Sample records for acids leucine isoleucine

  1. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies.

    PubMed

    Birech, Zephania; Mwangi, Peter Waweru; Bukachi, Fredrick; Mandela, Keith Makori

    2017-01-01

    Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.)Chiov. Sprague Dawley (SD) rat's blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm-1), leucine (1106, 1248, 1302, 1395 cm-1) and isolecucine (1108, 1248, 1437 and 1585 cm-1) were observed. The Raman bands centered at 1125 cm-1, 1395 cm-1 and 1437 cm-1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.)Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm-1), leucine (1395 cm-1) and isoleucine (1437 cm-1) in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds) diabetes and pre-diabetes screening in blood (human or rat's) with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for performing comparative

  2. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies

    PubMed Central

    Mwangi, Peter Waweru; Bukachi, Fredrick; Mandela, Keith Makori

    2017-01-01

    Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.)Chiov. Sprague Dawley (SD) rat’s blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm−1), leucine (1106, 1248, 1302, 1395 cm−1) and isolecucine (1108, 1248, 1437 and 1585 cm−1) were observed. The Raman bands centered at 1125 cm−1, 1395 cm−1 and 1437 cm−1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.)Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm−1), leucine (1395 cm−1) and isoleucine (1437 cm−1) in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds) diabetes and pre-diabetes screening in blood (human or rat’s) with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for

  3. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers.

    PubMed

    Ullrich, Sina S; Fitzgerald, Penelope Ce; Schober, Gudrun; Steinert, Robert E; Horowitz, Michael; Feinle-Bisset, Christine

    2016-11-01

    The branched-chain amino acids leucine and isoleucine lower blood glucose after oral glucose ingestion, and the intraduodenal infusion of leucine decreases energy intake in healthy, lean men. We investigated the effects of the intragastric administration of leucine and isoleucine on the gastric emptying of, and blood glucose responses to, a physiologic mixed-macronutrient drink and subsequent energy intake. In 2 separate studies, 12 healthy, lean subjects received on 3 separate occasions an intragastric infusion of 5 g leucine (leucine-5g) or an intragastric infusion of 10 g leucine (leucine-10g), an intragastric infusion of 5 g isoleucine (isoleucine-5g) or an intragastric infusion of 10 g isoleucine (isoleucine-10g), or a control. Fifteen minutes later, subjects consumed a mixed-nutrient drink (400 kcal, 56 g carbohydrates, 15 g protein, and 12 g fat), and gastric emptying ( 13 C-acetate breath test) and blood glucose, plasma insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (leucine study only) were measured for 60 min. Immediately afterward, energy intake from a cold, buffet-style meal was assessed. Compared with the control, leucine-10g decreased the blood glucose area under the curve (AUC) (P < 0.05) and tended to reduce peak blood glucose (P = 0.07), whereas effects of leucine-5g were NS. Leucine-10g, but not leucine-5g, increased plasma insulin and C-peptide AUCs (P < 0.01 for both), but neither dose affected glucagon, GLP-1, GIP, cholecystokinin, gastric emptying, or energy intake. Compared with the control, isoleucine-10g reduced the blood glucose AUC and peak blood glucose (P < 0.01), whereas effects of isoleucine-5g were NS. Neither load affected insulin, C-peptide, glucagon, GLP-1, or GIP. Isoleucine-10g, but not isoleucine-5g, slowed gastric emptying (P < 0.05), but gastric emptying was not correlated with the blood glucose AUC. Isoleucine did not affect energy intake

  4. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide.

    PubMed

    Kaiser, Julienne C; King, Alyssa N; Grigg, Jason C; Sheldon, Jessica R; Edgell, David R; Murphy, Michael E P; Brinsmade, Shaun R; Heinrichs, David E

    2018-01-01

    Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

  5. An EThcD-Based Method for Discrimination of Leucine and Isoleucine Residues in Tryptic Peptides

    NASA Astrophysics Data System (ADS)

    Zhokhov, Sergey S.; Kovalyov, Sergey V.; Samgina, Tatiana Yu.; Lebedev, Albert T.

    2017-08-01

    An EThcD-based approach for the reliable discrimination of isomeric leucine and isoleucine residues in peptide de novo sequencing procedure has been proposed. A multistage fragmentation of peptide ions was performed with Orbitrap Elite mass spectrometer in electrospray ionization mode. At the first stage, z-ions were produced by ETD or ETcaD fragmentation of doubly or triply charged peptide precursor ions. These primary ions were further fragmented by HCD with broad-band ion isolation, and the resulting w-ions showed different mass for leucine and isoleucine residues. The procedure did not require manual isolation of specific z-ions prior to HCD stage. Forty-three tryptic peptides (3 to 27 residues) obtained by trypsinolysis of human serum albumin (HSA) and gp188 protein were analyzed. To demonstrate a proper solution for radical site migration problem, three non-tryptic peptides were also analyzed. A total of 93 leucine and isoleucine residues were considered and 83 of them were correctly identified. The developed approach can be a reasonable substitution for additional Edman degradation procedure, which is still used in peptide sequencing for leucine and isoleucine discrimination.

  6. Isoleucine/leucine2 is essential for chemoattractant activity of beta-defensin Defb14 through chemokine receptor 6.

    PubMed

    Tyrrell, Christine; De Cecco, Martin; Reynolds, Natalie L; Kilanowski, Fiona; Campopiano, Dominic; Barran, Perdita; Macmillan, Derek; Dorin, Julia R

    2010-03-01

    Beta-defensins are both antimicrobial and able to chemoattract various immune cells including immature dendritic cells and CD4 T cells through CCR6. They are short, cationic peptides with a highly conserved six-cysteine motif. It has been shown that only the fifth cysteine is critical for chemoattraction of cells expressing CCR6. In order to identify other residues essential for functional interaction with CCR6 we used a library of peptide deletion derivatives based on Defb14. Loss of the initial two amino acids from the Defb14-1C(V) derivative destroys its ability to chemoattract cells expressing CCR6. As the second amino acid is an evolutionarily conserved leucine, we make full-length Defb14-1C(V) peptides with substitution of the leucine(2) for glycine (L2G), lysine (L2K) or isoleucine (L2I). Defb14-1C(V) L2G and L2K and are unable to chemoattract CCR6 expressing cells but the semi-conservative change L2I has activity. By circular dichroism spectroscopy we can see no evidence for a significant change in secondary structure as a consequence of these substitutions and so cannot attribute loss of chemotactic activity with disruption of the N-terminal helix. We conclude that isoleucine/leucine in the N-terminal alpha-helix region of this beta-defensin is essential for CCR6-mediated chemotaxis. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Changes in plasma phenylalanine, isoleucine, leucine, and valine are associated with significant changes in intracranial pressure and jugular venous oxygen saturation in patients with severe traumatic brain injury.

    PubMed

    Vuille-Dit-Bille, Raphael N; Ha-Huy, Riem; Stover, John F

    2012-09-01

    Changes in plasma aromatic amino acids (AAA = phenylalanine, tryptophan, tyrosine) and branched chain amino acids (BCAA = isoleucine, leucine, valine) levels possibly influencing intracranial pressure (ICP) and cerebral oxygen consumption (SjvO(2)) were investigated in 19 sedated patients up to 14 days following severe traumatic brain injury (TBI). Compared to 44 healthy volunteers, jugular venous plasma BCAA were significantly decreased by 35% (p < 0.001) while AAA were markedly increased in TBI patients by 19% (p < 0.001). The BCAA to AAA ratio was significantly decreased by 55% (p < 0.001) which persisted during the entire study period. Elevated plasma phenylalanine was associated with decreased ICP and increased SjvO(2), while higher plasma isoleucine and leucine levels were associated with increased ICP and higher plasma leucine and valine were linked to decreased SjvO(2). The amount of enterally administered amino acids was associated with significantly increased plasma levels with the exception of phenylalanine. Contrary to the initial assumption that elevated AAA and decreased BCAA levels are detrimental, increased plasma phenylalanine levels were associated with beneficial signs in terms of decreased ICP and reduced cerebral oxygen consumption reflected by increased SjvO(2); concomitantly, elevated plasma isoleucine and leucine levels were associated with increased ICP while leucine and valine were associated with decreased SjvO(2) following severe TBI, respectively. The impact of enteral nutrition on this observed pattern must be examined prospectively to determine if higher amounts of phenylalanine should be administered to promote beneficial effects on brain metabolism and if normalization of plasma BCAA levels is without cerebral side effects.

  8. Enzymes of the Isoleucine-Valine Pathway in Acinetobacter

    PubMed Central

    Twarog, Robert

    1972-01-01

    Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase. PMID:4669215

  9. Identification, Purification, and Characterization of a Novel Amino Acid Racemase, Isoleucine 2-Epimerase, from Lactobacillus Species

    PubMed Central

    Mutaguchi, Yuta; Ohmori, Taketo; Wakamatsu, Taisuke; Doi, Katsumi

    2013-01-01

    Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position. PMID:24039265

  10. Leucine and alpha-Ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The branched-chain amino acid, leucine, acts as a nutrient signal to stimulate protein synthesis in skeletal muscle of young pigs. However, the chemical structure responsible for this effect has not been identified. We have shown that the other branched-chain amino acids, isoleucine and valine, are ...

  11. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins.

    PubMed

    Tugarinov, Vitali; Venditti, Vincenzo; Marius Clore, G

    2014-01-01

    A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

  12. First observation of N-acetyl leucine and N-acetyl isoleucine in diabetic patient hair and quantitative analysis by UPLC-ESI-MS/MS.

    PubMed

    Min, Jun Zhe; Tomiyasu, Yuki; Morotomi, Takashi; Jiang, Ying-Zi; Li, Gao; Shi, Qing; Yu, Hai-Fu; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2015-04-15

    Type 2 diabetes patients (DP) have significantly higher plasma levels of valine, leucine, isoleucine and alanine than the controls. Specific amino acids may acutely and chronically regulate insulin secretion from the pancreatic β-cells. We recently identified a metabolic signature of N-acetyl leucine (Ac-Leu) that strongly predicts diabetes development in mice hair. The Ac-Leu appears to be a potential biomarker candidate related to diabetes. However, the determination of Ac-Leu in human hair has not been reported. We measured the Ac-Leu, and its structure is similar to N-acetyl isoleucine (Ac-Ile) in human hair by ultra-performance liquid chromatography (UPLC) with electrospray ionization tandem mass spectrometry (ESI-MS/MS). The developed method was applied to the determination of Ac-Leu and Ac-Ile in the hair of healthy volunteers (HV) and DP. Ac-Leu, Ac-Ile and N-acetyl norleucine (Ac-Nle, IS) were extracted from human hair samples by a micropulverized extraction procedure, then separated on a C18 column by isocratic elution of acetonitrile-0.1% formic acid in water:0.1% formic acid (14:86, vol./vol.). MRM using the fragmentation transitions of m/z 174.1→86.1 in the positive ESI mode was performed to quantify the N-acetyl leucine, N-acetyl isoleucine and IS. Ac-Leu, Ac-Ile and Ac-Nle in the human hair samples were completely separated by isocratic elution of a 5.0 min duration wash program using a reversed-phase column, and sensitively detected by LC-MS/MS in the ESI(+) MRM mode. The amounts of Ac-Leu and Ac-Ile in the hairs of HV and DP were determined. When comparing the concentrations between DP and those from HV, a statistically significant correlation was observed for the Ac-Leu (p<0.001) and Ac-Ile (p<0.01). The proposed method is useful for the determination of Ac-Leu and Ac-Ile in the hairs of DP and HV. Human hair may serve as a noninvasive biosample for the diagnosis of diabetes. Crown Copyright © 2015. Published by Elsevier B.V. All rights

  13. Leucine acts as a nutrient signal to stimulate protein synthesis

    USDA-ARS?s Scientific Manuscript database

    The postprandial rise in amino acids and insulin independently stimulates protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to amino acids. We have shown that the postprandial rise in leucine, but not isoleucine or valine, acutely stimulates muscle pro...

  14. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states.

    PubMed

    Holecek, Milan; Siman, Pavel; Vodenicarovova, Melita; Kandar, Roman

    2016-01-01

    Many people believe in favourable effects of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine), especially leucine, on muscle protein balance and consume BCAAs for many years. We determined the effects of the chronic intake of a BCAA- or leucine-enriched diet on protein and amino acid metabolism in fed and postabsorptive states. Rats were fed a standard diet, a diet with a high content of valine, leucine, and isoleucine (HVLID), or a high content of leucine (HLD) for 2 months. Half of the animals in each group were sacrificed in the fed state on the last day, and the other half were sacrificed after overnight fast. Protein synthesis was assessed using the flooding dose method (L-[3,4,5-(3)H]phenylalanine), proteolysis on the basis of chymotrypsin-like activity (CHTLA) of proteasome and cathepsin B and L activities. Chronic intake of HVLID or HLD enhanced plasma levels of urea, alanine and glutamine. HVLID also increased levels of all three BCAA and branched-chain keto acids (BCKA), HLD increased leucine, ketoisocaproate and alanine aminotransferase and decreased valine, ketovaline, isoleucine, ketoisoleucine, and LDL cholesterol. Tissue weight and protein content were lower in extensor digitorum longus muscles in the HLD group and higher in kidneys in the HVLID and HLD groups. Muscle protein synthesis in postprandial state was higher in the HVLID group, and CHTLA was lower in muscles of the HVLID and HLD groups compared to controls. Overnight starvation enhanced alanine aminotransferase activity in muscles, and decreased protein synthesis in gastrocnemius (in HVLID group) and extensor digitorum longus (in HLD group) muscles more than in controls. Effect of HVLID and HLD on CHTLA in muscles in postabsorptive state was insignificant. The results failed to demonstrate positive effects of the chronic consumption of a BCAA-enriched diet on protein balance in skeletal muscle and indicate rather negative effects from a leucine-enriched diet. The primary

  15. An isoleucine to leucine mutation that switches the cofactor requirement of the EcoRV restriction endonuclease from magnesium to manganese.

    PubMed

    Vipond, I B; Moon, B J; Halford, S E

    1996-02-13

    The EcoRV restriction endonuclease cleaves DNA at its recognition sequence more readily with Mg2+ as the cofactor than with Mn2+ but, at noncognate sequences that differ from the EcoRV site by one base pair, Mn2+ gives higher rates than Mg2+. A mutant of EcoRV, in which an isoleucine near the active site was replaced by leucine, showed the opposite behavior. It had low activity with Mg2+, but, in the presence of Mn2+ ions, it cleaved the recognition site faster than wild-type EcoRV with either Mn2+ or Mg2+. The mutant was also more specific for the recognition sequence than the native enzyme: the noncognate DNA cleavages by wild-type EcoRV and Mn2+ were not detected with the mutant. Further mutagenesis showed that the protein required the same acidic residues at its active site as wild-type EcoRV. The Ile-->Leu mutation seems to perturb the configuration of the metal-binding ligands at the active site so that the protein has virtually no affinity for Mg2+ yet it can still bind Mn2+ ions, though the latter only occurs when the protein is at the recognition site. This contrasts to wild-type EcoRV, where Mn2+ ions bind readily to complexes with either cognate and noncognate DNA and only Mg2+ shows the discrimination between the complexes. The structural perturbation is a specific consequence of leucine in place of isoleucine, since mutants with valine or alanine were similar to wild-type EcoRV.

  16. Interactive effects of dietary leucine and isoleucine on growth, blood parameters, and amino acid profile of Japanese flounder Paralichthys olivaceus.

    PubMed

    Wang, Liping; Han, Yuzhe; Jiang, Zhiqiang; Sun, Menglei; Si, Bin; Chen, Fei; Bao, Ning

    2017-10-01

    A 60-day feeding trial was conducted to assess the interactions of dietary leucine (Leu) and isoleucine (Ile) on Japanese flounder. Fish of 2.69 ± 0.04 g were fed experimental diets containing two levels of Leu (2.58 and 5.08% of diet) combined with three levels of Ile (1.44, 2.21, and 4.44% of diet), respectively. After the feeding trial, growth, proximate composition, muscle total amino acid profile, blood parameters, mucus lysozyme activity, and stress tolerance to freshwater were measured. Statistically significant (P < 0.05) interactive effects of Leu and Ile were found on growth parameters (final body weight, body weight gain, and special growth rate) of Japanese flounder. Antagonism was discovered in high dietary Leu groups, while stimulatory effects were obtained for increased dietary Ile in low Leu groups. Interactive effects of these two branched-chain amino acids were also found on hepatosomatic index of test fish. In addition, crude lipid content of fish whole body was significantly altered by various diets, with antagonism observed in low dietary Leu groups. Interactive effects also existed in muscle amino acid profiles for low fish meal diets, but no interactive impacts were observed on blood parameters. Furthermore, lysozyme activities and freshwater stress were significantly affected by different diets. And antagonism was found on lysozyme activities in low Leu groups. Moreover, high Leu and high Ile levels of diet significantly altered freshwater stress tolerance of Japanese flounder. These findings suggested that dietary Leu and Ile can effect interactively, and fish fed with diets containing 2.58% Leu with 4.44% Ile and 5.08% Leu with 1.44% Ile showed better growth performance.

  17. Enteral leucine and protein synthesis in skeletal and cardiac muscle

    USDA-ARS?s Scientific Manuscript database

    There are three members of the Branch Chain Amino Acids: leucine, isoleucine, and valine. As essential amino acids, these amino acids have important functions which include a primary role in protein structure and metabolism. It is intriguing that the requirement for BCAA in humans comprise about 40–...

  18. Specific formation of negative ions from leucine and isoleucine molecules

    NASA Astrophysics Data System (ADS)

    Papp, Peter; Shchukin, Pavel; Matejčík, Štefan

    2010-01-01

    Dissociative electron attachment (DEA) to gas phase leucine (Leu) and isoleucine (Ile) molecules was studied using experimental and quantum-chemical methods. The relative partial cross sections for DEA have been measured using crossed electron/molecular beams technique. Supporting ab initio calculations of the structure, energies of neutral molecules, fragments, and negative ions have been carried out at G3MP2 and B3LYP levels in order to interpret the experimental data. Leu and Ile exhibit several common features. The negative ionic fragments from both molecules are formed in the electron energy range from 0 to approximately 14 eV via three resonances (1.2, 5.5, and 8 eV). The relative partial cross sections for DEA Leu and Ile are very similar. The dominant negative ions formed were closed shell negative ions (M-H)- (m/z=130) formed preferentially via low electron energy resonance of 1.23 eV. Additional negative ions with m/z=115, 114, 113, 112, 84, 82, 74, 45, 26, and 17 have been detected.

  19. Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition.

    PubMed

    Arrieta-Cruz, Isabel; Su, Ya; Gutiérrez-Juárez, Roger

    2016-02-15

    Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance.

  20. Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition

    PubMed Central

    Arrieta-Cruz, Isabel; Su, Ya; Gutiérrez-Juárez, Roger

    2016-01-01

    Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance. PMID:26891318

  1. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons.

    PubMed

    Bak, Lasse K; Johansen, Maja L; Schousboe, Arne; Waagepetersen, Helle S

    2012-09-01

    Synthesis of neuronal glutamate from α-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 μM), which results in release of vesicular glutamate. At the end of the superfusion experiment, the vesicular pool of glutamate was released by treatment with α-latrotoxin (3 nM, 5 min). This experimental paradigm allows a separate analysis of the cytoplasmic and vesicular pools of glutamate. Amount and extent of (15) N labeling of intracellular amino acids plus vesicular glutamate were analyzed employing HPLC and LC-MS analysis. Only when [(15) N]valine served as precursor did the labeling of both cytoplasmic and vesicular glutamate increase after synaptic activity. In addition, only [(15) N]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate. Copyright © 2012 Wiley Periodicals, Inc.

  2. Incorporation of leucine into phospholipids of Bacteroides thetaiotaomicron.

    PubMed Central

    Smith, R D; Salyers, A A

    1981-01-01

    L-[4,5-3H]- or L-[U-14C]leucine was incorporated by Bacteroides thetaiotaomicron into acid-precipitable material even when the bacteria were treated with concentrations of tetracycline high enough to prevent growth. Similar results were obtained when L-[2,3,4-3H]valine or L-[4,5-3H]isoleucine was used instead of leucine. In bacteria which had been treated with tetracycline, the acid-precipitable label was not solubilized by treatment with protease, lysozyme, or deoxyribonuclease. However, virtually all of the label was extractable with chloroform-methanol, indicating that the label had been incorporated into membrane lipids. Since L-[1-14C]leucine was not incorporated into lipids, leucine was probably decarboxylated before incorporation. When a chloroform extract from bacteria which had been labeled with both [32P]phosphate and [3H]leucine was resolved into component phospholipids by two-dimensional thin-layer chromatography, 3H was incorporated into all of the phospholipids. When these phospholipids were deacylated, the 3H from leucine was associated with released fatty acids rather than with the head groups. Thus, it appears that B. thetaiotaomicron can utilize leucine and similar amino acids not only by incorporating them into protein but also by incorporating portions of these amino acids into membrane phospholipids. PMID:7462155

  3. Theoretical study of the gas-phase structures of sodiated and cesiated leucine and isoleucine: zwitterionic structure disfavored in kinetic method experiments.

    PubMed

    Rozman, Marko

    2005-10-01

    The most stable charge-solvated (CS) and zwitterionic (ZW) structures of sodiated and cesiated leucine and isoleucine were studied by density functional theory methods. According to the Boltzmann distribution in gas phase, both forms of LeuNa+ and IleNa+ exist, but in LeuCs+ and IleCs+, the ZW forms are dominant. Results for the sodiated compounds are consistent with the relationship found between decrease in relative stability of CS versus ZW form and aliphatic amino acid side chain length. The observed degeneracy in energy for IleNa+ conformers is at odds with kinetic method results. Additional calculations showed that kinetic method structural determinations for IleNa+ do not reflect relative order of populations in the lowest energy conformers. Since complexation of cationized amino acids into ion-bound dimers disfavors ZW structure by approximately 8 kJ mol(-1), it is suggested that for energy close conformers of sodium-cationized amino acids, the kinetic method may not be reliable for structural determinations. Copyright (c) 2005 John Wiley & Sons, Ltd.

  4. Characterization of Bacillus thuringiensis l-Isoleucine Dioxygenase for Production of Useful Amino Acids▿†

    PubMed Central

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V.; Sokolov, Pavel M.; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-01-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  5. Effects of dietary excesses of branched-chain amino acids on the metabolism and tissue composition of lake trout (Salvelinus namaycush)

    USGS Publications Warehouse

    Hughes, S.G.; Rumsey, G.L.; Nesheim, M.C.

    1984-01-01

    1. Excesses of either leucine, isoleucine or valine were fed in separate experiments to determine if the branched-chain amino acid antagonism reported in other animals occur in trout (Salvelinus namaycush).2. Parameters measured include growth rate, feed utilization efficiency, plasma and muscle-free amino acids, carcass composition and branched-chain amino acid aminotransferase.3. Dietary excesses of leucine or isoleucine caused an increase in the valine requirement.4. The inability of leucine and isoleucine supplementations to ameliorate the effects of excess dietary valine are interpreted as a valine toxicity rather than an antagonism.

  6. Toxicity of leucine-containing peptides in Escherichia coli caused by circumvention of leucine transport regulation.

    PubMed Central

    Tavori, H; Kimmel, Y; Barak, Z

    1981-01-01

    A variety of leucine-containing peptides (LCP), Phe-Leu, Gly-Leu, Pro-Leu, Ala-Leu, Ala-Leu-Lys, Leu-Phe-Ala, Leu-Leu-Leu, and Leu-Gly-Gly, inhibited the growth of a prototrophic strain of Escherichia coli K-12 at concentrations between 0.05 and 0.28 mM. Toxicity requires normal uptake of peptides. When peptide transport was impaired by mutations, strains became resistant to the respective LCP. Inhibition of growth occurred immediately after the addition of LCP, and was relieved when 0.4 mM isoleucine was added. The presence of Gly-Leu in the medium correlated with the inhibition of growth, and the bacteria began to grow at the normal rate 70 min after Gly-Leu became undetectable. Disappearance of the peptide corresponded with the appearance of free leucine and glycine in the medium. The concentration of leucine inside the LCP-treated bacteria was higher than that in the leucine-treated and the control cultures. We suggest that entry of LCP into the cells via peptide transport systems circumvents the regulation of leucine transport, thereby causing abnormality high concentrations of leucine inside the cells. This accumulation of leucine interferes with the biosynthesis of isoleucine and inhibits the growth of the bacteria. Images PMID:7012134

  7. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid.

  8. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates

    PubMed Central

    Cole, Stephanie J.; Yoon, Alexander J.; Faull, Kym F.; Diener, Andrew C.

    2014-01-01

    Summary Three pathogenic forms, or formae speciales, of Fusarium oxysporum infect the roots of Arabidopsis thaliana belowground, instigating symptoms of wilt disease in leaves aboveground. In prior reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibit more or less wilt disease than wild type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene have no less infection than wild type, though they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis is infecting roots. Insensitivity to jasmonates suppresses infection by F. oxysporum forma specialis conglutinans and F. oxysporum forma specialis matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu) in culture filtrates; whereas, insensitivity to jasmonates has no effect on infection by F. oxysporum forma specialis raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum forma specialis lycopersici produces no detectable jasmonates. Thus, some but not all F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or development of symptoms in shoots. Only when infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis. PMID:24387225

  9. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  10. A quantitative tool to distinguish isobaric leucine and isoleucine residues for mass spectrometry-based de novo monoclonal antibody sequencing.

    PubMed

    Poston, Chloe N; Higgs, Richard E; You, Jinsam; Gelfanova, Valentina; Hale, John E; Knierman, Michael D; Siegel, Robert; Gutierrez, Jesus A

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  11. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates.

    PubMed

    Cole, Stephanie J; Yoon, Alexander J; Faull, Kym F; Diener, Andrew C

    2014-08-01

    Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild-type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild-type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  12. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  13. The 15N-leucine single-injection method allows for determining endogenous losses and true digestibility of amino acids in cecectomized roosters

    PubMed Central

    Hu, Rujiu; Li, Jing; Soomro, Rab Nawaz; Wang, Fei; Feng, Yan; Yang, Xiaojun

    2017-01-01

    This study was conducted to assess the influence of dietary protein content in poultry when using the 15N-leucine single-injection method to determine endogenous amino acid losses (EAALs) in poultry. Forty-eight cecectomized roosters (2.39 ± 0.23 kg) were randomly allocated to eight dietary treatments containing protein levels of 0, 3%, 6%, 9%, 12%, 15%, 18% and 21%. Each bird was precisely fed an experimental diet of 25 g/kg of body weight. After feeding, all roosters were subcutaneously injected with a 15N-leucine solution at a dose of 20 mg/kg of body weight. Blood was sampled 23 h after the injection, and excreta samples were continuously collected during the course of the 48-h experiment. The ratio of 15N-enrichment of leucine in crude mucin to free leucine in plasma ranged from 0.664 to 0.763 and remained relatively consistent (P > 0.05) across all treatments. The amino acid (AA) profiles of total endogenous AAs, except isoleucine, alanine, aspartic acid, cysteine, proline and serine, were not influenced (P > 0.05) by dietary protein contents. The predominant endogenous AAs in the excreta were glutamic acid, aspartic acid, threonine, serine and proline. The order of the relative proportions of these predominant AAs also remained relatively constant (P > 0.05). The endogenous losses of total AAs determined with the 15N-leucine single-injection method increased curvilinearly with the dietary protein contents. The true digestibility of most AAs and total AAs was independent of their respective dietary protein levels. Collectively, the 15N-leucine single-injection method is appropriate for determining EAALs and the true digestibility of AAs in poultry fed varying levels of protein-containing ingredients. PMID:29166671

  14. The 15N-leucine single-injection method allows for determining endogenous losses and true digestibility of amino acids in cecectomized roosters.

    PubMed

    Hu, Rujiu; Li, Jing; Soomro, Rab Nawaz; Wang, Fei; Feng, Yan; Yang, Xiaojun; Yao, Junhu

    2017-01-01

    This study was conducted to assess the influence of dietary protein content in poultry when using the 15N-leucine single-injection method to determine endogenous amino acid losses (EAALs) in poultry. Forty-eight cecectomized roosters (2.39 ± 0.23 kg) were randomly allocated to eight dietary treatments containing protein levels of 0, 3%, 6%, 9%, 12%, 15%, 18% and 21%. Each bird was precisely fed an experimental diet of 25 g/kg of body weight. After feeding, all roosters were subcutaneously injected with a 15N-leucine solution at a dose of 20 mg/kg of body weight. Blood was sampled 23 h after the injection, and excreta samples were continuously collected during the course of the 48-h experiment. The ratio of 15N-enrichment of leucine in crude mucin to free leucine in plasma ranged from 0.664 to 0.763 and remained relatively consistent (P > 0.05) across all treatments. The amino acid (AA) profiles of total endogenous AAs, except isoleucine, alanine, aspartic acid, cysteine, proline and serine, were not influenced (P > 0.05) by dietary protein contents. The predominant endogenous AAs in the excreta were glutamic acid, aspartic acid, threonine, serine and proline. The order of the relative proportions of these predominant AAs also remained relatively constant (P > 0.05). The endogenous losses of total AAs determined with the 15N-leucine single-injection method increased curvilinearly with the dietary protein contents. The true digestibility of most AAs and total AAs was independent of their respective dietary protein levels. Collectively, the 15N-leucine single-injection method is appropriate for determining EAALs and the true digestibility of AAs in poultry fed varying levels of protein-containing ingredients.

  15. Effects of running the Bostom Marathon on plasma concentrations of large neutral amino acids

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Wurtman, R. J.; Lopez G-Coviella, I.; Blusztajn, J. K.; Vacanti, C. A.; Logue, M.; During, M.; Caballero, B.; Maher, T. J.; Evoniuk, G.

    1989-01-01

    Plasma large neutral amino acid concentrations were measured in thirty-seven subjects before and after completing the Boston Marathon. Concentrations of tyrosine, phenylalanine, and methionine increased, as did their 'plasma ratios' (i.e., the ratio of each amino acid's concentration to the summed plasma concentrations of the other large neutral amino acids which compete with it for brain uptake). No changes were noted in the plasma concentrations of tryptophan, leucine, isoleucine, nor valine; however, the 'plasma ratios' of valine, leucine, and isoleucine all decreased. These changes in plasma amino acid patterns may influence neurotransmitter synthesis.

  16. Association between insulin resistance and plasma amino acid profile in non-diabetic Japanese subjects.

    PubMed

    Yamada, Chizumi; Kondo, Masumi; Kishimoto, Noriaki; Shibata, Takeo; Nagai, Yoko; Imanishi, Tadashi; Oroguchi, Takashige; Ishii, Naoaki; Nishizaki, Yasuhiro

    2015-07-01

    Elevation of the branched-chain amino acids (BCAAs), valine, leucine and isoleucine; and the aromatic amino acids, tyrosine and phenylalanine, has been observed in obesity-related insulin resistance. However, there have been few studies on Asians, who are generally less obese and less insulin-resistant than Caucasian or African-Americans. In the present study, we investigated the relationship between homeostasis model assessment of insulin resistance (HOMA-IR) and plasma amino acid concentration in non-diabetic Japanese participants. A total of 94 healthy men and women were enrolled, and plasma amino acid concentration was measured by liquid chromatography/mass spectrometry after overnight fasting. The associations between HOMA-IR and 20 amino acid concentrations, and anthropometric and clinical parameters of lifestyle-related diseases were evaluated. The mean age and body mass index were 40.1 ± 9.6 years and 22.7 ± 3.9, respectively. Significantly positive correlations were observed between HOMA-IR and valine, isoleucine, leucine, tyrosine, phenylalanine and total BCAA concentration. Compared with the HOMA-IR ≤ 1.6 group, the HOMA-IR > 1.6 group showed significantly exacerbated anthropometric and clinical parameters, and significantly elevated levels of valine, isoleucine, leucine, tyrosine, phenylalanine and BCAA. The present study shows that the insulin resistance-related change in amino acid profile is also observed in non-diabetic Japanese subjects. These amino acids include BCAAs (valine, isoleucine and leucine) and aromatic amino acids (tyrosine and phenylalanine), in agreement with previous studies carried out using different ethnic groups with different degrees of obesity and insulin resistance.

  17. Regulation of amino acid transport in Escherichia coli by transcription termination factor rho.

    PubMed

    Quay, S C; Oxender, D L

    1977-06-01

    Amino acid transport rates and amino acid binding proteins were examined in a strain containing the rho-120 mutation (formerly SuA), which has been shown to lower the rho-dependent, ribonucleic acid-activated adenosine triphosphatase activity to 9% of the rho activity in the isogenic wild-type strain. Tryptophan and proline transport, which occur by membrane-bound systems, were not altered. On the other hand, arginine, histidine, leucine, isoleucine, and valine transport were variably increased by a factor of 1.4 to 5.0. Kinetics of leucine transport showed that the LIV (leucine, isoleucine, and valine)-I (binding protein-associated) transport system is increased 8.5-fold, whereas the LIV-II (membrane-bound) system is increased 1.5-fold in the rho mutant under leucine-limited growth conditions. The leucine binding protein is increased fourfold under the same growth conditions. The difference in leucine transport in these strains was greatest during leucine-limited growth; growth on complex media repressed both strains to the same transport activity. We propose that rho-dependent transcriptional termination is important for leucine-specific repression of branched-chain amino acid transport, although rho-independent regulation, presumably by a corepressor-aporepressor-type mechanism, must also occur.

  18. Simultaneous determination of leucine, isoleucine and valine in Beagle dog plasma by HPLC-MS/MS and its application to a pharmacokinetic study.

    PubMed

    Wang, Ting; Xie, Huiru; Chen, Xu; Jiang, Xuehua; Wang, Ling

    2015-10-10

    Leucine (Leu), isoleucine (Ile) and valine (Val) are three branched-chain amino acids (BCAAs), which have been widely used as dietary supplements for professional athletes and patients with liver failure or catabolic diseases. To date, no pharmacokinetic studies of BCAAs in vivo useful for the assessment of clinical effect following daily intake has been reported. Thus in this study, an HPLC-MS/MS method for simultaneous determination of Leu, Ile and Val in Beagle dog plasma using homoarginine as the internal standard was developed and validated in terms of specificity, linearity, precision, accuracy, and stability. This assay method was then applied to a pharmacokinetic study of BCAAs in dogs following oral administration of 0.25 g/kg and 0.50 g/kg BCAAs. The HPLC-MS/MS method was found to be sensitive and reproducible for quantification of BCAAs in dog plasma and successfully applied to the pharmacokinetic study. All these BCAAs were well absorbed with a substantial increase in the plasma concentration after a baseline modification. No statistical significance was identified in different gender group and no drug accumulation was observed following multiple doses. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A dipeptide and an amino acid present in whey protein hydrolysate increase translocation of GLUT-4 to the plasma membrane in Wistar rats.

    PubMed

    Morato, P N; Lollo, P C B; Moura, C S; Batista, T M; Carneiro, E M; Amaya-Farfan, J

    2013-08-15

    Whey protein hydrolysate (WPH) is capable of increasing muscle glycogen reserves and of concentrating the glucose transporter in the plasma membrane (PM). The objective of this study was to determine which WPH components could modulate translocation of the glucose transporter GLUT-4 to the PM of animal skeletal muscle. Forty-nine animals were divided into 7 groups (n=7) and received by oral gavage 30% glucose plus 0.55 g/kg body mass of the following WPH components: (a) control; (b) WPH; (c) L-isoleucine; (d) L-leucine; (e) L-leucine plus L-isoleucine; (f) L-isoleucyl-L-leucine dipeptide; (g) L-leucyl-L-isoleucine dipeptide. After receiving these solutions, the animals were sacrificed and the GLUT-4 analysed by western blot. Additionally, glycogen, glycaemia, insulin and free amino acids were also determined by standard methods. Of the WPH components tested, the amino acid L-isoleucine and the peptide L-leucyl-L-isoleucine showed greater efficiency in translocating GLUT-4 to the PM and of increasing glucose capture by skeletal muscle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Kinetic Behavior of Leucine and Other Amino Acids Modulating Cognitive Performance via mTOR Pathway

    DTIC Science & Technology

    2011-12-02

    is a potential target for modulation with leucine (or other therapeutic agents), to maintain/enhance normal functioning under stress conditions. Such... functioning under stress conditions. Such an effect has potential for optimizing warfighter cognitive performance under high demand conditions. The... Isoleucine L1 Essential Neutral Non-polar Branched chain Lysine Basic Y+ Essential Basic Polar Proline L1? Neutral Non-polar Aromatic Asparagine Neutral

  1. Cloning of Bordetella pertussis putative outer protein D (BopD) and Leucin/Isoleucine/Valin binding protein (LivJ)

    NASA Astrophysics Data System (ADS)

    Öztürk, Burcu Emine Tefon

    2017-04-01

    Whooping cough also known as pertussis is a contagious acute upper respiratory disease primarily caused by Bordetella pertussis. It is known that this disease may be fatal especially in infants and recently, the number of pertussis cases has been increased. Despite the fact that there are numbers of acellular vaccines on the market, the current acellular vaccine compositions are inadequate for providing sustainable immunity and avoiding subclinical disease cases. Hence, exploring novel proteins with high immune protective capacities is essential to enhance the clinical efficacy of current vaccines. In this study, genes of selected immunogenic proteins via -omics studies, namely Putative outer protein D (BopD) and Leucin/Isoleucine/Valin Binding Protein (LivJ) were first cloned into pGEM-T Easy vector and transformed to into E. coli DH5α cells and then cloned into the expression vector pET-28a(+) and transformed into E. coli BL21 (DE3) cells to express the proteins.

  2. Upper gastrointestinal bleeding: an ammoniagenic and catabolic event due to the total absence of isoleucine in the haemoglobin molecule.

    PubMed

    Olde Damink, S W; Dejong, C H; Deutz, N E; van Berlo, C L; Soeters, P B

    1999-06-01

    Upper gastrointestinal bleeding causes increased urea concentrations in patients with normal liver function and high ammonia concentrations in patients with impaired liver function. This ammoniagenesis may precipitate encephalopathy. The haemoglobin molecule is unique because it lacks the essential amino acid isoleucine and has high amounts of leucine and valine. Upper gastrointestinal bleeding therefore presents the gut with protein of very low biologic value, which may be the stimulus to induce a cascade of events culminating in net catabolism. This may influence the function of rapidly dividing cells and short half-life proteins. We hypothesize that, following a variceal bleed in a cirrhotic patient, the lack of isoleucine in blood protein is the cause of the exaggerated ammoniagenesis and catabolism. We propose that intravenous administration of isoleucine may serve as a simple therapeutic that transforms blood protein in a balanced protein, resulting in only a short-lived rise in ammonia and urea production, and preventing interference with protein synthesis.

  3. Export of l-Isoleucine from Corynebacterium glutamicum: a Two-Gene-Encoded Member of a New Translocator Family

    PubMed Central

    Kennerknecht, Nicole; Sahm, Hermann; Yen, Ming-Ren; Pátek, Miroslav; Saier, Jr., Milton H.; Eggeling, Lothar

    2002-01-01

    Bacteria possess amino acid export systems, and Corynebacterium glutamicum excretes l-isoleucine in a process dependent on the proton motive force. In order to identify the system responsible for l-isoleucine export, we have used transposon mutagenesis to isolate mutants of C. glutamicum sensitive to the peptide isoleucyl-isoleucine. In one such mutant, strong peptide sensitivity resulted from insertion into a gene designated brnF encoding a hydrophobic protein predicted to possess seven transmembrane spanning helices. brnE is located downstream of brnF and encodes a second hydrophobic protein with four putative membrane-spanning helices. A mutant deleted of both genes no longer exports l-isoleucine, whereas an overexpressing strain exports this amino acid at an increased rate. BrnF and BrnE together are also required for the export of l-leucine and l-valine. BrnFE is thus a two-component export permease specific for aliphatic hydrophobic amino acids. Upstream of brnFE and transcribed divergently is an Lrp-like regulatory gene required for active export. Searches for homologues of BrnFE show that this type of exporter is widespread in prokaryotes but lacking in eukaryotes and that both gene products which together comprise the members of a novel family, the LIV-E family, generally map together within a single operon. Comparisons of the BrnF and BrnE phylogenetic trees show that gene duplication events in the early bacterial lineage gave rise to multiple paralogues that have been retained in α-proteobacteria but not in other prokaryotes analyzed. PMID:12081967

  4. Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2.

    PubMed

    Usami, Yuki; Uemura, Satsohi; Mochizuki, Takahiro; Morita, Asami; Shishido, Fumi; Inokuchi, Jin-ichi; Abe, Fumiyoshi

    2014-07-01

    Leucine is a major amino acid in nutrients and proteins and is also an important precursor of higher alcohols during brewing. In Saccharomyces cerevisiae, leucine uptake is mediated by multiple amino acid permeases, including the high-affinity leucine permease Bap2. Although BAP2 transcription has been extensively analyzed, the mechanisms by which a substrate is recognized and moves through the permease remain unknown. Recently, we determined 15 amino acid residues required for Tat2-mediated tryptophan import. Here we introduced homologous mutations into Bap2 amino acid residues and showed that 7 residues played a role in leucine import. Residues I109/G110/T111 and E305 were located within the putative α-helix break in TMD1 and TMD6, respectively, according to the structurally homologous Escherichia coli arginine/agmatine antiporter AdiC. Upon leucine binding, these α-helix breaks were assumed to mediate a conformational transition in Bap2 from an outward-open to a substrate-binding occluded state. Residues Y336 (TMD7) and Y181 (TMD3) were located near I109 and E305, respectively. Bap2-mediated leucine import was inhibited by some amino acids according to the following order of severity: phenylalanine, leucine>isoleucine>methionine, tyrosine>valine>tryptophan; histidine and asparagine had no effect. Moreover, this order of severity clearly coincided with the logP values (octanol-water partition coefficients) of all amino acids except tryptophan. This result suggests that the substrate partition efficiency to the buried Bap2 binding pocket is the primary determinant of substrate specificity rather than structural amino acid side chain recognition. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    PubMed Central

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  6. Extracellular levels of amino acids and choline in human high grade gliomas: an intraoperative microdialysis study.

    PubMed

    Bianchi, L; De Micheli, E; Bricolo, A; Ballini, C; Fattori, M; Venturi, C; Pedata, F; Tipton, K F; Della Corte, L

    2004-01-01

    The concentrations of endogenous amino acids and choline in the extracellular fluid of human cerebral gliomas have been measured, for the first time, by in vivo microdialysis. Glioblastoma growth was associated with increased concentrations of choline, GABA, isoleucine, leucine, lysine, phenylalanine, taurine, tyrosine, and valine. There was no difference between grade III and grade IV tumors in the concentrations of phenylalanine, isoleucine, tyrosine, valine, and lysine, whereas the concentrations of choline, aspartate, taurine, GABA, leucine, and glutamate were significantly different in the two tumor-grade subgroups. In contrast to the other compounds, the concentration of glutamate was decreased in glioma. The parenchyma adjacent to the tumor showed significant changes only in the extracellular concentration of glutamate, isoleucine, and valine. The concentrations of choline and the amino acids, glutamate, leucine, taurine, and tyrosine showed significant positive correlations with the degree of cell proliferation. Epilepsy, which is relatively common in subjects with gliomas, was shown to be a significant confounding variable when the extracellular concentrations of aspartate, glutamate and GABA were considered.

  7. Effect of Starvation on the Turnover and Metabolic Response to Leucine

    PubMed Central

    Sherwin, Robert S.

    1978-01-01

    l-Leucine was administered as a primed continuous 3-4-h infusion in nonobese and obese subjects in the postabsorptive state and for 12 h in obese subjects after a 3-day and 4-wk fast. In nonobese and obese subjects studied in the post-absorptive state, the leucine infusion resulted in a 150-200% rise in plasma leucine above preinfusion levels, a small decrease in plasma glucose, and unchanged levels of plasma insulin and glucagon and blood ketones. Plasma isoleucine (60-70%) and valine (35-40%) declined to a greater extent than other amino acids (P < 0.001). After 3 days and 4 wk of fasting, equimolar infusions of leucine resulted in two- to threefold greater increments in plasma leucine as compared to post-absorptive subjects, a 30-40% decline in other plasma amino acids, and a 25-30% decrease in negative nitrogen balance. Urinary excretion of 3-methylhistidine was however, unchanged. Plasma glucose which declined in 3-day fasted subjects after leucine administration, surprisingly rose by 20 mg/100 ml after 4 wk of fasting. The rise in blood glucose occurred in the absence of changes in plasma glucagon and insulin and in the face of a 15% decline in endogenous glucose production (as measured by infusion of [3-3H]glucose). On the other hand, fractional glucose utilization fell by 30% (P < 0.001), thereby accounting for hyperglycemia. The estimated metabolic clearance rate of leucine fell by 48% after 3 days of fasting whereas the plasma delivery rate of leucine was unchanged, thereby accounting for a 40% rise in plasma leucine during early starvation. After a 4-wk fast, the estimated metabolic clearance rate of leucine declined further to 59% below base line. Plasma leucine nevertheless fell to postabsorptive levels as the plasma delivery rate of leucine decreased 65% below postabsorptive values. Conclusions: (a) Infusion of exogenous leucine in prolonged fasting results in a decline in plasma levels of other amino acids, improvement in nitrogen balance and

  8. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    PubMed

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  9. Cold Shock Response of Bacillus subtilis: Isoleucine-Dependent Switch in the Fatty Acid Branching Pattern for Membrane Adaptation to Low Temperatures†

    PubMed Central

    Klein, Wolfgang; Weber, Michael H. W.; Marahiel, Mohamed A.

    1999-01-01

    Bacillus subtilis has developed sophisticated mechanisms to withstand fluctuations in temperature. Membrane fatty acids are the major determinants for a sufficiently fluid membrane state to ensure the membrane’s function at all temperatures. The fatty acid profile of B. subtilis is characterized by a high content of branched fatty acids irrespective of the growth medium. Here, we report on the importance of isoleucine for B. subtilis to survive cold shock from 37 to 15°C. Cold shock experiments with strain JH642 revealed a cold-protective function for all intermediates of anteiso-branched fatty acid biosynthesis. Metabolites related to iso-branched or straight-chain fatty acid biosynthesis were not protective. Fatty acid profiles of different B. subtilis wild-type strains proved the altered branching pattern by an increase in the anteiso-branched fatty acid content and a concomitant decrease of iso-branched species during cold shock. There were no significant changes in the fatty acid saturation or acyl chain length. The cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine correlated with their inability to synthesize more anteiso-branched fatty acids, as shown by the fatty acid profile. The switch to a fatty acid profile dominated by anteiso-C15:0 and C17:0 at low temperatures and the cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine focused our attention on the critical role of anteiso-branched fatty acids in the growth of B. subtilis in the cold. PMID:10464205

  10. Triennial growth symposium: Leucine acts as a nutrient signal to stimulate protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The postprandial increases in AA and insulin independently stimulate protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to AA. We have shown that the postprandial increase in leucine, but not isoleucine or valine, acutely stimulates muscle protein synth...

  11. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity.

    PubMed

    Langer, S; Scislowski, P W; Brown, D S; Dewey, P; Fuller, M F

    2000-01-01

    The present experiment was designed to elucidate the mechanism of the methionine-sparing effect of excess branched-chain amino acids (BCAA) reported in the previous paper (Langer & Fuller, 2000). Twelve growing gilts (30-35 kg) were prepared with arterial catheters. After recovery, they received for 7 d a semipurified diet with a balanced amino acid pattern. On the 7th day blood samples were taken before (16 h postabsorptive) and after the morning meal (4 h postprandial). The animals were then divided into three groups and received for a further 7 d a methionine-limiting diet (80% of requirement) (1) without any amino acid excess; (2) with excess leucine (50% over requirement); or (3) with excesses of all three BCAA (leucine, isoleucine, valine, each 50% over the requirement). On the 7th day blood samples were taken as in the first period, after which the animals were killed and liver and muscle samples taken. Plasma amino acid and branched-chain keto acid (BCKA) concentrations in the blood and branched-chain keto-acid dehydrogenase (BCKDH; EC 1.2.4.4) activity in liver and muscle homogenates were determined. Compared with those on the balanced diet, pigs fed on methionine-limiting diets had significantly lower (P < 0.05) plasma methionine concentrations in the postprandial but not in the postabsorptive state. There was no effect of either leucine or a mixture of all three BCAA fed in excess on plasma methionine concentrations. Excess dietary leucine reduced (P < 0.05) the plasma concentrations of isoleucine and valine in both the postprandial and postabsorptive states. Plasma concentrations of the BCKA reflected the changes in the corresponding amino acids. Basal BCKDH activity in the liver and total BCKDH activity in the biceps femoris muscle were significantly (P < 0.05) increased by excesses of leucine or all BCAA.

  12. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli.

    PubMed Central

    Gollop, N; Tavori, H; Barak, Z

    1982-01-01

    Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides. PMID:7033214

  13. Raman and surface enhanced Raman spectroscopy of amino acids and peptide

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojuan; Gu, Huaimin; Wu, Jiwei; Kang, Jian; Dong, Xiao

    2009-08-01

    Surface enhanced Raman scattering (SERS) is potentially tool in the characterization of biomolecules such as amino acids, complicated peptides and proteins, and even tissues or living cells. Amino acids and short peptides contain different functional groups. Therefore, they are suitable for the investigations of the competitive-interactions of these functional groups with colloidal silver surfaces. In this paper, Normal Raman and SERS of amino acids Leucine and Isoleucine and short peptide Leu-Leu were measured on the silver colloidal substrate. Raman shifts that stem from different vibrational mode in the molecular inner structure, and the variations of SERS of the samples were analyzed in this study. The results show that different connection of one methyl to the main chains of the isomer amino acids resulted in different vibration modes in the Normal Raman spectra of Leucine and Isoleucine. In the SERS spectra of the isomer amino acids, all frequency shifts are expressed more differently than those in Normal Raman spectra of solid state. Orientation of this isomer amino acids, as well as specific-competitive interactions of their functional groups with the colloidal silver surface, were speculated by detailed spectral analysis of the obtained SERS spectra. In addition, the dipeptide Leu-Leu, as the corresponding homodipeptide of Leucine, was also measured adsorbed on the colloidal silver surface. The SERS spectrum of Leu-Leu is different from its corresponding amino acid Leucine but both of them are adsorbed on the silver surface through the carboxylate moiety.

  14. Effects of Leucine Supplementation and Serum Withdrawal on Branched-Chain Amino Acid Pathway Gene and Protein Expression in Mouse Adipocytes

    PubMed Central

    Vivar, Juan C.; Knight, Megan S.; Pointer, Mildred A.; Gwathmey, Judith K.; Ghosh, Sujoy

    2014-01-01

    The essential branched-chain amino acids (BCAA), leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2) and branched-chain alpha keto acid dehydrogenase (Bckdha) was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4) compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our understanding of

  15. Free amino acids in fibromyalgia syndrome: relationship with clinical picture.

    PubMed

    Ruggiero, Valeria; Mura, Massimiliano; Cacace, Enrico; Era, Benedetta; Peri, Marcella; Sanna, Giuseppina; Fais, Antonella

    2017-04-01

    The objectives of our study were to evaluate free amino acid (FAA) concentrations in the serum of patients affected by fibromyalgia syndrome (FMS) and to determine the relationships between FAA levels and FMS clinical parameters. Thus, serum amino acid concentrations were quantified (HPLC analysis) in 23 females with fibromyalgia (according to the American College of Rheumatology classification criteria) and 20 healthy females. The results showed significantly higher serum concentrations of aspartate, cysteine, glutamate, glycine, isoleucine, leucine, methionine, ornithine, phenylalanine, sarcosine, serine, taurine, tyrosine and valine in FMS patients vs. healthy controls. Patients with higher Fibromyalgia Impact Questionnaire (FIQ) scores showed increased levels of alanine, glutamine, isoleucine, leucine, phenylalanine, proline and valine. In conclusion, our results indicate an imbalance in some FAAs in FMS patients. Increased Glu is particularly interesting, as it could explain the deficit in monoaminergic transmission involved in pain.

  16. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    PubMed Central

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; De Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-01-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65–74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase. PMID:27874020

  17. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    NASA Astrophysics Data System (ADS)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  18. Production of volatiles in fresh-cut apple: effect of applying alginate coatings containing linoleic acid or isoleucine.

    PubMed

    Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I

    2014-11-01

    One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. © 2014 Institute of Food Technologists®

  19. 3-Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in Arabidopsis thaliana.

