subramaniam, Dharmalingam; Paul, Santanu; Kwatra, Deep; Palaniyandi, Kanagaraj; Islam, Shamima; Harihar, Sitaram; Ramalingam, Satish; Gutheil, William; Putty, Sandeep; Pradhan, Rohan; Padhye, Subhash; Welch, Danny R.; Anant, Shrikant; Dhar, Animesh

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer deaths in the US and no significant treatment is currently available. Here, we describe the effect of crocetinic acid, which we purified from commercial saffron compound crocetin using high performance liquid chromatography. Crocetinic acid inhibits proliferation of pancreatic cancer cell lines in a dose- and time-dependent manner. In addition, it induced apoptosis. Moreover, the compound significantly inhibited epidermal growth factor receptor and Akt phosphorylation. Furthermore, crocetinic acid decreased the number and size of the pancospheres in a dose-dependent manner, and suppressed the expression of the marker protein DCLK-1 (Doublecortin Calcium/Calmodulin-Dependent Kinase-1) suggesting that crocetinic acid targets cancer stem cells (CSC). To understand the mechanism of CSC inhibition, the signaling pathways affected by purified crocetinic acid were dissected. Sonic hedgehog (Shh) upon binding to its cognate receptor patched, allows smoothened to accumulate and activate Gli transcription factor. Crocetinic acid inhibited the expression of both Shh and smoothened. Finally, these data were confirmed in vivo where the compound at a dose of 0.5 mg/Kg bw suppressed growth of tumor xenografts. Collectively, these data suggest that purified crocetinic acid inhibits pancreatic CSC, thereby inhibiting pancreatic tumorigenesis. PMID:26317547

  13. Celecoxib and tauro-ursodeoxycholic acid co-treatment inhibits cell growth in familial adenomatous polyposis derived LT97 colon adenoma cells

    SciTech Connect

    Heumen, Bjorn W.H. van; Roelofs, Hennie M.J.; Morsche, Rene H.M. te; Marian, Brigitte; Nagengast, Fokko M.; Peters, Wilbert H.M.

    2012-04-15

    Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14-17%, p < 0.01). A more pronounced decrease (23-27%, p < 0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to 'artificial bile' enriched with UDCA, was decreased (p < 0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with 'artificial bile' enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p < 0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired. -- Highlights: Black-Right-Pointing-Pointer Celecoxib and UDCA acid co-treatment decreases cell growth in colon tumor cells. Black-Right-Pointing-Pointer UDCA enriched 'artificial bile' decreases LT-97 cell growth only in presence of celecoxib. Black-Right-Pointing-Pointer PCNA, caspase-3, nor COX-2 seem to be involved in the observed changes in cell growth.

  14. Growth of Transplastomic Cells Expressing d-Amino Acid Oxidase in Chloroplasts Is Tolerant to d-Alanine and Inhibited by d-Valine1[W][OA

    PubMed Central

    Gisby, Martin F.; Mudd, Elisabeth A.; Day, Anil

    2012-01-01

    Dual-conditional positive/negative selection markers are versatile genetic tools for manipulating genomes. Plastid genomes are relatively small and conserved DNA molecules that can be manipulated precisely by homologous recombination. High-yield expression of recombinant products and maternal inheritance of plastid-encoded traits make plastids attractive sites for modification. Here, we describe the cloning and expression of a dao gene encoding d-amino acid oxidase from Schizosaccharomyces pombe in tobacco (Nicotiana tabacum) plastids. The results provide genetic evidence for the uptake of d-amino acids into plastids, which contain a target that is inhibited by d-alanine. Importantly, this nonantibiotic-based selection system allows the use of cheap and widely available d-amino acids, which are relatively nontoxic to animals and microbes, to either select against (d-valine) or for (d-alanine) cells containing transgenic plastids. Positive/negative selection with d-amino acids was effective in vitro and against transplastomic seedlings grown in soil. The dual functionality of dao is highly suited to the polyploid plastid compartment, where it can be used to provide tolerance against potential d-alanine-based herbicides, control the timing of recombination events such as marker excision, influence the segregation of transgenic plastid genomes, identify loci affecting dao function in mutant screens, and develop d-valine-based methods to manage the spread of transgenic plastids tagged with dao. PMID:23085840

  15. Inhibition of Vascularization in Tumor Growth

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Sansone, B. Capogrosso

    2002-11-01

    The transition to a vascular phase is a prerequisite for fast tumor growth. During the avascular phase, the neoplasm feeds only from the (relatively few) existing nearby blood vessels. During angiogenesis, the number of capillaries surrounding and infiltrating the tumor increases dramatically. A model which includes physical and biological mechanisms of the interactions between the tumor and vascular growth describes the avascular-vascular transition. Numerical results agree with clinical observations and predict the influence of therapies aiming to inhibit the transition.

  16. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  17. Bacterial Growth on Aminoalkylphosphonic Acids

    PubMed Central

    Harkness, Donald R.

    1966-01-01

    Harkness, Donald R. (University of Miami School of Medicine, Miami, Fla.). Bacterial growth on aminoalkylphosphonic acids. J. Bacteriol. 92:623–627. 1966.—Of 10 bacterial strains tested, 9 were found to be able to utilize the phosphorus of at least one of eight different aminoalkylphosphonic acids for growth, indicating that the ability to catabolize the carbon–phosphorus (C–P) bond is widespread among bacteria. Several organisms gave comparable growth rates as well as cell yields when an equimolar amount of either Pi or 2-aminoethylphosphonic acid (2-AEP) was added to the medium. No compounds containing C–P bonds were detected in Escherichia coli B grown on 2-AEP32-orthophosphate. No degradation of phosphonates by cell-free extracts or suspensions of dried cells was demonstrated. The direct involvement of alkaline phosphatases in cleaving the C–P bond was excluded. PMID:5922537

  18. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    SciTech Connect

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  19. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  20. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) inhibited human hepatocellular carcinoma growth through upregulation of Sirtuin-3 (SIRT3).

    PubMed

    Li, Ye; Wang, Wenjing; Xu, Xiaoxue; Sun, Shiyue; Qu, Xian-Jun

    2015-02-01

    {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) is a novel indole compound. Our previous studies showed that MIAM possessed activity against many cancers xenografted in mice without significant toxicity. In this study, we determined the effect of MIAM on human hepatocellular carcinoma (HCC) by both in vitro and in vivo assays. In in vitro assay, the experiments were performed in the hypoxic incubator. MIAM inhibited HCC growth with dose-dependent manner. The effects of MIAM on HCC might be due to its activities in induction of apoptosis, arrest of cell cycle in G0/G1 phase. Further studies showed that MIAM might exert its actions through multiple mechanisms. MIAM could reduce intracellular ATP, increase levels of p53/p21 and SIRT3/SOD2/Bax. MIAM also had the activity of reducing HIF1α and hexokinase II (HK II) in HCC. MIAM had the activity of increasing cellular reactive oxygen species (ROS) in HCC. However, the increase of ROS might not be its main mechanism in inhibition of HCC. MIAM might inhibit HepG2 growth through induction of apoptosis. We determined the relationship between level of SIRT3 and cell viability in the MIAM-treated cells. MIAM treatment resulted in increase of SIRT3 in HCC. Further, HepG2 cells infected with human SIRT3 were more sensitive to MIAM than the cells without infection of SIRT3. These results suggested that MIAM might inhibit HCC growth through upregulation of SIRT3. Importantly, the effect of MIAM was confirmed in the HepG2 xenografts bearing in mice. MIAM treatment did not induce significant toxicology to mice. Together, MIAM could be developed as potential agent for treatment of HCC. PMID:25661348

  1. Inhibition of tumour growth by lipoxygenase inhibitors.

    PubMed Central

    Hussey, H. J.; Tisdale, M. J.

    1996-01-01

    The potential involvement of lipoxygenase metabolites in the tumour growth stimulatory activity of arachidonic and linoleic acid has been studied using the 5-lipoxygenase inhibitors, BWA4C, BWB70C and Zileuton. In vitro the former two agents were relatively potent inhibitors of growth of murine adenocarcinomas (MACs) with IC50 values < 10 microM, whereas Zileuton was less effective. In vivo studies showed BWA4C to be an effective inhibitor of the growth of both the MAC26 and MAC16 tumours at dose levels between 5 and 25 mg kg-1 (b.d.). The growth rate of the MAC26 tumour was also decreased by BWB70C at 25 mg kg-1, whereas lower doses were either ineffective or stimulated tumour growth. This differential effect of the 5-lipoxygenases inhibitors on tumour growth may arise from effects on the 12- and 15-lipoxygenase pathways. To quantify the effect cells were labelled with [3H]arachidonic acid and the biosynthesis of 5-, 12- and 15-hydroxyeicosatetraenoic acid (HETE) was analysed by high-performance liquid chromatography. All three agents caused a decrease in 5-HETE production, although the effect was less pronounced with Zileuton. In MAC26 cells both BWA4C and BWB70C caused a decrease in 12-HETE formation whereas Zileuton had no effect on the other lipoxygenase pathways. The inhibitory effect of these agents on cell growth may result from an imbalance of metabolism of arachidonic acid between the 5-, 12- and 15-lipoxygenase pathways. PMID:8795568

  2. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-01

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function. PMID:15500945

  3. Understanding biocatalyst inhibition by carboxylic acids

    PubMed Central

    Jarboe, Laura R.; Royce, Liam A.; Liu, Ping

    2013-01-01

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance. PMID:24027566

  4. The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis.

    PubMed

    Mia, Masum M; Bank, Ruud A

    2016-03-01

    Fibrosis is a chronic disorder affecting many organs. A universal process in fibrosis is the formation of myofibroblasts and the subsequent collagen deposition by these cells. Transforming growth factor beta1 (TGFβ1) plays a major role in the formation of myofibroblasts, e.g. by activating fibroblasts. Currently, no treatments are available to circumvent fibrosis. Caffeic acid phenethyl ester (CAPE) shows a broad spectrum of biological activities, including anti-fibrotic properties in vivo in mice and rats. However, little is known about the direct effects of CAPE on fibroblasts. We have tested whether CAPE is able to suppress myofibroblast formation and collagen formation of human dermal and lung fibroblasts exposed to TGFβ1, and found that this was indeed the case. In fact, the formation of myofibroblasts by TGFβ1 and subsequent collagen formation was completely abolished by CAPE. The same was observed for fibronectin and tenascin C. The lack of myofibroblast formation is likely due to the suppression of GLI1 and GLI2 expression by CAPE because of diminished nuclear SMAD2/3 levels. Post-treatment with CAPE after myofibroblast formation even resulted in a partial reversal of myofibroblasts into fibroblasts and/or reduction in collagen formation. Major discrepancies were seen between mRNA levels of collagen type I and cells stained positive for collagen, underlining the need for protein data in fibrosis studies to make reliable conclusions. PMID:26453399

  5. Regulation of intestinal mucosal growth by amino acids.

    PubMed

    Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the mechanism through which amino acids influence the growth of intestinal mucosa. This brief article reviews the experiments leading to the information presented above. We also present evidence from the literature that AZ acts directly to inhibit cell proliferation and increase the rate of apoptosis. Finally, we discuss future experiments that will determine the role of AZ in the regulation of intestinal mucosal growth by amino acids. PMID:23904095

  6. Different modes of inhibition for organic acids on polyphenoloxidase.

    PubMed

    Zhou, Lei; Liu, Wei; Xiong, Zhiqiang; Zou, Liqiang; Chen, Jun; Liu, Junping; Zhong, Junzhen

    2016-05-15

    It is still unclear whether the inhibitory effect of organic acid on polyphenoloxidase (PPO) is due to the reversible inhibition or decrease of pH. In this study, cinnamic acid, citric acid and malic acid inhibited PPO in different modes. Results showed that the inhibition by cinnamic acid resulted from reversible inhibition, while the decrease of pH was the main cause for citric acid and malic acid. The kinetic results showed that cinnamic acid reversibly inhibited PPO in a mixed-type manner. Fluorescence emission spectra indicated that cinnamic acid might interact with PPO and quench its intrinsic fluorescence, while the decrease of the fluorescence intensity induced by citric acid or malic acid was due to the acid-pH. Cinnamic acid bound to PPO and induced the rearrangement of secondary structure. Molecular docking result revealed cinnamic acid inserted into the hydrophobic cavity of PPO by forming π-π stacking. PMID:26775993

  7. FERMENTATION ACIDS INHIBIT AMINO ACID DEAMINATION BY CLOSTRIDIUM SPOROGENES MD1 VIA A MECHANISM INVOLVING A DECLINE IN INTRACELLULAR GLUTAMATE RATHER THAN PROTONMOTIVE FORCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fermentation acids inhibited the growth and ammonia production of the amino acid fermenting bacterium, Clostridium sporogenes MD1, but only when the pH was acidic. Such inhibition was traditionally explained by the ability of fermentation acids to act as uncouplers and decrease protonmotive force (...

  8. Growth inhibition of thermotolerant yeast, Kluyveromyces marxianus, in hydrolysates from cassava pulp.

    PubMed

    Rugthaworn, Prapassorn; Murata, Yoshinori; Machida, Masashi; Apiwatanapiwat, Waraporn; Hirooka, Akiko; Thanapase, Warunee; Dangjarean, Hatairat; Ushiwaka, Satoru; Morimitsu, Kozo; Kosugi, Akihiko; Arai, Takamitsu; Vaithanomsat, Pilanee

    2014-07-01

    In this study, we report the inhibition of Kluyveromyces marxianus TISTR5925 growth and ethanol fermentation in the presence of furan derivatives and weak acids (acetic acid and lactic acid) at high temperatures. Cassava pulp, obtained as the waste from starch processing, was collected from 14 starch factories located in several provinces of Thailand. At a high temperature (42C), the cassava pulp hydrolysate from some starch factories strongly inhibited growth and ethanol production of both K. marxianus (strain TISTR5925) and Saccharomyces cerevisiae (strain K3). HPLC detected high levels of lactic acid and acetic acid in the hydrolysates, suggesting that these weak acids impaired the growth of K. marxianus at high temperature. We isolated Trp-requiring mutants that had reduced tolerance to acetic acid compared to the wild-type. This sensitivity to acetic acid was suppressed by supplementation of the medium with tryptophan. PMID:24781978

  9. Selenium nanoparticles inhibit Staphylococcus aureus growth

    PubMed Central

    Tran, Phong A; Webster, Thomas J

    2011-01-01

    Staphylococcus aureus is a key bacterium commonly found in numerous infections. S. aureus infections are difficult to treat due to their biofilm formation and documented antibiotic resistance. While selenium has been used for a wide range of applications including anticancer applications, the effects of selenium nanoparticles on microorganisms remain largely unknown to date. The objective of this in vitro study was thus to examine the growth of S. aureus in the presence of selenium nanoparticles. Results of this study provided the first evidence of strongly inhibited growth of S. aureus in the presence of selenium nanoparticles after 3, 4, and 5 hours at 7.8, 15.5, and 31 μg/mL. The percentage of live bacteria also decreased in the presence of selenium nanoparticles. Therefore, this study suggests that selenium nanoparticles may be used to effectively prevent and treat S. aureus infections and thus should be further studied for such applications. PMID:21845045

  10. Rapamycin inhibits the growth of glioblastoma.

    PubMed

    Arcella, Antonietta; Biagioni, Francesca; Antonietta Oliva, Maria; Bucci, Domenico; Frati, Alessandro; Esposito, Vincenzo; Cantore, Giampaolo; Giangaspero, Felice; Fornai, Francesco

    2013-02-01

    The molecular target of rapamycin (mTOR) is up-regulated in glioblastoma (GBM) and this is associated with the rate of cell growth, stem cell proliferation and disease relapse. Rapamycin is a powerful mTOR inhibitor and strong autophagy inducer. Previous studies analyzed the effects of rapamycin in GBM cell lines. However, to our knowledge, no experiment was carried out to evaluate the effects of rapamycin neither in primary cells derived from GBM patients nor in vivo in brain GBM xenograft. These data are critical to get a deeper insight into the effects of such adjuvant therapy in GBM patients. In the present study, various doses of rapamycin were tested in primary cell cultures from GBM patients. These effects were compared with that obtained by the same doses of rapamycin in GBM cell lines (U87Mg). The effects of rapamycin were also evaluated in vivo, in brain tumors developed from mouse xenografts. Rapamycin, starting at the dose of 10nm inhibited cell growth both in U87Mg cell line and primary cell cultures derived from various GBM patients. When administered in vivo to brain xenografts in nude mice rapamycin almost doubled the survival time of mice and inhibited by more than 95% of tumor volume. PMID:23261661

  11. Pyruvate accumulation in growth-inhibited cultures of Aerobacter aerogenes

    PubMed Central

    Webb, M.

    1968-01-01

    1. Accumulation of pyruvate occurs during the early stages of exponential growth of aerobic, anaerobic and static cultures of a strain of Aerobacter aerogenes. In normal cultures of this organism the content of pyruvate increases until most of the glucose of the medium has been consumed, and then declines rapidly. The presence of unconsumed sugar is not the sole reason for the accumulation of keto acid, since this is unaffected by the addition of extra glucose to either exponentialphase or stationary-phase cultures. 2. In aminopterin-inhibited cultures, the rate of glucose utilization is decreased greatly, and pyruvate continues to accumulate throughout the period of incubation. This prolonged phase of accumulation appears to be a consequence of the growth inhibition, and not to a specific action of aminopterin on the phosphoroclastic breakdown of pyruvate, since it occurs also when growth is restricted by the antibiotics streptomycin, chloramphenicol and neomycin. 3. A possible explanation is suggested for the accumulation of pyruvate in the inhibited cultures. PMID:5637349

  12. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  13. Stanniocalcin-2 Inhibits Mammalian Growth by Proteolytic Inhibition of the Insulin-like Growth Factor Axis*

    PubMed Central

    Jepsen, Malene R.; Kløverpris, Søren; Mikkelsen, Jakob H.; Pedersen, Josefine H.; Füchtbauer, Ernst-Martin; Laursen, Lisbeth S.; Oxvig, Claus

    2015-01-01

    Mammalian stanniocalcin-2 (STC2) is a secreted polypeptide widely expressed in developing and adult tissues. However, although transgenic expression in mice is known to cause severe dwarfism, and targeted deletion of STC2 causes increased postnatal growth, its precise biological role is still unknown. We found that STC2 potently inhibits the proteolytic activity of the growth-promoting metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A). Proteolytic inhibition requires covalent binding of STC2 to PAPP-A and is mediated by a disulfide bond, which involves Cys-120 of STC2. Binding of STC2 prevents PAPP-A cleavage of insulin-like growth factor-binding protein (IGFBP)-4 and hence release within tissues of bioactive IGF, required for normal growth. Concordantly, we show that STC2 efficiently inhibits PAPP-A-mediated IGF receptor signaling in vitro and that transgenic mice expressing a mutated variant of STC2, STC2(C120A), which is unable to inhibit PAPP-A, grow like wild-type mice. Our work identifies STC2 as a novel proteinase inhibitor and a previously unrecognized extracellular component of the IGF system. PMID:25533459

  14. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    PubMed

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. PMID:23983455

  15. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    PubMed Central

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. PMID:23983455

  16. A New Growth Inhibitor, Pisumin, Involved in Light Inhibition of Epicotyl Growth of Dwarf Peas

    PubMed Central

    Hasegawa, Koji; Koreeda, M.; Hase, T.

    1983-01-01

    A new growth inhibitor, tentatively named pisumin, which increased under red light and remained at initial level or decreased when dwarf pea (Pisum sativum L. cv Progress No. 9) seedlings were transferred from red light to dark, has been isolated in the form of a colorless powder from light-exposed epicotyls of dwarf peas, and characterized partially as an aliphatic carboxylic acid (molecular weight 284) by spectrometric analyses. Exogenous pisumin inhibited the growth of epicotyl segments of dwarf peas at concentrations higher than 0.1 millimolar in the dark. PMID:16663012

  17. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1

    PubMed Central

    Su, Liang-Cheng; Jiang, Shih Sheng; Chan, Tzu-Min; Chang, Chung-Ho; Chen, Li-Tzong; Kung, Hsing-Jien; Wang, Horng-Dar; Chuu, Chih-Pin

    2015-01-01

    Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1–3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4–2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1. PMID:25788262

  18. 9-Cis-retinoic acid induces growth inhibition in retinoid-sensitive breast cancer and sea urchin embryonic cells via retinoid X receptor α and replication factor C3.

    PubMed

    Maeng, Sejung; Kim, Gil Jung; Choi, Eun Ju; Yang, Hyun Ok; Lee, Dong-Sup; Sohn, Young Chang

    2012-11-01

    There is widespread interest in defining factors and mechanisms that suppress the proliferation of cancer cells. Retinoic acid (RA) is a potent suppressor of mammary cancer and developmental embryonic cell proliferation. However, the molecular mechanisms by which 9-cis-RA signaling induces growth inhibition in RA-sensitive breast cancer and embryonic cells are not apparent. Here, we provide evidence that the inhibitory effect of 9-cis-RA on cell proliferation depends on 9-cis-RA-dependent interaction of retinoid X receptor α (RXRα) with replication factor C3 (RFC3), which is a subunit of the RFC heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp on DNA. An RFC3 ortholog in a sea urchin cDNA library was isolated by using the ligand-binding domain of RXRα as bait in a yeast two-hybrid screening. The interaction of RFC3 with RXRα depends on 9-cis-RA and bexarotene, but not on all-trans-RA or an RA receptor (RAR)-selective ligand. Truncation and mutagenesis experiments demonstrated that the C-terminal LXXLL motifs in both human and sea urchin RFC3 are critical for the interaction with RXRα. The transient interaction between 9-cis-RA-activated RXRα and RFC3 resulted in reconfiguration of the PCNA-RFC complex. Furthermore, we found that knockdown of RXRα or overexpression of RFC3 impairs the ability of 9-cis-RA to inhibit proliferation of MCF-7 breast cancer cells and sea urchin embryogenesis. Our results indicate that 9-cis-RA-activated RXRα suppresses the growth of RA-sensitive breast cancer and embryonic cells through RFC3. PMID:22949521

  19. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1.

    PubMed

    Lin, Hui-Ping; Lin, Ching-Yu; Huo, Chieh; Hsiao, Ping-Hsuan; Su, Liang-Cheng; Jiang, Shih Sheng; Chan, Tzu-Min; Chang, Chung-Ho; Chen, Li-Tzong; Kung, Hsing-Jien; Wang, Horng-Dar; Chuu, Chih-Pin

    2015-03-30

    Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4-2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1. PMID:25788262

  20. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms

    NASA Technical Reports Server (NTRS)

    Cheung, S. P.; Cleland, R. E.

    1991-01-01

    Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.

  1. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  2. Caffeic Acid Phenethyl Ester Causes p21Cip1 Induction, Akt Signaling Reduction, and Growth Inhibition in PC-3 Human Prostate Cancer Cells

    PubMed Central

    Lin, Hui-Ping; Jiang, Shih Sheng; Chuu, Chih-Pin

    2012-01-01

    Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer. PMID:22347457

  3. Inhibition of ovarian cancer proliferation and invasion by pachymic acid

    PubMed Central

    Gao, Ai-Hua; Zhang, Liang; Chen, Xin; Chen, Ying; Xu, Zhen-Zhen; Liu, Ya-Nan; Zhang, Hong

    2015-01-01

    To determine the effect of pachymic acid (PA) on proliferation, cell cycle, and invasion in human ovarian carcinoma cell lines HO-8910 and explore some possible mechanisms, HO-8910 cells was treated with different concentrations of PA (0.5, 1, 2 μM). CCK-8 assay, propidium iodide staining, was applied to measuring the growth inhibiting rates of HO-8910 cells. Cell cycle was measured by flow cytometry. In addition, the activity of PA against HO-8910 cells invasion was evaluated in transwell assay. Western blot detected the proteins expression of E-cadherin, β-catenin and COX-2 of different groups treated with PA in different concentrations (0.5, 1, 2 μM) for 48 h. Our results showed that PA could effectively inhibit the in vitro growth of HO-8910 cells in dose-dependent manners in 72 h, suppressed migration and invasion of HO-8910 cells in concentration-dependent manners at 24 h, caused the increased accumulation of G1 phase cells, and caused down-regulation of β-catenin and COX-2 and up-regulation of E-cadherin expression level. Taken together, it could conclude that PA might inhibit proliferation and invasion of ovarian carcinoma cell through decreasing β-catenin and COX-2 expression and increasing E-cadherin exprssion. PMID:25973134

  4. Pachymic acid inhibits tumorigenesis in gallbladder carcinoma cells

    PubMed Central

    Chen, Yueguang; Lian, Peilong; Liu, Yanfeng; Xu, Kesen

    2015-01-01

    Background: Gallbladder cancer, with high aggressivity and extremely poor prognosis, is the most common malignancy of the bile duct. Thus, seeking targets gallbladder tumor cells is an attractive goal towards improving clinical treatment. Material and methods: In this study, we investigated the effects of pachymic acid (PA) on the tumorigenesis of human gallbladder cancer cells. Results: We found that PA significantly reduced cell growth in a dose- and time-dependent fashion. Meanwhile, cell cycle arrest at G0 phase was induced by PA. PA also significantly inhibited cancer cell migration, invasion in a dose-dependent manner. Interestingly, we demonstrated that cancer cell adhesion ability was suppressed dose-dependently, which may contribute to the inhibition of cell invasion. Finally, we showed that PA inhibited AKT and ERK signaling pathways. And oncoproteins, such as PCNA, ICAM-1 and RhoA which are involved intumorigenesis, were also downregulated by PA. Conclusion: Our study reveals that PA is able to inhibit gallbladder cancer tumorigenesis involving affection of AKT and ERK signaling pathways. Together, these results encourage further studies of PA as a promising candidate for gallbladder cancer therapy. PMID:26770369

  5. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    SciTech Connect

    Vesper, M.J. ); Cross, J.W. )

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  6. Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling

    SciTech Connect

    Vierstra, R.D.; Poff, K.L.

    1981-05-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that phototreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and ..beta..-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism.

  7. Fatty Acids Inhibit Apical Membrane Chloride Channels in Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew P.; Welsh, Michael J.

    1990-09-01

    Apical membrane Cl^- channels control the rate of transepithelial Cl^- secretion in airway epithelia. cAMP-dependent protein kinase and protein kinase C regulate Cl^- channels by phosphorylation; in cystic fibrosis cells, phosphorylation-dependent activation of Cl^- channels is defective. Another important signaling system involves arachidonic acid, which is released from cell membranes during receptor-mediated stimulation. Here we report that arachidonic acid reversibly inhibited apical membrane Cl^- channels in cell-free patches of membrane. Arachidonic acid itself inhibited the channel and not a cyclooxygenase or lipoxygenase metabolite because (i) inhibitors of these enzymes did not block the response, (ii) fatty acids that are not substrates for the enzymes had the same effect as arachidonic acid, and (iii) metabolites of arachidonic acid did not inhibit the channel. Inhibition occurred only when fatty acids were added to the cytosolic surface of the membrane patch. Unsaturated fatty acids were more potent than saturated fatty acids. Arachidonic acid inhibited Cl^- channels from both normal and cystic fibrosis cells. These results suggest that fatty acids directly inhibit apical membrane Cl^- channels in airway epithelial cells.

  8. Inhibition of Growth of Mycobacterium smegmatis and of Cell Wall Synthesis by d-Serine

    PubMed Central

    Yabu, Kunihiko; Huempfner, Herman R.

    1974-01-01

    d-Serine inhibited the growth of Mycobacterium smegmatis and induced the morphological alteration of the bacilli. The growth inhibitory action of d-serine was partially reduced by an equimolecular concentration of d-alanine. The combination of glycine with d-alanine reversed the growth inhibition produced by d-serine more than did d-alanine alone. In cells cultured in the presence of d-serine, the amounts of alanine, diaminopimelic acid, and glycine inserted into the cell wall mucopeptide were reduced, and serine was increased. The intracellular accumulation of a precursor of cell wall mucopeptide was increased by d-serine, and this accumulation was reduced by d-alanine. d-Serine competed with glycine for incorporation into the cell wall mucopeptide. The incorporation of l-aspartic acid into diaminopimelic acid residues in the cell wall mucopeptide was markedly inhibited by d-serine. Three mutants resistant to d-serine were isolated by nitrosoguanidine treatment. In these mutants the effects of d-serine on the sites of cell wall mucopeptide synthesis were all reduced. Thus, d-serine inhibition of the growth is due to replacement of glycine residues of the cell wall mucopeptide with d-serine and inhibition of the cell wall synthesis by blocking the formation of d-alanine and diaminopimelic acid. PMID:15828163

  9. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. PMID:26514625

  10. Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Parks, B. M.; Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    High fluence-rate blue light (BL) rapidly inhibits hypocotyl growth in Arabidopsis, as in other species, after a lag time of 30 s. This growth inhibition is always preceded by the activation of anion channels. The membrane depolarization that results from the activation of anion channels by BL was only 30% of the wild-type magnitude in hy4, a mutant lacking the HY4 BL receptor. High-resolution measurements of growth made with a computer-linked displacement transducer or digitized images revealed that BL caused a rapid inhibition of growth in wild-type and hy4 seedlings. This inhibition persisted in wild-type seedlings during more than 40 h of continuous BL. By contrast, hy4 escaped from the initial inhibition after approximately 1 h of BL and grew faster than wild type for approximately 30 h. Wild-type seedlings treated with 5-nitro-2-(3-phenylpropylamino)-benzoic acid, a potent blocker of the BL-activated anion channel, displayed rapid growth inhibition, but, similar to hy4, these seedlings escaped from inhibition after approximately 1 h of BL and phenocopied the mutant for at least 2.5 h. The effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid and the HY4 mutation were not additive. Taken together, the results indicate that BL acts through HY4 to activate anion channels at the plasma membrane, causing growth inhibition that begins after approximately 1 h. Neither HY4 nor anion channels appear to participate greatly in the initial phase of inhibition.

  11. Inhibition of Herpes Simplex Virus Replication by Phosphonoacetic Acid

    PubMed Central

    Overby, L. R.; Robishaw, E. E.; Schleicher, J. B.; Rueter, A.; Shipkowitz, N. L.; Mao, J. C.-H.

    1974-01-01

    Replication of herpes simplex virus in WI-38 cells was inhibited by phosphonoacetic acid, as measured by decreased virus cytopathogenic effect and incorporation of radiolabeled thymidine in virus-infected cells. The drug appeared to have no effect on adsorption, penetration, or release of the virus nor on the synthesis of ribonucleic acid or protein. It appeared to inhibit virus deoxyribonucleic acid synthesis. Images PMID:15830487

  12. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2-bromooctanoic acid was determined to be 60 μM, assuming a single-site binding of the inhibitor at a specific inhibition site. Thus, it seems likely that a coenzyme A thioester derivative of 2-bromooctanoic acid specifically inhibits an enzyme linking the two pathways, fatty acid de novo synthesis and PHA synthesis. We suggest that 2-bromooctanoic acid can substitute for the far more expensive (2,000 times) and cell-growth-inhibiting PHA synthesis inhibitor, cerulenin. PMID:11679314

  13. AUXIN-INDUCED SPROUT GROWTH INHIBITION: ROLE OF ENDOGENOUS ETHYLENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of endogenous ethylene in auxin-mediated tuber sprout growth inhibition was determined in potato (Solanum tuberosum L. cv. Russet Burbank) minitubers. Treatment of tubers with biologically active auxins resulted in transient, dose-dependent increase in ethylene production and inhibition of...

  14. Inhibition of urease activity by dipeptidyl hydroxamic acids.

    PubMed

    Odake, S; Nakahashi, K; Morikawa, T; Takebe, S; Kobashi, K

    1992-10-01

    A series of dipeptidyl hydroxamic acids (H-X-Gly-NHOH: X = amino acid residues) was synthesized, and the inhibitory activity against Jack bean and Proteus mirabilis ureases [EC 3.5.1.5] was examined. A number of H-X-Gly-NHOH inhibited Jack bean urease with an I50 of the order of 10(-6) M and inhibited Proteus mirabilis urease with an I50 of the order of 10(-5) M. The inhibition against Jack bean urease was more potent than that with the corresponding aminoacyl hydroxamic acids (H-X-NHOH). PMID:1464106

  15. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates

    PubMed Central

    2013-01-01

    Background During the pretreatment of biomass feedstocks and subsequent conditioning prior to saccharification, many toxic compounds are produced or introduced which inhibit microbial growth and in many cases, production of ethanol. An understanding of the toxic effects of compounds found in hydrolysate is critical to improving sugar utilization and ethanol yields in the fermentation process. In this study, we established a useful tool for surveying hydrolysate toxicity by measuring growth rates in the presence of toxic compounds, and examined the effects of selected model inhibitors of aldehydes, organic and inorganic acids (along with various cations), and alcohols on growth of Zymomonas mobilis 8b (a ZM4 derivative) using glucose or xylose as the carbon source. Results Toxicity strongly correlated to hydrophobicity in Z. mobilis, which has been observed in Escherichia coli and Saccharomyces cerevisiae for aldehydes and with some exceptions, organic acids. We observed Z. mobilis 8b to be more tolerant to organic acids than previously reported, although the carbon source and growth conditions play a role in tolerance. Growth in xylose was profoundly inhibited by monocarboxylic organic acids compared to growth in glucose, whereas dicarboxylic acids demonstrated little or no effects on growth rate in either substrate. Furthermore, cations can be ranked in order of their toxicity, Ca++ > > Na+ > NH4+ > K+. HMF (5-hydroxymethylfurfural), furfural and acetate, which were observed to contribute to inhibition of Z. mobilis growth in dilute acid pretreated corn stover hydrolysate, do not interact in a synergistic manner in combination. We provide further evidence that Z. mobilis 8b is capable of converting the aldehydes furfural, vanillin, 4-hydroxybenzaldehyde and to some extent syringaldehyde to their alcohol forms (furfuryl, vanillyl, 4-hydroxybenzyl and syringyl alcohol) during fermentation. Conclusions Several key findings in this report provide a mechanism for predicting toxic contributions of inhibitory components of hydrolysate and provide guidance for potential process development, along with potential future strain improvement and tolerance strategies. PMID:23837621

  16. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

    PubMed

    Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

    2013-12-01

    Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens. PMID:23674267

  17. Timing of growth inhibition following shoot inversion in Pharbitis nil

    NASA Technical Reports Server (NTRS)

    Abdel-Rahman, A. M.; Cline, M. G.

    1989-01-01

    Shoot inversion in Pharbitis nil results in the enhancement of ethylene production and in the inhibition of elongation in the growth zone of the inverted shoot. The initial increase in ethylene production previously was detected within 2 to 2.75 hours after inversion. In the present study, the initial inhibition of shoot elongation was detected within 1.5 to 4 hours with a weighted mean of 2.4 hours. Ethylene treatment of upright shoots inhibited elongation in 1.5 hours. A cause and effect relationship between shoot inversion-enhanced ethylene production and inhibition of elongation cannot be excluded.

  18. Perfluoroalkyl Acids Inhibit Reductive Dechlorination of Trichloroethene by Repressing Dehalococcoides.

    PubMed

    Weathers, Tess S; Harding-Marjanovic, Katie; Higgins, Christopher P; Alvarez-Cohen, Lisa; Sharp, Jonathan O

    2016-01-01

    The subsurface recalcitrance of perfluoroalkyl acids (PFAAs) derived from aqueous film-forming foams could have adverse impacts on the microbiological processes used for the bioremediation of co-mingled chlorinated solvents such as trichloroethene (TCE). Here, we show that reductive dechlorination by a methanogenic, mixed culture was significantly inhibited when exposed to concentrations representative of PFAA source zones (>66 mg/L total of 11 PFAA analytes, 6 mg/L each). TCE dechlorination, cis-dichloroethene and vinyl chloride production and dechlorination, and ethene generation were all inhibited at these PFAA concentrations. Phylogenetic analysis revealed that the abundances of 65% of the operational taxonomic units (OTUs) changed significantly when grown in the presence of PFAAs, although repression or enhancement resulting from PFAA exposure did not correlate with putative function or phylogeny. Notably, there was significant repression of Dehalococcoides (8-fold decrease in abundance) coupled with a corresponding enhancement of methane-generating Archaea (a 9-fold increase). Growth and dechlorination by axenic cultures of Dehalococcoides mccartyi strain 195 were similarly repressed under these conditions, confirming an inhibitory response of this pivotal genus to PFAA presence. These results suggest that chlorinated solvent bioattenuation rates could be impeded in subsurface environments near PFAA source zones. PMID:26636352

  19. Ozone selectively inhibits growth of human cancer cells.

    PubMed

    Sweet, F; Kao, M S; Lee, S C; Hagar, W L; Sweet, W E

    1980-08-22

    The growth of human cancer cells from lung, breast, and uterine tumors was selectively inhibited in a dose-dependent manner by ozone at 0.3 to 0.8 part per million of ozone in ambient air during 8 days of culture. Human lung diploid fibroblasts served as noncancerous control cells. The presence of ozone at 0.3 to 0.5 part per million inhibited cancer cell growth 40 and 60 percent, respectively. The noncancerous lung cells were unaffected at these levels. Exposure to ozone at 0.8 part per million inhibited cancer cell growth more than 90 percent and control cell growth less than 50 percent. Evidently, the mechanisms for defense against ozone damage are impaired in human cancer cells. PMID:7403859

  20. Ozone selectively inhibits growth of human cancer cells

    SciTech Connect

    Sweet, F.; Kao, M.S.; Lee, S.C.; Hagar, W.L.; Sweet, W.E.

    1980-08-01

    The growth of human cancer cells from lung, breast, and uterine tumors was selectively inhibited in a dose-dependent manner by ozone at 0.3 to 0.8 part per million of ozone in ambient air during 8 days of culture. Human lung diploid fibroblasts served as noncancerous control cells. The presence of ozone at 0.3 to 0.5 part per million inhibited cancer cell growth 40 and 60 percent, respectively. The noncancerous lung cells were unaffected at these levels. Exposure to ozone at 0.8 part per million inhibited cancer cell growth more than 90 percent and control cell growth less than 50 percent. Evidently, the mechanisms for defense against ozone damage are impaired in human cancer cells.

  1. Inhibition of miRNA maturation by peptide nucleic acids.

    PubMed

    Avitabile, Concetta; Fabbri, Enrica; Bianchi, Nicoletta; Gambari, Roberto; Romanelli, Alessandra

    2014-01-01

    Molecules able to interfere in miRNA genesis and function are potent tools to unravel maturation and processing pathways. Antisense oligonucleotides or analogs are actually employed for the inhibition of miRNA function. Here we illustrate how Peptide Nucleic Acids oligomers targeting pre-miRNA are exploited to inhibit miRNA maturation. PMID:24166311

  2. Human cytomegalovirus. IV. Specific inhibition of virus-induced DNA polymerase activity and viral DNA replication by phosphonoacetic acid.