    PubMed

    Schertl, Peter; Danne, Lennart; Braun, Hans-Peter

    2017-09-01

    In plants, amino acid catabolism is especially relevant in metabolic stress situations (e.g. limited carbohydrate availability during extended darkness). Under these conditions, amino acids are used as alternative substrates for respiration. Complete oxidation of the branched-chain amino acids (BCAAs) leucine, isoleucine (Ile), and valine (Val) in the mitochondria efficiently allows the formation of ATP by oxidative phosphorylation. However, the metabolic pathways for BCAA breakdown are largely unknown so far in plants. A systematic search for Arabidopsis ( Arabidopsis thaliana ) genes encoding proteins resembling enzymes involved in BCAA catabolism in animals, fungi, and bacteria as well as proteomic analyses of mitochondrial fractions from Arabidopsis allowed the identification of a putative 3-hydroxyisobutyrate dehydrogenase, AtHDH1 (At4g20930), involved in Val degradation. Systematic substrate screening analyses revealed that the protein uses 3-hydroxyisobutyrate but additionally 3-hydroxypropionate as substrates. This points to a role of the enzyme not only in Val but possibly also in Ile metabolism. At4g20930 knockdown plants were characterized to test this conclusion. Root toxicity assays revealed increased root growth inhibition of the mutants if cultivated in the presence of Val or Ile but not in the presence of leucine. We conclude that AtHDH1 has a dual role in BCAA metabolism in plants. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  1. Selection of the simplest RNA that binds isoleucine

    PubMed Central

    LOZUPONE, CATHERINE; CHANGAYIL, SHANKAR; MAJERFELD, IRENE; YARUS, MICHAEL

    2003-01-01

    We have identified the simplest RNA binding site for isoleucine using selection-amplification (SELEX), by shrinking the size of the randomized region until affinity selection is extinguished. Such a protocol can be useful because selection does not necessarily make the simplest active motif most prominent, as is often assumed. We find an isoleucine binding site that behaves exactly as predicted for the site that requires fewest nucleotides. This UAUU motif (16 highly conserved positions; 27 total), is also the most abundant site in successful selections on short random tracts. The UAUU site, now isolated independently at least 63 times, is a small asymmetric internal loop. Conserved loop sequences include isoleucine codon and anticodon triplets, whose nucleotides are required for amino acid binding. This reproducible association between isoleucine and its coding sequences supports the idea that the genetic code is, at least in part, a stereochemical residue of the most easily isolated RNA–amino acid binding structures. PMID:14561881

  2. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies.

    PubMed

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Maintenance valine, isoleucine, and tryptophan requirements for poultry.

    PubMed

    de Lima, M B; Sakomura, N K; Dorigam, J C P; da Silva, E P; Ferreira, N T; Fernandes, J B K

    2016-04-01

    Poultry maintenance requirements for valine, isoleucine, and tryptophan were measured by nitrogen balance using different unit systems. The nitrogen balance trial lasted 5 d with 48 h of fasting (with roosters receiving only water+sucrose) and the last 72 h for feeding and excreta collection. Forty grams of each diet first-limiting in valine, isoleucine, or tryptophan was fed by tube each day (3 d) to give a range of intakes from 0 to 101, 0 to 119, and 0 to 34 mg/kg BW d of valine, isoleucine, and tryptophan, respectively. A nitrogen-free diet containing energy, vitamins, and minerals, meeting the rooster requirements, was offered ad libitum during these three d. To confirm that the amino acids studied were limiting, a treatment was added with a control diet formulated by adding 0.24 g/kg of L-valine, 0.21 g/kg of L-isoleucine, and 0.10 g/kg of L-tryptophan to the diets with lower amino acid level. Excreta were collected during the last 3 d of the balance period and the nitrogen content of the excreta was analyzed. For each amino acid, a linear regression between nitrogen retention (NR) and amino acid intake was performed. The equations from linear regression were: NR=-98.6 (±10.1)+2.4 (±0.2)×Val, NR=-46.9 (±7.1)+2.3 (±0.1)×Ile, NR=-39.5 (±7.7)+7.3 (±0.4)×Trp; where Val, Ile, and Trp are the intakes of valine, isoleucine, and tryptophan in mg/kg body weight per d, respectively. The valine, isoleucine, and tryptophan required to maintain the body at zero NR were calculated to be 41, 20, and 5 mg/kg body weight per d, respectively. For the system unit mg per kg of metabolic weight, the intake of valine, isoleucine, and tryptophan was 59, 32, and 9, respectively. Considering the degree of maturity of the animal and body protein content (BPm (0.73)×u), the amounts of valine, isoleucine, and tryptophan required for maintenance were calculated to be 247, 134, and 37 mg per unit of maintenance protein (BPm (0.73)×u) per d. Maintenance requirement is more

  4. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats.

    PubMed

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Risso, Eder Muller; Amaya-Farfan, Jaime

    2017-09-20

    Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, and glutamine supplementation is known to increase HSP expression during intense exercise. Since few studies have addressed the possibility that supplementation with other amino acids could have similar effects to that of glutamine, our objective was to evaluate the effects of leucine, valine, isoleucine and arginine as potential stimulators of HSPs 25, 60, 70 and 90 in rats subjected to acute exercise as a stressing factor. The immune markers, antioxidant system, blood parameters, glycogen and amino acid profile responses were also assessed. Male Wistar rats were divided into seven groups: control (rest, without gavage), vehicle (water), l-leucine, l-isoleucine, l-valine, l-arginine and l-glutamine. Except for the control, all animals were exercised and received every amino acid by oral gavage. Arginine supplementation up-regulated muscle HSP70 and HSP90 and serum HSP70, however, none of the amino acids affected the HSP25. All amino acids increased exercise-induced HSP60 expression, except for valine. Antioxidant enzymes were reduced by exercise, but both glutamine and arginine restored glutathione peroxidase, while isoleucine and valine restored superoxide dismutase. Exercise reduced monocyte, platelet, lymphocyte and erythrocyte levels, while leucine stimulated immune response, preserved the levels of the lymphocytes and increased leukocytes and maintained platelets at control levels. Plasma and muscle amino acid profiles showed specific metabolic features. The data suggest that the tissue-protecting effects of arginine could proceed by enhancing specific HSPs in the body.

  5. Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics.

    PubMed

    van den Akker, Chris H P; Schierbeek, Henk; Minderman, Gardi; Vermes, Andras; Schoonderwaldt, Ernst M; Duvekot, Johannes J; Steegers, Eric A P; van Goudoever, Johannes B

    2011-12-01

    Human fetal metabolism is largely unexplored. Understanding how a healthy fetus achieves its fast growth rates could eventually play a pivotal role in improving future nutritional strategies for premature infants. To quantify specific fetal amino acid kinetics, eight healthy pregnant women received before elective cesarean section at term, continuous stable isotope infusions of the essential amino acids [1-13C,15N]leucine, [U-13C5]valine, and [1-13C]methionine. Umbilical blood was collected after birth and analyzed for enrichments and concentrations using mass spectrometry techniques. Fetuses showed considerable leucine, valine, and methionine uptake and high turnover rates. α-Ketoisocaproate, but not α-ketoisovalerate (the leucine and valine ketoacids, respectively), was transported at net rate from the fetus to the placenta. Especially, leucine and valine data suggested high oxidation rates, up to half of net uptake. This was supported by relatively low α-ketoisocaproate reamination rates to leucine. Our data suggest high protein breakdown and synthesis rates, comparable with, or even slightly higher than in premature infants. The relatively large uptakes of total leucine and valine carbon also suggest high fetal oxidation rates of these essential branched chain amino acids.

  6. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector

    PubMed Central

    Borovok, Ilya; Sigal, Nadejda

    2018-01-01

    Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector. PMID:29529043

  7. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector.

    PubMed

    Brenner, Moran; Lobel, Lior; Borovok, Ilya; Sigal, Nadejda; Herskovits, Anat A

    2018-03-01

    Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector.

  8. Effect of a new injectable male contraceptive on the seminal plasma amino acids studied by proton NMR spectroscopy.

    PubMed

    Chaudhury, Koel; Sharma, Uma; Jagannathan, N R; Guha, Sujoy K

    2002-09-01

    Effect of RISUG, a newly developed male contraceptive, on various amino acids of seminal plasma ejaculates was studied by proton magnetic resonance spectroscopy at 400 MHz. Levels of amino acids were compared with the seminal plasma of obstructive azoospermia and controls. Glutamic acid, glutamine, and arginine were found to be high in concentration in human seminal plasma. The concentration of aromatic amino acids such as tyrosine, histidine, and phenylalanine in RISUG-injected subjects showed no significant difference compared to controls (p > 0.1); however, there was a statistically significant decrease in the concentration of these amino acids in obstructive azoospermia. The concentration of some prominent amino acids that showed overlapping resonances, such as isoleucine+leucine+valine (p < 0.01), alanine+isoleucine+lysine (p < 0.01), arginine+lysine+leucine (p < 0.01), and glutamic acid+glutamine (p < 0.01), showed a statistically significant decrease in RISUG-injected subjects compared to controls. Overlap of these amino acid resonances were noticed even at 600 MHz. In general, the total amino acids concentration in RISUG-injected subjects was found to be higher than in azoospermic subjects, confirming the occurrence of 'partial' obstructive azoospermia in subjects injected with this contraceptive.

  9. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria

    USDA-ARS?s Scientific Manuscript database

    The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are essential nutrients for mammals. In plants, they double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates...

  10. Increased dependence of leucine in posttraumatic sepsis: leucine/tyrosine clearance ratio as an indicator of hepatic impairment in septic multiple organ failure syndrome.

    PubMed

    Pittiruti, M; Siegel, J H; Sganga, G; Coleman, B; Wiles, C E; Belzberg, H; Wedel, S; Placko, R

    1985-09-01

    The body clearance of 10 plasma amino acids (AA) was determined from the rate of compared muscle-released AA and AA administered by infusion of total parenteral nutrition (TPN) compared to their estimated extracellular (ECW) pool in patients with multiple trauma with (n = 10) or without (n = 16) sepsis at 8-hour intervals. In both nonseptic and septic trauma, increasing TPN increased the mean clearance rate of all infused AA. When the individual AA clearance rates were normalized by the total AA infusion rate, regression-covariance analysis revealed that patients with sepsis had relatively impaired clearances of alanine (p less than 0.01) and methionine, proline, phenylalanine, and tyrosine p less than 0.05 for all). In contrast, the clearances of branched-chain AA (BCAA) valine and isoleucine were maintained, and the clearance of leucine was higher (p less than 0.05) in trauma patients with sepsis than in those without. At any AA infusion rate, compared with surviving patients with sepsis (p less than 0.05), patients who developed fatal multiple organ failure syndrome (MOFS) showed increased clearances of all BCAA with further impaired clearance of tyrosine. The clearance ratio of leucine/tyrosine was increased in MOFS at any AA infusion rate (p less than 0.0001), was an indicator of severity, and, if persistent, was a manifestation of a fatal outcome. Because tyrosine metabolism occurs almost entirely in the liver while leucine can be utilized by viscera and muscle, these data suggest early and progressive septic impairment of the pattern of hepatic uptake and oxidation of AA with a greater body dependence on BCAA, especially leucine, as septic MOFS develops.

  11. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria.

    PubMed

    Latimer, Scott; Li, Yubing; Nguyen, Thuong T H; Soubeyrand, Eric; Fatihi, Abdelhak; Elowsky, Christian G; Block, Anna; Pichersky, Eran; Basset, Gilles J

    2018-05-09

    The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  12. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    PubMed

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  13. PLASMA PROTEIN PRODUCTION INFLUENCED BY AMINO ACID MIXTURES AND LACK OF ESSENTIAL AMINO ACIDS

    PubMed Central

    Madden, S. C.; Anderson, F. W.; Donovan, J. C.; Whipple, G. H.

    1945-01-01

    When blood plasma proteins are depleted by bleeding with return of red cells suspended in saline (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a constant level of plasma protein production if the diet nitrogen intake is controlled and limited. Such dogs are outwardly normal but have a lowered resistance to infection and intoxication and probably to vitamin deficiency. When the diet nitrogen is provided by certain mixtures of the ten growth essential amino acids plus glycine, given intravenously at a rapid rate, plasma protein production is good. The same mixture absorbed subcutaneously at a slower rate may be slightly better utilized. Fed orally the same mixture is better utilized and associated with a lower urinary nitrogen excretion. An ample amino acid mixture for the daily intake of a 10 kilo dog may contain in grams dl-threonine 1.4, dl-valine 3, dl-leucine 3, dl-isoleucine 2, l(+)-lysine·HCl·H2O 2.2, dl-tryptophane 0.3, dl-phenylalanine 2, dl-methionine 1.2, l(+)-histidine·HCl·H2O 1, l(+)-arginine·HCl 1, and glycine 2. Half this quantity is inadequate and not improved by addition of a mixture of alanine, serine, norleucine, proline, hydroxyproline, and tyrosine totalling 1.4 gm. Aspartic acid appears to induce vomiting when added to a mixture of amino acids. The same response has been reported for glutamic acid (8). Omission from the intake of leucine or of leucine and isoleucine results in negative nitrogen balance and rapid weight loss but plasma protein production may be temporarily maintained. It is possible that leucine may be captured from red blood cell destruction. Tryptophane deficiency causes an abrupt decline in plasma protein production. No decline occurred during 2 weeks of histidine deficiency but the urinary nitrogen increased to negative balance. Plasma protein production may be impaired during conditions of dietary deficiency not related to the protein or amino acid intake. Skin lesions and liver

  14. The Influence of 8-Weeks of Whey Protein and Leucine Supplementation on Physical and Cognitive Performance

    DTIC Science & Technology

    2009-03-01

    used various combinations of valine, leucine and isoleucine . Additionally, previous studies examining the effect of BCAA supplementation on...High Cholesterol (>200 mg/dL) Y N -- High Blood Pressure Y N -- Diabetes Y N - Are you currently taking any medications? Y N

  15. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase

    PubMed Central

    Xiao, Fei; Wang, Chunxia; Yin, Hongkun; Yu, Junjie; Chen, Shanghai; Fang, Jing; Guo, Feifan

    2016-01-01

    Substantial studies on fatty acid synthase (FASN) have focused on its role in regulating lipid metabolism and researchers have a great interest in treating cancer with dietary manipulation of amino acids. In the current study, we found that leucine deprivation caused the FASN-dependent anticancer effect. Here we showed that leucine deprivation inhibited cell proliferation and induced apoptosis of MDA-MB-231 and MCF-7 breast cancer cells. In an in vivo tumor xenograft model, the leucine-free diet suppressed the growth of human breast cancer tumors and triggered widespread apoptosis of the cancer cells. Further study indicated that leucine deprivation decreased expression of lipogenic gene FASN in vitro and in vivo. Over-expression of FASN or supplementation of palmitic acid (the product of FASN action) blocked the effects of leucine deprivation on cell proliferation and apoptosis in vitro and in vivo. Moreover, leucine deprivation suppressed the FASN expression via regulating general control non-derepressible (GCN)2 and sterol regulatory element-binding protein 1C (SREBP1C). Taken together, our study represents proof of principle that anticancer effects can be obtained with strategies to deprive tumors of leucine via suppressing FASN expression, which provides important insights in prevention of breast cancer via metabolic intervention. PMID:27579768

  16. Is diabetes mellitus-linked amino acid signature associated with β-blocker-induced impaired fasting glucose?

    PubMed

    Cooper-Dehoff, Rhonda M; Hou, Wei; Weng, Liming; Baillie, Rebecca A; Beitelshees, Amber L; Gong, Yan; Shahin, Mohamed H A; Turner, Stephen T; Chapman, Arlene; Gums, John G; Boyle, Stephen H; Zhu, Hongjie; Wikoff, William R; Boerwinkle, Eric; Fiehn, Oliver; Frye, Reginald F; Kaddurah-Daouk, Rima; Johnson, Julie A

    2014-04-01

    The 5-amino acid (AA) signature, including isoleucine, leucine, valine, tyrosine, and phenylalanine, has been associated with incident diabetes mellitus and insulin resistance. We investigated whether this same AA signature, single-nucleotide polymorphisms in genes in their catabolic pathway, was associated with development of impaired fasting glucose (IFG) after atenolol treatment. Among 234 European American participants enrolled in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study and treated with atenolol for 9 weeks, we prospectively followed a nested cohort that had both metabolomics profiling and genotype data available for the development of IFG. We assessed the association between baseline circulating levels of isoleucine, leucine, valine, tyrosine, and phenylalanine, as well as single-nucleotide polymorphisms in branched-chain amino-acid transaminase 1 (BCAT1) and phenylalanine hydroxylase (PAH) with development of IFG. All baseline AA levels were strongly associated with IFG development. Each increment in standard deviation of the 5 AAs was associated with the following odds ratio and 95% confidence interval for IFG based on a fully adjusted model: isoleucine 2.29 (1.31-4.01), leucine 1.80 (1.10-2.96), valine 1.77 (1.07-2.92), tyrosine 2.13 (1.20-3.78), and phenylalanine 2.04 (1.16-3.59). The composite P value was 2×10(-5). Those with PAH (rs2245360) AA genotype had the highest incidence of IFG (P for trend=0.0003). Our data provide important insight into the metabolic and genetic mechanisms underlying atenolol-associated adverse metabolic effects. Clinical Trial Registration- http://www.clinicaltrials.gov; Unique Identifier: NCT00246519.

  17. Long-term leucine induced stimulation of muscle protein synthesis is amino acid dependent

    USDA-ARS?s Scientific Manuscript database

    Infusing leucine for 1 h increases skeletal muscle protein synthesis in the neonate, but this is not sustained for 2 h unless the corresponding fall in amino acids is prevented. This study aimed to determine whether a continuous leucine infusion can stimulate protein synthesis for a prolonged period...

  18. Influence of Amino Acids in Dairy Products on Glucose Homeostasis: The Clinical Evidence.

    PubMed

    Chartrand, Dominic; Da Silva, Marine S; Julien, Pierre; Rudkowska, Iwona

    2017-06-01

    Dairy products have been hypothesized to protect against type 2 diabetes because of their high content of whey proteins, rich in branched-chain amino acids (BCAAs) - leucine, isoleucine and valine - and lysine, which may decrease postprandial glucose responses and stimulate insulin secretion. Paradoxically, epidemiologic studies also show that higher levels of plasma BCAAs have been linked to insulin resistance and type 2 diabetes. Therefore, the objective was to review the recent clinical evidence concerning the intake of amino acids found in dairy proteins so as to determine their impact on glucose homeostasis in healthy persons and in those with prediabetes and type 2 diabetes. Clinical studies have reported that the major dairy amino acids, namely, leucine, isoleucine, glutamine, phenylalanine, proline and lysine, have beneficial effects on glucose homeostasis. Yet the reported doses of amino acids investigated are too elevated to be reached through adequate dairy product intake. The minor dairy amino acids, arginine and glycine, may improve glucose homeostasis by improving other risk factors for type 2 diabetes. Further, the combination of amino acids may also improve glucose-related outcomes, suggesting additive or synergistic effects. Nevertheless, additional long-term studies in individuals with prediabetes and type 2 diabetes are needed to ascertain the benefits for glucose homeostasis of amino acids found in dairy foods. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  19. A Single Acyl-CoA Dehydrogenase Is Required For Catabolism Of Isoleucine, Valine And Short-Chain Fatty Acids In Aspergillus nidulans

    PubMed Central

    Maggio-Hall, Lori A.; Lyne, Paul; Wolff, Jon A.; Keller, Nancy P.

    2010-01-01

    An acyl-CoA dehydrogenase has been identified as part of the mitochondrial β-oxidation pathway in the ascomycete fungus Aspergillus nidulans. Disruption of the scdA gene prevented use of butyric acid (C4) and hexanoic acid (C6) as carbon sources and reduced cellular butyryl-CoA dehydrogenase activity by 7.5-fold. While the mutant strain exhibited wild-type levels of growth on erucic acid (C22:1) and oleic acid (C18:1), some reduction in growth was observed with myristic acid (C14). The ΔscdA mutation was found to be epistatic to a mutation downstream in the β-oxidation pathway (disruption of enoyl-CoA hydratase). The ΔscdA mutant was also unable to use isoleucine or valine as a carbon source. Transcription of scdA was observed in the presence of either fatty acids or amino acids. When the mutant was grown in medium containing either isoleucine or valine, organic acid analysis of culture supernatants showed accumulation of 2-oxo acid intermediates of branched chain amino acid catabolism, suggesting feedback inhibition of the upstream branched-chain α-keto acid dehydrogenase. PMID:17656140

  20. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults.

    PubMed

    Würtz, Peter; Soininen, Pasi; Kangas, Antti J; Rönnemaa, Tapani; Lehtimäki, Terho; Kähönen, Mika; Viikari, Jorma S; Raitakari, Olli T; Ala-Korpela, Mika

    2013-03-01

    Branched-chain and aromatic amino acids are associated with the risk for future type 2 diabetes; however, the underlying mechanisms remain elusive. We tested whether amino acids predict insulin resistance index in healthy young adults. Circulating isoleucine, leucine, valine, phenylalanine, tyrosine, and six additional amino acids were quantified in 1,680 individuals from the population-based Cardiovascular Risk in Young Finns Study (baseline age 32 ± 5 years; 54% women). Insulin resistance was estimated by homeostasis model assessment (HOMA) at baseline and 6-year follow-up. Amino acid associations with HOMA of insulin resistance (HOMA-IR) and glucose were assessed using regression models adjusted for established risk factors. We further examined whether amino acid profiling could augment risk assessment of insulin resistance (defined as 6-year HOMA-IR >90th percentile) in early adulthood. Isoleucine, leucine, valine, phenylalanine, and tyrosine were associated with HOMA-IR at baseline and for men at 6-year follow-up, while for women only leucine, valine, and phenylalanine predicted 6-year HOMA-IR (P < 0.05). None of the other amino acids were prospectively associated with HOMA-IR. The sum of branched-chain and aromatic amino acid concentrations was associated with 6-year insulin resistance for men (odds ratio 2.09 [95% CI 1.38-3.17]; P = 0.0005); however, including the amino acid score in prediction models did not improve risk discrimination. Branched-chain and aromatic amino acids are markers of the development of insulin resistance in young, normoglycemic adults, with most pronounced associations for men. These findings suggest that the association of branched-chain and aromatic amino acids with the risk for future diabetes is at least partly mediated through insulin resistance.

  1. L-leucine, L-methionine, and L-phenylalanine share a Na(+)/K (+)-dependent amino acid transporter in shrimp hepatopancreas.

    PubMed

    Duka, Ada; Ahearn, Gregory A

    2013-08-01

    Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of (3)H-L-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. (3)H-L-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na(+)- and K(+)-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. (3)H-L-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, L-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM (3)H-L-leucine in both Na(+)- and K(+)-containing incubation media. The residual (3)H-L-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an L-methionine- and cation-independent transport system. (3)H-L-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [L-leucine], following the carrier-mediated Michaelis-Menten equation. In NaCl, (3)H-L-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. L-methionine or L-phenylalanine (7 and 20 mM) were competitive inhibitors of (3)H-L-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in (3)H-L-leucine influx K M, but no significant response in (3)H-L-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with (3)H-L-leucine, significantly (p < 0.01) increasing (3)H-L-leucine influx K M in the presence of sodium, but having negligible effect on (3)H-L-leucine influx J

  2. Concentrations of amino acids in the plasma of neonatal foals with septicemia.

    PubMed

    Zicker, S C; Spensley, M S; Rogers, Q R; Willits, N H

    1991-07-01

    Concentrations of amino acids in the plasma of 13 neonatal foals with septicemia were compared with the concentrations of amino acids in the plasma of 13 age-matched neonatal foals without septicemia. Analysis of the results revealed significantly lower concentrations of arginine, citrulline, isoleucine, proline, threonine, and valine in the plasma of foals with septicemia. The ratio of the plasma concentrations of the branched chain amino acids (isoleucine, leucine, and valine) to the aromatic amino acids (phenylalanine and tyrosine), was also significantly lower in the foals with septicemia. In addition, the concentrations of alanine, glycine, and phenylalanine were significantly higher in the plasma of foals with septicemia. Therefore, neonatal foals with septicemia had significant differences in the concentrations of several amino acids in their plasma, compared with concentrations from healthy foals. These differences were compatible with protein calorie inadequacy and may be related to an alteration in the intake, production, use, or clearance of amino acids from the plasma pool in sepsis.

  3. Stimulation of muscle protein synthesis by prolonged parenteral infusion of leucine is dependent on amino acid availability in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The postprandial rise in amino acids, particularly leucine, stimulates muscle protein synthesis in neonates. Previously, we showed that a 1-h infusion of leucine increased protein synthesis, but this response was not sustained for 2 h unless the leucine-induced decrease in amino acids was prevented....

  4. Serum Amino Acid Profiles in Childhood Predict Triglyceride Level in Adulthood: A 7-Year Longitudinal Study in Girls.

    PubMed

    Wiklund, Petri; Zhang, Xiaobo; Tan, Xiao; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-05-01

    Branched-chain and aromatic amino acids are associated with high risk of developing dyslipidemia and type II diabetes in adults. This study aimed to examine whether serum amino acid profiles associate with triglyceride concentrations during pubertal growth and predict hypertriglyceridemia in early adulthood. This was a 7.5-year longitudinal study. The study was conducted at the Health Science Laboratory, University of Jyväskylä. A total of 396 nondiabetic Finnish girls aged 11.2 ± 0.8 years at the baseline participated in the study. Body composition was assessed by dual-energy x-ray absorptiometry; serum concentrations of glucose, insulin, and triglyceride by enzymatic photometric methods; and amino acids by nuclear magnetic resonance spectroscopy. Serum leucine and isoleucine correlated significantly with future triglyceride, independent of baseline triglyceride level (P < .05 for all). In early adulthood (at the age of 18 years), these amino acids were significantly associated with hypertriglyceridemia, whereas fat mass and homeostasis model assessment of insulin resistance were not. Leucine was the strongest determinant discriminating subjects with hypertriglyceridemia from those with normal triglyceride level (area under the curve, 0.822; 95% confidence interval, 0.740-0.903; P = .000001). Serum leucine and isoleucine were associated with future serum triglyceride levels in girls during pubertal growth and predicted hypertriglyceridemia in early adulthood. Therefore, these amino acid indices may serve as biomarkers to identify individuals at high risk for developing hypertriglyceridemia and cardiovascular disease later in life. Further studies are needed to elucidate the role these amino acids play in the lipid metabolism.

  5. Effects of essential amino acids on lipid metabolism in mice and humans.

    PubMed

    Xiao, Fei; Du, Ying; Lv, Ziquan; Chen, Shanghai; Zhu, Jianmin; Sheng, Hongguang; Guo, Feifan

    2016-11-01

    Eight amino acids are considered essential for human nutrition, and three of them, including leucine, isoleucine and valine, are called as branched-chain amino acids (BCAAs). We recently discovered that dietary deficiency of any BCAA for 7 days rapidly reduces the abdominal fat mass in mice. The goal of this study was to investigate (1) whether dietary deficiency of the other five essential amino acids (EAAs), including phenylalanine, threonine, tryptophan, methionine and lysine, would produce similar effects and (2) whether an association between serum AAs and obesity was observed in humans in Chinese Han population. Similar to BCAAs deprivation, dietary deficiency of any of these five EAAs for 7 days significantly reduced abdominal fat mass, which is likely caused by increased energy expenditure. Expression of genes and proteins related to lipolysis, however, were differentially regulated by different EAAs. These results suggest a crucial role of EAAs deprivation on lipid metabolism in mice. Our human studies revealed that levels of four EAAs (leucine, isoleucine, valine and phenylalanine) were elevated in obese humans compared with those in lean controls in Chinese Han population. Based on the results obtained from mice, we speculate that these four EAAs might play important roles in human obesity. © 2016 Society for Endocrinology.

  6. Branched-chain amino acid transport in Streptococcus mutans Ingbritt.

    PubMed

    Dashper, S G; Reynolds, E C

    1993-06-01

    Leucine transport in glucose-energized cells of Streptococcus mutans exhibited Michaelis-Menten-type kinetics at low extracellular concentrations, with a K1 of 15.3 microM and a Vmax of 6.1 nmol/mg dry weight/min. At high extracellular leucine concentrations, the transmembrane diffusion of leucine was not saturable, indicating that passive diffusion becomes a significant mechanism of leucine transmembrane movement under these conditions. The proton motive force (PMF) was measured in glucose-energized cells of S. mutans and was found to have a maximum value of 126 mV at an extracellular pH (pH0) of 5.0; this decreased to 45 mV at pH0 8.0. The intracellular accumulation of leucine was significantly correlated with the magnitude of the PMF. The addition of excess isoleucine or valine caused a marked decrease in the leucine transport rate. Maximal rates of leucine transport occurred at pH0 6.0, and the rate of leucine transport was independent of the growth medium. The results suggest that there is a PMF-driven, branched-chain amino acid carrier in S. mutans with a proton: substrate stoichiometry of 1.

  7. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  8. Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis

    PubMed Central

    Liu, Dong

    2013-01-01

    Isoleucine is one of the branched-chain amino acids (BCAAs) that are essential substrates for protein synthesis in all organisms. Although the metabolic pathway for isoleucine has been well characterized in higher plants, it is not known whether it plays a specific role in plant development. In this study, an Arabidopsis mutant, lib (low isoleucine biosynthesis), that has defects in both cell proliferation and cell expansion processes during root development, was characterized. The lib mutant carries a T-DNA insertion in the last exon of the OMR1 gene that encodes a threonine deaminase/dehydratase (TD). TD catalyses the deamination and dehydration of threonine, which is the first and also the committed step in the biosynthesis of isoleucine. This T-DNA insertion results in a partial deficiency of isoleucine in lib root tissues but it does not affect its total protein content. Application of exogenous isoleucine or introduction of a wild-type OMR1 gene into the lib mutant can completely rescue the mutant phenotypes. These results reveal an important role for isoleucine in plant development. In addition, microarray analysis indicated that the partial deficiency of isoleucine in the lib mutant triggers a decrease in transcript levels of the genes encoding the major enzymes involved in the BCAA degradation pathway; the analysis also indicated that many genes involved in the biosynthesis of methionine-derived glucosinolates are up-regulated. PMID:23230023

  9. Validation of isoleucine utilization targets in Plasmodium falciparum

    PubMed Central

    Istvan, Eva S.; Dharia, Neekesh V.; Bopp, Selina E.; Gluzman, Ilya; Winzeler, Elizabeth A.; Goldberg, Daniel E.

    2011-01-01

    Intraerythrocytic malaria parasites can obtain nearly their entire amino acid requirement by degrading host cell hemoglobin. The sole exception is isoleucine, which is not present in adult human hemoglobin and must be obtained exogenously. We evaluated two compounds for their potential to interfere with isoleucine utilization. Mupirocin, a clinically used antibacterial, kills Plasmodium falciparum parasites at nanomolar concentrations. Thiaisoleucine, an isoleucine analog, also has antimalarial activity. To identify targets of the two compounds, we selected parasites resistant to either mupirocin or thiaisoleucine. Mutants were analyzed by genome-wide high-density tiling microarrays, DNA sequencing, and copy number variation analysis. The genomes of three independent mupirocin-resistant parasite clones had all acquired either amplifications encompassing or SNPs within the chromosomally encoded organellar (apicoplast) isoleucyl-tRNA synthetase. Thiaisoleucine-resistant parasites had a mutation in the cytoplasmic isoleucyl-tRNA synthetase. The role of this mutation in thiaisoleucine resistance was confirmed by allelic replacement. This approach is generally useful for elucidation of new targets in P. falciparum. Our study shows that isoleucine utilization is an essential pathway that can be targeted for antimalarial drug development. PMID:21205898

  10. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    PubMed

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  11. Quantitative role of splanchnic region in leucine metabolism: L-(1-13C,15N)leucine and substrate balance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y.M.; Wagner, D.A.; Tredget, E.E.

    1990-07-01

    The role of the splanchnic region (Sp) in whole body leucine metabolism was assessed in six chronically catheterized fasting mongrel dogs and in eight dogs during constant enteral feeding of a complete amino acid solution (0.24 g.kg-1.h-1). We used primed continuous intravenous infusions of L-(1-13C,15N)leucine and L-(1-14C)leucine and measurements of arteriovenous isotope and leucine balance across the gut, liver, and Sp. In the fasted condition, 3.5% of arterial leucine supply was oxidized in the Sp, accounting for 13% of total body leucine oxidation, with 10% by liver. With amino acid feeding (1) leucine carbon and nitrogen fluxes and oxidation weremore » increased (P less than 0.01) at the whole body level; (2) the percent of whole body leucine oxidation occurring in the Sp and liver increased (P less than 0.01) to 41 and 27%, respectively; (3) fractional metabolic utilization of leucine delivered to the Sp was reduced (P less than 0.01) from 47 to 35%; (4) the deamination rate of leucine in the gut was increased (P less than 0.05), along with an increased reamination rate of alpha-ketoisocaproic acid in the Sp (P less than 0.05). These findings reveal that the Sp accounts for a small fraction of whole body leucine oxidation during the fasting condition, but it plays a quantitatively important role in total body leucine oxidation during amino acid feeding; the gut and liver play cooperative roles in controlling leucine supply to peripheral tissues.« less

  12. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids.

    PubMed

    Cavallaro, Nicole Landa; Garry, Jamie; Shi, Xu; Gerszten, Robert E; Anderson, Ellen J; Walford, Geoffrey A

    2016-01-01

    Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]). All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; p<0.0001 for all). Fasting valine was significantly lower (p=0.02) and fasting isoleucine and leucine were numerically lower following the low BCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation.

  13. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond.

    PubMed

    Samgina, Tatiana Yu; Kovalev, Sergey V; Tolpina, Miriam D; Trebse, Polonca; Torkar, Gregor; Lebedev, Albert T

    2018-05-01

    Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS 3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops. Graphical Abstract ᅟ.

  14. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond

    NASA Astrophysics Data System (ADS)

    Samgina, Tatiana Yu; Kovalev, Sergey V.; Tolpina, Miriam D.; Trebse, Polonca; Torkar, Gregor; Lebedev, Albert T.

    2018-01-01

    Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops.

  15. NMR analyses of the conformations of L-isoleucine and L-valine bound to Escherichia coli isoleucyl-tRNA synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohda, D.; Kawai, G.; Yokoyama, S.

    1987-10-06

    The 400-MHz /sup 1/H NMR spectra of L-isoleucine and L-valine were measured in the presence of Escherichia coli isoleucyl-tRNA synthetase (IleRS). Because of chemical exchange of L-isoleucine or L-valine between the free state and the IleRS-bound state, a transferred nuclear Overhauser effect (TRNOE) was observed among proton resonances of L-isoleucine or L-valine. However, in the presence of isoleucyl adenylate tightly bound to the amino acid activation site of IleRS, no TRNOE for L-isoleucine or L-valine was observed. This indicates that the observed TRNOE is due to the interaction of L-isoleucine or L-valine with the amino acid activation site of IleRS.more » The conformations of these amino acids in the amino acid activation site of IleRS were determined by the analyses of time dependences of TRNOEs and TRNOE action spectra. The IleRS-bound L-isoleucine takes the gauche/sup +/ form about the C/sub ..cap alpha../-C/sub ..beta../ bond and the trans form about the C/sub ..beta../-C/sub ..gamma../sub 1// bond. The IleRS-bound L-valine takes the guache/sup -/ form about the C/sub ..cap alpha../-C/sub ..beta../ bond. Thus, the conformation of the IleRS-bound L-valine is the same as that of IleRS-bound L-isoleucine except for the delta-methyl group. The side chain of L-isoleucine or L-valine lies in an aliphatic hydrophobic pocket of the active site of IleRS. Such hydrophobic interaction with IleRS is more significant for L-isoleucine than for L-valine. The TRNOE analysis is useful for studying the amino acid discrimination mechanism of aminoacyl-tRNA synthetases.« less

  16. Potent anti-seizure effects of D-leucine

    PubMed Central

    Hartman, Adam L.; Santos, Polan; O’Riordan, Kenneth J.; Stafstrom, Carl E.; Hardwick, J. Marie

    2015-01-01

    There are no effective treatments for millions of patients with intractable epilepsy. High-fat ketogenic diets may provide significant clinical benefit but are challenging to implement. Low carbohydrate levels appear to be essential for the ketogenic diet to work, but the active ingredients in dietary interventions remain elusive, and a role for ketogenesis has been challenged. A potential antiseizure role of dietary protein or of individual amino acids in the ketogenic diet is understudied. We investigated the two exclusively ketogenic amino acids, L-leucine and L-lysine, and found that only L-leucine potently protects mice when administered prior to the onset of seizures induced by kainic acid injection, but not by inducing ketosis. Unexpectedly, the D-enantiomer of leucine, which is found in trace amounts in the brain, worked as well or better than L-leucine against both kainic acid and 6 Hz electroshock-induced seizures. However, unlike L-leucine, D-leucine potently terminated seizures even after the onset of seizure activity. Furthermore, D-leucine, but not L-leucine, reduced long-term potentiation but had no effect on basal synaptic transmission in vitro. In a screen of candidate neuronal receptors, D-leucine failed to compete for binding by cognate ligands, potentially suggesting a novel target. Even at low doses, D-leucine suppressed ongoing seizures at least as effectively as diazepam but without sedative effects. These studies raise the possibility that D-leucine may represent a new class of anti-seizure agents, and that D-leucine may have a previously unknown function in eukaryotes. PMID:26054437

  17. Leucine-rich diet alters the 1H-NMR based metabolomic profile without changing the Walker-256 tumour mass in rats.

    PubMed

    Viana, Laís Rosa; Canevarolo, Rafael; Luiz, Anna Caroline Perina; Soares, Raquel Frias; Lubaczeuski, Camila; Zeri, Ana Carolina de Mattos; Gomes-Marcondes, Maria Cristina Cintra

    2016-10-03

    Cachexia is one of the most important causes of cancer-related death. Supplementation with branched-chain amino acids, particularly leucine, has been used to minimise loss of muscle tissue, although few studies have examined the effect of this type of nutritional supplementation on the metabolism of the tumour-bearing host. Therefore, the present study evaluated whether a leucine-rich diet affects metabolomic derangements in serum and tumour tissues in tumour-bearing Walker-256 rats (providing an experimental model of cachexia). After 21 days feeding Wistar female rats a leucine-rich diet, distributed in L-leucine and LW-leucine Walker-256 tumour-bearing groups, we examined the metabolomic profile of serum and tumour tissue samples and compared them with samples from tumour-bearing rats fed a normal protein diet (C - control; W - tumour-bearing groups). We utilised 1 H-NMR as a means to study the serum and tumour metabolomic profile, tumour proliferation and tumour protein synthesis pathway. Among the 58 serum metabolites examined, we found that 12 were altered in the tumour-bearing group, reflecting an increase in activity of some metabolic pathways related to energy production, which diverted many nutrients toward tumour growth. Despite displaying increased tumour cell activity (i.e., higher Ki-67 and mTOR expression), there were no differences in tumour mass associated with changes in 23 metabolites (resulting from valine, leucine and isoleucine synthesis and degradation, and from the synthesis and degradation of ketone bodies) in the leucine-tumour group. This result suggests that the majority of nutrients were used for host maintenance. A leucine rich-diet, largely used to prevent skeletal muscle loss, did not affect Walker 256 tumour growth and led to metabolomic alterations that may partially explain the positive effects of leucine for the whole tumour-bearing host.

  18. Isoleucine Biosynthesis in Leptospira interrogans Serotype lai Strain 56601 Proceeds via a Threonine-Independent Pathway† ‡

    PubMed Central

    Xu, Hai; Zhang, Yuzhen; Guo, Xiaokui; Ren, Shuangxi; Staempfli, Andreas A.; Chiao, Juishen; Jiang, Weihong; Zhao, Guoping

    2004-01-01

    Three leuA-like protein-coding sequences were identified in Leptospira interrogans. One of these, the cimA gene, was shown to encode citramalate synthase (EC 4.1.3.-). The other two encoded α-isopropylmalate synthase (EC 4.1.3.12). Expressed in Escherichia coli, the citramalate synthase was purified and characterized. Although its activity was relatively low, it was strictly specific for pyruvate as the keto acid substrate. Unlike the citramalate synthase of the thermophile Methanococcus jannaschii, the L. interrogans enzyme is temperature sensitive but exhibits a much lower Km (0.04 mM) for pyruvate. The reaction product was characterized as (R)-citramalate, and the proposed β-methyl-d-malate pathway was further confirmed by demonstrating that citraconate was the substrate for the following reaction. This alternative pathway for isoleucine biosynthesis from pyruvate was analyzed both in vitro by assays of leptospiral isopropylmalate isomerase (EC 4.2.1.33) and β-isopropylmalate dehydrogenase (EC 1.1.1.85) in E. coli extracts bearing the corresponding clones and in vivo by complementation of E. coli ilvA, leuC/D, and leuB mutants. Thus, the existence of a leucine-like pathway for isoleucine biosynthesis in L. interrogans under physiological conditions was unequivocally proven. Significant variations in either the enzymatic activities or mRNA levels of the cimA and leuA genes were detected in L. interrogans grown on minimal medium supplemented with different levels of the corresponding amino acids or in cells grown on serum-containing rich medium. The similarity of this metabolic pathway in leptospires and archaea is consistent with the evolutionarily primitive status of the eubacterial spirochetes. PMID:15292141

  19. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus.

    PubMed

    Mochida, Taiga; Tanaka, Takayuki; Shiraki, Yasuko; Tajiri, Hiroko; Matsumoto, Shirou; Shimbo, Kazutaka; Ando, Toshihiko; Nakamura, Kimitoshi; Okamoto, Masahiro; Endo, Fumio

    2011-08-01

    We investigated longitudinal change in the amino acid (AA) profile in type 1 diabetes mellitus (DM) using AKITA mice, which develop DM as a result of insulin deficiency. The plasma concentrations of valine, leucine, isoleucine, as well as the total branched chain amino acids, alanine, citrulline and proline, were significantly higher in the diabetic mice. We show that the degree and timing of the changes were different among the plasma amino acid concentrations (pAAs) during the development of type 1 DM. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Evidence for isoleucine as a positive effector of the ilvBN operon in Salmonella typhimurium.

    PubMed

    Davidson, J P; Wilson, D J

    1991-08-15

    Concerted efforts were directed towards understanding the control of acetohydroxy acid synthase (AHAS) in the gyrB mutant hisU1820 of Salmonella typhimurium. A media shift from valine to valine plus isoleucine causes a dramatic 4 to 5 fold burst of AHAS valine sensitive activity which appears to be dependent on translation. DJ19, an isolated valine sensitive derivative of the gyrB mutant, maintains a dramatic increase in AHAS valine sensitive activity upon the addition of isoleucine to valine supplemented cultures, suggesting that the isoleucine effect is specific for valine sensitive AHAS. Evidence supports isoleucine as a positive effector on valine sensitive AHAS expression and that the gyrB mutation accentuates the isoleucine effect.

  1. Third system for neutral amino acid transport in a marine pseudomonad.

    PubMed Central

    Pearce, S M; Hildebrandt, V A; Lee, T

    1977-01-01

    Uptake of leucine by the marine pseudomonad B-16 is an energy-dependent, concentrative process. Respiratory inhibitors, uncouplers, and sulfhydryl reagents block transport. The uptake of leucine is Na+ dependent, although the relationship between the rate of leucine uptake and Na+ concentration depends, to some extent, on the ionic strength of the suspending assay medium and the manner in which cells are washed prior to assay. Leucine transport can be separated into at least two systems: a low-affinity system with an apparent Km of 1.3 X 10(-5) M, and a high-affinity system with an apparent Km of 1.9 X 10(-7) M. The high-affinity system shows a specificity unusual for bacterial systems in that both aromatic and aliphatic amino acids inhibit leucine transport, provided that they have hydrophobic side chains of a length greater than that of two carbon atoms. The system exhibits strict stereospecificity for the L form. Phenylalanine inhibition was investigated in more detail. The Ki for inhibition of leucine transport by phenylalanine is about 1.4 X 10(-7) M. Phenylalanine itself is transported by an energy-dependent process whose specificity is the same as the high-affinity leucine transport system, as is expected if both amino acids share the same transport system. Studies with protoplasts indicate that a periplasmic binding protein is not an essential part of this transport system. Fein and MacLeod (J. Bacteriol. 124:1177-1190, 1975) reported two neutral amino acid transport systems in strain B-16: the DAG system, serving glycine, D-alanine, D-serine, and alpha-aminoisobutyric acid; and the LIV system, serving L-leucine, L-isoleucine, L-valine, and L-alanine. The high-affinity system reported here is a third neutral amino acid transport system in this marine pseudomonad. We propose the name "LIV-II" system. PMID:856786

  2. Modulation of fatty acid composition and growth in Sporosarcina species in response to temperatures and exogenous branched-chain amino acids.

    PubMed

    Tsuda, Kentaro; Nagano, Hideaki; Ando, Akinori; Shima, Jun; Ogawa, Jun

    2017-06-01

    Psychrotolerant endospore-forming Sporosarcina species have been predominantly isolated from minced fish meat (surimi), which is stored under refrigeration after heat treatment. To develop a better method for preserving surimi-based food products, we studied the growth and fatty acid compositions of the isolated strain S92h as well as Sporosarcina koreensis and Sporosarcina aquimarina at cold and moderate temperatures. The growth rates of strain S92h and S. koreensis were the fastest and slowest at cold temperatures, respectively, although these strains grew at a similar rate at moderate temperatures. In all three strains, the proportions of anteiso-C 15:0 and unsaturated fatty acids (UFAs) were significantly higher at cold temperatures than at moderate temperatures. Furthermore, supplementation with valine, leucine, and isoleucine resulted in proportional increases in iso-C 16:0 , iso-C 15:0 , and anteiso-C 15:0 , respectively, among the fatty acid compositions of these strains. The proportions of the UFAs were also altered by the supplementation. At cold temperatures, the growth rates of strain S92h and S. koreensis, but not of S. aquimarina, were affected by supplementation with leucine. Supplementation with isoleucine enhanced the growth of S. koreensis at cold temperatures but not that of the other strains. Valine did not affect the growth of any strain. These results indicate that anteiso-C 15:0 and UFAs both play important roles in the cold tolerance of the genus Sporosarcina and that these bacteria modulate their fatty acid compositions in response to the growth environment.

  3. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    PubMed Central

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  4. Properties of Acetate Kinase Isozymes and a Branched-Chain Fatty Acid Kinase from a Spirochete

    PubMed Central

    Harwood, Caroline S.; Canale-Parola, Ercole

    1982-01-01

    Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids. PMID:6288660

  5. Down-Regulation of Placental Transport of Amino Acids Precedes the Development of Intrauterine Growth Restriction in Maternal Nutrient Restricted Baboons1

    PubMed Central

    Pantham, Priyadarshini; Rosario, Fredrick J.; Weintraub, Susan T.; Nathanielsz, Peter W.; Powell, Theresa L.; Li, Cun; Jansson, Thomas

    2016-01-01

    Intrauterine growth restriction (IUGR) is an important risk factor for perinatal complications and adult disease. IUGR is associated with down-regulation of placental amino acid transporter expression and activity at birth. It is unknown whether these changes are a cause or a consequence of human IUGR. We hypothesized that placental amino acid transport capacity is reduced prior to onset of reduced fetal growth in baboons with maternal nutrient restriction (MNR). Pregnant baboons were fed either a control (n = 8) or MNR diet (70% of control diet, n = 9) from Gestational Day 30. At Gestational Day 120 (0.65 of gestation), fetuses and placentas were collected. Microvillous (MVM) and basal (BM) plasma membrane vesicles were isolated. System A and system L transport activity was determined in MVM, and leucine transporter activity was assessed in BM using radiolabeled substrates. MVM amino acid transporter isoform expression (SNAT1, SNAT2, and SNAT4 and LAT1 and LAT2) was measured using Western blots. LAT1 and LAT2 expression were also determined in BM. Maternal and fetal plasma amino acids concentrations were determined using mass spectrometry. Fetal and placental weights were unaffected by MNR. MVM system A activity was decreased by 37% in MNR baboon placentas (P = 0.03); however MVM system A amino acid transporter protein expression was unchanged. MVM system L activity and BM leucine transporter activity were not altered by MNR. Fetal plasma concentrations of essential amino acids isoleucine and leucine were reduced, while citrulline increased (P < 0.05) in MNR fetuses compared to controls. In this primate model of IUGR, placental MVM system A amino acid transporter activity is decreased prior to the onset of reduction in the fetal growth trajectory. The reduction in plasma leucine and isoleucine in MNR fetuses may be caused by reduced activity of MVM system A, which is strongly coupled with system L essential amino acid uptake. Our findings indicate that reduced

  6. Isoleucine epimerization and amino acid composition in molecular-weight separations of Pleistocene Genyornis eggshell

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Miller, Gifford H.

    1995-07-01

    This study explores the geochronological utility and analytical reproducibility of separating the high-molecular-weight fraction (HMW) from eggshells of the extinct late Pleistocene ratite, Genyornis, using disposable, prepacked gel-filtration columns. The superior integrity of ratite eggshell for the retention of amino acids indicates that this biomineral is better suited for this type of investigation than previously studied molluscan shell. To evaluate the reproducibility of the gel-filtration technique, we analyzed triplicate subsamples of three eggshells of different ages. The reproducibility, based on the average intrashell variation (coefficient of variation; CV) in the extent of isoleucine epimerization (aIle/Ile) in the HMW (enriched in molecules ca. >10,000 MW) is 3%, well within the range appropriate for geochronological purposes. The average intrashell variation in the total amino acid concentration (Σ[aa]) of the HMW is 5%, somewhat better than for the total acid hydrolysate (TOTAL) of the same samples (7%). To evaluate the relation between molecular weight and the rate of isoleucine epimerization, three molecular-weight fractions were separated using gel filtration, plus the naturally hydrolyzed free fraction (FREE), for each of four fossil eggshells. AIle/Ile increases with decreasing molecular weight in all shells, with a ca. sixfold to ninefold difference in ratios between the HMW andFREE, and a ca. fivefold difference between the HMW andTOTAL. Although linear correlations between aIle/Ile measured in each molecular-weight fraction and in theTOTAL are all highly significant (r ⩾ 0.951), the relation between the extent of epimerization in the HMW and in the TOTAL is best expressed as an exponential function (r = 0.951). This relation is consistent with the idea that, as the epimerization reaction approaches equilibrium in theTOTAL (ca. aIle/Ile > 1.1), its rate decreases beyond that of the HMW. The amino acid composition (relative percent of

  7. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond

    NASA Astrophysics Data System (ADS)

    Samgina, Tatiana Yu; Kovalev, Sergey V.; Tolpina, Miriam D.; Trebse, Polonca; Torkar, Gregor; Lebedev, Albert T.

    2018-05-01

    Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops. [Figure not available: see fulltext.

  8. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids

    PubMed Central

    Cavallaro, Nicole Landa; Garry, Jamie; Shi, Xu; Gerszten, Robert E.; Anderson, Ellen J.; Walford, Geoffrey A.

    2016-01-01

    Background Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. Objective To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. Design Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]). All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. Results Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; p<0.0001 for all). Fasting valine was significantly lower (p=0.02) and fasting isoleucine and leucine were numerically lower following the low BCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. Conclusion Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation. PMID:26781817

  9. Novel metabolic and physiological functions of branched chain amino acids: a review.

    PubMed

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.

  10. Role of BkdR, a Transcriptional Activator of the SigL-Dependent Isoleucine and Valine Degradation Pathway in Bacillus subtilis

    PubMed Central

    Debarbouille, Michel; Gardan, Rozenn; Arnaud, Maryvonne; Rapoport, George

    1999-01-01

    A new gene, bkdR (formerly called yqiR), encoding a regulator with a central (catalytic) domain was found in Bacillus subtilis. This gene controls the utilization of isoleucine and valine as sole nitrogen sources. Seven genes, previously called yqiS, yqiT, yqiU, yqiV, bfmBAA, bfmBAB, and bfmBB and now referred to as ptb, bcd, buk, lpd, bkdA1, bkdA2, and bkdB, are located downstream from the bkdR gene in B. subtilis. The products of these genes are similar to phosphate butyryl coenzyme A transferase, leucine dehydrogenase, butyrate kinase, and four components of the branched-chain keto acid dehydrogenase complex: E3 (dihydrolipoamide dehydrogenase), E1α (dehydrogenase), E1β (decarboxylase), and E2 (dihydrolipoamide acyltransferase). Isoleucine and valine utilization was abolished in bcd and bkdR null mutants of B. subtilis. The seven genes appear to be organized as an operon, bkd, transcribed from a −12, −24 promoter. The expression of the bkd operon was induced by the presence of isoleucine or valine in the growth medium and depended upon the presence of the sigma factor SigL, a member of the sigma 54 family. Transcription of this operon was abolished in strains containing a null mutation in the regulatory gene bkdR. Deletion analysis showed that upstream activating sequences are involved in the expression of the bkd operon and are probably the target of bkdR. Transcription of the bkd operon is also negatively controlled by CodY, a global regulator of gene expression in response to nutritional conditions. PMID:10094682

  11. Differential distribution of amino acids in plants.

    PubMed

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-05-01

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  12. Stimulation of skeletal muscle protein synthesis in neonatal pigs by long-term infusion of leucine is amino acid dependent

    USDA-ARS?s Scientific Manuscript database

    Infusing leucine for 1 hr increases skeletal muscle protein synthesis in neonatal pigs, but this is not sustained for 2 h unless the leucine-induced fall in amino acids is prevented. We aimed to determine whether continuous leucine infusion can stimulate protein synthesis for a prolonged period whe...

  13. Alteration in plasma free amino acid levels and its association with gout.

    PubMed

    Mahbub, M H; Yamaguchi, Natsu; Takahashi, Hidekazu; Hase, Ryosuke; Amano, Hiroki; Kobayashi-Miura, Mikiko; Kanda, Hideyuki; Fujita, Yasuyuki; Yamamoto, Hiroshi; Yamamoto, Mai; Kikuchi, Shinya; Ikeda, Atsuko; Kageyama, Naoko; Nakamura, Mina; Ishimaru, Yasutaka; Sunagawa, Hiroshi; Tanabe, Tsuyoshi

    2017-03-16

    Studies on the association of plasma-free amino acids with gout are very limited and produced conflicting results. Therefore, we sought to explore and characterize the plasma-free amino acid (PFAA) profile in patients with gout and evaluate its association with the latter. Data from a total of 819 subjects (including 34 patients with gout) undergoing an annual health examination program in Shimane, Japan were considered for this study. Venous blood samples were collected from the subjects and concentrations of 19 plasma amino acids were determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry. Student's t-test was applied for comparison of variables between patient and control groups. The relationships between the presence or absence of gout and individual amino acids were investigated by logistic regression analysis controlling for the effects of potential demographic confounders. Among 19 amino acids, the levels of 10 amino acids (alanine, glycine, isoleucine, leucine, methionine, phenylalanine, proline, serine, tryptophan, valine) differed significantly (P < .001 to .05) between the patient and control groups. Univariate logistic regression analysis revealed that plasma levels of alanine, isoleucine, leucine, phenylalanine, tryptophan and valine had significant positive associations (P < .005 to .05) whereas glycine and serine had significant inverse association (P < .05) with gout. The observed significant changes in PFAA profiles may have important implications for improving our understanding of pathophysiology, diagnosis and prevention of gout. The findings of this study need further confirmation in future large-scale studies involving a larger number of patients with gout.

  14. Feedback-Resistant Acetohydroxy Acid Synthase Increases Valine Production in Corynebacterium glutamicum

    PubMed Central

    Elišáková, Veronika; Pátek, Miroslav; Holátko, Jiří; Nešvera, Jan; Leyval, Damien; Goergen, Jean-Louis; Delaunay, Stéphane

    2005-01-01

    Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum ΔilvA ΔpanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions. PMID:15640189

  15. A novel l-isoleucine-4′-dioxygenase and l-isoleucine dihydroxylation cascade in Pantoea ananatis

    PubMed Central

    Smirnov, Sergey V; Sokolov, Pavel M; Kotlyarova, Veronika A; Samsonova, Natalya N; Kodera, Tomohiro; Sugiyama, Masakazu; Torii, Takayoshi; Hibi, Makoto; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2013-01-01

    A unique operon structure has been identified in the genomes of several plant- and insect-associated bacteria. The distinguishing feature of this operon is the presence of tandem hilA and hilB genes encoding dioxygenases belonging to the PF13640 and PF10014 (BsmA) Pfam families, respectively. The genes encoding HilA and HilB from Pantoea ananatis AJ13355 were cloned and expressed in Escherichia coli. The culturing of E. coli cells expressing hilA (E. coli-HilA) or both hilA and hilB (E. coli-HilAB) in the presence of l-isoleucine resulted in the conversion of l-isoleucine into two novel biogenic compounds: l-4′-isoleucine and l-4,4′-dihydroxyisoleucine, respectively. In parallel, two novel enzymatic activities were detected in the crude cell lysates of the E. coli-HilA and E. coli-HilAB strains: l-isoleucine, 2-oxoglutarate: oxygen oxidoreductase (4′-hydroxylating) (HilA) and l-4′-hydroxyisoleucine, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating) (HilB), respectively. Two hypotheses regarding the physiological significance of C-4(4′)-hydroxylation of l-isoleucine in bacteria are also discussed. According to first hypothesis, the l-isoleucine dihydroxylation cascade is involved in synthesis of dipeptide antibiotic in P. ananatis. Another unifying hypothesis is that the C-4(4′)-hydroxylation of l-isoleucine in bacteria could result in the synthesis of signal molecules belonging to two classes: 2(5H)-furanones and analogs of N-acyl homoserine lactone. PMID:23554367

  16. Ketoisocaproic acid, a metabolite of leucine, suppresses insulin-stimulated glucose transport in skeletal muscle cells in a BCAT2-dependent manner

    PubMed Central

    Moghei, Mahshid; Tavajohi-Fini, Pegah; Beatty, Brendan

    2016-01-01

    Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P < 0.05). Importantly, we also showed that α-ketoisocaproic acid (KIC), an obligatory metabolite of leucine, stimulated mTORC1 signaling but suppressed insulin-stimulated glucose transport (−34%, P < 0.05) in an mTORC1-dependent manner. The effect of KIC on insulin-stimulated glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae. PMID:27488662

  17. Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction.

    PubMed

    Kato, Hiroyuki; Miura, Kyoko; Nakano, Sayako; Suzuki, Katsuya; Bannai, Makoto; Inoue, Yoshiko

    2016-09-01

    Eccentric exercise results in prolonged muscle damage that may lead to muscle dysfunction. Although inflammation is essential to recover from muscle damage, excessive inflammation may also induce secondary damage, and should thus be suppressed. In this study, we investigated the effect of leucine-enriched essential amino acids on muscle inflammation and recovery after eccentric contraction. These amino acids are known to stimulate muscle protein synthesis via mammalian target of rapamycin (mTOR), which, is also considered to alleviate inflammation. Five sets of 10 eccentric contractions were induced by electrical stimulation in the tibialis anterior muscle of male SpragueDawley rats (8-9 weeks old) under anesthesia. Animals received a 1 g/kg dose of a mixture containing 40 % leucine and 60 % other essential amino acids or distilled water once a day throughout the experiment. Muscle dysfunction was assessed based on isometric dorsiflexion torque, while inflammation was evaluated by histochemistry. Gene expression of inflammatory cytokines and myogenic regulatory factors was also measured. We found that leucine-enriched essential amino acids restored full muscle function within 14 days, at which point rats treated with distilled water had not fully recovered. Indeed, muscle function was stronger 3 days after eccentric contraction in rats treated with amino acids than in those treated with distilled water. The amino acid mix also alleviated expression of interleukin-6 and impeded infiltration of inflammatory cells into muscle, but did not suppress expression of myogenic regulatory factors. These results suggest that leucine-enriched amino acids accelerate recovery from muscle damage by preventing excessive inflammation.

  18. A randomized controlled trial: branched-chain amino acid levels and glucose metabolism in patients with obesity and sleep apnea.

    PubMed

    Barceló, Antonia; Morell-Garcia, Daniel; Salord, Neus; Esquinas, Cristina; Pérez, Gerardo; Pérez, Antonio; Monasterio, Carmen; Gasa, Merce; Fortuna, Ana Maria; Montserrat, Josep Maria; Mayos, Mercedes

    2017-12-01

    There is evidence that changes in branched-chain amino acid (BCAA) levels may correlate with the efficacy of therapeutic interventions for affecting improvement in metabolic control. The objective of this study was to evaluate whether serum concentrations of BCAAs (leucine, isoleucine, valine) could mediate in insulin sensitivity and glucose tolerance after continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnea (OSA). A prospective randomized controlled trial of OSA patients with morbid obesity was conducted. Eighty patients were randomized into two groups: 38 received conservative treatment and 42 received CPAP treatment for 12 weeks. Plasma levels of BCAA, glucose tolerance and insulin resistance were evaluated at baseline and after treatment. After treatment, significant decreases of leucine levels were observed in both groups when compared with baseline levels (P < 0.005). With respect to patients with normal glucose tolerance (NGT), patients with impaired glucose tolerance (IGT) had higher baseline levels of isoleucine (78 ± 16 versus 70 ± 13 μmol L -1 , P = 0.014) and valine (286 ± 36 versus 268 ± 41 μmol L -1 , P = 0.049), respectively. Changes in levels of leucine and isoleucine after treatment were related negatively to changes in fasting plasma glucose and glycosylated haemoglobin values only in the conservative group (P < 0.05). In summary, we found that the treatment with CPAP for 12 weeks caused similar changes in circulating BCAAs concentrations to conservative treatment and a differential metabolic response of CPAP and conservative treatment was observed between the relationship of BCAAs and glucose homeostasis. Additional studies are needed to determine the interplay between branched-chain amino acids and glucose metabolism in patients with sleep apnea. © 2017 European Sleep Research Society.

  19. Rapid LC-MS/MS profiling of protein amino acids and metabolically related compounds for large-scale assessment of metabolic phenotypes.

    PubMed

    Gu, Liping; Jones, A Daniel; Last, Robert L

    2012-01-01

    Amino acids extracted from a biological matrix can be resolved and measured using a 6-min per sample method through high-performance liquid chromatography with a short C18 column and rapid gradient using the ion-pairing reagent perfluoroheptanoic acid. LC-tandem mass spectrometry with multiple reaction monitoring (MRM) transitions selective for each compound allows simultaneous quantification of the 20 proteinogenic amino acids and 5 metabolically related compounds. Distinct MRM transitions were also established for selective detection of the isomers leucine/isoleucine and threonine/homoserine.

  20. Effects of Local Delivery of d-amino Acids from Biofilm-dispersive Scaffolds on Infection in Contaminated Rat Segmental Defects

    DTIC Science & Technology

    2013-07-05

    and L-isomers of amino acids (free base form), including alanine, isoleucine, leucine, methionine, phenylalanine , proline, tryptophan, tyrosine, and...lactide (T6C3G1L900) were synthesized using published techniques [33,34]. Appropriate amounts of dried glycerol and ε-caprolactone, glycolide, DL ...Hubbell JA. Rapidly degraded terpolymers of dl -lactide, glyco- lide, and epsilon-caprolactone with increased hydrophilicity by copolymeri- zation with

  1. Branched-chain amino acid interactions with reference to amino acid requirements in adult men: Valine metabolism at different leucine intakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelletier, V.; Marks, L.; Wagner, D.A.

    1991-08-01

    The authors explored whether the oxidation of valine and by implication the physiological requirement for this amino acid are affected by changes in leucine intake over a physiological range. Six young adult men received, in random order, four L-amino acid-based diets for 5 d supplying either 20 or 10 mg valine.kg body wt-1.d-1, each in combination with 80 or 40 mg leucine.kg-1.d-1. On day 6 subjects were studied with an 8-h continuous intravenous infusion of (1-13C)valine (and (2H3)leucine) to determine valine oxidation in the fasted state (first 3 h) and fed state (last 5 h). Valine oxidation in the fastedmore » state was similar among all diets but was lower (P less than 0.05) in the fed state for the 10 vs 20 mg valine.kg-1.d-1 intake. Leucine intake did not affect valine oxidation. Mean daily valine balance approximated +1.3 mg.kg-1.d-1 for the 20-mg intake and -1.6 mg.kg-1.d-1 for the 10-mg intake. These findings support our previously suggested mean valine requirement estimate of approximately 20 mg.kg-1.d-1.« less

  2. Low temperature investigations of dynamic properties in l-leucine - chloranilic acid complex.

    PubMed

    Hetmańczyk, J; Nowicka-Scheibe, J; Maurin, J K; Pawlukojć, A

    2018-07-05

    Inelastic neutron scattering (INS) and infra-red (IR) spectroscopy methods were used for determination of dynamic structure of l-leucine - chloranilic acid complex. A theoretical dynamic pattern calculated by the density functional theory (DFT) method for periodic boundary conditions accompanied the experimental ones. Normal modes in the vibrational spectra were defined and described. The characteristic presence of the Hadži's trio enriched by numerous submaxima is observed in the wavenumber range 3200-800 cm -1 . Bands assigned to CH 3 torsion vibrations in the leucine cation were observed at 231 cm -1 and 258 cm -1 in the INS spectrum. Temperature-dependent far-infrared spectra in the temperature range 9 K-290 K were obtained. Vibrational bands were analyzed as a function of temperature. Activation energies for reorientational motion of CH 3 and CH 2 groups were determined by means of the band shape analysis performed for torsional and twisting vibrations of these groups. The estimated energy is equal to E a  = 2.7 ± 0.2 kJ/mol and E a  = 2.17 ± 0.12 kJ/mol for CH 3 and CH 2 groups, respectively. A phase transition at about 130 K in the l-leucine - chloranilic acid complex was observed. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; di Rienzo, Valentina; Boss, Paul K; Davies, Christopher

    2015-07-01

    The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal. © 2014 Institute of Botany, Chinese Academy of Sciences.

  4. Electron ionization and dissociation of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  5. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability.

    PubMed

    Kathuria, Sagar V; Chan, Yvonne H; Nobrega, R Paul; Özen, Ayşegül; Matthews, C Robert

    2016-03-01

    Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high-energy states that populate their folding free-energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high-energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high-energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates. © 2015 The Protein Society.

  6. Arginine supplementation modulates pig plasma lipids, but not hepatic fatty acids, depending on dietary protein level with or without leucine.

    PubMed

    Madeira, Marta Sofia Morgado Dos Santos; Rolo, Eva Sofia Alves; Pires, Virgínia Maria Rico; Alfaia, Cristina Maria Riscado Pereira Mateus; Coelho, Diogo Francisco Maurício; Lopes, Paula Alexandra Antunes Brás; Martins, Susana Isabel Vargas; Pinto, Rui Manuel Amaro; Prates, José António Mestre

    2017-05-30

    In the present study, the effect of arginine and leucine supplementation, and dietary protein level, were investigated in commercial crossbred pigs to clarify their individual or combined impact on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid sensitive factors. The experiment was conducted on fifty-four entire male pigs (Duroc × Pietrain × Large White × Landrace crossbred) from 59 to 92 kg of live weight. Each pig was randomly assigned to one of six experimental treatments (n = 9). The treatments followed a 2 × 3 factorial arrangement, providing two levels of arginine supplementation (0 vs. 1%) and three levels of basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet with 2% of leucine, RPDL). Significant interactions between arginine supplementation and protein level were observed across plasma lipids. While dietary arginine increased total lipids, total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol and triacylglycerols in NPD, the inverse effect was observed in RPD. Overall, dietary treatments had a minor impact on hepatic fatty acid composition. RPD increased 18:1c9 fatty acid while the combination of leucine and RPD reduced 18:0 fatty acid. Arginine supplementation increased the gene expression of FABP1, which contributes for triacylglycerols synthesis without affecting hepatic fatty acids content. RPD, with or without leucine addition, upregulated the lipogenic gene CEBPA but downregulated the fat oxidation gene LPIN1. Arginine supplementation was responsible for a modulated effect on plasma lipids, which is dependent on dietary protein level. It consistently increased lipaemia in NPD, while reducing the correspondent metabolites in RPD. In contrast, arginine had no major impact, neither on hepatic fatty acids content nor on fatty acid composition. Likewise, leucine supplementation of RPD, regardless the presence of arginine, promoted no changes on total fatty acids in

  7. Down-Regulation of Placental Transport of Amino Acids Precedes the Development of Intrauterine Growth Restriction in Maternal Nutrient Restricted Baboons.

    PubMed

    Pantham, Priyadarshini; Rosario, Fredrick J; Weintraub, Susan T; Nathanielsz, Peter W; Powell, Theresa L; Li, Cun; Jansson, Thomas

    2016-11-01

    Intrauterine growth restriction (IUGR) is an important risk factor for perinatal complications and adult disease. IUGR is associated with down-regulation of placental amino acid transporter expression and activity at birth. It is unknown whether these changes are a cause or a consequence of human IUGR. We hypothesized that placental amino acid transport capacity is reduced prior to onset of reduced fetal growth in baboons with maternal nutrient restriction (MNR). Pregnant baboons were fed either a control (n = 8) or MNR diet (70% of control diet, n = 9) from Gestational Day 30. At Gestational Day 120 (0.65 of gestation), fetuses and placentas were collected. Microvillous (MVM) and basal (BM) plasma membrane vesicles were isolated. System A and system L transport activity was determined in MVM, and leucine transporter activity was assessed in BM using radiolabeled substrates. MVM amino acid transporter isoform expression (SNAT1, SNAT2, and SNAT4 and LAT1 and LAT2) was measured using Western blots. LAT1 and LAT2 expression were also determined in BM. Maternal and fetal plasma amino acids concentrations were determined using mass spectrometry. Fetal and placental weights were unaffected by MNR. MVM system A activity was decreased by 37% in MNR baboon placentas (P = 0.03); however MVM system A amino acid transporter protein expression was unchanged. MVM system L activity and BM leucine transporter activity were not altered by MNR. Fetal plasma concentrations of essential amino acids isoleucine and leucine were reduced, while citrulline increased (P < 0.05) in MNR fetuses compared to controls. In this primate model of IUGR, placental MVM system A amino acid transporter activity is decreased prior to the onset of reduction in the fetal growth trajectory. The reduction in plasma leucine and isoleucine in MNR fetuses may be caused by reduced activity of MVM system A, which is strongly coupled with system L essential amino acid uptake. Our findings indicate that reduced

  8. Studies on the biochemical composition, energetics and essential amino acids of three mudskippers in Xiamen Harbour

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Su, Yong-Quan

    1995-12-01

    Measurements were made on the contents of protein, lipid, glycogen (PLG) and water, and on caloric values and amino acids, in muscle of three mudskippers Periophthalmus cantonensis, Scarteiaos viridis and Boleophthalmus pectinirostris collected from Haicang, Xiamen. The essential amino acids (EAA) for these fishes were also studied with radioisotopic trace method. The results showed: (1) The content of each component in tested fish muscles differed slightly, and protein was the most important component making up from 6.685% to 9.891% of the wet weight (about 44.21% 50.45% of dry weight); (2) Energy calculated from the sum of protein, lipid and glycogen in wet muscle was low (<4.3kJ/g) in these fishes, especially in B. pectinirostris (<3.1 kJ/g); the ratios of energy to protein content ( E/P) also were low (<39.873 45.535kJ/g); (3) Seventeen amino acids were determined in these three fishes. The content of the same amino acid (among the seventeen) tested in different species and sexes varied slightly. The amounts of methionine, phenylalanine lysine, arginine, histidine, threonine isoleucine and leucine which are indispensable for the needs of human beings and animals were relatively high, accounting for 47.35% 48.06% of the total amino acid content. (4) Leucine, isoleucine, arginine, lysine, phenylalanine, tryptophan, methionine, histidine, threonine, and valine, are essential in the diet of the three mudskippers as the radioisotopic trace method using D-[U-14C]-glucose showed little or no radioactivity was incorporated into these ten amino acids.

  9. Studies on the biochemical composition, energetics and essential amino acids of three mudskippers in Xiamen Harbour

    NASA Astrophysics Data System (ADS)

    Jun, Wang; Yong-Quan, Su

    1995-12-01

    Measurements were made on the contents of protein, lipid, glycogen (PLG) and water, and on caloric values and amino acids, in muscle of three mudskippers Periophthalmus cantonensis, Scarteiaos viridis and Boleophthalmus pectinirostris collected from Haicang, Xiamen. The essential amino acids (EAA) for these fishes were also studied with radioisotopic trace method. The results showed: (1) The content of each component in tested fish muscles differed slightly, and protein was the most important component making up from 6.685% to 9.891% of the wet weight (about 44.21%-50.45% of dry weight); (2) Energy calculated from the sum of protein, lipid and glycogen in wet muscle was low (<4.3kJ/g) in these fishes, especially in B. pectinirostris (<3.1 kJ/g); the ratios of energy to protein content ( E/P) also were low (<39.873-45.535kJ/g); (3) Seventeen amino acids were determined in these three fishes. The content of the same amino acid (among the seventeen) tested in different species and sexes varied slightly. The amounts of methionine, phenylalanine lysine, arginine, histidine, threonine isoleucine and leucine which are indispensable for the needs of human beings and animals were relatively high, accounting for 47.35%-48.06% of the total amino acid content. (4) Leucine, isoleucine, arginine, lysine, phenylalanine, tryptophan, methionine, histidine, threonine, and valine, are essential in the diet of the three mudskippers as the radioisotopic trace method using D-[U-14C]-glucose showed little or no radioactivity was incorporated into these ten amino acids.

  10. RETRACTED: Crystal growth and spectroscopic characterization of Aloevera amino acid added lithium sulfate monohydrate: A non-linear optical crystal

    NASA Astrophysics Data System (ADS)

    Manimekalai, R.; Antony Joseph, A.; Ramachandra Raja, C.

    2014-03-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of authors. According to the author we have reported Aloevera Amino Acid added Lithium sulphate monohydrate [AALSMH] crystal is a new nonlinear optical crystal. From the recorded high performance liquid chromatography spectrum, by matching the retention times with the known compounds, the amino acids present in our extract are identified as homocystine, isoleucine, serine, leucine and tyrosine. From the thin layer chromatography and colorimetric estimation techniques, presence of isoleucine was identified and it was also confirmed by NMR spectrum. From the above studies, we came to conclude that AALSMH is new nonlinear optical crystal. After further investigation, lattice parameter values of AALSMH are coinciding with lithium sulphate. Therefore we have decided to withdraw our paper. Sorry for the inconvenience and time spent.

  11. AMINO ACID COMPOSITION OF HIGHLY PURIFIED VIRAL PARTICLES OF INFLUENZA A AND B

    PubMed Central

    Knight, C. A.

    1947-01-01

    Microbiological assays for amino acids were made on hydrolysates of four to five highly purified preparations each of influenza A virus (PR8 strain) and influenza B virus (Lee strain). The results of the assays indicated that these strains of influenza virus contain approximately the same amounts of alanine, aspartic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, and valine. However, significant differences were found in the values for arginine, glutamic acid, lysine, tryptophane, and tyrosine. It is believed that these differences may provide, at least in part, a chemical explanation for some of the differing properties of the PR8 and Lee strains of influenza viruses. PMID:19871660

  12. Hypothalamic Leucine Metabolism Regulates Liver Glucose Production

    PubMed Central

    Su, Ya; Lam, Tony K.T.; He, Wu; Pocai, Alessandro; Bryan, Joseph; Aguilar-Bryan, Lydia; Gutiérrez-Juárez, Roger

    2012-01-01

    Amino acids profoundly affect insulin action and glucose metabolism in mammals. Here, we investigated the role of the mediobasal hypothalamus (MBH), a key center involved in nutrient-dependent metabolic regulation. Specifically, we tested the novel hypothesis that the metabolism of leucine within the MBH couples the central sensing of leucine with the control of glucose production by the liver. We performed either central (MBH) or systemic infusions of leucine in Sprague-Dawley male rats during basal pancreatic insulin clamps in combination with various pharmacological and molecular interventions designed to modulate leucine metabolism in the MBH. We also examined the role of hypothalamic ATP-sensitive K+ channels (KATP channels) in the effects of leucine. Enhancing the metabolism of leucine acutely in the MBH lowered blood glucose through a biochemical network that was insensitive to rapamycin but strictly dependent on the hypothalamic metabolism of leucine to α-ketoisocaproic acid and, further, insensitive to acetyl- and malonyl-CoA. Functional KATP channels were also required. Importantly, molecular attenuation of this central sensing mechanism in rats conferred susceptibility to developing hyperglycemia. We postulate that the metabolic sensing of leucine in the MBH is a previously unrecognized mechanism for the regulation of hepatic glucose production required to maintain glucose homeostasis. PMID:22187376

  13. Involvement of the Neutral Amino Acid Transporter SLC6A15 and Leucine in Obesity-Related Phenotypes

    PubMed Central

    Drgonova, Jana; Jacobsson, Josefin A.; Han, Joan C.; Yanovski, Jack A.; Fredriksson, Robert; Marcus, Claude; Schiöth, Helgi B.; Uhl, George R.

    2013-01-01

    Brain pathways, including those in hypothalamus and nucleus of the solitary tract, influence food intake, nutrient preferences, metabolism and development of obesity in ways that often differ between males and females. Branched chain amino acids, including leucine, can suppress food intake, alter metabolism and change vulnerability to obesity. The SLC6A15 (v7-3) gene encodes a sodium-dependent transporter of leucine and other branched chain amino acids that is expressed by neurons in hypothalamus and nucleus of the solitary tract. We now report that SLC6A15 knockout attenuates leucine's abilities to reduce both: a) intake of normal chow and b) weight gain produced by access to a high fat diet in gender-selective fashions. We identify SNPs in the human SLC6A15 that are associated with body mass index and insulin resistance in males. These observations in mice and humans support a novel, gender-selective role for brain amino acid compartmentalization mediated by SLC6A15 in diet and obesity-associated phenotypes. PMID:24023709

  14. Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells.

    PubMed

    Cha, Jae-Young; Yang, Hyun-Ju; Moon, Hyung-In; Cho, Young-Su

    2012-04-01

    Present study was investigated the effect of each or complex of three branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) on melanin production in B16F0 melanoma cells treated with various concentrations (1-16 mM) for 72 h. Among the 20 amino acids, lysine and glycine showed the highest activities of DPPH radical scavenging and mushroom tyrosinase inhibition, respectively. Each and combination of BCAAs reduced melanogenesis in a concentration-dependent manner without any morphological changes and cell viability in melanoma cells. Present study was also investigated the inhibitory effects of each or complex of BCAAs at each 10 mM concentration on the 100 μM IBMX-mediated stimulation of melanogenesis in melanoma cells for 72 h and found that IBMX treatment was stimulated to enhance melanin synthesis and that the complex of BCAAs was the most effectively inhibited in the melanin amounts of cellular and extracellular and the whitening the cell pellet. When the inhibitory effect of BCAAs on tyrosinase was examined by intracellular tyrosinase assay, both isoleucine and valine exhibit slightly inhibition, but leucine and combination of BCAAs did not inhibit the cell-derived tyrosinase activity. Present study demonstrated that complex of BCAAs inhibited melanin production without changes intercellular tyrosinase activity. Thus, the complex of BCAAs may be used in development of safe potentially depigmenting agents.

  15. d-Leucine: Evaluation in an epilepsy model.

    PubMed

    Holden, Kylie; Hartman, Adam L

    2018-01-01

    Current medicines do not provide sufficient seizure control for nearly one-third of patients with epilepsy. New options are needed to address this treatment gap. We recently found that the atypical amino acid d-leucine protected against acutely-induced seizures in mice, but its effect in chronic seizures has not been explored. We hypothesized that d-leucine would protect against spontaneous recurrent seizures. We also investigated whether mice lacking a previously-described d-leucine receptor (Tas1R2/R3) would be protected against acutely-induced seizures. Male FVB/NJ mice were subjected to kainic acid-induced status epilepticus and monitored by video-electroencephalography (EEG) (surgically implanted electrodes) for 4weeks before, during, and after treatment with d-leucine. Tas1R2/R3 knockout mice and controls underwent the maximal electroshock threshold (MES-T) and 6-Hz tests. There was no difference in number of calendar days with seizures or seizure frequency with d-leucine treatment. In an exploratory analysis, mice treated with d-leucine had a lower number of dark cycles with seizures. Tas1R2/R3 knockout mice had elevated seizure thresholds in the MES-T test but not the 6-Hz test. d-Leucine treatment was ineffective against chronic seizures after kainic acid-induced status epilepticus, but there was some efficacy during the dark cycle. Because d-leucine is highly concentrated in the pineal gland, these data suggest that d-leucine may be useful as a tool for studying circadian patterns in epilepsy. Deletion of the Tas1R2/R3 receptor protected against seizures in the MES-T test and, therefore, may be a novel target for treating seizures. Published by Elsevier Inc.

  16. Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection.

    PubMed

    Tůma, Petr; Gojda, Jan

    2015-08-01

    A CE method with contactless conductivity detection has been developed for the clinical determination of the branched chain amino acids (BCAAs) valine, isoleucine and leucine in human blood plasma. The CE separation was performed in an optimised BGE with composition of 3.2 M acetic acid in 20% v/v methanol, pH 2.0. The achieved separation time was 125 s when using a capillary with an effective length of 14.7 cm, electric field intensity of 0.96 kV/cm and simultaneous application of a hydrodynamic pressure of 50 mbar. The separation efficiency in blood plasma equalled 461 000 theoretical plates/m for valine and isoleucine, and 455 000 theoretical plates/m for leucine; the detection limits are equal to 0.4 μM for all three amino acids. The RSD values for repeatability of the migration time equalled 0.1% for measurements during a single day and 0.3% for measurements on different days; the RSD values for repeatability of the peak areas equalled 2.3-2.6% for measurements during a single day and 2.7-4.6% for measurements on different days. It followed from the performed tests that the plasmatic levels of BCAAs attain a maximum 60 min after intravenous application of an infusion of BCAAs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model

    PubMed Central

    Wessels, Anna G.; Kluge, Holger; Hirche, Frank; Kiowski, Andreas; Schutkowski, Alexandra; Corrent, Etienne; Bartelt, Jörg; König, Bettina; Stangl, Gabriele I.

    2016-01-01

    In addition to its role as an essential protein component, leucine (Leu) displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH). To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2) and four-fold (L4) higher Leu contents than the recommended amount (control). We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P < 0.05), liver (1.8-fold, P < 0.05) and cardiac muscle (1.7-fold, P < 0.05), whereas we found no changes in enzyme activity in the pancreas, skeletal muscle, adipose tissue and intestinal mucosa. The L2 diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth. PMID:26930301

  18. Analysis of the free amino acid content in pollen of nine Asteraceae species of known allergenic activity.

    PubMed

    Mondal, A K; Parui, S; Mandal, S

    1998-01-01

    The study reports the free amino acid composition of the pollen of nine members of the family Asteraceae, i.e. Ageratum conyzoides L., Blumea oxyodonta DC., Eupatorium odoratum L., Gnaphalium indicum L., Mikania scandens Willd., Parthenium hysterophorus L., Spilanthes acmella Murr., Vernonia cinerea (L.) Lees. and Xanthium strumarium L. by thin layer chromatography. The amino acid content was found to vary from 0.5-4.0% of the total dry weight. Fourteen amino acids were identified, among which amino-n-butyric acid, aspartic acid and proline were present in almost all pollen samples. The other major amino acids present in free form included arginine, cystine, glutamic acid, glycine, isoleucine, leucine, methionine, ornithine, tryptophan and tyrosine.

  19. Free amino acid profiling in the giant puffball mushroom (Calvatia gigantea) using UPLC-MS/MS.

    PubMed

    Kıvrak, İbrahim; Kıvrak, Şeyda; Harmandar, Mansur

    2014-09-01

    Wild edible and medicinal mushroom, Calvatia gigantea, was quantitatively analyzed for the determination of its free amino acids using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The concentrations of total free amino acids, essential and non-essential amino acids were 199.65 mg/100 g, 113.69 mg/100 g, and 85.96 mg/100 g in C. gigantea, respectively. This study showed that C. gigantea, so called a giant puffball mushroom, has free amino acids content. The essential amino acids: tryptophan, isoleucine, valine, phenylalanine, leucine, threonine, lysine, histidine, methionine, and the non-essential amino acids: tyrosine, 4-hyrdroxy proline, arginine, proline, glycine, serine, alanine, glutamine, glutamic acid, aspargine, aspartic acid were detected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes.

    PubMed

    Johansen, Maja L; Bak, Lasse K; Schousboe, Arne; Iversen, Peter; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Gjedde, Albert; Ott, Peter; Waagepetersen, Helle S

    2007-06-01

    Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and alpha-ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the alpha-ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the alpha-ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially

  1. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise.

    PubMed

    Moberg, Marcus; Apró, William; Ekblom, Björn; van Hall, Gerrit; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-06-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo, leucine, BCAA, or EAA (including the BCAA) in random order. Muscle biopsies were taken at rest, immediately after exercise, and following 90 and 180 min of recovery. Following 90 min of recovery the activity of S6 kinase 1 (S6K1) was greater than at rest in all four trials (Placebo<Leucineleucine (40%, P < 0.05) and placebo (100%, P < 0.05). In summary, EAA ingestion appears to stimulate translation initiation more effectively than the other supplements, although the results also suggest that this effect is primarily attributable to the BCAA. Copyright © 2016 the American Physiological Society.

  2. Effects of single amino acid deficiency on mRNA translation are markedly different for methionine versus leucine.

    PubMed

    Mazor, Kevin M; Dong, Leiming; Mao, Yuanhui; Swanda, Robert V; Qian, Shu-Bing; Stipanuk, Martha H

    2018-05-24

    Although amino acids are known regulators of translation, the unique contributions of specific amino acids are not well understood. We compared effects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profiling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no significant effect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a significant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but effects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profiling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full understanding of how mRNA translation is regulated and point to a unique regulatory role of methionine status on translation initiation that is not dependent upon eIF2 phosphorylation.

  3. Pyruvate Decarboxylase Catalyzes Decarboxylation of Branched-Chain 2-Oxo Acids but Is Not Essential for Fusel Alcohol Production by Saccharomyces cerevisiae

    PubMed Central

    ter Schure, Eelko G.; Flikweert, Marcel T.; van Dijken, Johannes P.; Pronk, Jack T.; Verrips, C. Theo

    1998-01-01

    The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production. PMID:9546164

  4. Ion Chromatography Based Urine Amino Acid Profiling Applied for Diagnosis of Gastric Cancer

    PubMed Central

    Fan, Jing; Hong, Jing; Hu, Jun-Duo; Chen, Jin-Lian

    2012-01-01

    Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer. Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n = 15), early gastric cancer inpatients in group B (n = 7), and advanced gastric cancer inpatients in group C (n = 16); in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n = 5) to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC) technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC) of receiver-operating characteristic (ROC) curves. Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P < 0.05), but the levels of histidine and methionine decreased (P < 0.05), and aspartate decreased significantly (P < 0.01). The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P < 0.05). A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0

  5. Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids.

    PubMed

    Villapakkam, Anuradha C; Handke, Luke D; Belitsky, Boris R; Levdikov, Vladimir M; Wilkinson, Anthony J; Sonenshein, Abraham L

    2009-11-01

    Bacillus subtilis CodY protein is a DNA-binding global transcriptional regulator that responds to branched-chain amino acids (isoleucine, leucine, and valine) and GTP. Crystal structure studies have shown that the N-terminal region of the protein includes a GAF domain that contains a hydrophobic pocket within which isoleucine and valine bind. This region is well conserved in CodY homologs. Site-directed mutagenesis was employed to understand the roles of some of the residues in the GAF domain and hydrophobic pocket in interaction with isoleucine and GTP. The F40A, F71E, and F98A forms of CodY were inactive in vivo. They were activatable by GTP but to a much lesser extent by branched-chain amino acids in vitro. The CodY mutant R61A retained partial repression of target promoters in vivo and was able to respond to GTP in vitro but also responded poorly to branched-chain amino acids in vitro unless GTP was simultaneously present. Thus, the GAF domain includes residues essential for full activation of CodY by branched-chain amino acids, but these residues are not critical for activation by GTP. Binding studies with branched-chain amino acids and their analogs revealed that an amino group at position 2 and a methyl group at position 3 of valine are critical components of the recognition of the amino acids by CodY.

  6. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article.

    PubMed

    Grajeda-Iglesias, Claudia; Aviram, Michael

    2018-06-20

    The strong relationship between cardiovascular diseases (CVD), atherosclerosis, and endogenous or exogenous lipids has been recognized for decades, underestimating the contribution of other dietary components, such as amino acids, to the initiation of the underlying inflammatory disease. Recently, specific amino acids have been associated with incident cardiovascular disorders, suggesting their significant role in the pathogenesis of CVD. Special attention has been paid to the group of branched-chain amino acids (BCAA), leucine, isoleucine, and valine, since their plasma values are frequently found in high concentrations in individuals with CVD risk. Nevertheless, dietary BCAA, leucine in particular, have been associated with improved indicators of atherosclerosis. Therefore, their potential role in the process of atherogenesis and concomitant CVD development remains unclear. Macrophages play pivotal roles in the development of atherosclerosis. They can accumulate high amounts of circulating lipids, through a process known as macrophage foam cell formation, and initiate the atherogenesis process. We have recently screened for anti- or pro-atherogenic amino acids in the macrophage model system. Our study showed that glycine, cysteine, alanine, leucine, glutamate, and glutamine significantly affected macrophage atherogenicity mainly through modulation of the cellular triglyceride metabolism. The anti-atherogenic properties of glycine and leucine, and the pro-atherogenic effects of glutamine, were also confirmed in vivo. Further investigation is warranted to define the role of these amino acids in atherosclerosis and CVD, which may serve as a basis for the development of anti-atherogenic nutritional and therapeutic approaches.

  7. Branched-chain Amino Acids are associated with Metabolic Parameters in Bipolar Disorder.

    PubMed

    Fellendorf, F T; Platzer, M; Pilz, R; Rieger, A; Kapfhammer, H P; Mangge, H; Dalkner, N; Zelzer, S; Meinitzer, A; Birner, A; Bengesser, S A; Queissner, R; Hamm, C; Hartleb, R; Reininghaus, E Z

    2018-06-14

    An important aspect of bipolar disorder (BD) research is the identification of biomarkers pertaining to the somatic health state. The branched-chain essential amino acids (BCAAs), viz valine, leucine and isoleucine, have been proposed as biomarkers of an individual's health state, given their influence on protein synthesis and gluconeogenesis inhibition. BCAA levels of 141 euthymic/subsyndromal individuals with BD and 141 matched healthy controls (HC) were analyzed by high-pressure lipid chromatography and correlated with clinical psychiatric, anthropometric and metabolic parameters. BD and HC did not differ in valine and isoleucine, whereas leucine was significantly lower in BD. Furthermore, correlations were found between BCAAs and anthropometric and glucose metabolism data. All BCAAs correlated with lipid metabolism parameters in females. There were no associations between BCAAs and long-term clinical parameters of BD. A negative correlation was found between valine and Hamilton-Depression-Scale, and Beck-Depression-Inventory-II, in male individuals. Our results indicate the utility of BCAAs as biomarkers for the current state of health, also in BD. As BD individuals have a high risk for overweight/obesity, in association with comorbid medical conditions (e.g. cardiovascular diseases, insulin resistance), health-state markers are urgently required. However, no illness-specific associations were found in this euthymic/subsyndromal BD group.

  8. Connexins in Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2012-09-01

    Isoleucine and A=alanine. In L212A/I213A the leucine at position 212 and isoleucine at position 213 were mutated to alanine. Similar strategy was used to...and isoleucine at the indicated amino acid residues were mutated to alanine using site-directed mutagenesis (Figure 3). Expression of Cx32 and...Its Mutants and Gap Junction Assembly Human LNCaP cells neither express Cx32 nor form functional GJs [23]. We introduced WT-Cx32 and various

  9. Basolateral Sorting of Furin in MDCK Cells Requires a Phenylalanine-Isoleucine Motif Together with an Acidic Amino Acid Cluster

    PubMed Central

    Simmen, Thomas; Nobile, Massimo; Bonifacino, Juan S.; Hunziker, Walter

    1999-01-01

    Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin. PMID:10082580

  10. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes

    PubMed Central

    Zheng, Yan; Li, Yanping; Qi, Qibin; Hruby, Adela; Manson, JoAnn E; Willett, Walter C; Wolpin, Brian M; Hu, Frank B; Qi, Lu

    2016-01-01

    Background: Plasma branched-chain amino acids (BCAAs, including leucine, isoleucine and valine) were recently related to risk of type 2 diabetes (T2D). Dietary intake is the only source of BCAAs; however, little is known about whether habitual dietary intake of BCAAs affects risk of T2D. Methods: We assessed associations between cumulative consumption of BCAAs and risk of T2D among participants from three prospective cohorts: the Nurses’ Health Study (NHS; followed from 1980 to 2012); NHS II (followed from 1991 to 2011); and the Health Professionals Follow-up Study (HPFS; followed from 1986 to 2010). Results: We documented 16 097 incident T2D events during up to 32 years of follow-up. After adjustment for demographics and traditional risk factors, higher total BCAA intake was associated with an increased risk of T2D in men and women. In the meta-analysis of all cohorts, comparing participants in the highest quintile with those in the lowest quintile of intake, hazard ratios (95%confidence intervals) were for leucine 1.13 (1.07-1.19), for isoleucine 1.13 (1.07-1.19) and for valine 1.11 (1.05-1.17) (all P for trend < 0.001). In a healthy subsample, higher dietary BCAAs were significantly associated with higher plasma levels of these amino acids (P for trend = 0.01). Conclusions: Our data suggest that high consumption of BCAAs is associated with an increased risk of T2D. PMID:27413102

  11. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  12. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  13. Thz Spectroscopy and DFT Modeling of Intermolecular Vibrations in Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, michael R. C.; Aschaffenburg, Daniel J.; Schmuttenmaer, Charles A.

    2013-06-01

    Vibrations that involve intermolecular displacements occur in molecular crystals at frequencies in the 0.5-5 THz range (˜15-165 cm^{-1}), and these motions are direct indicators of the interaction potential between the molecules. The intermolecular potential energy surface of crystalline hydrophobic amino acids is inherently interesting simply because of the wide variety of forces (electrostatic, dipole-dipole, hydrogen-bonding, van der Waals) that are present. Furthermore, an understanding of these particular interactions is immediately relevant to important topics like protein conformation and pharmaceutical polymorphism. We measured the low-frequency absorption spectra of several polycrystalline hydrophobic amino acids using THz time-domain spectroscopy, and in addition we carried out DFT calculations using periodic boundary conditions and an exchange-correlation functional that accounts for van der Waals dispersion forces. We chose to investigate a series of similar amino acids with closely analogous unit cells (leucine, isoleucine, and allo-isoleucine, in racemic or pseudo-racemic mixtures). This allows us to consider trends in the vibrational spectra as a function of small changes in molecular arrangement and/or crystal geometry. In this way, we gain confidence that peak assignments are not based on serendipitous similarities between calculated and observed features.

  14. Dielectric and vibrational properties of amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2004-09-01

    We calculate polarizability tensors and normal mode frequencies for the amino acids alanine, leucine, isoleucine, and valine using density functional perturbation theory implemented within the plane wave pseudopotential framework. It is found that the behavior of the electron density under external fields depends to a large extent on the geometrical structure of the molecule in question, rather than simply on the constituent functional groups. The normal modes are able to help distinguish between the different types of intramolecular hydrogen bonding present, and help to explain why leucine is found in the zwitterionic form for the gaseous phase. Calculated IR spectra show a marked difference between those obtained for zwitterionic and nonzwitterionic molecules. These differences can be attributed to the different chemical and hydrogen bonds present. Effective dynamical charges are calculated, and compared to atomic charges obtained from Mulliken population analysis. It is found that disagreement exists, largely due to the differing origins of these quantities.

  15. Downstream change in leucine aminopeptidase activity and leucine assimilation by epilithic microbiota along the River Swale, northern England.

    PubMed

    Ainsworth, A M; Goulder, R

    2000-05-05

    Parallel determinations of epilithic extracellular leucine aminopeptidase activity and leucine assimilation were made at five sites along 112 km of the River Swale and also in two tributaries, the River Wiske and Cod Beck. Epilithic leucine aminopeptidase activity along the Swale increased with distance downstream; this increase was gradual, rather than stepwise in response to specific sewage-works outfalls. Epilithic leucine assimilation, in contrast, did not consistently increase along the river. Epilithic leucine aminopeptidase activity and leucine assimilation were both potentially controlled by epilithic microbial variables (bacterial abundance and chlorophyll a) while leucine aminopeptidase activity was also strongly related to water-quality variables, especially temperature, pH and conductivity. Epilithic leucine aminopeptidase activity and leucine assimilation were coupled, but the magnitude of aminopeptidase activity was always substantially greater than that of leucine assimilation. Arguments are presented, however, which suggest that this did not necessarily indicate the constant availability of excess leucine, and by inference amino-acid nitrogen, to epilithic bacteria. Values of epilithic leucine aminopeptidase activity and leucine assimilation, expressed relative to rates in overlying water, suggested that most activity and assimilation was epilithic rather than planktonic, although the planktonic contribution was proportionately greater at the deeper, more downstream, sites. In the tributaries, River Wiske and Cod Beck, values of epilithic leucine aminopeptidase activity and epilithic microbial abundance, as well as those of many water-quality variables, resembled values in the middle and lower Swale. Thus, these tributaries were essentially lowland, enriched watercourses being very different from the headstreams of the main river.

  16. Enhanced Glutamine Availability Exerts Different Effects on Protein and Amino Acid Metabolism in Skeletal Muscle From Healthy and Septic Rats.

    PubMed

    Holecek, Milan; Sispera, Ludek; Skalska, Hana

    2015-09-01

    Enhanced glutamine (GLN) intake may affect the catabolism of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine), which play a regulatory role in protein turnover. We examined the effects of enhanced GLN availability on leucine oxidation, amino acid concentrations, and protein metabolism in muscles from healthy and septic rats. Cecal ligation and puncture were used as a model of sepsis. Twenty-four hours after surgery, the soleus (SOL, red muscle) and the extensor digitorum longus (EDL, white muscle) were incubated in medium containing 0.5 or 2.0 mM GLN. Protein breakdown, protein synthesis, and leucine oxidation were determined via 3-methylhistidine release, muscle L-[1-(14)C]leucine radioactivity, and the radioactivity of released (14)CO2, respectively. In muscles from septic animals, increased proteolysis and leucine oxidation and decreased protein synthesis were detected. These effects were more pronounced in the EDL. In septic muscles, the addition of GLN decreased leucine oxidation in both muscles and increased protein synthesis in the EDL. In muscles from untreated animals, decreased leucine oxidation after the addition of GLN to the medium was associated with decreased protein synthesis in the SOL and decreased concentrations of serine, glycine, histidine, alanine, arginine, proline, and lysine in both muscles. White muscle fibers are more sensitive to septic stimuli than red fibers are. In sepsis, enhanced GLN intake may ameliorate GLN deficiency, inhibit BCAA catabolism, and stimulate protein synthesis. In the healthy state, surplus of GLN may lead to severe alterations in the intramuscular concentration of several amino acids and impair protein synthesis. © 2014 American Society for Parenteral and Enteral Nutrition.

  17. Amino Acid Availability and Age Affect the Leucine Stimulation of Protein Synthesis and eIF4F Formation in Muscle

    PubMed Central

    Escobar, Jeffery; Frank, Jason W.; Suryawan, Agus; Nguyen, Hanh V.; Davis, Teresa A.

    2009-01-01

    We have previously shown that a physiological increase in plasma leucine for 60- and 120-min increases translation initiation factor activation in muscle of neonatal pigs. Although muscle protein synthesis is increased by leucine at 60 min, it is not maintained at 120 min, perhaps due to the decrease in plasma amino acids (AA). In the current study, 7- and 26-day-old pigs were fasted overnight and infused with leucine (0 or 400 µmol· kg−1· h−1) for 120 min to raise leucine within the postprandial range. The leucine was infused in the presence or absence of a replacement AA mixture (without leucine) to maintain baseline plasma AA levels. AA administration prevented the leucine-induced reduction in plasma AA in both age groups. At 7 days, leucine infusion alone increased eukaryotic initiation factor (eIF) 4E binding protein-1 (4E-BP1) phosphorylation, decreased inactive 4E-BP1·eIF4E complex abundance, and increased active eIF4G·eIF4E complex formation in skeletal muscle; leucine infusion with replacement AA also stimulated these, as well as S6K1, rpS6, and eIF4G phosphorylation. At 26 days, leucine infusion alone increased 4E-BP1 phosphorylation and decreased the inactive 4E-BP1·eIF4E complex only; leucine with AA also stimulated these, as well as S6K1 and rpS6 phosphorylation. Muscle protein synthesis was increased in 7-day-old (+60%) and 26-day-old (+40%) pigs infused with leucine and replacement AA, but not with leucine alone. Thus, the ability of leucine to stimulate eIF4F formation and protein synthesis in skeletal muscle is dependent on AA availability and age. PMID:17878223

  18. Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women.

    PubMed

    Shimomura, Yoshiharu; Kobayashi, Hisamine; Mawatari, Kazunori; Akita, Keiichi; Inaguma, Asami; Watanabe, Satoko; Bajotto, Gustavo; Sato, Juichi

    2009-06-01

    The present study was conducted to examine alterations in plasma free amino acid concentrations induced by squat exercise and branched-chain amino acid (BCAA) supplementation in young, untrained female subjects. In the morning on the exercise session day, participants ingested drinks containing either BCAA (isoleucine:leucine:valine=1:2.3:1.2) or dextrin (placebo) at 0.1 g/kg body weight 15 min before a squat exercise session, which consisted of 7 sets of 20 squats, with 3 min intervals between sets. In the placebo trial, plasma BCAA concentrations were decreased subsequent to exercise, whereas they were significantly increased in the BCAA trial until 2 h after exercise. Marked changes in other free amino acids in response to squat exercise and BCAA supplementation were observed. In particular, plasma concentrations of methionine and aromatic amino acids were temporarily decreased in the BCAA trial, being significantly lower than those in the placebo trial. These results suggest that BCAA intake before exercise affects methionine and aromatic amino acid metabolism.

  19. Deuterium isotope effect on 13C chemical shifts of tetrabutylammonium salts of Schiff bases amino acids.

    PubMed

    Rozwadowski, Z

    2006-09-01

    Deuterium isotope effects on 13C chemical shift of tetrabutylammonium salts of Schiff bases, derivatives of amino acids (glycine, L-alanine, L-phenylalanine, L-valine, L-leucine, L-isoleucine and L-methionine) and various ortho-hydroxyaldehydes in CDCl3 have been measured. The results have shown that the tetrabutylammonium salts of the Schiff bases amino acids, being derivatives of 2-hydroxynaphthaldehyde and 3,5-dibromosalicylaldehyde, exist in the NH-form, while in the derivatives of salicylaldehyde and 5-bromosalicylaldehyde a proton transfer takes place. The interactions between COO- and NH groups stabilize the proton-transferred form through a bifurcated intramolecular hydrogen bond. Copyright (c) 2006 John Wiley & Sons, Ltd.

  20. Leucine disposal rate for assessment of amino acid metabolism in maintenance hemodialysis patients.

    PubMed

    Denny, Gerald B; Deger, Serpil M; Chen, Guanhua; Bian, Aihua; Sha, Feng; Booker, Cindy; Kesler, Jaclyn T; David, Sthuthi; Ellis, Charles D; Ikizler, T Alp

    Protein energy wasting (PEW) is common in patients undergoing maintenance hemodialysis (MHD) and closely associated with poor outcomes. Insulin resistance and associated alterations in amino acid metabolism are potential pathways leading to PEW. We hypothesized that the measurement of leucine disposal during a hyperinsulinemic- euglycemic-euaminoacidemic clamp (HEAC) procedure would accurately measure the sensitivity to insulin for its actions on concomitant carbohydrate and protein metabolism in MHD patients. We examined 35 MHD patients and 17 control subjects with normal kidney function by hyperinsulinemic-euglycemic clamp (HEGC) followed by HEAC clamp procedure to obtain leucine disposal rate (LDR) along with isotope tracer methodology to assess whole body protein turnover. The glucose disposal rate (GDR) by HEGC was 5.1 ± 2.1 mg/kg/min for the MHD patients compared to 6.3 ± 3.9 mg/kg/min for the controls ( p = 0.38). The LDR during HEAC was 0.09 ± 0.03 mg/kg/min for the MHD patients compared to 0.11 ± 0.05 mg/kg/min for the controls ( p = 0.009). The LDR level was correlated with whole body protein synthesis ( r = 0.25; p = 0.08), with whole body protein breakdown ( r = -0.38 p = 0.01) and net protein balance ( r = 0.85; p < 0.001) in the overall study population. Correlations remained significant in subgroup analysis. The GDR derived by HEGC and LDR correlated well in the controls ( r = 0.79, p < 0.001), but less so in the MHD patients ( r = 0.58, p < 0.001). Leucine disposal rate reliably measures amino acid utilization in MHD patients and controls in response to high dose insulin.