    PubMed Central

    Huang, E S

    1975-01-01

    Phosphonoacetic acid specifically inhibited human cytomegalovirus DNA synthesis in virus-infected human fibroblasts as detected by virus-specific nucleic acid hybridization. Inhibition was reversible; viral DNA synthesis resumed upon the removal of the drug. The compound partially inhibited DNA synthesis of host cells in the log phase of growth but had little effect on confluent cells. Studies of partially purified enzymes indicated that phosphonoacetic acid specifically inhibited virus-induced DNA polymerase and had only a slight effect on normal host cell enzymes. The drug was shown to interact directly with virus-induced enzyme but not with the template-primers. PMID:172657

  3. Transcriptional profile of maize roots under acid soil growth

    PubMed Central

    2010-01-01

    Background Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses. Results When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins. Conclusions This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted several pathways that are related to Al toxicity and tolerance during growth in acid soil. We found several genes that were not found in previous studies using hydroponic experiments, increasing our understanding of plant responses to acid soil. The use of two germplasms with markedly different Al tolerances allowed the identification of genes that are a valuable tool for assessing the mechanisms of Al tolerance in maize in acid soil. PMID:20828383

  4. Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings

    NASA Technical Reports Server (NTRS)

    Jones, R. S.; Mitchell, C. A.

    1989-01-01

    A 40-50% reduction in soybean [Glycine max (L.) Merr. cv. Century 84] hypocotyl elongation occurred 24 h after application of mechanical stress. Exogenous Ca2+ at 10 mM inhibited growth by 28% if applied with the Ca2+ ionophore A23187 to the zone of maximum hypocotyl elongation. La3+ was even more inhibitory than Ca2+, especially above 5 mM. Treatment with ethyleneglycol-bis-(beta-aminoethylether)-N, N, N', N'-tetraacetic acid (EGTA) alone had no effect on growth of non-stressed seedlings at the concentrations used but negated stress-induced growth reduction by 36% at 4 mM when compared to non-treated, stressed controls. Treatment with EDTA was ineffective in negating stress-induced growth inhibition. Calmodulin antagonists calmidazolium, chlorpromazine, and 48/80 also negated stress-induced growth reduction by 23, 50, and 35%, respectively.

  5. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA(III) perturbs Nrf2 pathway and selenoprotein synthesis.

  6. Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase

    PubMed Central

    Zuther, E.; Johnson, J. J.; Haselkorn, R.; McLeod, R.; Gornicki, P.

    1999-01-01

    Aryloxyphenoxypropionates, inhibitors of the plastid acetyl-CoA carboxylase (ACC) of grasses, also inhibit Toxoplasma gondii ACC. Clodinafop, the most effective of the herbicides tested, inhibits growth of T. gondii in human fibroblasts by 70% at 10 μM in 2 days and effectively eliminates the parasite in 2–4 days at 10–100 μM. Clodinafop is not toxic to the host cell even at much higher concentrations. Parasite growth inhibition by different herbicides is correlated with their ability to inhibit ACC enzyme activity, suggesting that ACC is a target for these agents. Fragments of genes encoding the biotin carboxylase domain of multidomain ACCs of T. gondii, Plasmodium falciparum, Plasmodium knowlesi, and Cryptosporidium parvum were sequenced. One T. gondii ACC (ACC1) amino acid sequence clusters with P. falciparum ACC, P. knowlesi ACC, and the putative Cyclotella cryptica chloroplast ACC. Another sequence (ACC2) clusters with that of C. parvum ACC, probably the cytosolic form. PMID:10557330

  7. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  8. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis.

    PubMed

    Li, Hong-Xing; Zhao, Wei; Shi, Yan; Li, Ya-Na; Zhang, Lian-Shuang; Zhang, Hong-Qin; Wang, Dong

    2015-11-01

    Small cell lung cancer (SCLC) accounts for 12 to 16% of lung neoplasms and has a high rate of metastasis. The present study demonstrates the antiproliferative effect of retinoic acid amide in vitro and in vivo against human lung cancer cells. The results from MTT assay showed a significant growth inhibition of six tested lung cancer cell lines and inhibition of clonogenic growth at 30 μM. Retinoic acid amide also leads to G2/M-phase cell cycle arrest and apoptosis of lung cancer cells. It caused inhibition of JAK2, STAT3, and STAT5, increased the level of p21WAF1, and decreased cyclin A, cyclin B1, and Bcl-XL expression. Retinoic acid amide exhibited a synergistic effect on antiproliferative effects of methotrexate in lung cancer cells. In lung tumor xenografts, the tumor volume was decreased by 82.4% compared to controls. The retinoic acid amide-treated tumors showed inhibition of JAK2/STAT3 activation and Bcl-XL expression. There was also increase in expression of caspase-3 and caspase-9 in tumors on treatment with retinoic acid amide. Thus, retinoic acid amide exhibits promising antiproliferative effects against human lung cancer cells in vitro and in vivo and enhances the antiproliferative effect of methotrexate. PMID:26044560

  9. Interamino Acid Inhibition of Transport in Higher Plants 12

    PubMed Central

    Kinraide, Thomas B.

    1981-01-01

    Data from published experiments were analyzed to determine the number and specificities of amino acid transport channels in cells of higher plants. Each experiment measured the uptake of a labeled amino acid in the presence of unlabeled amino acids, used one at a time, in the incubating medium. The observed interamino acid inhibitions can be accounted for by two transport channels, each with characteristic affinities that were computed from the observed interamino acid inhibitions. The first channel is a general transport system with the following relative affinities for the amino acids: methionine 75, alanine 75, phenylalanine 64, tyrosine 64, leucine 63, cysteine 58, serine 57, glycine 56, tryptophan 54, glutamine 51, threonine 49, valine 44, isoleucine 44, glutamic acid 44, proline 43, histidine 33, lysine 32, asparagine 22, arginine 22, aspartic acid 18. The second channel is a basic amino acid tranport system with relative affinities for arginine, lysine, and histidine of 66, 39, and 21, respectively. The affinities for the other acids in the second channel are lower. Despite considerable diversity in the species, tissues, and solute concentrations employed in the experiments, multiple regression equations (Y = ? + ?1X1 + ?X2, in which Y is the observed transport inhibition and X1 and X2 are the relative transport affinities of the two channels) account for 50 to 99% of the variance in all but six experiments, five of which employed unusually high solute concentrations. PMID:16662102

  10. Potent Inhibition of Acid Ceramidase by Novel B-13 Analogues

    PubMed Central

    Proksch, Denny; Klein, Jan Jasper; Arenz, Christoph

    2011-01-01

    The lipid-signalling molecule ceramide is known to induce apoptosis in a variety of cell types. Inhibition of the lysosomal acid ceramidase can increase cellular ceramide levels and thus induce apoptosis. Indeed, inhibitors of acid ceramidase have been reported to induce cell death and to display potentiating effects to classical radio- or chemo therapy in a number of in vitro and in vivo cancer models. The most potent in vitro inhibitor of acid ceramidase, B-13, recently revealed to be virtually inactive towards lysosomal acid ceramidase in living cells. In contrast, a number of weakly basic B-13 analogues have been shown to accumulate in the acidic compartments of living cells and to efficiently inhibit lysosomal acid ceramidase. However, introduction of weakly basic groups at the ω-position of the fatty acid moiety of B-13 led to a significant reduction of potency towards acid ceramidase from cellular extracts. Herein, we report a novel B-13-derived scaffold for more effective inhibitors of acid ceramidase. Furthermore, we provide hints for an introduction of basic functional groups at an alternative site of the B-13 scaffold that do not interfere with acid ceramidase inhibition in vitro. PMID:21490813

  11. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.

    PubMed

    Leiman, Sara A; May, Janine M; Lebar, Matthew D; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-12-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine and was reported to inhibit biofilm formation via the incorporation of these D-amino acids into the cell wall. Here, we show that L-amino acids were able to specifically reverse the inhibitory effects of their cognate D-amino acids. We also show that D-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding D-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of D-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of D-amino acids without losing the ability to incorporate at least one noncanonical D-amino acid, D-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of D-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis. PMID:24097941

  12. d-Amino Acids Indirectly Inhibit Biofilm Formation in Bacillus subtilis by Interfering with Protein Synthesis

    PubMed Central

    Leiman, Sara A.; May, Janine M.; Lebar, Matthew D.; Kahne, Daniel; Kolter, Roberto

    2013-01-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were able to specifically reverse the inhibitory effects of their cognate d-amino acids. We also show that d-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding d-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of d-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of d-amino acids without losing the ability to incorporate at least one noncanonical d-amino acid, d-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of d-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis. PMID:24097941

  13. Bacterial Ammonia Causes Significant Plant Growth Inhibition

    PubMed Central

    Weise, Teresa; Kai, Marco; Piechulla, Birgit

    2013-01-01

    Many and complex plant-bacteria inter-relationships are found in the rhizosphere, since plants release a variety of photosynthetic exudates from their roots and rhizobacteria produce multifaceted specialized compounds including rich mixtures of volatiles, e.g., the bouquet of Serratia odorifera 4Rx13 is composed of up to 100 volatile organic and inorganic compounds. Here we show that when growing on peptone-rich nutrient medium S. odorifera 4Rx13 and six other rhizobacteria emit high levels of ammonia, which during co-cultivation in compartmented Petri dishes caused alkalization of the neighboring plant medium and subsequently reduced the growth of A. thaliana. It is argued that in nature high-protein resource degradations (carcasses, whey, manure and compost) are also accompanied by bacterial ammonia emission which alters the pH of the rhizosphere and thereby influences organismal diversity and plant-microbe interactions. Consequently, bacterial ammonia emission may be more relevant for plant colonization and growth development than previously thought. PMID:23691060

  14. Spectroscopic analysis of urinary calculi and inhibition of their growth

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Durrer, William; Govani, Jayesh; Reza, Layra; Pinales, Luis

    2009-10-01

    We present here a study of kidney stone formation and growth inhibition based on a traditional medicine approach with Aquatica Lour (RAL) herbal extracts. Kidney stone material systems were synthesized in vitro using a simplified single diffusion gel growth technique. With the objective of revealing the mechanism of inhibition of calculi formation by RAL extracts, samples prepared without the presence of extract, and with the presence of extract, were analyzed using Raman, photoluminescence, and XPS. The unexpected presence of Zn revealed by XPS in a sample prepared with RAL provides an explanation for the inhibition process, and also explains the dramatic reflectance of incident light observed in attempts to obtain infrared transmission data. Raman data are consistent with the binding of the inhibitor to the oxygen of the kidney stone. Photoluminescence data corroborate with the other results to provide additional evidence of Zn-related inhibition.

  15. Acid inhibition of CRA`s: A review

    SciTech Connect

    Walker, M.L.; Cassidy, J.M.; Lancaster, K.R.; McCoy, T.H.

    1994-12-31

    This paper will review the brief history in the literature of the inhibition of corrosion resistant alloys (CRA`s) in acidic stimulation fluids. This review primarily discusses the problems associated with inhibiting 13% Cr and 22% Cr duplex steels in hydrochloric (HCI) and hydrochloric-hydrofluoric (HCl-HF) acid systems using low alloy inhibitors and the successes achieved using high alloy inhibitors. Other areas briefly discussed are the repassivation of 13% Cr and 22% Cr, effect on nickel-based alloys and use of organic acids.

  16. Inhibition of cortical collecting tubule chloride transport by organic acids.

    PubMed Central

    Matsuzaki, K; Stokes, J B; Schuster, V L

    1988-01-01

    Cl self-exchange by the rabbit cortical collecting tubule (CCT) occurs via an apical anion exchanger in series with a basolateral Cl conductance. We studied the effects of organic acids on CCT Cl self-exchange. We found no evidence for transport of acid anions by the self-exchange system. Rather, Cl self-exchange was inhibited by a variety of organic acids. The degree of inhibition correlated with the chloroform/water partition coefficient and was enhanced by lowering pH, indicating inhibition by the lipid-soluble, protonated species. Inhibition by the representative acid iso-butyrate was dose-dependent and showed sidedness (basolateral greater than apical). Iso-butyrate also reversibly reduced transepithelial conductance without altering K permeability, suggesting inhibition of the principal cell basolateral Cl conductance. Because small organic compounds with similar lipid solubilities but no carboxyl group had no effect, both the carboxyl group and the lipid-solubility of organic acids appear to be important. The results are consistent with blockade of chloride channels by organic acids. PMID:3392216

  17. Novel bifunctional inhibitor of xylanase and aspartic protease: implications for inhibition of fungal growth.

    PubMed

    Dash, C; Ahmad, A; Nath, D; Rao, M

    2001-07-01

    A novel bifunctional inhibitor (ATBI) from an extremophilic Bacillus sp. exhibiting an activity against phytopathogenic fungi, including Alternaria, Aspergillus, Curvularia, Colletotricum, Fusarium, and Phomopsis species, and the saprophytic fungus Trichoderma sp. has been investigated. The 50% inhibitory concentrations of ATBI ranged from 0.30 to 5.9 microg/ml, whereas the MIC varied from 0.60 to 3.5 microg/ml for the fungal growth inhibition. The negative charge and the absence of periodic secondary structure in ATBI suggested an alternative mechanism for fungal growth inhibition. Rescue of fungal growth inhibition by the hydrolytic products of xylanase and aspartic protease indicated the involvement of these enzymes in cellular growth. The chemical modification of Asp or Glu or Lys residues of ATBI by 2,4,6-trinitrobenzenesulfonic acid and Woodward's reagent K, respectively, abolished its antifungal activity. In addition, ATBI also inhibited xylanase and aspartic protease competitively, with K(i) values 1.75 and 3.25 microM, respectively. Our discovery led us to envisage a paradigm shift in the concept of fungal growth inhibition for the role of antixylanolytic activity. Here we report for the first time a novel class of antifungal peptide, exhibiting bifunctional inhibitory activity. PMID:11408216

  18. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    PubMed

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  19. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  20. All-trans retinoic acid combined with 5-Aza-2 Prime -deoxycitidine induces C/EBP{alpha} expression and growth inhibition in MLL-AF9-positive leukemic cells

    SciTech Connect

    Fujiki, Atsushi; Imamura, Toshihiko; Sakamoto, Kenichi; Kawashima, Sachiko; Yoshida, Hideki; Hirashima, Yoshifumi; Miyachi, Mitsuru; Yagyu, Shigeki; Nakatani, Takuya; Sugita, Kanji; Hosoi, Hajime

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer We tested whether ATRA and 5-Aza affect AML cell differentiation and growth. Black-Right-Pointing-Pointer Cell differentiation and growth arrest were induced in MLL-AF9-expressing cells. Black-Right-Pointing-Pointer Increased expression of C/EBP{alpha}, C/EBP{epsilon}, and PU.1 were also observed. Black-Right-Pointing-Pointer MLL-AF4/AF5q31-expressing cells are less sensitive to ATRA and 5-Aza. Black-Right-Pointing-Pointer Different MLL fusion has distinct epigenetic properties related to RA pathway. -- Abstract: The present study tested whether all-trans retinoic acid (ATRA) and 5-Aza-2 Prime -deoxycitidine (5-Aza) affect AML cell differentiation and growth in vitro by acting on the CCAAT/enhancer binding protein {alpha} (C/EBP{alpha}) and c-Myc axis. After exposure to a combination of these agents, cell differentiation and growth arrest were significantly higher in human and murine MLL-AF9-expressing cells than in MLL-AF4/AF5q31-expressing cells, which were partly associated with increased expression of C/EBP{alpha}, C/EBP{epsilon}, and PU.1, and decreased expression of c-Myc. These findings indicate that MLL-AF9-expressing cells are more sensitive to ATRA and 5-Aza, indicating that different MLL fusion proteins possess different epigenetic properties associated with retinoic acid pathway inactivation.

  1. Candidate canine enterogastrones: acid inhibition before and after vagotomy.

    PubMed

    Lloyd, K C; Amirmoazzami, S; Friedik, F; Heynio, A; Solomon, T E; Walsh, J H

    1997-05-01

    The relative contributions of several gut-derived peptides as enterogastrones known to be released in response to a fatty meal and to inhibit acid secretion have not previously been compared directly. We determined the acid-inhibitory activities of increasing intravenous doses of several peptides before and after highly selective vagotomy (HSV) during intragastric titration of a peptone meal in dogs. Before HSV, threshold inhibitory doses of peptide YY (PYY), cholecystokinin (CCK), and secretin were 5, 7, and 10 pmol.kg-1.h-1, respectively, whereas neurotensin, glucagon-like peptide-1 (GLP-1), and oxyntomodulin failed to inhibit acid secretion at doses up to 1,000 pmol.kg-1.h-1. The calculated dose producing 50% acid inhibition (ID50) of secretin (62 pmol.kg-1.h-1) was one-half that of PYY (128 pmol.kg-1.h-1). Maximal (90%) acid inhibition was produced by 100 pmol.kg-1.h-1 secretin and 500 pmol.kg-1.h-1 PYY. The highest dose of CCK that did not cause vomiting (100 pmol.kg-1.h-1) inhibited peptone-stimulated acid output by only 60%. After HSV, 500 pmol.kg-1.h-1. PYY and 200 pmol.kg-1.h-1 CCK failed to inhibit acid output by more than 50%. Threshold doses for inhibition by PYY and CCK were 200 and 100 pmol.kg-1.h-1, respectively. Secretin remained a potent inhibitor after HSV, with an ID50 of 80 pmol.kg-1.h-1 and a threshold dose of 10 pmol.kg-1.h-1. HSV also failed to affect inhibition caused by somatostatin. This study has shown that PYY and secretin are somewhat more potent and efficacious inhibitors of acid secretion than CCK but that all three peptides are far more active than GLP-1, neurotensin, and oxyntomodulin. PYY and CCK inhibit acid secretion in large part through vagal innervation of the gastric fundus, but the inhibitory effects of secretin are independent of fundic vagal innervation. PMID:9176235

  2. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG

    PubMed Central

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T.

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG’s inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  3. Cyclosporin A blocks bile acid synthesis in cultured hepatocytes by specific inhibition of chenodeoxycholic acid synthesis.

    PubMed

    Princen, H M; Meijer, P; Wolthers, B G; Vonk, R J; Kuipers, F

    1991-04-15

    Bile acid synthesis, determined by conversion of [4-14C]cholesterol into bile acids in rat and human hepatocytes and by measurement of mass production of bile acids in rat hepatocytes, was dose-dependently decreased by cyclosporin A, with 52% (rat) and 45% (human) inhibition of 10 microM. The decreased bile acid production in rat hepatocytes was due only to a fall in the synthesis of beta-muricholic and chenodeoxycholic acids (-64% at 10 microM-cyclosporin A), with no change in the formation of cholic acid. In isolated rat liver mitochondria, 26-hydroxylation of cholesterol was potently inhibited by the drug (concn. giving half-maximal inhibition = 4 microM). These results suggest that cyclosporin A blocks the alternative pathway in bile acid synthesis, which leads preferentially to the formation of chenodeoxycholic acid. PMID:2025228

  4. Phenylpropanoic Acid: Growth Factor for Ruminococcus albus

    PubMed Central

    Hungate, R. E.; Stack, Robert J.

    1982-01-01

    Phenylpropanoic acid accounted for part of the stimulatory effect of rumen fluid on the rate of growth and of cellulose digestion by cultures of Ruminococcus albus strain 8 grown on a chemically defined medium. As little as 3 ?M concentration gave maximum response. PMID:16346069

  5. Lysosomotropic amines inhibit mitogenesis induced by growth factors.

    PubMed Central

    King, A C; Hernaez-Davis, L; Cuatrecasas, P

    1981-01-01

    The stimulation of DNA synthesis by epidermal growth factor, insulin, and serum is inhibited by a variety of alkylamines when present for the duration of the stimulatory preincubation (20-24 hr). These results contradict an earlier report [Maxfield, F. R., Davies, P. J. A., Klempner, L., Willingham, M. C. & Pastan, I. (1979) Proc. Natl. Acad. Sci. USA 76, 5731-5735] and can be explained by differences in incubation conditions. The most straightforward interpretation of our results is that the mitogenic activities of growth factors are blocked by agents that inhibit the intracellular processing of hormone-receptor complexes. Therefore, the continued internalization and degradation of growth factors or their receptors within cells may play an important role in inducing mitogenesis in cultured human fibroblasts and may explain the prolonged requirement for epidermal growth factor in the culture medium (8 hr) to elicit a mitogenic response. We also found that bacitracin, a potent inhibitor of the enzyme transglutaminase, neither prevents receptor internalization or degradation in human fibroblasts nor inhibits the mitogenic activity of epidermal growth factor. These results suggest that transglutaminase activity may not be relevant to the mechanisms of growth-factor-induced receptor internalization or mitogenesis. PMID:6262764

  6. Proteus mirabilis urease. Partial purification and inhibition by boric acid and boronic acids.

    PubMed

    Breitenbach, J M; Hausinger, R P

    1988-03-15

    Urease was purified 800-fold and partially characterized from Proteus mirabilis, the predominant microorganism associated with urinary stones. Boric acid is a rapid reversible competitive inhibitor of urease. The pH-dependence of inhibition exhibited pKa values of 6.25 and 9.3, where the latter value is probably due to the inherent pKa of boric acid. Three boronic acids also were shown to inhibit urease competitively. PMID:3291857

  7. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    SciTech Connect

    Suzuki, Kanayo; Sakaguchi, Minoru; Tanaka, Satoshi; Yoshimoto, Tadashi; Takaoka, Masanori

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  8. Inhibition of Acid-Enhanced Elongation of Zea mays Root Segments by Galactose

    PubMed Central

    Tanimoto, Eiichi; Scott, Tom K.; Masuda, Yoshio

    1989-01-01

    The effect of sugars and metabolic inhibitors on the elongation of Zea mays root segments was analyzed by a rhizometer which records the elongation of each of 32 root segments at the same time. Galactose suppressed the acid-enhanced rapid elongation after a lag period of 1.5 hours, but it did not inhibit the slow elongation at pH 7. Mannose was less inhibitory than galactose. Arabinose, xylose, glucose, sucrose, mannitol, and sorbitol caused no inhibition. When galactose was removed after a 1-hour treatment, the elongation was partially recovered. Cycloheximide and 2-deoxyglucose suppressed acid-enhanced elongation when these were applied at the same time as acid treatments, whereas cordycepin (3′-deoxyadenosine) inhibited elongation only if it was applied prior to acid treatment. Over the 9-hour period of elongation studied, the inhibition by galactose was comparable to that of cycloheximide. Since galactose has been reported to suppress the sugar metabolism necessary for the cell wall synthesis, the later phase of acid-enhanced elongation of root segments may at least partially depend on the synthesis or metabolism of cell wall components. The inhibition of root growth by galactose may be partially ascribed to a direct effect on the elongation process in roots, an effect that is enhanced by the acidification of the cell walls. PMID:16666790

  9. Polyphosphate Inhibition of Growth of Pseudomonads From Poultry Meat

    PubMed Central

    Elliott, R. Paul; Straka, Robert P.; Garibaldi, John A.

    1964-01-01

    Both commercial polyphosphates and equivalent mixtures of chemically pure polyphosphates inhibited the growth of nonfluorescent pseudomonads in a synthetic medium. Fluorescent strains grew after a short lag. Inhibition was not caused by high pH, but rather by chelation of metal ions essential to the growth of the bacteria. Mg++ and the natural competitive chelators, pyoverdine and bacteriological peptone, reversed the inhibition. Chilling chicken carcasses overnight in slush ice containing 3 and 8% polyphosphates lengthened subsequent shelf-life 17 and 25%, respectively. Chickens held in continuous contact with 3 and 8% solutions of polyphosphates during storage at 2.2 C kept 17 and 67% longer, respectively. Only fluorescent strains developed in the presence of 3 and 8% polyphosphates. Chickens held in antiseptic ice containing 8% polyphosphates kept 60% longer than did those in water ice. PMID:14239583

  10. Alkyl hydroxybenzoic acid derivatives that inhibit HIV-1 protease dimerization.

    PubMed

    Flausino, O A; Dufau, L; Regasini, L O; Petrônio, M S; Silva, D H S; Rose, T; Bolzani, V S; Reboud-Ravaux, M

    2012-01-01

    The therapeutic potential of gallic acid and its derivatives as anti-cancer, antimicrobial and antiviral agents is well known. We have examined the mechanism by which natural gallic acid and newly synthesized gallic acid alkyl esters and related protocatechuic acid alkyl esters inhibit HIV-1 protease to compare the influence of the aromatic ring substitutions on inhibition. We used Zhang-Poorman's kinetic analysis and fluorescent probe binding to demonstrate that several gallic and protecatechuic acid alkyl esters inhibited HIV-1 protease by preventing the dimerization of this obligate homodimeric aspartic protease rather than targeting the active site. The tri-hydroxy substituted benzoic moiety in gallates was more favorable than the di-substituted one in protocatechuates. In both series, the type of inhibition, its mechanism and the inhibitory efficiency dramatically depended on the length of the alkyl chain: no inhibition with alkyl chains less than 8 carbon atoms long. Molecular dynamics simulations corroborated the kinetic data and propose that gallic esters are intercalated between the two N- and C-monomer ends. They complete the β-sheet and disrupt the dimeric enzyme. The best gallic ester (14 carbon atoms, K(id) of 320 nM) also inhibited the multi-mutated protease MDR-HM. These results will aid the rational design of future generations of non-peptide inhibitors of HIV-1 protease dimerization that inhibit multi-mutated proteases. Finally, our work suggests the wide use of gallic and protocatechuic alkyl esters to dissociate intermolecular β-sheets involved in protein-protein interactions. PMID:22963666

  11. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  12. Inhibition of vascular smooth muscle cell growth by inhibition of fibronectin matrix assembly.

    PubMed

    Mercurius, K O; Morla, A O

    1998-03-23

    The regulation of vascular smooth muscle cell (VSMC) proliferation by the fibronectin matrix was tested by treating human umbilical artery smooth muscle cells (HUASMCs) with a recombinant fragment of fibronectin (protein III1-C) that has previously been shown to modulate fibronectin matrix assembly. III1-C inhibited HUASMC proliferation by 75% to 90%. The inhibition of growth was time dependent; III1-C had no effect on DNA synthesis after 0 to 5 hours of treatment but did have an effect at 24 hours and beyond. III1-C did not stimulate apoptosis in these cells, indicating that the inhibition of proliferation was not due to an induction of programmed cell death. The effects of III1-C on cell growth were only specific for normal diploid smooth muscle cells. III1-C had no effect on the proliferation of IMR-90 fibroblasts, endothelial cells, NIH 3T3 cells, or the rat aortic smooth muscle cell line A7r5. However, III1-C did inhibit proliferation by primary rat aortic smooth muscle cells. An analysis of HUASMC fibronectin receptor (integrin alpha5beta1) distribution revealed that III1-C did not inhibit alpha5beta1 localization to focal contacts. Moreover, III1-C had no effect on the relative expression levels of seven different integrin subunits on HUASMCs. However, III1-C did inhibit fibronectin matrix assembly by rat aortic smooth muscle cells, HUASMCs, A7r5 cells, IMR-90 cells, and endothelial cells. An analysis of fibronectin synthesis indicated that the inhibition of fibronectin matrix assembly by III1-C was not due solely to a decrease in fibronectin synthesis. Finally, treatment of HUASMCs with anti-fibronectin monoclonal antibody L8 (which is known to inhibit fibronectin matrix assembly) also decreased the rate of HUASMC DNA synthesis. These results demonstrate that III1-C inhibits VSMC proliferation and suggest that this effect may be mediated by the inhibition of fibronectin matrix assembly. PMID:9529159

  13. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation

    SciTech Connect

    Zeng, A.P.; Ross, A.; Biebl, H.; Tag, C.; Guenzel, B.; Deckwer, W.D. . Biochemical Engineering Division)

    1994-10-01

    The inhibition potentials of products and substrate on the growth of Clostridium butyricum and Klebsiella pneumoniae in the glycerol fermentation are examined from experimental data and with a mathematical model. Whereas the inhibition potential of externally added and self-produced 1,3-propanediol is essentially the same, butyric acid produced by the culture is more toxic than that externally added. The same seems to apply for acetic acid. The inhibitory effect of butyric acid is due to the total concentration instead of its undissociated form. For acetic acid, it cannot be distinguished between the total concentration and the undissociated form. The inhibition effects of products and substrate in the glycerol fermentation are irrespective of the strains, and, therefore, the same growth model can be used. The maximum product concentrations tolerated are 0.35 g/L for undissociated acetic acid, 10.1 g/L for total butyric acid, 16.6 g/L for ethanol, 71.4 g/L for 1,3-propanediol, and 187.6 g/L for glycerol, which are applicable to C. butyricum and K. pneumoniae growth under a variety of conditions. For 55 steady-states, which were obtained from different types of continuous cultures over a pH range of 5.3--8.5 and under both substrate limitation and substrate excess, the proposed growth model fits the experimental data with an average deviation of 17.0%. The deviation of model description from experimental values reduces of 11.4% if only the steady-states with excessive substrate are considered.

  14. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts.

    PubMed

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ~6500 unique proteins quantified, ~300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. PMID:24625837

  15. The inhibition of crystal growth of mirabilite in aqueous solutions in the presence of phosphonates

    NASA Astrophysics Data System (ADS)

    Vavouraki, A. I.; Koutsoukos, P. G.

    2016-02-01

    The formation of sodium sulfate decahydrate (Mirabilite) has been known to cause serious damages to structural materials both of modern and of historical buildings. Methods which can retard or completely suppress the development of mirabilte crystals are urgently needed especially as remedies or preventive measures for the preservation of the built cultural heritage. In the present work we present results on the effect of the presence of phosphonate compounds on the kinetics of crystal growth from aqueous supersaturated solutions at 18 °C using the seeded growth technique. The phosphonate compounds tested differed with respect to the number of ionizable phosphonate groups and with respect to the number of amino groups in the respective molecules. The crystal growth process was monitored by the temperature changes during the exothermic crystallization of mirabilite in the stirred supersaturated solutions. The crystal growth of mirabilite in the presence of: (1-hydroxyethylidene)-1, 1-diphosphonic acid (HEDP), amino tri (methylene phosphonic acid) (ATMP), hexamethylenediaminetetra (methylene)phosphonic acid (HTDMP), and diethylene triamine penta(methylene phosphonic acid)(DETPMP) over a range of concentrations between 0.1-5% w/w resulted in significant decrease of the rates of mirabilite crystal growth. All phosphonic compounds tested reduced the crystallization rates up to 60% in comparison with additive-free solutions. The presence of the test compounds did not cause changes of the mechanism of crystal growth which was surface diffusion controlled, as shown by the second order dependence of the rates of mirabilite crystal growth on the relative supersaturation. The excellent fit of the measured rates to a kinetic Langmuir-type model suggested that the activity of the tested inhibitors could be attributed to the adsorption and subsequent reduction of the active crystal growth sites of the seed crystals. In all cases, the inhibitory activity was reduced with increasing solution supersaturation, while the presence of DETPMP, which showed the best inhibition activity, showed the least reduction of inhibition with increasing supersaturation.

  16. Decreased growth-induced water potential: A primary cause of growth inhibition at low water potentials

    SciTech Connect

    Nonami, Hiroshi; Wu, Yajun; Boyer, J.S.

    1997-06-01

    Cell enlargement depends on a growth-induced difference in water potential to move water into the cells. Water deficits decrease this potential difference and inhibit growth. To investigate whether the decrease causes the growth inhibition, pressure was applied to the roots of soybean seedlings and the growth and potential difference were monitored in the stems. In water-limited plants, the inhibited stem growth increased when the roots were pressurized and it reverted to the previous rate when the pressure was released. The pressure around the roots was perceived as an increased turgor in the stem in small cells next to the xylem, but not in outlying cortical cells. This local effect implied that water transport was impeded by the small cells. The diffusivity for water was much less in the small cells than in the outlying cells. The small cells thus were a barrier that caused the growth-induced potential difference to be large during rapid growth, but to reverse locally during the early part of a water deficit. Such a barrier may be a frequent property of meristems. Because stem growth responded to the pressure-induced recovery of the potential difference across this barrier, we conclude that a decrease in the growth-induced potential difference was a primary cause of the inhibition.

  17. Effects of acidity on tree pollen germination and tube growth

    SciTech Connect

    Jacobson, J.S.; Van Rye, D.M.; Lassoie, J.P.

    1985-01-01

    Several studies have indicated that pollen germination and tube growth are adversely affected by air pollutants. Pollutants may inhibit the function of pollen by reducing the number of pollen grains which germinate, by reducing the maximum length to which the pollen tubes grow, or by interfering with the formation of the generative cell. The paper reports on studies that are attempting to determine the effects acid rain may have on these crucial stages in the life histories of northeastern tree species. The first stage of this work assessed the effects of acidity in the growth medium on in vitro pollen germination for four deciduous forest species common to central New York State, Betula lutea (yellow birch), B. lenta (black birch), Acer saccharum (sugar maple), and Cornus florida (flowering dogwood). Measurements were taken at the end of the growth period to determine the percentage of grains which had germinated, and to estimate the average tube length. To determine the effects of pollen on the growth medium, the pH of the germination drop was measured at the end of the growth period.

  18. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  19. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    SciTech Connect

    Matsumoto, Yohsuke; Motoki, Takahiro; Kubota, Satoshi; Takigawa, Masaharu; Tsubouchi, Hirohito; Gohda, Eiichi

    2008-02-01

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E{sub 2} without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells.

  20. Inhibition of acid-catalyzed depolymerization of cellulose with boric acid in non-aqueous acidic media.

    PubMed

    Kawamoto, Haruo; Saito, Shinya; Saka, Shiro

    2008-02-01

    Boric acid inhibited the acid-catalyzed depolymerization of cellulose in sulfolane, a non-aqueous medium, at high temperature. Formation of the dehydration products such as levoglucosenone, furfural, and 5-hydroxymethyl furfural were also effectively inhibited. Similar inhibition was observed for cellooligosaccharides and starch, although the glucosidic bonds in methyl glucopyranosides and methyl cellobioside were cleaved to form alpha-d-glucofuranose cyclic 1,2:3,5-bisborate. PMID:18045577

  1. Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice

    PubMed Central

    2013-01-01

    Background Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract. Methods Betulinic acid was isolated from methanolic extract by crystallization and chromatography techniques. S.C. methanolic extract was analyzed by UV-Vis spectrophotometry, FTIR, LC-MS, and HPLC. Antiangiogenic effect was studied on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). Antitumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. Results Analysis by HPLC, LC-MS and FTIR confirm presence of betulinic acid in S.C. methanolic extract. Quantitative analysis by HPLC indicates presence of betulinic acid in S.C. extract at 5.42 ± 0.09% (w/w). Antiangiogenesis study showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect. Antiangiogenic effect was further confirmed by inhibition of tube formation on matrigel matrix that involves human endothelial cells (IC50 = 17.6 ± 2.9 μg/ml). S.C. extract also inhibited migration of endothelial cells and suppressed expression of VEGF. In vivo antiangiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo antitumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. Conclusion Collectively, our results indicate S. campanulatum as antiangiogenic and antitumor candidate, and a new source of betulinic acid. PMID:23842450

  2. Stereocomplexes Formed From Select Oligomers of Polymer d-lactic Acid (PDLA) and l-lactate May Inhibit Growth of Cancer Cells and Help Diagnose Aggressive Cancers—Applications of the Warburg Effect

    PubMed Central

    Goldberg, Joel S.

    2011-01-01

    It is proposed that select oligomers of polymer d-lactic acid (PDLA) will form a stereocomplex with l-lactate in vivo, producing lactate deficiency in tumor cells. Those cancer cells that utilize transport of lactate to maintain electrical neutrality may cease to multiply or die because of lactate trapping, and those cancer cells that benefit from utilization of extracellular lactate may be impaired. Intracellular trapping of lactate produces a different physiology than inhibition of LDH because the cell loses the option of shuttling pyruvate to an alternative pathway to produce an anion. Conjugated with stains or fluorescent probes, PDLA oligomers may be an agent for the diagnosis of tissue lactate and possibly cell differentiation in biopsy specimens. Preliminary experimental evidence is presented confirming that PDLA in high concentrations is cytotoxic and that l-lactate forms a presumed stereocomplex with PDLA. Future work should be directed at isolation of biologically active oligomers of PDLA. PMID:21487535

  3. Novel Antifungal Peptides Produced by Leuconostoc mesenteroides DU15 Effectively Inhibit Growth of Aspergillus niger.

    PubMed

    Muhialdin, Belal J; Hassan, Zaiton; Abu Bakar, Fatimah; Algboory, Hussein L; Saari, Nazamid

    2015-05-01

    The ability of Leuconostoc mesenteroides DU15 to produce antifungal peptides that inhibit growth of Aspergillus niger was evaluated under optimum growth conditions of 30 C for 48 h. The cell-free supernatant showed inhibitory activity against A. niger. Five novel peptides were isolated with the sequences GPFPL, YVPLF, LLHGVPLP, GPFPLEMTLGPT, and TVYPFPGPL as identified by de novo sequencing using PEAKS 6 software. Peptide LLHGVPLP was the only positively charged (cationic peptides) and peptide GPFPLEMTLGPT negatively charged (anionic), whereas the rest are neutral. The identified peptides had high hydrophobicity ratio and low molecular weights with amino acids sequences ranging from 5 to 12 residues. The mode of action of these peptides is observed under the scanning electron microscope and is due to cell lysis of fungi. This work reveals the potential of peptides from L. mesenteroides DU15 as natural antifungal preservatives in inhibiting the growth of A. niger that is implicated to the spoilage during storage. PMID:25847317

  4. Apicoplast-Targeting Antibacterials Inhibit the Growth of Babesia Parasites

    PubMed Central

    AbouLaila, Mahmoud; Munkhjargal, Tserendorj; Sivakumar, Thillaiampalam; Ueno, Akio; Nakano, Yuki; Yokoyama, Miki; Yoshinari, Takeshi; Nagano, Daisuke; Katayama, Koji; El-Bahy, Nasr; Yokoyama, Naoaki

    2012-01-01

    The apicoplast housekeeping machinery, specifically apicoplast DNA replication, transcription, and translation, was targeted by ciprofloxacin, thiostrepton, and rifampin, respectively, in the in vitro cultures of four Babesia species. Furthermore, the in vivo effect of thiostrepton on the growth cycle of Babesia microti in BALB/c mice was evaluated. The drugs caused significant inhibition of growth from an initial parasitemia of 1% for Babesia bovis, with 50% inhibitory concentrations (IC50s) of 8.3, 11.5, 12, and 126.6 ?M for ciprofloxacin, thiostrepton, rifampin, and clindamycin, respectively. The IC50s for the inhibition of Babesia bigemina growth were 15.8 ?M for ciprofloxacin, 8.2 ?M for thiostrepton, 8.3 ?M for rifampin, and 206 ?M for clindamycin. The IC50s for Babesia caballi were 2.7 ?M for ciprofloxacin, 2.7 ?M for thiostrepton, 4.7 ?M for rifampin, and 4.7 ?M for clindamycin. The IC50s for the inhibition of Babesia equi growth were 2.5 ?M for ciprofloxacin, 6.4 ?M for thiostrepton, 4.1 ?M for rifampin, and 27.2 ?M for clindamycin. Furthermore, an inhibitory effect was revealed for cultures with an initial parasitemia of either 10 or 7% for Babesia bovis or Babesia bigemina, respectively. The three inhibitors caused immediate death of Babesia bovis and Babesia equi. The inhibitory effects of ciprofloxacin, thiostrepton, and rifampin were confirmed by reverse transcription-PCR. Thiostrepton at a dose of 500 mg/kg of body weight resulted in 77.5% inhibition of Babesia microti growth in BALB/c mice. These results implicate the apicoplast as a potential chemotherapeutic target for babesiosis. PMID:22391527

  5. Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth

    PubMed Central

    Klose, Julia; Aistleitner, Karin; Horn, Matthias; Krenn, Liselotte; Dirsch, Verena; Zehl, Martin; Bright, Monika

    2016-01-01

    The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm’s trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains. PMID:26730960

  6. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  7. Hydroxyapatite-binding peptides for bone growth and inhibition

    DOEpatents

    Bertozzi, Carolyn R.; Song, Jie; Lee, Seung-Wuk

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  8. 2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani.