  1. Compartmentalization of amino acids in surfactant aggregates - Partitioning between water and aqueous micellar sodium dodecanoate and between hexane and dodecylammonium propionate trapped water in hexane

    NASA Technical Reports Server (NTRS)

    Fendler, J. H.; Nome, F.; Nagyvary, J.

    1975-01-01

    The partitioning of amino acids (glycine, alanine, leucine, phenylalanine, histidine, aspartic acid, glutamic acid, lysine, isoleucine, threonine, serine, valine, proline, arginine) in aqueous and nonaqueous micellar systems was studied experimentally. Partitioning from neat hexane into dodecylammonium propionate trapped water in hexane was found to be dependent on both electrostatic and hydrophobic interactions, which implies that the interior of dodecylammonium propionate aggregates is negatively charged and is capable of hydrogen bonding in addition to providing a hydrophobic environment. Unitary free energies of transfer of amino acid side chains from hexane to water were determined and solubilities of amino acids in neat hexane substantiated the amino acid hydrophobicity scale. The relevance of the experiments to prebiotic chemistry was examined.

  2. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes.

    PubMed

    Zheng, Yan; Li, Yanping; Qi, Qibin; Hruby, Adela; Manson, JoAnn E; Willett, Walter C; Wolpin, Brian M; Hu, Frank B; Qi, Lu

    2016-10-01

    Plasma branched-chain amino acids (BCAAs, including leucine, isoleucine and valine) were recently related to risk of type 2 diabetes (T2D). Dietary intake is the only source of BCAAs; however, little is known about whether habitual dietary intake of BCAAs affects risk of T2D. We assessed associations between cumulative consumption of BCAAs and risk of T2D among participants from three prospective cohorts: the Nurses' Health Study (NHS; followed from 1980 to 2012); NHS II (followed from 1991 to 2011); and the Health Professionals Follow-up Study (HPFS; followed from 1986 to 2010). We documented 16 097 incident T2D events during up to 32 years of follow-up. After adjustment for demographics and traditional risk factors, higher total BCAA intake was associated with an increased risk of T2D in men and women. In the meta-analysis of all cohorts, comparing participants in the highest quintile with those in the lowest quintile of intake, hazard ratios (95%confidence intervals) were for leucine 1.13 (1.07-1.19), for isoleucine 1.13 (1.07-1.19) and for valine 1.11 (1.05-1.17) (all P for trend < 0.001). In a healthy subsample, higher dietary BCAAs were significantly associated with higher plasma levels of these amino acids (P for trend = 0.01). Our data suggest that high consumption of BCAAs is associated with an increased risk of T2D. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  3. The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF

    PubMed Central

    Banerjee, Jayashree; Fischer, Christopher C.; Wedegaertner, Philip B.

    2009-01-01

    PDZ-RhoGEF is a member of the regulator of G protein signaling (RGS) domain-containing RhoGEFs (RGS-RhoGEFs) that link activated heterotrimeric G protein α subunits of the G12 family to activation of the small GTPase RhoA. Unique among the RGS-RhoGEFs, PDZ-RhoGEF contains a short sequence that localizes the protein to the actin cytoskeleton. In this report, we demonstrate that the actin-binding domain, located between amino acids 561–585, directly binds to F-actin in vitro. Extensive mutagenesis identifies isoleucine 568, isoleucine 569, phenylalanine 572, and glutamic acid 573 as necessary for binding to actin and for co-localization with the actin cytoskeleton in cells. These results define a novel actin-binding sequence in PDZ-RhoGEF with a critical amino acid motif of IIxxFE. Moreover, sequence analysis identifies a similar actin-binding motif in the N-terminus of the RhoGEF frabin, and, as with PDZ-RhoGEF, mutagenesis and actin interaction experiments demonstrate a motif of LIxxFE, consisting of the key amino acids leucine 23, isoleucine 24, phenylalanine 27, and glutamic acid 28. Taken together, results with PDZ-RhoGEF and frabin identify a novel actin binding sequence. Lastly, inducible dimerization of the actin-binding region of PDZ-RhoGEF revealed a dimerization-dependent actin bundling activity in vitro. PDZ-RhoGEF exists in cells as a dimer, raising the possibility that PDZ-RhoGEF could influence actin structure independent of its ability to activate RhoA. PMID:19618964

  4. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.

    PubMed

    Espinosa Vidal, Esteban; de Morais, Marcos Antonio; François, Jean Marie; de Billerbeck, Gustavo M

    2015-01-01

    Higher alcohol formation by yeast is of great interest in the field of fermented beverages. Among them, medium-chain alcohols impact greatly the final flavour profile of alcoholic beverages, even at low concentrations. It is widely accepted that amino acid metabolism in yeasts directly influences higher alcohol formation, especially the catabolism of aromatic and branched-chain amino acids. However, it is not clear how the availability of oxygen and glucose metabolism influence the final higher alcohol levels in fermented beverages. Here, using an industrial Brazilian cachaça strain of Saccharomyces cerevisiae, we investigated the effect of oxygen limitation and glucose pulse on the accumulation of higher alcohol compounds in batch cultures, with glucose (20 g/l) and leucine (9.8 g/l) as the carbon and nitrogen sources, respectively. Fermentative metabolites and CO2 /O2 balance were analysed in order to correlate the results with physiological data. Our results show that the accumulation of isoamyl alcohol by yeast is independent of oxygen availability in the medium, depending mainly on leucine, α-keto-acids and/or NADH pools. High-availability leucine experiments showed a novel and unexpected accumulation of isobutanol, active amyl alcohol and 2-phenylethanol, which could be attributed to de novo biosynthesis of valine, isoleucine and phenylalanine and subsequent outflow of these pathways. In carbon-exhausted conditions, our results also describe, for the first time, the metabolization of isoamyl alcohol, isobutanol, active amyl alcohol but not of 2-phenylethanol, by yeast strains in stationary phase, suggesting a role for these higher alcohols as carbon source for cell maintenance and/or redox homeostasis during this physiological phase. Copyright © 2014 John Wiley & Sons, Ltd.

  5. The effect of a high protein diet on leucine and alanine turnover in acid maltase deficiency.

    PubMed Central

    Umpleby, A M; Trend, P S; Chubb, D; Conaglen, J V; Williams, C D; Hesp, R; Scobie, I N; Wiles, C M; Spencer, G; Sönksen, P H

    1989-01-01

    Leucine and alanine production rate was measured in 5 patients with acid maltase deficiency in the postabsorptive state, following 6 months on a normal diet with placebo and 6 months on an isocaloric high protein diet (16-22% protein). Whole body leucine production rate, a measure of protein degradation, expressed in terms of lean body mass was significantly greater than in five control subjects. Following the high protein diet, leucine production rate was decreased in four of the five patients but this was not statistically significant. Alanine production rate expressed in terms of lean body mass was significantly greater than in control subjects. After the high protein diet, alanine production rate and concentration were significantly decreased (p less than 0.05). There were no significant improvements in any of the clinically relevant variables measured in these patients. It is possible that a larger increase in protein intake over a longer time period may have a clinical effect. PMID:2507747

  6. Toward a New Chemotherapy for Breast Cancer: Structural and Functional Mechanism of the Retinoid Receptors Addressed by a Novel Computer Approach

    DTIC Science & Technology

    1999-05-01

    substitution of the second leucine in an LxxLL core with isoleucine still permits a strong hydrophobic interaction with the liganded receptor (Table 2...through electrostatic interactions. Figure 10 illustrates that the two leucines and one isoleucine (green and cyan) of the LxxlL motif are predicted to be...RARox was carried out as described in Materials and methods. The side chains of the two leucines (green) and one isoleucine (cyan) of the LxxIL core fit

  7. Elucidation of an Alternate Isoleucine Biosynthesis Pathway in Geobacter sulfurreducens▿

    PubMed Central

    Risso, Carla; Van Dien, Stephen J.; Orloff, Amber; Lovley, Derek R.; Coppi, Maddalena V.

    2008-01-01

    The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms. PMID:18245290

  8. Leucine disposal rate for assessment of amino acid metabolism in maintenance hemodialysis patients

    PubMed Central

    Denny, Gerald B.; Deger, Serpil M.; Chen, Guanhua; Bian, Aihua; Sha, Feng; Booker, Cindy; Kesler, Jaclyn T.; David, Sthuthi; Ellis, Charles D.; Ikizler, T. Alp

    2016-01-01

    Background Protein energy wasting (PEW) is common in patients undergoing maintenance hemodialysis (MHD) and closely associated with poor outcomes. Insulin resistance and associated alterations in amino acid metabolism are potential pathways leading to PEW. We hypothesized that the measurement of leucine disposal during a hyperinsulinemic- euglycemic-euaminoacidemic clamp (HEAC) procedure would accurately measure the sensitivity to insulin for its actions on concomitant carbohydrate and protein metabolism in MHD patients. Methods We examined 35 MHD patients and 17 control subjects with normal kidney function by hyperinsulinemic-euglycemic clamp (HEGC) followed by HEAC clamp procedure to obtain leucine disposal rate (LDR) along with isotope tracer methodology to assess whole body protein turnover. Results The glucose disposal rate (GDR) by HEGC was 5.1 ± 2.1 mg/kg/min for the MHD patients compared to 6.3 ± 3.9 mg/kg/min for the controls (p = 0.38). The LDR during HEAC was 0.09 ± 0.03 mg/kg/min for the MHD patients compared to 0.11 ± 0.05 mg/kg/min for the controls (p = 0.009). The LDR level was correlated with whole body protein synthesis (r = 0.25; p = 0.08), with whole body protein breakdown (r = −0.38 p = 0.01) and net protein balance (r = 0.85; p < 0.001) in the overall study population. Correlations remained significant in subgroup analysis. The GDR derived by HEGC and LDR correlated well in the controls (r = 0.79, p < 0.001), but less so in the MHD patients (r = 0.58, p < 0.001). Conclusions Leucine disposal rate reliably measures amino acid utilization in MHD patients and controls in response to high dose insulin. PMID:27413537

  9. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond123

    PubMed Central

    Powell, Jonathan D; Hutson, Susan M

    2016-01-01

    In connection with the increasing interest in metabolic regulation of the immune response, this review discusses current advances in understanding the role of leucine and leucine metabolism in T lymphocyte (T cell) activation. T cell activation during the development of an immune response depends on metabolic reprogramming to ensure that sufficient nutrients and energy are taken up by the highly proliferating T cells. Leucine has been described as an important essential amino acid and a nutrient signal that activates complex 1 of the mammalian target of rapamycin (mTORC1), which is a critical regulator of T cell proliferation, differentiation, and function. The role of leucine in these processes is further discussed in relation to amino acid transporters, leucine-degrading enzymes, and other metabolites of leucine metabolism. A new model of T cell regulation by leucine is proposed and outlines a chain of events that leads to the activation of mTORC1 in T cells. PMID:27422517

  10. Endurance Exercise Attenuates Postprandial Whole-Body Leucine Balance in Trained Men.

    PubMed

    Mazzulla, Michael; Parel, Justin T; Beals, Joseph W; VAN Vliet, Stephan; Abou Sawan, Sidney; West, Daniel W D; Paluska, Scott A; Ulanov, Alexander V; Moore, Daniel R; Burd, Nicholas A

    2017-12-01

    Endurance exercise increases indices of small intestinal damage and leucine oxidation, which may attenuate dietary amino acid appearance and postprandial leucine balance during postexercise recovery. Therefore, the purpose of this study was to examine the effect of an acute bout of endurance exercise on postprandial leucine kinetics and net leucine balance. In a crossover design, seven trained young men (age = 25.6 ± 2.3 yr; V˙O2peak = 61.4 ± 2.9 mL·kg·min; mean ± SEM) received a primed constant infusion of L-[1-C]leucine before and after ingesting a mixed macronutrient meal containing 18 g whole egg protein intrinsically labeled with L-[5,5,5-H3]leucine, 17 g fat, and 60 g carbohydrate at rest and after 60 min of treadmill running at 70% V˙O2peak. Plasma intestinal fatty acid binding protein concentrations and leucine oxidation both increased (P < 0.01) to peaks that were ~2.5-fold above baseline values during exercise with a concomitant decrease (P < 0.01) in nonoxidative leucine disposal. Meal ingestion attenuated (P < 0.01) endogenous leucine rates of appearance at rest and after exercise. There were no differences (both, P > 0.05) in dietary leucine appearance rates or in the amount of dietary protein-derived leucine that appeared into circulation over the 5-h postprandial period at rest and after exercise (62% ± 2% and 63% ± 2%, respectively). Leucine balance over the 5-h postprandial period was positive (P < 0.01) in both conditions but was negative (P < 0.01) during the exercise trial after accounting for exercise-induced leucine oxidation. We demonstrate that endurance exercise does not modulate dietary leucine availability from a mixed meal but attenuates postprandial whole-body leucine balance in trained young men.

  11. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  12. A General Method for Selection of α-Acetolactate Decarboxylase-Deficient Lactococcus lactis Mutants To Improve Diacetyl Formation

    PubMed Central

    Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan

    1999-01-01

    The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the α-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

  13. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    PubMed

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Analysis of the LIV System of Campylobacter jejuni Reveals Alternative Roles for LivJ and LivK in Commensalism beyond Branched-Chain Amino Acid Transport ▿

    PubMed Central

    Ribardo, Deborah A.; Hendrixson, David R.

    2011-01-01

    Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino acid transport system, reduced the commensal colonization capacity of C. jejuni 81-176 in chicks. Cjj81176_1038 is the first gene of a six-gene locus that encodes homologous components of the E. coli LIV system. By analyzing mutants with in-frame deletions of individual genes or pairs of genes, we found that this system constitutes a LIV transport system in C. jejuni responsible for a high level of leucine acquisition and, to a lesser extent, isoleucine and valine acquisition. Despite each LIV protein being required for branched-chain amino acid transport, only the LivJ and LivK periplasmic binding proteins were required for wild-type levels of commensal colonization of chicks. All LIV permease and ATPase components were dispensable for in vivo growth. These results suggest that the biological functions of LivJ and LivK for colonization are more complex than previously hypothesized and extend beyond a role for binding and acquiring branched-chain amino acids during commensalism. In contrast to other studies indicating a requirement and utilization of other specific amino acids for colonization, acquisition of branched-chain amino acids does not appear to be a determinant for C. jejuni during commensalism. PMID:21949065

  15. Prolonged infusion of amino acids increases leucine oxidation in fetal sheep

    PubMed Central

    Maliszewski, Anne M.; Gadhia, Monika M.; O'Meara, Meghan C.; Thorn, Stephanie R.; Rozance, Paul J.

    2012-01-01

    Maternal high-protein supplements designed to increase birth weight have not been successful. We recently showed that maternal amino acid infusion into pregnant sheep resulted in competitive inhibition of amino acid transport across the placenta and did not increase fetal protein accretion rates. To bypass placental transport, singleton fetal sheep were intravenously infused with an amino acid mixture (AA, n = 8) or saline [control (Con), n = 10] for ∼12 days during late gestation. Fetal leucine oxidation rate increased in the AA group (3.1 ± 0.5 vs. 1.4 ± 0.6 μmol·min−1·kg−1, P < 0.05). Fetal protein accretion (2.6 ± 0.5 and 2.2 ± 0.6 μmol·min−1·kg−1 in AA and Con, respectively), synthesis (6.2 ± 0.8 and 7.0 ± 0.9 μmol·min−1·kg−1 in AA and Con, respectively), and degradation (3.6 ± 0.6 and 4.5 ± 1.0 μmol·min−1·kg−1 in AA and Con, respectively) rates were similar between groups. Net fetal glucose uptake decreased in the AA group (2.8 ± 0.4 vs. 3.9 ± 0.1 mg·kg−1·min−1, P < 0.05). The glucose-O2 quotient also decreased over time in the AA group (P < 0.05). Fetal insulin and IGF-I concentrations did not change. Fetal glucagon increased in the AA group (119 ± 24 vs. 59 ± 9 pg/ml, P < 0.05), and norepinephrine (NE) also tended to increase in the AA group (785 ± 181 vs. 419 ± 76 pg/ml, P = 0.06). Net fetal glucose uptake rates were inversely proportional to fetal glucagon (r2 = 0.38, P < 0.05), cortisol (r2 = 0.31, P < 0.05), and NE (r2 = 0.59, P < 0.05) concentrations. Expressions of components in the mammalian target of rapamycin signaling pathway in fetal skeletal muscle were similar between groups. In summary, prolonged infusion of amino acids directly into normally growing fetal sheep increased leucine oxidation. Amino acid-stimulated increases in fetal glucagon, cortisol, and NE may contribute to a shift in substrate oxidation by the fetus from glucose to amino acids. PMID:22454287

  16. Neuropeptide glutamic acid-isoleucine (NEI)-induced paradoxical sleep in rats.

    PubMed

    Fujimoto, Moe; Fukuda, Satoru; Sakamoto, Hidetoshi; Takata, Junko; Sawamura, Shigehito

    2017-01-01

    Neuropeptideglutamic acid-isoleucine (NEI) as well as melanin concentrating hormone (MCH) is cleaved from the 165 amino acid protein, prepro-melanin concentrating hormone (prepro-MCH). Among many physiological roles of MCH, we demonstrated that intracerebroventricular (icv) injection of MCH induced increases in REM sleep episodes as well as in non REM sleep episodes. However, there are no studies on the effect of NEI on the sleep-wake cycle. As for the sites of action of MCH for induction of REM sleep, the ventrolateral periaqueductal gray (vlPAG) has been reported to be one of its site of action. Although MCH neurons contain NEI, GABA, MCH, and other neuropeptides, we do not know which transmitter(s) might induce REM sleep by acting on the vlPAG. Thus, we first examined the effect of icv injection of NEI on the sleep-wake cycle, and investigated how microinjection of either NEI, MCH, or GABA into the vlPAG affected REM sleep in rats. Icv injection of NEI (0.61μg/5μl: n=7) significantly increased the time spent in REM episodes compared to control (saline: 5μl; n=6). Microinjection of either NEI (61ng/0.2μl: n=7), MCH (100ng/0.2μl: n=6) or GABA (250mM/0.2μl: n=7) into the vlPAG significantly increased the time spent in REM episodes and the AUC. Precise hourly analysis of REM sleep also revealed that after those microinjections, NEI and MCH increased REM episodes at the latter phase, compared to GABA which increased REM episodes at the earlier phase. This result suggests that NEI and MCH may induce sustained REM sleep, while GABA may initiate REM sleep. In conclusion, our findings demonstrate that NEI, a cleaved peptide from the same precursor, prepro-MCH, as MCH, induce REM sleep at least in part through acting on the vlPAG. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A novel l-leucine modified Sol-Gel-Carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis.

    PubMed

    Khamlichi, Redouan El; Bouchta, Dounia; Anouar, El Hassane; Atia, Mounia Ben; Attar, Aisha; Choukairi, Mohamed; Tazi, Saloua; Ihssane, Raissouni; Faiza, Chaoukat; Khalid, Draoui; Khalid, Riffi Temsamani

    2017-02-01

    Neuroblastoma is a pediatric neuroblastic tumor arising in the sympathetic nervous crest cells. A high grade of Neuroblastoma is characterized by a high urinary excretion of homovanillic acid and dopamine. In this work l-leucine modified Sol-Gel-Carbon electrode was used for a sensitive voltammetric determination of homovanillic acid and dopamine in urine. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry; the modified electrode has shown an increase in the effective area of up to 40%, a well-separated oxidation peaks and an excellent electrocatalytic activity. High sensitivity and selectivity in the linear range of 0,4-100μML -1 of homovanillic acid and 10-120μML -1 of dopamine were also obtained. Moreover, a sub-micromolar limit of detection of 0.1μM for homovanillic acid and 1.0μM for the dopamine was achieved. Indeed, high reproducibility with simple preparation and regeneration of the electrode surface made this electrode very suitable for the determination of homovanillic acid and dopamine in pharmaceutical and clinical preparations. The mechanism of homovanillic acid and the electrochemical oxidation at l-leucine modified Sol-Gel-Carbon electrode is described out the B3P86/6-31+G(d,p) level of theory as implemented in Gaussian software. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems.

    PubMed Central

    Kirchman, D; K'nees, E; Hodson, R

    1985-01-01

    Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems. PMID:3994368

  19. Leucine Affects α-Amylase Synthesis through PI3K/Akt-mTOR Signaling Pathways in Pancreatic Acinar Cells of Dairy Calves.

    PubMed

    Guo, Long; Liang, Ziqi; Zheng, Chen; Liu, Baolong; Yin, Qingyan; Cao, Yangchun; Yao, Junhu

    2018-05-23

    Dietary nutrient utilization, particularly starch, is potentially limited by digestion in dairy cow small intestine because of shortage of α-amylase. Leucine acts as an effective signal molecular in the mTOR signaling pathway, which regulates a series of biological processes, especially protein synthesis. It has been reported that leucine could affect α-amylase synthesis and secretion in ruminant pancreas, but mechanisms have not been elaborated. In this study, pancreatic acinar (PA) cells were used as a model to determine the cellular signal of leucine influence on α-amylase synthesis. PA cells were isolated from newborn Holstein dairy bull calves and cultured in Dulbecco's modifed Eagle's medium/nutrient mixture F12 liquid media containing four leucine treatments (0, 0.23, 0.45, and 0.90 mM, respectively), following α-amylase activity, zymogen granule, and signal pathway factor expression detection. Rapamycin, a specific inhibitor of mTOR, was also applied to PA cells. Results showed that leucine increased ( p < 0.05) synthesis of α-amylase as well as phosphorylation of PI3K, Akt, mTOR, and S6K1 while reduced ( p < 0.05) GCN2 expression. Inhibition of mTOR signaling downregulated the α-amylase synthesis. In addition, the extracellular leucine dosage significantly influenced intracellular metabolism of isoleucine ( p < 0.05). Overall, leucine regulates α-amylase synthesis through promoting the PI3K/Akt-mTOR pathway and reducing the GCN2 pathway in PA cells of dairy calves. These pathways form the signaling network that controls the protein synthesis and metabolism. It would be of great interest in future studies to explore the function of leucine in ruminant nutrition.

  20. FLCN Maintains the Leucine Level in Lysosome to Stimulate mTORC1

    PubMed Central

    Chen, Zhi; Ji, Xin; Qiao, Xianfeng; Jin, Yaping; Liu, Wei

    2016-01-01

    The intracellular amino acid pool within lysosome is a signal that stimulates the nutrient-sensing mTORC1 signalling pathway. The signal transduction cascade has garnered much attention, but little is known about the sequestration of the signalling molecules within the lysosome. Using human HEK293 cells as a model, we found that suppression of the BHD syndrome gene FLCN reduced the leucine level in lysosome, which correlated with decreased mTORC1 activity. Both consequences could be reversed by supplementation with high levels of leucine, but not other tested amino acids. Conversely, overexpressed FLCN could sequester lysosomal leucine and stimulate mTORC1 in an amino acid limitation environment. These results identify a novel function of FLCN: it controls mTORC1 by modulating the leucine signal in lysosome. Furthermore, we provided evidence that FLCN exerted this role by inhibiting the accumulation of the amino acid transporter PAT1 on the lysosome surface, thereby maintaining the signal level within the organelle. PMID:27280402

  1. Biosynthesis of branched-chain amino acids is essential for effective symbioses between betarhizobia and Mimosa pudica.

    PubMed

    Chen, Wen-Ming; Prell, Jurgen; James, Euan K; Sheu, Der-Shyan; Sheu, Shih-Yi

    2012-07-01

    Burkholderia phymatum STM815 and Cupriavidus taiwanensis LMG19424 are betaproteobacterial strains that can effectively nodulate several species of the large legume genus Mimosa. A Tn5 mutant, derived from B. phymatum STM815 (KM60), and another derived from C. taiwanensis LMG19424 (KM184-55) induced Fix(-) nodules on Mimosa pudica. The Tn5-interrupted genes of the mutants showed strong homologies to ilvE, which encodes a branched-chain amino acid aminotransferase, and leuC, which encodes the large subunit of isopropylmalate isomerase. Both enzymes are known to be involved in the biosynthetic pathways for branched-chain amino acids (BCAAs) (leucine, valine and isoleucine). The B. phymatum ilvE mutant, KM60, was not auxotrophic for BCAAs and could grow well on minimal medium with pyruvate as a carbon source and ammonia as a nitrogen source. However, it grew less efficiently than the wild-type (WT) strain when ammonia was substituted with valine or isoleucine as a nitrogen source. The BCAA aminotransferase activity of KM60 was significantly reduced relative to the WT strain, especially with isoleucine and valine as amino group donors. The C. taiwanensis leuC mutant, KM184-55, could not grow on a minimal medium with pyruvate as a carbon source and ammonia as a nitrogen source, but its growth was restored when leucine was added to the medium. The isopropylmalate isomerase activity of KM184-55 was completely lost compared with the WT strain. Both mutants recovered their respective enzyme activities after complementation with the WT ilvE or leuC genes and were subsequently able to grow as well as their parental strains on minimal medium. They were also able to form nitrogen-fixing nodules on M. pudica. We conclude that the biosynthesis of BCAAs is essential for the free-living growth of betarhizobia, as well as for their ability to form effective symbioses with their host plant.

  2. Sestrin2 is a leucine sensor for the mTORC1 pathway

    PubMed Central

    Wolfson, Rachel L.; Chantranupong, Lynne; Saxton, Robert A.; Shen, Kuang; Scaria, Sonia M.; Cantor, Jason R.; Sabatini, David M.

    2015-01-01

    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, a GTPase activating protein (GAP); GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a Kd of 20 µM, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. PMID:26449471

  3. Sestrin2 is a leucine sensor for the mTORC1 pathway.

    PubMed

    Wolfson, Rachel L; Chantranupong, Lynne; Saxton, Robert A; Shen, Kuang; Scaria, Sonia M; Cantor, Jason R; Sabatini, David M

    2016-01-01

    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. Copyright © 2016, American Association for the Advancement of Science.

  4. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  5. Dietary leucine requirement for juvenile large yellow croaker Pseudosciaena crocea (Richardson, 1846)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ai, Qinghui; Mai, Kangsen; Xu, Wei; Cheng, Zhenyan; He, Zhigang

    2010-12-01

    Dietary leucine requirement for juvenile large yellow croaker, Pseudosciaena crocea Richardson 1846 (initial body weight 6.0 g ± 0.1 g) was determined using dose-response method. Six isonitogenous (crude protein 43%) and isoenergetic (19 kJ g-1) practical diets containing six levels of leucine (Diets 1-6) ranging from 1.23% to 4.80% (dry matter) were made at about 0.7% increment of leucine. Equal amino acid nitrogen was maintained by replacing leucine with glutamic acid. Triplicate groups of 60 individuals were fed to apparent satiation by hand twice daily (05:00 and 17:30). The water temperature was 26-32°C, salinity 26-30 and dissolved oxygen approximately 7 mg L-1 during the experimental period. Final weight (FW) of large yellow croaker initially increased with increasing level of dietary leucine but then decreased at further higher level of leucine. The highest FW was obtained in fish fed diet with 3.30% Leucine (Diet 4). FW of fish fed the diet with 4.80% Leucine (Diet 6) was significantly lower than those fed Diet 4. However, no significant differences were observed between the other dietary treatments. Feed efficiency (FE) and whole body composition were independent of dietary leucine contents ( P > 0.05). The results indicated that leucine was essential for growth of juvenile large yellow croaker. On the basis of FW, the optimum dietary leucine requirement for juvenile large yellow croaker was estimated to be 2.92% of dry matter (6.79% of dietary protein).

  6. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet.

    PubMed

    Teplan, V; Schück, O; Horácková, M; Skibová, J; Holecek, M

    2000-10-27

    The aim of our study was to evaluate the effect of a low-protein diet supplemented with keto acids-amino acids on renal function and urinary excretion of branched-chain amino acids (BCAA) in patients with chronic renal insufficiency (CRI). In a prospective investigation 28 patients with CRI (16 male, 12 female, aged 28-66 yrs, CCr 18.6 +/- 10.2 ml/min) on a low-protein diet (0.6 g of protein /kg BW/day and energy intake 140 kJ/kg BW/day) for a period of one month were included. Subsequently, this low protein diet was supplemented with keto acids-amino acids at a dose of 0.1 g/kg BW/day orally for a period of 3 months. Examinations performed at baseline and at the end of the follow-up period revealed significant increase in the serum levels of BCAA leucine (p < 0.02), isoleucine (p < 0.03), and valine (p < 0.02) while their renal fractional excretion declined (p < 0.02, p < 0.01 resp.). Keto acid-amino acid administration had no effect on renal function and on the clearance of inulin, para-aminohippuric acid. Endogenous creatinine and urea clearance remained unaltered. A significant correlation between fractional excretion of sodium and leucine (p < 0.05) and a hyperbolic relationship between inulin clearance and fractional excretion of BCAA (p < 0.01) were seen. Moreover, a significant decrease in proteinuria (p < 0.02), plasma urea concentration and renal urea excretion and a rise in albumin level (p < 0.03) were noted. We conclude that in patients with CRI on a low protein diet the supplementation of keto acids-amino acids does not affect renal hemodynamics, but is associated--despite increases in plasma concentrations--with a reduction of renal amino acid and protein excretion suggesting induction of alterations in the tubular transport mechanisms.

  7. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less

  8. Dietary leucine requirement of juvenile Japanese seabass ( Lateolabrax japonicus)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Cheng, Zhenyan; Mai, Kangsen; Ai, Qinghui

    2015-02-01

    A 56-day feeding trial was conducted to examine the dietary leucine requirement of juvenile Japanese seabass in seawater floating net cages (1.5 m × 1.5 m × 2.0 m). Six isonitrogenous (crude protein 40%) and isoenergetic (gross energy 20 kJ g-1) diets were formulated to contain different concentrations of leucine (0.9%, 1.49%, 2.07%, 2.70%, 3.30% and 3.88% of dry matter). Crystalline L-amino acids were supplemented to simulate the whole body amino acid pattern of Japanese seabass except for leucine. Three groups (30 fish individuals each, 8.0 g ± 0.20 g in initial weight) were fed to apparent satiation at 5:00 and 17:30 every day. During the experimental period, the water temperature ranged from 26 to 32δC and salinity from 26 to 30, and the dissolved oxygen was maintained at 7 mg L-1. The results showed that weight gain ( WG), nitrogen retention ( NR), feed efficiency ( FE) and protein efficiency ratio ( PER) were significantly increased when dietary leucine was increased from 0.90% to 2.70% of dry matter, and then declined. WG was the highest when fish were fed D4 containing 2.70% of leucine. No significant differences were observed in body composition among dietary treatments ( P > 0.05). Considering the change of WG, the optimum dietary leucine requirement of juvenile Japanese seabass was either 2.39% of dry matter or 5.68% of dietary protein.

  9. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    PubMed

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating

  10. Nutritional and regulatory roles of leucine in muscle growth and fat reduction.

    PubMed

    Duan, Yehui; Li, Fengna; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Zhang, Yuzhe; Deng, Dun; Tang, Yulong; Feng, Zemeng; Wu, Guoyao; Yin, Yulong

    2015-01-01

    The metabolic roles for L-leucine, an essential branched-chain amino acid (BCAA), go far beyond serving exclusively as a building block for de novo protein synthesis. Growing evidence shows that leucine regulates protein and lipid metabolism in animals. Specifically, leucine activates the mammalian target of rapamycin (mTOR) signaling pathway, including the 70 kDa ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1) to stimulate protein synthesis in skeletal muscle and adipose tissue and to promote mitochondrial biogenesis, resulting in enhanced cellular respiration and energy partitioning. Activation of cellular energy metabolism favors fatty acid oxidation to CO2 and water in adipocytes, lean tissue gain in young animals, and alleviation of muscle protein loss in aging adults, lactating mammals, and food-deprived subjects. As a functional amino acid, leucine holds great promise to enhance the growth, efficiency of food utilization, and health of animals and humans. 

  11. Isoleucine Deficiency in a Neonate Treated for Maple Syrup Urine Disease Masquerading as Acrodermatitis Enteropathica.

    PubMed

    Ross, Benjamin; Kumar, Manish; Srinivasan, Hema; Ekbote, Alka V

    2016-08-08

    Special diet with restricted branched-chain-amino-acids used for treating maple syrup urine disease can lead to specific amino acid deficiencies. We report a neonate who developed skin lesions due to isoleucine deficiency while using specialised formula. Feeds were supplemented with expressed breast milk. This caused biochemical and clinical improvement with resolution of skin lesions. Breast milk is a valuable and necessary adjunct to specialized formula in maple syrup urine disease to prevent specific amino acid deficiency in the neonatal period.

  12. People’s Republic of China Scientific Abstracts, Number 199.

    DTIC Science & Technology

    1978-09-06

    and the successful application of insulin in the treatment of diabetes in China. An overall three-year coordinated insulin research program on the...glycine, isoleucine , /3-alanine, leucine, proline, and threonine, are observed in Meteorite No I. Ten varieties of amino acids, including serine

  13. Metabolizable energy, nitrogen balance, and ileal digestibility of amino acids in quality protein maize for pigs

    PubMed Central

    2014-01-01

    Background To compare the nutritional value and digestibility of five quality protein maize (QPM) hybrids to that of white and yellow maize, two experiments were carried out in growing pigs. In experiment 1, the energy metabolizability and the nitrogen balance of growing pigs fed one of five QPM hybrid diets were compared against those of pigs fed white or yellow maize. In experiment 2, the apparent and standardized ileal digestibility (AID and SID, respectively) of proteins and amino acids from the five QPM hybrids were compared against those obtained from pigs fed white and yellow maize. In both experiments, the comparisons were conducted using contrasts. Results The dry matter and nitrogen intakes were higher in the pigs fed the QPM hybrids (P < 0.05) than in the pigs fed white or yellow maize. Energy digestibility (P < 0.001) and metabolizability (P < 0.01) were higher in the pigs fed the white and yellow maize diets than in those fed the QPM diets. The AID of lysine was higher (P < 0.01) in the QPM diets than in the white and yellow maize. The AIDs of leucine, isoleucine, valine, phenylalanine, and methionine were lower in the QPM diets than those of maize (white and yellow) (all P < 0.05). Maize (white and yellow) had greater SIDs of leucine, isoleucine, valine, phenylalanine, glutamic acid, serine, alanine, tyrosine, and proline (P < 0.05). Conclusions Based on these results, it was concluded that QPM had a lower metabolizable energy content and a higher amount of digestible lysine than normal maize. PMID:25045520

  14. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men.

    PubMed

    Stancáková, Alena; Civelek, Mete; Saleem, Niyas K; Soininen, Pasi; Kangas, Antti J; Cederberg, Henna; Paananen, Jussi; Pihlajamäki, Jussi; Bonnycastle, Lori L; Morken, Mario A; Boehnke, Michael; Pajukanta, Päivi; Lusis, Aldons J; Collins, Francis S; Kuusisto, Johanna; Ala-Korpela, Mika; Laakso, Markku

    2012-07-01

    We investigated the association of glycemia and 43 genetic risk variants for hyperglycemia/type 2 diabetes with amino acid levels in the population-based Metabolic Syndrome in Men (METSIM) Study, including 9,369 nondiabetic or newly diagnosed type 2 diabetic Finnish men. Plasma levels of eight amino acids were measured with proton nuclear magnetic resonance spectroscopy. Increasing fasting and 2-h plasma glucose levels were associated with increasing levels of several amino acids and decreasing levels of histidine and glutamine. Alanine, leucine, isoleucine, tyrosine, and glutamine predicted incident type 2 diabetes in a 4.7-year follow-up of the METSIM Study, and their effects were largely mediated by insulin resistance (except for glutamine). We also found significant correlations between insulin sensitivity (Matsuda insulin sensitivity index) and mRNA expression of genes regulating amino acid degradation in 200 subcutaneous adipose tissue samples. Only 1 of 43 risk single nucleotide polymorphisms for type 2 diabetes or hyperglycemia, the glucose-increasing major C allele of rs780094 of GCKR, was significantly associated with decreased levels of alanine and isoleucine and elevated levels of glutamine. In conclusion, the levels of branched-chain, aromatic amino acids and alanine increased and the levels of glutamine and histidine decreased with increasing glycemia, reflecting, at least in part, insulin resistance. Only one single nucleotide polymorphism regulating hyperglycemia was significantly associated with amino acid levels.

  15. Hyperglycemia and a Common Variant of GCKR Are Associated With the Levels of Eight Amino Acids in 9,369 Finnish Men

    PubMed Central

    Stančáková, Alena; Civelek, Mete; Saleem, Niyas K.; Soininen, Pasi; Kangas, Antti J.; Cederberg, Henna; Paananen, Jussi; Pihlajamäki, Jussi; Bonnycastle, Lori L.; Morken, Mario A.; Boehnke, Michael; Pajukanta, Päivi; Lusis, Aldons J.; Collins, Francis S.; Kuusisto, Johanna; Ala-Korpela, Mika; Laakso, Markku

    2012-01-01

    We investigated the association of glycemia and 43 genetic risk variants for hyperglycemia/type 2 diabetes with amino acid levels in the population-based Metabolic Syndrome in Men (METSIM) Study, including 9,369 nondiabetic or newly diagnosed type 2 diabetic Finnish men. Plasma levels of eight amino acids were measured with proton nuclear magnetic resonance spectroscopy. Increasing fasting and 2-h plasma glucose levels were associated with increasing levels of several amino acids and decreasing levels of histidine and glutamine. Alanine, leucine, isoleucine, tyrosine, and glutamine predicted incident type 2 diabetes in a 4.7-year follow-up of the METSIM Study, and their effects were largely mediated by insulin resistance (except for glutamine). We also found significant correlations between insulin sensitivity (Matsuda insulin sensitivity index) and mRNA expression of genes regulating amino acid degradation in 200 subcutaneous adipose tissue samples. Only 1 of 43 risk single nucleotide polymorphisms for type 2 diabetes or hyperglycemia, the glucose-increasing major C allele of rs780094 of GCKR, was significantly associated with decreased levels of alanine and isoleucine and elevated levels of glutamine. In conclusion, the levels of branched-chain, aromatic amino acids and alanine increased and the levels of glutamine and histidine decreased with increasing glycemia, reflecting, at least in part, insulin resistance. Only one single nucleotide polymorphism regulating hyperglycemia was significantly associated with amino acid levels. PMID:22553379

  16. Distinct Plasma Profile of Polar Neutral Amino Acids, Leucine, and Glutamate in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Tirouvanziam, Rabindra; Obukhanych, Tetyana V.; Laval, Julie; Aronov, Pavel A.; Libove, Robin; Banerjee, Arpita Goswami; Parker, Karen J.; O'Hara, Ruth; Herzenberg, Leonard A.; Herzenberg, Leonore A.; Hardan, Antonio Y.

    2012-01-01

    The goal of this investigation was to examine plasma amino acid (AA) levels in children with Autism Spectrum Disorders (ASD, N = 27) and neuro-typically developing controls (N = 20). We observed reduced plasma levels of most polar neutral AA and leucine in children with ASD. This AA profile conferred significant post hoc power for discriminating…

  17. TGFβ1-induced leucine limitation uncovered by differential ribosome codon reading.

    PubMed

    Loayza-Puch, Fabricio; Rooijers, Koos; Zijlstra, Jelle; Moumbeini, Behzad; Zaal, Esther A; Oude Vrielink, Joachim F; Lopes, Rui; Ugalde, Alejandro P; Berkers, Celia R; Agami, Reuven

    2017-04-01

    Cancer cells modulate their metabolic networks to support cell proliferation and a higher demand of building blocks. These changes may restrict the availability of certain amino acids for protein synthesis, which can be utilized for cancer therapy. However, little is known about the amino acid demand changes occurring during aggressive and invasive stages of cancer. Recently, we developed diricore, an approach based on ribosome profiling that can uncover amino acid limitations. Here, we applied diricore to a cellular model in which epithelial breast cells respond rapidly to TGFβ1, a cytokine essential for cancer progression and metastasis, and uncovered shortage of leucine. Further analyses indicated that TGFβ1 treatment of human breast epithelial cells reduces the expression of SLC3A2, a subunit of the leucine transporter, which diminishes leucine uptake and inhibits cell proliferation. Thus, we identified a specific amino acid limitation associated with the TGFβ1 response, a vulnerability that might be associated with aggressiveness in cancer. © 2017 The Authors.

  18. Na+/H+ exchanger 3 inhibitor diminishes the amino-acid-enhanced transepithelial calcium transport across the rat duodenum.

    PubMed

    Thammayon, Nithipak; Wongdee, Kannikar; Lertsuwan, Kornkamon; Suntornsaratoon, Panan; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2017-04-01

    Na + /H + exchanger (NHE)-3 is important for intestinal absorption of nutrients and minerals, including calcium. The previous investigations have shown that the intestinal calcium absorption is also dependent on luminal nutrients, but whether aliphatic amino acids and glucose, which are abundant in the luminal fluid during a meal, similarly enhance calcium transport remains elusive. Herein, we used the in vitro Ussing chamber technique to determine epithelial electrical parameters, i.e., potential difference (PD), short-circuit current (Isc), and transepithelial resistance, as well as 45 Ca flux in the rat duodenum directly exposed on the mucosal side to glucose or various amino acids. We found that mucosal glucose exposure led to the enhanced calcium transport, PD, and Isc, all of which were insensitive to NHE3 inhibitor (100 nM tenapanor). In the absence of mucosal glucose, several amino acids (12 mM in the mucosal side), i.e., alanine, isoleucine, leucine, proline, and hydroxyproline, markedly increased the duodenal calcium transport. An inhibitor for NHE3 exposure on the mucosal side completely abolished proline- and leucine-enhanced calcium transport, but not transepithelial transport of both amino acids themselves. In conclusion, glucose and certain amino acids in the mucosal side were potent stimulators of the duodenal calcium absorption, but only amino-acid-enhanced calcium transport was NHE3-dependent.

  19. Study of solid/liquid and solid/gas interfaces in Cu-isoleucine complex by surface X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.

    2013-02-01

    The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal-amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu-isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal-amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu-isoleucine complex under different ambient conditions. Cu(Ile)2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu-isoleucine crystal was measured under a protective dry N2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.

  20. Insulin resistance and the metabolism of branched-chain amino acids.

    PubMed

    Lu, Jingyi; Xie, Guoxiang; Jia, Weiping; Jia, Wei

    2013-03-01

    Insulin resistance (IR) is a key pathological feature of metabolic syndrome and subsequently causes serious health problems with an increased risk of several common metabolic disorders. IR related metabolic disturbance is not restricted to carbohydrates but impacts global metabolic network. Branched-chain amino acids (BCAAs), namely valine, leucine and isoleucine, are among the nine essential amino acids, accounting for 35% of the essential amino acids in muscle proteins and 40% of the preformed amino acids required by mammals. The BCAAs are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in insulin resistant conditions and/or insulin deficiency. Although increased circulating BCAA concentration in insulin resistant conditions has been noted for many years and BCAAs have been reported to be involved in the regulation of glucose homeostasis and body weight, it is only recently that BCAAs are found to be closely associated with IR. This review will focus on the recent findings on BCAAs from both epidemic and mechanistic studies.

  1. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC

    PubMed Central

    Malkani, Niyati; Biggar, Kyle; Shehab, Majida Abu; Li, Shawn; Jansson, Thomas; Gupta, Madhulika B.

    2016-01-01

    Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth. PMID:26733150

  2. Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham.

    PubMed

    Pérez-Santaescolástica, C; Carballo, J; Fulladosa, E; Garcia-Perez, José V; Benedito, J; Lorenzo, J M

    2018-05-01

    Defective textures in dry-cured ham are a common problem that causes important economic losses in the ham industry. An increase of proteolysis during the dry-cured ham processing may lead to high adhesiveness and consumer rejection of the product. Therefore, the influence of proteolysis index (PI) on instrumental adhesiveness, free amino acids and volatile profile of dry-cured ham was assessed. Two hundred Spanish dry-cured ham units were firstly classified according to their PI: low PI (<32%), medium PI (32-36%) and high PI (>36%). Instrumental adhesiveness was affected by PI, showing the lowest values in the batch with low PI. Significant differences (P < 0.05) among groups were found in six amino acids: serine, taurine, cysteine, methionine, isoleucine and leucine. The content of leucine, serine, methionine, and isoleucine significantly (P < 0.05) increased as the proteolysis index rose. However, taurine and cysteine content showed an opposite behaviour, reaching the highest values in the dry-cured hams with low PI. Significant differences (P < 0.001) in the total content of volatile compounds among ham groups were observed, with the highest concentration in the batch with low PI, and decreasing the concentration as the PI increased. Regarding the different chemical families of volatiles, the hydrocarbons (the main family), alcohols, aldehydes, ketones and acids were more abundant in the hams showing the lowest PI. Esters did not show significant differences among the three batches of hams studied. The present study demonstrated that, apart from the effect on the adhesiveness, an excessive proteolysis seems to be associated with negative effects on the taste and aroma of the dry-cured ham. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Identification of hydrophobic amino acids required for lipid activation of C. elegans CTP:phosphocholine cytidylyltransferase.

    PubMed

    Braker, Jay D; Hodel, Kevin J; Mullins, David R; Friesen, Jon A

    2009-12-01

    CTP:phosphocholine cytidylyltransferase (CCT), critical for phosphatidylcholine biosynthesis, is activated by translocation to the membrane surface. The lipid activation region of Caenorhabditis elegans CCT is between residues 246 and 266 of the 347 amino acid polypeptide, a region proposed to form an amphipathic alpha helix. When leucine 246, tryptophan 249, isoleucine 256, isoleucine 257, or phenylalanine 260, on the hydrophobic face of the helix, were changed individually to serine low activity was observed in the absence of lipid vesicles, similar to wild-type CCT, while lipid stimulated activity was reduced compared to wild-type CCT. Mutational analysis of phenylalanine 260 implicated this residue as a contributor to auto-inhibition of CCT while mutation of L246, W249, I256, and I257 simultaneously to serine resulted in significantly higher activity in the absence of lipid vesicles and an enzyme that was not lipid activated. These results support a concerted mechanism of lipid activation that requires multiple residues on the hydrophobic face of the putative amphipathic alpha helix.

  4. Functional Profiling Discovers the Dieldrin Organochlorinated Pesticide Affects Leucine Availability in Yeast

    PubMed Central

    Vulpe, Chris D.

    2013-01-01

    Exposure to organochlorinated pesticides such as dieldrin has been linked to Parkinson’s and Alzheimer’s diseases, endocrine disruption, and cancer, but the cellular and molecular mechanisms of toxicity behind these effects remain largely unknown. Here we demonstrate, using a functional genomics approach in the model eukaryote Saccharomyces cerevisiae, that dieldrin alters leucine availability. This model is supported by multiple lines of congruent evidence: (1) mutants defective in amino acid signaling or transport are sensitive to dieldrin, which is reversed by the addition of exogenous leucine; (2) dieldrin sensitivity of wild-type or mutant strains is dependent upon leucine concentration in the media; (3) overexpression of proteins that increase intracellular leucine confer resistance to dieldrin; (4) leucine uptake is inhibited in the presence of dieldrin; and (5) dieldrin induces the amino acid starvation response. Additionally, we demonstrate that appropriate negative regulation of the Ras/protein kinase A pathway, along with an intact pyruvate dehydrogenase complex, is required for dieldrin tolerance. Many yeast genes described in this study have human orthologs that may modulate dieldrin toxicity in humans. PMID:23358190

  5. The development and amino acid binding ability of nano-materials based on azo derivatives: theory and experiment.

    PubMed

    Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang

    2014-05-01

    Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Free amino acids hydroxyproline, lysine, and glycine promote differentiation of retinal pericytes to adipocytes: A protective role against proliferative diabetic retinopathy.

    PubMed

    Vidhya, S; Ramya, R; Coral, K; Sulochana, K N; Bharathidevi, S R

    2018-05-10

    This study was conducted to estimate the aminoacid levels in the vitreous of patients with proliferative diabetic retinopathy, and to correlate it with the adiponectin levels. Secondly to test if these amino acids can alter or induce adiponectin levels and its related factors in retinal cells like pericyte as an in vitro model. All human studies were done as per declaration of Helsinki with institutional approval and after obtaining consent from participating individuals. The vitreous amino acids were estimated in PDR (Proliferative diabetic retinopathy) and MH (Macular Hole) as disease control using HPLC. Bovine retinal pericytes (BRP) were cultured in DMEM/F12 medium and treated with 0.5 mM of any one of the individual amino acids (proline, hydroxyproline, phenylalanine, alanine, serine, glycine, lysine, isoleucine or valine) along with 100 nM insulin for 14 days in high glucose (25 mM) condition. The mRNA expression profile of adipogenic markers (such as Pref1, APN, ZAG and PPARγ), angiogenic markers (VEGF, MMP-2 and MMP-9, TGF-β) and antioxidant markers (Nrf2 and UCP-2) were evaluated by qPCR. Adipogenesis was further confirmed by adipogenesis assay, secretion of adiponectin in medium and triglyceride accumulation by Oil red O staining in Bovine retinal pericytes. Amino acids valine (p < 0.004), isoleucine (p < 0.0007), leucine (p < 0.022), serine (p < 0.0007), glycine (p < 0.001), alanine (p < 0.017), phenylalanine (p < 0.013), and lysine (p < 0.001) were significantly elevated in the vitreous of PDR group (n = 30) when compared to macular hole (n = 20). There was a significant positive correlation between serine (p < 0.021), alanine (p < 0.00016), phenylalanine (p < 0.04), isoleucine (p < 0.023), leucine (p < 0.043), and lysine (p < 0.026) with adiponectin level in the vitreous. The amino acids hydroxyproline, proline, lysine, glycine and alanine induced the triglyceride accumulation and

  7. CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two Erythroxylum species.

    PubMed

    Luck, Katrin; Jirschitzka, Jan; Irmisch, Sandra; Huber, Meret; Gershenzon, Jonathan; Köllner, Tobias G

    2016-10-04

    Amino acid-derived aldoximes and nitriles play important roles in plant defence. They are well-known as precursors for constitutive defence compounds such as cyanogenic glucosides and glucosinolates, but are also released as volatiles after insect feeding. Cytochrome P450 monooxygenases (CYP) of the CYP79 family catalyze the formation of aldoximes from the corresponding amino acids. However, the majority of CYP79s characterized so far are involved in cyanogenic glucoside or glucosinolate biosynthesis and only a few have been reported to be responsible for nitrogenous volatile production. In this study we analysed and compared the jasmonic acid-induced volatile blends of two Erythroxylum species, the cultivated South American crop species E. coca and the African wild species E. fischeri. Both species produced different nitrogenous compounds including aliphatic aldoximes and an aromatic nitrile. Four isolated CYP79 genes (two from each species) were heterologously expressed in yeast and biochemically characterized. CYP79D62 from E. coca and CYP79D61 and CYP79D60 from E. fischeri showed broad substrate specificity in vitro and converted L-phenylalanine, L-isoleucine, L-leucine, L-tryptophan, and L-tyrosine into the respective aldoximes. In contrast, recombinant CYP79D63 from E. coca exclusively accepted L-tryptophan as substrate. Quantitative real-time PCR revealed that CYP79D60, CYP79D61, and CYP79D62 were significantly upregulated in jasmonic acid-treated Erythroxylum leaves. The kinetic parameters of the enzymes expressed in vitro coupled with the expression patterns of the corresponding genes and the accumulation and emission of (E/Z)-phenylacetaldoxime, (E/Z)-indole-3-acetaldoxime, (E/Z)-3-methylbutyraldoxime, and (E/Z)-2-methylbutyraldoxime in jasmonic acid-treated leaves suggest that CYP79D60, CYP79D61, and CYP79D62 accept L-phenylalanine, L-leucine, L-isoleucine, and L-tryptophan as substrates in vivo and contribute to the production of volatile and semi

  8. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids.

    PubMed

    Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W

    1987-08-01

    The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.

  9. Thiacalix[4]arene functionalized gold nano-assembly for recognition of isoleucine in aqueous solution and its antioxidant study

    NASA Astrophysics Data System (ADS)

    Darjee, Savan M.; Bhatt, Keyur; Kongor, Anita; Panchal, Manthan K.; Jain, Vinod K.

    2017-01-01

    Thiacalix[4]arenes comes under heteracalixarene class which has notable utility in the area of nanoscience. This stimulation has led to the synthesis of water-dispersible gold nanoparticles (AuNps) using thiacalix[4]arene tetrahydrazide (TCTH) as both reducing as well as stabilizing agent. The synthesized nanoparticles (TCTH-AuNps) were characterized by SPR, TEM and EDX. TCTH-AuNps were found to be selective and sensitive for isoleucine. The concentration of isoleucine was detected in the limit of 1 nM to 1.2 μM based on fluorescence enhancement. TCTH-AuNps were also used to measure antioxidant capacity against the standard ascorbic acid.

  10. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  11. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  12. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  13. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  14. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  15. Rapid sensing of l-leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights.

    PubMed

    Heeley, Nicholas; Kirwan, Peter; Darwish, Tamana; Arnaud, Marion; Evans, Mark L; Merkle, Florian T; Reimann, Frank; Gribble, Fiona M; Blouet, Clemence

    2018-04-01

    Dietary proteins are sensed by hypothalamic neurons and strongly influence multiple aspects of metabolic health, including appetite, weight gain, and adiposity. However, little is known about the mechanisms by which hypothalamic neural circuits controlling behavior and metabolism sense protein availability. The aim of this study is to characterize how neurons from the mediobasal hypothalamus respond to a signal of protein availability: the amino acid l-leucine. We used primary cultures of post-weaning murine mediobasal hypothalamic neurons, hypothalamic neurons derived from human induced pluripotent stem cells, and calcium imaging to characterize rapid neuronal responses to physiological changes in extracellular l-Leucine concentration. A neurochemically diverse subset of both mouse and human hypothalamic neurons responded rapidly to l-leucine. Consistent with l-leucine's anorexigenic role, we found that 25% of mouse MBH POMC neurons were activated by l-leucine. 10% of MBH NPY neurons were inhibited by l-leucine, and leucine rapidly reduced AGRP secretion, providing a mechanism for the rapid leucine-induced inhibition of foraging behavior in rodents. Surprisingly, none of the candidate mechanisms previously implicated in hypothalamic leucine sensing (K ATP channels, mTORC1 signaling, amino-acid decarboxylation) were involved in the acute activity changes produced by l-leucine. Instead, our data indicate that leucine-induced neuronal activation involves a plasma membrane Ca 2+ channel, whereas leucine-induced neuronal inhibition is mediated by inhibition of a store-operated Ca 2+ current. A subset of neurons in the mediobasal hypothalamus rapidly respond to physiological changes in extracellular leucine concentration. Leucine can produce both increases and decreases in neuronal Ca 2+ concentrations in a neurochemically-diverse group of neurons, including some POMC and NPY/AGRP neurons. Our data reveal that leucine can signal through novel mechanisms to rapidly

  16. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  17. Single Amino Acid Alteration between Valine and Isoleucine Determines the Distinct Pyrabactin Selectivity by PYL1 and PYL2*

    PubMed Central

    Yuan, Xiaoqiu; Yin, Ping; Hao, Qi; Yan, Chuangye; Wang, Jiawei; Yan, Nieng

    2010-01-01

    Abscisic acid (ABA) is one of the most important phytohormones in plant. PYL proteins were identified to be ABA receptors in Arabidopsis thaliana. Despite the remarkably high degree of sequence similarity, PYL1 and PYL2 exhibit distinct responses toward pyrabactin, an ABA agonist. PYL1 inhibits protein phosphatase type 2C upon binding of pyrabactin. In contrast, PYL2 appears relatively insensitive to this compound. The crystal structure of pyrabactin-bound PYL1 revealed that most of the PYL1 residues involved in pyrabactin binding are conserved, hence failing to explain the selectivity of pyrabactin for PYL1 over PYL2. To understand the molecular basis of pyrabactin selectivity, we determined the crystal structure of PYL2 in complex with pyrabactin at 1.64 Å resolution. Structural comparison and biochemical analyses demonstrated that one single amino acid alteration between a corresponding valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2. These characterizations provide an important clue to dissecting the redundancy of PYL proteins. PMID:20630864

  18. Prostate Cancer Cells in Different Androgen Receptor Status Employ Different Leucine Transporters.

    PubMed

    Otsuki, Hideo; Kimura, Toru; Yamaga, Takashi; Kosaka, Takeo; Suehiro, Jun-Ichi; Sakurai, Hiroyuki

    2017-02-01

    Leucine stimulates cancer cell proliferation through the mTOR pathway, therefore, inhibiting leucine transporters may be a novel therapeutic target for cancer. L-type amino acid transporter (LAT) 1, a Na + -independent amino acid transporter, is highly expressed in many tumor cells. However, leucine transporter(s) in different stages of prostate cancer, particularly in the stages of castration resistance with androgen receptor (AR) expression, is unclear. LNCaP and DU145 and PC-3 cell lines were used as a model of androgen dependent, and metastatic prostate cancer. A new "LN-cr" cell line was established after culturing LNCaP cells for 6 months under androgen-free conditions, which is considered a model of castration resistant prostate cancer (CRPC) with androgen AR expression. The expression of leucine transporters was investigated with quantitative PCR and immunofluorescence. Uptake of 14 C Leucine was examined in the presence or absence of BCH (a pan-LAT inhibitor), JPH203 (an LAT1-specific inhibitor), or Na + . Cell growth was assessed with MTT assay. siRNA studies were performed to evaluate the indispensability of y + LAT2 on leucine uptake and cell viability in LN-cr. Cell viability showed a 90% decrease in the absence of leucine in all four cell lines. LNCaP cells principally expressed LAT3, and their leucine uptake was more than 90% Na + -independent. BCH, but not JPH203, inhibited leucine uptake, and cell proliferation (IC 50BCH :15 mM). DU145 and PC-3 cells predominantly expressed LAT1. Leucine uptake and cell growth were suppressed by BCH or JPH203 in a dose-dependent manner (IC 50BCH : ∼20 mM, IC 50JPH203 : ∼5 µM). In LN-cr cells, Na + -dependent uptake of leucine was 3.8 pmol/mgprotein/min, while, Na + -independent uptake was only 0.52 (P < 0.05). Leucine uptake of LN-cr was largely (∼85%) Na + -dependent. y + LAT2 expression was confirmed in LN-cr. Knockdown of y + LAT2 lead to significant leucine uptake inhibition (40%) and cell

  19. Proximate Composition, Amino Acid, Mineral, and Heavy Metal Content of Dried Laver

    PubMed Central

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-01-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals. PMID:24471123

  20. Proximate composition, amino Acid, mineral, and heavy metal content of dried laver.

    PubMed

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-06-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals.

  1. Comparative Physiological Studies of the Yeast and Mycelial Forms of Histoplasma capsulatum: Uptake and Incorporation of l-Leucine

    PubMed Central

    Gupta, Rishab K.; Howard, Dexter H.

    1971-01-01

    l-Leucine entered the cells of both morphological forms of Histoplasma capsulatum by a permease-like system at low external concentrations of substrate. However, at levels greater than 5 × 10−5m l-leucine, the amino acid entered the cells both through a simple diffusion-like process and the permease-like system. The rate of the amino acid diffusion into yeast and mycelial forms appeared to be the same, whereas the initial rate of accumulation through the permease-like system was 5 to 10 times faster in the mycelial phase than it was in the yeast phase. The Michaelis constants were 2.2 × 10−5m in yeast phase and 2 × 10−5m in mycelial phase cells. Transport of l-leucine at an external concentration of 10−5m showed all of the characteristics of a system of active transport, which was dependent on temperature and pH. Displacement or removal of the α-amino group, or modification of the α-carboxyl group abolished amino acid uptake. The process was competitively inhibited by neutral aliphatic side-chain amino acids (inhibition constants ranged from 1.5 × 10−5 to 6.2 × 10−5m). Neutral aromatic side-chain amino acids and the d-isomers of leucine and valine did not inhibit l-leucine uptake. These data were interpreted to mean that the l-leucine transport system is stereospecific and is highly specific for neutral aliphatic side-chain amino acids. Incorporation of l-leucine into macromolecules occurred at almost the same rate in both morphological forms of the fungus. The mycelial phase but not the yeast phase showed a slight initial lag in incorporation. In both morphological forms the intracellular pool of l-leucine was of limited capacity, and the total uptake of the amino acid was a function of intracellular pool size. The initial rate of l-leucine uptake was independent of the level of intracellular pool. Both morphological forms deaminated and degraded only a minor fraction of the accumulated leucine. PMID:4323295

  2. [Effects of branched amino acids in endurance sports: a review].

    PubMed

    Salinas-García, María Elia; Martínez-Sanz, José Miguel; Urdampilleta, Aritz; Mielgo-Ayuso, Juan; Norte Navarro, Aurora; Ortiz-Moncada, Rocio

    2014-11-16

    The report issued by the European Food Safety Agency (EFSA) in 2010 on nutrition and health claims, shows that there is no scientific evidence to support supplementation with branched chain amino acids (BCAAs). The aim of this study is to analyze the effects of consumption of BCAAs in endurance sports. A literature review on the current state of the effect of consumption of dietary supplements of BCAAs. We conducted a search in the PubMed database and snowball strategy. Spanish / English randomized clinical trial related to the consumption of BCAAs, leucine, valine and isoleucine in endurance sports and its effects on muscle damage, athletic performance, central fatigue, anabolic signals during recovery and immune system response published in any country until May 2014. Out of 330 studies identified, 14 met the inclusion criteria. The mean of subjects participating in the study was (11.36±7.43). Only two studies included a group of women. The sports that we found in the studies were: run, cycling, combining cycling and running, Olympic distance triathlon and one study included 2 groups of athletes (Olympic distance triathletes and runners). The effects of BCAAs and muscle damage, athletic performance, central fatigue, anabolic signals during recovery period and immune response were studied at different times: before, during and after training or a combination of these. It is observed that there is a lesser degree of pain and muscle damage, less perceived exertion and mental fatigue, greater anabolic response in recovery period and improved immune response when supplemented with BCAAs, notwithstanding its decision before or during physical activity does not improve athletic performance. No consensus was found in the dose and timing of the most effective decision, although it is more effective if there is 2-3/1/1g relationship between leucine / isoleucine and valine amino acids. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Determination of the tolerable upper intake level of leucine in acute dietary studies in young men.

    PubMed

    Elango, Rajavel; Chapman, Karen; Rafii, Mahroukh; Ball, Ronald O; Pencharz, Paul B

    2012-10-01

    Leucine has been suggested to improve athletic performance. Therefore, the branched-chain amino acids (BCAAs), especially leucine, are popular as dietary supplements in strength-training athletes; however, the intake of leucine in excess of requirements raises concerns regarding adverse effects. Currently, the tolerable upper intake level (UL) for leucine is unknown. The objective of the current study was to determine the UL for leucine in adult men under acute dietary conditions. Five healthy adults (20-35 y) each received graded stepwise increases in leucine intakes of 50, 150, 250, 500, 750, 1000, and 1250 mg · kg⁻¹ · d⁻¹, which corresponded to the Estimated Average Requirement (EAR) and the EAR ×3, ×5, ×10, ×15, ×20, and ×25 in a total of 29 studies. The UL of leucine was identified by the measurement of plasma and urinary biochemical variables and changes in leucine oxidation by using l-[1-¹³C]-leucine. A significant increase in blood ammonia concentrations above normal values, plasma leucine concentrations, and urinary leucine excretion were observed with leucine intakes >500 mg · kg⁻¹ · d⁻¹. The oxidation of l-[1-¹³C]-leucine expressed as label tracer oxidation in breath (F¹³CO₂), leucine oxidation, and α-ketoisocaproic acid (KIC) oxidation led to different results: a plateau in F¹³CO₂ observed after 500 mg · kg⁻¹ · d⁻¹, no clear plateau observed in leucine oxidation, and KIC oxidation appearing to plateau after 750 mg · kg⁻¹ · d⁻¹. On the basis of plasma and urinary variables, the UL for leucine in healthy adult men can be suggested at 500 mg · kg⁻¹ · d⁻¹ or ~35 g/d as a cautious estimate under acute dietary conditions.

  4. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy.

    PubMed

    Holecek, Milan

    2015-01-01

    Hyperammonemia and severe amino acid imbalances play central role in hepatic encephalopathy (HE). In the article is demonstrated that the main source of ammonia in cirrhotic subjects is activated breakdown of glutamine (GLN) in enterocytes and the kidneys and the main source of GLN is ammonia detoxification to GLN in the brain and skeletal muscle. Branched-chain amino acids (BCAA; valine, leucine, and isoleucine) decrease due to activated GLN synthesis in muscle. Aromatic amino acids (AAA; phenylalanine, tyrosine, and tryptophan) and methionine increase due to portosystemic shunts and reduced ability of diseased liver. The effects on aminoacidemia of the following variables that may affect the course of liver disease are discussed: nutritional status, starvation, protein intake, inflammation, acute hepatocellular damage, bleeding from varices, portosystemic shunts, hepatic cancer, and renal failure. It is concluded that (1) neither ammonia nor amino acid concentrations correlate closely with the severity of liver disease; (2) BCAA/AAA ratio could be used as a good index of liver impairment and for early detection of derangements in amino acid metabolism; (3) variables potentially leading to overt encephalopathy exert substantial but uneven effects; and (4) careful monitoring of ammonia and aminoacidemia may discover important break points in the course of liver disease and indicate appropriate therapeutic approach. Of special importance might be isoleucine deficiency in bleeding from varices, arginine deficiency in sepsis, and a marked rise of GLN and ammonia levels that may appear in all events leading to HE. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway

    PubMed Central

    Saxton, Robert A.; Knockenhauer, Kevin E.; Wolfson, Rachel L.; Chantranupong, Lynne; Pacold, Michael E.; Wang, Tim; Schwartz, Thomas U.; Sabatini, David M.

    2015-01-01

    Eukaryotic cells coordinate growth with the availability of nutrients through mTOR complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag GTPases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. We present the 2.7-Å crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway. PMID:26586190

  6. Plasma amino acids and metabolic profiling of dairy cows in response to a bolus duodenal infusion of leucine

    PubMed Central

    von Soosten, Dirk; Meyer, Ulrich; Kluess, Jeannette; Dänicke, Sven; Saremi, Behnam; Sauerwein, Helga

    2017-01-01

    Leucine (Leu), one of the three branch chain amino acids, acts as a signaling molecule in the regulation of overall amino acid (AA) and protein metabolism. Leucine is also considered to be a potent stimulus for the secretion of insulin from pancreatice β-cells. Our objective was to study the effects of a duodenal bolus infusion of Leu on insulin and glucagon secretion, on plasma AA concentrations, and to do a metabolomic profiling of dairy cows as compared to infusions with either glucose or saline. Six duodenum-fistulated Holstein cows were studied in a replicated 3 × 3 Latin square design with 3 periods of 7 days, in which the treatments were applied at the end of each period. The treatments were duodenal bolus infusions of Leu (DIL; 0.15 g/kg body weight), glucose (DIG; at Leu equimolar dosage) or saline (SAL). On the day of infusion, the treatments were duodenally infused after 5 h of fasting. Blood samples were collected at -15, 0, 10, 20, 30, 40, 50, 60, 75, 90, 120, 180, 210, 240 and 300 min relative to the start of infusion. Blood plasma was assayed for concentrations of insulin, glucagon, glucose and AA. The metabolome was also characterized in selected plasma samples (i.e. from 0, 50, and 120 min relative to the infusion). Body weight, feed intake, milk yield and milk composition were recorded throughout the experiment. The Leu infusion resulted in significant increases of Leu in plasma reaching 20 and 15-fold greater values than that in DIG and SAL, respectively. The elevation of plasma Leu concentrations after the infusion led to a significant decrease (P<0.05) in the plasma concentrations of isoleucine, valine, glycine, and alanine. In addition, the mean concentrations of lysine, methionine, phenylalanine, proline, serine, taurine, threonine, and asparagine across all time-points in plasma of DIL cows were reduced (P<0.05) compared with the other groups. In contrast to the working hypothesis about an insulinotropic effect of Leu, the circulating

  7. Plasma amino acids and metabolic profiling of dairy cows in response to a bolus duodenal infusion of leucine.

    PubMed

    Sadri, Hassan; von Soosten, Dirk; Meyer, Ulrich; Kluess, Jeannette; Dänicke, Sven; Saremi, Behnam; Sauerwein, Helga

    2017-01-01

    Leucine (Leu), one of the three branch chain amino acids, acts as a signaling molecule in the regulation of overall amino acid (AA) and protein metabolism. Leucine is also considered to be a potent stimulus for the secretion of insulin from pancreatice β-cells. Our objective was to study the effects of a duodenal bolus infusion of Leu on insulin and glucagon secretion, on plasma AA concentrations, and to do a metabolomic profiling of dairy cows as compared to infusions with either glucose or saline. Six duodenum-fistulated Holstein cows were studied in a replicated 3 × 3 Latin square design with 3 periods of 7 days, in which the treatments were applied at the end of each period. The treatments were duodenal bolus infusions of Leu (DIL; 0.15 g/kg body weight), glucose (DIG; at Leu equimolar dosage) or saline (SAL). On the day of infusion, the treatments were duodenally infused after 5 h of fasting. Blood samples were collected at -15, 0, 10, 20, 30, 40, 50, 60, 75, 90, 120, 180, 210, 240 and 300 min relative to the start of infusion. Blood plasma was assayed for concentrations of insulin, glucagon, glucose and AA. The metabolome was also characterized in selected plasma samples (i.e. from 0, 50, and 120 min relative to the infusion). Body weight, feed intake, milk yield and milk composition were recorded throughout the experiment. The Leu infusion resulted in significant increases of Leu in plasma reaching 20 and 15-fold greater values than that in DIG and SAL, respectively. The elevation of plasma Leu concentrations after the infusion led to a significant decrease (P<0.05) in the plasma concentrations of isoleucine, valine, glycine, and alanine. In addition, the mean concentrations of lysine, methionine, phenylalanine, proline, serine, taurine, threonine, and asparagine across all time-points in plasma of DIL cows were reduced (P<0.05) compared with the other groups. In contrast to the working hypothesis about an insulinotropic effect of Leu, the circulating

  8. Combinatorics of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  9. IGFBP-1 hyperphosphorylation in response to leucine deprivation is mediated by the AAR pathway

    PubMed Central

    Malkani, Niyati; Jansson, Thomas; Gupta, Madhulika B.

    2017-01-01

    Insulin-like growth factor-1 (IGF-I) is the key regulator of fetal growth. IGF-I bioavailability is markedly diminished by IGF binding protein-1 (IGFBP-1) phosphorylation. Leucine deprivation strongly induces IGFBP-1hyperphosphorylation, and plays an important role in fetal growth restriction (FGR). FGR is characterized by decreased amino acid availability, which activates the amino acid response (AAR) and inhibits the mechanistic target of rapamycin (mTOR) pathway. We investigated the role of AAR and mTOR in mediating IGFBP-1 secretion and phosphorylation in HepG2 cells in leucine deprivation. mTOR inhibition (rapamycin or raptor+rictor siRNA), or activation (DEPTOR siRNA) demonstrated a role of mTOR in leucine deprivation-induced IGFBP-1 secretion but not phosphorylation. When the AAR was blocked (U0126, or ERK/GCN2 siRNA), both IGFBP-1 secretion and phosphorylation (Ser101/Ser119/Ser169) due to leucine deprivation were prevented. CK2 inhibition by TBB also attenuated IGFBP-1 phosphorylation in leucine deprivation. These results suggest that the AAR and mTOR independently regulate IGFBP-1 secretion and phosphorylation in leucine deprivation. PMID:25957086

  10. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.

    PubMed

    Saxton, Robert A; Knockenhauer, Kevin E; Wolfson, Rachel L; Chantranupong, Lynne; Pacold, Michael E; Wang, Tim; Schwartz, Thomas U; Sabatini, David M

    2016-01-01

    Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway. Copyright © 2016, American Association for the Advancement of Science.

  12. Combined effects of dietary arginine, leucine and protein levels on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of crossbred pigs.

    PubMed

    Madeira, Marta S; Pires, Virgínia M R; Alfaia, Cristina M; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M

    2014-05-01

    The cumulative effects of dietary arginine, leucine and protein levels on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig longissimus lumborum muscle and subcutaneous adipose tissue (SAT) were investigated. The experiment was performed on fifty-four intact male pigs (Duroc × Pietrain × Large White × Landrace crossbred), with a live weight ranging from 59 to 92 kg. The pigs were randomly assigned to one of six experimental treatments (n 9). The treatments followed a 2 × 3 factorial arrangement, with two levels of arginine supplementation (0 v. 1 %) and three levels of a basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet to achieve 2 % of leucine, RPDL). The results showed that dietary arginine supplementation did not affect the intramuscular fat (IMF) content and back fat thickness, but increased the total fat in SAT. This effect was associated with an increase in fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) mRNA levels in SAT, which suggests that arginine might be involved in the differential regulation of some key lipogenic genes in pig muscle and SAT. The increase in IMF content under the RPD, with or without leucine supplementation, was accompanied by increased FASN and SCD mRNA levels. Arginine supplementation did not influence the percentage of main fatty acids, while the RPD had a significant effect on fatty acid composition in both tissues. Leucine supplementation of RPD did not change IMF, total fat of SAT and back fat thickness, but increased 16 : 0 and 18 : 1cis-9 and decreased 18 : 2n-6 in muscle.

  13. Plasma Branched-Chain Amino Acids and Incident Cardiovascular Disease in the PREDIMED Trial.

    PubMed

    Ruiz-Canela, Miguel; Toledo, Estefania; Clish, Clary B; Hruby, Adela; Liang, Liming; Salas-Salvadó, Jordi; Razquin, Cristina; Corella, Dolores; Estruch, Ramón; Ros, Emilio; Fitó, Montserrat; Gómez-Gracia, Enrique; Arós, Fernando; Fiol, Miquel; Lapetra, José; Serra-Majem, Lluis; Martínez-González, Miguel A; Hu, Frank B

    2016-04-01

    The role of branched-chain amino acids (BCAAs) in cardiovascular disease (CVD) remains poorly understood. We hypothesized that baseline BCAA concentrations predict future risk of CVD and that a Mediterranean diet (MedDiet) intervention may counteract this effect. We developed a case-cohort study within the Prevención con Dieta Mediterránea (PREDIMED), with 226 incident CVD cases and 744 noncases. We used LC-MS/MS to measure plasma BCAAs (leucine, isoleucine, and valine), both at baseline and after 1 year of follow-up. The primary outcome was a composite of incident stroke, myocardial infarction, or cardiovascular death. After adjustment for potential confounders, baseline leucine and isoleucine concentrations were associated with higher CVD risk: the hazard ratios (HRs) for the highest vs lowest quartile were 1.70 (95% CI, 1.05-2.76) and 2.09 (1.27-3.44), respectively. Stronger associations were found for stroke. For both CVD and stroke, we found higher HRs across successive quartiles of BCAAs in the control group than in the MedDiet groups. With stroke as the outcome, a significant interaction (P = 0.009) between baseline BCAA score and intervention with MedDiet was observed. No significant effect of the intervention on 1-year changes in BCAAs or any association between 1-year changes in BCAAs and CVD were observed. Higher concentrations of baseline BCAAs were associated with increased risk of CVD, especially stroke, in a high cardiovascular risk population. A Mediterranean-style diet had a negligible effect on 1-year changes in BCAAs, but it may counteract the harmful effects of BCAAs on stroke. © 2016 American Association for Clinical Chemistry.

  14. Branched-Chain Amino Acids.

    PubMed

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  15. Branched Chain Amino Acids: Beyond Nutrition Metabolism.

    PubMed

    Nie, Cunxi; He, Ting; Zhang, Wenju; Zhang, Guolong; Ma, Xi

    2018-03-23

    Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.

  16. Branched Chain Amino Acids: Beyond Nutrition Metabolism

    PubMed Central

    2018-01-01

    Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes. PMID:29570613

  17. Effects of intraduodenal infusion of the branched-chain amino acid leucine on ad libitum eating, gut motor and hormone functions, and glycemia in healthy men.

    PubMed

    Steinert, Robert E; Landrock, Maria F; Ullrich, Sina S; Standfield, Scott; Otto, Bärbel; Horowitz, Michael; Feinle-Bisset, Christine

    2015-10-01

    Branched-chain amino acids (BCAAs), particularly leucine, act as nutrient signals regulating protein synthesis and degradation as well as glucose metabolism. In addition, leucine has been demonstrated in animal experiments to modulate eating and energy homeostasis. We aimed to characterize the effects of physiologic and supraphysiologic loads of intraduodenal leucine on eating, gut hormone and motor functions, and blood glucose in humans. Twelve lean men were studied on 3 occasions in a randomized, double-blind order. Antropyloroduodenal motility, plasma ghrelin, cholecystokinin, glucagon-like peptide 1, peptide YY, insulin, glucagon, blood glucose, appetite perceptions, and gastrointestinal symptoms were measured during 90-min intraduodenal infusions of leucine at 0.15 kcal/min (total 3.3 g, 13.5 kcal), 0.45 kcal/min (total 9.9 g, 40.5 kcal), or saline (control). Ad libitum eating from a buffet lunch was quantified immediately after the infusions. Leucine at 0.45 kcal/min inhibited eating (energy intake by ∼13%, P < 0.05), increased plasma cholecystokinin, slightly reduced blood glucose and increased plasma insulin, and decreased antral pressures (all P < 0.05). Leucine at 0.15 kcal/min had no effect on food intake, blood glucose, or antral pressures but also slightly increased plasma cholecystokinin (P < 0.05). Neither dose affected plasma ghrelin, glucagon, glucagon-like peptide 1 and peptide YY, or pyloric and duodenal pressures. Plasma leucine concentrations were related to the dose of intraduodenal leucine, with substantial increases during both 0.15 and 0.45 kcal/min. The effects of intraduodenal infusions of free leucine on eating are probably not primarily mediated by changes in gut motor and hormone functions, with perhaps the exception of cholecystokinin. Instead, increased plasma leucine concentrations may be a potential signal mediating the eating-inhibitory effect of leucine. The study was registered as a clinical trial with the Australia and New

  18. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: field applications.

    PubMed

    Jørgensen, N O

    1992-11-01

    Incorporation of leucine and valine into proteins of freshwater bacteria as a measure of bacterial production was tested in two eutrophic Danish lakes and was related to bacterial production measured by thymidine incorporation. In a depth profile (0 to 8 m) in Frederiksborg Castle Lake, incorporation of 100 nM leucine and valine gave similar rates of protein production. In terms of carbon, this production was about 50% lower than incorporation of 10 nM thymidine. In another depth profile in the same lake, incorporations of 10 nM valine and 100 nM leucine were identical, but differed from incorporations of 10 nM leucine and 100 nM valine. Bacterial carbon production calculated from incorporations of 10 nM thymidine and 10 nM leucine was similar, whereas 10 nM valine and 100 nM leucine and valine indicated an up to 2.4-fold-higher rate of carbon production. In a diel study in Lake Bagsvaerd, incorporation of 100 nM leucine and valine indicated a similar protein production, but the calculated carbon production was about 1.9-fold higher than the production based on uptake of 10 nM thymidine. Different diel changes in incorporation of the two amino acids and in incorporation of thymidine were observed. In both lakes, concentrations of naturally occurring leucine and valine were <5 nM in most samples. This means that the specific activity of a H isotope added at a concentration of 100 nM usually was diluted a maximum of 5%. Net assimilation of natural free amino acids in the lakes sustained 8 to 69% of the net bacterial carbon requirement, estimated from incorporation of leucine, valine, or thymidine. The present results indicate that incorporation of leucine and valine permits realistic measurements of bacterial production in freshwater environments.

  19. THE EFFECT OF dl-METHIONINE, l-CYSTINE, AND dl-ISOLEUCINE ON THE UTILIZATION OF PARENTERALLY ADMINISTERED DOG HEMOGLOBIN

    PubMed Central

    Miller, Leon L.; Alling, Eric L.

    1947-01-01

    1. Further observations on the utilization of parenterally administered dog hemoglobin show that oral supplements of dl-methionine and l-cystine improve the efficiency of utilization of hemoglobin N, while a fed supplement of dl-isoleucine alone is without effect. 2. When N-isoleucine is added to a fed supplement of methionine or methionine and cystine, the utilization of parenterally given hemoglobin N is even better than with the sulfur-containing amino acids alone. 3. A suggested approach to the problem of designing the quantitatively "ideal" amino acid mixture lies in the definition of what may be called total organism-amino acid patterns of rat, dog, man, etc. These may vary considerably not only at different developmental stages in a given species, but also certainly from one species to another. 4. Further attempts to detect globin in the peripheral circulation have pointed to the need for a highly specific procedure such as that an immunologic method may offer. 5. Reduced hemin in dog plasma migrates with α1-globulin and albumin in veronal buffer at pH 8.5 and the colored zones give strong hemochromogen absorption bands. PMID:19871599

  20. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Leucine signaling in the pathogenesis of type 2 diabetes and obesity.

    PubMed

    Melnik, Bodo C

    2012-03-15

    Epidemiological evidence points to increased dairy and meat consumption, staples of the Western diet, as major risk factors for the development of type 2 diabetes (T2D). This paper presents a new concept and comprehensive review of leucine-mediated cell signaling explaining the pathogenesis of T2D and obesity by leucine-induced over-stimulation of mammalian target of rapamycin complex 1 (mTORC1). mTORC1, a pivotal nutrient-sensitive kinase, promotes growth and cell proliferation in response to glucose, energy, growth factors and amino acids. Dairy proteins and meat stimulate insulin/insulin-like growth factor 1 signaling and provide high amounts of leucine, a primary and independent stimulator for mTORC1 activation. The downstream target of mTORC1, the kinase S6K1, induces insulin resistance by phosphorylation of insulin receptor substrate-1, thereby increasing the metabolic burden of β-cells. Moreover, leucine-mediated mTORC1-S6K1-signaling plays an important role in adipogenesis, thus increasing the risk of obesity-mediated insulin resistance. High consumption of leucine-rich proteins explains exaggerated mTORC1-dependent insulin secretion, increased β-cell growth and β-cell proliferation promoting an early onset of replicative β-cell senescence with subsequent β-cell apoptosis. Disturbances of β-cell mass regulation with increased β-cell proliferation and apoptosis as well as insulin resistance are hallmarks of T2D, which are all associated with hyperactivation of mTORC1. In contrast, the anti-diabetic drug metformin antagonizes leucine-mediated mTORC1 signaling. Plant-derived polyphenols and flavonoids are identified as natural inhibitors of mTORC1 and exert anti-diabetic and anti-obesity effects. Furthermore, bariatric surgery in obesity reduces increased plasma levels of leucine and other branched-chain amino acids. Attenuation of leucine-mediated mTORC1 signaling by defining appropriate upper limits of the daily intake of leucine-rich animal and dairy

  2. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.

    PubMed

    Renguet, Edith; Ginion, Audrey; Gélinas, Roselle; Bultot, Laurent; Auquier, Julien; Robillard Frayne, Isabelle; Daneault, Caroline; Vanoverschelde, Jean-Louis; Des Rosiers, Christine; Hue, Louis; Horman, Sandrine; Beauloye, Christophe; Bertrand, Luc

    2017-08-01

    High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [ 13 C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart. NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation

  3. Management of a Woman With Maple Syrup Urine Disease During Pregnancy, Delivery, and Lactation.

    PubMed

    Wessel, Ann E; Mogensen, Kris M; Rohr, Frances; Erick, Miriam; Neilan, Edward G; Chopra, Sameer; Levy, Harvey L; Gray, Kathryn J; Wilkins-Haug, Louise; Berry, Gerard T

    2015-09-01

    Maple syrup urine disease (MSUD) is an inherited disorder of metabolism of the branched-chain amino acids leucine, isoleucine, and valine. Complications of acute elevation in plasma leucine include ketoacidosis and risk of cerebral edema, which can be fatal. Individuals with MSUD are at risk of metabolic crisis throughout life, especially at times of physiological stress. We present a case of successful management of a woman with MSUD through pregnancy, delivery, postpartum, and lactation, including nutrition therapy using modified parenteral nutrition. © 2014 American Society for Parenteral and Enteral Nutrition.

  4. Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Leucine is unique among the amino acids in its ability to promote protein synthesis by activating translation initiation via the mammalian target of rapamycin (mTOR) pathway. Previously, we showed that leucine infusion acutely stimulates protein synthesis in fast-twitch glycolytic muscle of neonatal...

  5. Investigation of Phenolic Acids in Suspension Cultures of Vitis vinifera Stimulated with Indanoyl-Isoleucine, N-Linolenoyl-L-Glutamine, Malonyl Coenzyme A and Insect Saliva

    PubMed Central

    Riedel, Heidi; Akumo, Divine N.; Saw, Nay Min Min Thaw; Smetanska, Iryna; Neubauer, Peter

    2012-01-01

    Vitis vinifera c.v. Muscat de Frontignan (grape) contains various high valuable bioactive phenolic compounds with pharmaceutical properties and industrial interest which are not fully exploited. The focus of this investigation consists in testing the effects of various biological elicitors on a non-morphogenic callus suspension culture of V. vinifera. The investigated elicitors: Indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG), insect saliva (IS) and malonyl coenzyme A (MCoA) were aimed at mimicking the influence of environmental pathogens on plants in their natural habitats and at provoking exogenous induction of the phenylpropanoid pathway. The elicitors’ indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG) and insect saliva (IS), as well as malonyl coenzyme A (MCoA), were independently inoculated to stimulate the synthesis of phenylpropanoids. All of the enhancers positively increased the concentration of phenolic compounds in grape cells. The highest concentration of phenolic acids was detected after 2 h for MCoA, after 48 h for IN and after 24 h for LG and IS respectively. At the maximum production time, treated grape cells had a 3.5-fold (MCoA), 1.6-fold (IN) and 1.5-fold (IS) higher phenolic acid content compared to the corresponding control samples. The HPLC results of grape cells showed two major resveratrol derivatives: 3-O-Glucosyl-resveratrol and 4-(3,5-dihydroxyphenyl)-phenol. Their influences of the different elicitors, time of harvest and biomass concentration (p < 0.0001) were statistically significant on the synthesis of phenolic compounds. The induction with MCoA was found to demonstrate the highest statistical effect corresponding to the strongest stress response within the phenylpropanoid pathway in grape cells. PMID:24957372

  6. Alteration in Circulating Metabolites During and After Heat Stress in the Conscious Rat: Potential Biomarkers of Exposure and Organ-specific Injury

    DTIC Science & Technology

    2014-12-24

    redox crisis (Figure 2). γ-Glutamylated amino acids (including alanine, glutamine, isoleucine, leucine, phenylalanine, tyrosine, and valine [Additional...Glutathione disulfide, oxidized (redox) Apoptosis, DNA damage, cell proliferation, survival, differentiation, metabolism; redox stress and/ or crisis ...mobilization of the muscle and/or brain energy reserves during energy crisis . Heat stress increased citrulline, decreased arginine, and increased urea in rat

  7. Overexpression and characterization of an extracellular leucine aminopeptidase from Aspergillus oryzae.

    PubMed

    Matsushita-Morita, Mayumi; Tada, Sawaki; Suzuki, Satoshi; Hattori, Ryota; Marui, Junichiro; Furukawa, Ikuyo; Yamagata, Youhei; Amano, Hitoshi; Ishida, Hiroki; Takeuchi, Michio; Kashiwagi, Yutaka; Kusumoto, Ken-Ichi

    2011-02-01

    Leucine aminopeptidase (LAP), an enzyme used in the food industry, is an exopeptidase that removes an amino acid residue, primarily leucine (Leu), from the N-terminus of peptides and protein substrates. In this study, we focused on the leucine aminopeptidase A (lapA) gene from Aspergillus oryzae RIB40. To purify and characterize the LapA, lapA was overexpressed in A. oryzae RIB40 using the amyB promoter. LAP activity in the culture supernatant of one transformant harboring the lapA expression plasmid was 33 times that of the host strain. LapA was purified from the culture supernatant of this lapA-overexpressing strain by column chromatography. The purified recombinant LapA had a molecular mass of 33 kDa, and its N-terminal amino acid was the tyrosine at position 80 of the deduced amino acid sequence. Optimal enzyme activity was observed at 60°C and pH 8.5, and the enzyme was stable at temperatures up to 60°C and in the pH range 7.5-11. In transcriptional analysis, lapA was induced under alkaline conditions and expressed at a relatively low level under normal conditions. LapA showed maximum hydrolyzing activity for the substrate leucine para-nitroanilide (Leu-pNA), followed by substrates Phe-pNA (39% activity compared with Leu-pNA), Met-pNA, Lys-pNA, and Arg-pNA. In addition, LapA preferentially hydrolyzed peptides longer than tripeptides.

  8. Effect of technological processing and preservation method on amino acid content and protein quality in kale (Brassica oleracea L. var. acephala) leaves.

    PubMed

    Korus, Anna

    2012-02-01

    The aim of the investigation was to evaluate the level of amino acids and quality of protein in raw and processed kale leaves. In all samples the dominant amino acids in g kg⁻¹ raw matter were glutamic acid, aspartic acid and proline. In raw kale leaves the limiting amino acids were lysine, isoleucine and cystine with methionine, and in the remaining products also valine and leucine. Blanched kale leaves contained 88% of the amino acid content in raw leaves, 76% in cooked leaves, and 69-77% and 71-72% of initial levels in frozen and canned products, respectively. In raw, blanched and cooked leaves essential amino acids comprised 44%, 44% and 47%, respectively, of total amino acids; in frozen and canned leaves the proportions were 46% and 44%, respectively. The essential amino acid index was 97 for canned products, 100-109 for frozen leaves, and 117 for raw kale leaves. Raw and processed (blanched or cooked) kale leaves are a good source of amino acids. Copyright © 2011 Society of Chemical Industry.

  9. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway

    DOE PAGES

    Saxton, Robert A.; Knockenhauer, Kevin E.; Wolfson, Rachel L.; ...

    2015-11-19

    Eukaryotic cells coordinate growth with the availability of nutrients through mTOR complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag GTPases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. We present the 2.7-Å crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucinemore » leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. Lastly, these results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.« less

  10. Structural and electronic properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  11. Leucine Supplementation Protects from Insulin Resistance by Regulating Adiposity Levels

    PubMed Central

    Binder, Elke; Bermúdez-Silva, Francisco J.; André, Caroline; Elie, Melissa; Romero-Zerbo, Silvana Y.; Leste-Lasserre, Thierry; Belluomo, llaria; Duchampt, Adeline; Clark, Samantha; Aubert, Agnes; Mezzullo, Marco; Fanelli, Flaminia; Pagotto, Uberto; Layé, Sophie; Mithieux, Gilles; Cota, Daniela

    2013-01-01

    Background Leucine supplementation might have therapeutic potential in preventing diet-induced obesity and improving insulin sensitivity. However, the underlying mechanisms are at present unclear. Additionally, it is unclear whether leucine supplementation might be equally efficacious once obesity has developed. Methodology/Principal Findings Male C57BL/6J mice were fed chow or a high-fat diet (HFD), supplemented or not with leucine for 17 weeks. Another group of HFD-fed mice (HFD-pairfat group) was food restricted in order to reach an adiposity level comparable to that of HFD-Leu mice. Finally, a third group of mice was exposed to HFD for 12 weeks before being chronically supplemented with leucine. Leucine supplementation in HFD-fed mice decreased body weight and fat mass by increasing energy expenditure, fatty acid oxidation and locomotor activity in vivo. The decreased adiposity in HFD-Leu mice was associated with increased expression of uncoupling protein 3 (UCP-3) in the brown adipose tissue, better insulin sensitivity, increased intestinal gluconeogenesis and preservation of islets of Langerhans histomorphology and function. HFD-pairfat mice had a comparable improvement in insulin sensitivity, without changes in islets physiology or intestinal gluconeogenesis. Remarkably, both HFD-Leu and HFD-pairfat mice had decreased hepatic lipid content, which likely helped improve insulin sensitivity. In contrast, when leucine was supplemented to already obese animals, no changes in body weight, body composition or glucose metabolism were observed. Conclusions/Significance These findings suggest that leucine improves insulin sensitivity in HFD-fed mice by primarily decreasing adiposity, rather than directly acting on peripheral target organs. However, beneficial effects of leucine on intestinal gluconeogenesis and islets of Langerhans's physiology might help prevent type 2 diabetes development. Differently, metabolic benefit of leucine supplementation is lacking in

  12. Leucine aminopeptidase - urine

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003617.htm Leucine aminopeptidase - urine To use the sharing features on this page, please enable JavaScript. Leucine aminopeptidase is a type of protein called an ...

  13. In silico designing of therapeutic protein enriched with branched-chain amino acids for the dietary treatment of chronic liver disease.

    PubMed

    L, Sunil; Vasu, Prasanna

    2017-09-01

    Leucine, isoleucine, and valine are three essential branched-chain amino acids (BCAA) account for 40-45% of total essential amino acids. BCAA stimulates protein synthesis primarily in skeletal muscles, and it can directly transport to circulatory blood stream bypassing the liver. Hence, a protein enriched with BCAA is an important therapeutic target for the dietary treatment of chronic liver disease. The present study is to design a synthetic protein enriched with BCAA and the challenge is to maximize the BCAA content, keeping the balanced ratio of leucine, isoleucine, valine - 2: 1: 1.2 as specified by WHO/UNU/FAO. Here, we turned the general concept of homology modeling and tried to find a suitable scaffold (α-helix) to host an excess amount of BCAA for increased stability and digestibility. A total of 50 protein models were constructed by using SWISS-MODEL, Modeller 9.17, ProtParam tool, and allergen online tools. Out of 50 different protein models, protein model-50 was found to be best, which had a well-defined 3D structure, good in silico digestibility, balanced ratio of BCAA and showed 65.57% structure identity to the template apo-bovine α-lactalbumin (1F6R). Templates search was performed against PDB using PSI-BLAST, SWISS-MODEL, PROFUNC, I-TASSER, and ConSurf. The secondary structure was predicted by PSSPred, PSIPRED, I-TASSER, PORTER, and SPIDER2. The modeled structure of protein Model-50 was validated by PROCHECK, ERRAT, ProSA, and QMEAN. COACH and ProFUNC tools were performed to determine the functional effects of protein model-50. Overall, the BCAA was enriched from 22 to 56.4% with the balanced ratio of Leu: Ile: Val (2: 1: 1.2). The Ramachandran plot showed 97.7% of the amino acid residues in allowed regions with ERRAT score of 86.05. We have successfully modeled the complete three-dimensional structure of the target protein model-50 using highly reputed computational tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes

    PubMed Central

    Sun, Xiaocun; Zemel, Michael B

    2009-01-01

    Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT

  15. The Recently Identified Isoleucine Conjugate of cis-12-Oxo-Phytodienoic Acid Is Partially Active in cis-12-Oxo-Phytodienoic Acid-Specific Gene Expression of Arabidopsis thaliana

    PubMed Central

    Floková, Kristýna; Miersch, Otto; Strnad, Miroslav; Novák, Ondřej; Wasternack, Claus; Hause, Bettina

    2016-01-01

    Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile. PMID:27611078

  16. Nutritional leucine supplementation attenuates cardiac failure in tumour-bearing cachectic animals.

    PubMed

    Toneto, Aline Tatiane; Ferreira Ramos, Luiz Alberto; Salomão, Emilianne Miguel; Tomasin, Rebeka; Aereas, Miguel Arcanjo; Gomes-Marcondes, Maria Cristina Cintra

    2016-12-01

    The condition known as cachexia presents in most patients with malignant tumours, leading to a poor quality of life and premature death. Although the cancer-cachexia state primarily affects skeletal muscle, possible damage in the cardiac muscle remains to be better characterized and elucidated. Leucine, which is a branched chain amino acid, is very useful for preserving lean body mass. Thus, this amino acid has been studied as a coadjuvant therapy in cachectic cancer patients, but whether this treatment attenuates the effects of cachexia and improves cardiac function remains poorly understood. Therefore, using an experimental cancer-cachexia model, we evaluated whether leucine supplementation ameliorates cachexia in the heart. Male Wistar rats were fed either a leucine-rich or a normoprotein diet and implanted or not with subcutaneous Walker-256 carcinoma. During the cachectic stage (approximately 21 days after tumour implantation), when the tumour mass was greater than 10% of body weight, the rats were subjected to an electrocardiogram analysis to evaluate the heart rate, QT-c, and T wave amplitude. The myocardial tissues were assayed for proteolytic enzymes (chymotrypsin, alkaline phosphatase, cathepsin, and calpain), cardiomyopathy biomarkers (myeloperoxidase, tissue inhibitor of metalloproteinases, and total plasminogen activator inhibitor 1), and caspase-8, -9, -3, and -7 activity. Both groups of tumour-bearing rats, especially the untreated group, had electrocardiography alterations that were suggestive of ischemia, dilated cardiomyopathy, and sudden death risk. Additionally, the rats in the untreated tumour-bearing group but not their leucine-supplemented littermates exhibited remarkable increases in chymotrypsin activity and all three heart failure biomarkers analysed, including an increase in caspase-3 and -7 activity. Our data suggest that a leucine-rich diet could modulate heart damage, cardiomyocyte proteolysis, and apoptosis driven by cancer

  17. l-Leucine acts as a potential agent in reducing body temperature at hatching and affords thermotolerance in broiler chicks.

    PubMed

    Han, Guofeng; Yang, Hui; Bahry, Mohammad A; Tran, Phuong V; Do, Phong H; Ikeda, Hiromi; Furuse, Mitsuhiro; Chowdhury, Vishwajit S

    2017-02-01

    Thermal manipulation (TM) of incubation temperature causes metabolic alterations and contributes to improving thermotolerance in chicks post hatching. However, there has been no report on amino acid metabolism during TM and the part it plays in thermotolerance. In this study, we therefore first analyzed free amino acid concentrations in the embryonic brain and liver during TM (38.6°C, 6h/d during embryonic day (ED) 10 to ED 18). It was found that leucine (Leu), phenylalanine and lysine were significantly decreased in the embryonic brain and liver. We then chose l-Leu and other branched-chain amino acids (l-isoleucine (L-Ile) and l-valine (l-Val)) for in ovo injection on ED 7 to reveal their roles in thermoregulation, growth, food intake and thermotolerance in chicks. It was found that in ovo injection of l-Leu, but not of l-Ileu or l-Val, caused a significant decline in body temperature at hatching and increased food intake and body weight gain in broiler chicks. Interestingly, in ovo injection of l-Leu resulted in the acquisition of thermotolerance under high ambient temperature (35±1°C for 180min) in comparison with the control thermoneutral temperature (28±1°C for 180min). These results indicate that the free amino acid concentrations during embryogenesis were altered by TM. l-Leu administration in eggs caused a reduction in body temperature at hatching, and afforded thermotolerance in heat-exposed young chicks, further suggesting that l-Leu may be one of the key metabolic factors involved in controlling body temperature in embryos, as well as in producing thermotolerance after hatching. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Child Stunting is Associated with Low Circulating Essential Amino Acids.

    PubMed

    Semba, Richard D; Shardell, Michelle; Sakr Ashour, Fayrouz A; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M; Ordiz, M Isabel; Kraemer, Klaus; Khadeer, Mohammed A; Ferrucci, Luigi; Manary, Mark J

    2016-04-01

    Stunting affects about one-quarter of children under five worldwide. The pathogenesis of stunting is poorly understood. Nutritional interventions have had only modest effects in reducing stunting. We hypothesized that insufficiency in essential amino acids may be limiting the linear growth of children. We used a targeted metabolomics approach to measure serum amino acids, glycerophospholipids, sphingolipids, and other metabolites using liquid chromatography-tandem mass spectrometry in 313 children, aged 12-59months, from rural Malawi. Children underwent anthropometry. Sixty-two percent of the children were stunted. Children with stunting had lower serum concentrations of all nine essential amino acids (tryptophan, isoleucine, leucine, valine, methionine, threonine, histidine, phenylalanine, lysine) compared with nonstunted children (p<0.01). In addition, stunted children had significantly lower serum concentrations of conditionally essential amino acids (arginine, glycine, glutamine), non-essential amino acids (asparagine, glutamate, serine), and six different sphingolipids compared with nonstunted children. Stunting was also associated with alterations in serum glycerophospholipid concentrations. Our findings support the idea that children with a high risk of stunting may not be receiving an adequate dietary intake of essential amino acids and choline, an essential nutrient for the synthesis of sphingolipids and glycerophospholipids. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Metabolic Engineering of Valine- and Isoleucine-Derived Glucosinolates in Arabidopsis Expressing CYP79D2 from Cassava

    PubMed Central

    Mikkelsen, Michael Dalgaard; Halkier, Barbara Ann

    2003-01-01

    Glucosinolates are amino acid-derived natural products that, upon hydrolysis, typically release isothiocyanates with a wide range of biological activities. Glucosinolates play a role in plant defense as attractants and deterrents against herbivores and pathogens. A key step in glucosinolate biosynthesis is the conversion of amino acids to the corresponding aldoximes, which is catalyzed by cytochromes P450 belonging to the CYP79 family. Expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in Arabidopsis resulted in the production of valine (Val)- and isoleucine-derived glucosinolates not normally found in this ecotype. The transgenic lines showed no morphological phenotype, and the level of endogenous glucosinolates was not affected. The novel glucosinolates were shown to constitute up to 35% of the total glucosinolate content in mature rosette leaves and up to 48% in old leaves. Furthermore, at increased concentrations of these glucosinolates, the proportion of Val-derived glucosinolates decreased. As the isothiocyanates produced from the Val- and isoleucine-derived glucosinolates are volatile, metabolically engineered plants producing these glucosinolates have acquired novel properties with great potential for improvement of resistance to herbivorous insects and for biofumigation. PMID:12586901

  20. Ursolic Acid Inhibits Leucine-Stimulated mTORC1 Signaling by Suppressing mTOR Localization to Lysosome

    PubMed Central

    Ou, Xiang; Liu, Meilian; Luo, Hairong; Dong, Lily Q.; Liu, Feng

    2014-01-01

    Ursolic acid (UA), a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2), and Ras homolog enriched in brain (Rheb), suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function. PMID:24740400

  1. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation.

    PubMed

    Mangal, Sharad; Nie, Haichen; Xu, Rongkun; Guo, Rui; Cavallaro, Alex; Zemlyanov, Dmitry; Zhou, Qi Tony

    2018-01-08

    Inhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution. The produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated. The spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations. We developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine.

  2. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis.

    PubMed

    Lotta, Luca A; Scott, Robert A; Sharp, Stephen J; Burgess, Stephen; Luan, Jian'an; Tillin, Therese; Schmidt, Amand F; Imamura, Fumiaki; Stewart, Isobel D; Perry, John R B; Marney, Luke; Koulman, Albert; Karoly, Edward D; Forouhi, Nita G; Sjögren, Rasmus J O; Näslund, Erik; Zierath, Juleen R; Krook, Anna; Savage, David B; Griffin, Julian L; Chaturvedi, Nishi; Hingorani, Aroon D; Khaw, Kay-Tee; Barroso, Inês; McCarthy, Mark I; O'Rahilly, Stephen; Wareham, Nicholas J; Langenberg, Claudia

    2016-11-01

    Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in

  3. Isoleucine epimerization ages of the dwarf elephants of Sicily

    NASA Astrophysics Data System (ADS)

    Belluomini, Giorgio; Bada, Jeffrey L.

    1985-07-01

    The isoleucine epimerization reaction has been used to date tooth enamel from dwarf elephants collected from the Sicilian caves of Spinagallo and Puntali. Elephant teeth from the Isernia la Pineta deposit in central Italy, dated at ˜700 ka by potassium-argon (K-Ar) and paleomagnetics, were used for calibration of the isoleucine epimerization rate. The ages determined for the dwarf elephants found at the Spinagallo Cave are considerably older than the more robust dwarf species found at the Puntali Cave. These dates suggest that more than one invasion of continental elephants have taken place on Sicily. The subsequent isolation of the continental species has apparently produced varying stages of dwarfism.

  4. Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells.