    PubMed

    Carballeira, Nstor M; Cartagena, Michelle; Sanabria, David; Tasdemir, Deniz; Prada, Christopher F; Reguera, Rosa M; Balaa-Fouce, Rafael

    2012-10-01

    2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC(50)=5.30.7?M. The potency of LdTopIB inhibition follows the trend 2-ODA>2-HDA>2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC(50)=11.0?M), but it was less effective against other protozoa, Trypanosoma cruzi (IC(50)=48.1?M) and Trypanosoma brucei rhodesiense (IC(50)=64.5?M). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA>2-HDA>2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound. PMID:22932312

  9. Growth inhibition of pathogenic bacteria by sulfonylurea herbicides.

    PubMed

    Kreisberg, Jason F; Ong, Nicholas T; Krishna, Aishwarya; Joseph, Thomas L; Wang, Jing; Ong, Catherine; Ooi, Hui Ann; Sung, Julie C; Siew, Chern Chiang; Chang, Grace C; Biot, Fabrice; Cuccui, Jon; Wren, Brendan W; Chan, Joey; Sivalingam, Suppiah P; Zhang, Lian-Hui; Verma, Chandra; Tan, Patrick

    2013-03-01

    Emerging resistance to current antibiotics raises the need for new microbial drug targets. We show that targeting branched-chain amino acid (BCAA) biosynthesis using sulfonylurea herbicides, which inhibit the BCAA biosynthetic enzyme acetohydroxyacid synthase (AHAS), can exert bacteriostatic effects on several pathogenic bacteria, including Burkholderia pseudomallei, Pseudomonas aeruginosa, and Acinetobacter baumannii. Our results suggest that targeting biosynthetic enzymes like AHAS, which are lacking in humans, could represent a promising antimicrobial drug strategy. PMID:23263008

  10. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  11. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis

    PubMed Central

    XIAN, SHU-LIN; CAO, WEI; ZHANG, XIAO-DONG; LU, YUN-FEI

    2015-01-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro. However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer. PMID:25621044

  12. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices

    PubMed Central

    Forbes, Sarah; Latimer, Joe; Sreenivasan, Prem K.; McBain, Andrew J.

    2016-01-01

    Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices. PMID:26882309

  13. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices.

    PubMed

    Forbes, Sarah; Latimer, Joe; Sreenivasan, Prem K; McBain, Andrew J

    2016-01-01

    Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices. PMID:26882309

  14. FH535 inhibited metastasis and growth of pancreatic cancer cells

    PubMed Central

    Wu, Meng-Yao; Liang, Rong-Rui; Chen, Kai; Shen, Meng; Tian, Ya-Li; Li, Dao-Ming; Duan, Wei-Ming; Gui, Qi; Gong, Fei-Ran; Lian, Lian; Li, Wei; Tao, Min

    2015-01-01

    FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer. PMID:26185454

  15. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro.

    PubMed

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600nM, 6μM, 36μM, and 100μM) for 48 and 96h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96h of culture. The results indicate that equol (100μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. PMID:26876617

  16. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma.

    PubMed

    Zhu, Li Ming; Shi, Dong Mei; Dai, Qiang; Cheng, Xiao Jiao; Yao, Wei Yan; Sun, Ping Hu; Ding, Yanfei; Qiao, Min Min; Wu, Yun Lin; Jiang, Shi Hu; Tu, Shui Ping

    2014-07-30

    X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment. PMID:24980821

  17. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma

    PubMed Central

    Zhu, Li Ming; Shi, Dong Mei; Dai, Qiang; Cheng, Xiao Jiao; Yao, Wei Yan; Sun, Ping Hu; Ding, Yan Fei; Qiao, Min Min; Wu, Yun Lin; Jiang, Shi Hu; Tu, Shui Ping

    2014-01-01

    X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment. PMID:24980821

  18. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    PubMed

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past. PMID:25498164

  19. Studies of the effect of gibberellic acid on algal growth.

    NASA Technical Reports Server (NTRS)

    Evans, W. K.; Sorokin, C.

    1971-01-01

    The effect of gibberellic acid on exponential growth rate of four strains of Chlorella was investigated under variety of experimental conditions. In concentrations from 10 ppm to 100 ppm, gibberellic acid was shown to have no effect on Chlorella growth. In concentration of 200 ppm, gibberellic acid exerted some unfavorable effect on algal growth.

  20. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  1. Seizure control by decanoic acid through direct AMPA receptor inhibition.

    PubMed

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A; Hardege, Jörg D; Chen, Philip E; Walker, Matthew C; Williams, Robin S B

    2016-02-01

    SEE ROGAWSKI DOI101093/AWV369 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE:  The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  2. Seizure control by decanoic acid through direct AMPA receptor inhibition

    PubMed Central

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A.; Hardege, Jörg D.; Chen, Philip E.

    2016-01-01

    See Rogawski (doi:10.1093/awv369) for a scientific commentary on this article.  The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  3. Inhibition of 5-methyltetrahydrofolic acid transport by amphipathic drugs.

    PubMed

    Branda, R F; Nelson, N L

    1981-01-01

    Numerous chemically unrelated drugs after the membrane transport of folate compounds. To investigate drug structure-activity relationships, we measured the effect of amphipathic drugs (that is, compounds with polar-apolar character) on 5-methyltetrahydrofolic acid permeability of human erythrocytes. All drugs tested were inhibitory, but only compounds that exist at least partially in the anionic form were highly active. Ethacrynic acid, sulfinpyrazone, phenylbutazone, sulfasalazine, and furosemide were effective transport inhibitors in micromolar concentrations. In contrast, compounds that are capable of forming cations at physiologic pH, such as chlorpromazine, procaine, tetracaine, and papaverine, were inhibitory only in millimolar concentrations or caused hemolysis before major inhibition was seen. Inhibitory activity correlated with drug dissociation constant (r = 0.87). A double-reciprocal plot analysis of drug effect on 5-methyltetrahydrofolic acid transport showed changes in both Km and Vmax (indicating a mixture of competitive and noncompetitive inhibition) by ethacrynic acid, sulfasalazine, and phlorizin. Inhibitory activity of a series of eight phenoxyacetic derivatives, including ethacrynic acid, correlated highly with measurements of liposolubility (r = 0.87) but only weakly with the Hammet substituent constant (r = 0.56). These results suggest that the effect of amphipathic drugs on 5-methyltetrahydrofolic acid transport is influenced by drug pKa and by the presence of hydrophobic substituents, but is relatively independent of electron-attracting groups. PMID:6926815

  4. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency

    PubMed Central

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3’s function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis. PMID:27101793

  5. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency.

    PubMed

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis. PMID:27101793

  6. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice.

    TOXLINE Toxicology Bibliographic Information

    Kim SP; Kang MY; Nam SH; Friedman M

    2012-06-01

    SCOPE: We investigated the effects of rice bran and components on tumor growth in mice.METHODS AND RESULTS: Mice fed standard diets supplemented with rice bran, γ-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet for two additional weeks. Tumor mass was significantly lower in the γ-oryzanol and less so in the phytic acid group. Tumor inhibition was associated with the following biomarkers: increases in cytolytic activity of splenic natural killer (NK) cells; partial restoration of nitric oxide production and phagocytosis in peritoneal macrophages increases in released the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 from macrophages; and reductions in the number of blood vessels inside the tumor. Pro-angiogenic biomarkers vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and 5-lipoxygenase-5 (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. ELISA of tumor cells confirmed reduced expression of COX-2 and 5-LOX up to 30%. Reduced COX-2 and 5-LOX expression downregulated VEGF and inhibited neoangiogenesis inside the tumors.CONCLUSION: Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol.

  7. Targeting Aurora Kinase with MK-0457 Inhibits Ovarian Cancer Growth

    PubMed Central

    Lin, Yvonne G.; Immaneni, Anand; Merritt, William M.; Mangala, Lingegowda S.; Kim, SeungWook; Shahzad, Mian M.K.; Tsang, Yvonne T.M.; Armaiz-Pena, Guillermo N.; Lu, Chunhua; Kamat, Aparna A.; Han, Liz Y.; Spannuth, WhitneyA.; Nick, Alpa M.; Landen, Charles N.; Wong, Kwong K.; Gray, Michael J.; Coleman, Robert L.; Bodurka, Diane C.; Brinkley, William R.; Sood, Anil K.

    2009-01-01

    Purpose The Aurora kinase family plays pivotal roles in mitotic integrity and cell cycle.We sought to determine the effects of inhibiting Aurora kinase on ovarian cancer growth in an orthotopic mouse model using a small molecule pan-Aurora kinase inhibitor, MK-0457. Experimental Design We examined cell cycle regulatory effects and ascertained the therapeutic efficacy of Aurora kinase inhibition both alone and combined with docetaxel using both in vitro and in vivo ovarian cancer models. Results In vitro cytotoxicity assays with HeyA8 and SKOV3ip1 cells revealed >10-fold greater docetaxel cytotoxicity in combination with MK-0457. After in vivo dose kinetics were determined using phospho-histone H3 status, therapy experiments with the chemosensitive HeyA8 and SKOV3ip1as well as the chemoresistant HeyA8-MDR and A2780-CP20 models showed that Aurora kinase inhibition alone significantly reduced tumor burden compared with controls (P values < 0.01). Combination treatment with docetaxel resulted in significantly improved reduction in tumor growth beyond that afforded by docetaxel alone (P ≤ 0.03). Proliferating cell nuclear antigen immunohistochemistry revealed that MK-0457 alone and in combination with docetaxel significantly reduced cellular proliferation (P values < 0.001). Compared with controls, treatment with MK-0457 alone and in combination with docetaxel also significantly increased tumor cell apoptosis by ∼3-fold (P < 0.01). Remarkably, compared with docetaxel monotherapy, MK-0457 combined with docetaxel resulted in significantly increased tumor cell apoptosis. Conclusions Aurora kinase inhibition significantly reduces tumor burden and cell proliferation and increases tumor cell apoptosis in this preclinical orthotopic model of ovarian cancer. The role of Aurora kinase inhibition in ovarian cancer merits further investigation in clinical trials. PMID:18765535

  8. Effect of phosphate on aluminium-inhibited growth and signal transduction pathways in Coffea arabica suspension cells.

    PubMed

    Chee-González, Leticia; Muñoz-Sánchez, J Armando; Racagni-Di Palma, Graciela; Hernández-Sotomayor, S M Teresa

    2009-11-01

    In acid soils, aluminium (Al) toxicity and phosphate (Pi) deficiency are the most significant constraints on plant growth. Al inhibits cell growth and disrupts signal transduction processes, thus interfering with metabolism of phospholipase C (PLC), an enzyme involved in second messenger production in the cell. Using a Coffea arabica suspension cell model, we demonstrate that cell growth inhibition by Al toxicity is mitigated at a high Pi concentration. Aluminium-induced cell growth inhibition may be due to culture medium Pi deficiency, since Pi forms complexes with Al, reducing Pi availability to cells. Phosphate does not mitigate inhibition of PLC activity by Al toxicity. Other enzymes of the phosphoinositide signal transduction pathway were also evaluated. Aluminium disrupts production of second messengers such as inositol 1,4,5-trisphosphate (IP(3)) and phosphatidic acid (PA) by blocking PLC activity; however, phospholipase D (PLD) and diacylglycerol kinase (DGK) activities are stimulated by Al, a response probably aimed at counteracting Al effects on PA formation. Phosphate deprivation also induces PLC and DGK activity. These results suggest that Al-induced cell growth inhibition is not linked to PLC activity inhibition. PMID:19740543

  9. Inhibition of Deoxyribonucleic Acid Synthesis and Bud Formation by Nalidixic Acid in Hyphomicrobium neptunium

    PubMed Central

    Weiner, Ronald M.; Blackman, Marcia A.

    1973-01-01

    The relationship between chromosome replication and morphogenesis in the budding bacterium Hyphomicrobium neptunium has been investigated. Nalidixic acid was found to completely inhibit deoxyribonucleic acid synthesis, but not ribonucleic acid synthesis. The antibiotic was bacteriostatic to the organism for the initial 5 h of exposure; thereafter it was bacteriocidal. Observation of inhibited cultures revealed cells that had produced abnormally long stalks, but no buds. These results indicate that bud formation is coupled to chromosome replication in H. neptunium. They do not exclude the possibilities that cross wall formation and bud separation may also be coupled to chromosome replication. Images PMID:4127631

  10. Effects of the Fusarium spp. mycotoxins fusaric acid and deoxynivalenol on the growth of Ruminococcus albus and Methanobrevibacter ruminantium.

    PubMed

    May, H D; Wu, Q; Blake, C K

    2000-08-01

    The Fusarium spp. mycotoxins fusaric acid and deoxynivalenol (DON) were tested for antimicrobial activity against Ruminococcus albus and Methanobrevibacter ruminantium. The growth of both organisms was inhibited by fusaric acid as low as 15 micrograms/mL (84 microM) but not by DON, at levels as high as 100 micrograms/mL (338 microM). No synergistic inhibitory effect was observed with DON plus fusaric acid. Neither organism was able to adapt to the fusaric acid and responses of each organism to the compound were different. The optical density (OD) maximum for R. albus, but not for M. ruminantium, was diminished after 28 days incubation at concentrations of fusaric acid below 240 micrograms/mL. Inhibition of R. albus started before significant growth had occurred, while M. ruminantium doubled twice before the onset of inhibition. Responses to picolinic acid, an analog of fusaric acid, were also dramatically different between the two microorganisms with M. ruminantium exhibiting a severe lag followed by a complete recovery of growth, while R. albus was only slightly inhibited with no lag. These results suggest that the mechanism of fusaric acid inhibition is specific to each microorganism. This is the first demonstration of the common mycotoxin fusaric acid inhibiting the growth of rumen bacteria. PMID:10941514

  11. The inhibition of calcium carbonate crystal growth by the cysteine-rich Mdm2 peptide.

    PubMed

    Dalas, E; Chalias, A; Gatos, D; Barlos, K

    2006-08-15

    The crystal growth of calcite, the most stable calcium carbonate polymorph, in the presence of the cysteine-rich Mdm2 peptide (containing 48 amino acids in the ring finger configuration), has been investigated by the constant composition technique. Crystallization took place exclusively on well-characterized calcite crystals in solutions supersaturated only with respect to this calcium carbonate salt. The kinetic results indicated a surface diffusion spiral growth mechanism. The presence of the Mdm2 peptide inhibited the crystal growth of calcite by 22-58% in the concentration range tested, through adsorption onto the active growth sites of the calcite crystal surface. The kinetic results favored a Langmuir-type adsorption model, and the value of the calculated affinity constant was k(aff)=147x10(4) dm(3)mol(-1), a(ads)=0.29. PMID:16678843

  12. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. PMID:26116492

  13. Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis.

    PubMed

    Schroeder, E K; de Souza, N; Santos, D S; Blanchard, J S; Basso, L A

    2002-09-01

    Tuberculosis resurged in the late 1980s and now kills more than 2 million people a year. The reemergence of tuberculosis as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, and the proliferation of multi-drug-resistant (MDR) strains have created much scientific interest in developing new antimycobacterial agents to both treat Mycobacterium tuberculosis strains resistant to existing drugs, and shorten the duration of short-course treatment to improve patient compliance. Bacterial cell-wall biosynthesis is a proven target for new antibacterial drugs. Mycolic acids, which are key components of the mycobacterial cell wall, are alpha-alkyl, beta-hydroxy fatty acids, with a species-dependent saturated "short" arm of 20-26 carbon atoms and a "long" meromycolic acid arm of 50-60 carbon atoms. The latter arm is functionalized at regular intervals by cyclopropyl, alpha-methyl ketone, or alpha-methyl methylethers groups. The mycolic acid biosynthetic pathway has been proposed to involve five distinct stages: (i) synthesis of C20 to C26 straight-chain saturated fatty acids to provide the alpha-alkyl branch; (ii) synthesis of the meromycolic acid chain to provide the main carbon backbone, (iii) modification of this backbone to introduce other functional groups; (iv) the final Claisen-type condensation step followed by reduction; and (v) various mycolyltransferase processes to cellular lipids. The drugs shown to inhibit mycolic acid biosynthesis are isoniazid, ethionamide, isoxyl, thiolactomycin, and triclosan. In addition, pyrazinamide was shown to inhibit fatty acid synthase type I which, in turn, provides precursors for fatty acid elongation to long-chain mycolic acids by fatty acid synthase II. Here we review the biosynthesis of mycolic acids and the mechanism of action of antimicrobial agents that act upon this pathway. In addition, we describe molecular modeling studies on InhA, the bona-fide target for isoniazid, which should improve our understanding of the amino acid residues involved in the enzyme's mechanism of action and, accordingly, provide a rational approach to the design of new drugs. PMID:12164478

  14. Inhibition of protein synthesis may explain the bactericidal properties of hypochlorous acid produced by phagocytic cells

    SciTech Connect

    McKenna, S.M.; Davies, K.J.A.

    1986-05-01

    The authors find that hypochlorous acid (HOCl) and hydrogen peroxide (H/sub 2/O/sub 2/) inhibit protein synthesis in E. coli: HOCl is similarly ordered 10x more efficient than H/sub 2/O/sub 2/. This result may underlie the mechanism of bacterial killing by phagocytes, which use H/sub 2/O/sub 2/ and myeloperoxidase (MPO) to oxidize Cl/sup -/ to HOCl. Protein synthesis (/sup 3/H-leu incorporation) was completely inhibited by 50..mu..M HOCl, whereas 50..mu..M H/sub 2/O/sub 2/ only gave similarly ordered 10% inhibition. Complete inhibition by H/sub 2/O/sub 2/ was only observed at concentrations < 0.5 mM. HOCl was also a more potent inhibitor of cell growth (cultured in M9 medium + glucose) than was H/sub 2/O/sub 2/. No growth occurred at 50..mu..M HOCl: in contrast 0.5 mM H/sub 2/O/sub 2/ was required for similar results. During time-course experiments it was found that the inhibition of cell growth by both HOCl and H/sub 2/O/sub 2/ reached a maximum within 30 min (at any concentration used). HOCl reacts avidly with amino groups to form N-chloroamines but H/sub 2/O/sub 2/ is unreactive. Amino acids (ala, lys, met, trp) or taurine (all at 10 mM) prevented the effects of HOCl but did not affect H/sub 2/O/sub 2/ results. There was an excellent correlation between decreased protein synthesis and diminished cell growth. Inhibition of cell growth was not explained by proteolysis (release of acid-soluble counts), or by loss of membrane integrity. They propose that inhibition of protein synthesis may be a fundamental aspect of the bactericidal functions of phagocytes, and that the production of HOCl by MPO represents a quantitative advantage over H/sub 2/O/sub 2/.

  15. Positional isomerism markedly affects the growth inhibition of colon cancer cells by NOSH-aspirin: COX inhibition and modeling.

    PubMed

    Vannini, Federica; Chattopadhyay, Mitali; Kodela, Ravinder; Rao, Praveen P N; Kashfi, Khosrow

    2015-12-01

    We recently reported the synthesis of NOSH-aspirin, a novel hybrid that releases both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e. ortho-NOSH-aspirin (o-NOSH-aspirin). In the present study, we compared the effects of the positional isomers of NOSH-ASA (o-NOSH-aspirin, m-NOSH-aspirin and p-NOSH-aspirin) to that of aspirin on growth of HT-29 and HCT 15 colon cancer cells, belonging to the same histological subtype, but with different expression of cyclooxygenase (COX) enzymes; HT-29 express both COX-1 and COX-2, whereas HCT 15 is COX-null. We also analyzed the effect of these compounds on proliferation and apoptosis in HT-29 cells. Since the parent compound aspirin, inhibits both COX-1 and COX-2, we also evaluated the effects of these compounds on COX-1 and COX-2 enzyme activities and also performed modeling of the interactions between the positional isomers of NOSH-aspirin and COX-1 and COX-2 enzymes. We observed that the three positional isomers of NOSH aspirin inhibited the growth of both colon cancer cell lines with IC50s in the nano-molar range. In particular in HT-29 cells the IC50s for growth inhibition were: o-NOSH-ASA, 0.04±0.011 µM; m-NOSH-ASA, 0.24±0.11 µM; p-NOSH-ASA, 0.46±0.17 µM; and in HCT 15 cells the IC50s for o-NOSH-ASA, m-NOSH-ASA, and p-NOSH-ASA were 0.062 ±0.006 µM, 0.092±0.004 µM, and 0.37±0.04 µM, respectively. The IC50 for aspirin in both cell lines was >5mM at 24h. The reduction of cell growth appeared to be mediated through inhibition of proliferation, and induction of apoptosis. All 3 positional isomers of NOSH-aspirin preferentially inhibited COX-1 over COX-2. These results suggest that the three positional isomers of NOSH-aspirin have the same biological actions, but that o-NOSH-ASA displayed the strongest anti-neoplastic potential. PMID:26319435

  16. Positional isomerism markedly affects the growth inhibition of colon cancer cells by NOSH-aspirin: COX inhibition and modeling?

    PubMed Central

    Vannini, Federica; Chattopadhyay, Mitali; Kodela, Ravinder; Rao, Praveen P.N.; Kashfi, Khosrow

    2015-01-01

    We recently reported the synthesis of NOSH-aspirin, a novel hybrid that releases both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e. ortho-NOSH-aspirin (o-NOSH-aspirin). In the present study, we compared the effects of the positional isomers of NOSH-ASA (o-NOSH-aspirin, m-NOSH-aspirin and p-NOSH-aspirin) to that of aspirin on growth of HT-29 and HCT 15 colon cancer cells, belonging to the same histological subtype, but with different expression of cyclooxygenase (COX) enzymes; HT-29 express both COX-1 and COX-2, whereas HCT 15 is COX-null. We also analyzed the effect of these compounds on proliferation and apoptosis in HT-29 cells. Since the parent compound aspirin, inhibits both COX-1 and COX-2, we also evaluated the effects of these compounds on COX-1 and COX-2 enzyme activities and also performed modeling of the interactions between the positional isomers of NOSH-aspirin and COX-1 and COX-2 enzymes. We observed that the three positional isomers of NOSH aspirin inhibited the growth of both colon cancer cell lines with IC50s in the nano-molar range. In particular in HT-29 cells the IC50s for growth inhibition were: o-NOSH-ASA, 0.040.011M; m-NOSH-ASA, 0.240.11M; p-NOSH-ASA, 0.460.17M; and in HCT 15 cells the IC50s for o-NOSH-ASA, m-NOSH-ASA, and p-NOSH-ASA were 0.062 0.006M, 0.0920.004M, and 0.370.04M, respectively. The IC50 for aspirin in both cell lines was >5mM at 24h. The reduction of cell growth appeared to be mediated through inhibition of proliferation, and induction of apoptosis. All 3 positional isomers of NOSH-aspirin preferentially inhibited COX-1 over COX-2. These results suggest that the three positional isomers of NOSH-aspirin have the same biological actions, but that o-NOSH-ASA displayed the strongest anti-neoplastic potential. PMID:26319435

  17. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    PubMed

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. PMID:17374428

  18. Inhibition of proteasome activity blocks Trypanosoma cruzi growth and metacyclogenesis.

    PubMed

    Cardoso, Josiane; Soares, Maurilio J; Menna-Barreto, Rubem F S; Le Bloas, Rozenn; Sotomaior, Vanessa; Goldenberg, Samuel; Krieger, Marco A

    2008-09-01

    Proteasomes are intracellular complexes that control protein degradation in organisms ranging from Archaebacteria to mammals. In some parasitic protozoa, the proteasome is involved in cell differentiation and replication. In this study, we have used proteasome inhibitors to determine the biological role of proteasomes during the replication and in vitro metacyclogenesis of Trypanosoma cruzi. We used light and transmission electron microscopy to analyze morphological data and flow cytometry to analyze changes in the cell cycle. The growth of T. cruzi epimastigote culture forms in liver infusion tryptose medium was inhibited by the presence of up to 10 microM lactacystin. Inhibition was dose-dependent, with IC50 (50% inhibitory concentration) of 4.35 microM after 24 or 72 h. The metacyclogenesis process in vitro was strongly (95%) inhibited by 5 microM lactacystin treatment. The adhesion phase was not affected, but the epimastigotes did not differentiate into metacyclic trypomastigotes. Most treated epimastigotes had replicated DNA, with swelling of the mitochondrion and an altered distribution of nuclear and kinetoplast DNA. Our findings suggest that inhibition of the ubiquitin-proteasome pathway in T. cruzi epimastigotes does not block adhesion, but disrupts cell division and affects factors triggering differentiation. PMID:18581141

  19. [Growth inhibition effect of immobilized pectinase on Microcystis aeruginosa].

    PubMed

    Shen, Qing-Qing; Peng, Qian; Lai, Yong-Hong; Ji, Kai-Yan; Han, Xiu-Lin

    2012-12-01

    To confirm the growth inhibition effect of immobilized pectinase on algae, co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa. After co-cultivation, the damage status of the algae was observed through electron microscope, and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured. The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase. Under electron microscope, plasmolysis was found in the slightly damaged cells, and the cell surface of these cells was rough, uneven and irregular; the severely damaged cells were collapsed or disintegrated completely. The algal yield and the chlorophyll a content decreased significantly with the increase of the treating time. The measurement of the malondiadehyde (MDA) value showed that the antioxidation system of the treated algal cells was destroyed, and their membrane lipid was severely peroxidated. The study indicated that the immobilized pectinase could efficiently inhibit the growth of M. aeruginosa, and the inhibitory rate reached up to 96%. PMID:23379158

  20. Exogenous ethylene inhibits sprout growth in onion bulbs

    PubMed Central

    Bufler, Gebhard

    2009-01-01

    Background and Aims Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. Methods A cultivar (Allium cepa ‘Copra’) with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 °C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO2 and ethylene production of onion bulbs during storage were recorded. Key results Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO2 production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Conclusions Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy. PMID:18940850

  1. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth

    PubMed Central

    Harel, Sivan; Higgins, Claire A.; Cerise, Jane E.; Dai, Zhenpeng; Chen, James C.; Clynes, Raphael; Christiano, Angela M.

    2015-01-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells. PMID:26601320

  2. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth.

    PubMed

    Harel, Sivan; Higgins, Claire A; Cerise, Jane E; Dai, Zhenpeng; Chen, James C; Clynes, Raphael; Christiano, Angela M

    2015-10-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells. PMID:26601320

  3. A Flagellar Glycan-Specific Protein Encoded by Campylobacter Phages Inhibits Host Cell Growth

    PubMed Central

    Javed, Muhammad Afzal; Sacher, Jessica C.; van Alphen, Lieke B.; Patry, Robert T.; Szymanski, Christine M.

    2015-01-01

    We previously characterized a carbohydrate binding protein, Gp047, derived from lytic Campylobacter phage NCTC 12673, as a promising diagnostic tool for the identification of Campylobacter jejuni and Campylobacter coli. We also demonstrated that this protein binds specifically to acetamidino-modified pseudaminic acid residues on host flagella, but the role of this protein in the phage lifecycle remains unknown. Here, we report that Gp047 is capable of inhibiting C. jejuni growth both on solid and liquid media, an activity, which we found to be bacteriostatic. The Gp047 domain responsible for bacterial growth inhibition is localized to the C-terminal quarter of the protein, and this activity is both contact- and dose-dependent. Gp047 gene homologues are present in all Campylobacter phages sequenced to date, and the resulting protein is not part of the phage particle. Therefore, these results suggest that either phages of this pathogen have evolved an effector protein capable of host-specific growth inhibition, or that Campylobacter cells have developed a mechanism of regulating their growth upon sensing an impending phage threat. PMID:26694450

  4. Human primary brain tumor cell growth inhibition in serum-free medium optimized for neuron survival.

    PubMed

    Brewer, Gregory J; LeRoux, Peter D

    2007-07-01

    Glioblastoma is the most common primary brain tumor in adults from which about 15,000 patients die each year in the United States. Despite aggressive surgery, radiotherapy and chemotherapy, median survival remains only 1 year. Here we evaluate growth of primary human brain tumor cells in a defined nutrient culture medium (Neuregen) that was optimized for neuron regeneration. We hypothesized that Neuregen would inhibit tumor cell growth because of its ability to inhibit gliosis in rat brain. Tumor tissue was collected from 18 patients including 10 males and 8 females (mean age 60+/-12 years) who underwent craniotomy for newly diagnosed, histologically confirmed brain tumors. The tissue was shipped overnight in Hibernate transport medium. Tumor cells were isolated and plated in Neurobasal/serum or Neuregen on culture plastic. After 1 week, growth in Neuregen was significantly less in 9/10 glioblastoma multiforme cases, 5/5 meningioma cases and 3/3 cases of brain metastasis. Analysis of deficient formulations of Neuregen and formulations to which selected components were added back implicate no single active component. However, individual cases were sensitive to corticosterone, selenium, ethanolamine, fatty acids and/or antioxidants. Therefore, a defined culture medium that promotes neuron regeneration inhibits the growth of human primary glioblastoma, meningioma and metastatic tumor cells in culture. The possible in vivo efficacy of Neuregen for treatment of brain tumor resections remains to be determined. PMID:17537410

  5. Basic fibroblast growth factor inhibits cell proliferation in cultured avian inner ear sensory epithelia.

    PubMed

    Oesterle, E C; Bhave, S A; Coltrera, M D

    2000-08-21

    Postembryonic production of inner ear hair cells occurs after insult in nonmammalian vertebrates. Recent studies suggest that the fibroblast family of growth factors may play a role in stimulating cell proliferation in mature inner ear sensory epithelium. Effects of acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor (FGF-2) were tested on progenitor cell division in cultured auditory and vestibular sensory epithelia taken from posthatch chickens. The effects of heparin, a glycosaminoglycan that often potentiates the effects of the FGFs, were also assessed. Tritiated-thymidine autoradiographic techniques and 5-bromo-2;-deoxyuridine (BrdU) immunocytochemistry were used to identify cells synthesizing DNA. The terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-biotin nick-end-label (TUNEL) method was used to identify apoptotic cells. TUNEL and overall counts of sensory epithelial cell density were used to assess possible cytotoxic effects of the growth factors. FGF-2 inhibited DNA synthesis in vestibular and auditory sensory epithelia and was not cytotoxic at the concentrations employed. FGF-1 did not significantly alter sensory epithelial cell proliferation. Heparin by itself inhibited DNA synthesis in the vestibular sensory epithelia and failed to potentiate the effects of FGF-1 or FGF-2. Heparin was not cytotoxic at the concentrations employed. Results presented here suggest that FGF-2 may be involved in inhibiting cell proliferation or stimulating precursor cell differentiation in avian inner ear sensory epithelia. PMID:10906705

  6. Bisphosphonate treatment inhibits the growth of prostate cancer cells.

    PubMed

    Lee, M V; Fong, E M; Singer, F R; Guenette, R S

    2001-03-15

    The presence of skeletal metastases in patients suffering from cancer leads to a variety of clinical complications. Bisphosphonates are a class of drugs with a potent bone resorption inhibition activity that have found increasing utility in treating and managing patients with metastatic bone disease. Several clinical trials have demonstrated that bisphosphonates have clinical value in the treatment and management of skeletal metastases derived from advanced prostate cancer. Currently, the mechanism(s) through which bisphosphonates exert their activity is only beginning to be understood. We have studied the effects of bisphosphonate treatment on the growth of prostate cancer cell lines in vitro. Treatment of PC3, DU145, and LNCaP cells with pamidronate or zoledronate significantly reduced the growth of all three cell lines. Using flow cytometry, pamidronate treatment (100 microM) was shown to induce significant amounts of cell death in all three cell lines studied. In contrast, treatment with zoledronate (100 microM) did not induce cell death, instead exerting dramatic effects on cell proliferation, as evidenced by a major increase in cells present in the G0-G1 and S phase. Although both drugs reduced prostate cancer cell growth in the presence of serum, zoledronate was more potent under these conditions, disrupting growth at doses as low as 25 microM in the presence of 5% fetal bovine serum. These results raise the intriguing possibility that the observed clinical utility of bisphosphonates in managing skeletal metastases may in part derive from direct inhibition of prostate cancer cell growth in the bone microenvironment. PMID:11289137

  7. Contribution of cinnamic acid analogues in rosmarinic acid to inhibition of snake venom induced hemorrhage.

    PubMed

    Aung, Hnin Thanda; Furukawa, Tadashi; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2011-04-01

    In our previous paper, we reported that rosmarinic acid (1) of Argusia argentea could neutralize snake venom induced hemorrhagic action. Rosmarinic acid (1) consists of two phenylpropanoids: caffeic acid (2) and 3-(3,4-dihydroxyphenyl)lactic acid (3). In this study, we investigated the structural requirements necessary for inhibition of snake venom activity through the use of compounds, which are structurally related to rosmarinic acid (1). By examining anti-hemorrhagic activity of cinnamic acid analogs against Protobothrops flavoviridis (Habu) venom, it was revealed that the presence of the E-enoic acid moiety (-CH=CH-COOH) was critical. Furthermore, among the compound tested, it was concluded that rosmarinic acid (1) (IC(50) 0.15 μM) was the most potent inhibitor against the venom. PMID:21388814

  8. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    PubMed

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production. PMID:27053756

  9. Flow injection analysis of gallic acid with inhibited electrochemiluminescence detection.

    PubMed

    Lin, Xiang-Qin; Li, Feng; Pang, Yong-Qiang; Cui, Hua

    2004-04-01

    A flow injection (FI)-electrochemiluminescent (ECL) method has been developed for the determination of gallic acid, based on an inhibition effect on the Ru(bpy)(3)(2+)/tri- n-propylamine (TPrA) ECL system in pH 8.0 phosphate buffer solution. The method is simple and convenient with a determination limit of 9.0x10(-9) mol/L and a dynamic concentration range of 2x10(-8)-2x10(-5) mol/L. The relative standard deviation (RSD) was 1.0% for 1.0x10(-6) mol/L gallic acid ( n=11). It was successfully applied to the determination of gallic acid in Chinese proprietary medicine-Jianming Yanhou Pian. The inhibition mechanism proposed for the quenching effect of the gallic acid on the Ru(bpy)(3)(2+)/TPrA ECL system was the interaction of electrogenerated Ru(bpy)(3)(2+*) and o-benzoquinone derivative at the electrode surface. The ECL emission spectra and UV-visible absorption spectra were applied to confirm the mechanism. PMID:14968286

  10. Osmotic Shock Inhibits Auxin-stimulated Acidification and Growth 1

    PubMed Central

    Rubinstein, Bernard

    1977-01-01

    Cells of oat coleoptiles (Avena sativa L. cv. Garry) have been osmotically shocked in order to observe the effect of alterations of the plasma membrane on some auxin responses. When coleoptile sections were treated sequentially with 0.5 m mannitol and 1 mm Na-phosphate (pH 6.4) at 4 C, polar auxin transport and acidification by 1 mM CaCl2 were unaffected, but auxin-stimulated acidification and growth were eliminated. Shock treatment also had no effect on acid-stimulated growth or on freezing point depression by the cytoplasm. It is suggested that osmotic shock modifies a portion of the plasma membrane which interacts with auxin and eventually leads to growth. PMID:16659853

  11. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway.

    PubMed

    Zheng, Jie; Son, Dong Ju; Gu, Sun Mi; Woo, Ju Rang; Ham, Young Wan; Lee, Hee Pom; Kim, Wun Jae; Jung, Jae Kyung; Hong, Jin Tae

    2016-01-01

    Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0-15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5-5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo. PMID:27198178

  12. Epidermal growth factor receptor endocytic traffic perturbation by phosphatidate phosphohydrolase inhibition: new strategy against cancer.

    PubMed

    Shaughnessy, Ronan; Retamal, Claudio; Oyanadel, Claudia; Norambuena, Andrés; López, Alejandro; Bravo-Zehnder, Marcela; Montecino, Fabian J; Metz, Claudia; Soza, Andrea; González, Alfonso

    2014-05-01

    Epidermal growth factor receptor (EGFR) exaggerated (oncogenic) function is currently targeted in cancer treatment with drugs that block receptor ligand binding or tyrosine kinase activity. Because endocytic trafficking is a crucial regulator of EGFR function, its pharmacological perturbation might provide a new anti-tumoral strategy. Inhibition of phosphatidic acid (PA) phosphohydrolase (PAP) activity has been shown to trigger PA signaling towards type 4 phosphodiesterase (PDE4) activation and protein kinase A inhibition, leading to internalization of empty/inactive EGFR. Here, we used propranolol, its l- and d- isomers and desipramine as PAP inhibitors to further explore the effects of PAP inhibition on EGFR endocytic trafficking and its consequences on EGFR-dependent cancer cell line models. PAP inhibition not only made EGFR inaccessible to stimuli but also prolonged the signaling lifetime of ligand-activated EGFR in recycling endosomes. Strikingly, such endocytic perturbations applied in acute/intermittent PAP inhibitor treatments selectively impaired cell proliferation/viability sustained by an exaggerated EGFR function. Phospholipase D inhibition with FIPI (5-fluoro-2-indolyl des-chlorohalopemide) and PDE4 inhibition with rolipram abrogated both the anti-tumoral and endocytic effects of PAP inhibition. Prolonged treatments with a low concentration of PAP inhibitors, although without detectable endocytic effects, still counteracted cell proliferation, induced apoptosis and decreased anchorage-independent growth of cells bearing EGFR oncogenic influences. Overall, our results show that PAP inhibitors can counteract EGFR oncogenic traits, including receptor overexpression or activating mutations resistant to current tyrosine kinase inhibitors, perturbing EGFR endocytic trafficking and perhaps other as yet unknown processes, depending on treatment conditions. This puts PAP activity forward as a new suitable target against EGFR-driven malignancy. PMID:24597955

  13. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition.