    PubMed

    Yen, Chi-Liang E; Mar, Mei-Heng; Craciunescu, Corneliu N; Edwards, Lloyd J; Zeisel, Steven H

    2002-07-01

    Cells in culture die by apoptosis when deprived of the essential nutrient choline. We now report that cells (both proliferating PC12 cells and postmitotic neurons isolated from fetal rat brains) undergo apoptosis when deprived of other individual essential nutrients (methionine, tryptophan or isoleucine). In PC12 cells, deficiencies of each nutrient independently led to ceramide accumulation and to caspase activation, both recognized signals of several apoptotic pathways. A similar profile of caspases was activated in PC12 cells deprived of choline, methionine, tryptophan or isoleucine. More than one caspase was involved and these caspases appeared to transmit parallel signals for apoptosis induction because only broad-spectrum caspase inhibitors, but not inhibitors for specific individual caspases inhibited apoptosis in choline- or methionine-deprived cells. The induction of these caspase-dependent apoptosis pathways likely did not involve the same upstream signals. Choline deficiency perturbed choline metabolism but did not affect protein synthesis, whereas amino acid deficiencies inhibited protein synthesis but did not perturb choline metabolism. In addition, a subclone of PC12 cells that was resistant to choline deficiency-induced apoptosis was not resistant to tryptophan deficiency-induced apoptosis. These observations suggest that deficiency of each studied nutrient activates different pathways for signaling apoptosis that ultimately converge on a common execution pathway.

  5. Fanconi Anemia complementation group C protein in metabolic disorders.

    PubMed

    Nepal, Manoj; Ma, Chi; Xie, Guoxiang; Jia, Wei; Fei, Peiwen

    2018-06-21

    Given importance of 22-Fanconi Anemia (FA) proteins together to act in a signaling pathway in preventing deleterious clinical symptoms, e.g. severe bone marrow failure, congenital defects, an early onset of aging and cancer, studies on each FA protein become increasingly attractive. However, an unbiased and systematic investigation of cellular effects resulting from each FA protein is missing. Here, we report roles of FA complementation C group protein (FANCC) in the protection from metabolic disorders. This study was prompted by the diabetes-prone feature displayed in FANCC knockout mice, which is not typically shown in patients with FA. We found that in cells expressing FANCC at different levels, there are representative alterations in metabolites associated with aging (glycine, citrulline, ornithine, L-asparagine, L-tyrosine, L-arginine, L-glutamine, L-leucine, L-isoleucine, L-valine, L-proline and L-alanine), Diabetes Mellitus (DM) (carbon monoxide, collagens, fatty acids, D-glucose, fumaric acid, 2-oxoglutaric acid, C3), inflammation (inosine, L-arginine, L-isoleucine, L-leucine, L-lysine, L-phenylalanine, hypoxanthine, L-methionine), and cancer ( L-methionine, sphingomyelin, acetyl-L-carnitine, L-aspartic acid, L-glutamic acid, niacinamide, phospho-rylethanolamine). We also found that FANCC can act in an FA-pathway-independent manner in tumor suppression. Collectively, featured-metabolic alterations are readouts of functional mechanisms underlying reduced tumorigenicity driven by FANCC, demonstrating close links among cancer, aging, inflammation and DM.

  6. A new method to measure muscle protein synthesis in humans by endogenously introduced d9-leucine and using blood for precursor enrichment determination

    PubMed Central

    Tran, Lee; Masters, Haley; Roust, Lori R; Katsanos, Christos S

    2015-01-01

    Enrichment from the easily accessible blood amino acid pool is commonly used as precursor enrichment to calculate rates of muscle protein fractional synthesis in relevant human studies in lieu of the less accessible muscle fluid amino acid pool. However, the accuracy of this approach depends largely on the extent to which there is low discrepancy in free amino acid enrichment between blood and muscle. Steady-state gradient (i.e., ratio) of amino acid enrichment between blood and muscle fluid in the basal state and in response to amino acid infusion were determined in five healthy subjects, and in association with two separate tracers: d9-leucine, introduced endogenously by the metabolism of d10-leucine (i.e., l-[2,3,3,4,5,5,5,6,6,6-2H10]leucine) infused in blood, and 13C6-phenylalanine introduced/infused in blood. The blood-to-muscle fluid amino acid enrichment ratio was lower (P < 0.05) for d9-leucine compared to 13C6-phenylalanine both before (1.5 ± 0.1 vs. 2.5 ± 0.1) and during (1.1 ± 0.1 vs. 1.2 ± 0.1) amino acid infusion. Importantly, the decrease in this ratio in association with the amino acid infusion was considerably less for the d9-leucine than the 13C6-phenylalanine (−0.38 ± 0.03 vs. −1.29 ± 0.07; P < 0.05). In conclusion, blood d9-leucine enrichment introduced endogenously by intravenous infusion of d10-leucine provides a closer estimate of the muscle fluid amino acid enrichment, and its associated changes, than blood phenylalanine enrichment to calculate rates of muscle protein synthesis in humans. PMID:26243214

  7. Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry.

    PubMed

    Prinsen, Hubertus C M T; Schiebergen-Bronkhorst, B G M; Roeleveld, M W; Jans, J J M; de Sain-van der Velden, M G M; Visser, G; van Hasselt, P M; Verhoeven-Duif, N M

    2016-09-01

    Amino acidopathies are a class of inborn errors of metabolism (IEM) that can be diagnosed by analysis of amino acids (AA) in plasma. Current strategies for AA analysis include cation exchange HPLC with post-column ninhydrin derivatization, GC-MS, and LC-MS/MS-related methods. Major drawbacks of the current methods are time-consuming procedures, derivative problems, problems with retention, and MS-sensitivity. The use of hydrophilic interaction liquid chromatography (HILIC) columns is an ideal separation mode for hydrophilic compounds like AA. Here we report a HILIC-method for analysis of 36 underivatized AA in plasma to detect defects in AA metabolism that overcomes the major drawbacks of other methods. A rapid, sensitive, and specific method was developed for the analysis of AA in plasma without derivatization using HILIC coupled with tandem mass-spectrometry (Xevo TQ, Waters). Excellent separation of 36 AA (24 quantitative/12 qualitative) in plasma was achieved on an Acquity BEH Amide column (2.1×100 mm, 1.7 μm) in a single MS run of 18 min. Plasma of patients with a known IEM in AA metabolism was analyzed and all patients were correctly identified. The reported method analyzes 36 AA in plasma within 18 min and provides baseline separation of isomeric AA such as leucine and isoleucine. No separation was obtained for isoleucine and allo-isoleucine. The method is applicable to study defects in AA metabolism in plasma.

  8. Dietary L-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia.

    PubMed

    Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Bryder, David; Flygare, Johan; Karlsson, Stefan

    2012-09-13

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Recently, a case study reported a patient who became transfusion-independent in response to treatment with the amino acid L-leucine. Therefore, we have validated the therapeutic effect of L-leucine using our recently generated mouse model for RPS19-deficient DBA. Administration of L-leucine significantly improved the anemia in Rps19-deficient mice (19% improvement in hemoglobin concentration; 18% increase in the number of erythrocytes), increased the bone marrow cellularity, and alleviated stress hematopoiesis. Furthermore, the therapeutic response to L-leucine appeared specific for Rps19-deficient hematopoiesis and was associated with down-regulation of p53 activity. Our study supports the rationale for clinical trials of L-leucine as a therapeutic agent for DBA.

  9. Structure-Based Engineering of an Artificially Generated NADP+-Dependent d-Amino Acid Dehydrogenase.

    PubMed

    Hayashi, Junji; Seto, Tomonari; Akita, Hironaga; Watanabe, Masahiro; Hoshino, Tamotsu; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2017-06-01

    A stable NADP + -dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericus meso -diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP + and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains. IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but

  10. Structure-Based Engineering of an Artificially Generated NADP+-Dependent d-Amino Acid Dehydrogenase

    PubMed Central

    Hayashi, Junji; Seto, Tomonari; Akita, Hironaga; Watanabe, Masahiro; Hoshino, Tamotsu; Yoneda, Kazunari; Ohshima, Toshihisa

    2017-01-01

    ABSTRACT A stable NADP+-dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericus meso-diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP+ and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains. IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d

  11. Amino Acid and Vitamin Requirements of Several Bacteroides Strains

    PubMed Central

    Quinto, Grace

    1966-01-01

    Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins. PMID:16349673

  12. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation

    PubMed Central

    Mangal, Sharad; Nie, Haichen; Xu, Rongkun; Guo, Rui; Cavallaro, Alex; Zemlyanov, Dmitry; Zhou, Qi (Tony)

    2018-01-01

    Purpose Inhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution. Methods The produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated. Results The spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations. Conclusions We developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine. PMID:29374368

  13. Conditional solvation thermodynamics of isoleucine in model peptides and the limitations of the group-transfer model.

    PubMed

    Tomar, Dheeraj S; Weber, Valéry; Pettitt, B Montgomery; Asthagiri, D

    2014-04-17

    The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute-solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance.

  14. Serum Amino Acid Profiles in Normal Subjects and in Patients with or at Risk of Alzheimer Dementia.

    PubMed

    Corso, Gaetano; Cristofano, Adriana; Sapere, Nadia; la Marca, Giancarlo; Angiolillo, Antonella; Vitale, Michela; Fratangelo, Roberto; Lombardi, Teresa; Porcile, Carola; Intrieri, Mariano; Di Costanzo, Alfonso

    2017-01-01

    Abnormalities in the plasma amino acid profile have been reported in Alzheimer disease (AD), but no data exist for the prodromal phase characterized by subjective memory complaint (SMC). It was our aim to understand if serum amino acid levels change along the continuum from normal to AD, and to identify possible diagnostic biomarkers. Serum levels of 15 amino acids and 2 organic acids were determined in 4 groups of participants - 29 with probable AD, 18 with mild cognitive impairment (MCI), 24 with SMC, and 46 cognitively healthy subjects (HS) - by electrospray tandem mass spectrometry. Glutamate, aspartate, and phenylalanine progressively decreased, while citrulline, argi-ninosuccinate, and homocitrulline progressively increased, from HS over SMC and MCI to AD. The panel including these 6 amino acids and 4 ratios (glutamate/citrulline, citrulline/phenylalanine, leucine plus isoleucine/phenylalanine, and arginine/phenylalanine) discriminated AD from HS with about 96% accuracy. Other panels including 20 biomarkers discriminated SMC or MCI from AD or HS with an accuracy ranging from 88 to 75%. Amino acids contribute to a characteristic metabotype during the progression of AD along the continuum from health to frank dementia, and their monitoring in elderly individuals might help to detect at-risk subjects.

  15. Increased amino acids levels and the risk of developing of hypertriglyceridemia in a 7-year follow-up.

    PubMed

    Mook-Kanamori, D O; Römisch-Margl, W; Kastenmüller, G; Prehn, C; Petersen, A K; Illig, T; Gieger, C; Wang-Sattler, R; Meisinger, C; Peters, A; Adamski, J; Suhre, K

    2014-04-01

    Recently, five branched-chain and aromatic amino acids were shown to be associated with the risk of developing type 2 diabetes (T2D). We set out to examine whether amino acids are also associated with the development of hypertriglyceridemia. We determined the serum amino acids concentrations of 1,125 individuals of the KORA S4 baseline study, for which follow-up data were available also at the KORA F4 7 years later. After exclusion for hypertriglyceridemia (defined as having a fasting triglyceride level above 1.70 mmol/L) and diabetes at baseline, 755 subjects remained for analyses. Increased levels of leucine, arginine, valine, proline, phenylalanine, isoleucine and lysine were significantly associated with an increased risk of hypertriglyceridemia. These associations remained significant when restricting to those individuals who did not develop T2D in the 7-year follow-up. The increase per standard deviation of amino acid level was between 26 and 40 %. Seven amino acids were associated with an increased risk of developing hypertriglyceridemia after 7 years. Further studies are necessary to elucidate the complex role of these amino acids in the pathogenesis of metabolic disorders.

  16. Racemic synthesis and solid phase peptide synthesis application of the chimeric valine/leucine derivative 2-amino-3,3,4-trimethyl-pentanoic acid.

    PubMed

    Pelà, M; Del Zoppo, L; Allegri, L; Marzola, E; Ruzza, C; Calo, G; Perissutti, E; Frecentese, F; Salvadori, S; Guerrini, R

    2014-07-01

    The synthesis of non natural amino acid 2-amino-3,3,4-trimethyl-pentanoic acid (Ipv) ready for solid phase peptide synthesis has been developed. Copper (I) chloride Michael addition, followed by a Curtius rearrangement are the key steps for the lpv synthesis. The racemic valine/leucine chimeric amino acid was then successfully inserted in position 5 of neuropeptide S (NPS) and the diastereomeric mixture separated by reverse phase HPLC. The two diastereomeric NPS derivatives were tested for intracellular calcium mobilization using HEK293 cells stably expressing the mouse NPS receptor where they behaved as partial agonist and pure antagonist.

  17. The effects of acute leucine or leucine-glutamine co-ingestion on recovery from eccentrically biased exercise.

    PubMed

    Waldron, Mark; Ralph, Cameron; Jeffries, Owen; Tallent, Jamie; Theis, Nicola; Patterson, Stephen David

    2018-05-16

    This study investigated the effects of leucine or leucine + glutamine supplementation on recovery from eccentric exercise. In a double-blind independent groups design, 23 men were randomly assigned to a leucine (0.087 g/kg; n = 8), leucine + glutamine (0.087 g/kg + glutamine 0.3 g/kg; n = 8) or placebo (0.3 g/kg maltodextrin; n = 7) group. Participants performed 5 sets of drop jumps, with each set comprising 20 repetitions. Isometric knee-extensor strength, counter-movement jump (CMJ) height, delayed-onset muscle soreness (DOMS) and creatine kinase (CK) were measured at baseline, 1, 24, 48 h and 72 h post-exercise. There was a time × group interaction for isometric strength, CMJ and CK (P < 0.05), with differences between the leucine + glutamine and placebo group at 48 h and 72 h for strength (P = 0.013; d = 1.43 and P < 0.001; d = 2.06), CMJ (P = 0.008; d = 0.87 and P = 0.019; d = 1.17) and CK at 24 h (P = 0.012; d = 0.54) and 48 h (P = 0.010; d = 1.37). The leucine group produced higher strength at 72 h compared to placebo (P = 0.007; d = 1.65) and lower CK at 24 h (P = 0.039; d = 0.63) and 48 h (P = 0.022; d = 1.03). Oral leucine or leucine + glutamine increased the rate of recovery compared to placebo after eccentric exercise. These findings highlight potential benefits of co-ingesting these amino acids to ameliorate recovery.

  18. Leucine aminopeptidase blood test

    MedlinePlus

    Serum leucine aminopeptidase; LAP - serum ... Chernecky CC, Berger BJ. Leucine aminopeptidase (LAP) - blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. St Louis, MO: Elsevier ...

  19. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were tr...

  20. Lattice dynamical and dielectric properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2006-08-01

    We present the results of ab initio calculations of the lattice dynamical and dielectric properties of the L-amino acids L-alanine, L-leucine, and L-isoleucine. Normal-mode frequencies and dielectric permittivity tensors are obtained using density-functional perturbation theory implemented within the plane-wave pseudopotential approximation. IR spectra are calculated and are used to analyze the effects of intermolecular interactions and zwitterionization upon the lattice dynamics. It is found that vibronic modes associated with the carboxy and amino functional groups undergo modification from their free-molecule values due to the presence of hydrogen bonds. The role of macroscopic electric fields set up by zone-center normal modes in the lattice dynamics is investigated by analysis of the Born effective charge. Calculated permittivity tensors are found to be greater than would be obtained by a naive use of the isolated molecular values, indicating the role of intermolecular interactions in increasing molecular polarizability.

  1. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.

    PubMed Central

    Heyne, R I; de Vrij, W; Crielaard, W; Konings, W N

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism. PMID:1670936

  2. Requirements of juvenile milkfish (Chanos chanos Forsskal) for essential amino acids.

    PubMed

    Borlongan, I G; Coloso, R M

    1993-01-01

    The dietary requirements of juvenile milkfish (Chanos chanos Forsskal) for essential amino acids were determined in a series of experiments. The fish (< or = 8.0 g) were reared in fiber glass tanks provided with flow-through seawater at 28 degrees C and salinity of 32 g/L for 12 wk. In each experiment, a series of amino acid test diets was formulated containing a combination of intact protein sources (casein-gelatin, fish meal-gelatin, fish meal-soybean meal or fish meal-zein) and crystalline amino acids to simulate the levels found in milkfish tissue proteins except for the test amino acid. Each set of isonitrogenous diets contained 40-45% protein and graded levels of the amino acid to be tested. At the end of the feeding experiment, growth, survival and feed efficiency were determined. The requirement level for each essential amino acid was estimated from breakpoint analysis of the growth curve. The dietary essential amino acid requirements (as the percentage of dietary protein) of milkfish juveniles were as follows: arginine, 5.25; histidine, 2.00; isoleucine, 4.00; leucine, 5.11; lysine, 4.00; methionine, 2.50 (cystine, 0.75); phenylalanine, 4.22 (tyrosine, 1.00) or 2.80 (tyrosine, 2.67); threonine, 4.50; tryptophan, 0.60; valine, 3.55. This information is valuable in developing cost-effective practical or commercial feeds and research diets for milkfish juveniles.

  3. Leucine facilitates insulin signaling through a Gαi protein-dependent signaling pathway in hepatocytes.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Wang, Xiaolei; Li, Xiang; Liu, Rui; Ma, Yan; Hao, Liping; Yao, Ping; Liu, Liegang; Sun, Xiufa; Gu, Haihua; Liu, Zhenqi; Cao, Wenhong

    2013-03-29

    In this study, we addressed the direct effect of leucine on insulin signaling. In investigating the associated mechanisms, we found that leucine itself does not activate the classical Akt- or ERK1/2 MAP kinase-dependent signaling pathways but can facilitate the insulin-induced phosphorylations of Akt(473) and ERK1/2 in a time- and dose-dependent manner in cultured hepatocytes. The leucine-facilitated insulin-induced phosphorylation of Akt at residue 473 was not affected by knocking down the key component of mTORC1 or -2 complexes but was blocked by inhibition of c-Src (PP2), PI3K (LY294002), Gαi protein (pertussis toxin or siRNA against Gαi1 gene, or β-arrestin 2 (siRNA)). Similarly, the leucine-facilitated insulin activation of ERK1/2 was also blunted by pertussis toxin. We further show that leucine facilitated the insulin-mediated suppression of glucose production and expression of key gluconeogenic genes in a Gαi1 protein-dependent manner in cultured primary hepatocytes. Together, these results show that leucine can directly facilitate insulin signaling through a Gαi protein-dependent intracellular signaling pathway. This is the first evidence showing that macronutrients like amino acid leucine can facilitate insulin signaling through G proteins directly.

  4. Leucine Facilitates Insulin Signaling through a Gαi Protein-dependent Signaling Pathway in Hepatocytes*

    PubMed Central

    Yang, Xuefeng; Mei, Shuang; Wang, Xiaolei; Li, Xiang; Liu, Rui; Ma, Yan; Hao, Liping; Yao, Ping; Liu, Liegang; Sun, Xiufa; Gu, Haihua; Liu, Zhenqi; Cao, Wenhong

    2013-01-01

    In this study, we addressed the direct effect of leucine on insulin signaling. In investigating the associated mechanisms, we found that leucine itself does not activate the classical Akt- or ERK1/2 MAP kinase-dependent signaling pathways but can facilitate the insulin-induced phosphorylations of Akt473 and ERK1/2 in a time- and dose-dependent manner in cultured hepatocytes. The leucine-facilitated insulin-induced phosphorylation of Akt at residue 473 was not affected by knocking down the key component of mTORC1 or -2 complexes but was blocked by inhibition of c-Src (PP2), PI3K (LY294002), Gαi protein (pertussis toxin or siRNA against Gαi1 gene, or β-arrestin 2 (siRNA)). Similarly, the leucine-facilitated insulin activation of ERK1/2 was also blunted by pertussis toxin. We further show that leucine facilitated the insulin-mediated suppression of glucose production and expression of key gluconeogenic genes in a Gαi1 protein-dependent manner in cultured primary hepatocytes. Together, these results show that leucine can directly facilitate insulin signaling through a Gαi protein-dependent intracellular signaling pathway. This is the first evidence showing that macronutrients like amino acid leucine can facilitate insulin signaling through G proteins directly. PMID:23404499

  5. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice

    PubMed Central

    Zhao, Yang; Dai, Xiao-yan; Zhou, Zhou; Zhao, Ge-xin; Wang, Xian; Xu, Ming-jiang

    2016-01-01

    Aim: Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. Methods: ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. Results: Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. Conclusion: Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation. PMID:26687933

  6. Antineoplastic activity of linear leucine homodipeptides and their potential mechanisms of action.

    PubMed

    Lei, Yun; Yang, Xiao-Xia; Guo, Wei; Zhang, Fu-Yong; Liao, Xiao-Jian; Yang, Hui-Fu; Xu, Shi-Hai; Xiong, Sheng

    2018-07-01

    Galaxamide is a rare cyclic homopentapeptide composed of three leucines and two N-methyl leucines isolated from marine algae Galaxaura filamentosa. The strong antitumor activity of this compound makes it a promising candidate for tumor therapy. The synthesis of galaxamide, however, is a complex process, and it has poor water solubility. On the basis of its special chemical composition, we designed a series of linear leucine homopeptides. Among seven dipeptide derivatives, five compounds with terminal protection groups and methyl substitution of the hydrogen in the amido group showed remarkable inhibitory effects against various cancer cells. N-tertbutyl-D-leucine-N-methyl-D-leucinebenzyl (A7), the only stereomer condensed by two D-leucines, showed the highest antineoplastic activity. A7-treated cells showed cell cycle arrest and morphological changes typical of cells undergoing apoptosis. The population of Annexin-V positive/propidium iodide-negative cells also increased, indicating the induction of early apoptosis. A7 promoted the cleavage of caspase-9 and caspase-3, as well as increased intracellular Ca levels and decreased the mitochondrial membrane potential. Collectively, certain linear leucine dipeptides derived from cyclic pentapeptide are able to inhibit tumor cell proliferation through cell cycle arrest and apoptosis induction. The N-methyl group in the side chain and the D/L conformation of the amino-acid residue are critical for their activity.

  7. Conditional Solvation Thermodynamics of Isoleucine in Model Peptides and the Limitations of the Group-Transfer Model

    PubMed Central

    2015-01-01

    The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute–solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance. PMID:24650057

  8. Biometrics from the carbon isotope ratio analysis of amino acids in human hair.

    PubMed

    Jackson, Glen P; An, Yan; Konstantynova, Kateryna I; Rashaid, Ayat H B

    2015-01-01

    This study compares and contrasts the ability to classify individuals into different grouping factors through either bulk isotope ratio analysis or amino-acid-specific isotope ratio analysis of human hair. Using LC-IRMS, we measured the isotope ratios of 14 amino acids in hair proteins independently, and leucine/isoleucine as a co-eluting pair, to provide 15 variables for classification. Multivariate analysis confirmed that the essential amino acids and non-essential amino acids were mostly independent variables in the classification rules, thereby enabling the separation of dietary factors of isotope intake from intrinsic or phenotypic factors of isotope fractionation. Multivariate analysis revealed at least two potential sources of non-dietary factors influencing the carbon isotope ratio values of the amino acids in human hair: body mass index (BMI) and age. These results provide evidence that compound-specific isotope ratio analysis has the potential to go beyond region-of-origin or geospatial movements of individuals-obtainable through bulk isotope measurements-to the provision of physical and characteristic traits about the individuals, such as age and BMI. Further development and refinement, for example to genetic, metabolic, disease and hormonal factors could ultimately be of great assistance in forensic and clinical casework. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    PubMed

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  10. Beneficial effects of l-leucine and l-valine on arrhythmias, hemodynamics and myocardial morphology in rats.

    PubMed

    Mitręga, Katarzyna; Zorniak, Michał; Varghese, Benoy; Lange, Dariusz; Nożynski, Jerzy; Porc, Maurycy; Białka, Szymon; Krzemiński, Tadeusz F

    2011-09-01

    Branched chain amino acids (BCAA) have been shown to have a general protective effect on the heart in different animal models as well as in humans. However, so far no attempt has been made to specifically elucidate their influence on arrhythmias. Our study was performed to evaluate whether an infusion of either l-leucine or l-valine in a dose of 1mgkg(-1)h(-1) 10min before a 7-min period of left anterior descending artery occlusion followed by 15min of reperfusion, had an effect on arrhythmias measured during the reperfusion phase in the ischemia- and reperfusion-induced arrhythmias model in rats in vivo. The effect of the infusion of these substances on mean arterial blood pressure was monitored throughout the experiment. Both of the tested amino acids exhibited significant antiarrhythmic properties. l-Leucine reduced the duration of ventricular fibrillation (P<0.05) and l-valine decreased the duration of ventricular fibrillation (P<0.001) and ventricular tachycardia (P<0.05). The two amino acids were generally hypotensive. l-Valine lowered blood pressure in all phases of the experiment (P<0.05) while l-leucine lowered this parameter mainly towards the end of occlusion and reperfusion (P<0.05). In addition, 30min infusion of the amino acids in the used dose did not produce any apparent adverse histological changes that were remarkably different from control. In summary, the results of our study suggest that l-leucine and l-valine in the dose that was used attenuates arrhythmias and are hypotensive in their influence. Our findings lend support to the many ongoing investigations into the benefit of the application of l-leucine and l-valine in cardiology like their addition to cardioplegic solutions. 2011 Elsevier Ltd. All rights reserved.

  11. Disruptions in valine degradation affect seed development and germination in Arabidopsis.

    PubMed

    Gipson, Andrew B; Morton, Kyla J; Rhee, Rachel J; Simo, Szabolcs; Clayton, Jack A; Perrett, Morgan E; Binkley, Christiana G; Jensen, Erika L; Oakes, Dana L; Rouhier, Matthew F; Rouhier, Kerry A

    2017-06-01

    We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. An Assay of Selected Serum Amino Acids in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Drábková, Petra; Šanderová, Jana; Kovařík, Jakub; kanďár, Roman

    2015-01-01

    Amino acids are the building blocks of proteins. In case of insulin resistance, which is typical for type 2 diabetes mellitus (T2DM), proteolysis is increased and protein synthesis is decreased; therefore, we can observe changes in the levels of amino acids in diabetics vs. non-diabetics. The aim of this study was to find differences in the levels of selected amino acids between patients with diabetes (type 2) and a control group. Amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde in the presence of potassium cyanide to form fluorescent 1-cyanobenz(f)isoindole product. Amino acids derivatives were measured using a high-performance liquid chromatography with fluorescence detection. The serum levels of glucose were determined using an automatic biochemistry analyzer, glycated hemoglobin HbA1c was measured by cation exchange chromatography. A total of 19 serum amino acids in T2DM patients and non-diabetics were measured. There were 9 amino acids, which were significantly different in these groups (p<0.05). Significantly decreased levels of arginine, asparagine, glycine, serine, threonine and significantly increased levels of alanine, isoleucine, leucine, valine in diabetics were found. Significant difference in metabolism of amino acids between diabetics and non-diabetics were observed. The altered levels of amino acids in diabetic patients could be a suitable predictor of diabetes.

  13. Interactions in L-phenylalanine/L-leucine/L-glutamic Acid/L-proline + 2 M aqueous NaCl/2 M NaNO3 systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Riyazuddeen, Imran Khan; Afrin, Sadaf

    2012-12-01

    Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.

  14. A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species.

    PubMed

    Dinsmore, P K; O'Sullivan, D J; Klaenhammer, T R

    1998-05-28

    The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, phi 31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against phi 31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.

  15. Concentration-Dependent Patterns of Leucine Incorporation by Coastal Picoplankton

    PubMed Central

    Alonso, Cecilia; Pernthaler, Jakob

    2006-01-01

    Coastal pelagic environments are believed to feature concentration gradients of dissolved organic carbon at a microscale, and they are characterized by pronounced seasonal differences in substrate availability for the heterotrophic picoplankton. Microbial taxa that coexist in such habitats might thus differ in their ability to incorporate substrates at various concentrations. We investigated the incorporation patterns of leucine in four microbial lineages from the coastal North Sea at concentrations between 0.1 and 100 nM before and during a spring phytoplankton bloom. Community bulk incorporation rates and the fraction of leucine-incorporating cells in the different populations were analyzed. Significantly fewer bacterial cells incorporated the amino acid before (13 to 35%) than during (23 to 47%) the bloom at all but the highest concentration. The incorporation rate per active cell in the prebloom situation was constant above 0.1 nM added leucine, whereas it increased steeply with substrate concentration during the bloom. At both time points, a high proportion of members of the Roseobacter clade incorporated leucine at all concentrations (55 to 80% and 86 to 94%, respectively). In contrast, the fractions of leucine-incorporating cells increased substantially with substrate availability in bacteria from the SAR86 clade (8 to 31%) and from DE cluster 2 of the Flavobacteria-Sphingobacteria (14 to 33%). The incorporation patterns of marine Euryarchaeota were between these extremes (30 to 56% and 48 to 70%, respectively). Our results suggest that the contribution of microbial taxa to the turnover of particular substrates may be concentration dependent. This may help us to understand the specific niches of coexisting populations that appear to compete for the same resources. PMID:16517664

  16. Properties and substrate specificity of the leucyl-, the threonyl- and the valyl-transfer-ribonucleic acid synthetases from Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Leucyl- and threonyl-tRNA synthetases were partially purified up to 100-fold and 30-fold respectively from cotyledons of Aesculus hippocastanum and were largely separated from the other aminoacyl-tRNA synthetases. Valyl-tRNA synthetase was purified 25-fold from cotyledons of Aesculus californica. 2. Some properties are reported for the three enzymes when assayed by the [32P]pyrophosphate-ATP exchange technique. 3. β-(Methylenecyclopropyl)alanine, isoleucine, azaleucine, norleucine and γ-hydroxynorvaline acted as alternative substrates for the leucyl-tRNA synthetase; the enzyme's affinity for β-(methylenecyclopropyl)-alanine and for isoleucine was about 80-fold less than that exhibited for leucine. 4. α-Cyclopropylglycine and α-cyclobutylglycine acted as alternative substrates for the valyl-tRNA synthetase. PMID:5493505

  17. Leucine Promotes the Growth of Fetal Pigs by Increasing Protein Synthesis through the mTOR Signaling Pathway in Longissimus Dorsi Muscle at Late Gestation.

    PubMed

    Wang, Chao-Xian; Chen, Fang; Zhang, Wen-Fei; Zhang, Shi-Hai; Shi, Kui; Song, Han-Qing; Wang, Yi-Jiang; Kim, Sung Woo; Guan, Wu-Tai

    2018-04-18

    Leucine (Leu) plays an important role in protein synthesis and metabolism. The present study tested whether Leu supplementation in the diet for sows during late pregnancy could improve piglet birth weight, and it also investigated the possible underlying mechanism. Two hundred sows at day 70 of pregnancy were selected and assigned to four groups fed with following four diets until farrowing, respectively: corn and soybean meal-based diet group (CON), CON + 0.40% Leu, CON + 0.80% Leu, and CON + 1.20% Leu. We found that supplementing with 0.80% Leu significantly increased mean piglet birth weight ( P < 0.05). Supplementation with 0.40, 0.80, and 1.20% Leu increased the plasma concentration of Leu, while decreasing the plasma concentrations of valine (Val) and isoleucine (Ile) in both farrowing sows and newborn piglets ( P < 0.05). The protein expressions of amino acid transporters (including LAT1, SNAT1, SNAT2, 4F2hc, and rBAT) in duodenum, jejunum, ileum, longissimus dorsi muscle of newborn piglets, and placenta of sows showed a difference among the CON group and Leu supplemented groups. Expressions of p-mTOR, p-4E-BP1, and p-S6K1 in longissimus dorsi muscle were also enhanced in each of the supplemental Leu groups compared to CON ( P < 0.05). Collectively, these results indicated that 0.40-0.80% Leu supplementation during late gestation enhanced birth weight of fetal pigs by increasing protein synthesis through modulation of the plasma amino acids profile, amino acid transporters expression, and mTOR signaling pathway.

  18. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis

    PubMed Central

    Lotta, Luca A.; Scott, Robert A.; Luan, Jian’an; Tillin, Therese; Stewart, Isobel D.; Perry, John R. B.; Karoly, Edward D.; Forouhi, Nita G.; Zierath, Juleen R.; Savage, David B.; Griffin, Julian L.; Hingorani, Aroon D.; Khaw, Kay-Tee; O’Rahilly, Stephen; Langenberg, Claudia

    2016-01-01

    Background Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Methods and Findings Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10−8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10−25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26–1.65, p = 9.5 × 10−8) for isoleucine, 1.85 (95% CI 1.41–2.42, p = 7.3 × 10−6) for leucine, and 1.54 (95% CI 1.28–1.84, p = 4.2 × 10−6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA

  19. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism*

    PubMed Central

    Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N.; Cobb, Melanie H.

    2016-01-01

    The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation. PMID:27587390

  20. Characterization of pea (Pisum sativum) seed protein fractions.

    PubMed

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  1. Acrodermatitis dysmetabolica in an infant with maple syrup urine disease.

    PubMed

    Flores, K; Chikowski, R; Morrell, D S

    2016-08-01

    Acrodermatitis dysmetabolica (AD) is a rare, newly termed, and poorly understood disease that appears to be clinically similar to acrodermatitis enteropathica (AE). Both diseases are characterized by the triad of periorificial and acral dermatitis, diarrhoea, and alopecia. Unlike AE, which is caused by zinc deficiency, AD is caused by numerous metabolic disorders. One such disorder is maple syrup urine disease (MSUD), a genetic deficiency of branched chain α-ketoacid dehydrogenase, the enzyme that degrades the branched-chain amino acids (BCAAs) isoleucine, leucine and valine. Treatment involves restricting BCAAs to prevent accumulation. We report a case of an infant being treated for MSUD, who developed the triad of AE/AD after a period of poor BCAA formula intake. The child was found to have low isoleucine and normal zinc levels. Increasing the isoleucine dose improved the eruption, thus the diagnosis of AD secondary to isoleucine deficiency was made. This case emphasizes the importance of carefully balancing BCAA levels while treating MSUD, as deficiency can precipitate AD. © 2016 British Association of Dermatologists.

  2. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid.

    PubMed

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation.

  3. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  4. Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs.

    PubMed

    Manjarín, Rodrigo; Columbus, Daniel A; Suryawan, Agus; Nguyen, Hanh V; Hernandez-García, Adriana D; Hoang, Nguyet-Minh; Fiorotto, Marta L; Davis, Teresa

    2016-01-01

    Suboptimal nutrient intake represents a limiting factor for growth and long-term survival of low-birth weight infants. The objective of this study was to determine if in neonates who can consume only 70 % of their protein and energy requirements for 8 days, enteral leucine supplementation will upregulate the mammalian target of rapamycin (mTOR) pathway in skeletal muscle, leading to an increase in protein synthesis and muscle anabolism. Nineteen 4-day-old piglets were fed by gastric tube 1 of 3 diets, containing (kg body weight(-1) · day(-1)) 16 g protein and 190 kcal (CON), 10.9 g protein and 132 kcal (R), or 10.8 g protein + 0.2 % leucine and 136 kcal (RL) at 4-h intervals for 8 days. On day 8, plasma AA and insulin levels were measured during 6 post-feeding intervals, and muscle protein synthesis rate and mTOR signaling proteins were determined at 120 min post-feeding. At 120 min, leucine was highest in RL (P < 0.001), whereas insulin, isoleucine and valine were lower in RL and R compared to CON (P < 0.001). Compared to RL and R, the CON diet increased (P < 0.01) body weight, protein synthesis, phosphorylation of S6 kinase (p-S6K1) and 4E-binding protein (p-4EBP1), and activation of eukaryotic initiation factor 4 complex (eIF4E · eIF4G). RL increased (P ≤ 0.01) p-S6K1, p-4EBP1 and eIF4E · eIF4G compared to R. In conclusion, when protein and energy intakes are restricted for 8 days, leucine supplementation increases muscle mTOR activation, but does not improve body weight gain or enhance skeletal muscle protein synthesis in neonatal pigs.

  5. Development and validation of a rapid, selective, and sensitive LC-MS/MS method for simultaneous determination of D- and L-amino acids in human serum: application to the study of hepatocellular carcinoma.

    PubMed

    Han, Minlu; Xie, Mengyu; Han, Jun; Yuan, Daoyi; Yang, Tian; Xie, Ying

    2018-04-01

    A validated liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of D- and L-amino acids in human serum. Under the optimum conditions, except for DL-proline, L-glutamine, and D-lysine, the enantioseparation of the other 19 enantiomeric pairs of proteinogenic amino acids and nonchiral glycine was achieved with a CROWNPAK CR-I(+) chiral column within 13 min. The lower limits of quantitation for L-amino acids (including glycine) and D-amino acids were 5-56.25 μM and 0.625-500 nM, respectively, in human serum. The intraday precision and interday precision for all the analytes were less than 15%, and the accuracy ranged from -12.84% to 12.37% at three quality control levels. The proposed method, exhibiting high rapidity, enantioresolution, and sensitivity, was successfully applied to the quantification of D- and L-amino acid levels in serum from hepatocellular carcinoma patients and healthy individuals. The serum concentrations of L-arginine, L-isoleucine, L-aspartate, L-tryptophan, L-alanine, L-methionine, L-serine, glycine, L-valine, L-leucine, L-phenylalanine, L-threonine, D-isoleucine, D-alanine, D-glutamate, D-glutamine, D-methionine, and D-threonine were significantly reduced in the hepatocellular carcinoma patients compared with the healthy individuals (P < 0.01). D-Glutamate and D-glutamine were identified as the most downregulated serum markers (fold change greater than 1.5), which deserves further attention in hepatocellular carcinoma research. Graphical abstract Simultaneous determination of D- and L-amino acids in human serum from hepatocellular carcinoma patients and healthy individuals. AA amino acid, HCC hepatocellular carcinoma, LC liquid chromatography, MS/MS tandem mass spectrometry, NC normal control, TIC total ion chromatogram.

  6. Preliminary Study on J-Resolved NMR Method Usability for Toxic Kidney's Injury Assessment.

    PubMed

    Doskocz, Marek; Marchewka, Zofia; Jeż, Magdalena; Passowicz-Muszyńska, Ewa; Długosz, Anna

    2015-01-01

    Nowadays, the Nuclear Magnetic Resonance (NMR) techniques are tested for metabolomic urine profile in order to detect early damage of kidney. The purpose of this investigation was the initial assessment of two-dimensional J-resolved NMR urine spectra analysis usability for early kidney injuries detection. The amino acids (AA) and acids profile change after the exposure to nephrotoxic agent (the cisplatin infusion) was examined. The material was the urine of patients with non-small-cell lung cancer, treated with cisplatin in Pulmonology and Lung Cancers Clinic in Wrocław. The urine of healthy volunteers was also examined. The identification of metabolites in urine was based on two-dimensional JRES signals in spectra, described in Human Metabolites Database (HMD). The molar concentration of metabolites was calculated from the volume under the signals. The analysis was focused on amino acids and organic acids (lactid acid and pyruvic acid) profiles. Any specific amino acids were identified after cisplatin infusion in comparison to the state before infusion. However, the differences in concentration were observed over 2-fold increase in valine, isoleucine and leucine, over 3-fold in alanine. Also, the concentration of pyruvic and lactic acids increased significantly (p≤0.05, p≤0.01). There were no specific amino acids identified in response to the infusion of cisplatin; however, some changes in the concentrations of amino acids and other small molecules were found. The analysis of two-dimensional JRES spectra showed an increase of alanine, leucine, isoleucine and valine concentration after the application of cisplatin. It seems that it is worth developing the JRES method based on special computer program.

  7. Serum Amino Acid Profiles in Normal Subjects and in Patients with or at Risk of Alzheimer Dementia

    PubMed Central

    Corso, Gaetano; Cristofano, Adriana; Sapere, Nadia; la Marca, Giancarlo; Angiolillo, Antonella; Vitale, Michela; Fratangelo, Roberto; Lombardi, Teresa; Porcile, Carola; Intrieri, Mariano; Di Costanzo, Alfonso

    2017-01-01

    Background/Aims Abnormalities in the plasma amino acid profile have been reported in Alzheimer disease (AD), but no data exist for the prodromal phase characterized by subjective memory complaint (SMC). It was our aim to understand if serum amino acid levels change along the continuum from normal to AD, and to identify possible diagnostic biomarkers. Methods Serum levels of 15 amino acids and 2 organic acids were determined in 4 groups of participants – 29 with probable AD, 18 with mild cognitive impairment (MCI), 24 with SMC, and 46 cognitively healthy subjects (HS) – by electrospray tandem mass spectrometry. Results Glutamate, aspartate, and phenylalanine progressively decreased, while citrulline, argi­ninosuccinate, and homocitrulline progressively increased, from HS over SMC and MCI to AD. The panel including these 6 amino acids and 4 ratios (glutamate/citrulline, citrulline/phenylalanine, leucine plus isoleucine/phenylalanine, and arginine/phenylalanine) discriminated AD from HS with about 96% accuracy. Other panels including 20 biomarkers discriminated SMC or MCI from AD or HS with an accuracy ranging from 88 to 75%. Conclusion Amino acids contribute to a characteristic metabotype during the progression of AD along the continuum from health to frank dementia, and their monitoring in elderly individuals might help to detect at-risk subjects. PMID:28626469

  8. Oral branched-chain amino acids decrease whole-body proteolysis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  9. Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli.

    PubMed

    Wang, Jian; Wen, Bing; Xu, Qingyang; Xie, Xixian; Chen, Ning

    2015-03-04

    Fed-batch cultivations of L-isoleucine-producing Escherichia coli TRFP (SG r , α -ABA r , with a pTHR101 plasmid containing a thr operon and ilvA) were carried out on different carbon sources: glucose, sucrose, fructose, maltose and glycerol. The results indicated that sucrose was the best initial carbon source for L-isoleucine production and then sucrose concentration of 30 g·L -1 was determined in the production medium. The results of different carbon sources feeding showed that the glucose solution was the most suitable feeding media. The dissolved oxygen (DO) of L-isoleucine fermentation was maintained at 5%, 15% and 30% with DO-stat feeding, respectively. The results indicated that when the DO level was maintained at 30%, the highest biomass and L-isoleucine production were obtained. The accumulation of acetate was decreased and the production of L-isoleucine was increased markedly, when the glucose concentration was maintained at 0.15 g·L -1 by using glucose-stat feeding. Finally, the glucose concentration was maintained at 0.10 g·L -1 and the DO level was controlled at approximately 30% during the whole fermentation period, using the combined feeding strategy of glucose-stat feeding and DO feedback feeding. The acetate accumulation was decreased to 7.23 g·L -1 , and biomass and production of L-isoleucine were increased to 46.8 and 11.95 g·L -1 , respectively.

  10. Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli

    PubMed Central

    Wang, Jian; Wen, Bing; Xu, Qingyang; Xie, Xixian; Chen, Ning

    2015-01-01

    Fed-batch cultivations of L-isoleucine-producing Escherichia coli TRFP (SGr, α-ABAr, with a pTHR101 plasmid containing a thr operon and ilvA) were carried out on different carbon sources: glucose, sucrose, fructose, maltose and glycerol. The results indicated that sucrose was the best initial carbon source for L-isoleucine production and then sucrose concentration of 30 g·L−1 was determined in the production medium. The results of different carbon sources feeding showed that the glucose solution was the most suitable feeding media. The dissolved oxygen (DO) of L-isoleucine fermentation was maintained at 5%, 15% and 30% with DO-stat feeding, respectively. The results indicated that when the DO level was maintained at 30%, the highest biomass and L-isoleucine production were obtained. The accumulation of acetate was decreased and the production of L-isoleucine was increased markedly, when the glucose concentration was maintained at 0.15 g·L−1 by using glucose-stat feeding. Finally, the glucose concentration was maintained at 0.10 g·L−1 and the DO level was controlled at approximately 30% during the whole fermentation period, using the combined feeding strategy of glucose-stat feeding and DO feedback feeding. The acetate accumulation was decreased to 7.23 g·L−1, and biomass and production of L-isoleucine were increased to 46.8 and 11.95 g·L−1, respectively. PMID:26019655

  11. L-isoleucine-supplemented Oral Rehydration Solution in the Treatment of Acute Diarrhoea in Children: A Randomized Controlled Trial

    PubMed Central

    Raqib, R.; Ashraf, H.; Qadri, F.; Ahmed, S.; Zasloff, M.; Agerberth, B.; Salam, M.A.; Gyr, N.; Meier, R.

    2011-01-01

    Antimicrobial peptides represent an important component of the innate immune defenses of living organisms, including humans. They are broad-spectrum surface-acting agents secreted by the epithelial cells of the body in response to infection. Recently, L-isoleucine and its analogues have been found to induce antimicrobial peptides. The objectives of the study were to examine if addition of L-isoleucine to oral rehydration salts (ORS) solution would reduce stool output and/or duration of acute diarrhoea in children and induce antimicrobial peptides in intestine. This double-blind randomized controlled trial was conducted at the Dhaka Hospital of ICDDR,B. Fifty male children, aged 6-36 months, with acute diarrhoea and some dehydration, attending the hospital, were included in the study. Twenty-five children received L-isoleucine (2 g/L)-added ORS (study), and 25 received ORS without L-isoleucine (control). Stool weight, ORS intake, and duration of diarrhoea were the primary outcomes. There was a trend in reduction in mean±standard deviation (SD) daily stool output (g) of children in the L-isoleucine group from day 2 but it was significant on day 3 (388±261 vs 653±446; the difference between mean [95% confidence interval (CI) (-)265 (−509, −20); p=0.035]. Although the cumulative stool output from day 1 to day 3 reduced by 26% in the isoleucine group, it was not significant. Also, there was a trend in reduction in the mean±SD intake of ORS solution (mL) in the L-isoleucine group but it was significant only on day 1 (410±169 vs 564±301), the difference between mean (95% CI) (-)154 (-288, −18); p=0.04. The duration (hours) of diarrhoea was similar in both the groups. A gradual increase in stool concentrations of ß-defensin 2 and 3 was noted but they were not significantly different between the groups. L-isoleucine-supplemented ORS might be beneficial in reducing stool output and ORS intake in children with acute watery diarrhoea. A further study is warranted

  12. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics.

  13. Acetyl-DL-leucine improves gait variability in patients with cerebellar ataxia-a case series.

    PubMed

    Schniepp, Roman; Strupp, Michael; Wuehr, Max; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas; Feil, Katharina

    2016-01-01

    Acetyl-DL-leucine is a modified amino acid that was observed to improve ataxic symptoms in patients with sporadic and hereditary forms of ataxia. Here, we investigated the effect of the treatment with Acetyl-DL-leucine on the walking stability of patients with cerebellar ataxia (10x SAOA, 2x MSA-C, 2x ADA, 1x CACNA-1A mutation, 2x SCA 2, 1x SCA 1). Treatment with Acetyl-DL-leucine (500 mg; 3-3-4) significantly improved the coefficient of variation of stride time in 14 out of 18 patients. Moreover, subjective ambulatory scores (FES-I and ABC) and the SARA scores were also improved under treatment. Further prospective studies are necessary to support these class III observational findings.

  14. Short- and long-term effects of leucine and branched-chain amino acid supplementation of a protein- and energy-reduced diet on muscle protein metabolism in neonatal pigs.

    PubMed

    Manjarín, Rodrigo; Columbus, Daniel A; Solis, Jessica; Hernandez-García, Adriana D; Suryawan, Agus; Nguyen, Hanh V; McGuckin, Molly M; Jimenez, Rafael T; Fiorotto, Marta L; Davis, Teresa A

    2018-05-04

    The objective of this study was to determine if enteral leucine or branched-chain amino acid (BCAA) supplementation increases muscle protein synthesis in neonates who consume less than their protein and energy requirements, and whether this increase is mediated via the upregulation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway or the decrease in muscle protein degradation signaling. Neonatal pigs were fed milk replacement diets containing reduced energy and protein (R), R supplemented with BCAA (RBCAA), R supplemented with leucine (RL), or complete protein and energy (CON) at 4-h intervals for 9 (n = 24) or 21 days (n = 22). On days 9 and 21, post-prandial plasma amino acids and insulin were measured at intervals for 4 h; muscle protein synthesis rate and activation of mTOR-related proteins were determined at 120 min post-feeding in muscle. For all parameters measured, the effects of diet were not different between day 9 or day 21. Compared to CON and R, plasma leucine and BCAA were higher (P ≤ 0.01) in RL- and RBCAA-fed pigs, respectively. Body weight gain, protein synthesis, and activation of S6 kinase (S6K1), 4E-binding protein (4EBP1), and eukaryotic initiation factor 4 complex (eIF4E·eIF4G) were decreased in RBCAA, RL, and R relative to CON (P < 0.01). RBCAA and RL upregulated (P ≤ 0.01) S6K1, 4EBP1, and eIF4E·eIF4G compared to R. In conclusion, when protein and energy are restricted, both leucine and BCAA supplementation increase mTOR activation, but do not enhance skeletal muscle protein synthesis and muscle growth in neonatal pigs.

  15. Integrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence

    PubMed Central

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Ruppin, Eytan; Herskovits, Anat A.

    2012-01-01

    Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence. PMID:22969433

  16. Enhanced Incorporation of 3-Hydroxy-4-Methylvalerate Unit into Biosynthetic Polyhydroxyalkanoate Using Leucine as a Precursor

    PubMed Central

    2011-01-01

    Ralstonia eutropha PHB-4 expressing Pseudomonas sp. 61-3 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1Ps) synthesizes PHA copolymer containing 3-hydroxybutyrate (3HB) and a small amount (0.5 mol%) of 3-hydroxy-4-methylvalerate (3H4MV) from fructose as a carbon source. In this study, enhanced incorporation of 3H4MV into PHA was investigated using branched amino acid leucine as a precursor of 3H4MV. Leucine has the same carbon backbone as 3H4MV and is expected to be a natural and self-producible precursor. We found that the incorporation of 3H4MV was enhanced by the supplementation of excess amount (10 g/L) of leucine in the culture medium. This finding indicates that 3H4MV can be derived from leucine. To increase metabolic flux to leucine biosynthesis in the host strain by eliminating the feedback inhibition, the cells were subjected to N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and leucine analog resistant mutants were generated. The mutants showed statistically higher 3H4MV fraction than the parent strain without supplementing leucine. Additionally, by supplying excess amount of leucine, the mutants synthesized 3HB-based PHA copolymer containing 3.1 mol% 3H4MV and 1.2 mol% 3-hydroxyvalerate (3HV) as minor constituents, which significantly affected the thermal properties of the copolymer. This study demonstrates that it is possible to enhance the monomer supply of 3H4MV into PHA by manipulating leucine metabolism. PMID:21906338

  17. Case report: Aqueous and Vitreous amino-acid concentrations in a patient with maple syrup urine disease operated on rhegmatogenous retinal detachment.

    PubMed

    Kanakis, Menelaos G; Michelakakis, Helen; Petrou, Petros; Koutsandrea, Chrysanthi; Georgalas, Ilias

    2016-10-03

    Maple syrup urine disease (MSUD) is a rare metabolic disorder, affecting the metabolism of branched chain amino-acids (Valine, Leukine, Isoleukine). We present a rare case of rhegmatogenous retinal detachment (RRD) in a MSUD patient. We performed amino acid analysis of aqueous humour, vitreous and serum samples obtained during surgery from a 24 year old female MSUD patient successfully operated on RRD. Serum values for a-amino-butyric acid, valine, isoleucine, leucine, tyrosine, phenylalanine, ornithine and histidine were low, while values for citrulline, methionine and lysine were borderline low, all attributed to the patient's special diet. Serum glutamate was above normal, probably due to the breakdown of glutamine to glutamate. In the aqueous and vitreous the amino acids implicated in MSUD (Valine, Leukine Isoleukine), were within normal range. Glutamate was absent in the vitreous and presented low levels in the aqueous. Glutamate has been reported to play an important role in retinal damage. Elevated glutamate levels have been reported in vitreous specimens from patients subjected to vitrectomy or buckling surgery for RRD. In MSUD, glutamate has been implicated in the pathogenesis of brain damage. Low levels of glutamate have been observed in the cerebellum of experimental MSUD animals, as well as postmortem brain tissue from a child that died of leucine intoxication. The reduction was attributed to the elevation of a-ketoisocaproic which reverses the net direction of nitrogen flow. It could be argued that this could impact on amino acid concentration in aqueous and vitreous fluids. Although no definite conclusions can be drawn by this extremely rare case, the low vitreous and aqueous levels of Glutamate is an interesting finding. Further studies are needed to provide a better insight in the role of amino acids as neurotransmitters in the human eye in health and disease.

  18. Dating lacustrine episodes in the eastern Sahara by the epimerization of isoleucine in ostrich eggshells

    USGS Publications Warehouse

    Miller, G.H.; Wendorf, F.; Ernst, R.; Schild, R.; Close, A.E.; Friedman, I.; Schwarcz, H.P.

    1991-01-01

    The eggshell of the African ostrich, Struthio camelus, closely approximates a closed system for the retention of indigenous proteinaceous residues. Epimerization of the protein amino acid isoleucine follows linear first-order kinetics in laboratory simulations nearly to racemic equilibrium, and the variation in D/L ratio within a single fragment, or between fragments of the same age, is significantly less than in other carbonate systems. These observations suggest that the extent of isoleucine epimerization (aIle/Ile ratio) in ostrich eggshell offers the potential for high-resolution geochronology of Quaternary deposits. From the simulation experiments, and dated early Holocene samples for which we have in situ mean annual sediment temperature measurements, Arrhenius parameters have been calculated; the activation energy is 30.33 kcal mol-1, similar to that of other carbonate systems. We have measured the aIle/Ile ratio in ostrich eggshell associated with lacustrine episodes at Bir Tarfawi and Bir Sahara East, two depressions in what is currently the hyperarid eastern Sahara. The ratios can be used directly to indicate qualitatively the time represented by each series of lake sediment, and to correlate disjunct lacustrine deposits within and between the basins. Uranium-series disequilibrium dating of algal mats contained within some of the lake beds indicate that a major wet interval occurred about 130 ka ago. Using the U-series date for calibration, the amino acid ratios are used to date the most recent lacustrine interval to about 100 ka B.P., and two older intervals, one about 200 ?? 25 ka B.P., and an older interval that occurred prior to 250 ka ago. ?? 1991.

  19. Structure of aureobasidin A.

    PubMed

    Ikai, K; Takesako, K; Shiomi, K; Moriguchi, M; Umeda, Y; Yamamoto, J; Kato, I; Naganawa, H

    1991-09-01

    Aureobasidin A, a new antifungal antibiotic, was isolated from the culture medium of Aureobasidium pullulans R106. Aureobasidin A was a cyclic depsipeptide consisting of eight alpha-amino acid units and one hydroxy acid unit. The structures of the units were found by acid hydrolysis of the antibiotic to be 2(R)-hydroxy-3(R)-methylpentanoic acid, beta-hydroxy-N-methyl-L-valine, N-methyl-L-valine, L-proline, allo-L-isoleucine, N-methyl-L-phenylalanine, L-leucine, and L-phenyl-alanine. The sequence of the units was identified by NMR and FAB-MS of the products from the alkaline hydrolysis of aureobasidin A.

  20. Indications and contraindications for infusing specific amino acids (leucine, glutamine, arginine, citrulline, and taurine) in critical illness.

    PubMed

    Ginguay, Antonin; De Bandt, Jean-Pascal; Cynober, Luc

    2016-03-01

    The review assesses the utility of supplementing parenteral or enteral nutrition of ICU patients with each of five specific amino acids that display pharmacological properties. Specifying indications implies also stating contraindications.Combined supplementation of amino acids with ω3-fatty acids and/or trace elements (immune-enhancing diets) will not be considered in this review because these mixtures do not allow the role of amino acids in the effect (positive or negative) of the mixture to be isolated, and so cannot show whether or not supplementation of a given amino acid is indicated. After decades of unbridled use of glutamine (GLN) supplementation in critically ill patients, recent large trials have brought a note of caution, indicating for example that GLN should not be used in patients with multiple organ failure. Yet these large trials do not change the conclusions of recent meta-analyses. Arginine (ARG), as a single dietary supplement, is probably not harmful in critical illness, in particular in a situation of ARG deficiency syndrome with low nitric oxide production. Citrulline supplementation strongly improves microcirculation in animal models with gut injury, but clinical studies are lacking. Taurine has a potent protective effect against ischemic reperfusion injury. Amino acid-based pharmaconutrition has displayed familiar 'big project' stages: enthusiasm (citrulline and taurine), doubt (GLN), hunt for the guilty (ARG), and backpedalling (leucine). Progress in this field is very slow, and sometimes gives way to retreat, as demonstrated by recent large trials on GLN supplementation.

  1. The effect of relative solubility on crystal purity

    NASA Astrophysics Data System (ADS)

    Givand, Jeffrey Christopher

    This study establishes the relationship between impurity incorporation in a crystal by lattice substitution and the solubility of that impurity in solution. The model system studied was L-isoleucine crystals contaminated by the isomorphic impurity L-leucine. Upon crystallization from aqueous solution by cooling, leucine is concentrated in the isoleucine unit cell through lattice substitution mechanisms. Attempts to reduce the degree of leucine incorporation via adjustments of the rate at which supersaturation is generated yielded marginal success. This work demonstrates that incorporation of leucine in the crystal can be considerably suppressed by reducing the solubility of product relative to the solubility of impurity. Changes to the relative solubility of the impurity were accomplished by the addition of various electrolytes and organic co-solvents to the aqueous amino acid solutions. The solubilities of the two amino acids were measured and compared to their solubilities in pure water. Changes in the ratio of pure-component solubilities were directly related to changes in crystal purity. This thermodynamic quantity of relative solubility was shown to be a key factor in determining impurity uptake by lattice substitution. In addition to the experimental observations, a fundamental thermodynamic link between relative solubility and crystal purity is established through this research. First, the amino acid solubility data as a function of temperature in all solvent mixtures were accurately correlated using a thermodynamic model. The parameters from this model were then adapted to a novel solid-solution thermodynamic model to express the crystal purity in terms of equilibrium solution impurity concentration. After the determination of one system specific parameter, the model is able to predict the crystal purity in a new solvent in which the pure-component solubilities are known. The ability of an electrolyte or co-solvent to improve crystal purity from a given

  2. Plasma Amino Acid Responses After Consumption of Beverages with Varying Protein Type

    DTIC Science & Technology

    2009-07-01

    lysine 0.92 1.32 0.91 methionine 0.31 0.28 OJI phenylalanine 0.58 0.46 0.61 threonine 0.49 0.60 0.52 tryptophan 0.18 0.29 0.13 valine 0.69 0.64 0.68...threonine. serine. glutamine. proline. glycine, alanine, valine. isoleucine. leucine. tyrosine, phenylalanine . lysine, histidine, and arginine (Terrlink. van...with peak concentration in parentheses, were 2 ± 2 (45ŕ" ± 34%), 4 ± 3 (50% ± 32%). and 3 ± 3 mg/ dl (79% ± 37%). respectively. Postexercise, WP. CAS

  3. Acute depletion of plasma glutamine increases leucine oxidation in prednisone-treated humans

    PubMed Central

    Le Bacquer, Olivier; Mauras, Nelly; Welch, Susan; Haymond, Morey; Darmaun, Dominique

    2007-01-01

    Background, aims & methods To determine whether depletion in plasma glutamine worsens the catabolic response to corticosteroids, 7 healthy volunteers received oral prednisone for 6 days on 2 separate occasions, at least 2 weeks apart, and in random order. On the 6th day of each treatment course, they received 5h intravenous infusions of L-[1-14C]-leucine and L-[1-13C]-glutamine in the postabsorptive state 1) under baseline conditions (prednisone only day), and 2) after 24h of treatment with phenylbutyrate (prednisone+phenylbutyrate day), a glutamine chelating agent. Results Phenylbutyrate treatment was associated with 1) an ≈15% decline in plasma glutamine concentration (627±39 vs. 530±31 μmol.L-1; P<0.05), 2) no change in leucine appearance rate, an index of protein breakdown (124±9 vs. 128±9 μmol.kg-1.h-1; NS) nor in non oxidative leucine disposal, an index of whole body protein synthesis (94±9 vs. 91±7 μmol.kg -1.h-1; NS); and 3) a ≈25% rise in leucine oxidation (30±1 vs. 38±2 μmol.kg-1.h-1, P<0.05), despite an ≈25% decline (p<0.05) in leucine concentration. Conclusions In a model of mild, stress-induced protein catabolism, depletion of plasma glutamine per se may worsen branched chain amino acid and protein wasting. PMID:17097772

  4. Impaired intracortical transmission in G2019S leucine rich-repeat kinase Parkinson patients.

    PubMed

    Ponzo, Viviana; Di Lorenzo, Francesco; Brusa, Livia; Schirinzi, Tommaso; Battistini, Stefania; Ricci, Claudia; Sambucci, Manolo; Caltagirone, Carlo; Koch, Giacomo

    2017-05-01

    A mutation in leucine-rich repeat kinase 2 is the most common cause of hereditary Parkinson's disease (PD), yet the neural mechanisms and the circuitry potentially involved are poorly understood. We used different transcranial magnetic stimulation protocols to explore in the primary motor cortex the activity of intracortical circuits and cortical plasticity (long-term potentiation) in patients with the G2019S leucine-rich repeat kinase 2 gene mutation when compared with idiopathic PD patients and age-matched healthy subjects. Paired pulse transcranial magnetic stimulation was used to investigate short intracortical inhibition and facilitation and short afferent inhibition. Intermittent theta burst stimulation, a form of repetitive transcranial magnetic stimulation, was used to test long-term potentiation-like cortical plasticity. Leucine-rich repeat kinase 2 and idiopathic PD were tested both in ON and in OFF l-dopa therapy. When compared with idiopathic PD and healthy subjects, leucine-rich repeat kinase 2 PD patients showed a remarkable reduction of short intracortical inhibition in both ON and in OFF l-dopa therapy. This reduction was paralleled by an increase of intracortical facilitation in OFF l-dopa therapy. Leucine-rich repeat kinase 2 PD showed abnormal long-term potentiation-like cortical plasticity in ON l-dopa therapy. The motor cortex in leucine-rich repeat kinase 2 mutated PD patients is strongly disinhibited and hyperexcitable. These abnormalities could be a result of an impairment of inhibitory (gamma-Aminobutyric acid) transmission eventually related to altered neurotransmitter release. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  5. Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of jasmonic acid-isoleucine and diterpene glycosides, but not jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata.

    PubMed

    Yang, Da-Hai; Baldwin, Ian T; Wu, Jianqiang

    2013-06-01

    The brassinosteroid (BR) receptor, BR insensitive 1 (BRI1), plays a critical role in plant development, but whether BRI1-mediated BR signaling is involved in plant defense responses to herbivores was largely unknown. Here, we examined the function of BRI1 in the resistance of Nicotiana attenuata (Solanaceae) to its specialist insect herbivore Manduca sexta. Jasmonic acid (JA) and JA-isoleucine conjugate (JA-Ile) are important hormones that mediate resistance to herbivores and we found that after wounding or simulated herbivory NaBRI1 had little effect on JA levels, but was important for the induction of JA-Ile. Further experiments revealed that decreased JAR (the enzyme for JA-Ile production) activity and availability of Ile in NaBRI1-silenced plants were likely responsible for the low JA-Ile levels. Consistently, M. sexta larvae gained more weight on NaBRI1-silenced plants than on the control plants. Quantification of insect feeding-induced secondary metabolites revealed that silencing NaBRI1 resulted in decreased levels of carbon-rich defensive secondary metabolites (hydroxygeranyllinalool diterpene glycosides, chlorogenic acid, and rutin), but had little effect on the nitrogen-rich ones (nicotine and trypsin proteinase inhibitors). Thus, NaBRI1-mediated BR signaling is likely involved in plant defense responses to M. sexta, including maintaining JA-Ile levels and the accumulation of several carbon-rich defensive secondary metabolites. © 2013 Institute of Botany, Chinese Academy of Sciences.

  6. Leucine and isoleucine reduce protein degradation in rainbow trout (Oncorhynchus mykiss) primary myoblast cultures

    USDA-ARS?s Scientific Manuscript database

    Myogenic precursor cells were isolated from rainbow trout skeletal muscle and incubated in media containing 10% fetal bovine serum for 7 days, thereby differentiating into myoblasts. Rates of protein degradation were determined in response to minimal essential media (MEM) of various amino acid (AA)...

  7. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion

    PubMed Central

    Bohlke, Nina; Budisa, Nediljko

    2014-01-01

    One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function – a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. PMID:24433543

  8. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro

    PubMed Central

    Martin, Neil R.W.; Turner, Mark C.; Farrington, Robert; Player, Darren J.

    2017-01-01

    The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP‐1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co‐incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly‐controlled investigations into nutritional regulation of muscle physiology. PMID:28409828

  9. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro.

    PubMed

    Martin, Neil R W; Turner, Mark C; Farrington, Robert; Player, Darren J; Lewis, Mark P

    2017-10-01

    The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology. © 2017 The Authors. Journal of Cellular Physiology Published by wiley periodicals, Inc.

  10. Plasma amino acid and urine organic acid profiles of Filipino patients with maple syrup urine disease (MSUD) and correlation with their neurologic features.

    PubMed

    Chiong, Mary Anne D; Tan, Marilyn A; Cordero, Cynthia P; Fodra, Esphie Grace D; Manliguis, Judy S; Lopez, Cristine P; Dalmacio, Leslie Michelle M

    2016-12-01

    Maple syrup urine disease (MSUD) is the most common inborn error of metabolism in the country. The cause of the neuropathology is still not well established although accumulation of branched chain amino acids (BCAA) and alteration in large neutral amino acids (LNAA) as well as energy deprivation are suggested. It is therefore the aim of this study to determine the plasma amino acid and urine organic acid profiles of patients with MSUD and correlate the findings with their neurologic features. Twenty six Filipino patients with MSUD were studied in terms of their plasma amino acid and urine organic acid profiles. Their results were compared with 26 age and sex matched controls. The neurologic features were correlated with the results of the plasma amino acids and urine organic acids. Majority of the patients with MSUD had developmental delay/intellectual disability (88%), speech delay (69%), and seizures (65%). Their amino acid profiles revealed low glutamine and alanine with high levels of leucine, isoleucine, phenylalanine, threonine and alloisoleucine compared to controls (p < 0.05). The urine organic acids showed significantly elevated excretion of the branched chain ketoacids and succinate (p < 0.05). However there were no biochemical markers that correlated significantly with the neurologic features. The findings suggest that there could still be altered LNAA metabolism among patients with MSUD when the BCAAs are elevated. Although the biochemical findings were not significantly correlated with the neurologic features, the study showed that prevention and avoidance of neurologic disturbances may still rely primarily on early diagnosis and prompt institution of treatment, along with strict compliance with the dietary regimen and maintenance of good metabolic control over time.

  11. Effect of different postharvest temperatures on the accumulation of sugars, organic acids, and amino acids in the juice sacs of Satsuma mandarin (Citrus unshiu Marc.) fruit.

    PubMed

    Matsumoto, Hikaru; Ikoma, Yoshinori

    2012-10-03

    To elucidate the effect of different postharvest temperatures on the accumulation of sugars, organic acids, and amino acids and to determine the best temperature to minimize their postharvest change, their content after harvest was investigated at 5, 10, 20, and 30 °C for 14 days in the juice sacs of Satsuma mandarin (Citrus unshiu Marc. cv. Aoshima-unshiu) fruit. In all sugars, the changes were negligible at all temperatures. Organic acids decreased slightly at all temperatures, with the exception of malic acid at 30 °C, which increased slightly. Two amino acids, ornithine and glutamine, increased at 5 °C, but they did not increase at other temperatures. In 11 amino acids (phenylalanine, tryptophan, tyrosine, isoleucine, leucine, valine, threonine, lysine, methionine, histidine, and γ-amino butyric acid), the content was higher at 20 and 30 °C than at other temperatures. Thus, the content of amino acids was more variable than that of sugars and organic acids in response to temperatures. Moreover, amino acids responded to temperature differently: two amino acids were cold responsive, and 11 were heat-responsive. The best temperature to minimize the postharvest changes in amino acid profiles in the juice sacs of Aoshima-unshiu was 10 °C. The responsiveness to temperatures in two cold-responsive (ornithine and glutamine) and five heat-responsive (phenylalanine, tryptophan, valine, lysine, and histidine) amino acids was conserved among three different Satsuma mandarin cultivars, Aoshima-unshiu (late-maturing cultivar), Silverhill (midmaturing cultivar), and Miyagawa-wase (early-maturing cultivar). The metabolic responsiveness to temperature stress was discussed on the basis of the changes in the amino acid profile.

  12. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2.

    PubMed

    Liu, Hui; Liu, Rui; Xiong, Yufang; Li, Xiang; Wang, Xiaolei; Ma, Yan; Guo, Huailan; Hao, Liping; Yao, Ping; Liu, Liegang; Wang, Di; Yang, Xuefeng

    2014-08-01

    Leucine, a branched-chain amino acid, has been shown to promote glucose uptake and increase insulin sensitivity in skeletal muscle, but the exact mechanism remains unestablished. We addressed this issue in cultured skeletal muscle cells in this study. Our results showed that leucine alone did not have an effect on glucose uptake or phosphorylation of protein kinase B (AKT), but facilitated the insulin-induced glucose uptake and AKT phosphorylation. The insulin-stimulated glucose uptake and AKT phosphorylation were inhibited by the phosphatidylinositol 3-kinase inhibitor, wortmannin, but the inhibition was partially reversed by leucine. The inhibitor of mammalian target of rapamycin complex 1 (mTORC1), rapamycin, had no effect on the insulin-stimulated glucose uptake, but eliminated the facilitating effect of leucine in the insulin-stimulated glucose uptake and AKT phosphorylation. In addition, leucine facilitation of the insulin-induced AKT phosphorylation was neutralized by knocking down the core component of the mammalian target of rapamycin complex 2 (mTORC2) with specific siRNA. Together, these findings show that leucine can facilitate the insulin-induced insulin signaling and glucose uptake in skeletal muscle cells through both mTORC1 and mTORC2, implicating the potential importance of this amino acid in glucose homeostasis and providing new mechanistic insights.

  13. Use of the [(14)C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton.

    PubMed

    Fischer, H; Pusch, M

    1999-10-01

    Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [(14)C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 microM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 microM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined.

  14. Use of the [14C]Leucine Incorporation Technique To Measure Bacterial Production in River Sediments and the Epiphyton

    PubMed Central

    Fischer, Helmut; Pusch, Martin

    1999-01-01

    Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [14C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 μM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 μM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined. PMID:10508068

  15. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    ERIC Educational Resources Information Center

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  16. Bioorganometallic chemistry. 8. The molecular recognition of aromatic and aliphatic amino acids and substituted aromatic and aliphatic carboxylic acid guests with supramolecular ({eta}{sup 5}-pentamethylcyclopentadienyl)rhodium - nucleobase, nucleoside, and nucleotide cyclic trimer hosts via non-covalent {pi}-{pi} and hydrophobic interactions in water: Steric, electronic, and conformational parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.; Ogo, Seiji; Fish, R.H.

    Molecular recognition, via non-covalent processes such as hydrogen bonding, {pi}-{pi}, and hydrophobic interactions, is an important biological phenomenon for guests, such as drugs, proteins, and other important biological molecules with, for example, host DNA/RNA. We have studied a novel molecular recognition process using guests that encompass aromatic and aliphatic amino acids [L-alanine, L-glutamine (L-Gln), L-histidine, L-isoleucine(L-Ile), L-leucine(L-Leu), L-phenylalanine(L-Phe), L-proline, L-tryptophan(L-Trp), L-valine(L-Val)], substituted aromatic carboxylic acids o-, m-, p-aminobenzoic acids (G1-3), benzoic acid (G4), phenylacetic acid (G5), p-methoxyphenylacetic acid (G6), o-methyoxybenozoic acid (G9), o-nitrobenzoic acid (G10), and aliphatic carboxylic acids [cyclohexylacetic acid (G7), 1-adamantanecarboxylic acid (G8)] with supramolecular, bioorganometallic hosts, ({eta}{supmore » 5}-pentamethylcyclopentadienyl)rhodium (Cp{sup *}Rh)-nucleobase, nucleoside, and nucleotide cyclic trimer complexes in aqueous solution at pH 7, utilizing {sup 1}H NMR, NOE, and molecular modeling techniques, and, as well, determining association constants (K{sub a}) and free energies of complexation ({Delta}{degree}G). The host-guest complexation occurs predominantly via non-covalent {pi}-{pi}, hydrophobic, and possible subtle H-bonding interactions, with steric, electronic, and molecular conformational parameters as important criteria. 8 refs., 6 figs., 3 tabs.« less

  17. 21 CFR 862.1460 - Leucine aminopeptidase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Systems § 862.1460 Leucine aminopeptidase test system. (a) Identification. A leucine aminopeptidase test system is a device intended to measure the activity of the enzyme leucine amino-peptidase in serum... diseases such as viral hepatitis and obstructive jaundice. (b) Classification. Class I (general controls...

  18. 21 CFR 862.1460 - Leucine aminopeptidase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1460 Leucine aminopeptidase test system. (a) Identification. A leucine aminopeptidase test system is a device intended to measure the activity of the enzyme leucine amino-peptidase in serum... diseases such as viral hepatitis and obstructive jaundice. (b) Classification. Class I (general controls...

  19. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness.

    PubMed

    Wolak-Dinsmore, Justyna; Gruppen, Eke G; Shalaurova, Irina; Matyus, Steven P; Grant, Russell P; Gegen, Ray; Bakker, Stephan J L; Otvos, James D; Connelly, Margery A; Dullaart, Robin P F

    2018-04-01

    Plasma branched-chain amino acid (BCAA) levels, measured on nuclear magnetic resonance (NMR) metabolomics research platforms or by mass spectrometry, have been shown to be associated with type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). We developed a new test for quantification of BCAA on a clinical NMR analyzer and used this test to determine the clinical correlates of BCAA in 2 independent cohorts. The performance of the NMR-based BCAA assay was evaluated. A method comparison study was performed with mass spectrometry (LC-MS/MS). Plasma BCAA were measured in the Insulin Resistance Atherosclerosis Study (IRAS, n = 1209; 376 T2DM subjects) and in a Groningen cohort (n = 123; 67 T2DM subjects). In addition, carotid intima media thickness (cIMT) was measured successfully in 119 subjects from the Groningen cohort. NMR-based BCAA assay results were linear over a range of concentrations. Coefficients of variation for inter- and intra-assay precision ranged from 1.8-6.0, 1.7-5.4, 4.4-9.1, and 8.8-21.3%, for total BCAA, valine, leucine, and isoleucine, respectively. BCAA quantified from the same samples using NMR and LC-MS/MS were highly correlated (R 2  = 0.97, 0.95 and 0.90 for valine, leucine and isoleucine). In both cohorts total and individual BCAA were elevated in T2DM (P = 0.01 to ≤0.001). Moreover, cIMT was associated with BCAA independent of age, sex, T2DM and metabolic syndrome (MetS) categorization or alternatively of individual MetS components. BCAA levels, measured by NMR in the clinical laboratory, are elevated in T2DM and may be associated with cIMT, a proxy of subclinical atherosclerosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways.

    PubMed

    Perez-Benito, Joaquin F

    2011-09-08

    The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.

  1. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study.

    PubMed

    Nagata, Chisato; Nakamura, Kozue; Wada, Keiko; Tsuji, Michiko; Tamai, Yuya; Kawachi, Toshiaki

    2013-10-15

    Dietary supplementation with branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, has shown potential benefits for the metabolic profile. However, higher blood BCAA levels have been associated with insulin resistance. To our knowledge, there has been no study on dietary BCAAs and the risk of diabetes. We examined the association between BCAA intake and risk of diabetes in a population-based cohort study in Japan. A total of 13,525 residents of Takayama City, Japan, who enrolled in a cohort study in 1992 responded to a follow-up questionnaire seeking information about diabetes in 2002. Diet at baseline was assessed by means of a validated food frequency questionnaire. A high intake of BCAAs in terms of percentage of total protein was significantly associated with a decreased risk of diabetes in women after controlling for covariates; the hazard ratio for the highest tertile versus the lowest was 0.57 (95% confidence interval: 0.36, 0.90; P-trend = 0.02). In men, leucine intake was significantly marginally associated with the risk of diabetes; the hazard ratio for the highest tertile versus the lowest was 0.70 (95% confidence interval: 0.48, 1.02; P-trend = 0.06). Data suggest that a high intake of BCAAs may be associated with a decrease in the risk of diabetes.

  3. Changes of Protein and Lipid Contents, Amino Acid and Fatty Acid Compositions in Eggs and Yolk-Sac Larvae of American Shad ( Alosa sapidissima)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifeng; Gao, Xiaoqiang; Yu, Jiuxiang; Wang, Yaohui; Guo, Zhenglong; Huang, Bin; Liu, Baoliang; Hong, Lei

    2018-04-01

    To investigate the changes of the biochemical composition of American shad ( Alosa sapidissima) eggs and larvae at embryonic and early larval stages, samples were collected at different development stages from artificial fertilization to the end of yolk absorption including 2 h, 12 h and 30 h after fertilization and newly hatched larvae including 1 and 3 days after hatching. The composition of lipid, fatty acids, protein and amino acids were analyzed. The content of total protein exhibited a decreasing trend during embryogenesis and larval development, and a significant reduction was detected after hatching ( P < 0.05). The total lipid content remained relative stable. A significant reduction was detected in almost all amino acids after hatching except for glycine ( P < 0.05), while a significant decrease was found in the content of cysteine, proline, tyrosine, valine, isoleucine, leucine and phenylalanine during the yolk-sac phase ( P < 0.05). On the other hand, all the groups of fatty acids remained stable during the period of embryogenesis. But after hatching, a significant decrease was found in the content of C18:2n-6, C18:3n-6, SFA and ratio of EPA/ARA ( P < 0.05), while a significant increase was found in the content of C18:3n-3, C20:4n-6, C22:6n-3 and ratio of n-3/n-6 ( P < 0.05). In conclusion, the combined data suggested that American shad utilizes the protein content as preferential energy substrates during embryonic and early larval developments with some specificity in the consumption of different amino acids.

  4. Treatment of acute decompensation of maple syrup urine disease in adult patients with a new parenteral amino-acid mixture.

    PubMed

    Servais, A; Arnoux, J B; Lamy, C; Hummel, A; Vittoz, N; Katerinis, I; Bazzaoui, V; Dubois, S; Broissand, C; Husson, M C; Berleur, M P; Rabier, D; Ottolenghi, C; Valayannopoulos, V; de Lonlay, P

    2013-11-01

    Acute decompensation of maple syrup urine disease (MSUD) is usually treated by enteral feeding with an amino-acid mixture without leucine (Leu), valine or isoleucine. However, its administration is ineffective in cases of gastric intolerance and some adult patients refuse enteral feeding via a nasogastric tube. We developed a new parenteral amino-acid mixture for patients with MSUD. Seventeen decompensation episodes in four adult patients with MSUD treated with a parenteral amino-acid mixture (group P) were compared to 18 previous episodes in the same patients treated by enteral feeding (group E). The mean Leu concentration at presentation was similar in the groups P and E (1196.9 μmol/L and 1212.2 μmol/L, respectively). The mean decrease in the Leu concentration during the first 3 days of hospitalisation was significantly higher in group P than group E (p = 0.0026); there were no side effects. The mean duration of hospitalisation was similar (4 vs. 4.5 days, p = NS). No patient in group P deteriorated whereas one patient in group E required dialysis. This new parenteral amino-acid mixture is safe and allows efficient Leu concentration decrease during acute MSUD decompensation episodes in adults. Its use avoids the need for nasogastric tube insertion.

  5. Characterization of Avt1p as a vacuolar proton/amino acid antiporter in Saccharomyces cerevisiae.

    PubMed

    Tone, Junichi; Yoshimura, Ayumi; Manabe, Kunio; Murao, Nami; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2015-01-01

    Several genes for vacuolar amino acid transport were reported in Saccharomyces cerevisiae, but have not well been investigated. We characterized AVT1, a member of the AVT vacuolar transporter family, which is reported to be involved in lifespan of yeast. ATP-dependent uptake of isoleucine and histidine by the vacuolar vesicles of an AVT exporter mutant was lost by introducing avt1∆ mutation. Uptake activity was inhibited by the V-ATPase inhibitor: concanamycin A and a protonophore. Isoleucine uptake was inhibited by various neutral amino acids and histidine, but not by γ-aminobutyric acid, glutamate, and aspartate. V-ATPase-dependent acidification of the vesicles was declined by the addition of isoleucine or histidine, depending upon Avt1p. Taken together with the data of the amino acid contents of vacuolar fractions in cells, the results suggested that Avt1p is a proton/amino acid antiporter important for vacuolar compartmentalization of various amino acids.

  6. Regulation of taste-active components of meat by dietary branched-chain amino acids; effects of branched-chain amino acid antagonism.

    PubMed

    Imanari, M; Kadowaki, M; Fujimura, S

    2008-05-01

    1. The effects of dietary branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) on taste-active components, especially free glutamate (Glu), in meat were investigated. 2. Broiler chickens (28 d old) were given varied dietary BCAA levels for 10 d before marketing. Dietary BCAA content ratios were either 100:100:100 (Low Leu group), 150:100:100 (Control group) or 150:150:150 (High Ile + Val group) for Leu:Ile:Val (% of each BCAA requirement according to NRC, 1994). Taste-related components of meat (free amino acids and ATP metabolites) and sensory scores of meat soup were estimated. 3. Free Glu content, the main taste-active component of meat, was significantly increased by dietary BCAA. Compared to the Control group, free Glu content increased by 30% in the High Ile + Val group. However, the inosine monophosphate (IMP) content in meat did not change among groups. 4. Sensory evaluation of meat soups showed that Control and High Ile + Val groups had different meat flavours. The sensory score of overall taste intensity was significantly higher in the High Ile + Val group. 5. These results suggest that dietary BCAA concentrations regulate free Glu in meat. Increasing dietary Ile + Val induces an increase in free Glu content of meat, improves meat taste and is more effective for increasing free Glu content in meat than decreasing dietary Leu level.

  7. ISOLEUCINE AND VALINE METABOLISM IN ESCHERICHIA COLI XI. K-12

    PubMed Central

    Leavitt, Richard I.; Umbarger, H. E.

    1962-01-01

    Leavitt, Richard I. (Harvard Medical School, Boston, Mass.) and H. E. Umbarger. Isoleucine and valine metabolism in Escherichia coli. XI. Valine inhibition of the growth of Escherichia coli strain K-12. J. Bacteriol. 83:624–630. 1962.—The inhibition of the growth of Escherichia coli strain K-12 by valine was shown to be due to the sensitivity of the acetohydroxybutyrate-forming system to valine. It was demonstrated that both E. coli strain W, a strain whose growth is unaffected by valine, and a valine-resistant mutant of strain K-12 have acetolactate- and acetohydroxybutyrate-forming systems which are less sensitive to valine than that of strain K-12. It was further shown that α-aminobutyrate accumulates in the culture fluid of the valine-sensitive strain when incubated in the presence of valine. The levels of valine in the “free amino acid pool” were examined and found to be related to the differences in valine sensitivity of the acetolactate-forming systems of the three strains. PMID:14463257

  8. Expression and GTP sensitivity of peptide histidine isoleucine high-affinity-binding sites in rat.

    PubMed

    Debaigt, Colin; Meunier, Annie-Claire; Goursaud, Stephanie; Montoni, Alicia; Pineau, Nicolas; Couvineau, Alain; Laburthe, Marc; Muller, Jean-Marc; Janet, Thierry

    2006-07-01

    High-affinity-binding sites for the vasoactive intestinal peptide (VIP) analogs peptide histidine/isoleucine-amide (PHI)/carboxyterminal methionine instead of isoleucine (PHM) are expressed in numerous tissues in the body but the nature of their receptors remains to be elucidated. The data presented indicate that PHI discriminated a high-affinity guanosine 5'-triphosphate (GTP)-insensitive-binding subtype that represented the totality of the PHI-binding sites in newborn rat tissues but was differentially expressed in adult animals. The GTP-insensitive PHI/PHM-binding sites were also observed in CHO cells over expressing the VPAC2 but not the VPAC1 VIP receptor.

  9. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion.

    PubMed

    Bohlke, Nina; Budisa, Nediljko

    2014-02-01

    One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function - a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  10. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole ( Cynoglossus semilaevis) at different salinities

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Xu, Kefeng; Tian, Xiangli; Dong, Shuanglin; Fang, Ziheng

    2015-10-01

    A serial of salinity transferring treatments were performed to investigate the osmoregulation of tongue sole ( Cynoglossus semilaevis). Juvenile tongue sole were directly transferred from a salinity of 30 to 0, 10, 20, 30, 40 and 50. Blood sampling was performed for each treatment after 0, 1, 6 and 12 h, as well as after 1, 2, 4, 8, 16 and 32 d. The plasma osmolality, cortisol and free amino acids were assessed. Under the experimental conditions, no fish died after acute salinity transfer. The plasma cortisol level increased 1 h after the abrupt transfer from a salinity of 30 to that of 0, 40 and 50, and decreased from 6 h to 8 d after transfer. Similar trends were observed in the changes of plasma osmolality. The plasma free amino acids concentration showed a `U-shaped' relationship with salinity after being transferred to different salinities for 4 days. More obvious changes of plasma free amino acid concentration occurred under hyper-osmotic conditions than under hypo-osmotic conditions. The concentrations of valine, isoleucine, lysine, glutamic acid, glycine, proline and taurine increased with rising salinity. The plasma levels of threonine, leucine, arginine, serine, and alanine showed a `U-shaped' relationship with salinity. The results of this study suggested that free amino acids might have important effects on osmotic acclimation in tongue sole.

  11. Jugular-infused methionine, lysine and branched-chain amino acids does not improve milk production in Holstein cows experiencing heat stress.

    PubMed

    Kassube, K R; Kaufman, J D; Pohler, K G; McFadden, J W; Ríus, A G

    2017-12-01

    Poor utilization of amino acids contributes to losses of milk protein yield in dairy cows exposed to heat stress (HS). Our objective was to test the effect of essential amino acids on milk production in lactating dairy cows exposed to short-term HS conditions. To achieve this objective, 12 multiparous, lactating Holstein cows were assigned to two environments (thermoneutral (THN) or HS) from days 1 to 14 in a split-plot type cross-over design. All cows received 0 g/day of essential amino acids from days 1 to 7 (negative control (NC)) followed by an intravenous infusion of l-methionine (12 g/day), l-lysine (21 g/day), l-leucine (35 g/day), l-isoleucine (15 g/day) and l-valine (15 g/day, methionine, lysine and branched-chain amino acids (ML+BCAA)) from days 8 to 14. The basal diet was composed of ryegrass silage and hay, and a concentrate mix. This diet supplied 44 g of methionine, 125 g of lysine, 167 g of leucine, 98 g of isoleucine and 109 g of valine per day to the small intestine of THN cows. Temperature-humidity index was maintained below 66 for the THN environment, whereas the index was maintained above 68, peaking at 76, for 14 continuous h/day for the HS environment. Heat stress conditioning increased the udder temperature from 37.0°C to 39.6°C. Cows that received the ML+BCAA treatment had greater p.m. rectal and vaginal temperatures (0.50°C and 0.40°C, respectively), and respiration rate (8 breaths/min) compared with those on the NC treatment and exposed to a HS environment. However, neither NC nor ML+BCAA affected rectal or vaginal temperatures and respiration rates in the THN environment. Compared with THN, the HS environment reduced dry matter intake (1.48 kg/day), milk yield (2.82 kg/day) and milk protein yield (0.11 kg/day). However, compared with NC, the ML+BCAA treatment increased milk protein percent by 0.07 points. For the THN environment, the ML+BCAA treatment increased concentrations of milk urea nitrogen. For the HS environment, the ML

  12. Nucleobase and amino acid formation through impacts of meteorites on the early ocean

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi

    2015-11-01

    The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.

  13. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.

    PubMed

    Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A

    2008-10-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.

  14. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation

    PubMed Central

    Suryawan, Agus; Jeyapalan, Asumthia S.; Orellana, Renan A.; Wilson, Fiona A.; Nguyen, Hanh V.; Davis, Teresa A.

    2008-01-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E·eIF4G complex and increased eIF4E·4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein β-subunit-like protein (GβL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors. PMID:18682538

  15. METABOLIC RESPONSES TO DIETARY LEUCINE RESTRICTION INVOLVE REMODELING OF ADIPOSE TISSUE AND ENHANCED HEPATIC INSULIN SIGNALING

    PubMed Central

    Wanders, Desiree; Stone, Kirsten P.; Dille, Kelly; Simon, Jacob; Pierse, Alicia; Gettys, Thomas W.

    2015-01-01

    Dietary leucine was incrementally restricted to test whether limiting this essential amino acid (EAA) would fully reproduce the beneficial responses produced by dietary methionine restriction. Restricting leucine by 85% increased energy intake and expenditure within five to seven days of its introduction and reduced overall accumulation of adipose tissue. Leucine restriction (LR) also improved glucose tolerance, increased hepatic release of FGF21 into the blood stream, and enhanced insulin-dependent activation of Akt in liver. However, LR had no effect on hepatic lipid levels and failed to lower lipogenic gene expression in the liver. LR did affect remodeling of white and brown adipose tissue, increasing expression of both thermogenic and lipogenic genes. These findings illustrate that dietary LR reproduces many but not all of the physiological responses of methionine restriction. The primary differences occur in the liver, where methionine and leucine restriction cause opposite effects on tissue lipid levels and expression of lipogenic genes. Together these findings suggest that the sensing systems which detect and respond to dietary restriction of EAAs act through mechanisms that both leucine and methionine are able to engage, and in the case of hepatic lipid metabolism, may be unique to specific EAAs such as methionine. PMID:26643647

  16. Comparison of Free Total Amino Acid Compositions and Their Functional Classifications in 13 Wild Edible Mushrooms.

    PubMed

    Sun, Liping; Liu, Qiuming; Bao, Changjun; Fan, Jian

    2017-02-24

    Thirteen popular wild edible mushroom species in Yunnan Province, Boletus bicolor , Boletus speciosus , Boletus sinicus , Boletus craspedius , Boletus griseus , Boletus ornatipes , Xerocomus , Suillus placidus , Boletinus pinetorus , Tricholoma terreum , Tricholomopsis lividipileata , Termitomyces microcarpus , and Amanita hemibapha , were analyzed for their free amino acid compositions by online pre-column derivazation reversed phase high-performance liquid chromatography (RP-HPLC) analysis. Twenty free amino acids, aspartic acid, glutamic acid, serine, glycine, alanine, praline, cysteine, valine, methionine, phenylalanine, isoleucine, leucine, lysine, histidine, threonine, asparagines, glutamine, arginine, tyrosine, and tryptophan, were determined. The total free amino acid (TAA) contents ranged from 1462.6 mg/100 g in B. craspedius to 13,106.2 mg/100 g in T. microcarpus . The different species showed distinct free amino acid profiles. The ratio of total essential amino acids (EAA) to TAA was 0.13-0.41. All of the analyzed species showed high contents of hydrophobic amino acids, at 33%-54% of TAA. Alanine, cysteine, glutamine, and glutamic acid were among the most abundant amino acids present in all species. The results showed that the analyzed mushrooms possessed significant free amino acid contents, which may be important compounds contributing to the typical mushroom taste, nutritional value, and potent antioxidant properties of these wild edible mushrooms. Furthermore, the principal component analysis (PCA) showed that the accumulative variance contribution rate of the first four principal components reached 94.39%. Cluster analysis revealed EAA composition and content might be an important parameter to separate the mushroom species, and T. microcarpus and A. hemibapha showed remarkable EAA content among the 13 species.

  17. A Whole-Cell Surface Plasmon Resonance Sensor Based on a Leucine Auxotroph of Escherichia coli Displaying a Gold-Binding Protein: Usefulness for Diagnosis of Maple Syrup Urine Disease.

    PubMed

    Woo, Min-Ah; Park, Jung Hun; Cho, Daeyeon; Sim, Sang Jun; Kim, Moon Il; Park, Hyun Gyu

    2016-03-01

    We developed a whole-cell surface plasmon resonance (SPR) sensor based on a leucine auxotroph of Escherichia coli displaying a gold-binding protein (GBP) in response to cell growth and applied this sensor to the diagnosis of maple syrup urine disease, which is represented by the elevated leucine level in blood. The leucine auxotroph was genetically engineered to grow displaying GBP in a proportion to the concentration of target amino acid leucine. The GBP expressed on the surface of the auxotrophs directly bound to the golden surface of an SPR chip without the need for any additional treatment or reagents, which consequently produced SPR signals used to determine leucine levels in a test sample. Gold nanoparticles (GNPs) were further applied to the SPR system, which significantly enhanced the signal intensity up to 10-fold by specifically binding to GBP expressed on the cell surface. Finally, the diagnostic utility of our system was demonstrated by its employment in reliably determining different statuses of maple syrup urine disease based on a known cutoff level of leucine. This new approach based on an amino acid-auxotrophic E. coli strain expressing a GBP that binds to an SPR sensor holds great promise for detection of other metabolic diseases of newborn babies including homocystinuria and phenylketonuria, which are also associated with abnormal levels of amino acids.

  18. Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars.

    PubMed

    Sochor, Jiri; Skutkova, Helena; Babula, Petr; Zitka, Ondrej; Cernei, Natalia; Rop, Otakar; Krska, Boris; Adam, Vojtech; Provazník, Ivo; Kizek, Rene

    2011-09-01

    Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L.) cultivated in Lednice (climatic area T4), South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine) were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin), was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis). The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

  19. Association of branched and aromatic amino acids levels with metabolic syndrome and impaired fasting glucose in hypertensive patients.

    PubMed

    Weng, Liming; Quinlivan, Eoin; Gong, Yan; Beitelshees, Amber L; Shahin, Mohamed H; Turner, Stephen T; Chapman, Arlene B; Gums, John G; Johnson, Julie A; Frye, Reginald F; Garrett, Timothy J; Cooper-DeHoff, Rhonda M

    2015-06-01

    The three branched amino acids (valine, leucine, and isoleucine) and two aromatic amino acids (tyrosine and phenylalanine) have been associated with many adverse metabolic pathways, including diabetes. However, these associations have been identified primarily in otherwise healthy Caucasian populations. We aimed to investigate the association of this five-amino-acid signature with metabolic syndrome and impaired fasting glucose (IFG) in a hypertensive cohort of Caucasian and African Americans. We analyzed data from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) studies PEAR and PEAR2 conducted between 2005 and 2014. Subjects were enrolled at the University of Florida (Gainesville, FL), Emory University (Atlanta, GA), and Mayo Clinic (Rochester, MN). A total of 898 patients with essential hypertension were included in this study. Presence of metabolic syndrome and IFG at baseline were determined on the basis of measurements of demographic and biochemical data. Levels of the five amino acids were quantified by liquid chromatography-tandem mass spectroscopy (LC-MS/MS). With a multiple logistic regression model, we found that all five amino acids were significantly associated with metabolic syndrome in both Caucasian and African Americans. IFG and the five amino acids were associated in the Caucasian Americans. Only valine was significantly associated with IFG in African Americans. In both Caucasian and African Americans with uncomplicated hypertension, plasma levels of the five-amino-acid signature are associated with metabolic syndrome. Additionally, in Caucasians we have confirmed the five-amino-acid signature was associated with IFG.

  20. Albumin dialysis has a favorable effect on amino acid profile in hepatic encephalopathy.

    PubMed

    Koivusalo, Anna-Maria; Teikari, Taru; Höckerstedt, Krister; Isoniemi, Helena

    2008-12-01

    According to one popular theory, hepatic encephalopathy (HE) is partly caused by an imbalance in plasma amino acid levels. The Fischer's ratio between branched chain amino acids (BCAAs) and aromatic amino acids (AAAs) correlates with the degree of HE; the lower Fischer's ratio, the higher the grade of HE. Extra-corporeal liver support systems, like MARS(R)-albumin dialysis (Molecular Adsorbents Recirculating System), can improve HE. The MARS(R) system uses a hyperosmolar albumin circuit to remove both water-soluble and albumin-bound substances. Plasma levels of neuroactive amino acids were analyzed in 82 consecutive patients with life-threatening liver failure admitted to our ICU. All patients fulfilled our indications for MARS treatment and most also fulfilled the criteria for liver transplantation (LTx). In patients with acute liver failure (ALF), as compared to those with acute decompensation of chronic liver failure (AcOChr), levels of leucine and isoleucine were significantly higher before MARS(R) treatment. In all patients, before MARS(R) treatment the higher the grade of HE grade the lower was the Fischer's ratio and higher were the levels of inhibitory neuroactive amino acids. During MARS(R) treatments the Fischer's ratio increased, and the grade of HE decreased. The increase in Fischer's ratio was mainly due to the decrease in AAAs. The plasma levels of neuroactive amino acids, methionine, glutamine, glutamate, histidine and taurine decreased during MARS(R)-treatment. In this study MARS(R)-albumin dialysis had a favorable effect on the plasma amino acid profile of patients with HE.

  1. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    PubMed

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA 12 , GA 19 , GA 20 and GA 8 ) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Neurospora crassa tox-1 Gene Encodes a pH- and Temperature-Tolerant Mini-Cellulase.

    PubMed

    Xiao, Yue; Zhang, Qiongsi; Luo, Yiquan; Zhang, Ying; Luo, Xi; Wang, Yuchuan; Cao, Weiguo; Pinto, Vito De; Liu, Qiuyun; Li, Gang

    2016-06-15

    Cellulases that endure extreme conditions are essential in various industrial sectors. This study reports a mini-cellulase gene tox-1 from Neurospora crassa. The gene tox-1 was cloned in Escherichia coli after chimerization with the YebF gene and substitutions of certain isoleucine and valine with leucine residues. The yeast transformants could grow on rice straw-agar medium. The 44-amino acid peptide and its two mutant variants displayed potent cellulase activities in Congo Red assay and enzymatic assays. Conservative replacements with leucine have substantially increased the stabilities and half-lives of the peptides at alkaline pH and low and high temperatures and also the tolerance to organic solvents and surfactants, on the basis of activities toward cellose. The small size of the mini-cellulase would allow for commercially viable automatic chemical peptide synthesis. This work suggests that conservative leucine replacements may serve as a general strategy in the engineering of more robust enzymes with special features with little loss of activities.

  3. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    NASA Astrophysics Data System (ADS)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.

  4. Systemic D-Phenylalanine and D-Leucine for Effective Treatment of Pain in the Horse

    PubMed Central

    McKibbin, L. S.; Cheng, R. S. S.

    1982-01-01

    This study showed that subcutaneous injection of a solution of D-amino acids produced effective analgesia in horses. It is postulated that systemic D-phenylalanine and D-leucine may become one of the safe, effective and nonaddictive drugs for acute and chronic pain treatment. These D-amino acids cause analgesia by presumably preserving brain endorphins. They may bind reversibly to enkephalinases and prevent enzymatic degradation of enkephalins. PMID:17422107

  5. TOLERANCE TO AMINO ACID MIXTURES AND CASEIN DIGESTS GIVEN INTRAVENOUSLY

    PubMed Central

    Madden, S. C.; Woods, R. R.; Shull, F. W.; Remington, J. H.; Whipple, G. H.

    1945-01-01

    Several synthetic mixtures of natural and racemic crystalline amino acids suitable for the daily nitrogen requirement are tested in dogs for their tolerance upon intravenous injection. Certain mixtures of the ten essential amino acids plus non-essential amino acids exclusive of glutamic acid are accepted without any obvious sign of disturbance even at rates above 10 mg. nitrogen per kilo per minute for quantities greater than 300 mg. per kilo. One such mixture consists in parts per 100 of dl-threonine 7, dl-valine 15, l(-)-leucine 10.9, dl-isoleucine 9.9, l(+)-lysine· HCl·H2O 10.9, dl-tryptophane 3, dl-phenylalanine 9.9, dl-methionine 6, l(+)-histidine·HCl·H2O 5, l(+)-arginine-HCl 5, glycine 9.9, dl-α-alanine 4, dl-serine 2, l(-)-cystine 0.5, and l(-)-tyrosine 1. In addition other well tolerated mixtures included the prolines. When glutamic acid, natural or racemic, is included in similar mixtures vomiting reactions frequently occur at nitrogen rates above 4 mg. per kilo per minute. Vomiting almost always occurs on the first daily injection containing glutamic acid and usually on any subsequent injection containing more than 100 mg. glutamic acid per kilo unless given very slowly. Upon the addition of glycine certain mixtures of the ten essential amino acids show an improved tolerance. Two casein digests tested usually produced vomiting at injection rates above 2 mg. nitrogen per kilo per minute, probably because of their glutamic acid content. No serious reaction has ever occurrred to any mixture of amino acids or casein digest tested. Elimination of minor reactions such as vomiting appears possible and desirable for greater usefulness of these solutions in parenteral feeding. PMID:19871468

  6. Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats

    PubMed Central

    Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379

  7. Circulating Branched-chain Amino Acid Concentrations Are Associated with Obesity and Future Insulin Resistance in Children and Adolescents

    PubMed Central

    McCormack, Shana E.; Shaham, Oded; McCarthy, Meaghan A.; Deik, Amy A.; Wang, Thomas J.; Gerszten, Robert E.; Clish, Clary B.; Mootha, Vamsi K.; Grinspoon, Steven K.; Fleischman, Amy

    2012-01-01

    Background Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. Objective To determine whether pediatric obesity is associated with elevations in fasting circulating concentrations of branched-chain amino acids (isoleucine, leucine, and valine), and whether these elevations predict future insulin resistance. Research Design and Methods Sixty-nine healthy subjects, ages 8 to18 years, were enrolled as a cross-sectional cohort. A subset who were pre- or early-pubertal, ages 8 to 13 years, were enrolled in a prospective longitudinal cohort for 18 months (n=17 with complete data). Results Elevations in the concentrations of BCAA’s were significantly associated with BMI Z-score (Spearman’s Rho 0.27, p=0.03) in the cross-sectional cohort. In the subset of subjects followed longitudinally, baseline BCAA concentrations were positively associated with HOMA-IR measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex, and pubertal stage (p=0.046). Conclusions Elevations in the concentrations of circulating branched-chain amino acids are significantly associated with obesity in children and adolescents, and may independently predict future insulin resistance. PMID:22961720

  8. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine.

    PubMed

    Chin-Leo, G; Kirchman, D L

    1988-08-01

    We examined the simultaneous incorporation of [H]thymidine and [C]leucine to obtain two independent indices of bacterial production (DNA and protein syntheses) in a single incubation. Incorporation rates of leucine estimated by the dual-label method were generally higher than those obtained by the single-label method, but the differences were small (dual/single = 1.1 +/- 0.2 [mean +/- standard deviation]) and were probably due to the presence of labeled leucyl-tRNA in the cold trichloroacetic acid-insoluble fraction. There were no significant differences in thymidine incorporation between dual- and single-label incubations (dual/ single = 1.03 +/- 0.13). Addition of the two substrates in relatively large amounts (25 nM) did not apparently increase bacterial activity during short incubations (<5 h). With the dual-label method we found that thymidine and leucine incorporation rates covaried over depth profiles of the Chesapeake Bay. Estimates of bacterial production based on thymidine and leucine differed by less than 25%. Although the need for appropriate conversion factors has not been eliminated, the dual-label approach can be used to examine the variation in bacterial production while ensuring that the observed variation in incorporation rates is due to real changes in bacterial production rather than changes in conversion factors or introduction of other artifacts.

  9. Rapid determination of amino acids in neonatal blood samples based on derivatization with isobutyl chloroformate followed by solid-phase microextraction and gas chromatography/mass spectrometry.

    PubMed

    Deng, Chunhui; Li, Ning; Zhang, Xiangmin

    2004-01-01

    The purpose of this study was to develop a simple, rapid and sensitive analytical method for determination of amino acids in neonatal blood samples. The developed method involves the employment of derivatization and a solid-phase microextraction (SPME) technique together with gas chromatography/mass spectrometry (GC/MS). Amino acids in blood samples were derivatized by a mixture of isobutyl chloroformate, methanol and pyridine, and the N(O,S)-alkoxycarbonyl alkyl esters thus formed were headspace extracted by a SPME fiber. Finally, the extracted analytes on the fiber were desorbed and detected by GC/MS in electron impact (EI) mode. L-Valine, L-leucine, L-isoleucine, L-phenylanaline and L-tyrosine in blood samples were quantitatively analyzed by measurement of the corresponding N(O,S)-alkoxycarbonyl alkyl esters using an external standard method. SPME conditions were optimized, and the method was validated. The method was applied to diagnosis of neonatal phenylkenuria (PKU) and maple syrup urine disease (MSUD) by the analyses of five amino acids in blood samples. The results showed that the proposed method is a potentially powerful tool for simultaneous screening for neonatal PKU and MSUD. Copyright (c) 2004 John Wiley & Sons, Ltd.