    PubMed

    Peters, Jan; Byrne, Gerald I

    2015-08-01

    Chlamydia trachomatis is auxotrophic for a variety of essential metabolites. Inhibitors that interrupt host cell catabolism may inhibit chlamydial growth and reveal Chlamydia metabolite requirements. We used the known indoleamine-2,3-dioxygenase (IDO)-inhibitor 4-phenyl imidazole (4-PI) to reverse Interferon (IFN)-γ-induced chlamydial growth inhibition. However, at elevated inhibitor concentrations chlamydial growth was arrested even in the absence of IFN-γ. Since 4-PI is known to interfere with cholesterol metabolism, the effect of cholesterol add-back was tested. Chlamydia growth was restored in the presence of cholesterol in serum-containing, but not serum-free medium suggesting that cholesterol and other serum components are required for growth recovery. When serum factors were tested, either cholesteryl linoleate or the combination of cholesterol and linoleic acid restored chlamydial growth. However, growth was not restored when either cholesterol or linoleic acid were added alone, suggesting that the production of cholesteryl esters from cholesterol and fatty acids was affected by 4-PI treatment. In eukaryotic cells, the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the production of cholesteryl esters. When HeLa cells were treated with the ACAT-specific inhibitor 4-hydroxycinnamicacid amide C. trachomatis growth was interrupted, but was restored by the addition of cholesteryl linoleate, suggesting that ACAT activity is necessary for intracellular Chlamydia growth. PMID:25883118

  14. Growth inhibition mediated by PSP94 or CRISP-3 is prostate cancer cell line specific.

    PubMed

    Pathak, Bhakti R; Breed, Ananya A; Nakhawa, Vaishali H; Jagtap, Dhanashree D; Mahale, Smita D

    2010-09-01

    The prostate secretory protein of 94 amino acids (PSP94) has been shown to interact with cysteine-rich secretory protein 3 (CRISP-3) in human seminal plasma. Interestingly, PSP94 expression is reduced or lost in the majority of the prostate tumours, whereas CRISP-3 expression is upregulated in prostate cancer compared with normal prostate tissue. To obtain a better understanding of the individual roles these proteins have in prostate tumourigenesis and the functional relevance of their interaction, we ectopically expressed either PSP94 or CRISP-3 alone or PSP94 along with CRISP-3 in three prostate cell lines (PC3, WPE1-NB26 and LNCaP) and performed growth inhibition assays. Reverse transcription-polymerase chain reaction and Western blot analysis were used to screen prostate cell lines for PSP94 and CRISP-3 expression. Mammalian expression constructs for human PSP94 and CRISP-3 were also generated and the expression, localization and secretion of recombinant protein were assayed by transfection followed by Western blot analysis and immunofluorescence assay. The effect that ectopic expression of PSP94 or CRISP-3 had on cell growth was studied by clonogenic survival assay following transfection. To evaluate the effects of co-expression of the two proteins, stable clones of PC3 that expressed PSP94 were generated. They were subsequently transfected with a CRISP-3 expression construct and subjected to clonogenic survival assay. Our results showed that PSP94 and CRISP-3 could each induce growth inhibition in a cell line specific manner. Although the growth of CRISP-3-positive cell lines was inhibited by PSP94, growth inhibition mediated by CRISP-3 was not affected by the presence or absence of PSP94. This suggests that CRISP-3 may participate in PSP94-independent activities during prostate tumourigenesis. PMID:20676114

  15. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    PubMed

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-01-01

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging. PMID:27070568

  16. Growth Inhibition of Cronobacter sakazakii in Experimentally Contaminated Powdered Infant Formula by Kefir Supernatant.

    PubMed

    Kim, Dong-Hyeon; Chon, Jung-Whan; Kang, Il-Byeong; Kim, Hyunsook; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2015-09-01

    Kefir is a type of fermented milk containing lactic and acetic acid bacteria and yeast. In this study, we evaluated the antimicrobial activity of kefir supernatant against Cronobacter sakazakii in powdered infant formula (PIF). In a spot-on-lawn test, the growth of 20 C. sakazakii strains, including 10 clinical and 10 food isolates, was completely inhibited in the presence of kefir supernatant. Significant differences in the diameters of inhibition zones were observed upon treatment with kefir compared with the results for Lactobacillus kefiri and Candida kefyr culture supernatants or solutions of lactic and acetic acid and ethyl alcohol in the agar well diffusion test (P < 0.05). The addition of 100 μl of kefir supernatant to 1 ml of nutrient broth completely inhibited the growth of C. sakazakii, as evaluated by spectrophotometry. The antimicrobial activity of kefir supernatant in experimentally contaminated PIF was also tested; we found no viable C. sakazakii cells remaining in PIF rehydrated with 30% kefir supernatant solution for 1 h, demonstrating that the antimicrobial activity of kefir supernatant against C. sakazakii could be applied in real food samples. PMID:26319718

  17. Inhibition of Ribonucleic Acid Synthesis by Nalidixic Acid in Escherichia coli

    PubMed Central

    Javor, George T.

    1974-01-01

    The effect of low concentrations of nalidixic acid on ribonucleic acid (RNA) synthesis in Escherichia coli was examined. It was observed that RNA synthesis in exponentially growing cells was not significantly affected, in harmony with previous studies. However, RNA synthesis was markedly depressed by nalidixic acid during starvation for an amino acid or during chloramphenicol treatment. This effect was not caused by increased killing or inhibition of nucleoside triphosphate synthesis by nalidixic acid. The pattern of radioactive uracil incorporation into transfer RNA or ribosomes was not changed by the drug. The sensitivity of RNA synthesis to nalidixic acid in the absence of protein production may be useful in probing the amino acid control of RNA synthesis. PMID:4607671

  18. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    SciTech Connect

    Gerbino, Andrea; Debellis, Lucantonio; Caroppo, Rosa; Curci, Silvana; Colella, Matilde

    2010-06-01

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I{sub sc}), transepithelial potential (V{sub t}) and resistance (R{sub t}) were recorded in the continuous presence of cadmium. Addition of cadmium (20 {mu}M to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I{sub sc} cannot be explained by an action on: 1) H{sub 2} histamine receptor, 2) Ca{sup 2+} signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H{sup +}/K{sup +}-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H{sup +}/K{sup +}-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.

  19. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  20. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  1. Tranexamic acid concentrations associated with human seizures inhibit glycine receptors

    PubMed Central

    Lecker, Irene; Wang, Dian-Shi; Romaschin, Alexander D.; Peterson, Mark; Mazer, C. David; Orser, Beverley A.

    2012-01-01

    Antifibrinolytic drugs are widely used to reduce blood loss during surgery. One serious adverse effect of these drugs is convulsive seizures; however, the mechanisms underlying such seizures remain poorly understood. The antifibrinolytic drugs tranexamic acid (TXA) and ε-aminocaproic acid (EACA) are structurally similar to the inhibitory neurotransmitter glycine. Since reduced function of glycine receptors causes seizures, we hypothesized that TXA and EACA inhibit the activity of glycine receptors. Here we demonstrate that TXA and EACA are competitive antagonists of glycine receptors in mice. We also showed that the general anesthetic isoflurane, and to a lesser extent propofol, reverses TXA inhibition of glycine receptor–mediated current, suggesting that these drugs could potentially be used to treat TXA-induced seizures. Finally, we measured the concentration of TXA in the cerebrospinal fluid (CSF) of patients undergoing major cardiovascular surgery. Surprisingly, peak TXA concentration in the CSF occurred after termination of drug infusion and in one patient coincided with the onset of seizures. Collectively, these results show that concentrations of TXA equivalent to those measured in the CSF of patients inhibited glycine receptors. Furthermore, isoflurane or propofol may prevent or reverse TXA-induced seizures. PMID:23187124

  2. Erlotinib Inhibits Growth of a Patient-Derived Chordoma Xenograft

    PubMed Central

    Siu, I-Mei; Ruzevick, Jacob; Zhao, Qi; Connis, Nick; Jiao, Yuchen; Bettegowda, Chetan; Xia, Xuewei; Burger, Peter C.; Hann, Christine L.; Gallia, Gary L.

    2013-01-01

    Chordomas are rare primary bone tumors that occur along the neuraxis. Primary treatment is surgery, often followed by radiotherapy. Treatment options for patients with recurrence are limited and, notably, there are no FDA approved therapeutic agents. Development of therapeutic options has been limited by the paucity of preclinical model systems. We have established and previously reported the initial characterization of the first patient-derived chordoma xenograft model. In this study, we further characterize this model and demonstrate that it continues to resemble the original patient tumor histologically and immunohistochemically, maintains nuclear expression of brachyury, and is highly concordant with the original patient tumor by whole genome genotyping. Pathway analysis of this xenograft demonstrates activation of epidermal growth factor receptor (EGFR). In vitro studies demonstrate that two small molecule inhibitors of EGFR, erlotinib and gefitinib, inhibit proliferation of the chordoma cell line U-CH 1. We further demonstrate that erlotinib significantly inhibits chordoma growth in vivo. Evaluation of tumors post-treatment reveals that erlotinib reduces phosphorylation of EGFR. This is the first demonstration of antitumor activity in a patient-derived chordoma xenograft model and these findings support further evaluation of EGFR inhibitors in this disease. PMID:24260133

  3. Cesium Inhibits Plant Growth through Jasmonate Signaling in Arabidopsis thaliana

    PubMed Central

    Adams, Eri; Abdollahi, Parisa; Shin, Ryoung

    2013-01-01

    It has been suggested that cesium is absorbed from the soil through potassium uptake machineries in plants; however, not much is known about perception mechanism and downstream response. Here, we report that the jasmonate pathway is required in plant response to cesium. Jasmonate biosynthesis mutant aos and jasmonate-insensitive mutant coi1-16 show clear resistance to root growth inhibition caused by cesium. However, the potassium and cesium contents in these mutants are comparable to wild-type plants, indicating that jasmonate biosynthesis and signaling are not involved in cesium uptake, but involved in cesium perception. Cesium induces expression of a high-affinity potassium transporter gene HAK5 and reduces potassium content in the plant body, suggesting a competitive nature of potassium and cesium uptake in plants. It has also been found that cesium-induced HAK5 expression is antagonized by exogenous application of methyl-jasmonate. Taken together, it has been indicated that cesium inhibits plant growth via induction of the jasmonate pathway and likely modifies potassium uptake machineries. PMID:23439557

  4. Cesium Inhibits Plant Growth through Jasmonate Signaling in Arabidopsis thaliana.

    PubMed

    Adams, Eri; Abdollahi, Parisa; Shin, Ryoung

    2013-01-01

    It has been suggested that cesium is absorbed from the soil through potassium uptake machineries in plants; however, not much is known about perception mechanism and downstream response. Here, we report that the jasmonate pathway is required in plant response to cesium. Jasmonate biosynthesis mutant aos and jasmonate-insensitive mutant coi1-16 show clear resistance to root growth inhibition caused by cesium. However, the potassium and cesium contents in these mutants are comparable to wild-type plants, indicating that jasmonate biosynthesis and signaling are not involved in cesium uptake, but involved in cesium perception. Cesium induces expression of a high-affinity potassium transporter gene HAK5 and reduces potassium content in the plant body, suggesting a competitive nature of potassium and cesium uptake in plants. It has also been found that cesium-induced HAK5 expression is antagonized by exogenous application of methyl-jasmonate. Taken together, it has been indicated that cesium inhibits plant growth via induction of the jasmonate pathway and likely modifies potassium uptake machineries. PMID:23439557

  5. XIAP downregulation accompanies mebendazole growth inhibition in melanoma xenografts.

    PubMed

    Doudican, Nicole A; Byron, Sara A; Pollock, Pamela M; Orlow, Seth J

    2013-02-01

    Mebendazole (MBZ) was identified as a promising therapeutic on the basis of its ability to induce apoptosis in melanoma cell lines through a B-cell lymphoma 2 (BCL2)-dependent mechanism. We now show that in a human xenograft melanoma model, oral MBZ is as effective as the current standard of care temozolomide in reducing tumor growth. Inhibition of melanoma growth in vivo is accompanied by phosphorylation of BCL2 and decreased levels of X-linked inhibitor of apoptosis (XIAP). Reduced expression of XIAP on treatment with MBZ is partially mediated by its proteasomal degradation. Furthermore, exposure of melanoma cells to MBZ promotes the interaction of SMAC/DIABLO with XIAP, thereby alleviating XIAP's inhibition on apoptosis. XIAP expression on exposure to MBZ is indicative of sensitivity to MBZ as MBZ-resistant cells do not show reduced levels of XIAP after treatment. Resistance to MBZ can be reversed partially by siRNA knockdown of cellular levels of XIAP. Our data indicate that MBZ is a promising antimelanoma agent on the basis of its effects on key antiapoptotic proteins. PMID:23059386

  6. Xanthine oxidase inhibits growth of Plasmodium falciparum in human erythrocytes in vitro.

    PubMed Central

    Berman, P A; Human, L; Freese, J A

    1991-01-01

    Malaria parasites, unable to synthesize purine de novo, use host-derived hypoxanthine preferentially as purine source. In a previous study (1990. J. Biol. Chem. 265:6562-6568), we noted that xanthine oxidase rapidly and completely depleted hypoxanthine in human erythrocytes, not by crossing the erythrocyte membrane, but rather by creating a concentration gradient which facilitated hypoxanthine efflux. We therefore investigated the ability of xanthine oxidase to inhibit growth of FCR-3, a chloroquine-resistant strain of Plasmodium falciparum in human erythrocytes in vitro. Parasites were cultured in human group O+ erythrocytes in medium supplemented, as required, with xanthine oxidase or chloroquine. Parasite viability was assessed by uptake of radiolabeled glycine and adenosine triphosphate-derived purine into protein and nucleic acid, respectively, by nucleic acid accumulation, by L-lactate production, and by microscopic appearance. On average, a 90% inhibition of growth was observed after 72 h of incubation in 20 mU/ml xanthine oxidase. Inhibition was notably greater than that exerted by 10(-7) M chloroquine (less than 10%) over a comparable period. The IC50 for xanthine oxidase was estimated at 0.2 mU/ml, compared to 1.5 x 10(-7) M for chloroquine. Inhibition was completely reversed by excess hypoxanthine, but was unaffected by oxygen radical scavengers, including superoxide dismutase and catalase. The data confirms that a supply of host-derived hypoxanthine is critical for nucleic acid synthesis in P. falciparum, and that depletion of erythrocyte hypoxanthine pools of chloroquine-resistant malaria infection in humans. of chloroquine-resistant malaria infection in humans. Images PMID:1752946

  7. Palmitic acid but not stearic acid inhibits NO-production in endothelial cells.

    PubMed

    Moers, A; Schrezenmeir, J

    1997-01-01

    Several studies showed a diminished production of the endothelium-derived relaxing factor nitric oxide (NO) in the early stage of atherosclerosis. The inhibition of NO-production seems to be mediated by lipoproteins, especially oxidized low-density lipoproteins (ox-LDL). There is some evidence, that the interactions of lipoproteins and NO are associated with the phospholipid fraction of lipoproteins. Since fatty acids have different atherogenic properties-depending on chain length, degree of saturation and steric configuration-, we investigated the effect of fatty acids on endothelial NO-production. Human umbilical vein endothelial cells were incubated with palmitic acid and stearic acid in different concentrations in culture medium enriched with serum albumin for five hours. After that, NO-production was stimulated by calcium-ionophore A23187. NO-production was determined by a bioassay method using RFL-6 cells followed by radioimmunological determination of cGMP. NO-production stimulated by calcium-ionophore A23187(100%) was decreased by palmitic acid (10, 50, 100 microM) to 79 +/- 12%; 63 +/- 10% and 53 +/- 14%. In contrast, incubation with stearic acid (10, 50 and 100 microM) had no effect on A23187-stimulated NO-production (94 +/- 11%; 93 +/- 11%; 104 +/- 15%). Thus, palmitic acid but not stearic acid dose-dependently inhibited NO-release by endothelial cells. These different actions parallel the differing atherogenic potential of the two fatty acids. PMID:9288552

  8. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth

    PubMed Central

    Polet, Florence; Corbet, Cyril; Pinto, Adan; Rubio, Laila Illan; Martherus, Ruben; Bol, Vanesa; Drozak, Xavier; Grégoire, Vincent; Riant, Olivier; Feron, Olivier

    2016-01-01

    Leukemia cells are described as a prototype of glucose-consuming cells with a high turnover rate. The role of glutamine in fueling the tricarboxylic acid cycle of leukemia cells was however recently identified confirming its status of major anaplerotic precursor in solid tumors. Here we examined whether glutamine metabolism could represent a therapeutic target in leukemia cells and whether resistance to this strategy could arise. We found that glutamine deprivation inhibited leukemia cell growth but also led to a glucose-independent adaptation maintaining cell survival. A proteomic study revealed that glutamine withdrawal induced the upregulation of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT), two enzymes of the serine pathway. We further documented that both exogenous and endogenous serine were critical for leukemia cell growth and contributed to cell regrowth following glutamine deprivation. Increase in oxidative stress upon inhibition of glutamine metabolism was identified as the trigger of the upregulation of PHGDH. Finally, we showed that PHGDH silencing in vitro and the use of serine-free diet in vivo inhibited leukemia cell growth, an effect further increased when glutamine metabolism was blocked. In conclusion, this study identified serine as a key pro-survival actor that needs to be handled to sensitize leukemia cells to glutamine-targeting modalities. PMID:26625201

  9. Positional Isomers of Aspirin Are Equally Potent in Inhibiting Colon Cancer Cell Growth: Differences in Mode of Cyclooxygenase Inhibition

    PubMed Central

    Kodela, Ravinder; Chattopadhyay, Mitali; Goswami, Satindra; Gan, Zong Yuan; Rao, Praveen P. N.; Nia, Kamran V.; Velázquez-Martínez, Carlos A.

    2013-01-01

    We compared the differential effects of positional isomers of acetylsalicylic acid (o-ASA, m-ASA, and p-ASA) on cyclooxygenase (COX) inhibition, gastric prostaglandin E2 (PGE2), malondialdehyde, tumor necrosis factor-alpha (TNF-α) levels, superoxide dismutase (SOD) activity, human adenocarcinoma colon cancer cell growth inhibition, cell proliferation, apoptosis, and cell-cycle progression. We also evaluated the gastric toxicity exerted by ASA isomers. All ASA isomers inhibit COX enzymes, but only the o-ASA exerted an irreversible inhibitory profile. We did not observe a significant difference between ASA isomers in their ability to decrease the in vivo synthesis of PGE2 and SOD activity. Furthermore, all isomers increased the levels of gastric and TNF-α when administered orally at equimolar doses. We observed a dose-dependent cell growth inhibitory effect; the order of potency was p-ASA > m-ASA ≈ o-ASA. There was a dose-dependent decrease in cell proliferation and an increase in apoptosis, with a concomitant Go/G1 arrest. The ulcerogenic profile of the three ASA isomers showed a significant difference between o-ASA (aspirin) and its two positional isomers when administered orally at equimolar doses (1 mmol/kg); the ulcer index (UI) for o-ASA indicated extensive mucosal injury (UI = 38), whereas m-ASA and p-ASA produced a significantly decreased toxic response (UI = 12 and 8, respectively) under the same experimental conditions. These results suggest that the three positional isomers of ASA exert practically the same biologic profile in vitro and in vivo but showed different safety profiles. The mechanism of gastric ulcer formation exerted by aspirin and its two isomers warrants a more detailed and thorough investigation. PMID:23349335

  10. Specificity of growth inhibition of melanoma by 4-hydroxyanisole

    SciTech Connect

    Kulkarni, G.A.; Nathanson, L.

    1989-01-01

    An experimental study using human melanoma (NEL-MI), rat hepatoma (Fu5-5), and human kidney (293-31) cell lines was undertaken in order to evaluate the antitumor activity of 4-hydroxyanisole (4-OHA) in vitro. Prior reports have indicated highly specific antitumor activity of 4-OHA against melanoma cells in vitro. This specific antitumor activity has been proposed to be due to the oxidation of 4-OHA by tyrosinase to cytotoxic oxidation products. Dose-dependent cytotoxicity was observed when cells were cultured for 72 h in the presence of 4-OHA. At 100 microM, 4-OHA produced growth inhibition of 62%, 32%, and 55% in melanoma, hepatoma, and kidney cell lines, respectively. No effect was seen at 10 microM 4-OHA. 1,000 microM 4-OHA produced 100% kill. Tyrosinase activity was detected only in melanoma cells. The effect of 100 microM 4-OHA on the incorporation of 3H DNA precursors in melanoma, hepatoma, and kidney cells was also studied. Thymidine incorporation was inhibited in all three cell lines at the lowest cell density tested, with the greatest inhibition seen on melanoma cells. As cell density increased, the effect of 4-OHA on thymidine incorporation decreased. With respect to RNA synthesis, 4-OHA significantly reduced the incorporation of uridine in all three cell lines, with the greatest effect in melanoma cells. Cell density also affected the inhibition of uridine incorporation, but to a lesser extent than that observed on thymidine incorporation. The effect of 4-OHA on leucine incorporation was modest and uninfluenced by cell density. Thus, cytotoxicity of 4-OHA may involve two different mechanisms.

  11. Inhibition of acidic corrosion of aluminum by triazoline derivatives

    SciTech Connect

    Khamis, E. . Dept. of Chemistry); Atea, M. . Dept. of Materials Science)

    1994-02-01

    Inhibition of the corrosion of aluminum (Al) in hydrochloric acid (HCl) by some triazoline derivatives was studied in relation to the concentration of the inhibitors using gasometry, the weight-loss method, and the potentiodynamic technique. All compounds investigated were found to be inhibitors of the mixed type. The inhibitory character of the additives depended upon the +R (resonance) and +I (inductive) powers of alkyl or aryl groups of the triazoline derivatives. Inhibition was ascribed to the adsorption of the inhibitor onto the metal oxide surface following the Flory-Huggins isotherm. The compounds were adsorbed on the metal surface. Each molecule of the inhibitors occupied an average of 3.8 active sites on the metal surface. The values of activation free energies varied between [minus]30 kJ/mol and [minus]45 kJ/mol.

  12. Hypothiocyanous acid oxidation of tubulin cysteines inhibits microtubule polymerization.

    PubMed

    Clark, Hillary M; Hagedorn, Tara D; Landino, Lisa M

    2014-01-01

    Thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. In addition, protein thiol redox reactions are increasingly identified as a mechanism to regulate protein structure and function. We assessed the effect of hypothiocyanous acid on the cytoskeletal protein tubulin. Total cysteine oxidation by hypothiocyanous and hypochlorous acids was monitored by labeling tubulin with 5-iodoacetamidofluorescein and by detecting higher molecular weight inter-chain tubulin disulfides by Western blot under nonreducing conditions. Hypothiocyanous acid induced nearly stoichiometric oxidation of tubulin cysteines (1.9 mol cysteine/mol oxidant) and no methionine oxidation was observed. Because disulfide reducing agents restored all the polymerization activity that was lost due to oxidant treatment, we conclude that cysteine oxidation of tubulin inhibits microtubule polymerization. Hypothiocyanous acid oxidation of tubulin cysteines was markedly decreased in the presence of 4% glycerol, a component of the tubulin purification buffer. Due to its instability and buffer- and pH-dependent reactivity, hypothiocyanous acid studies require careful consideration of reaction conditions. PMID:24215946

  13. Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells.

    PubMed

    Siddhanta, A; Backer, J M; Shields, D

    2000-04-21

    In mammalian cells, activation of a Golgi-associated phospholipase D by ADP-ribosylation factor results in the hydrolysis of phosphatidylcholine to form phosphatidic acid (PA). This reaction stimulates the release of nascent secretory vesicles from the trans-Golgi network of endocrine cells. To understand the role of PA in mediating secretion, we have exploited the transphosphatidylation activity of phospholipase D. Rat anterior pituitary GH3 cells, which secrete growth hormone and prolactin, were treated with 1-butanol resulting in the synthesis of phosphatidylbutanol rather than PA. Under these conditions transport from the ER through the Golgi apparatus and secretion of polypeptide hormones were inhibited quantitatively. Furthermore, the in vitro synthesis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) by Golgi membranes was inhibited quantitatively. Most significantly, in the presence of 1-butanol the architecture of the Golgi apparatus was disrupted, resulting in its disassembly and fragmentation. Removal of the alcohol resulted in the rapid restoration of Golgi structure and secretion of growth hormone and prolactin. Our results suggest that PA stimulation of PtdIns(4,5)P(2) synthesis is required for maintaining the structural integrity and function of the Golgi apparatus. PMID:10766834

  14. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens

    PubMed Central

    Tenorio-Salgado, Silvia; Tinoco, Raunel; Vazquez-Duhalt, Rafael; Caballero-Mellado, Jesus; Perez-Rueda, Ernesto

    2013-01-01

    It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear. PMID:23680857

  15. Drugs Which Inhibit Osteoclast Function Suppress Tumor Growth through Calcium Reduction in Bone

    PubMed Central

    Li, Xin; Liao, Jinhui; Park, Serk In; Koh, Amy J; Sadler, William D; Pienta, Kenneth J; Rosol, Thomas J; McCauley, Laurie K

    2011-01-01

    Prostate carcinoma frequently metastasizes to bone where the microenvironment facilitates its growth. Inhibition of bone resorption is effective in reducing tumor burden and bone destruction in prostate cancer. However, whether drugs that inhibit osteoclast function inhibit tumor growth independent of inhibition of bone resorption is unclear. Calcium is released during bone resorption and the calcium sensing receptor is an important regulator of cancer cell proliferation. The goal of this investigation was to elucidate the role of calcium released during bone resorption and to determine the impact of drugs which suppress bone resorption on tumor growth in bone. To compare tumor growth in a skeletal versus non-skeletal site, equal numbers of canine prostate cancer cells expressing luciferase (ACE-1luc) prostate cancer cells were inoculated into a simple collagen matrix, neonatal mouse vertebrae (vossicles), human de-proteinized bone, or a mineralized collagen matrix. Implants were placed subcutaneously into athymic mice. Luciferase activity was used to track tumor growth weekly and at one month tumors were dissected for histologic analysis. Luciferase activity and tumor size were greater in vossicles, de-proteinized bone and mineralized collagen matrix versus non-mineralized collagen implants. The human osteoblastic prostate carcinoma cell line C4-2b also grew better in a mineral rich environment with a greater proliferation of C4-2b cells reflected by Ki-67 staining. Zoledronic acid (ZA), a bisphosphonate, and recombinant OPG-Fc, a RANKL inhibitor, were administered to mice bearing vertebral implants (vossicles) containing ACE-1 osteoblastic prostate cancer cells. Vossicles or collagen matrices were seeded with ACE-1luc cells subcutaneously in athymic mice (2 vossicles, 2 collagen implants/mouse). Mice received ZA (5μg/mouse, twice/week), (OPG-Fc at 10mg/kg, 3 times/week) or vehicle, and luciferase activity was measured weekly. Histologic analysis of the tumors, vossicles and endogenous bones and serum biochemistry were performed. Antiresorptive administration was associated with decreased serum TRAP5b and reduced osteoclast numbers, increased tibia and vossicle bone areas. ZA significantly decreased bone marrow calcium concentrations without affecting serum calcium. ZA and OPG-Fc significantly inhibited tumor growth in bone but not in collagen implants. In conclusion, the inhibitory effects of ZA or OPG-Fc on prostate tumor growth in bone are mediated via blocking bone resorption and calcium release from bone. PMID:21419883

  16. Functional Amino Acids in Growth, Reproduction, and Health12

    PubMed Central

    Wu, Guoyao

    2010-01-01

    Amino acids (AA) were traditionally classified as nutritionally essential or nonessential for animals and humans based on nitrogen balance or growth. A key element of this classification is that all nonessential AA (NEAA) were assumed to be synthesized adequately in the body as substrates to meet the needs for protein synthesis. Unfortunately, regulatory roles for AA in nutrition and metabolism have long been ignored. Such conceptual limitations were not recognized until recent seminal findings that dietary glutamine is necessary for intestinal mucosal integrity and dietary arginine is required for maximum neonatal growth and embryonic survival. Some of the traditionally classified NEAA (e.g. glutamine, glutamate, and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, and immunity. Additionally, glutamate, glutamine, and aspartate are major metabolic fuels for the small intestine and they, along with glycine, regulate neurological function. Among essential AA (EAA), much emphasis has been placed on leucine (which activates mammalian target of rapamycin to stimulate protein synthesis and inhibit proteolysis) and tryptophan (which modulates neurological and immunological functions through multiple metabolites, including serotonin and melatonin). A growing body of literature leads to a new concept of functional AA, which are defined as those AA that regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of organisms. Both NEAA and EAA should be considered in the classic “ideal protein” concept or formulation of balanced diets to maximize protein accretion and optimize health in animals and humans. PMID:22043449

  17. Fibroblast Growth Factor 21 (FGF21) Inhibits Chondrocyte Function and Growth Hormone Action Directly at the Growth Plate

    PubMed Central

    Wu, Shufang; Levenson, Amy; Kharitonenkov, Alexei; De Luca, Francesco

    2012-01-01

    Fibroblast growth factor 21 (FGF21) modulates glucose and lipid metabolism during fasting. In addition, previous evidence indicates that increased expression of FGF21 during chronic food restriction is associated with reduced bone growth and growth hormone (GH) insensitivity. In light of the inhibitory effects on growth plate chondrogenesis mediated by other FGFs, we hypothesized that FGF21 causes growth inhibition by acting directly at the long bones' growth plate. We first demonstrated the expression of FGF21, FGFR1 and FGFR3 (two receptors known to be activated by FGF21) and β-klotho (a co-receptor required for the FGF21-mediated receptor binding and activation) in fetal and 3-week-old mouse growth plate chondrocytes. We then cultured mouse growth plate chondrocytes in the presence of graded concentrations of rhFGF21 (0.01–10 μg/ml). Higher concentrations of FGF21 (5 and 10 μg/ml) inhibited chondrocyte thymidine incorporation and collagen X mRNA expression. 10 ng/ml GH stimulated chondrocyte thymidine incorporation and collagen X mRNA expression, with both effects prevented by the addition in the culture medium of FGF21 in a concentration-dependent manner. In addition, FGF21 reduced GH binding in cultured chondrocytes. In cells transfected with FGFR1 siRNA or ERK 1 siRNA, the antagonistic effects of FGF21 on GH action were all prevented, supporting a specific effect of this growth factor in chondrocytes. Our findings suggest that increased expression of FGF21 during food restriction causes growth attenuation by antagonizing the GH stimulatory effects on chondrogenesis directly at the growth plate. In addition, high concentrations of FGF21 may directly suppress growth plate chondrocyte proliferation and differentiation. PMID:22696219

  18. Loss of growth inhibitory effects of retinoic acid in human breast cancer cells following long-term exposure to retinoic acid.

    PubMed

    Stephen, R; Darbre, P D

    2000-11-01

    Although retinoids are known to be inhibitory to breast cancer cell growth, a key remaining question is whether they would remain effective if administered long-term. We describe here the long-term effects of all- trans retinoic acid on two oestrogen-dependent human breast cancer cell lines MCF7 and ZR-75-1. Although both cell lines were growth inhibited by retinoic acid in the short-term in either the absence or the presence of oestradiol, prolonged culture with 1 microM all- trans retinoic acid resulted in the cells acquiring resistance to the growth inhibitory effects of retinoic acid. Time courses showed that oestrogen deprivation of the cell lines resulted in upregulation of the basal non-oestrogen stimulated growth rate such that cells learned to grow at the same rate without as with oestradiol, but the cells remained growth inhibited by retinoic acid throughout. Addition of 1 microM all- trans retinoic acid to steroid deprivation conditions resulted in reproducible loss of growth response to both retinoic acid and oestradiol, although the time courses were separable in that loss of growth response to retinoic acid preceded that of oestradiol. Loss of growth response to retinoic acid did not involve loss of receptors, ER as measured by steroid binding assay or RARalpha as measured by Northern blotting. Function of the receptors was retained in terms of the ability of both oestradiol and retinoic acid to upregulate pS2 gene expression, but there was reduced ability to upregulate transiently transfected ERE- and RRE-linked reporter genes. Despite the accepted role of IGFBP3 in retinoic acid-mediated growth inhibition, progression to retinoic acid resistance occurred irrespective of level of IGFBP3, which remained high in the resistant MCF7 cells. Measurement of AP1 activity showed that the two cell lines had markedly different basal AP1 activities, but that progression to resistance was accompanied in both cases by a lost ability of retinoic acid to reduce AP1 activity. These results warn of potential resistance which could arise on long-term treatment with retinoic acid in a clinical situation and echo the problems of progression to endocrine resistance. It seems that whatever the constraints imposed on growth, these cells have a remarkable ability to escape from growth inhibition. However, the ability of retinoic acid to delay progression to oestrogen resistance is encouraging for endocrine therapy, and the concentration-dependence of retinoic acid resistance suggests that progression is not absolute but could be manipulated by dose. PMID:11027432

  19. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  20. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    PubMed Central

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S.

    2015-01-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Research in context Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers. PMID:26425687

  1. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus. PMID:24571086

  2. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    PubMed Central

    2012-01-01

    Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of oleaginous yeast, which is helpful for optimization of biomass hydrolysis processes, detoxified pretreatment of hydrolysates and lipid production using lignocellulosic materials. PMID:22260291

  3. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth.

    PubMed

    Carletto, Bruna; Berton, Juliana; Ferreira, Tamara Nascimento; Dalmolin, Luciana Facco; Paludo, Katia Sabrina; Mainardes, Rubiana Mara; Farago, Paulo Vitor; Favero, Giovani Marino

    2016-08-01

    In this study, resveratrol-loaded nanocapsules were developed and its antitumor activity tested on a melanoma mice model. These nanocapsules were spherically-shaped and presented suitable size, negative charge and high encapsulation efficiency for their use as a modified-release system of resveratrol. Nanoencapsulation leads to the drug amorphization. Resveratrol-loaded nanoparticles reduced cell viability of murine melanoma cells. There was a decrease in tumor volume, an increase in the necrotic area and inflammatory infiltrate of melanoma when resveratrol-loaded nanocapsules were compared to free resveratrol in treated mice. Nanoencapsulation of resveratrol also prevented metastasis and pulmonary hemorrhage. This modified-release technology containing resveratrol can be used as a feasible approach in order to inhibit murine melanoma tumor growth. PMID:27070053

  4. Isthmin inhibits glioma growth through antiangiogenesis in vivo.

    PubMed

    Yuan, Bangqing; Xian, Ronghua; Ma, Jianfang; Chen, Yujian; Lin, Chuangan; Song, Yaoming

    2012-09-01

    Among glioma treatment strategies, antiangiogenesis emerges as a meaningful and feasible treatment approach for inducing long-term survival. Isthmin is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus, and has recently been identified as a novel angiogenesis inhibitor. However, the potential of isthmin on the glioma angiogenesis has not been well studied. In the present study, we demonstrated that the recombinant adenovirus isthmin (Ad-isthmin) could inhibit VEGF-stimulated endothelial cell proliferation and induce apoptosis through a caspase-dependent pathway. In addition, Ad-isthmin significantly suppressed glioma growth through antiangiogenesis without apparent side effects. Taken together, our results demonstrated that isthmin could act as a novel angiogenesis inhibitor and might be utilized in the glioma antiangiogenesis therapy. PMID:22772605

  5. First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment.

    PubMed

    El Ghachtouli, N; Martin-Tanguy, J; Paynot, M; Gianinazzi, S

    1996-05-01

    DFMO (alpha-DL-difluoromethylornithine), a specific irreversible inhibitor of ornithine decarboxylase (ODC), a polyamine biosynthetic pathway enzyme, strongly inhibits root growth and arbuscular mycorrhizal infection of Pisum sativum (P56 myc+, isogenic mutant of cv. Frisson). This inhibition is reversed when exogenous polyamine (putrescine) is included in the DFMO treatment, showing that the effect of DFMO on arbuscular mycorrhizal infection is indeed due to putrescine limitation and suggesting that ODC may have a role in root growth and mycorrhizal infection. However, treatment with gibberellic acid (GA3) which increased root titers of polyamines strongly inhibited arbuscular mycorrhizal development. The possible role of polyamines in the regulation of the development of arbuscular mycorrhizal infection is discussed. PMID:8647248

  6. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  7. Vascular endothelial growth factor (VEGF) inhibition--a critical review.

    PubMed

    Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-03-01

    Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work. PMID:17348829

  8. Retinoic acid inhibits NFATc1 expression and osteoclast differentiation.

    PubMed

    Balkan, Wayne; Rodríguez-Gonzalez, María; Pang, Manhui; Fernandez, Isabel; Troen, Bruce R

    2011-11-01

    Ingestion of excess vitamin A appears to correlate with an increased fracture risk, an outcome that is likely mediated by retinoic acids (RAs); these are vitamin A metabolites that have dramatic effects on skeletal development. We studied the impacts of RA and isoform-specific RA receptor (RAR) agonists (α, β, and γ) on osteoclast formation (osteoclastogenesis) in two model systems: RAW264.7 cells and murine bone marrow-derived monocytes. The pan-RAR agonists, all-trans and 9-cis RA, inhibited receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclast differentiation in a concentration-dependent manner. Isoform-specific RAR agonists (α, β, and γ) also inhibited osteoclastogenesis, with the RARα agonist producing the most consistent reductions in both osteoclast number and size and total area covered. Inhibition of osteoclastogenesis correlated with reductions in expression, DNA binding, and nuclear abundance of nuclear factor of activated T cells c1 (NFATc1), a transcription factor critical for osteoclastogenesis. The upregulation of three NFATc1-responsive genes, cathepsin K, dendritic cell-specific transmembrane protein and osteoclast-associated receptor were similarly reduced following RA or RAR agonist exposure. These results suggest that RA blocks in vitro RANKL-mediated osteoclastogenesis by decreasing NFATc1 function. PMID:21384111

  9. Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems

    PubMed Central

    Mercy, Chryslène; Ize, Bérengère; Salcedo, Suzana P.; de Bentzmann, Sophie; Bigot, Sarah

    2016-01-01

    Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the “E. coli”- and “Burkholderia-type”. CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae. PMID:26808644

  10. Growth inhibition of Cryptococcus neoformans by human alveolar macrophages.

    PubMed

    Weinberg, P B; Becker, S; Granger, D L; Koren, H S

    1987-11-01

    Macrophage cytotoxicity for Cryptococcus neoformans was investigated by culturing human alveolar macrophage (AM) with a thin-capsuled clone of C. neoformans in a polypropylene culture tube assay system. Yeast replication was quantitated by electronic particle counting after detergent lysis of AM and viability by quantitative plate counts. Under appropriate conditions, fungal replication was inhibited in the presence of human AM. This effect persisted over the 48-h time course that was evaluated. During this period, organisms in medium alone proliferated rapidly, doubling their number every 4 h. Human AM did not require endotoxin, fetal calf serum, or specific rabbit anticryptococcal antibody for fungistasis. Under these conditions, microscopic evaluation of a cytocentrifuge preparation of AM-yeast cocultures, stained by a modified Giemsa technique, revealed all the fungi to be extracellular. In the presence of 10% fresh human serum, AM phagocytized C. neoformans and exhibited fungicidal activity. Tumor necrosis factor did not affect the replication rate of the yeast. These findings suggest that there may be at least 2 mechanisms by which human AM protect against C. neoformans. One is serum-independent and extracellular and results in fungistasis, and the other is dependent on a serum factor and leads to intracellular inhibition of growth and possibly killing of the organism. PMID:3314617

  11. Inhibition of microbial growth on chitosan membranes by plasma treatment.

    PubMed

    de Oliveira Cardoso Macêdo, Marina; de Macêdo, Haroldo Reis Alves; Gomes, Dayanne Lopes; de Freitas Daudt, Natália; Rocha, Hugo Alexandre Oliveira; Alves, Clodomiro

    2013-11-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site, and it also affects the bulk properties of the polymers. The use of gas plasma is an elegant alternative sterilization technique. The plasma promotes efficient inactivation of the microorganisms, minimizes damage to the materials, and presents very little danger for personnel and the environment. In this study we used plasma for microbial inhibition of chitosan membranes. The membranes were treated with oxygen, methane, or argon plasma for different time periods (15, 30, 45, or 60 min). For inhibition of microbial growth with oxygen plasma, the time needed was 60 min. For the methane plasma, samples were successfully treated after 30, 45, and 60 min. For argon plasma, all treatment periods were effective. PMID:24251774

  12. Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems.

    PubMed

    Mercy, Chryslène; Ize, Bérengère; Salcedo, Suzana P; de Bentzmann, Sophie; Bigot, Sarah

    2016-01-01

    Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the "E. coli"- and "Burkholderia-type". CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae. PMID:26808644

  13. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression

    PubMed Central

    Yang, H; Pellegrini, L; Napolitano, A; Giorgi, C; Jube, S; Preti, A; Jennings, C J; De Marchis, F; Flores, E G; Larson, D; Pagano, I; Tanji, M; Powers, A; Kanodia, S; Gaudino, G; Pastorino, S; Pass, H I; Pinton, P; Bianchi, M E; Carbone, M

    2015-01-01

    High-mobility group box 1 (HMGB1) is an inflammatory molecule that has a critical role in the initiation and progression of malignant mesothelioma (MM). Aspirin (acetylsalicylic acid, ASA) is the most widely used nonsteroidal anti-inflammatory drug that reduces the incidence, metastatic potential and mortality of many inflammation-induced cancers. We hypothesized that ASA may exert anticancer properties in MM by abrogating the carcinogenic effects of HMGB1. Using HMGB1-secreting and -non-secreting human MM cell lines, we determined whether aspirin inhibited the hallmarks of HMGB1-induced MM cell growth in vitro and in vivo. Our data demonstrated that ASA and its metabolite, salicylic acid (SA), inhibit motility, migration, invasion and anchorage-independent colony formation of MM cells via a novel HMGB1-mediated mechanism. ASA/SA, at serum concentrations comparable to those achieved in humans taking therapeutic doses of aspirin, and BoxA, a specific inhibitor of HMGB1, markedly reduced MM growth in xenograft mice and significantly improved survival of treated animals. The effects of ASA and BoxA were cyclooxygenase-2 independent and were not additive, consistent with both acting via inhibition of HMGB1 activity. Our findings provide a rationale for the well documented, yet poorly understood antitumorigenic activity of aspirin, which we show proceeds via HMGB1 inhibition. Moreover, the use of BoxA appears to allow a more efficient HMGB1 targeting while eluding the known gastrointestinal side effects of ASA. Our findings are directly relevant to MM. Given the emerging importance of HMGB1 and its tumor-promoting functions in many cancer types, and of aspirin in cancer prevention and therapy, our investigation is poised to provide broadly applicable information. PMID:26068794

  14. Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Rezaei, B.; Movahedinia, H.

    2002-10-01

    A new analytical method was developed for the determination of ascorbic acid in fruit juice and pharmaceuticals. The method is based on its inhibition effect on the reaction between hydrochloric acid and bromate. The decolourisation of Methyl Orange by the reaction products was used to monitor the reaction spectrophotometrically at 510 nm. The linearity range of the calibration graph depends on bromate concentration. The variable affecting the rate of the reaction was investigated. The method is simple, rapid, relatively sensitive and precise. The limit of detection is 7.6×10 -6 M and calibration rang is 8×10 -6-1.2×10 -3 M ascorbic acid. The relative standard deviation of seven replication determinations of 8×10 -6 and 2×10 -5 M ascorbic acid was 2.8 and 1.7%, respectively. The influence of potential interfering substance was studied. The method was successfully applied for the determination of ascorbic acid in pharmaceuticals.

  15. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic. PMID:25017625

  16. Boric Acid Inhibits Germination and Colonization of Saprolegnia Spores In Vitro and In Vivo

    PubMed Central

    Ali, Shimaa E.; Thoen, Even; Evensen, Øystein; Skaar, Ida

    2014-01-01

    Saprolegnia infections cause severe economic losses among freshwater fish and their eggs. The banning of malachite green increased the demand for finding effective alternative treatments to control the disease. In the present study, we investigated the ability of boric acid to control saprolegniosis in salmon eggs and yolk sac fry. Under in vitro conditions, boric acid was able to decrease Saprolegnia spore activity and mycelial growth in all tested concentrations above 0.2 g/L, while complete inhibition of germination and growth was observed at a concentration of 0.8 g/L. In in vivo experiments using Atlantic salmon eyed eggs, saprolegniosis was controlled by boric acid at concentrations ranging from 0.2–1.4 g/L during continuous exposure, and at 1.0–4.0 g/L during intermittent exposure. The same effect was observed on salmon yolk sac fry exposed continuously to 0.5 g/L boric acid during the natural outbreak of saprolegniosis. During the experiments no negative impact with regard to hatchability and viability was observed in either eggs or fry, which indicate safety of use at all tested concentrations. The high hatchability and survival rates recorded following the in vivo testing suggest that boric acid is a candidate for prophylaxis and control of saprolegniosis. PMID:24699283

  17. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION.

    PubMed

    Wang, Yiwen; da Cruz, Tina Correia; Pulfemuller, Alicia; Grégoire, Stéphane; Ferveur, Jean-François; Moussian, Bernard

    2016-05-01

    Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program. PMID:27037621

  18. Perlecan Heparan Sulfate Is Required for the Inhibition of Smooth Muscle Cell Proliferation by All-trans-Retinoic Acid.

    PubMed

    Tran-Lundmark, Karin; Tannenberg, Philip; Rauch, Bernhard H; Ekstrand, Johan; Tran, Phan-Kiet; Hedin, Ulf; Kinsella, Michael G

    2015-02-01

    Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti-proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti-proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all-trans-retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild-type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate-deficient perlecan, indicating that the inhibition is perlecan heparan sulfate-dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild-type and mutant SMCs, consistent with previous studies of perlecan-dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate-chains. PMID:25078760

  19. Inhibiting Delta-6 Desaturase Activity Suppresses Tumor Growth in Mice

    PubMed Central

    He, Chengwei; Qu, Xiying; Wan, Jianbo; Rong, Rong; Huang, Lili; Cai, Chun; Zhou, Keyuan; Gu, Yan; Qian, Steven Y.; Kang, Jing X.

    2012-01-01

    Recent studies have shown that a tumor-supportive microenvironment is characterized by high levels of pro-inflammatory and pro-angiogenic eicosanoids derived from omega-6 (n−6) arachidonic acid (AA). Although the metabolic pathways (COX, LOX, and P450) that generate these n−6 AA eicosanoids have been targeted, the role of endogenous AA production in tumorigenesis remains unexplored. Delta-6 desaturase (D6D) is the rate-limiting enzyme responsible for the synthesis of n−6 AA and increased D6D activity can lead to enhanced n−6 AA production. Here, we show that D6D activity is upregulated during melanoma and lung tumor growth and that suppressing D6D activity, either by RNAi knockdown or a specific D6D inhibitor, dramatically reduces tumor growth. Accordingly, the content of AA and AA-derived tumor-promoting metabolites is significantly decreased. Angiogenesis and inflammatory status are also reduced. These results identify D6D as a key factor for tumor growth and as a potential target for cancer therapy and prevention. PMID:23112819

  20. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    SciTech Connect

    Lamy, Sylvie Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for angiogenesis. • Olive oil compounds inhibit specific autophosphorylation sites of VEGFR-2. • Hydroxytyrosol, taxifolin and oleic acid inhibit VEGFR-2 signaling pathway.

  1. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth

    PubMed Central

    Ono, Masanori; Yin, Ping; Navarro, Antonia; Moravek, Molly B.; Coon, John S.; Druschitz, Stacy A.; Gottardi, Cara J.; Bulun, Serdar E.

    2014-01-01

    Objective Dysregulation of WNT signaling plays a central role in tumor cell growth and progression. Our goal was to assess the effect of three WNT/?-catenin pathway inhibitors, Inhibitor of ?-Catenin And TCF4 (ICAT), niclosamide, and XAV939 on the proliferation of primary cultures of human uterine leiomyoma cells. Design Prospective study of human leiomyoma cells obtained from myomectomy or hysterectomy. Setting University research laboratory. Patient(s) Women (n=38) aged 2753 years undergoing surgery. Intervention(s) Adenoviral ICAT overexpression or treatment with varying concentrations of niclosamide or XAV939. Main Outcome Measure(s) Cell proliferation, cell death, WNT/?-catenin target gene expression or reporter gene regulation, ?-catenin levels and cellular localization. Result(s) ICAT, niclosamide, or XAV939 inhibit WNT/?-catenin pathway activation and exert anti-proliferative effects in primary cultures of human leiomyoma cells. Conclusion(s) Three WNT/?-catenin pathway inhibitors specifically block human leiomyoma growth and proliferation, suggesting that the canonical WNT pathway may be a potential therapeutic target for the treatment of uterine leiomyoma. Our findings provide rationale for further preclinical and clinical evaluation of ICAT, niclosamide, and XAV939 as candidate anti-tumor agents for uterine leiomyoma. PMID:24534281

  2. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions.

    PubMed

    Bolaños, Verónica; Díaz-Martínez, Alfredo; Soto, Jacqueline; Marchat, Laurence A; Sanchez-Monroy, Virginia; Ramírez-Moreno, Esther

    2015-11-01

    The flavonoid kaempferol obtained from Helianthemum glomeratum, an endemic Mexican medicinal herb used to treat gastrointestinal disorders, has been shown to inhibit growth of Entamoeba histolytica trophozoites in vitro; however, the mechanisms associated with this activity have not been documented. Several works reported that kaempferol affects cytoskeleton in mammalian cells. In order to gain insights into the action mechanisms involved in the anti-amoebic effect of kaempferol, here we evaluated the effect of this compound on the pathogenic events driven by the cytoskeleton during E. histolytica infection. We also carried out a two dimensional gel-based proteomic analysis to evidence modulated proteins that could explain the phenotypical changes observed in trophozoites. Our results showed that kaempferol produces a dose-dependent effect on trophozoites growth and viability with optimal concentration being 27.7μM. Kaempferol also decreased adhesion, it increased migration and phagocytic activity, but it did not affect erythrocyte binding nor cytolytic capacity of E. histolytica. Congruently, proteomic analysis revealed that the cytoskeleton proteins actin, myosin II heavy chain and cortexillin II were up-regulated in response to kaempferol treatment. In conclusion, kaempferol anti-amoebic effects were associated with deregulation of proteins related with cytoskeleton, which altered invasion mechanisms. PMID:26620675

  3. ABCB5-Targeted Chemoresistance Reversal Inhibits Merkel Cell Carcinoma Growth.

    PubMed

    Kleffel, Sonja; Lee, Nayoung; Lezcano, Cecilia; Wilson, Brian J; Sobolewski, Kristine; Saab, Karim R; Mueller, Hansgeorg; Zhan, Qian; Posch, Christian; Elco, Christopher P; DoRosario, Andrew; Garcia, Sarah S; Thakuria, Manisha; Wang, Yaoyu E; Wang, Linda C; Murphy, George F; Frank, Markus H; Schatton, Tobias

    2016-04-01

    Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer with profound but poorly understood resistance to chemotherapy, which poses a significant barrier to clinical MCC treatment. Here we show that ATP-binding cassette member B5 (ABCB5) confers resistance to standard-of-care MCC chemotherapeutic agents and provide proof-of-principle that ABCB5 blockade can inhibit human MCC tumor growth through sensitization to drug-induced cell cytotoxicity. ABCB5 expression was detected in both established MCC lines and clinical MCC specimens at levels significantly higher than those in normal skin. Carboplatin- and etoposide-resistant MCC cell lines exhibited increased expression of ABCB5, along with enhanced ABCB1 and ABCC3 transcript expression. ABCB5-expressing MCC cells in heterogeneous cancers preferentially survived treatment with carboplatin and etoposide in vitro and in human MCC xenograft-bearing mice in vivo. Moreover, patients with MCC also exhibited enhanced ABCB5 positivity after carboplatin- and etoposide-based chemotherapy, pointing to clinical significance of this chemoresistance mechanism. Importantly, ABCB5 blockade reversed MCC drug resistance and impaired tumor growth in xenotransplantation models in vivo. Our results establish ABCB5 as a chemoresistance mechanism in MCC and suggest utility of this molecular target for improved MCC therapy. PMID:26827764

  4. Aurapten, a coumarin with growth inhibition against Leishmania major promastigotes.

    PubMed

    Napolitano, H B; Silva, M; Ellena, J; Rodrigues, B D G; Almeida, A L C; Vieira, P C; Oliva, G; Thiemann, O H

    2004-12-01

    Several natural compounds have been identified for the treatment of leishmaniasis. Among them are some alkaloids, chalcones, lactones, tetralones, and saponins. The new compound reported here, 7-geranyloxycoumarin, called aurapten, belongs to the chemical class of the coumarins and has a molecular weight of 298.37. The compound was extracted from the Rutaceae species Esenbeckia febrifuga and was purified from a hexane extract starting from 407.7 g of dried leaves and followed by four silica gel chromatographic fractionation steps using different solvents as the mobile phase. The resulting compound (47 mg) of shows significant growth inhibition with an LD50 of 30 microM against the tropical parasite Leishmania major, which causes severe clinical manifestations in humans and is endemic in the tropical and subtropical regions. In the present study, we investigated the atomic structure of aurapten in order to determine the existence of common structural motifs that might be related to other coumarins and potentially to other identified inhibitors of Leishmania growth and viability. This compound has a comparable inhibitory activity of other isolated molecules. The aurapten is a planar molecule constituted of an aromatic system with electron delocalization. A hydrophobic side chain consisting of ten carbon atoms with two double bonds and negative density has been identified and may be relevant for further compound synthesis. PMID:15558191

  5. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    SciTech Connect

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.; Giavini, Erminio; Menegola, Elena . E-mail: elena.menegola@unimi.it

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  6. Inhibition of Klebsiella pneumoniae Growth and Capsular Polysaccharide Biosynthesis by Fructus mume

    PubMed Central

    Lin, Tien-Huang; Huang, Su-Hua; Wu, Chien-Chen; Liu, Hsin-Ho; Jinn, Tzyy-Rong; Chen, Yeh; Lin, Ching-Ting

    2013-01-01

    Klebsiella pneumoniae is the predominant pathogen isolated from liver abscess of diabetic patients in Asian countries. With the spread of multiple-drug-resistant K. pneumoniae, there is an increasing need for the development of alternative bactericides and approaches to block the production of bacterial virulence factors. Capsular polysaccharide (CPS), especially from the K1 and K2 serotypes, is considered the major determinant for K. pneumoniae virulence. We found that extracts of the traditional Chinese medicine Fructus mume inhibited the growth of K. pneumoniae strains of both serotypes. Furthermore, Fructus mume decreased the mucoviscosity, and the CPS produced in a dose-dependent manner, thus reducing bacterial resistance to serum killing. Quantitative reverse transcription polymerase chain reaction analyses showed that Fructus mume downregulated the mRNA levels of cps biosynthesis genes in both serotypes, possibly by increasing the intracellular iron concentration in K. pneumoniae. Moreover, citric acid, a major organic acid in Fructus mume extracts, was found to have an inhibitory effect on growth and CPS biosynthesis in K. pneumoniae. Taken together, our results indicate that Fructus mume not only possesses antibacterial activity against highly virulent K. pneumoniae strains but also inhibits bacterial CPS biosynthesis, thereby facilitating pathogen clearance by the host immune system. PMID:24062785

  7. Inhibition of Klebsiella pneumoniae Growth and Capsular Polysaccharide Biosynthesis by Fructus mume.

    PubMed

    Lin, Tien-Huang; Huang, Su-Hua; Wu, Chien-Chen; Liu, Hsin-Ho; Jinn, Tzyy-Rong; Chen, Yeh; Lin, Ching-Ting

    2013-01-01

    Klebsiella pneumoniae is the predominant pathogen isolated from liver abscess of diabetic patients in Asian countries. With the spread of multiple-drug-resistant K. pneumoniae, there is an increasing need for the development of alternative bactericides and approaches to block the production of bacterial virulence factors. Capsular polysaccharide (CPS), especially from the K1 and K2 serotypes, is considered the major determinant for K. pneumoniae virulence. We found that extracts of the traditional Chinese medicine Fructus mume inhibited the growth of K. pneumoniae strains of both serotypes. Furthermore, Fructus mume decreased the mucoviscosity, and the CPS produced in a dose-dependent manner, thus reducing bacterial resistance to serum killing. Quantitative reverse transcription polymerase chain reaction analyses showed that Fructus mume downregulated the mRNA levels of cps biosynthesis genes in both serotypes, possibly by increasing the intracellular iron concentration in K. pneumoniae. Moreover, citric acid, a major organic acid in Fructus mume extracts, was found to have an inhibitory effect on growth and CPS biosynthesis in K. pneumoniae. Taken together, our results indicate that Fructus mume not only possesses antibacterial activity against highly virulent K. pneumoniae strains but also inhibits bacterial CPS biosynthesis, thereby facilitating pathogen clearance by the host immune system. PMID:24062785

  8. Carnitine transport into muscular cells. Inhibition of transport and cell growth by mildronate.

    PubMed

    Georges, B; Le Borgne, F; Galland, S; Isoir, M; Ecosse, D; Grand-Jean, F; Demarquoy, J

    2000-06-01

    Carnitine is involved in the transfer of fatty acids across mitochondrial membranes. Carnitine is found in dairy and meat products, but is also biosynthesized from lysine and methionine via a process that, in rat, takes place essentially in the liver. After intestinal absorption or hepatic biosynthesis, carnitine is transferred to organs whose metabolism is dependent on fatty acid oxidation, such as heart and skeletal muscle. In skeletal muscle, carnitine concentration was found to be 50 times higher than in the plasma, implicating an active transport system for carnitine. In this study, we characterized this transport in isolated rat myotubes, established mouse C2C12 myoblastic cells, and rat myotube plasma membranes and found that it was Na(+)-dependent and partly inhibited by a Na(+)/K(+) ATPase inhibitor. L-carnitine analogues such as D-carnitine and gamma-butyrobetaine interfere with this system as does acyl carnitine. Among these inhibitors, the most potent was mildronate (3-(2,2,2-trimethylhydrazinium)propionate), known as a gamma-butyrobetaine hydroxylase inhibitor. It also induced a marked decrease in carnitine transport into muscle cells. Removal of carnitine or treatment with mildronate induced growth inhibition of cultured C2C12 myoblastic cells. These data suggest that myoblast growth and/or differentiation is dependent upon the presence of carnitine. PMID:10751544

  9. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis.

    PubMed

    Piccioni, Flavia; Fiore, Esteban; Bayo, Juan; Atorrasagasti, Catalina; Peixoto, Estanislao; Rizzo, Manglio; Malvicini, Mariana; Tirado-González, Irene; García, Mariana G; Alaniz, Laura; Mazzolini, Guillermo

    2015-08-01

    Cirrhosis is characterized by an excessive accumulation of extracellular matrix components including hyaluronic acid (HA) and is widely considered a preneoplastic condition for hepatocellular carcinoma (HCC). 4-Methylumbelliferone (4MU) is an inhibitor of HA synthesis and has anticancer activity in an orthotopic HCC model with underlying fibrosis. Our aim was to explore the effects of HA inhibition by 4MU orally administered on tumor microenvironment. Hepa129 tumor cells were inoculated orthotopically in C3H/HeJ male mice with fibrosis induced by thioacetamide. Mice were orally treated with 4MU. The effects of 4MU on angiogenesis were evaluated by immunostaining of CD31 and quantification of proangiogenic factors (vascular endothelial growth factor, VEGF, interleukin-6, IL-6 and C-X-C motif chemokine 12, CXCL12). IL-6 was also quantified in Hepa129 cells in vitro after treatment with 4MU. Migration of endothelial cells and tube formation were also analyzed. As a result, 4MU treatment decreases tumor growth and increased animal survival. Systemic levels of VEGF were significantly inhibited in 4MU-treated mice. Expression of CD31 was reduced after 4MU therapy in liver parenchyma in comparison with control group. In addition, mRNA expression and protein levels of IL-6 and VEGF were inhibited both in tumor tissue and in nontumoral liver parenchyma. Interestingly, IL-6 production was dramatically reduced in Kupffer cells isolated from 4MU-treated mice, and in Hepa129 cells in vitro. Besides, 4MU was able to inhibit endothelial cell migration and tube formation. In conclusion, 4MU has antitumor activity in vivo and its mechanisms of action involve an inhibition of angiogenesis and IL-6 production. 4MU is an orally available molecule with potential for HCC treatment. PMID:25882295

  10. Inhibition of ochratoxin A production and growth of Aspergillus species by phenolic antioxidant compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phenolic antioxidants, gallic acid, vanillic acid, protocatechuic acid, 4-hydroxybenzoic acid, catechin, caffeic acid, and chlorogenic acid were studied for their effects on ochratoxin A (OTA) production and fungal growth of ochratoxigenic Aspergilli. Of the 12 strains tested, which included A....

  11. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    PubMed

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. PMID:25950248

  12. Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway

    PubMed Central

    Ku, Chung-Yu; Wang, Ying-Ren; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2015-01-01

    Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC. PMID:25978354

  13. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    SciTech Connect

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun Chung, Won-Yoon

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic acid inhibited RANKL-induced osteoclastogenesis in bone marrow macrophages. • Betulinic acid decreased bone resorption by suppressing osteoclast activity. • Orally administered betulinic acid inhibited cancer-associated bone diseases in mice.

  14. Rice Varietal Differences in Bioactive Bran Components for Inhibition of Colorectal Cancer Cell Growth

    PubMed Central

    Forster, Genevieve M.; Raina, Komal; Kumar, Ajay; Kumar, Sushil; Agarwal, Rajesh; Chen, Ming-Hsuan; Bauer, John E.; McClung, Anna M.; Ryan, Elizabeth P.

    2013-01-01

    Rice bran chemical profiles differ across rice varieties and have not yet been analyzed for differential chemopreventive bioactivity. A diverse panel of 7 rice bran varieties was analyzed for growth inhibition of human colorectal cancer (CRC) cells. Inhibition varied from 0–99%, depending on the variety of bran used. Across varieties, total lipid content ranged 5–16%, individual fatty acids had 1.4 to 1.9 fold differences, vitamin E isoforms (α-, γ-, δ- tocotrienols and tocopherols) showed 1.3 to 15.2 fold differences, and differences in γ- oryzanol and total phenolics ranged between 100–275 ng/mg and 57–146 ng GAE/mg, respectively. Spearman correlation analysis was used to identify bioactive compounds implicated in CRC cell growth inhibitory activity. Total phenolics and γ- tocotrienol were positively correlated with reduced CRC cell growth (p < 0.05). Stoichiometric variation in rice bran components and differential effects on CRC viability merit further evaluation elucidate their role in dietary CRC chemoprevention. PMID:23790950

  15. Perception mechanism of gravity stimuli in hypergravity-induced growth inhibition of azuki bean roots.

    PubMed

    Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2003-10-01

    We reported that elongation growth of plant shoots and roots is suppressed by hypergravity, with the rate decreasing in proportion to logarithm of the magnitude of gravity. In hypergravity-induced growth inhibition of shoots, graviperception is supposed to be independent of that in gravitropism and to involve mechanoreceptors. However, the graviperception mechanism in the hypergravity-induced growth inhibition of roots is not known. In the present study, we compared the mechanism in the hypergravity-induced growth inhibition of roots with that in gravitropism. The removal of root cap did not influence hypergravity-induced growth inhibition of roots, although the gravitropic curvature was completely inhibited. Hypergravity had no effects on growth of azuki bean roots in the presence of lanthanum or gadolinium, which are blockers of mechanoreceptors. On the contrary, lanthanum or gadolinium at the same concentration did not influence gravitropism of roots. These results suggest that the graviperception mechanism in the hypergravity-induced growth inhibition of roots is independent of that in gravitropism. Hypergravity-induced growth inhibition of azuki bean roots was observed irrespective of the direction of stimuli, which disappeared in the presence of lanthanum or gadolinium. Thus, in the hypergravity-induced growth inhibition, roots may perceive the gravity signal by mechanoreceptors on the plasma membrane independently of the direction of stimuli, and may utilize it to regulate their growth rate. PMID:14676362

  16. Streptococcal glycoprotein-induced tumour cell growth inhibition involves the modulation of a pertussis toxin-sensitive G protein.

    PubMed Central

    Yoshida, J.; Takamura, S.; Suzuki, S.; Nishio, M.

    1996-01-01

    We studied the mechanism of anti-tumour action of sulphydryl glycoprotein (SAGP) purified from an extract of Streptococcus pyogenes in vitro. SAGP rapidly inhibited the incorporation of nucleic acid precursors into murine fibrosarcoma (Meth A) cells before it inhibited the cell growth. SAGP-induced cell growth inhibition was diminished by incubating the cells with pertussis toxin (IAP), whereas the SAGP activity was augmented by incubating the cells with cholera toxin (CTX). Meth A cells exposed to SAGP underwent an increase in labelling of the alpha-subunit of an inhibitory guanine nucleotide-binding (Gi) protein in a subsequent IAP-catalysed [32P]ADP ribosylation of the cell membrane fraction. Gi alpha labelling was not increased either in the membrane from the Meth A cells exposed to heat-inactivated SAGP or in the membrane from L929 cells exposed to SAGP, in which growth was also unaffected. By contrast, SAGP caused no alteration in labelling the alpha-subunit of stimulatory guanine nucleotide-binding (Gs) protein in a subsequent CTX-catalysed ADP ribosylation of membrane fractions of Meth A and L929 cells. The amount of intracellular cAMP was decreased slightly in Meth A cells incubated with SAGP. Although the precise roles of Gs protein and adenylate cyclase in the cell growth inhibition induced by SAGP are not clear, these findings suggested that the modulation of Gi protein is involved in such SAGP-induced cellular events as the inhibition of nucleic acid synthesis and cell growth inhibition. Images Figure 1 Figure 7 Figure 8 Figure 9 PMID:8611426

  17. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  18. The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid.

    PubMed

    Wilson, Christopher Allen; Novak, John; Takacs, Imre; Wett, Bernhard; Murthy, Sudhir

    2012-12-01

    Advanced anaerobic digestion processes aimed at improving the methanization of sewage sludge may be potentially impaired by the production of inhibitory compounds (e.g. free ammonia). The result of methanogenic inhibition is relatively high effluent concentrations of acetic acid and other soluble organics, as well as reduced methane yields. An extreme example of such an advanced process is the thermal hydrolytic pretreatment of sludge prior to high solids digestion (THD). Compared to a conventional mesophilic anaerobic digestion process (MAD), THD operates in a state of constant inhibition driven by high free ammonia concentrations, and elevated pH values. As such, previous investigations of the kinetics of methanogenesis from acetic acid under uninhibited conditions do not necessarily apply well to the modeling of extreme processes such as THD. By conducting batch ammonia toxicity assays using biomass from THD and MAD reactors, we compared the response of these communities over a broad range of ammonia inhibition. For both processes, increased inhibitor concentrations resulted in a reduction of biomass growth rate (r(max) = μ(max)∙X) and a resulting decrease in the substrate half saturation coefficient (K(S)). These two parameters exhibited a high degree of correlation, suggesting that for a constant transport limited system, the K(S) was mostly a linear function of the growth rate. After correcting for reactor pH and temperature, we found that the THD and MAD biomass were both able to perform methanogenesis from acetate at high free ammonia concentrations (equivalent to 3-5 g/L total ammonia nitrogen), albeit at less than 30% of their respective maximum rates. The reduction in methane production was slightly less pronounced for the THD biomass than for MAD, suggesting that the long term exposure to ammonia had selected for a methanogenic pathway less dependent on those organisms most sensitive to ammonia inhibition (i.e. aceticlastic methanogens). PMID:23062786

  19. MECHANISMS OF FLUID SHEAR-INDUCED INHIBITION OF POPULATION GROWTH IN A RED-TIDE DINOFLAGELLATE

    EPA Science Inventory

    Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various ...

  20. Longan flower extract inhibits the growth of colorectal carcinoma.

    PubMed

    Hsu, Chih-Ping; Lin, Ying-Hsi; Zhou, Shi-Ping; Chung, Yuan-Chiang; Lin, Chih-Cheng; Wang, Shao-Cheng

    2010-01-01

    Longan flower extract (LFE) has been shown to exhibit free radical scavenging ability and anti-inflammatory effects. However, the effect of LFE treatment on the growth of colorectal cancer cells has not been evaluated. This study investigated the effect of LFE on two colorectal cancer cell lines, SW-480 and Colo 320DM, and the possible mechanisms involved. LFE-treated cells were assessed for viability by trypan blue exclusion, for in vitro tumorigenesis by seeding cells in soft agar to allow anchorage independent growth, for cell cycle distribution by flow cytometry, for loss of mitochondrial membrane potential by rhodamine 123 staining, for increased apoptosis by DNA fragmentation assay, and for changes in the levels of proteins involved in cell cycle control and apoptosis by immunoblotting. LFE (25-400 microg/ml) could inhibit proliferation in a dose- and time-dependent manner. The cell cycle of both LFE-treated cell lines showed obvious S phase block. Western blotting further showed the S phase block in these two cell lines was mainly due to cyclin E accumulation and cyclin A decrease. LFE treatment increased rhodamine 123-negative cells and DNA fragmentation in Colo 320DM cells but not in SW480 cells. Increased levels of the apoptosis activation protein, caspase 3, were also found in Colo 320DM cells. The activation of caspase 3 in LFE-treated SW480 cells was not significant. The caspase 3 activation in Colo 320DM cells by LFE was mediated by the suppression of Bcl-2 protein levels. LFE treatment could inhibit the proliferation and malignancy of colorectal cancer cell lines and was associated with S phase block of the cell cycle. An apoptotic mechanism induced by LFE involving a loss of mitochondrial membrane potential and caspase 3 activation was found in Colo 320DM cells but not in SW480 cells. The results of this study indicate that LFE has potential to be developed as a novel functional food or chemopreventive agent for colorectal cancer. PMID:20099197

  1. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions. PMID:25502541

  2. Choline inhibition of amino acid transport in preimplantation mouse blastocysts

    SciTech Connect

    Campione, A.L.; Haghighat, N.; Gorman, J.; Van Winkle, L.J.

    1987-05-01

    Addition of 70 mM choline chloride to Brinster's medium (140 mM Na/sup +/) inhibited uptake of approx. 1 ..mu..M (/sup 3/H)glycine, leucine, lysine and alanine in blastocysts by about 50% each during a five-minute incubation period at 37/sup 0/C, whereas 70 mM LiCl, sodium acetate and NaCl or 140 mM mannitol had no effect. They attribute the apparent linear relationship between Gly transport in blastocysts and the square of the (Na/sup +/), observed when choline was substituted for Na/sup +/ in Brinster's medium, to concomitant, concentration-dependent enhancement and inhibition of transport by Na/sup +/ and choline, respectively. As expected, Gly uptake and the (Na/sup +/) were linearly related up to 116 mM Na/sup +/, when Na/sup +/ was replaced with Li/sup +/. The rates of Na/sup +/-independent Gly and Ala uptake were <5% and <2% of the total, respectively, and similar when either Li/sup +/ or choline replaced Na/sup +/. Therefore, neither Li/sup +/ nor choline appears to substitute for Na/sup +/ in supporting Na/sup +/-dependent transport in blastocysts. Na/sup +/-independent Leu uptake was 20 times faster than Gly or Ala uptake and appeared to be inhibited by choline in blastocysts since it was about 37% slower when choline instead of Li/sup +/ was substituted for Na/sup +/. In contrast to blastocysts, choline had no effect on amino acid transport in cleavage-stage mouse embryos. The unexpected sensitivity of transport to choline in blastocysts underscores the importance of testing the effects of this substance when it is used to replace Na/sup +/ in new transport studies.

  3. The Pseudomonas aeruginosa oxyvinylglycine L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a weak seed germination-arrest factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is demonstrated to share biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproduc...

  4. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis

    PubMed Central

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-01-01

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis. PMID:26473837

  5. Growth arrest-specific gene 1 is downregulated and inhibits tumor growth in gastric cancer.

    PubMed

    Wang, Honghong; Zhou, Xiong; Zhang, Yongguo; Zhu, Hongwu; Zhao, Lina; Fan, Linni; Wang, Yingmei; Gang, Yi; Wu, Kaichun; Liu, Zhiguo; Fan, Daiming

    2012-10-01

    Gastric cancer is one of the leading causes of malignancy-related mortality in the world, and malignant growth is a crucial characteristic in gastric cancer. In our previous study, we found that growth arrest-specific gene 1 (GAS1) suppression was involved in making gastric cancer cells multidrug-resistant by protecting them from drug-induced apoptosis. In the present study, we investigated the potential role of GAS1 in the growth and proliferation of gastric cancer. We demonstrated that GAS1 expression was decreased in gastric cancer, and patients without GAS1 expression showed shorter survival times than those with GAS1 expression. Both gain-of-function (by overexpression of GAS1) and loss-of-function (by GAS1-specific small interfering RNA knockdown) studies showed that increased GAS1 expression significantly reduced the colony-forming ability of gastric cancer cells in vitro and reduced cell growth in vivo, whereas decreased GAS1 expression had the opposite effects. Moreover, upregulation of GAS1 induced cell apoptosis, and downregulation of GAS1 inhibited apoptosis. Furthermore, we demonstrated that GAS1 could induce gastric cancer cell apoptosis, at least in part through modulating the Bcl-2/Bax ratio and the activity of caspase-3. Taken together, our results strongly indicate that GAS1 expression was decreased in gastric cancer and was predictive of a poor prognosis. Restoration of GAS1 expression inhibited cell growth and promoted apoptosis of gastric cancer cells, at least in part through modulating the Bcl-2/Bax ratio and activating caspase-3, suggesting that GAS1 might be used as a novel therapeutic candidate for gastric cancer. PMID:22846196

  6. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin, in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  7. Growth of Streptomyces Hygroscopicus in Rotating-Wall Bioreactor Under Simulated Microgravity Inhibits Rapamycin Production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  8. Suberization: Inhibition by Washing and Stimulation by Abscisic Acid in Potato Disks and Tissue Culture 1

    PubMed Central

    Soliday, Charles L.; Dean, Bill B.; Kolattukudy, P. E.

    1978-01-01

    Wounding of potato (Solanum tuberosum L.) tubers results in suberization, apparently triggered by the release of some chemical factor(s) at the cut surface. Suberization, as measured by diffusion resistance of the tissue surface to water vapor, was inhibited by mm concentrations of indoleacetic acid, unaffected by mm concentrations of traumatic acid, severely inhibited at μm concentrations of cytokinin, but stimulated by abscisic acid (ABA) at 10−4 m. Thorough washing of potato disks up to 3 to 4 days after cutting resulted in severe inhibition of suberization as measured both by diffusion resistance and by the amount of the octadecene diol generated by hydrogenolysis (LiAlH4) of the tissue. Disks washed after 4 days did not show any inhibition of suberization. High performance liquid chromatographic analysis of the wash from fresh potato disks showed that about 14 ng of ABA was released into the wash per g of tissue. The amount of ABA released increased with time up to 4 to 6 hours of washing. The maximal amount of ABA was washed out after aging for 24 hours and after 2 days of aging ABA could no longer be found in the surface wash of the disks. Addition of ABA to the media of potato tissue cultures resulted in suberin formation whereas control cultures contained little suberin. The effect of ABA on suberization in the tissue cultures was shown to be linearly concentration-dependent up to 10−4 m and a linear increase in suberin formation was seen up to about 8 days of culture growth on the media containing 10−4 m ABA. From these results it is proposed that during the early phase of wound-healing ABA plays a role in triggering a chain of biochemical processes which eventually (in about 3 to 4 days) result in the formation of a suberization-inducing factor, responsible for the induction of the enzymes involved in suberin biosynthesis. PMID:16660254

  9. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Guo, Chih-Hung; Hsia, Simon; Shih, Min-Yi; Hsieh, Fang-Chin; Chen, Pei-Chung

    2015-01-01

    Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells. PMID:26392813

  10. Peroxynitrite modulates acidic fibroblast growth factor (FGF-1) activity.

    PubMed

    Bagnasco, Patricia; MacMillan-Crow, Lee Ann; Greendorfer, Jessica S; Young, Carlton J; Andrews, Lori; Thompson, John A

    2003-11-15

    To establish peroxynitrite (ONOO(-)) as a mediator of acidic fibroblast growth factor (FGF-1) function, preparations of recombinant human FGF-1 were treated with the pro-oxidant in vitro and identified amino acid modifications were correlated with biologic activity. The sequence of FGF-1 amino acid modifications induced by increasing concentrations of ONOO(-) was from cysteine oxidation to dityrosine formation, and to tyrosine/tryptophan nitration. Low steady-state ONOO(-) concentrations (10-50 microM) induced formation of dityrosine, which involved less than 0.1% of the total tyrosines. Treatment of FGF-1 with ONOO(-) induced a dose-dependent (10-50 microM) loss of sulfhydryl groups that correlated with formation of reducible (dithiothreitol, arsenite) FGF-1 aggregates containing 50% latent biologic activity. Treatment with 0.1-0.5mM ONOO(-) induced increasing formation of non-reducible, inactivated FGF-1 structures. Combination of real-time spectral analysis and electrospray mass spectroscopy revealed that six residues (Y29, Y69, Y108, Y111, Y139, and W121) were nitrated by ONOO(-). ONOO(-) treatment (0.1mM) of an active FGF-1 mutant (cysteines converted to serines) induced dose-dependent, non-reversible inhibition of biologic activity that correlated with nitration of Y108 and Y111, both of which reside within a conserved domain encompassing the putative FGF-1 receptor binding site. Collectively, these observations predict a role for low levels of ONOO(-) during secretion of FGF-1 as an extracellular complex containing latent biologic activity. High steady-state levels of ONOO(-) may induce extensive cysteine oxidation, critical tyrosine nitration, and non-reversible inactivation of FGF-1, a potential inhibitory feedback mechanism restoring cellular homeostatis during the resolution of inflammation and repair. PMID:14592461

  11. Further evidence that naphthoquinone inhibits Toxoplasma gondii growth in vitro.

    PubMed

    da Silva, Luciana Lemos Rangel; Portes, Juliana de Araujo; de Araújo, Marlon Heggdorne; Silva, Jéssica Lays Sant'ana; Rennó, Magdalena Nascimento; Netto, Chaquip Daher; da Silva, Alcides José Monteiro; Costa, Paulo Roberto Ribeiro; De Souza, Wanderley; Seabra, Sergio Henrique; DaMatta, Renato Augusto

    2015-12-01

    Toxoplasmosis is a widely disseminated disease caused by Toxoplasma gondii, an intracellular protozoan parasite. Standard treatment causes many side effects, such as depletion of bone marrow cells, skin rashes and gastrointestinal implications. Therefore, it is necessary to find chemotherapeutic alternatives for the treatment of this disease. It was shown that a naphthoquinone derivative compound is active against T. gondii, RH strain, with an IC50 around 2.5 μM. Here, three different naphthoquinone derivative compounds with activity against leukemia cells and breast carcinoma cell were tested against T. gondii (RH strain) infected LLC-MK2 cell line. All the compounds were able to inhibit parasite growth in vitro, but one of them showed an IC50 activity below 1 μM after 48 h of treatment. The compounds showed low toxicity to the host cell. In addition, these compounds were able to induce tachyzoite-bradyzoite conversion confirmed by morphological changes, Dolichus biflorus lectin cyst wall labeling and characterization of amylopectin granules in the parasites by electron microscopy analysis using the Thierry technique. Furthermore, the compounds induced alterations on the ultrastructure of the parasite. Taken together, our results point to the naphthoquinone derivative (LQB 151) as a potential compound for the development of new drugs for the treatment of toxoplasmosis. PMID:26335616

  12. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth.

    PubMed

    Sano, Michael B; Arena, Christopher B; Bittleman, Katelyn R; DeWitt, Matthew R; Cho, Hyung J; Szot, Christopher S; Saur, Dieter; Cissell, James M; Robertson, John; Lee, Yong W; Davalos, Rafael V

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  13. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  14. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    PubMed Central

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; DeWitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  15. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.

    PubMed

    Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O; Diaz-Ruiz, Alberto; Frank, Stuart J; Manzano, Anna; Bartrons, Ramon; Puchowicz, Michelle; Kopchick, John J; Kineman, Rhonda D

    2015-09-01

    Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients. PMID:26015548

  16. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    NASA Astrophysics Data System (ADS)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  17. Daytime Blue Light Enhances the Nighttime Circadian Melatonin Inhibition of Human Prostate Cancer Growth.

    PubMed

    Dauchy, Robert T; Hoffman, Aaron E; Wren-Dail, Melissa A; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Xiang, Shulin; Yuan, Lin; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Smith, Kara; Blask, David E

    2015-12-01

    Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462-484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake-metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities. PMID:26678364

  18. Synthesis of Protein and Ribonucleic Acid in a Psychrophile at Normal and Restrictive Growth Temperatures

    PubMed Central

    Malcolm, Neil L.

    1968-01-01

    A defined medium was capable of supporting the growth of a psychrophilic coccus over its growth temperature range, −4 to 25 C. A rapid loss of viability occurred when exponential cells were transferred to growth-restricting temperatures above 25 C. Comparative studies of the chemistry of exponential-phase cells and cells exposed to supermaximum temperature indicated that this loss of viability is not due to temperature-induced membrane damage, inhibition of respiration or energy metabolism, or depletion of intracellular reserves. Moribund and dead cell populations showed an elevated level of intracellular adenosine-5′-triphosphate and amino acids—a finding reflected in the reduced rate of amino acid synthesis during the recovery of heat-shocked cells—and also leakage of degraded ribonucleic acid products into the medium. Incorporation studies indicated that loss of viability at 30 C was correlated with inhibition of protein synthesis, followed later by inhibition of ribonucleic acid synthesis. Deoxyribonucleic acid synthesis was unaffected by temperature above the maximum. PMID:5646626

  19. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings.

    PubMed

    Uranga, Carla C; Beld, Joris; Mrse, Anthony; Córdova-Guerrero, Iván; Burkart, Michael D; Hernández-Martínez, Rufina

    2016-04-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. PMID:26926564

  20. Differential Inhibition by Ferulic Acid of Nitrate and Ammonium Uptake in Zea mays L. 1

    PubMed Central

    Bergmark, Christine L.; Jackson, William A.; Volk, Richard J.; Blum, Udo

    1992-01-01

    The influence of the allelopathic compound ferulic acid (FA) on nitrogen uptake from solutions containing both NO3− and NH4+ was examined in 8-day-old nitrogen-depleted corn (Zea mays L.) seedlings. Concurrent effects on uptake of Cl− and K+ also were assessed. The presence of 250 micromolar FA inhibited the initial (0-1 hours) rate of NO3− uptake and also prevented development of the NO3−-inducible accelerated rate. The pattern of recovery when FA was removed was interpreted as indicating a rapid relief of FA-restricted NO3− uptake activity, followed by a reinitiation of the induction of that activity. No inhibition of NO3− reduction was detected. Ammonium uptake was less sensitive than NO3− uptake to inhibition by FA. An inhibition of Cl− uptake occurred as induction of the NO3− transport system developed in the absence of FA. Alterations of Cl− uptake in the presence of FA were, therefore, a result of a beneficial effect, because NO3− uptake was restricted, and a direct inhibitory effect. The presence of FA increased the initial net K+ loss from the roots during exposure to the low K, ammonium nitrate uptake solution and delayed the recovery to positive net uptake, but it did not alter the general pattern of the response. The implications of the observations are discussed for growth of plants under natural conditions and cultural practices that foster periodic accumulation of allelopathic substances. PMID:16668689

  1. Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes

    SciTech Connect

    Sun, Zhichao; Yu, Xuemei; Wu, Weibin; Jia, Dongwei; Chen, Yinle; Ji, Lingling; Liu, Xijun; Peng, Xiaomin; Li, Yintao; Yang, Lili; Ruan, Yuanyuan; Gu, Jianxin; Ren, Shifang; Zhang, Songwen

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated that the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.

  2. Furfural Inhibits Growth by Limiting Sulfur Assimilation in Ethanologenic Escherichia coli Strain LY180▿

    PubMed Central

    Miller, Elliot N.; Jarboe, Laura R.; Turner, Peter C.; Pharkya, Priti; Yomano, Lorraine P.; York, Sean W.; Nunn, David; Shanmugam, K. T.; Ingram, Lonnie O.

    2009-01-01

    A wide variety of commercial products can be potentially made from monomeric sugars produced by the dilute acid hydrolysis of lignocellulosic biomass. However, this process is accompanied by side products such as furfural that hinder microbial growth and fermentation. To investigate the mechanism of furfural inhibition, mRNA microarrays of an ethanologenic strain of Escherichia coli (LY180) were compared immediately prior to and 15 min after a moderate furfural challenge. Expression of genes and regulators associated with the biosynthesis of cysteine and methionine was increased by furfural, consistent with a limitation of these critical metabolites. This was in contrast to a general stringent response and decreased expression of many other biosynthetic genes. Of the 20 amino acids individually tested as supplements (100 μM each), cysteine and methionine were the most effective in increasing furfural tolerance with serine (precursor of cysteine), histidine, and arginine of lesser benefit. Supplementation with other reduced sulfur sources such as d-cysteine and thiosulfate also increased furfural tolerance. In contrast, supplementation with taurine, a sulfur source that requires 3 molecules of NADPH for sulfur assimilation, was of no benefit. Furfural tolerance was also increased by inserting a plasmid encoding pntAB, a cytoplasmic NADH/NADPH transhydrogenase. Based on these results, a model is proposed for the inhibition of growth in which the reduction of furfural by YqhD, an enzyme with a low Km for NADPH, depletes NADPH sufficiently to limit the assimilation of sulfur into amino acids (cysteine and methionine) by CysIJ (sulfite reductase). PMID:19684179

  3. ROLE OF ETHYLENE IN NAPHTHALENE-MEDIATED SPROUT GROWTH INHIBITION IN POTATO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of substituted naphthalenes reversibly inhibit potato (Solanum tuberosum L.) sprout growth and may have potential as commercial sprout inhibitors. Sprout growth is also reversibly inhibited by ethylene treatment and ethylene production is often stimulated by xenobiotics. The role of endog...

  4. Inhibition of bacterial, fungal and plant growth by testa extracts of Citrullus genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon (Citrullus lanatus var. lanatus (Thunb.) Matsum & Nakai) seed exudates inhibit germination and seedling growth of several plant species and growth of pathogenic fungi and bacteria. This study was conducted to determine if extractable components in testae contribute to the inhibition. T...

  5. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea.

    PubMed

    Dieryckx, Cindy; Gaudin, Vanessa; Dupuy, Jean-William; Bonneu, Marc; Girard, Vincent; Job, Dominique

    2015-01-01

    Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873. PMID:26528317

  6. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea

    PubMed Central

    Dieryckx, Cindy; Gaudin, Vanessa; Dupuy, Jean-William; Bonneu, Marc; Girard, Vincent; Job, Dominique

    2015-01-01

    Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873. PMID:26528317

  7. Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers

    PubMed Central

    Niles, Jacquin C.; DeRisi, Joseph L.; Marletta, Michael A.

    2009-01-01

    The human parasite Plasmodium falciparum enzymatically digests hemoglobin during its intra-erythrocytic developmental stages in acidic food vacuole compartments. The released heme is rapidly detoxified by polymerization into the chemically inert pigment, hemozoin. Several heme-binding anti-malarial compounds, such as chloroquine, efficiently inhibit this process, and this is believed to be the predominant mechanism by which these drugs induce parasite toxicity. In an effort to expand the biochemical tools available for exploration of this pathogen's basic biology, we chose this heme-detoxification pathway as a model system for exploring the suitability of DNA aptamers for modulating this essential parasite biochemical pathway. In this report, we demonstrate that heme-binding DNA aptamers efficiently inhibit in vitro hemozoin formation catalyzed by either a model lipid system or parasite-derived extracts just as or more potently than chloroquine. Furthermore, when parasites are grown in red cells loaded with heme-binding aptamers, their growth is significantly inhibited relative to parasites exposed to non-heme-binding DNA oligonucleotides. Both the timing of parasite-induced toxicity and the concentration of heme-binding aptamer required for inducing toxicity correlate well with the uptake of red cell cytosolic components by the parasite, and the requirement for compounds with similar in vitro hemozoin inhibitory potency to preconcentrate within the parasite before observing toxicity. Thus, these heme-binding aptamers recapitulate the in vitro hemozoin inhibition activity and induce parasite toxicity in a manner consistent with inhibition of this pathway. Altogether, these data demonstrate that aptamers can be versatile tools with applicability in functionally dissecting important P. falciparum-specific pathways both in vitro and in vivo. PMID:19633187

  8. Physiological response of Saccharomyces cerevisiae to 15-azasterol-mediated growth inhibition.

    PubMed Central

    Rodriguez, R J; Parks, L W

    1981-01-01

    We studied 15-aza-24-methylene-8,14-cholestadiene-3 beta-ol (15-azasterol) inhibition of Saccharomyces cerevisiae growth. Exposure to sublethal concentrations of this drug caused S. cerevisiae cells to undergo a transient period of inhibition at midlog phase. During growth inhibition the turbidity of each culture remained constant, as did the total cell number. Although the proportion of viable cells in cultures decreased from 90 to 12% during inhibition, methylene blue staining showed that less than 40% of the cells underwent metabolic inactivation. We monitored adenosine triphosphate levels throughout the inhibition cycle, and these levels followed kinetics identical to cell growth kinetics. After overcoming inhibition, cellular lipid extracts revealed the presence of a modified form of 15-azasterol. It appeared that the yeast cells were able to overcome 15-azasterol inhibition by an inactivating transmethylation reaction involving S-adenosylmethionine. PMID:7025753

  9. Amino acids and insulin in neonatal growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rate of growth during the neonatal period is greater than at any other stage of postnatal life, and a majority of the mass increase is skeletal muscle. The rapid growth of skeletal muscle in the neonate is driven by an elevated rate of protein synthesis. Neonates are very efficient at utilizin...

  10. Growth Inhibition of Listeria monocytogenes, Salmonella enterica, and Escherichia coli O157:H7 by D-tryptophan as an incompatible solute.

    PubMed

    Koseki, Shigenobu; Nakamura, Nobutaka; Shiina, Takeo

    2015-04-01

    Under osmotic stress, bacterial cells uptake compatible solutes such as glycine-betaine to maintain homeostasis. It is unknown whether incompatible solutes exist that are similar in structure to compatible solutes but have adverse physiological effects on bacterial physiology. The objective of this study was to evaluate solute incompatibility of various amino acids against bacterial growth. Bacterial growth was evaluated by changes in optical density at 595 nm in peptone-yeast-glucose (PYG) broth. Twenty-three amino acids with L and/or D isomers were examined for the effect of bacterial growth inhibition. Among the various amino acids examined, D-tryptophan (∼ 40 mM) in PYG broth supplemented with 0 to 4% (wt/vol) salt inhibited the growth of Listeria monocytogenes, Salmonella enterica, and Escherichia coli O157:H7 at 25 °C. D-Tryptophan (30 to 40 mM) completely inhibited the growth of E. coli O157:H7 and Salmonella in the presence of >3% salt, but the growth of L. monocytogenes was not completely inhibited under the same conditions. Low concentrations of salt (0 to 2% NaCl) with D-tryptophan did not significantly inhibit the growth of all bacteria except L. monocytogenes, which was relatively inhibited at 0% NaCl. The effect of D-tryptophan differed depending on the bacterial species, illustrating the difference between gram-positive and gram-negative bacteria. These results indicate that the uptake of D-tryptophan as a compatible solute during osmotic stress may inhibit bacterial growth. The antibacterial effect of D-tryptophan found in this study suggests that D-tryptophan could be used as a novel preservative for controlling bacterial growth in foods. PMID:25836411

  11. Combination of intermittent calorie restriction and eicosapentaenoic acid for inhibition of mammary tumors.

    PubMed

    Mizuno, Nancy K; Rogozina, Olga P; Seppanen, Christine M; Liao, D Joshua; Cleary, Margot P; Grossmann, Michael E

    2013-06-01

    There are a number of dietary interventions capable of inhibiting mammary tumorigenesis; however, the effectiveness of dietary combinations is largely unexplored. Here, we combined 2 interventions previously shown individually to inhibit mammary tumor development. The first was the use of the omega-3 fatty acid, eicosapentaenoic acid (EPA), and the second was the implementation of calorie restriction. MMTV-Her2/neu mice were used as a model for human breast cancers, which overexpress Her2/neu. Six groups of mice were enrolled. Half were fed a control (Con) diet with 10.1% fat calories from soy oil, whereas the other half consumed a diet with 72% fat calories from EPA. Within each diet, mice were further divided into ad libitum (AL), chronic calorie-restricted (CCR), or intermittent calorie-restricted (ICR) groups. Mammary tumor incidence was lowest in ICR-EPA (15%) and highest in AL-Con mice (87%), whereas AL-EPA, CCR-Con, CCR-EPA, and ICR-Con groups had mammary tumor incidence rates of 63%, 47%, 40%, and 59%, respectively. Survival was effected similarly by the interventions. Consumption of EPA dramatically reduced serum leptin (P < 0.02) and increased serum adiponectin in the AL-EPA mice compared with AL-Con mice (P < 0.001). Both CCR and ICR decreased serum leptin and insulin-like growth factor I (IGF-I) compared with AL mice but not compared with each other. These results illustrate that mammary tumor inhibition is significantly increased when ICR and EPA are combined as compared with either intervention alone. This response may be related to alterations in the balance of serum growth factors and adipokines. PMID:23550153

  12. Regorafenib inhibits colorectal tumor growth through PUMA-mediated apoptosis

    PubMed Central

    Chen, Dongshi; Wei, Liang; Yu, Jian; Zhang, Lin

    2014-01-01

    Purpose Regorafenib, a multi-kinase inhibitor targeting the Ras/Raf/MEK/ERK pathway, has recently been approved for the treatment of metastatic colorectal cancer (CRC). However, the mechanisms of action of regorafenib in CRC cells have been unclear. We investigated how regorafenib suppresses CRC cell growth and potentiates effects of other chemotherapeutic drugs. Experimental Design We determined whether and how regorafenib induces the expression of PUMA, a p53 target and a critical mediator of apoptosis in CRC cells. We also investigated whether PUMA is necessary for the killing and chemosensitization effects of regorafenib in CRC cells. Furthermore, xenograft tumors were used to test if PUMA mediates the in vivo antitumor, antiangiogenic and chemosensitization effects of regorafenib. Results We found that regorafenib treatment induces PUMA in CRC cells irrespective of p53 status through the NF-κB pathway following ERK inhibition and glycogen synthase kinase 3β (GSK3β) activation. Upregulation of PUMA is correlated with apoptosis induction in different CRC cell lines. PUMA is necessary for regorafenib-induced apoptosis in CRC cells. Chemosensitization by regorafenib is mediated by enhanced PUMA induction through different pathways. Furthermore, deficiency in PUMA abrogates the in vivo antitumor, antiangiogenic and chemosensitization effects of regorafenib. Conclusions Our results demonstrate a key role of PUMA in mediating the anticancer effects of regorafenib in CRC cells. They suggest that PUMA induction can be used as an indicator of regorafenib sensitivity, and also provide a rationale for manipulating the apoptotic machinery to improve the therapeutic efficacy of regorafenib and other targeted drugs. PMID:24763611

  13. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid. PMID:24043703

  14. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    SciTech Connect

    Hannon, Patrick R. Brannick, Katherine E. Wang, Wei Gupta, Rupesh K. Flaws, Jodi A.

    2015-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP inhibits the production of antral follicle produced sex steroid hormones.

  15. Inhibition of Listeria monocytogenes by propionic acid-based ingredients in cured deli-style Turkey.

    PubMed

    Glass, Kathleen A; McDonnell, Lindsey M; Von Tayson, Roxanne; Wanless, Brandon; Badvela, Mani

    2013-12-01

    Listeria monocytogenes growth can be controlled on ready-to-eat meats through the incorporation of antimicrobial ingredients into the formulation or by postlethality kill steps. However, alternate approaches are needed to provide options that reduce sodium content but maintain protection against pathogen growth in meats after slicing. The objective of this study was to determine the inhibition of L. monocytogenes by propionic acid-based ingredients in high-moisture, cured turkey stored at 4 or 7°C. Six formulations of sliced, cured (120 ppm of NaNO2 ), deli-style turkey were tested, including control without antimicrobials, 3.2% lactate-diacetate blend (LD), 0.4% of a liquid propionate-benzoate-containing ingredient, or 0.3, 0.4, and 0.5% of a liquid propionate-containing ingredient. Products were inoculated with 5 log CFU L. monocytogenes per 100-g package (3 log CFU/ml rinsate), vacuum-sealed, and stored at 4 or 7°C for up to 12 weeks; and populations were enumerated by plating on modified Oxford agar. As expected, the control without antimicrobials supported rapid growth, with >2 log average per ml rinsate increase within 4 weeks of storage at 4°C, whereas growth was observed at 6 weeks for the LD treatment. For both replicate trials, all treatments that contained liquid propionate or propionate-benzoate limited L. monocytogenes growth to an increase of <1 log through 9 weeks storage at 4°C. Sporadic growth (>1-log increase) was observed in individual samples for all propionate-containing treatments at weeks 10, 11, and 12. As expected, L. monocytogenes grew more rapidly when products were stored at 7°C, but trends in relative inhibition were similar to those observed at 4°C. These results verify that propionate-based ingredients inhibit growth of L. monocytogenes on sliced, high-moisture, cured turkey and can be considered as an alternative to reduce sodium-based salts while maintaining food safety. PMID:24290685

  16. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite

    PubMed Central

    Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.; Xu, Hockin H. K.

    2012-01-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size were synthesized via a spray-drying technique and incorporated into a resin. Flexural strength of nanocomposite with 10 to 30% NACP fillers matched the strength of a commercial hybrid composite (p > 0.1). Nanocomposite with 40% NACP matched the strength of a microfill composite, which was 2-fold that of a resin-modified glass ionomer. Nanocomposite with 40% NACP neutralized a lactic acid solution of pH 4 by rapidly increasing the pH to 5.69 in 10 min. In contrast, the commercial controls had pH staying at near 4. Using Streptoccocus mutans, an agar disk-diffusion test showed no inhibition zone for commercial controls. In contrast, the inhibition zone was (2.5 ± 0.7) mm for nanocomposite with 40% NACP. Crystal violet staining showed that S. mutans coverage on nanocomposite was 1/4 that on commercial composite. In conclusion, novel calcium–phosphate nanocomposite matched the mechanical properties of commercial composite and rapidly neutralized lactic acid of pH 4. The nanocomposite appeared to moderately reduce the S. mutans growth, and further study is needed to obtain strong antimicrobial properties. The new nanocomposite may have potential to reduce secondary caries and restoration fracture, two main challenges facing tooth cavity restorations. PMID:21504057

  17. Ascorbic acid inhibition of Candida albicans Hsp90-mediated morphogenesis occurs via the transcriptional regulator Upc2.

    PubMed

    Van Hauwenhuyse, Frédérique; Fiori, Alessandro; Van Dijck, Patrick

    2014-10-01

    Morphogenetic transitions of the opportunistic fungal pathogen Candida albicans are influenced by temperature changes, with induction of filamentation upon a shift from 30 to 37°C. Hsp90 was identified as a major repressor of an elongated cell morphology at low temperatures, as treatment with specific inhibitors of Hsp90 results in elongated growth forms at 30°C. Elongated growth resulting from a compromised Hsp90 is considered neither hyphal nor pseudohyphal growth. It has been reported that ascorbic acid (vitamin C) interferes with the yeast-to-hypha transition in C. albicans. In the present study, we show that ascorbic acid also antagonizes the morphogenetic change caused by hampered Hsp90 function. Further analysis revealed that Upc2, a transcriptional regulator of genes involved in ergosterol biosynthesis, and Erg11, the target of azole antifungals, whose expression is in turn regulated by Upc2, are required for this antagonism. Ergosterol levels correlate with elongated growth and are reduced in cells treated with the Hsp90 inhibitor geldanamycin (GdA) and restored by cotreatment with ascorbic acid. In addition, we show that Upc2 appears to be required for ascorbic acid-mediated inhibition of the antifungal activity of fluconazole. These results identify Upc2 as a major regulator of ascorbic acid-induced effects in C. albicans and suggest an association between ergosterol content and elongated growth upon Hsp90 compromise. PMID:25084864

  18. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    PubMed Central

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  19. Growth hormone receptor inhibition decreases the growth and metastasis of pancreatic ductal adenocarcinoma

    PubMed Central

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Salcido, Alyssa; Boopalan, Thiyagarajan; Arumugam, Arunkumar; Nandy, Sushmita; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is the only major cancer with very low survival rates (1%). It is the fourth leading cause of cancer-related death. Hyperactivated growth hormone receptor (GHR) levels have been shown to increase the risk of cancer in general and this pathway is a master regulator of key cellular functions like proliferation, apoptosis, differentiation, metastasis, etc. However, to date there is no available data on how GHR promotes pancreatic cancer pathogenesis. Here, we used an RNA interference approach targeted to GHR to determine whether targeting GHR is an effective method for controlling pancreatic cancer growth and metastasis. For this, we used an in vitro model system consisting of HPAC and PANC-1 pancreatic cancer cells lines. GHR is upregulated in both of these cell lines and silencing GHR significantly reduced cell proliferation and viability. Inhibition of GHR also reduced the metastatic potential of pancreatic cancer cells, which was aided through decreased colony-forming ability and reduced invasiveness. Flow cytometric and western blot analyses revealed the induction of apoptosis in GHR silenced cells. GHR silencing affected phosphatidylinositol 3 kinase/AKT, mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase, Janus kinase/signal transducers and activators of transcription and mammalian target of rapamycin signaling, as well as, epithelial to mesenchymal transition. Interestingly, silencing GHR also suppressed the expression of insulin receptor-β and cyclo-oxygenease-2. Altogether, GHR silencing controls the growth and metastasis of pancreatic cancer and reveals its importance in pancreatic cancer pathogenesis. PMID:25301264

  20. Growth hormone receptor inhibition decreases the growth and metastasis of pancreatic ductal adenocarcinoma.

    PubMed

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Salcido, Alyssa; Boopalan, Thiyagarajan; Arumugam, Arunkumar; Nandy, Sushmita; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is the only major cancer with very low survival rates (1%). It is the fourth leading cause of cancer-related death. Hyperactivated growth hormone receptor (GHR) levels have been shown to increase the risk of cancer in general and this pathway is a master regulator of key cellular functions like proliferation, apoptosis, differentiation, metastasis, etc. However, to date there is no available data on how GHR promotes pancreatic cancer pathogenesis. Here, we used an RNA interference approach targeted to GHR to determine whether targeting GHR is an effective method for controlling pancreatic cancer growth and metastasis. For this, we used an in vitro model system consisting of HPAC and PANC-1 pancreatic cancer cells lines. GHR is upregulated in both of these cell lines and silencing GHR significantly reduced cell proliferation and viability. Inhibition of GHR also reduced the metastatic potential of pancreatic cancer cells, which was aided through decreased colony-forming ability and reduced invasiveness. Flow cytometric and western blot analyses revealed the induction of apoptosis in GHR silenced cells. GHR silencing affected phosphatidylinositol 3 kinase/AKT, mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase, Janus kinase/signal transducers and activators of transcription and mammalian target of rapamycin signaling, as well as, epithelial to mesenchymal transition. Interestingly, silencing GHR also suppressed the expression of insulin receptor-β and cyclo-oxygenease-2. Altogether, GHR silencing controls the growth and metastasis of pancreatic cancer and reveals its importance in pancreatic cancer pathogenesis. PMID:25301264

  1. Fungitoxic effects of nonprotein imino acids on growth of saprophytic fungi isolated from the leaf surface of Calliandra haematocephala.

    PubMed Central

    Brenner, S A; Romeo, J T

    1986-01-01

    Four saprophytic and pathogenic fungi were isolated from the leaf surface of Calliandra haematocephala, a tropical legume known to contain large amounts of rare nonprotein imino acids in its leaves and seeds. The fungi Aspergillus niger, Aspergillus sp., Curvularia sp., and Penicillium sp. were cultured in the laboratory and tested for susceptibility to leaf extracts of the host plant and to proline, pipecolic acid, cis-5-hydroxypipecolic acid, and 2,4-trans-4,5-cis-4,5-dihydroxypipecolic acid. Fungal spore germination and germ tube growth were measured. Aspergillus sp. was inhibited by plant extracts and by pipecolic acid and cis-5-hydroxypipecolic acid. Curvularia sp. growth was stimulated by plant extracts and by pipecolic acid. The other two fungi were unaffected by any of the treatments. The data indicate that imino acids may play a role in the specific resistance of Calliandra spp. to Aspergillus sp. PMID:3707119

  2. Acetate-Mediated Growth Inhibition in Sterol 14α-Demethylation-Deficient Cells of Candida albicans

    PubMed Central

    Shimokawa, Osamu; Nakayama, Hiroaki

    1999-01-01

    Candida albicans is a fungus thought to be viable in the presence of a deficiency in sterol 14α-demethylation. We showed in a strain of this species that the deficiency, caused either by a mutation or by an azole antifungal agent, made the cells susceptible to growth inhibition by acetate included in the culture medium. Studies with a mutant demonstrated that the inhibition was complete at a sodium acetate concentration of 0.24 M (20 g/liter) and was evident even at a pH of 8, the latter result indicating the involvement of acetate ions rather than the undissociated form of acetic acid. In fluconazole-treated cells, sterol profiles determined by thin-layer chromatography revealed that the minimum sterol 14α-demethylation-inhibitory concentrations (MDICs) of the drug, thought to be the most important parameter for clinical purposes, were practically identical in the media with and without 0.24 M acetate and were equivalent to the MIC in the acetate-supplemented medium. The acetate-mediated growth inhibition of azole-treated cells was confirmed with two additional strains of C. albicans and four different agents, suggesting the possibility of generalization. From these results, it was surmised that the acetate-containing medium may find use in azole susceptibility testing, for which there is currently no method capable of measuring MDICs directly for those fungi whose viability is not lost as a result of sterol 14α-demethylation deficiency. Additionally, the acetate-supplemented agar medium was found to be useful in detecting reversions from sterol 14α-demethylation deficiency to proficiency. PMID:9869573

  3. Meclofenamic Acid for Inhibition of Human Vascular Smooth Muscle Cell Proliferation and Migration: An In Vitro Study

    SciTech Connect

    Schober, Wolfgang; Kehlbach, Rainer; Gebert, Regina; Wiskirchen, Jakub; Rodegerdts, Enno; Claussen, Claus D.; Duda, Stephan H.

    2002-01-15

    Purpose: The aim of the study was to examine the effects of meclofenamic acid on proliferation, clonogenic activity,migratory ability, cell cycle distribution and p44/42 MAPK (mitogen activated protein kinase) expression in serum-stimulated human aortic smooth muscle cells (haSMCs). Methods: haSMCs were treated with meclofenamic acid in three different concentrations (10mM, 100 mM, 200 mM) for 4 days. Then meclofenamic acid-free culture medium was supplemented until day 20. Growth kinetics were assessed. Cell cycle analysis was performed by flow cytometry.Clonogenic activity was evaluated with colony formation assays.Migratory ability was investigated by stimulation with platelet-derived growth factor (PDGF-BB) in 24-well plates with 8 mm pores membrane inserts. p44/42 MAPK was detected by Western blot technique. Results: Meclofenamic acid inhibited the proliferation,clonogenic activity and migratory ability of haSMCs in a dose-dependent manner. Cell cycle analysis revealed a G2/M-phase block. The p44/42MAPK was significantly reduced. Conclusion: Meclofenamic acid inhibits the proliferation and migration of haSMCs. If a sufficient dose of meclofenamic acid can be applied systemically or by local drug delivery it could be a valuable substance to prevent restenosis after angioplasty.

  4. Ethacrynic acid inhibitable Ca2+ and Mg2+-activated membrane adenosine triphosphatase in rat mast cells.

    PubMed Central

    Magro, A M

    1977-01-01

    A crude plasma membrane fraction from the homogenate of purified rat mast cells demonstrates a high degree of Ca2+-dependent and Mg2+-dependent adenosine triphosphatase (ATPase) activity. The microsomal and mitochondrial fractions show negligible amounts of the Ca2+ and Mg2+-activated ATPases. The broad ATPase inhibitor, ethacrynic acid, effectively blocks the mast cell ATPase activity while ouabain demonstrates little inhibitory effect. Correspondingly, ethacrynic acid inhibits histamine release from antigen-challenged mast cells while ouabain does not. Both ATPase inhibition and histamine release inhibition by ethacrynic acid require the presence of the olefinic bond in the ethacrynic acid molecule. PMID:75076

  5. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. PMID:26716890

  6. Identification of organic acids in Cichorium intybus inhibiting virulence-related properties of oral pathogenic bacteria.

    PubMed

    Papetti, Adele; Mascherpa, Dora; Carazzone, Chiara; Stauder, Monica; Spratt, David A; Wilson, Michael; Pratten, Jonathan; Ciric, Lena; Lingström, Peter; Zaura, Egija; Weiss, Ervin; Ofek, Itzak; Signoretto, Caterina; Pruzzo, Carla; Gazzani, Gabriella

    2013-06-01

    The low molecular mass (LMM) extract of Cichorium intybus var. silvestre (red chicory) has been shown to inhibit virulence-linked properties of oral pathogens including Streptococcus mutans, Actinomyces naeslundii and Prevotella intermedia. In the present study HPLC-DAD-ESI/MS(2) was used to investigate the compounds contained in this extract for their anti-virulence activity. The extract contained a number of components, including oxalic, succinic, shikimic and quinic acids, which interfere with the growth and virulence traits (i.e., biofilm formation, adherence to epithelial cells and hydroxyapatite) of oral pathogens involved in gingivitis and tooth decay. Succinic and quinic acid seem to be the most potent, mainly by interfering with the ability of oral pathogens to form biofilms (either through inhibition of their development or promotion of their disruption). Our findings suggest that one or more of these compounds may modulate plaque formation in vivo, which is a prerequisite for the development of both caries and gingivitis. PMID:23411301

  7. Inhibition of herpes virus infection in oligodendrocyte cultured cells by valproic acid.

    PubMed

    Crespillo, A J; Praena, B; Bello-Morales, R; Lerma, L; Vázquez-Calvo, A; Martín-Acebes, M A; Tabarés, E; Sobrino, F; López-Guerrero, J A

    2016-03-01

    Valproic acid (VPA) is a small fatty acid used for treatment of different neurologic diseases such as epilepsy, migraines or bipolar disorders. VPA modulates different processes of cell metabolism that can lead to alterations in susceptibility of several cell types to the infection of Human Immunodeficiency Virus (HIV), Epstein-Barr virus (EBV), as well as to exert an inhibitory effect on the replication of different enveloped viruses in cultured cells. Taken these data into account and the fact that HSV-1 has been involved in some neuropathies, we have characterized the effect of VPA on this herpesvirus infection of the differentiation/maturation-inducible human oligodendrocyte cell line HOG, which resulted more susceptible to VPA inhibition of virus growth after cell differentiation. In these cells, the role of VPA in virus entry was tackled. Incubation with VPA induced a slight but reproducible inhibition in the virus particles uptake mainly observed when the drug was added in the adsorption or early upon infection. In addition, transcription and expression of viral proteins were significantly downregulated in the presence of VPA. Remarkably, when the infective viral production was assessed, VPA dramatically blocked the detection of infectious HSV-1 particles. Herein, our results indicate that VPA treatment of HOG cells significantly reduces the effect of HSV-1 infection, virus entry and productivity without affecting cellular viability. PMID:26805038

  8. Nordihydroguaiaretic Acid Inhibits an Activated FGFR3 Mutant, and Blocks Downstream Signaling in Multiple Myeloma Cells

    PubMed Central

    Meyer, April N.; McAndrew, Christopher W.; Donoghue, Daniel J.

    2008-01-01

    Activating mutations within Fibroblast Growth Factor Receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes, Thanatophoric Dysplasia (TD) type I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma and cervical cancer. Based on reports that strongly activated mutants of FGFR3 such as the TDII (K650E) mutant signal preferentially from within the secretory pathway, the inhibitory properties of nordihydroguaiaretic acid (NDGA), which blocks protein transport through the Golgi, were investigated. NDGA was able to inhibit FGFR3 autophosphorylation both in vitro and in vivo. In addition, signaling molecules downstream of FGFR3 activation such as STAT1, STAT3 and MAPK were inhibited by NDGA treatment. Using HEK293 cells expressing activated FGFR3-TDII, together with several multiple myeloma cell lines expressing activated forms of FGFR3, NDGA generally resulted in a decrease in MAPK activation by 1 hour, and resulted in increased apoptosis over 24 hours. The effects of NDGA on activated FGFR3 derivatives targeted either to the plasma membrane or the cytoplasm were also examined. These results suggest that inhibitory small molecules such as NDGA that target a specific subcellular compartment may be beneficial in the inhibition of activated receptors such as FGFR3 that signal from the same compartment. PMID:18794123

  9. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures.

    PubMed

    O'Brien, Andrea; Sharp, Richard; Russell, Nicholas J; Roller, Sibel

    2004-05-01

    The aim of this study was to identify Antarctic microorganisms with the ability to produce cold-active antimicrobial compounds with potential for use in chilled food preservation. Colonies (4496) were isolated from 12 Antarctic soil samples and tested against Listeria innocua, Pseudomonas fragi and Brochothrix thermosphacta. Thirteen bacteria were confirmed as being growth-inhibitor producers (detection rate 0.29%). When tested against a wider spectrum of eight target organisms, some of the isolates also inhibited the growth of L. monocytogenes and Staphylococcus aureus. Six inhibitor producers were psychrotrophic (growth optima between 18 and 24 degrees C), halotolerant (up to 10% NaCl) and catalase-positive; all but one were Gram-positive and oxidase-positive. The inhibitors produced by four bacteria were sensitive to proteases, suggesting a proteinaceous nature. Four of the inhibitor-producers were shown to be species of Arthrobacter, Planococcus and Pseudomonas on the basis of their 16S rRNA gene sequences and fatty acid compositions. It was concluded that Antarctic soils represent an untapped reservoir of novel, cold-active antimicrobial-producers. PMID:19712399

  10. Caffeic acid phenethyl ester inhibits liver fibrosis in rats

    PubMed Central

    Li, Mei; Wang, Xiu-Fang; Shi, Juan-Juan; Li, Ya-Ping; Yang, Ning; Zhai, Song; Dang, Shuang-Suo

    2015-01-01

    AIM: To investigate the hepatoprotective effects and antioxidant activity of caffeic acid phenethyl ester (CAPE) in rats with liver fibrosis. METHODS: A total of 75 male Sprague-Dawley rats were randomly assigned to seven experimental groups: a normal group (n = 10), a vehicle group (n = 10), a model group (n = 15), a vitamin E group (n = 10), and three CAPE groups (CAPE 3, 6 and 12 mg/kg, n = 10, respectively). Liver fibrosis was induced in rats by injecting CCl4 subcutaneously, feeding with high fat forage, and administering 30% alcohol orally for 10 wk. Concurrently, CAPE (3, 6 and 12 mg/kg) was intraperitoneally administered daily for 10 wk. After that, serum total bilirubin (TBil), aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured to assess hepatotoxicity. To investigate antioxidant activity of CAPE, malondialdehyde (MDA), glutathione (GSH) levels, catalase (CAT) and superoxide dismutase (SOD) activities in liver tissue were determined. Moreover, the effect of CAPE on α-smooth muscle actin (α-SMA), a characteristic hallmark of activated hepatic stellate cells (HSCs), and NF-E2-related factor 2 (Nrf2), a key transcription factor for antioxidant systems, was investigated by immunohistochemistry. RESULTS: Compared to the model group, intraperitoneal administration of CAPE decreased TBil, ALT, and AST levels in liver fibrosis rats (P < 0.05), while serum TBil was decreased by CAPE in a dose-dependent manner. In addition, the liver hydroxyproline contents in both the 6 and 12 mg/kg CAPE groups were markedly lower than that in the model group (P < 0.05 and P < 0.001, respectively). CAPE markedly decreased MDA levels and, in turn, increased GSH levels, as well as CAT and SOD activities in liver fibrosis rats compared to the model group (P < 0.05). Moreover, CAPE effectively inhibited α-SMA expression while increasing Nrf2 expression compared to the model group (P < 0.01). CONCLUSION: The protective effects of CAPE against liver fibrosis may be due to its ability to suppress the activation of HSCs by inhibiting oxidative stress. PMID:25852274

  11. Light-induced growth promotion by SPA1 counteracts phytochrome-mediated growth inhibition during de-etiolation.

    PubMed

    Parks, B M; Hoecker, U; Spalding, E P

    2001-07-01

    Previous evidence has suggested that SPA1 is a signal transduction component that appears to require phytochrome A for function in seedling photomorphogenesis. Using digital image analysis, we examined the time course of growth inhibition induced by red light in spa1 mutants to test the interpretation that SPA1 functions early in a phyA-specific signaling pathway. By comparing wild-type and mutant responses, we found that SPA1 caused an increase in hypocotyl growth rate after approximately 2 h of continuous red light, whereas the onset of phyA-mediated inhibition was detected within several minutes. Thus, SPA1-dependent growth promotion began after phyA started to inhibit growth. The action of SPA1 persisted for approximately 2 d of red light, a period well beyond the time when the phyA photoreceptor and its influence on growth have both decayed to undetectable levels. Also, SPA1 promoted growth for many hours in the complete absence of a light stimulus when red-light-grown seedlings were shifted to darkness. We propose that SPA1 functions in a light-induced mechanism that promotes growth and thereby counteracts growth inhibition mediated by phyA and phyB. Our finding that spa1 seedlings do not display growth promotion in response to end-of-day pulses of far-red light, even in a phyA-null background, supports this interpretation. Combined, these results lead us to the view that the rate of hypocotyl elongation in light is determined by at least two independent, opposing processes; an inhibition of growth by the phytochromes and a promotion of growth by light-activated SPA1. PMID:11457980

  12. Inhibition of growth and alteration of host cell interactions of Pasteurella multocida with natural byproducts.

    PubMed

    Salaheen, S; Almario, J A; Biswas, D

    2014-06-01

    Pasteurella multocida is a leading cause of fowl cholera in both free-range pasture and conventional/commercially raised poultry. Its infection is a serious threat to poultry health and overall flock viability. Organic poultry is comparatively more vulnerable to this pathogen. It is a significant cause of production loss and price increase of poultry products, specifically organic poultry products. Some plant products are well documented as sources of natural antimicrobials such as polyphenols found in different berry pomaces and citrus oil. Pomace, a byproduct (primarily of seeds and skins) of fruits used for juice and wine production, and citrus oil, the byproduct of citrus juice production, show promising antimicrobial activity against various pathogens. Here, we showed for the first time that blackberry and blueberry pomace extracts and citrus oil inhibited P. multocida growth. Minimum bactericidal concentrations were determined as 0.3 and 0.4 mg/mL gallic acid equivalent for blackberry and blueberry pomace extracts, respectively. Similarly, only 0.05% citrus oil (vol/vol) completely inhibited P. multocida growth. Under shaking conditions, the antimicrobial activity of both pomace extracts and citrus oil was more intensive. Even citrus oil vapor also significantly reduced the growth of P. multocida. In addition, cell surface hydrophobicity of P. multocida was increased by 2- to 3-fold and its adherence to chicken fibroblast (DF1) and bovine mammary gland (MacT) cells was reduced significantly in the presence of pomace extracts only. This study indicates that these natural products might be good alternatives to conventional antimicrobial agents, and hence, may be used as feed or water supplements to control fowl cholera and reduce production loss caused by P. multocida. PMID:24879687

  13. Inhibition of Recombinant D-Amino Acid Oxidase from Trigonopsis variabilis by Salts

    PubMed Central

    Kopf, Jessica; Hormigo, Daniel; García, José Luis; Acebal, Carmen; de la Mata, Isabel; Arroyo, Miguel

    2011-01-01

    Inhibition of recombinant D-amino acid oxidase from Trigonopsis variabilis (TvDAAO) activity in the presence of different sodium salts and potassium chloride is reported. A competitive inhibition pattern by sodium chloride was observed, and an inhibition constant value of Ki = 85 mM was calculated. Direct connection of NaCl inhibition with FAD cofactor dissociation was confirmed by measuring the fluorescence of tryptophanyl residues of the holoenzyme. PMID:21423676

  14. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Chen, Y.; Tjandrawinata, R. R.

    2001-01-01

    It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.

  15. Inhibition of IGF-1R and Lipoxygenase by Nordihydroguaiaretic Acid (NDGA) Analogs

    PubMed Central

    Blecha, Joseph E.; Anderson, Marc O.; Chow, Jennifer M.; Guevarra, Christle C.; Pender, Celia; Penaranda, Cristina; Zavodovskaya, Marianna; Youngren, Jack F.; Berkman, Clifford E.

    2008-01-01

    Herein we pursue the hypothesis that the structure of nordihydroguaiaretic acid (NDGA) can be refined for selective potency against the insulin-like growth factor 1 receptor (IGF-1R) as a potential therapeutic target for breast cancer while diminishing its action against other cellular targets. Thus, a set of NDGA analogs (7a-7h) was prepared and examined for inhibitory potency against IGF-1R kinase and an alternative target, 15-lipoxygenase (15 LOX). The anti-cancer effects of these compounds were determined by their ability to inhibit IGF-1 mediated cell growth of MCF-7 breast cancer cells. The design of the analogs was based upon a cursory Topliss approach in which one of NDGA’s aromatic rings was modified with various substituents. Structural modification of one of the two catechol rings of NDGA was found to have little effect upon the inhibitory potency against both kinase activity of the IGF-1R and IGF-1 mediated cell growth of MCF-7 cells. 15-LOX was found to be most sensitive to structural modifications of NDGA. From the limited series of NDGA analogs examined, the compound that exhibited the greatest selectivity for IGF-1 mediated growth compared to 15-LOX inhibition was a cyclic analog 7h with a framework similar to a natural product isolated from Larrea divaricata. The results for 7h are significant because while NDGA displays biological promiscuity, 7h exhibits greater specificity towards the breast cancer target IGF-1R with that added benefit of possessing a 10-fold weaker potency against 15-LOX, an enzyme which has a purported tumor suppressing role in breast cancer. With increased specificity and potency, 7h may serve as a new lead in developing novel therapeutic agents for breast cancer. PMID:17502145

  16. Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation.

    TOXLINE Toxicology Bibliographic Information

    Clarke SD; Turini M; Jump DB; Abraham S; Reedy M

    1998-01-01

    Polyunsaturated fatty acids (PUFA) of the (n-6) and (n-3) families inhibit the rate of gene transcription for a number of hepatic lipogenic and glycolytic genes, e.g., fatty acid synthase (FAS). In contrast, saturated and monounsaturated fatty acids have no inhibitory capability. The suppression of gene transcription resulting from the addition of PUFA to a high carbohydrate diet: occurs quickly (< 3 h) after its addition to a high glucose diet; can be recreated with hepatocytes cultured in a serum-free medium containing insulin and glucocorticoids; can be demonstrated in diabetic rats fed fructose; and is independent of glucagon. While the nature of the intracellular PUFA inhibitor is unclear, it appears that delta-6 desaturation is a required step in the process. Recently, the fatty acid activated nuclear factor, peroxisome-proliferator activated receptor (PPAR) was suggested to be the PUFA-response factor. However, the potent PPAR activators ETYA and Wy-14643 did not suppress hepatic expression of FAS, but did induce the PPAR-responsive gene, acyl-CoA oxidase (AOX). Similarly, treating rat hepatocytes with 20:4 (n-6) suppressed FAS expression but had no effect on AOX. Thus, it appears that the PUFA regulation of gene transcription involves a PUFA-response factor that is independent from PPAR.

  17. Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells.

    PubMed

    Wang, Yujun; Han, Ernest; Xing, Quanhua; Yan, Jin; Arrington, Amanda; Wang, Charles; Tully, Dylan; Kowolik, Claudia M; Lu, David M; Frankel, Paul H; Zhai, Jing; Wen, Wei; Horne, David; Yip, M L Richard; Yim, John H

    2015-03-28

    Baicalein is a natural flavone that exhibits anticancer properties. Using microarrays we found that DDIT4 was the highest transcript induced by baicalein in cancer cells. We confirmed in multiple cancer cell lines large, dose-related expression of DDIT4 by quantitative RT-PCR and immunoblot, which correlates with growth inhibition. Time course experiments demonstrate that DDIT4 is rapidly inducible, with high expression maintained for several days in vitro. Induction of DDIT4 expression is p53 independent based on evaluation of p53 knockout cells. Since DDIT4 is known to inhibit mTORC1 activity we confirmed that baicalein suppresses phosphorylation of mTORC1 targets. Using RNA interference we demonstrate that mTORC1 activity and growth inhibition by baicalein is attenuated by knockdown of DDIT4. We furthermore demonstrate suppression of established tumors by baicalein in a mouse model of breast cancer with increased DDIT4 expression in the tumors. Finally, we demonstrate that baicalein upregulates DDIT4 and causes mTORC1 and growth inhibition in platinum resistant cancer cells in marked contrast to platinum chemotherapy treatment. These studies demonstrate that baicalein inhibits mTORC1 through DDIT4 expression, and may be useful in cancer chemotherapy and chemoprevention. PMID:25543165

  18. Placental Amino Acids Transport in Intrauterine Growth Restriction

    PubMed Central

    Avagliano, Laura; Garò, Chiara; Marconi, Anna Maria

    2012-01-01

    The placenta represents a key organ for fetal growth as it acts as an interface between mother and fetus, regulating the fetal-maternal exchange of nutrients, gases, and waste products. During pregnancy, amino acids represent one of the major nutrients for fetal life, and both maternal and fetal concentrations are significantly different in pregnancies with intrauterine growth restriction when compared to uncomplicated pregnancies. The transport of amino acids across the placenta is a complex process that includes the influx of neutral, anionic, and cationic amino acids across the microvilluos plasma membrane of the syncytiotrophoblast, the passage through the cytoplasm of the trophoblasts, and the transfer outside the trophoblasts across the basal membrane into the fetal circulation. In this paper, we review the transport mechanisms of amino acids across the placenta in normal pregnancies and in pregnancies complicated by intrauterine growth restriction. PMID:22997583

  19. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

    PubMed Central

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  20. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    PubMed

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  1. Inhibition of fatty acid synthase induces pro-survival Akt and ERK signaling in K-Ras-driven cancer cells

    PubMed Central

    Yellen, Paige B.; Foster, David A.

    2014-01-01

    Cancer cells with constitutive phosphatidylinositol 3-kinase (PI3K)/Akt pathway activation have been associated with overexpression of the lipogenic enzyme fatty acid synthase (FAS) as a means to provide lipids necessary for cell growth. In contrast, K-Ras-driven cancer cells suppress utilization of de novo synthesized fatty acids and rely on exogenously supplied fatty acids for cell growth and membrane phospholipid biosynthesis. Consistent with a differential need for de novo fatty acid synthesis, cancer cells with activated PI3K signaling were sensitive to suppression of FAS; whereas mutant K-RAS-driven cancer cells continued to proliferate with suppressed FAS. Surprisingly, in response to FAS suppression, we observed robust increases in both Akt and ERK phosphorylation. Akt phosphorylation was dependent on the insulin-like growth factor-1 receptor (IGF-1R)/PI3K pathway and mTOR complex 2. Intriguingly, K-Ras-mediated ERK activation was dependent on N-Ras. Pharmacological inhibition of PI3K and MEK in K-Ras-driven cancer cells resulted in increased sensitivity to FAS inhibition. These data reveal a surprising sensitivity of K-Ras-driven cancer cells to FAS suppression when stimulation of Akt and Erk was prevented. As K-Ras-driven cancers are notoriously difficult to treat, these findings have therapeutic implications. PMID:25086185

  2. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia. PMID:26896170

  3. [Combined injured effects of acid rain and lanthanum on growth of soybean seedling].

    PubMed

    Liang, Chan-juan; Pan, Dan-yun; Xu, Qiu-rong; Zhou, Qing

    2010-07-01

    Combined effects of acid rain and lanthanum on growth of soybean seedling (Glycine max) and its inherent mechanism were studied in this paper. Compared with treatments by simulated acid rain (pH 3.0, 3.5, 4.5) or rare earth La(III) (60, 100 and 300 mg x L(-1)), the decrease degree of growth parameters in combined treatments was higher, indicating that there were a synergistic effects between acid rain and La. Moreover,the inhibition effects of acid rain and La(III) were more obvious when pH value of acid rain was lower or the concentration of La(III) was higher. The changes of photosynthetic parameters were similar to those of growth, but the decrease degree of each parameter was not same in the same treatment group. The decrease degree of optimal PSII photochemical efficiency (Fv/Fm) and chlorophyll content (Chl) were 9.35%-22.75% and 9.14%-24.53%, respectively, lower than that of photosynthetic rate Pn (22.78%-84.7%), Hill reaction rate (15.52%-73.38%) and Mg2+ -ATPase activity (14.51%-71.54%), showing that the sensitivity of photosynthetic parameters to the combined factors was different. Furthermore, relative analysis showed that the change of Pn were mainly affected by Hill reaction rate and Mg2+ -ATPase activity, and was less influenced by Chl and Fv/Fm. It indicates that the effect of acid rain and La on each reaction in photosynthesis was different, and the inhibition of combined treatments on photosynthesis in plants was one of the main factors affecting growth of plant. PMID:20825040

  4. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis.

    PubMed

    Ma, Jiguang; Duan, Wanxing; Han, Suxia; Lei, Jianjun; Xu, Qinhong; Chen, Xin; Jiang, Zhengdong; Nan, Ligang; Li, Jiahui; Chen, Ke; Han, Liang; Wang, Zheng; Li, Xuqi; Wu, Erxi; Huo, Xiongwei

    2015-08-28

    Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration, and invasion ability and increased apoptosis of cancer cells. In addition, GA inhibited the de novo lipogenesis of cancer cells through inducing activation of AMP-activated protein kinase (AMPK) signaling and downregulated the expression of key enzymes (e.g. acetyl-CoA carboxylase [ACC], fatty acid synthase [FASN]) involved in lipogenesis. Moreover, the in vivo experiment showed that GA reduced the expression of the key enzymes involved in lipogenesis and restrained the tumor growth. Taken together, our results suggest that GA may serve as a new candidate against tumor growth of pancreatic cancer partially through targeting pathway driving lipogenesis. PMID:25895130

  5. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis

    PubMed Central

    Han, Suxia; Lei, Jianjun; Xu, Qinhong; Chen, Xin; Jiang, Zhengdong; Nan, Ligang; Li, Jiahui; Chen, Ke; Han, Liang; Wang, Zheng; Li, Xuqi; Wu, Erxi; Huo, Xiongwei

    2015-01-01

    Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration, and invasion ability and increased apoptosis of cancer cells. In addition, GA inhibited the de novo lipogenesis of cancer cells through inducing activation of AMP-activated protein kinase (AMPK) signaling and downregulated the expression of key enzymes (e.g. acetyl-CoA carboxylase [ACC], fatty acid synthase [FASN]) involved in lipogenesis. Moreover, the in vivo experiment showed that GA reduced the expression of the key enzymes involved in lipogenesis and restrained the tumor growth. Taken together, our results suggest that GA may serve as a new candidate against tumor growth of pancreatic cancer partially through targeting pathway driving lipogenesis. PMID:25895130

  6. Inhibition of deoxyribonucleic acid gyrase: effects on nucleic acid synthesis and cell division in Escherichia coli K-12.

    PubMed Central

    Fairweather, N F; Orr, E; Holland, I B

    1980-01-01

    Mutants of Escherichia coli resistant to the antibiotic clorobiocin are also coumermycin resistant, and the mutation to resistance in at least one mutant was mapped near gyrB. We conclude, therefore, that clorobiocin inhibits deoxyribonucleic acid gyrase, and the drug was used to probe the role of this enzyme in vivo. Deozyribonucleic acid synthesis was preferentially inhibited but not completely blocked by the antibiotic. Transcription and cell division were also markedly affected. However, unlike other inhibitors of deoxyribonucleic acid synthesis, clorobiocin failed to induce the synthesis of protein X, the recA gene product. In mutants resistant to clorobiocin the replication velocity was unaffected, but initiation of deoxyribonucleic acid synthesis appeared to be delayed. We conclude that deoxyribonucleic acid gyrase, and hence the supercoiled structure of the chromosome, is important for transcription, normal initiation of deoxyribonucleic acid replication, and cell division. The possible role of deoxyribonucleic acid gyrase in the elongation of replication forks is also discussed. Images PMID:6154685

  7. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition.

    PubMed

    Abusnina, Abdurazzag; Keravis, Thérèse; Zhou, Qingwei; Justiniano, Hélène; Lobstein, Annelise; Lugnier, Claire

    2015-02-01

    Vascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60-550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo anti-tumour properties through combined PDE2 and PDE4 inhibition. PMID:25230992

  8. In vitro mechanism of inhibition of bacterial cell growth by allicin.

    PubMed Central

    Feldberg, R S; Chang, S C; Kotik, A N; Nadler, M; Neuwirth, Z; Sundstrom, D C; Thompson, N H

    1988-01-01

    Diallyl thiosulfinate (allicin) is the agent found in garlic which is responsible for the antibacterial and antifungal activity of extracts of this plant. The effect of bacteriostatic concentrations of allicin (0.2 to 0.5 mM) on the growth of Salmonella typhimurium revealed a pattern of inhibition characterized by: (i) a lag of approximately 15 min between addition of allicin and onset of inhibition, (ii) a transitory inhibition phase whose duration was proportional to allicin concentration and inversely proportional to culture density, (iii) a resumed growth phase which showed a lower rate of growth than in uninhibited controls, and (iv) an entry into stationary phase at a lower culture density. Whereas DNA and protein syntheses showed a delayed and partial inhibition by allicin, inhibition of RNA synthesis was immediate and total, suggesting that this is the primary target of allicin action. PMID:2469386

  9. Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro

    PubMed Central

    Recuenco, Frances Cagayat; Kobayashi, Kyousuke; Ishiwa, Akiko; Enomoto-Rogers, Yukiko; Fundador, Noreen Grace V.; Sugi, Tatsuki; Takemae, Hitoshi; Iwanaga, Tatsuya; Murakoshi, Fumi; Gong, Haiyan; Inomata, Atsuko; Horimoto, Taisuke; Iwata, Tadahisa; Kato, Kentaro

    2014-01-01

    Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity. PMID:24740150

  10. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria.

    PubMed

    Amézquita, A; Brashears, M M

    2002-02-01

    Forty-nine strains of lactic acid bacteria (LAB), isolated from commercially available ready-to-eat (RTE) meat products, were screened for their ability to inhibit the growth of Listeria monocytogenes at refrigeration (5 degrees C) temperatures on agar spot tests. The three most inhibitory strains were identified as Pediococcus acidilactici, Lactobacillus casei, and Lactobacillus paracasei by 16S rDNA sequence analysis. Their antilisterial activity was quantified in associative cultures in deMan Rogosa Sharpe (MRS) broth at 5 degrees C for 28 days, resulting in a pathogen reduction of 3.5 log10 cycles compared to its initial level. A combined culture of these strains was added to frankfurters and cooked ham coinoculated with L. monocytogenes, vacuum packaged, and stored at 5 degrees C for 28 days. Bacteriostatic activity was observed in cooked ham, whereas bactericidal activity was observed in frankfurters. Numbers of L. monocytogenes were 4.2 to 4.7 log10 and 2.6 log10 cycles lower than controls in frankfurters and cooked ham, respectively, after the 28-day refrigerated storage. In all cases, numbers of LAB increased by only 1 log10 cycle. The strain identified as P. acidilactici was possibly a bacteriocin producer, whereas the antilisterial activity of the other two strains was due to the production of organic acids. There was no significant difference (P > 0.05) in the antilisterial activity detected in frankfurters whether the LAB strains were used individually or as combined cultures. Further studies over a 56-day period indicated no impact on the quality of the product. This method represents a potential antilisterial intervention in RTE meats, because it inhibited the growth of the pathogen at refrigeration temperatures without causing sensory changes. PMID:11848562

  11. Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum.

    PubMed

    Landa, Blanca B; Cachinero-Díaz, Juana M; Lemanceau, Philippe; Jiménez-Díaz, Rafael M; Alabouvette, Claude

    2002-11-01

    Suppression of soilborne diseases by biocontrol agents involves complex interactions among biocontrol agents and the pathogen and between these microorganisms and the plant. In general, these interactions are not well characterized. In this work, we studied (i) the diversity among strains of fluorescent Pseudomonas spp., Bacillus spp., and Paenibacillus sp. for their sensitivity to fusaric acid (FAc) and phytoanticipins from different host plants, (ii) the diversity of pathogenic and nonpathogenic Fusarium oxysporum isolates for their sensitivity to phytoanticipins, and (iii) the influence of FAc on the production of pyoverdine by fluorescent Pseudomonas spp. tolerant to this compound. There was a great diversity in the response of the bacterial strains to FAc; however, as a group, Bacillus spp. and Paenibacillus macerans were much more sensitive to FAc than Pseudomonas spp. FAc also affected production of pyoverdine by FAc-tolerant Pseudomonas spp. strains. Phytoanticipins differed in their effects on microbial growth, and sensitivity to a phytoanticipin varied among bacterial and fungal strains. Biochanin A did not affect growth of bacteria, but coumarin inhibited growth of Pseudomonas spp. strains and had no effect on Bacillus circulans and P. macerans. Conversely, tomatine inhibited growth of B. circulans and P. macerans. Biochanin A and tomatine inhibited growth of three pathogenic isolates of F. oxysporum but increased growth of three nonpathogenic F. oxysporum isolates. Coumarin inhibited growth of all pathogenic and nonpathogenic F. oxysporum isolates. These results are indicative of the complex interactions that can occur among plants, pathogens, and biological control agents in the rhizosphere and on the root surface. Also, these results may help to explain the low efficacy of some combinations of biocontrol agents, as well as the inconsistency in achieving disease suppression under field conditions. PMID:12556125

  12. Weak acid inhibition of fermentation by Zygosaccharomyces bailii and Saccharomyces cerevisiae.

    PubMed

    Ferreira, M M; Loureiro-Dias, M C; Loureiro, V

    1997-05-20

    The inhibition kinetics of fermentation by Zygosaccharomyces bailii and Saccharomyces cerevisiae were evaluated for weak carboxylic acids. Several regression equations were tried to fit the experimental data, most cases being best fitted to exponential curves. The following parameters were determined: i) acid concentration responsible for 50% inhibition of fermentation (C50%); ii) area under the regression curve up to that concentration (A50%) and iii) exponential inhibition constant (k(i)). These parameters were compared according to their ability to express the inhibitory effect of each acid. In broad terms, the values of k(i) in association with minimum inhibitory concentrations (x(min)), were found best to express the inhibitory effect of the weak acids. However, C50% values were satisfactorily correlated with k(i). The value of A50% more precisely reflected the occasional stimulatory effect of low concentrations of weak acids. Comparison of inhibition parameters for Z. bailii and for S. cerevisiae revealed a higher resistance of the former to acetic, propionic, butyric and benzoic acids and similar resistance to caproic, caprylic and sorbic acids. Previous cultivation in the presence of acetic, propionic and benzoic acids showed a distinct influence on the resistance of both yeasts, although it did not always induce cellular adaptation. Fermentation inhibition showed a good correlation with the lipid solubility of weak acids suggesting that the acids interact with the hydrophobic regions of cell membranes. PMID:9217103

  13. Influence of some growth regulators and cations on inhibition of chlorophyll biosynthesis by lead in maize

    SciTech Connect

    Sinha, S.K. ); Srivastava, H.S. ); Tripathi, R.D. )

    1993-08-01

    Phytotoxic effects of Pb pollution are well established. In order to analyse the physiological basis of toxic symptoms and of reduced plant productivity, its effect on chlorophyll content has been examined in some plants. Thus, a decrease in total chlorophyll content during Pb supply has been observed in oats, mung beam, pea, etc. The activity of delta aminolevulinic acid dehydratase, an important enzyme in the biosynthesis of heme pigments, is inhibited by Pb in mung bean and several other species. This observation may perhaps indicate that a reduction in chlorophyll content in the presence of lead is due to an inhibition of pigment synthesis. The effect of Pb on greening maize leaf segments in the presence of various precursors of chlorophyll has been studied in the present investigation to evaluate this hypothesis. The effect of some growth regulators and cations, which could otherwise modify chlorophyll biosynthesis, has been examined to see whether the toxic effects of Pb on photosynthetic pigments could also be modified by these effectors. 16 refs., 4 tabs.

  14. A Microplate Growth Inhibition Assay for Screening Bacteriocins against Listeria monocytogenes to Differentiate Their Mode-of-Action

    PubMed Central

    Vijayakumar, Paul Priyesh; Muriana, Peter M.

    2015-01-01

    Lactic acid bacteria (LAB) have historically been used in food fermentations to preserve foods and are generally-recognized-as-safe (GRAS) by the FDA for use as food ingredients. In addition to lactic acid; some strains also produce bacteriocins that have been proposed for use as food preservatives. In this study we examined the inhibition of Listeria monocytogenes 39-2 by neutralized and non-neutralized bacteriocin preparations (Bac+ preps) produced by Lactobacillus curvatus FS47; Lb. curvatus Beef3; Pediococcus acidilactici Bac3; Lactococcus lactis FLS1; Enterococcus faecium FS56-1; and Enterococcus thailandicus FS92. Activity differences between non-neutralized and neutralized Bac+ preps in agar spot assays could not readily be attributed to acid because a bacteriocin-negative control strain was not inhibitory to Listeria in these assays. When neutralized and non-neutralized Bac+ preps were used in microplate growth inhibition assays against L. monocytogenes 39-2 we observed some differences attributed to acid inhibition. A microplate growth inhibition assay was used to compare inhibitory reactions of wild-type and bacteriocin-resistant variants of L. monocytogenes to differentiate bacteriocins with different modes-of-action (MOA) whereby curvaticins FS47 and Beef3, and pediocin Bac3 were categorized to be in MOA1; enterocins FS92 and FS56-1 in MOA2; and lacticin FLS1 in MOA3. The microplate bacteriocin MOA assay establishes a platform to evaluate the best combination of bacteriocin preparations for use in food applications as biopreservatives against L. monocytogenes. PMID:26111195

  15. Role of exogenously supplied ferulic and p-coumaric acids in mimicking the mode of action of acetolactate synthase inhibiting herbicides.

    PubMed

    Orcaray, Luis; Igal, María; Zabalza, Ana; Royuela, Mercedes

    2011-09-28

    Chlorsulfuron and imazethapyr (herbicides that inhibit acetolactate synthase; ALS, EC 4.1.3.18) produced a strong accumulation of hydroxycinnamic acids that was related to the induction of the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 2.5.2.54). The exogenous application of two hydroxycinnamic acids, ferulic and p-coumaric acids, to pea plants resulted in their internal accumulation, arrested growth, carbohydrate and quinate accumulation in the leaves, and the induction of ethanolic fermentation. These effects resemble some of the physiological effects detected after acetolactate synthase inhibition and suggest important roles for ferulic and p-coumaric acids in the mode of action of herbicides inhibiting the biosynthesis of branched chain amino acids. PMID:21870840

  16. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    SciTech Connect

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.; Juutilainen, Timo; Kovanen, Petri T.; Eklund, Kari K. . E-mail: kari.eklund@hus.fi

    2006-08-18

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured in the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.

  17. In hydrolyzed cow's milk Helicobacter pylori becomes nonculturable and the growth of Salmonella typhi and Escherichia coli is inhibited.

    PubMed

    Orozco, A; Ogura, T; Hirosawa, T; Garduño, R; Kubo, I

    2007-10-01

    The colony forming unit (CFU) of H. pylori is reduced rapidly in lipase hydrolyzed cow's milk and a similar reduction was found in a physiological saline solution when it was supplemented with soluble C4 to C10 fatty acids of milk fat composition. Slight CFU decreases were observed for E. coli and S. typhi in hydrolyzed milk buffered to pH 3, while the counts in milk and physiological saline solution at pH 3 stayed almost unchanged for 24 h. E. coli proliferated in glucose-peptone medium, better at pH 4.7 than at pH 3. On the other hand, supplementation of the medium with soluble fatty acids of milk composition completely inhibited growth for 32 h. Supplementation of the medium with fatty acids reduced the growth of S. typhi to approximately 1/20 at pH 4.7. Therefore, milk hydrolyzed by gastric lipase may damage H. pylori, producing a nonculturable state. With E. coli and S. typhi, hydrolyzed milk does not induce inactivation to a nonculturable state but inhibits their proliferation potently. The latter is considered to be a state prior to VBNC (viable but nonculturable). However, the antibiotic effect will disappear when the fatty acids are absorbed by the intestine. PMID:17995610

  18. Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host

    PubMed Central

    Casu, Rosanne; Eisemann, Craig; Pearson, Roger; Riding, George; East, Iain; Donaldson, Alan; Cadogan, Lee; Tellam, Ross

    1997-01-01

    Many insects feed on blood or tissue from mammalian hosts. One potential strategy for the control of these insects is to vaccinate the host with antigens derived from the insect. The larvae of the fly Lucilia cuprina feed on ovine tissue and tissue fluids causing a cutaneous myiasis associated with considerable host morbidity and mortality. A candidate vaccine antigen, peritrophin 95, was purified from the peritrophic membrane, which lines the gut of these larvae. Serum from sheep vaccinated with peritrophin 95 inhibited growth of first-instar L. cuprina larvae that fed on this serum. Growth inhibition was probably caused by antibody-mediated blockage of the normally semipermeable peritrophic membrane and the subsequent development of an impervious layer of undefined composition on the gut lumen side of the peritrophic membrane that restricted access of nutrients to the larvae. The amino acid sequence of peritrophin 95 was determined by cloning the DNA complementary to its mRNA. The deduced amino acid sequence codes for a secreted protein containing a distinct Cys-rich domain of 317 amino acids followed by a mucin-like domain of 139 amino acids. The Cys-rich domain may be involved in binding chitin. This report describes a novel immunological strategy for the potential control of L. cuprina larvae that may have general application to the control of other insect pests. PMID:9256413

  19. Inhibition of prostate cancer growth by muscadine grapeskin extract and resveratrol through distinct mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytochemicals are naturally occurring compounds with demonstrated anti-tumor activities. The phytochemical resveratrol, contained in red grapes, has been shown to inhibit prostate cancer cell growth, potentially through its anti-oxidant activity. Muscadine grapes contain different phytochemical con...

  20. The growth and tumor suppressor NORE1A is a cytoskeletal protein that suppresses growth by inhibition of the ERK pathway.

    PubMed

    Moshnikova, Anna; Frye, Judson; Shay, Jerry W; Minna, John D; Khokhlatchev, Andrei V

    2006-03-24

    NORE1A is a growth and tumor suppressor that is inactivated in a variety of cancers. NORE1A has been shown to bind to the active Ras oncogene product. However, the mechanism of NORE1A-induced growth arrest and tumor suppression remains unknown. Using anchorage-independent growth assays, we mapped the NORE1A effector domain (the minimal region of the protein responsible for its growth-suppressive effects) to the fragment containing the central and Ras association domains of NORE1A (amino acids 191-363). Expression of the NORE1A effector domain in A549 lung adenocarcinoma cells resulted in the selective inhibition of signal transduction through the ERK pathway. The full-length NORE1A (416 amino acids) and its fragments capable of growth suppression were localized to centrosomes and microtubules in normal and transformed human cells in a Ras-independent manner. A mutant that was deficient in binding to centrosomes and microtubules was also deficient in inducing cell cycle arrest. This suggests that cytoskeletal localization is required for growth-suppressive effects of NORE1A. Ras binding function was required for growth-suppressive effects of the full-length NORE1A but not for the growth-suppressive effects of the effector domain. Our studies suggest that association of NORE1A with cytoskeletal elements is essential for NORE1A-induced growth suppression and that the ERK pathway is a target for NORE1A growth-suppressive activities. PMID:16421102

  1. Effects of geranylgeranoic acid in bone: induction of osteoblast differentiation and inhibition of osteoclast formation.

    PubMed

    Wang, Xinxiang; Wu, Jian; Shidoji, Yoshihiro; Muto, Yasutoshi; Ohishi, Nobuko; Yagi, Kunio; Ikegami, Sachie; Shinki, Toshimasa; Udagawa, Nobuyuki; Suda, Tatsuo; Ishimi, Yoshiko

    2002-01-01

    Retinoids are known to be of special importance for normal bone growth and development. Recently, we reported that retinoids not only induced osteoblast differentiation, but also inhibited osteoclast formation in vitro. In this study, we examined the osteogenic effects of geranylgeranoic acid (GGA), a chemically synthesized acyclic retinoid, in bone in vitro and in vivo. GGA not only suppressed proliferation of osteoblastic MC3T3-E1 cells, but also up-regulated differentiation markers of osteoblasts such as alkaline phosphatase (ALP) activity and expression of osteopontin (OP) messenger RNA (mRNA). In contrast, GGA inhibited osteoclast formation induced by 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] in cocultures of mouse bone marrow cells and primary osteoblasts. Treatment of stromal ST2 cells with GGA restored the 1alpha,25(OH)2D3- or prostaglandin E2 (PGE2)-induced suppression of osteoprotegerin (OPG) mRNA expression. GGA inhibited osteoclast formation induced by macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of nuclear factor kappaB ligand (sRANKL) in the culture of bone marrow macrophages. Thus, it is likely that GGA inhibits osteoclast formation by affecting both osteoblasts and osteoclast progenitors in the coculture system. Furthermore, in vivo, GGA increased bone mineral density (BMD) of total as well as distal femur in a P6 strain of senescence-accelerated mice (SAMP6). These results indicate that GGA increases bone mass by maintaining a positive balance of bone turnover by inducing osteoblast differentiation and suppressing osteoclast formation. PMID:11771673

  2. Lysophosphatidic Acid Prevents Renal Ischemia-Reperfusion Injury by Inhibition of Apoptosis and Complement Activation

    PubMed Central

    de Vries, Bart; Matthijsen, Robert A.; van Bijnen, Annemarie A. J. H. M.; Wolfs, Tim G. A. M.; Buurman, Wim A.

    2003-01-01

    Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure as observed after renal transplantation, major surgery, trauma, and septic as well as hemorrhagic shock. We previously showed that the inhibition of apoptosis is protective against renal I/R injury, indicating that apoptotic cell-death is an important feature of I/R injury. Lysophosphatidic acid (LPA) is an endogenous phospholipid growth factor with anti-apoptotic properties. This tempted us to investigate the effects of exogenous LPA in a murine model of renal I/R injury. LPA administered at the time of reperfusion dose dependently inhibited renal apoptosis as evaluated by the presence of internucleosomal DNA cleavage. I/R-induced renal apoptosis was only present in tubular epithelial cells with evident disruption of brush border as assessed by immunohistochemistry for active caspase-7 and filamentous actin, respectively. LPA treatment specifically prevented tubular epithelial cell apoptosis but also reduced the I/R-induced loss of brush-border integrity. Besides, LPA showed strong anti-inflammatory effects, inhibiting the renal expression of tumor necrosis factor-α and abrogating the influx of neutrophils. Next, LPA dose dependently inhibited activation of the complement system. Moreover, treatment with LPA abrogated the loss of renal function in the course of renal I/R. This study is the first to show that administration of the phospholipid LPA prevents I/R injury, abrogating apoptosis and inflammation. Moreover, exogenous LPA is capable of preventing organ failure because of an ischemic insult and thus may provide new means to treat clinical conditions associated with I/R injury in the kidney and potentially also in other organs. PMID:12819010

  3. Anaerobic Growth of Corynebacterium glutamicum via Mixed-Acid Fermentation

    PubMed Central

    Michel, Andrea; Koch-Koerfges, Abigail; Krumbach, Karin; Brocker, Melanie

    2015-01-01

    Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions. PMID:26276118

  4. Inhibition of Growth of Salmonella by Native Flora of Broiler Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Some bacteria in the cecal microflora of broilers can inhibit colonization of chicks by Salmonella. Beneficial cecal bacteria may reduce Salmonella colonization by competing for nutrients and attachment sites or by producing metabolites that inhibit Salmonella growth. The purpose of th...

  5. N-acetylcysteine inhibits germination of conidia and growth of Aspergillus spp. and Fusarium spp.

    PubMed Central

    De Lucca, A J; Walsh, T J; Daigle, D J

    1996-01-01

    N-Acetylcysteine inhibited hyphal growth and germination of conidia of Aspergillus spp. and Fusarium spp. N-Acetylcysteine inhibited conidial germination as well as or better than L-cysteine. Cysteine-related compounds may provide a potential therapeutic strategy against agriculturally and medically important fungal pathogens. PMID:8723482

  6. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987 ; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  7. Corrosion inhibition of steel in concrete by carboxylic acids

    SciTech Connect

    Sagoe-Crentsil, K.K.; Glasser, F.P. . Dept. of Chemistry); Yilmaz, V.T. )

    1993-11-01

    Water soluble carboxylic acids have been used as corrosion inhibitors. They remain largely soluble after curing in cement for up to 90d. Corrosion current measurements are presented showing malonic acid, a dicarboxylic acid, to be a very effective corrosion inhibitor even in the presence of 2.5 wt % chloride. Unfortunately, it has an initial retarding effect on the set of Portland cement. The investigation suggests that corrosion inhibitors based on carboxylic acids remain a fruitful field of investigation.

  8. Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration

    PubMed Central

    Zhu, Shengming; Wang, Jiangang; Xie, Bingkun; Luo, Zhiguo; Lin, Xiukun; Liao, D. Joshua

    2015-01-01

    Acute febrile infections have historically been used to treat cancer. To explore the underlying mechanism, we studied chronic effects of fever on cancer cell growth and chemotherapeutic efficacy in cell culture. We found that culturing cancer cells at 39°C mildly inhibited cell growth by arresting the cells at the G1 phase of the cell cycle. When cells were seeded in culture dishes at a lower density, e.g. about 1000–2000 cells per 35-mm dish, the growth inhibition was much greater, manifested as many fewer cell colonies in the 39°C dishes, compared with the results at a higher density seeding, e.g. 20,000 cells per dish, suggesting that cell-cell collaboration as the Allee effect in cell culture is inhibited at 39°C. Withdrawal of cells from serum enhanced the G1 arrest at 39°C and, for some cell lines such as A549 lung cancer cells, serum replenishment failed to quickly drive the cells from the G1 into the S and G2-M phases. Therapeutic effects of several chemotherapeutic agents, including clove bud extracts, on several cancer cell lines were more potent at 39°C than at 37°C, especially when the cells were seeded at a low density. For some cell lines and some agents, this enhancement is long-lasting, i.e. continuing after the cessation of the treatment. Collectively these results suggest that hyperthermia may inhibit cancer cell growth by G1 arrest and by inhibition of cell-cell collaboration, and may enhance the efficacy of several chemotherapeutic agents, an effect which may persist beyond the termination of chemotherapy. PMID:26495849

  9. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    PubMed Central

    Hannon, Patrick R.; Brannick, Katherine E.; Wang, Wei; Gupta, Rupesh K.; Flaws, Jodi A.

    2015-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1-100μg/ml) for 24-96 hr to establish the temporal effects of DEHP on the follicle. Following 24-96 hr of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydorxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. PMID:25701202

  10. Bile acid inhibition of taurocholate uptake by rat hepatocytes: role of OH groups

    SciTech Connect

    Bellentani, S.; Hardison, W.G.M.; Marchegiano, P.; Zanasi, G.; Manenti, F.

    1987-03-01

    To define further the structural specificity of the taurocholate uptake site, the authors studied the ability of a variety of taurine-conjugated bile acids with differing hydroxyl substituents on the sterol moiety to inhibit (/sup 14/C) taurocholate uptake. Rat hepatocytes isolated by collagenase perfusion were incubated in a tris (hydroxymethyl) aminomethane-phosphate buffer containing (/sup 14/C)taurocholate in the presence or absence of inhibitor bile acid. Stronger inhibitors were studied at a fixed concentration of 5 ..mu..M, weaker ones at 25 ..mu..M. Initial uptake velocity was measured. Uptake velocity could then be related to taurocholate concentration and a V/sub max/ and K/sub m/ could be determined by applying a nonlinear least squares fit to the data obtained with or without inhibitor. The kinetic parameters allowed the determination of the type of inhibition and of inhibition constants (K/sub i/) of the various test bile acids. The data indicate that bile acids containing a 6- or 7-OH group exhibit competitive inhibition, whereas bile acids with no 6- or 7-OH group exhibit noncompetitive inhibition. Of the compounds exhibiting competitive inhibition, K/sub i/ varied with the number of hydroxyl groups on the sterol moiety. They conclude that the presence of absence of a 6- or 7-OH group dictates the mechanism of inhibition; the number of hydroxyl substituents determines the potency of competitive inhibition.

  11. Inhibition of Staphylococcus aureus growth on tellurite-containing media by Lactobacillus reuteri Is dependent on CyuC and thiol production.

    PubMed

    Turner, Mark S; Lo, Raquel; Giffard, Philip M

    2007-02-01

    Lactobacillus reuteri inhibits Staphylococcus aureus growth on Baird-Parker agar. This activity required the presence of tellurite and was not shared with other lactic acid bacteria or an L. reuteri mutant defective in cystine metabolism. Secreted products generated from L. reuteri cystine metabolism and thiols were shown to augment tellurite toxicity. PMID:17142372

  12. Hypergravity inhibits elongation growth of azuki bean epicotyls independently of the direction of stimuli

    NASA Astrophysics Data System (ADS)

    Soga, K.; Wakabayashi, K.; Kamisaka, S.; Hoson, T.

    We examined the effects of basipetal, horizontal, and acropetal hypergravity stimulation on growth and cell wall properties of azuki bean seedlings. Horizontal and acropetal hypergravity inhibited elongation growth of epicotyls by decreasing the cell wall extensibility, as did basipetal hypergravity. Hypergravity stimulation increased the thickness of cell walls and suppressed xyloglucan breakdown regardless of direction. All hypergravity treatments increased the pH in the apoplastic fluid, which is involved in the processes of the suppression of xyloglucan breakdown. Gadolinium and lanthanum, both blockers of mechanoreceptors, nullified the growth-inhibiting effects of hypergravity. These results show that growth inhibition by hypergravity is independent of its direction in azuki bean epicotyls. The findings also suggest that mechanoreceptors on the plasma membrane perceive the gravity signal independently of its direction, and affect growth of azuki bean epicotyls.

  13. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines.

    PubMed

    Enomoto, Masanobu; Tsuchida, Akihiko; Miyazawa, Keisuke; Yokoyama, Tomohisa; Kawakita, Hideaki; Tokita, Hiromi; Naito, Munekazu; Itoh, Masahiro; Ohyashiki, Kazuma; Aoki, Tatsuya

    2007-12-01

    Vitamin K2 (MK4) has antitumor effects on various types of cancer cell lines in vitro, and its efficacy has also been reported in clinical applications for patients with leukemia, myelodysplastic syndrome, and hepatocellular carcinoma (HCC). However, details of the mechanism of the antitumor effects of MK4 remain unclear. In the present study, we examined the antitumor effects of MK4 on cholangiocellular carcinoma (CCC) cell lines and its mechanism of action using the HL-60 leukemia cell line that exerts MK4-induced cell growth inhibition via apoptosis induction and cell cycle arrest as a control. MK4 exerted dose-dependent antitumor effects on all three types of CCC cell lines. However, apoptosis occurred in a smaller percentage of cells and there was less cell cycle arrest compared with other cancer cell lines studied previously, which suggested slight MK4-induced cell growth inhibition via apoptosis induction and cell cycle arrest. On the contrary, histopathological fidings showed a large number of cells containing vacuoles in their cytoplasm, and electron microscopic findings showed a large number of cytoplasmic autophagosomes and autolysosomes. These findings suggested evidence of autophagy-related cell death. Fluorescence microscopy following acridine orange staining revealed an increase in the number of cytoplasmic acidic vesicular organelles characteristic of autophagy. Moreover, there were few cells forming autophagic vesicles in the control group, while the percentage of cells containing vacuoles in the MK4-treated group increased with the duration of culture. These results suggested that, unlike in leukemia, gastric cancer, HCC, and other cancer cells, the antitumor effects of MK4 on CCC cells are induced via autophagy formation. PMID:17982686

  14. THIAMINE AND NICOTINIC ACID: ANAEROBIC GROWTH FACTORS FOR MUCOR ROUXII

    PubMed Central

    Bartnicki-Garcia, S.; Nickerson, Walter J.

    1961-01-01

    Bartnicki-Garcia, S. (Rutgers, the State University, New Brunswick, N. J.), and Walter J. Nickerson. Thiamine and nicotinic acid: Anaerobic growth factors for Mucor rouxii. J. Bacteriol. 82:142–148. 1961.—Mucor rouxii requires preformed thiamine and nicotinic acid for anaerobic growth. Such requirements are not manifested during aerobic incubation. Aerobically, the fungus was shown to be able to synthesize both vitamins. The yeastlike form and the filamentous form of anaerobically grown M. rouxii exhibit the same vitamin requirements. Thiamine can be substituted by its thiazole moiety. Under certain conditions, nicotinic acid was partly substituted by tryptophan, kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid. Anaerobically. the fungus (thiamine requiring) was about ten times more susceptible to pyrithiamine antagonism than the same organism grown aerobically (thiamine independent). PMID:16561911

  15. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    PubMed

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-01

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB strains and resulted in the production of the polyporic acid, here ascertained in LAB strains. PMID:26827290

  16. Anti-angiogenic activity of conjugated linoleic acid on basic fibroblast growth factor-induced angiogenesis.

    PubMed

    Moon, Eun-Joung; Lee, You Mie; Kim, Kyu-Won

    2003-01-01

    Conjugated linoleic acid (CLA) is a potent inhibitor of mammary carcinogenesis. Cancer cells produce various angiogenic factors which stimulate host vascular endothelial cell mitogenesis and chemotaxis for their growth and metastasis. Basic fibroblast growth factor (bFGF) is a potent angiogenic factor that is expressed in many tumors. In this study, we found that CLA decreased bFGF-induced endothelial cell proliferation and DNA synthesis in a dose-dependent manner. However, CLA did not inhibit endothelial cell migration. Furthermore, CLA showed a potent inhibitory effect on embryonic vasculogenesis and bFGF-induced angiogenesis in vivo. Collectively, these results suggest that CLA selectively inhibits the active proliferating endothelial cells induced by bFGF, which may explain its anti-carcinogenic properties in vivo. PMID:12684633

  17. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways.

    PubMed

    Li, Li; Lin, Jiumao; Sun, Guodong; Wei, Lihui; Shen, Aling; Zhang, Mingyue; Peng, Jun

    2016-06-01

    Angiogenesis is an essential process of cancer progression and is regulated by multiple intracellular signaling pathways, including signal transducer and activator of transcription 3 (STAT3) and sonic hedgehog (SHH). Thus, these pathways have become a promising target for anti‑cancer therapeutic strategies. Oleanolic acid (OA) is an active compound present in various herbal medicines, which have been used historically for the clinical treatment of various types of human malignancies, including colorectal cancer (CRC). The present study used a CRC mouse xenograft model and human umbilical vein endothelial cells (HUVECs) to evaluate the effect of OA on tumor angiogenesis and on the activation of the STAT3 and SHH signaling pathways. It was determined that OA treatment significantly inhibited tumor growth and reduced intratumoral microvessel density (MVD) in CRC mice. In addition, OA treatment inhibited the proliferation, migration and tube formation in HUVECs, in a dose and time-dependent manner. Furthermore, OA markedly suppressed the activation of the STAT3 and SHH signaling pathways and inhibited the expression of the pro‑angiogenic vascular endothelial growth factor A and basic fibroblast growth factor, two important target genes of the aforementioned signaling pathways. Therefore it is suggested that inhibition of tumor angiogenesis via the suppression of multiple signaling pathways may be one of the underlying mechanisms by which OA exerts its anti-cancer effect. PMID:27108756

  18. Mis-regulation of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase does not account for growth inhibition by phenylalanine in Agmenellum quadruplicatum.

    PubMed

    Jensen, R A; Stenmark-Cox, S; Ingram, L O

    1974-12-01

    The growth of the blue-green bacterium, Agmenellum quadruplicatum, is inhibited in the presence of l-phenylalanine. This species has a single, constitutively synthesized 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase. l-Phenylalanine inhibits DAHP synthetase non-competitively with respect to both substrate reactants. Other aromatic amino acids do not inhibit the activity of DAHP synthetase. A common expectation for branch-point enzymes such as DAHP synthetase is a balanced pattern of feedback control by all of the ultimate end products. It seemed likely that growth inhibition might equate with defective regulation within the branched aromatic pathway. Accordingly, the possibility was examined that mis-regulation of DAHP synthetase by l-phenylalanine in wild-type cells causes starvation for precursors of the other aromatic end products. However, the molecular basis for growth inhibition cannot be attributed to l-phenylalanine inhibition of DAHP synthetase for the following reasons: (i) DAHP synthetase enzymes from l-phenylalanine-resistant mutants are more, rather than less, sensitive to feedback inhibition by l-phenylalanine. (ii) Shikimate not only fails to antagonize inhibition, but is itself inhibitory. (iii) Neither the sensitivity nor the completeness of l-phenylalanine inhibition of the wild-type enzyme in vitro appears sufficient to account for the potent inhibition of growth in vivo by l-phenylalanine. The dominating effect of l-phenylalanine in the control of DAHP synthetase appears to reflect a mechanism that prevents rather than causes growth inhibition by l-phenylalanine. The alteration of the control of DAHP synthetase in mutants selected for resistance to growth inhibition by l-phenylalanine did indicate that the cause for this metabolite vulnerability can be localized within the aromatic amino acid pathway. Apparently, an aromatic intermediate (between shikimate and the end products) accumulates in the presence of l-phenylalanine, causing toxicity by some unknown mechanism. It is concluded that phenylpyruvate, potentially formed by transamination of l-phenylalanine, is an unlikely cause of growth inhibition. Although several significant questions remain unanswered, our results suggest that single-effector control of DAHP synthetase, the first regulatory enzyme activity of a branched pathway, may be more appropriate than it would seem a priori. PMID:4215792

  19. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    SciTech Connect

    Cuadrado, Irene; Estevez-Braun, Ana; Instituto Canario de Investigaciones del Cáncer ; Heras, Beatriz de las

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  20. Inhibition of endometrial cancer by n-3 polyunsaturated fatty acids in preclinical models.

    PubMed

    Zheng, Hang; Tang, Hongjun; Liu, Miao; He, Minhong; Lai, Pinglin; Dong, Heling; Lin, Jun; Jia, Chunhong; Zhong, Mei; Dai, Yifan; Bai, Xiaochun; Wang, Liping

    2014-08-01

    Although preclinical and epidemiologic studies have shown the importance of n-3 polyunsaturated fatty acids (PUFA) in the prevention of hormone-responsive cancers such as breast cancer, evidence of the association between n-3 PUFAs and endometrial cancer risk is limited and no previous study has examined the effect of n-3 PUFAs on endometrial cancer in cellular and animal models. In this study, we demonstrated that docosahexenoic acid (DHA) dose- and time-dependently inhibited endometrial cancer cell proliferation, colony formation, and migration and promoted apoptosis. Dietary n-3 PUFAs efficiently prevented endometrial cancer cell growth in xenograft models. Moreover, ectopic expression of fat-1, a desaturase, catalyzed the conversion of n-6 to n-3 PUFAs and produced n-3 PUFAs endogenously, also suppressed endometrial tumor cell growth and migration, and potentiated apoptosis in endometrial cancer cell lines. Interestingly, implanted endometrial cancer cells were unable to grow in fat-1 transgenic SCID mice. Further study revealed that mTOR signaling, which plays an essential role in cell proliferation and endometrial tumorigenesis, is a target of n-3 PUFAs. Exogenous or endogenous n-3 PUFAs efficiently suppressed both mTOR complex 1 (mTORC1) and mTORC2 in vitro and in vivo. Moreover, both dietary n-3 PUFAs and transgenic expression of fat-1 in mice effectively repressed mTORC1/2 signaling and endometrial growth elicited by unopposed estrogen. Taken together, our findings provide comprehensive preclinical evidences that n-3 PUFAs efficiently prevent endometrial cancer and establish mTORC1/2 as a target of n-3 PUFAs. PMID:24866178

  1. BRD4 inhibitor inhibits colorectal cancer growth and metastasis.

    PubMed

    Hu, Yuan; Zhou, Jieqiong; Ye, Fei; Xiong, Huabao; Peng, Liang; Zheng, Zihan; Xu, Feihong; Cui, Miao; Wei, Chengguo; Wang, Xinying; Wang, Zhongqiu; Zhu, Hongfa; Lee, Peng; Zhou, Mingming; Jiang, Bo; Zhang, David Y

    2015-01-01

    Post-translational modifications have been identified to be of great importance in cancers and lysine acetylation, which can attract the multifunctional transcription factor BRD4, has been identified as a potential therapeutic target. In this paper, we identify that BRD4 has an important role in colorectal cancer; and that its inhibition substantially wipes out tumor cells. Treatment with inhibitor MS417 potently affects cancer cells, although such effects were not always outright necrosis or apoptosis. We report that BRD4 inhibition also limits distal metastasis by regulating several key proteins in the progression of epithelial-to-mesenchymal transition (EMT). This effect of BRD4 inhibitor is demonstrated via liver metastasis in animal model as well as migration and invasion experiments in vitro. Together, our results demonstrate a new application of BRD4 inhibitor that may be of clinical use by virtue of its ability to limit metastasis while also being tumorcidal. PMID:25603177

  2. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    PubMed Central

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  3. Nitrate Inhibition of Legume Nodule Growth and Activity 1

    PubMed Central

    Streeter, John G.

    1985-01-01

    Soybean plants (Glycine max [L.] Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR+ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR− rhizobia appeared to be too low to explain the inhibition of nitrogenase. Carbohydrate composition was similar in control nodules and nodules receiving 15 millimolar nitrate suggesting that the inhibition of nitrogenase by nitrate was not related to the availability of carbohydrate. Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N2 fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR+ and one NR−. The high nitrate treatment did not affect the allantoate/allantoin ratio or the proportion of amino N or ureide N in bacteroids (4%) and cytosol (96%). PMID:16664052

  4. Comparison of the level of cellular retinoid-binding proteins and susceptibility to retinoid-induced growth inhibition of various neoplastic cell lines.

    PubMed

    Lotan, R; Ong, D E; Chytil, F

    1980-05-01

    The presence and level of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) were determined in several neoplastic cell lines. These cells exhibited different degrees of susceptibility to growth inhibition in culture by two retinoids, retinyl acetate and retinoic acid. CRABP was detected in 10 and CRBP in 3 of the 11 tested cell lines. The levels of CRBP and CRABP were in the ranges 15-3,400 and 4-1,290 pmol per 10(9) cells, respectively, as determined by sucrose gradient centrifugation. Cell lines that contained CRABP included S91 and B16 melanomas; Mm5mT and DMBA No. 8 mammary adenocarcinomas; BW5147, BW5147.RicR, and P3 neoplastic lymphoid cells; F361.2 (a hybrid cell line obtained by fusion of MSV3T3 and BW5147); MSV3T3 sarcoma; and RAW8 lymphosarcoma. All but the last two cell lines were inhibited by retinoic acid in culture. CRBP was detected in extracts of S91, Mm5mT, and RAW8. Retinyl acetate inhibited the growth of all cell lines with the exception of RAW8, MSV3T3, and F361.2. No correlation was found between the level of either binding protein and the extent of growth inhibition by either retinyl acetate or retinoic acid. Neither of the binding proteins was detected in L1210-A5 leukemia cells, whose proliferation can be inhibited by both retinyl acetate and retinoic acid. These data indicated that screening cell lines for the presence and level of CRBP and CRABP is not sufficient to predict the susceptibility of cultured cells to growth inhibition by retinoids. PMID:6929023

  5. miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2

    PubMed Central

    Xiao, Lan; Rao, Jaladanki N.; Zou, Tongtong; Liu, Lan; Cao, Shan; Martindale, Jennifer L.; Su, Weijie; Chung, Hee Kyoung; Gorospe, Myriam; Wang, Jian-Ying

    2013-01-01

    The epithelium of the intestinal mucosa is a rapidly self-renewing tissue in the body, and defects in the renewal process occur commonly in various disorders. microRNAs (miRNAs) posttranscriptionally regulate gene expression and are implicated in many aspects of cellular physiology. Here we investigate the role of miRNA-29b (miR-29b) in the regulation of normal intestinal mucosal growth and further validate its target mRNAs. miRNA expression profiling studies reveal that growth inhibition of the small intestinal mucosa is associated with increased expression of numerous miRNAs, including miR-29b. The simple systemic delivery of locked nucleic acidmodified, antimiR-29b-reduced endogenous miR-29b levels in the small intestinal mucosa increases cyclin-dependent kinase 2 (CDK2) expression and stimulates mucosal growth. In contrast, overexpression of the miR-29b precursor in intestinal epithelial cells represses CDK2 expression and results in growth arrest in G1 phase. miR-29b represses CDK2 translation through direct interaction with the cdk2 mRNA via its 3?-untranslated region (3?-UTR), whereas point mutation of miR-29b binding site in the cdk2 3?-UTR prevents miR-29binduced repression of CDK2 translation. These results indicate that miR-29b inhibits intestinal mucosal growth by repressing CDK2 translation. PMID:23904268

  6. A mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing

    SciTech Connect

    Hung, K.M.; Hill, A.D.; Sepehrnoorl, K.

    1989-01-01

    A mathematical model that describes the growth and competition of wormholes during ann acidizing treatment in a carbonate formation was developed. The model is initialized with the distribution of largest pores. Wormhole characteristics (size, length, and distribution) were found too be controlled by acid-injection, diffusion, and fluid-loss rates.

  7. Luteolin inhibits the growth and arylamine N-acetyl-transferase activity in Neisseria gonorrhoeae.

    PubMed

    Tsou, M F; Chen, G W; Hung, C F; Yeh, F T; Chang, H L; Lu, H F; Chung, J G

    2001-01-01

    Growth inhibition and arylamine N-acetyltransferase (NAT) activity in Neisseria gonorrhoeae were inhibited by luteolin, a drug which originated from herbs. The growth inhibition was based on changes in optical density (OD) using a spectrophotometer, and arylamine NAT activity with 2-aminofluorene (2-AF) was determined using high pressure liquid chromatography. The inhibition of growth in N. gonorrhoeae demonstrated that luteolin elicited a dose-dependent growth inhibition in the N. gonorrhoeae cultures. Suspensions of N. gonorrhoeae with or without specific concentrations of luteolin cotreatment showed different percentages of 2-AF acetylation. The data indicated that there was reduced NAT activity associated with increased levels of luteolin in N. gonorrhoeae suspensions. Time-course experiments showed that NAT activity measured from intact N. gonorrhoeae cells was inhibited by luteolin for at least 4 h. Using standard steady-state kinetic analysis, it was demonstrated that luteolin was a possible uncompetitive inhibitor to NAT activity in N. gonorrhoeae. This report is the first to show that luteolin can inhibit N. gonorrhoeae NAT activity. PMID:11297015

  8. Bestatin Inhibits Cell Growth, Cell Division, and Spore Cell Differentiation in Dictyostelium discoideum

    PubMed Central

    Poloz, Yekaterina; Catalano, Andrew

    2012-01-01

    Bestatin methyl ester (BME) is an inhibitor of Zn2+-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn2+-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaA?NLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA. PMID:22345351

  9. Effects of humic acids on the growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. V.; Yakushev, A. V.; Zavgorodnyaya, Yu. A.; Byzov, B. A.; Demin, V. V.

    2010-03-01

    The influence of humic acids of different origins on the growth of bacterial cultures of different taxa isolated from the soil and the digestive tracts of earthworms ( Aporrectodea caliginosa)—habitats with contrasting conditions—was studied. More than half of the soil and intestinal isolates from the 170 tested strains grew on the humic acid of brown coal as the only carbon source. The specific growth rate of the bacteria isolated from the intestines of the earthworms was higher than that of the soil bacteria. The use of humic acids by intestinal bacteria confirms the possibility of symbiotic digestion by earthworms with the participation of bacterial symbionts. Humic acids at a concentration of 0.1 g/l stimulated the growth of the soil and intestinal bacteria strains (66 strains out of 161) on Czapek’s medium with glucose (1 g/l), probably, acting as a regulator of the cell metabolism. On the medium with the humic acid, the intestinal bacteria grew faster than the soil isolates did. The most active growth of the intestinal isolates was observed by Paenibacillus sp., Pseudomonas putida, Delftia acidovorans, Microbacterium terregens, and Aeromonas sp.; among the soil ones were the representatives of the Pseudomonas genus. A response of the bacteria to the influence of humic acids was shown at the strain level using the example of Pseudomonas representatives. The Flexom humin preparation stimulated the growth of the hydrocarbon-oxidizing Acinetobacter sp. bacteria. This effect can be used for creating a new compound with the elevated activity of bacteria that are destroyers of oil and oil products.

  10. Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth

    PubMed Central

    Shi, Dingbo; Wang, Jingshu; Zhang, Changlin; Peng, Ruoyu; Chen, Xuezhen; Liu, Congcong; Chen, Yiming; Huang, Wenlin; Deng, Wuguo

    2016-01-01

    Pyruvate dehydrogenase kinase-1 (PDK1), a key metabolic enzyme involved in aerobic glycolysis, is highly expressed in many solid tumors. Small molecule compound DAP (2,2-dichloroacetophenone) is a potent inhibitor of PDK1. Whether targeting PDK1 with DAP can inhibit acute myeloid leukemia (AML) and how it works remains unknown. In this study, we evaluated the effect of inhibition of PDK1 with DAP on cell growth, apoptosis and survival in AML cells and identified the underlying mechanisms. We found that treatment with DAP significantly inhibited cell proliferation, increased apoptosis induction and suppressed autophagy in AML cells in vitro, and inhibited tumor growth in an AML mouse model in vivo. We also showed that inhibition of PDK1 with DAP increased the cleavage of pro-apoptotic proteins (PARP and Caspase 3) and decreased the expression of the anti-apoptotic proteins (BCL-xL and BCL-2) and autophagy regulators (ULK1, Beclin-1 and Atg). In addition, we found that DAP inhibited the PI3K/Akt signaling pathway. Furthermore, we demonstrated that PDK1 interacted with ULK1, BCL-xL and E3 ligase CBL-b in AML cells, and DPA treatment could inhibit the interactions. Collectively, our results indicated that targeting PDK1 with DAP inhibited AML cell growth via multiple signaling pathways and suggest that targeting PDK1 may be a promising therapeutic strategy for AMLs. PMID:26593251

  11. Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth.

    PubMed

    Qin, Lijun; Tian, Yun; Yu, Zhenlong; Shi, Dingbo; Wang, Jingshu; Zhang, Changlin; Peng, Ruoyu; Chen, Xuezhen; Liu, Congcong; Chen, Yiming; Huang, Wenlin; Deng, Wuguo

    2016-01-12

    Pyruvate dehydrogenase kinase-1 (PDK1), a key metabolic enzyme involved in aerobic glycolysis, is highly expressed in many solid tumors. Small molecule compound DAP (2,2-dichloroacetophenone) is a potent inhibitor of PDK1. Whether targeting PDK1 with DAP can inhibit acute myeloid leukemia (AML) and how it works remains unknown. In this study, we evaluated the effect of inhibition of PDK1 with DAP on cell growth, apoptosis and survival in AML cells and identified the underlying mechanisms. We found that treatment with DAP significantly inhibited cell proliferation, increased apoptosis induction and suppressed autophagy in AML cells in vitro, and inhibited tumor growth in an AML mouse model in vivo. We also showed that inhibition of PDK1 with DAP increased the cleavage of pro-apoptotic proteins (PARP and Caspase 3) and decreased the expression of the anti-apoptotic proteins (BCL-xL and BCL-2) and autophagy regulators (ULK1, Beclin-1 and Atg). In addition, we found that DAP inhibited the PI3K/Akt signaling pathway. Furthermore, we demonstrated that PDK1 interacted with ULK1, BCL-xL and E3 ligase CBL-b in AML cells, and DPA treatment could inhibit the interactions. Collectively, our results indicated that targeting PDK1 with DAP inhibited AML cell growth via multiple signaling pathways and suggest that targeting PDK1 may be a promising therapeutic strategy for AMLs. PMID:26593251

  12. Hepatocyte growth factor inhibits intrinsic antibacterial activity of Madin-Darby canine kidney cells.

    PubMed

    Wade, Brian K; Burrus, Jason K; Balkovetz, Daniel F

    2004-01-01

    We investigated whether or not polarized renal epithelial cells produce antibacterial factors, which aid in host defense at the cell surface of renal epithelium. A model of polarized Madin-Darby canine kidney (MDCK) epithelial cells grown on filters was used to test for the presence of apically or basolaterally secreted factors on the growth of non-virulent (XL1-Blue) and uropathogenic (J96) strains of Escherichia coli (E. coli). Growth of both XL1-Blue and J96 strains of E. coli in medium on the apical and basolateral surface of MDCK cells was inhibited as compared to bacterial growth in medium not exposed to MDCK cells. The inhibition of bacterial growth was similar in both apical and basolateral surface medium. Pretreatment of MDCK cells with hepatocyte growth factor (HGF) blunted the inhibition of XL1-Blue and J96 growth in apical and basolateral surface medium as compared to growth in medium on the surfaces of untreated MDCK cells. Immunofluorescent analysis demonstrated the presence of beta-defensin isoforms 1-3 in MDCK cells, with isoform 1 being the most prevalent form observed. HGF treatment reduced the amount of immunoreactive beta-defensin-1 in MDCK cells. These data demonstrate that polarized renal epithelium produce antibacterial factors. The renotropic growth factor HGF inhibits these antibacterial factors. beta-defensins may contribute to this antibacterial activity and play an important role in renal epithelial resistance to bacterial infections. PMID:14738893

  13. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    EPA Science Inventory

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.
    Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  14. Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA.

    PubMed

    Celiker, M Y; Wang, M; Atsidaftos, E; Liu, X; Liu, Y E; Jiang, Y; Valderrama, E; Goldberg, I D; Shi, Y E

    2001-07-19

    Extracellular matrix (ECM) degrading matrix metalloproteinases (MMPs) lead to ECM turnover, a key event in cancer growth and progression. The tissue inhibitors of matrix metalloproteinases (TIMPs) limit the activity of MMPs, which suggests their use for cancer gene therapy. Here we report that systemic administration of naked TIMP-4 DNA significantly inhibited Wilms' tumor growth in nude mice. TIMP-4, whose expression was lost in Wilms' tumor, inhibited the growth of G401 Wilms' tumor cells at a concentration lower than those required for MMP inhibition. This inhibition was associated with internalization of exogenous recombinant TIMP-4. Electroporation-mediated intramuscular injection of TIMP-4 expression plasmid resulted in sustained plasma TIMP-4 levels and significant tumor suppression. Our data demonstrate a tumor suppressive effect of TIMP-4 against Wilms' tumor and the potential utility of intramuscular delivery of TIMP gene for treatment of kidney derived cancers. PMID:11466614

  15. Inhibition of Campylobacter coli and Campylobacter jejuni by antibiotics used in selective growth media.

    PubMed Central

    Ng, L K; Stiles, M E; Taylor, D E

    1985-01-01

    The ability of Campylobacter coli and Campylobacter jejuni to grow in the presence of antibiotics used in selective growth media was compared. MIC data for C. coli indicated that some strains were more susceptible to the antibiotics than were the C. jejuni strains tested. A reduction of greater than 1 log cycle in the numbers of cells growing on plates containing antibiotics was considered to be a marked level of inhibition. Only one of nine of the antibiotic combinations studied did not markedly inhibit most of the C. coli strains tested. Although one C. coli strain was not inhibited by any of the antibiotic combinations, the other six strains were inhibited for up to 7 log cycles. The addition of blood or growth supplements reduced but did not eliminate the inhibitory effect. The inhibition of laboratory strains of C. coli on media developed for the isolation of Campylobacter spp. indicates that the incidence of C. coli may be underestimated. PMID:4077962

  16. Inhibition of Growth of Salmonella typhimurium and of Threonine Deaminase and Transaminase B by β-Chloroalanine

    PubMed Central

    Arfin, Stuart M.; Koziell, David A.

    1971-01-01

    β-Chloro-l-alanine (CA) was found to inhibit the growth of Salmonella typhimurium. The inhibition was overcome by isoleucine plus valine. CA inhibited the activity of threonine deaminase and transaminase B in vitro. The inhibition of threonine deaminase was reversible and was not affected by desensitization to isoleucine inhibition. Transaminase B was irreversibly inactivated. Derepression of some of the isoleucine and valine biosynthetic enzymes was achieved by growth of wild-type cells on low levels of CA. PMID:5541528

  17. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    NASA Technical Reports Server (NTRS)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  18. Growth and citirc-acid production by Candida guilliermondii using a cellulose substrate

    SciTech Connect

    Asenjo, J.A.; Szuhay, J.; Chiu, D.

    1982-01-01

    Growth and citric-acid production by Candida guilliermondii were studied first on glucose and then on an enzymatic hydrolysate of Solka Floc. Sequential and simultaneous saccharification and fermentation have been carried out. The production of citric acid was increased by limiting the level of nitrogen in the media and thus controlling growth. The direct bioconversion (simultaneous process), which is expected to circumvent end-product inhibition of the saccharification, gave a threefold increase in the yield of biomass but not substantial effect on the production of citrate was observed. The behavior of the Candida cells as well as fermentation conditions in a cell recycle bioreactor were also investigated. Cell concentrations of 70 to 130 g/L were recycled using a microporous membrane with a small specific filtration area. 4 figures, 2 tables.

  19. Cytokine-induced inhibition of Plasmodium falciparum erythrocytic growth in vitro.

    PubMed Central

    Orago, A S; Facer, C A

    1993-01-01

    The addition of recombinant cytokines to Plasmodium falciparum in vitro cultures retarded the growth of the parasite with the effect of recombinant IL-2 (rIL-2) > interferon-gamma (IFN-gamma) > tumour necrosis factor-beta (TNF-beta). The process was concentration dependent, being greatest at 30,000 U/ml and required a 72-h period of continuous exposure for maximum effect. Growth inhibition, as determined morphologically and radiometrically, was a consequence of defective schizont maturation rather than inhibition of merozoite invasion. It was cumulative and detectable within one erythrocytic (48 h) growth cycle. Images Fig. 2 PMID:8428394

  20. Monensin inhibits growth of bacterial contaminants from fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of commercial fermentation cultures by lactic acid bacteria (LAB) is a common and costly problem to the fuel ethanol industry. Virginiamycin (VIR) and penicillin (PEN) are frequently used to control bacterial contamination but extensive use of antibiotics may select for strains with d...

  1. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts.

    PubMed

    Palmqvist, E; Grage, H; Meinander, N Q; Hahn-Hägerdal, B

    1999-04-01

    The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (YEtOH) of Saccharomyces cerevisiae, bakers' yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2(3)-full factorial design with 3 centrepoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers' yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural (2 g L-1) and the lignin derived compound p-hydroxybenzoic acid (2 g L-1) did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data (the p-values of curvatures were 0.048 for NJ 23 and 0.091 for bakers' yeast). Based on the results from the 2(3)-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate (mu), biomass yield (Yx), volumetric ethanol productivity (QEtOH), and YEtOH. Bakers' yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates. The inoculum size was reduced in the extended experiment to reduce any increase in inhibitor tolerance that might be due to a large cell inoculum. By dividing the experiment in blocks containing fermentations performed with the same inoculum preparation on the same day, much of the anticipated systematic variation between the experiments was separated from the experimental error. The results of the fitted model can be summarised as follows: mu was decreased by furfural (0-3 g L-1). Furfural and acetic acid (0-10 g L-1) also interacted negatively on mu. Furfural concentrations up to 2 g L-1 stimulated Yx in the absence of acetic acid whereas higher concentrations decreased Yx. The two compounds interacted negatively on Yx and YEtOH. Acetic acid concentrations up to 9 g L-1 stimulated QEtOH, whereas furfural (0-3 g L-1) decreased QEtOH. Acetic acid in concentrations up to 10 g L-1 stimulated YEtOH in the absence of furfural, and furfural (0-2 g L-1) slightly increased YEtOH in the absence of acetic acid whereas higher concentrations caused inhibition. Acetic acid and furfural interacted negatively on YEtOH. PMID:10099580

  2. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations.

    PubMed Central

    Luli, G W; Strohl, W R

    1990-01-01

    The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH. PMID:2187400

  3. Proximity-Dependent Inhibition of Growth of Mannheimia haemolytica by Pasteurella multocida

    PubMed Central

    Bavananthasivam, Jegarubee; Dassanayake, Rohana P.; Kugadas, Abirami; Shanthalingam, Sudarvili; Call, Douglas R.; Knowles, Donald P.

    2012-01-01

    Mannheimia haemolytica, Pasteurella multocida, and Bibersteinia trehalosi have been identified in the lungs of pneumonic bighorn sheep (BHS; Ovis canadensis). Of these pathogens, M. haemolytica has been shown to consistently cause fatal pneumonia in BHS under experimental conditions. However, M. haemolytica has been isolated by culture less frequently than the other bacteria. We hypothesized that the growth of M. haemolytica is inhibited by other bacteria in the lungs of BHS. The objective of this study was to determine whether P. multocida inhibits the growth of M. haemolytica. Although in monoculture both bacteria exhibited similar growth characteristics, in coculture with P. multocida there was a clear inhibition of growth of M. haemolytica. The inhibition was detected at mid-log phase and continued through the stationary phase. When cultured in the same medium, the growth of M. haemolytica was inhibited when both bacteria were separated by a membrane that allowed contact (pore size, 8.0 μm) but not when they were separated by a membrane that limited contact (pore size, 0.4 μm). Lytic bacteriophages or bactericidal compounds could not be detected in the culture supernatant fluid from monocultures of P. multocida or from P. multocida-M. haemolytica cocultures. These results indicate that P. multocida inhibits the growth of M. haemolytica by a contact- or proximity-dependent mechanism. If the inhibition of growth of M. haemolytica by P. multocida occurs in vivo as well, it could explain the inconsistent isolation of M. haemolytica from the lungs of pneumonic BHS. PMID:22798357

  4. MAG, myelin and overcoming growth inhibition in the CNS

    PubMed Central

    McKerracher, Lisa; Rosen, Kenneth M.

    2015-01-01

    While neurons in the central nervous system (CNS) have the capacity to regenerate their axons after injury, they fail to do so, in part because regeneration is limited by growth inhibitory proteins present in CNS myelin. Myelin-associated glycoprotein (MAG) was the first myelin-derived growth inhibitory protein identified, and its inhibitory activity was initially elucidated in 1994 independently by the Filbin lab and the McKerracher lab using cell-based and biochemical techniques, respectively. Since that time we have gained a wealth of knowledge concerning the numerous growth inhibitory proteins that are present in myelin, and we also have dissected many of the neuronal signaling pathways that act as stop signs for axon regeneration. Here we give an overview of the early research efforts that led to the identification of myelin-derived growth inhibitory proteins, and the importance of this family of proteins for understanding neurotrauma and CNS diseases. We further provide an update on how this knowledge has been translated towards current clinical studies in regenerative medicine. PMID:26441514

  5. GROWTH OF CAMPYLOBACTER ON MEDIA SUPPLEMENTED WITH ORGANIC ACIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter spp. are the main cause of bacterial foodborne illnesses in humans, and contaminated poultry products are major sources of campylobacteriosis. In this study, the growth of Campylobacter spp. in media supplemented with organic acids was examined. Tryptose-yeast extract basal broth mediu...

  6. GROWTH OF CAMPYLOBACTER ON MEDIA SUPPLEMENTED WITH ORGANIC ACIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter spp. are the main cause of bacteria foodborne illnesses in humans, and contaminated poultry products are major sources of campylobaceriosis. In this study, the growth of Campylobacter spp. in media supplemented with organic acids was examined. Trypose-yeast extract basal broth medium w...

  7. Dual mechanisms for telomerase inhibition in DLD-1 human colorectal adenocarcinoma cells by polyunsaturated fatty acids.

    PubMed

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2004-01-01

    Polyunsaturated fatty acids (PUFAs) have been reported to have antitumor activity. In this study, we have tested whether telomerase might be a target for the antitumor effect of fatty acids using DLD-1 colorectal adenocarcinoma cells. In a cell-free approach, fatty acids were added directly to cell lysates, and we confirmed that increasing fatty acid unsaturation correlates with increased inhibition of telomerase activity. Using a cell culture approach, DLD-1 cells were cultured with fatty acids. In a time and dose dependent manner, EPA and DHA suppressed cellular telomerase activity and the mRNAs encoding hTERT (human telomerase reverse transcriptase) and c-myc. Based on these observations, we suggest that PUFAs inhibit telomerase activity through dual mechanisms: direct inhibition of enzymatic activity and down regulation of hTERT, one of the telomerase components. PMID:15630164

  8. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    SciTech Connect

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  9. Verbascoside Inhibits Promastigote Growth and Arginase Activity of Leishmania amazonensis.

    PubMed

    Maquiaveli, Claudia C; Lucon-Júnior, João F; Brogi, Simone; Campiani, Giuseppe; Gemma, Sandra; Vieira, Paulo C; Silva, Edson R

    2016-05-27

    Verbascoside (1) is a phenylethanoid glycoside that has antileishmanial activity against Leishmania infantum and Leishmania donovani. In this study, we verified the activity of 1 on Leishmania amazonensis and arginase inhibition. Compound 1 showed an EC50 of 19 μM against L. amazonensis promastigotes and is a competitive arginase inhibitor (Ki = 0.7 μM). Docking studies were performed to assess the interaction of 1 with arginase at the molecular level. Arginase is an enzyme of the polyamine biosynthesis pathway that is important to parasite infectivity, and the results of our study suggest that 1 could be useful to develop new approaches for treating leishmaniasis. PMID:27096224

  10. Boric acid application guidelines for intergranular corrosion inhibition

    SciTech Connect

    Piskor, S.R. . Nuclear Services Div.)

    1990-12-01

    A significant fraction of the operating Pressurized Water Reactor steam generators have used or are using boric acid as an inhibitor to control stress corrosion cracking, intergranular attack, or denting. Boric acid is applied on line, or by means of crevice flushing, low power soaks, or a combination of these methods. When boric acid is used, it is important to have knowledge about its chemical and physical properties, its effect on corrosion, and its correct application. The data on these subjects may be found in a diversity of sources, which are often not readily available or convenient to use. In addition, new information has recently become available. This report has been prepared and revised to be comprehensive treatise on boric acid relevant to its application in nuclear steam generators. Relevant boric acid information from 1987--89 has been added to provide the latest available data from laboratory testing and power plant application. 5 figs.

  11. Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition

    PubMed Central

    Xu, Shihao; Spencer, Cody M.

    2015-01-01

    ABSTRACT Oncogenesis is frequently accompanied by