  10. Metabolomics reveals differences in postprandial responses to breads and fasting metabolic characteristics associated with postprandial insulin demand in postmenopausal women.

    PubMed

    Moazzami, Ali A; Shrestha, Aahana; Morrison, David A; Poutanen, Kaisa; Mykkänen, Hannu

    2014-06-01

    Changes in serum metabolic profile after the intake of different food products (e.g., bread) can provide insight into their interaction with human metabolism. Postprandial metabolic responses were compared after the intake of refined wheat (RWB), whole-meal rye (WRB), and refined rye (RRB) breads. In addition, associations between the metabolic profile in fasting serum and the postprandial concentration of insulin in response to different breads were investigated. Nineteen postmenopausal women with normal fasting glucose and normal glucose tolerance participated in a randomized, controlled, crossover meal study. The test breads, RWB (control), RRB, and WRB, providing 50 g of available carbohydrate, were each served as a single meal. The postprandial metabolic profile was measured using nuclear magnetic resonance and targeted LC-mass spectrometry and was compared between different breads using ANOVA and multivariate models. Eight amino acids had a significant treatment effect (P < 0.01) and a significant treatment × time effect (P < 0.05). RWB produced higher postprandial concentrations of leucine (geometric mean: 224; 95% CI: 196, 257) and isoleucine (mean ± SD: 111 ± 31.5) compared with RRB (geometric mean: 165; 95% CI: 147, 186; mean ± SD: 84.2 ± 22.9) and WRB (geometric mean: 190; 95% CI: 174, 207; mean ± SD: 95.8 ± 17.3) at 60 min respectively (P < 0.001). In addition, 2 metabolic subgroups were identified using multivariate models based on the association between fasting metabolic profile and the postprandial concentration of insulin. Women with higher fasting concentrations of leucine and isoleucine and lower fasting concentrations of sphingomyelins and phosphatidylcholines had higher insulin responses despite similar glucose concentration after all kinds of bread (cross-validated ANOVA, P = 0.048). High blood concentration of branched-chain amino acids, i.e., leucine and isoleucine, has been associated with the increased risk of diabetes, which

  11. MRA_1571 is required for isoleucine biosynthesis and improves Mycobacterium tuberculosis H37Ra survival under stress

    PubMed Central

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Yadav, Shailendra; Singh, Sudheer Kumar

    2016-01-01

    Threonine dehydratase is a pyridoxal 5-phosphate dependent enzyme required for isoleucine biosynthesis. Threonine dehydratase (IlvA) participates in conversion of threonine to 2-oxobutanoate and ammonia is released as a by-product. MRA_1571 is annotated to be coding for IlvA in Mycobacterium tuberculosis H37Ra (Mtb-Ra). We developed a recombinant (KD) Mtb-Ra strain by down-regulating IlvA. The growth studies on different carbon sources suggested reduced growth of KD compared to wild-type (WT), also, isoleucine concentration dependent KD growth restoration was observed. The expression profiling of IlvA suggested increased expression of IlvA during oxygen, acid and oxidative stress. In addition, KD showed reduced survival under pH, starvation, nitric oxide and peroxide stresses. KD was more susceptible to antimycobacterial agents such as streptomycin (STR), rifampicin (RIF) and levofloxacin (LVF), while, no such effect was noticeable when exposed to isoniazid. Also, an increase in expression of IlvA was observed when exposed to STR, RIF and LVF. The dye accumulation studies suggested increased permeability of KD to ethidium bromide and Nile Red as compared to WT. TLC and Mass studies confirmed altered lipid profile of KD. In summary down-regulation of IlvA affects Mtb growth, increases its susceptibility to stress and leads to altered cell wall lipid profile. PMID:27353854

  12. Structure and function of homodomain-leucine zipper (HD-Zip) proteins.

    PubMed

    Elhiti, Mohamed; Stasolla, Claudio

    2009-02-01

    Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.

  13. Dietary Leucine - An Environmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism

    PubMed Central

    Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M.; Espinoza, Daniel O.; Boucher, Jeremie; Beebe, Kirk; Gall, Walter; Kahn, C. Ronald

    2011-01-01

    Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance. PMID:21731668

  14. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    PubMed

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  15. Amyloid β (1-40) Toxicity Depends on the Molecular Contact between Phenylalanine 19 and Leucine 34.

    PubMed

    Korn, Alexander; McLennan, Steffane; Adler, Juliane; Krueger, Martin; Surendran, Dayana; Maiti, Sudipta; Huster, Daniel

    2018-04-18

    The formation of the hydrophobic contact between phenylalanine 19 (F19) and leucine 34 (L34) of amyloid β (1-40) (Aβ(1-40)) is known to be an important step in the fibrillation of Aβ(1-40) peptides. Mutations of this putatively early molecular contact were shown to strongly influence the toxicity of Aβ(1-40) ( Das et al. ( 2015 ) ACS Chem. Neurosci. 6 , 1290 - 1295 ). Any mutation of residue F19 completely abolished the toxicity of Aβ(1-40), suggesting that a proper F19-L34 contact is crucial also for the formation of transient oligomers. In this work, we investigate a series of isomeric substitutions of L34, namely, d-leucine, isoleucine, and valine, to study further details of this molecular contact. These replacements represent very minor alterations in the Aβ(1-40) structure posing the question how these alterations challenge the fibrillation kinetics, structure, dynamics, and toxicity of the Aβ(1-40) aggregates. Our work involves kinetic studies using thioflavin T, transmission electron microscopy, X-ray diffraction for the analysis of the fibril morphology, and nuclear magnetic resonance experiments for local structure and molecular dynamics investigations. Combined with cell toxicity assays of the mutated Aβ(1-40) peptides, the physicochemical and biological importance of the early folding contact between F19 and L34 in Aβ(1-40) is underlined. This implies that the F19-L34 contact influences a broad range of different processes including the initiation of fibrillation, oligomer stability, fibril elongation, local fibril structure, and dynamics and cellular toxicity. These processes do not only cover a broad range of diverse mechanisms, but also proved to be highly sensitive to minor modulations of this crucial contact. Furthermore, our work shows that the contact is not simply mediated by general hydrophobic interactions, but also depends on stereospecific mechanisms.

  16. Oral Leucine Supplementation Is Sensed by the Brain but neither Reduces Food Intake nor Induces an Anorectic Pattern of Gene Expression in the Hypothalamus

    PubMed Central

    Zampieri, Thais T.; Pedroso, João A. B.; Furigo, Isadora C.; Tirapegui, Julio; Donato, Jose

    2013-01-01

    Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity. PMID:24349566

  17. Nuclear Magnetic Resonance (NMR) as a tool for the study of the metabolism of Rickettsia slovaca.

    PubMed

    García-Álvarez, Lara; Busto, Jesús H; Peregrina, Jesús M; Santibáñez, Sonia; Portillo, Aránzazu; Avenoza, Alberto; Oteo, José A

    2015-01-01

    Rickettsial infections are caused by intracellular bacteria. They do not grow in standard culture media so there are limitations in routine practice to study their metabolism. Nuclear Magnetic Resonance (NMR) spectroscopy is used for identification of metabolites in biological samples. Vero cells infected with Rickettsia slovaca as well as uninfected cells were monitored by (1)H NMR showing the presence of ethanol and lactic acid. As no differences were observed, labeled compounds were added into cultures. When D-[1-13C]glucose was monitored by (13)C NMR no differences among infected and uninfected cells were observed in metabolic profiles. Glucose was transformed into ethanol in all cultures. Monitored experiments carried out with [2-13C]glycine showed differences between infected and uninfected cell cultures spectra. Glycine was partially transformed into serine, but the amount of the serine formed was larger in those infected. Moreover, L-[2-13C]leucine, L-[1-13C]isoleucine and L-[15N]tyrosine were evaluated. No differences among infected and uninfected cells were observed in the metabolic profiles when tyrosine and leucine were monitored. The amino acid L-[1-13C]isoleucine exhibited different metabolism in presence of the R. slovaca, showing a promising behavior as biomarker. In this work we focused on finding one or more compounds that could be metabolized specifically by R. slovaca and could be used as an indicator of its activity. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Imaging in Classic Form of Maple Syrup Urine Disease: A Rare Metabolic Central Nervous System

    PubMed Central

    Jain, Aditi; Jagdeesh, K.; Mane, Ranoji; Singla, Saurabh

    2013-01-01

    Maple syrup urine disease (MSUD) is a rare autosomal recessive disorder of branched-chain amino acid metabolism. The condition gets its name from the distinctive sweet odour of affected infants’ urine. MSUD is caused by a deficiency of the branched-chain α-ketoacid dehydrogenase enzyme complex, leading to accumulation of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. Imaging is characterestized by MSUD oedema affecting the myelinated white matter. We present a neonate with classic type of MSUD and its imaging features on computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and magnetic resonance spectroscopy. PMID:24049754

  19. Imaging in classic form of maple syrup urine disease: a rare metabolic central nervous system.

    PubMed

    Jain, Aditi; Jagdeesh, K; Mane, Ranoji; Singla, Saurabh

    2013-04-01

    Maple syrup urine disease (MSUD) is a rare autosomal recessive disorder of branched-chain amino acid metabolism. The condition gets its name from the distinctive sweet odour of affected infants' urine. MSUD is caused by a deficiency of the branched-chain α-ketoacid dehydrogenase enzyme complex, leading to accumulation of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. Imaging is characterestized by MSUD oedema affecting the myelinated white matter. We present a neonate with classic type of MSUD and its imaging features on computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and magnetic resonance spectroscopy.

  20. Attenuation of the protein wasting associated with bed rest by branched-chain amino acids

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.; Leskiw, M. J.; Boden, G.

    1999-01-01

    Bed rest is generally accepted as being an appropriate ground-based model for human spaceflight. The objectives of this study were to test the hypothesis that increasing the amount of branched-chain amino acids (BCAAs) in the diet could attenuate the protein loss associated with bed rest. Nineteen healthy subjects were randomized into two groups according to diet. During the 6 d of bed rest, the diets were supplemented with either 30 mmol/d each of three non-essential amino acids, glycine, serine, and alanine (control group), or with 30 mmol/d each of the BCAAs, leucine, isoleucine, and valine (BCAA group). Nutrition was supplied as a commercially available defined formula diet at a rate of 1.3 x REE. Nitrogen (N) balance and urinary 3-MeH excretion were determined for the 6 d. In our results, the urine-based estimate of N balance was 22.2 +/- 14.4 (n = 9) mg N.kg-1.d-1 and 60.5 +/- 10.1 mg (n = 8) N.kg-1.d-1 for the control and BCAA-supplemented groups, respectively (P < 0.05). Urinary 3-MeH excretion was unchanged in both groups with bed rest. We conclude that BCAA supplementation attenuates the N loss during short-term bed rest.

  1. Efficacy and Safety of Leucine Supplementation in the Elderly.

    PubMed

    Borack, Michael S; Volpi, Elena

    2016-12-01

    Leucine supplementation has grown in popularity due to the discovery of its anabolic effects on cell signaling and protein synthesis in muscle. The current recommendation is a minimum intake of 55 mg ⋅ kg -1 . d -1 Leucine acutely stimulates skeletal muscle anabolism and can overcome the anabolic resistance of aging. The value of chronic leucine ingestion for muscle growth is still unclear. Most of the research into leucine consumption has focused on efficacy. To our knowledge, very few studies have sought to determine the maximum safe level of intake. Limited evidence suggests that intakes of ≤1250 mg ⋅ kg -1 . d -1 do not appear to have any health consequences other than short-term elevated plasma ammonia concentrations. Similarly, no adverse events have been reported for the leucine metabolite β-hydroxy-β-methylbutyrate (HMB), although no studies have tested HMB toxicity in humans. Therefore, future research is needed to evaluate leucine and HMB toxicity in the elderly and in specific health conditions. © 2016 American Society for Nutrition.

  2. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein

    PubMed Central

    Laeger, Thomas; Reed, Scott D.; Henagan, Tara M.; Fernandez, Denise H.; Taghavi, Marzieh; Addington, Adele; Münzberg, Heike; Martin, Roy J.; Hutson, Susan M.

    2014-01-01

    Intracerebroventricular injections of leucine are sufficient to suppress food intake, but it remains unclear whether brain leucine signaling represents a physiological signal of protein balance. We tested whether variations in dietary and circulating levels of leucine, or all three branched-chain amino acids (BCAAs), contribute to the detection of reduced dietary protein. Of the essential amino acids (EAAs) tested, only intracerebroventricular injection of leucine (10 μg) was sufficient to suppress food intake. Isocaloric low- (9% protein energy; LP) or normal- (18% protein energy) protein diets induced a divergence in food intake, with an increased consumption of LP beginning on day 2 and persisting throughout the study (P < 0.05). Circulating BCAA levels were reduced the day after LP diet exposure, but levels subsequently increased and normalized by day 4, despite persistent hyperphagia. Brain BCAA levels as measured by microdialysis on day 2 of diet exposure were reduced in LP rats, but this effect was most prominent postprandially. Despite these diet-induced changes in BCAA levels, reducing dietary leucine or total BCAAs independently from total protein was neither necessary nor sufficient to induce hyperphagia, while chronic infusion of EAAs into the brain of LP rats failed to consistently block LP-induced hyperphagia. Collectively, these data suggest that circulating BCAAs are transiently reduced by dietary protein restriction, but variations in dietary or brain BCAAs alone do not explain the hyperphagia induced by a low-protein diet. PMID:24898843

  3. Nanoparticles Suitable for BCAA Isolation Can Serve for Use in Magnetic Lipoplex-Based Delivery System for L, I, V, or R-rich Antimicrobial Peptides.

    PubMed

    Vesely, Radek; Jelinkova, Pavlina; Hegerova, Dagmar; Cernei, Natalia; Kopel, Pavel; Moulick, Amitava; Richtera, Lukas; Heger, Zbynek; Adam, Vojtech; Zitka, Ondrej

    2016-03-31

    This paper investigates the synthesis of paramagnetic nanoparticles, which are able to bind branched chain amino acids (BCAAs)-leucine, valine, and isoleucine and, thus, serve as a tool for their isolation. Further, by this, we present an approach for encapsulation of nanoparticles into a liposome cavity resulting in a delivery system. Analyses of valine and leucine in entire complex show that 31.3% and 32.6% recoveries are reached for those amino acids. Evaluation of results shows that the success rate of delivery in Escherichia coli ( E. coli ) is higher in the case of BCAAs on nanoparticles entrapped in liposomes (28.7% and 34.7% for valine and leucine, respectively) when compared to nanoparticles with no liposomal envelope (18.3% and 13.7% for valine and leucine, respectively). The nanoparticles with no liposomal envelope exhibit the negative zeta potential (-9.1 ± 0.3 mV); however, their encapsulation results in a shift into positive values (range of 28.9 ± 0.4 to 33.1 ± 0.5 mV). Thus, electrostatic interactions with negatively-charged cell membranes (approx. -50 mV in the case of E. coli ) leads to a better uptake of cargo. Our delivery system was finally tested with the leucine-rich antimicrobial peptide (FALALKALKKALKKLKKALKKAL) and it is shown that hemocompatibility (7.5%) and antimicrobial activity of the entire complex against E. coli , Staphylococcus aureus ( S. aureus ), and methicilin-resistant S. aureus (MRSA) is comparable or better than conventional penicillin antibiotics.

  4. The Multiple DSF-family QS Signals are Synthesized from Carbohydrate and Branched-chain Amino Acids via the FAS Elongation Cycle

    PubMed Central

    Zhou, Lian; Yu, Yonghong; Chen, Xiping; Diab, Abdelgader Abdeen; Ruan, Lifang; He, Jin; Wang, Haihong; He, Ya-Wen

    2015-01-01

    Members of the diffusible signal factor (DSF) family are a novel class of quorum sensing (QS) signals in diverse Gram-negative bacteria. Although previous studies have identified RpfF as a key enzyme for the biosynthesis of DSF family signals, many questions in their biosynthesis remain to be addressed. In this study with the phytopathogen Xanthomonas campestris pv. campestris (Xcc), we show that Xcc produces four DSF-family signals (DSF, BDSF, CDSF and IDSF) during cell culture, and that IDSF is a new functional signal characterized as cis-10-methyl-2-dodecenoic acid. Using a range of defined media, we further demonstrate that Xcc mainly produces BDSF in the presence of carbohydrates; leucine and valine are the primary precursor for DSF biosynthesis; isoleucine is the primary precursor for IDSF biosynthesis. Furthermore, our biochemical analyses show that the key DSF synthase RpfF has both thioesterase and dehydratase activities, and uses 3-hydroxydedecanoyl-ACP as a substrate to produce BDSF. Finally, our results show that the classic fatty acid synthesis elongation cycle is required for the biosynthesis of DSF-family signals. Taken all together, these findings establish a general biosynthetic pathway for the DSF-family quorum sensing signals. PMID:26289160

  5. Methionine transport in the malaria parasite Plasmodium falciparum.

    PubMed

    Cobbold, Simon A; Martin, Rowena E; Kirk, Kiaran

    2011-01-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, derives amino acids from the digestion of host cell haemoglobin. However, it also takes up amino acids from the extracellular medium. Isoleucine is absent from adult human haemoglobin and an exogenous source of isoleucine is essential for parasite growth. An extracellular source of methionine is also important for the normal growth of at least some parasite strains. In this study we have characterised the uptake of methionine by P. falciparum-infected human erythrocytes, and by parasites functionally isolated from their host cells by saponin-permeabilization of the erythrocyte membrane. Infected erythrocytes take up methionine much faster than uninfected erythrocytes, with the increase attributable to the flux of this amino acid via the New Permeability Pathways induced by the parasite in the erythrocyte membrane. Having entered the infected cell, methionine is taken up by the intracellular parasite via a saturable, temperature-dependent process that is independent of ATP, Na(+) and H(+). Substrate competition studies, and comparison of the transport of methionine with that of isoleucine and leucine, yielded results consistent with the hypothesis that the parasite has at its surface one or more transporters which mediate the flux into and out of the parasite of a broad range of neutral amino acids. These transporters function most efficiently when exchanging one neutral amino acid for another, thus providing a mechanism whereby the parasite is able to import important exogenous amino acids in exchange for surplus neutral amino acids liberated from the digestion of host cell haemoglobin. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  6. A diurnal component to the variation in sieve tube amino acid content in wheat.

    PubMed

    Gattolin, Stefano; Newbury, H John; Bale, Jeffrey S; Tseng, Hua-Ming; Barrett, David A; Pritchard, Jeremy

    2008-06-01

    We have used high-sensitivity capillary electrophoresis coupled to a laser-induced fluorescence detection method to quantify 16 amino acids in wheat (Triticum aestivum) sieve tube (ST) samples as small as 2 nL collected by severing the stylets of feeding aphids. The sensitivity of the method was sufficient to determine a quantitative amino acid profile of individual STs without the need to bulk samples to produce larger volumes for analysis. This allowed the observation of the full range of variation that exists in individual STs. Some of the total concentrations of amino acids recorded are higher than those reported previously. The results obtained show variation in the concentrations of phenylalanine (Phe), histidine/valine (His/Val), leucine/isoleucine (Leu/Ile), arginine, asparagine, glutamine, tyrosine (Tyr), and lysine (Lys) across the ST samples. These could not be explained by plant-to-plant variation. Statistical analyses revealed five analytes (Tyr, Lys, Phe, His/Val, and Leu/Ile) that showed striking covariation in their concentrations across ST samples. A regression analysis revealed a significant relationship between the concentrations of Tyr, Lys, Phe, Leu/Ile, His/Val, asparagine, arginine, and proline and the time of collection of ST samples, with these amino acids increasing in concentration during the afternoon. This increase was confirmed to occur in individual STs by analyzing samples obtained from stylet bundles exuding for many hours. Finally, an apparent relationship between the exudation rate of ST sap and its total amino acid concentration was observed: samples containing higher total amino acid concentrations were observed to exude from the severed stylet bundles more slowly.

  7. Estimating Bacterial Production in Marine Waters from the Simultaneous Incorporation of Thymidine and Leucine

    PubMed Central

    Chin-Leo, Gerardo; Kirchman, David L.

    1988-01-01

    We examined the simultaneous incorporation of [3H]thymidine and [14C]leucine to obtain two independent indices of bacterial production (DNA and protein syntheses) in a single incubation. Incorporation rates of leucine estimated by the dual-label method were generally higher than those obtained by the single-label method, but the differences were small (dual/single = 1.1 ± 0.2 [mean ± standard deviation]) and were probably due to the presence of labeled leucyl-tRNA in the cold trichloroacetic acid-insoluble fraction. There were no significant differences in thymidine incorporation between dual- and single-label incubations (dual/ single = 1.03 ± 0.13). Addition of the two substrates in relatively large amounts (25 nM) did not apparently increase bacterial activity during short incubations (<5 h). With the dual-label method we found that thymidine and leucine incorporation rates covaried over depth profiles of the Chesapeake Bay. Estimates of bacterial production based on thymidine and leucine differed by less than 25%. Although the need for appropriate conversion factors has not been eliminated, the dual-label approach can be used to examine the variation in bacterial production while ensuring that the observed variation in incorporation rates is due to real changes in bacterial production rather than changes in conversion factors or introduction of other artifacts. PMID:16347706

  8. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs

    PubMed Central

    Mandal, Debabrata; Köhrer, Caroline; Su, Dan; Babu, I. Ramesh; Chan, Clement T.Y.; Liu, Yuchen; Söll, Dieter; Blum, Paul; Kuwahara, Masayasu; Dedon, Peter C.; RajBhandary, Uttam L.

    2014-01-01

    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes. PMID:24344322

  9. Leucine modulates dynamic phosphorylation events in insulin signaling pathway and enhances insulin-dependent glycogen synthesis in human skeletal muscle cells

    PubMed Central

    2014-01-01

    Background Branched-chain amino acids, especially leucine, are known to interact with insulin signaling pathway and glucose metabolism. However, the mechanism by which this is exerted, remain to be clearly defined. In order to examine the effect of leucine on muscle insulin signaling, a set of experiments was carried out to quantitate phosphorylation events along the insulin signaling pathway in human skeletal muscle cell cultures. Cells were exposed to insulin, leucine or both, and phosphorylation events of key insulin signaling molecules were tracked over time so as to monitor time-related responses that characterize the signaling events and could be missed by a single sampling strategy limited to pre/post stimulus events. Results Leucine is shown to increase the magnitude of insulin-dependent phosphorylation of protein kinase B (AKT) at Ser473 and glycogen synthase kinase (GSK3β) at Ser21-9. Glycogen synthesis follows the same pattern of GSK3β, with a significant increase at 100 μM leucine plus insulin stimulus. Moreover, data do not show any statistically significant increase of pGSK3β and glycogen synthesis at higher leucine concentrations. Leucine is also shown to increase the magnitude of insulin-mediated extracellularly regulated kinase (ERK) phosphorylation; however, differently from AKT and GSK3β, ERK shows a transient behavior, with an early peak response, followed by a return to the baseline condition. Conclusions These experiments demonstrate a complementary effect of leucine on insulin signaling in a human skeletal muscle cell culture, promoting insulin-activated GSK3β phosphorylation and glycogen synthesis. PMID:24646332

  10. EPR study of gamma-irradiated N-methyl-L-alanine, DL-2-methyl glutamic acid hemihydrate and Di-leucine hydrochloride in solid state

    NASA Astrophysics Data System (ADS)

    Sütçü, Kerem; Osmanoğlu, Y. Emre

    2017-12-01

    In this study, it was aimed to investigate ɣ-irradiated powders of N-methyl-L-alanine (NMLA), DL-2-methyl glutamic acid hemihydrate (DL2MGAH), and Di-leucine hydrochloride (DLHCl) at room temperature by electron paramagnetic resonance spectroscopy. After the γ-irradiation the samples indicated the existence of the CH3ĊNHCH3COOH, HOOCCH3NH2CĊHCH2COOH·1/2H2O and (CH3)2ĊCH2CH NHCOOHCOCH (NH2HCl) CH2CH (CH3)2 radicals, respectively. The spectral parameters of the radicals were determined. The results were compared with the earlier studies and discussed accordingly.

  11. Racemization of amino acids in fossil bones and teeth from the Olduvai Gorge region, Tanzania, East Africa

    NASA Astrophysics Data System (ADS)

    Bada, Jeffrey L.

    1981-10-01

    Investigation of amino acid racemization in fossil bones and teeth from the Olduvai Gorge region, Tanzania, indicates that aspartic acid racemization can be used to date samples which are less than ˜80,000-100,000 years old in this area. In older samples, significant secondary aspartic acid is apparently present and thus these samples have lower than expectedD/L aspartic acid ratios. Isoleucine in older samples, however, is apparently syngenetic with the samples, so the epimerization of isoleucine to alloisoleucine can be used with certain limitations to date fossil bones and teeth from the older stratigraphic sections in the Olduvai region.

  12. Induction of β-defensins by l-isoleucine as novel immunotherapy in experimental murine tuberculosis

    PubMed Central

    Rivas-Santiago, C E; Rivas-Santiago, B; León, D A; Castañeda-Delgado, J; Hernández Pando, R

    2011-01-01

    Tuberculosis is a worldwide health problem, and multidrug-resistant (MDR) and extensively multidrug-resistant (XMDR) strains are rapidly emerging and threatening the control of this disease. These problems motivate the search for new treatment strategies. One potential strategy is immunotherapy using cationic anti-microbial peptides. The capacity of l-isoleucine to induce beta-defensin expression and its potential therapeutic efficiency were studied in a mouse model of progressive pulmonary tuberculosis. BALB/c mice were infected with Mycobacterium tuberculosis strain H37Rv or with a MDR clinical isolate by the intratracheal route. After 60 days of infection, when disease was in its progressive phase, mice were treated with 250 µg of intratracheal l-isoleucine every 48 h. Bacillary loads were determined by colony-forming units, protein and cytokine gene expression were determined by immunohistochemistry and reverse transcription–quantitative polymerase chain reaction (RT–qPCR), respectively, and tissue damage was quantified by automated morphometry. Administration of l-isoleucine induced a significant increase of beta-defensins 3 and 4 which was associated with decreased bacillary loads and tissue damage. This was seen in animals infected with the antibiotic-sensitive strain H37Rv and with the MDR clinical isolate. Thus, induction of beta-defensins might be a potential therapy that can aid in the control of this significant infectious disease. PMID:21235540

  13. An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

    NASA Astrophysics Data System (ADS)

    Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.

    2006-12-01

    Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.

  14. Valine/isoleucine variants drive selective pressure in the VP1 sequence of EV-A71 enteroviruses.

    PubMed

    Duy, Nghia Ngu; Huong, Le Thi Thanh; Ravel, Patrice; Huong, Le Thi Song; Dwivedi, Ankit; Sessions, October Michael; Hou, Yan'An; Chua, Robert; Kister, Guilhem; Afelt, Aneta; Moulia, Catherine; Gubler, Duane J; Thiem, Vu Dinh; Thanh, Nguyen Thi Hien; Devaux, Christian; Duong, Tran Nhu; Hien, Nguyen Tran; Cornillot, Emmanuel; Gavotte, Laurent; Frutos, Roger

    2017-05-08

    In 2011-2012, Northern Vietnam experienced its first large scale hand foot and mouth disease (HFMD) epidemic. In 2011, a major HFMD epidemic was also reported in South Vietnam with fatal cases. This 2011-2012 outbreak was the first one to occur in North Vietnam providing grounds to study the etiology, origin and dynamic of the disease. We report here the analysis of the VP1 gene of strains isolated throughout North Vietnam during the 2011-2012 outbreak and before. The VP1 gene of 106 EV-A71 isolates from North Vietnam and 2 from Central Vietnam were sequenced. Sequence alignments were analyzed at the nucleic acid and protein level. Gene polymorphism was also analyzed. A Factorial Correspondence Analysis was performed to correlate amino acid mutations with clinical parameters. The sequences were distributed into four phylogenetic clusters. Three clusters corresponded to the subgenogroup C4 and the last one corresponded to the subgenogroup C5. Each cluster displayed different polymorphism characteristics. Proteins were highly conserved but three sites bearing only Isoleucine (I) or Valine (V) were characterized. The isoleucine/valine variability matched the clusters. Spatiotemporal analysis of the I/V variants showed that all variants which emerged in 2011 and then in 2012 were not the same but were all present in the region prior to the 2011-2012 outbreak. Some correlation was found between certain I/V variants and ethnicity and severity. The 2011-2012 outbreak was not caused by an exogenous strain coming from South Vietnam or elsewhere but by strains already present and circulating at low level in North Vietnam. However, what triggered the outbreak remains unclear. A selective pressure is applied on I/V variants which matches the genetic clusters. I/V variants were shown on other viruses to correlate with pathogenicity. This should be investigated in EV-A71. I/V variants are an easy and efficient way to survey and identify circulating EV-A71 strains.

  15. Global Expression Profiling and Physiological Characterization of Corynebacterium glutamicum Grown in the Presence of l-Valine

    PubMed Central

    Lange, C.; Rittmann, D.; Wendisch, V. F.; Bott, M.; Sahm, H.

    2003-01-01

    Addition of l-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 ΔilvA ΔpanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of l-isoleucine could relieve the valine effect on VAL1 whereas l-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain. PMID:12732517

  16. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial.

    PubMed

    Welsh, Paul; Rankin, Naomi; Li, Qiang; Mark, Patrick B; Würtz, Peter; Ala-Korpela, Mika; Marre, Michel; Poulter, Neil; Hamet, Pavel; Chalmers, John; Woodward, Mark; Sattar, Naveed

    2018-05-04

    We aimed to quantify the association of individual circulating amino acids with macrovascular disease, microvascular disease and all-cause mortality in individuals with type 2 diabetes. We performed a case-cohort study (N = 3587), including 655 macrovascular events, 342 microvascular events (new or worsening nephropathy or retinopathy) and 632 all-cause mortality events during follow-up, in a secondary analysis of the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) study. For this study, phenylalanine, isoleucine, glutamine, leucine, alanine, tyrosine, histidine and valine were measured in stored plasma samples by proton NMR metabolomics. Hazard ratios were modelled per SD increase in each amino acid. In models investigating associations and potential mechanisms, after adjusting for age, sex and randomised treatment, phenylalanine was positively, and histidine inversely, associated with macrovascular disease risk. These associations were attenuated to the null on further adjustment for extended classical risk factors (including eGFR and urinary albumin/creatinine ratio). After adjustment for extended classical risk factors, higher tyrosine and alanine levels were associated with decreased risk of microvascular disease (HR 0.78; 95% CI 0.67, 0.91 and HR 0.86; 95% CI 0.76, 0.98, respectively). Higher leucine (HR 0.79; 95% CI 0.69, 0.90), histidine (HR 0.89; 95% CI 0.81, 0.99) and valine (HR 0.79; 95% CI 0.70, 0.88) levels were associated with lower risk of mortality. Investigating the predictive ability of amino acids, addition of all amino acids to a risk score modestly improved classification of participants for macrovascular (continuous net reclassification index [NRI] +35.5%, p < 0.001) and microvascular events (continuous NRI +14.4%, p = 0.012). We report distinct associations between circulating amino acids and risk of different major complications of diabetes. Low tyrosine appears to

  17. 'Zipbody' leucine zipper-fused Fab in E. coli in vitro and in vivo expression systems.

    PubMed

    Ojima-Kato, Teruyo; Fukui, Kansuke; Yamamoto, Hiroaki; Hashimura, Dai; Miyake, Shiro; Hirakawa, Yuki; Yamasaki, Tomomi; Kojima, Takaaki; Nakano, Hideo

    2016-04-01

    A small antibody fragment, fragment of antigen binding (Fab), is favorable for various immunological assays. However, production efficiency of active Fab in microorganisms depends considerably on the clones. In this study, leucine zipper-peptide pairs that dimerize in parallel (ACID-p1 (LZA)/BASE-p1 (LZB) or c-Jun/c-Fos) were fused to the C-terminus of heavy chain (Hc, VH-CH1) and light chain (Lc, VL-CL), respectively, to accelerate the association of Hc and Lc to form Fab in Escherichia coli in vivo and in vitro expression systems. The leucine zipper-fused Fab named 'Zipbody' was constructed using anti-E. coli O157 monoclonal antibody obtained from mouse hybridoma and produced in both in vitro and in vivo expression systems in an active form, whereas Fab without the leucine zipper fusion was not. Similarly, Zipbody of rabbit monoclonal antibody produced in in vitro expression showed significant activity. The purified, mouse Zipbody produced in the E. coli strain Shuffle T7 Express had specificity toward the antigen; in bio-layer interferometry analysis, the KD value was measured to be 1.5-2.0 × 10(-8) M. These results indicate that leucine zipper fusion to Fab C-termini markedly enhances active Fab formation in E. coli. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast.

    PubMed

    Aris, John P; Alvers, Ashley L; Ferraiuolo, Roy A; Fishwick, Laura K; Hanvivatpong, Amanda; Hu, Doreen; Kirlew, Christine; Leonard, Michael T; Losin, Kyle J; Marraffini, Michelle; Seo, Arnold Y; Swanberg, Veronica; Westcott, Jennifer L; Wood, Michael S; Leeuwenburgh, Christiaan; Dunn, William A

    2013-10-01

    We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast

    PubMed Central

    Aris, John P.; Alvers, Ashley L.; Ferraiuolo, Roy A.; Fishwick, Laura K.; Hanvivatpong, Amanda; Hu, Doreen; Kirlew, Christine; Leonard, Michael T.; Losin, Kyle J.; Marraffini, Michelle; Seo, Arnold Y.; Swanberg, Veronica; Westcott, Jennifer L.; Wood, Michael S.; Leeuwenburgh, Christiaan; Dunn, William A.

    2013-01-01

    We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions. PMID:23337777

  20. Involvement of LAT1 and LAT2 in the high- and low-affinity transport of L-leucine in human retinal pigment epithelial cells (ARPE-19 cells).

    PubMed

    Yamamoto, Atsushi; Akanuma, Shin-Ichi; Tachikawa, Masanori; Hosoya, Ken-Ichi

    2010-05-01

    System L, which is encoded by LAT1 and LAT2, is an amino acid transport system that transports neutral amino acids, including several essential amino acids in an Na+-independent manner. Due to its broad substrate selectivity, system L has been proposed to mediate the transport of amino-acid-related drugs across the blood-tissue barriers. We characterized L-leucine transport and its corresponding transporter in a human retinal pigment epithelial cell line (ARPE-19 cells) as an in vitro model of the outer blood-retinal barrier. [3H]L-leucine uptake by ARPE-19 cells took place in an Na+-, Cl(-)-independent and saturable manner with K(m) values of 8.71 and 220 microM. This process was more potently cis-inhibited by substrates of LAT1 than those of LAT2. [3H]L-leucine efflux from ARPE-19 cells was trans-stimulated by substrates of LAT1 and LAT2 through the obligatory exchange mechanism of system L. Although RT-PCR analysis demonstrated that LAT1 and LAT2 mRNA are expressed in ARPE-19 cells, the LAT1 mRNA concentration is 42-fold higher than that of LAT2. Moreover, immunoblot analysis demonstrated that LAT1 is expressed in ARPE-19 cells. In conclusion, although the transport function of LAT1 is greater than that of LAT2, LAT1 and LAT2 are involved in L-leucine transport in ARPE-19 cells.

  1. THE NUTRITION OF ANIMAL TISSUES CULTIVATED IN VITRO

    PubMed Central

    Morgan, Joseph F.; Morton, Helen J.

    1957-01-01

    1. The amino acid requirements of freshly explanted chick embryonic heart tissues cultivated in completely synthetic media have been determined, employing a nutritional depletion technique. Arginine, histidine, lysine, tyrosine, tryptophan, phenylalanine, cystine, methionine, threonine, leucine, and valine were found to be essential. Serine, isoleucine, glycine, and glutamine were found to be non-essential. Glutamic acid, aspartic acid, α-alanine, proline, and hydroxyproline were found to be inhibitory in this test system. 2. A total amino acid level of approximately 100 mg. per cent was found to be optimal and DL-amino acids were found to be non-toxic, unless used in high concentrations. 3. A comparison has been made of the amino acid requirements of various types of tissue cultures, of the chick, and of man and certain differences in these requirements have been discussed. PMID:13438897

  2. Induction of β-defensins by l-isoleucine as novel immunotherapy in experimental murine tuberculosis.

    PubMed

    Rivas-Santiago, C E; Rivas-Santiago, B; León, D A; Castañeda-Delgado, J; Hernández Pando, R

    2011-04-01

    Tuberculosis is a worldwide health problem, and multidrug-resistant (MDR) and extensively multidrug-resistant (XMDR) strains are rapidly emerging and threatening the control of this disease. These problems motivate the search for new treatment strategies. One potential strategy is immunotherapy using cationic anti-microbial peptides. The capacity of l-isoleucine to induce beta-defensin expression and its potential therapeutic efficiency were studied in a mouse model of progressive pulmonary tuberculosis. BALB/c mice were infected with Mycobacterium tuberculosis strain H37Rv or with a MDR clinical isolate by the intratracheal route. After 60 days of infection, when disease was in its progressive phase, mice were treated with 250 µg of intratracheal l-isoleucine every 48 h. Bacillary loads were determined by colony-forming units, protein and cytokine gene expression were determined by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively, and tissue damage was quantified by automated morphometry. Administration of l-isoleucine induced a significant increase of beta-defensins 3 and 4 which was associated with decreased bacillary loads and tissue damage. This was seen in animals infected with the antibiotic-sensitive strain H37Rv and with the MDR clinical isolate. Thus, induction of beta-defensins might be a potential therapy that can aid in the control of this significant infectious disease. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  3. Far infrared spectra of solid state aliphatic amino acids in different protonation states

    NASA Astrophysics Data System (ADS)

    Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H.; Hellwig, Petra

    2010-03-01

    Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm-1 range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm-1 mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm-1 region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm-1, was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.

  4. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2017-01-01

    One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.

  5. Characterization of two genes encoding leucine-rich repeat-containing proteins in grass carp Ctenopharyngodon idellus.

    PubMed

    Chang, M X; Nie, P; Xie, H X; Sun, B J; Gao, Q

    2005-01-01

    The cDNAs and genes of two different types of leucine-rich repeat-containing proteins from grass carp (Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced amino-acid sequence similarities with human glycoprotein A repetitions predominant precursor (GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine-rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL (x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod (Sinergasilus major)-infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host-pathogen interactions.

  6. Preliminary study of urine metabolism in type two diabetic patients based on GC-MS

    PubMed Central

    Zhang, Ning; Geng, Fang; Hu, Zhong-Hua; Liu, Bin; Wang, Ye-Qiu; Liu, Jun-Cen; Qi, Yong-Hua; Li, Li-Jing

    2016-01-01

    Objective: Comparative study of type 2 diabetes and healthy controls by metabolomics methods to explore the pathogenesis of Type II diabetes. Methods: Gas chromatography - mass spectrometry (GC-MS) with a variety of multivariate statistical analysis methods to the healthy control group 58 cases, 68 cases of Type II diabetes group were analyzed. Chromatographic conditions: DB-5MS column; the carrier gas He; flow rate of 1 mL·min-1, the injection volume 1 uL; split ratio is 100: 1. MS conditions: electron impact (EI) ion source, an auxiliary temperature of 280°C, the ion source 230°C, quadrupole 150°C; mass scan range 30~600 mAu. Results: Established analytical method based on urine metabolomics GC-MS of Type II diabetes, determine the urine succinic acid, L-leucine, L-isoleucine, tyrosine, slanine, acetoace acid, mannose, L-isoleucine, L-threonine, Phenylalanine, fructose, D-glucose, palmi acid, oleic acid and arachidonic acid were significantly were significantly changed. Conclusion: Based on metabolomics of GC-MS detection and analysis metabolites can be found differences between type 2 diabetes and healthy control group, PCA diagram can effectively distinguish Type II diabetes and healthy control group, with load diagrams and PLS-DA VIP value metabolite screening, the resulting differences in metabolic pathways involved metabolites, including amino acid metabolism, lipid metabolism, glucose metabolism and energy metabolism. PMID:27508010

  7. Alteration of muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscle of growing pigs fed low-protein diets with varying branched-chain amino acid ratios

    PubMed Central

    Duan, Yehui; Li, Fengna; Wang, Wenlong; Guo, Qiuping; Wen, Chaoyue; Yin, Yulong

    2017-01-01

    There mainly exists four major myosin heavy chains (MyHC) (i.e., I, IIa, IIx, and IIb) in growing pigs. The current study aimed to explore the effects of low-protein diets supplemented with varying branched-chain amino acids (BCAAs) on muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscles. Forty growing pigs (9.85 ± 0.35 kg) were allotted to 5 groups and fed with diets supplemented with varying leucine: isoleucine: valine ratios: 1:0.51:0.63 (20% crude protein, CP), 1:1:1 (17% CP), 1:0.75:0.75 (17% CP), 1:0.51:0.63 (17% CP), and 1:0.25:0.25 (17% CP), respectively. The skeletal muscles of different muscle fiber composition, that is, longissimus dorsi muscle (LM, a fast-twitch glycolytic muscle), biceps femoris muscle (BM, a mixed slow- and fast-twitch oxido-glycolytic muscle), and psoas major muscle (PM, a slow-twitch oxidative muscle) were collected and analyzed. Results showed that relative to the control group (1:0.51:0.63, 20% CP), the low-protein diets with the leucine: isoleucine: valine ratio ranging from 1:0.75:0.75 to 1:0.25:0.25 especially augmented the mRNA and protein abundance of MyHC I fibers in BM and lowered the mRNA abundance of MyHC IIb particularly in LM (P < 0.05), with a concurrent increase in the activation of AMPK and the mRNA abundance of SIRT and PGC-1α in BM (P < 0.05). The results reveal that low-protein diets supplemented with optimal BCAA ratio, i.e. 1:0.75:0.75-1:0.25:0.25, induce muscle more oxidative especially in oxido-glycolytic skeletal muscle of growing pigs. These effects are likely associated with the activation of the AMPK-SIRT1-PGC-1α axis. PMID:29291007

  8. High-Resolution Electrospray Ionization/Ion Mobility Spectrometer for Detection of Abiotic Amino Acids

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.

    2003-01-01

    One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.

  9. Effect of experimental diabetes on the levels of aromatic and branched-chain amino acids in rat blood and brain.

    PubMed

    Crandall, E A; Fernstrom, J D

    1983-03-01

    Male rats treated 3 wk earlier with streptozotocin showed abnormally high blood levels of leucine, isoleucine, and valine throughout the 24-h period. Serum phenylalanine levels were slightly increased, while those of tryptophan and tyrosine were occasionally reduced. In brain, the level of each branched-chain amino acid was significantly increased above normal at all times. The brain concentration of each aromatic amino acid was always below normal. These changes were restored almost to normal by exogenous insulin therapy. Since the ingestion of protein is normally a major factor influencing blood amino acid levels, the effect of ingesting single, protein-containing meals on the blood and brain levels of these amino acids was also studied. After an overnight fast, the ingestion of a protein-containing meal by diabetic rats increased substantially both blood and brain levels of each branched-chain amino acid. No such increases occurred in normal rats. Ingestion of this meal produced only small changes in the brain and blood levels of the aromatic amino acids in both diabetic and normal rats. The changes in the brain level of each large neutral amino acid in some cases paralleled those in its blood level. More often, they paralleled the changes in the blood ratio of each amino acid to the sum of the other aromatic and branched-chain amino acids. This ratio is often a good predictor of the competitive transport of these amino acids into brain (Fernstrom and Faller, 1978). The observed changes in the brain levels of these amino acids in diabetes may influence the rates at which they are consumed in metabolic pathways within this organ.

  10. Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks.

    PubMed

    Ito, Kentaro; Bahry, Mohammad A; Hui, Yang; Furuse, Mitsuhiro; Chowdhury, Vishwajit S

    2015-09-01

    Heat stress causes an increase in body temperature and reduced food intake in chickens. Several neuropeptides and amino acids play a vital role in the regulation of food intake. However, the responses of neuropeptides and amino acids to heat-stress-induced food-intake regulation are poorly understood. In the current study, the hypothalamic mRNA expression of some neuropeptides related to food intake and the content of free amino acids in the brain and plasma was examined in 14-day-old chicks exposed to a high ambient temperature (HT; 40±1 °C for 2 or 5 h) or to a control thermoneutral temperature (CT; 30±1 °C). HT significantly increased rectal temperature and plasma corticosterone level and suppressed food intake. HT also increased the expression of neuropeptide Y (NPY) and agouti-signaling protein (ASIP) precursor mRNA, while no change was observed in pro-opiomelanocortin, cholecystokinin, ghrelin, or corticotropin-releasing hormone precursor mRNA. It was further found that the diencephalic content of free amino acids - namely, tryptophan, leucine, isoleucine, valine and serine - was significantly higher in HT chicks with some alterations in their plasma amino acids in comparison with CT chicks. The induction of NPY and ASIP expression and the alteration of some free amino acids during HT suggest that these changes can be the results or causes the suppression of food intake. Copyright © 2015. Published by Elsevier Inc.

  11. BMI, RQ, Diabetes, and Sex Affect the Relationships Between Amino Acids and Clamp Measures of Insulin Action in Humans

    PubMed Central

    Thalacker-Mercer, Anna E.; Ingram, Katherine H.; Guo, Fangjian; Ilkayeva, Olga; Newgard, Christopher B.; Garvey, W. Timothy

    2014-01-01

    Previous studies have used indirect measures of insulin sensitivity to link circulating amino acids with insulin resistance and identify potential biomarkers of diabetes risk. Using direct measures (i.e., hyperinsulinemic-euglycemic clamps), we examined the relationships between the metabolomic amino acid profile and insulin action (i.e., glucose disposal rate [GDR]). Relationships between GDR and serum amino acids were determined among insulin-sensitive, insulin-resistant, and type 2 diabetic (T2DM) individuals. In all subjects, glycine (Gly) had the strongest correlation with GDR (positive association), followed by leucine/isoleucine (Leu/Ile) (negative association). These relationships were dramatically influenced by BMI, the resting respiratory quotient (RQ), T2DM, and sex. Gly had a strong positive correlation with GDR regardless of BMI, RQ, or sex but became nonsignificant in T2DM. In contrast, Leu/Ile was negatively associated with GDR in nonobese and T2DM subjects. Increased resting fat metabolism (i.e., low RQ) and obesity were observed to independently promote and negate the association between Leu/Ile and insulin resistance, respectively. Additionally, the relationship between Leu/Ile and GDR was magnified in T2DM males. Future studies are needed to determine whether Gly has a mechanistic role in glucose homeostasis and whether dietary Gly enrichment may be an effective intervention in diseases characterized by insulin resistance. PMID:24130332

  12. Brain–blood amino acid correlates following protein restriction in murine maple syrup urine disease

    PubMed Central

    2014-01-01

    Background Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. Methods To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. Results LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Conclusions Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders. PMID:24886632

  13. Brain-blood amino acid correlates following protein restriction in murine maple syrup urine disease.

    PubMed

    Vogel, Kara R; Arning, Erland; Wasek, Brandi L; McPherson, Sterling; Bottiglieri, Teodoro; Gibson, K Michael

    2014-05-08

    Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders.

  14. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    PubMed Central

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  15. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding tomore » eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.« less

  16. Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus

    PubMed Central

    Rosario-Cruz, Zuelay; Chahal, Harsimranjit K.; Mike, Laura A.; Skaar, Eric P.; Boyd, Jeffrey M.

    2015-01-01

    Summary Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activity of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus. PMID:26135358

  17. Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus.

    PubMed

    Rosario-Cruz, Zuelay; Chahal, Harsimranjit K; Mike, Laura A; Skaar, Eric P; Boyd, Jeffrey M

    2015-10-01

    Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase, verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus. © 2015 John Wiley & Sons Ltd.

  18. Leucine-Enriched Essential Amino Acids Augment Muscle Glycogen Content in Rats Seven Days after Eccentric Contraction

    PubMed Central

    Kato, Hiroyuki; Miura, Kyoko; Suzuki, Katsuya; Bannai, Makoto

    2017-01-01

    Eccentric contractions induce muscle damage, which impairs recovery of glycogen and adenosine tri-phosphate (ATP) content over several days. Leucine-enriched essential amino acids (LEAAs) enhance the recovery in muscles that are damaged after eccentric contractions. However, the role of LEAAs in this process remains unclear. We evaluated the content in glycogen and high energy phosphates molecules (phosphocreatine (PCr), adenosine di-phosphate (ADP) and ATP) in rats that were following electrically stimulated eccentric contractions. Muscle glycogen content decreased immediately after the contraction and remained low for the first three days after the stimulation, but increased seven days after the eccentric contraction. LEAAs administration did not change muscle glycogen content during the first three days after the contraction. Interestingly, however, it induced a further increase in muscle glycogen seven days after the stimulation. Contrarily, ATP content decreased immediately after the eccentric contraction, and remained lower for up to seven days after. Additionally, LEAAs administration did not affect the ATP content over the experimental period. Finally, ADP and PCr levels did not significantly change after the contractions or LEAA administration. LEAAs modulate the recovery of glycogen content in muscle after damage-inducing exercise. PMID:29065533

  19. Leucine-Enriched Essential Amino Acids Augment Muscle Glycogen Content in Rats Seven Days after Eccentric Contraction.

    PubMed

    Kato, Hiroyuki; Miura, Kyoko; Suzuki, Katsuya; Bannai, Makoto

    2017-10-23

    Eccentric contractions induce muscle damage, which impairs recovery of glycogen and adenosine tri-phosphate (ATP) content over several days. Leucine-enriched essential amino acids (LEAAs) enhance the recovery in muscles that are damaged after eccentric contractions. However, the role of LEAAs in this process remains unclear. We evaluated the content in glycogen and high energy phosphates molecules (phosphocreatine (PCr), adenosine di-phosphate (ADP) and ATP) in rats that were following electrically stimulated eccentric contractions. Muscle glycogen content decreased immediately after the contraction and remained low for the first three days after the stimulation, but increased seven days after the eccentric contraction. LEAAs administration did not change muscle glycogen content during the first three days after the contraction. Interestingly, however, it induced a further increase in muscle glycogen seven days after the stimulation. Contrarily, ATP content decreased immediately after the eccentric contraction, and remained lower for up to seven days after. Additionally, LEAAs administration did not affect the ATP content over the experimental period. Finally, ADP and PCr levels did not significantly change after the contractions or LEAA administration. LEAAs modulate the recovery of glycogen content in muscle after damage-inducing exercise.

  20. Multiple functions of the leucine-rich repeat protein LrrA of Treponema denticola.

    PubMed

    Ikegami, Akihiko; Honma, Kiyonobu; Sharma, Ashu; Kuramitsu, Howard K

    2004-08-01

    The gene lrrA, encoding a leucine-rich repeat protein, LrrA, that contains eight consensus tandem repeats of 23 amino acid residues, has been identified in Treponema denticola ATCC 35405. A leucine-rich repeat is a generally useful protein-binding motif, and proteins containing this repeat are typically involved in protein-protein interactions. Southern blot analysis demonstrated that T. denticola ATCC 35405 expresses the lrrA gene, but the gene was not identified in T. denticola ATCC 33520. In order to analyze the functions of LrrA in T. denticola, an lrrA-inactivated mutant of strain ATCC 35405 and an lrrA gene expression transformant of strain ATCC 33520 were constructed. Characterization of the mutant and transformant demonstrated that LrrA is associated with the extracytoplasmic fraction of T. denticola and expresses multifunctional properties. It was demonstrated that the attachment of strain ATCC 35405 to HEp-2 cell cultures and coaggregation with Tannerella forsythensis were attenuated by the lrrA mutation. In addition, an in vitro binding assay demonstrated specific binding of LrrA to a portion of the Tannerella forsythensis leucine-rich repeat protein, BspA, which is mediated by the N-terminal region of LrrA. It was also observed that the lrrA mutation caused a reduction of swarming in T. denticola ATCC 35405 and consequently attenuated tissue penetration. These results suggest that the leucine-rich repeat protein LrrA plays a role in the attachment and penetration of human epithelial cells and coaggregation with Tannerella forsythensis. These properties may play important roles in the virulence of T. denticola.

  1. Effects of Histidine Supplementation on Global Serum and Urine 1H NMR-based Metabolomics and Serum Amino Acid Profiles in Obese Women from a Randomized Controlled Study.

    PubMed

    Du, Shanshan; Sun, Shuhong; Liu, Liyan; Zhang, Qiao; Guo, Fuchuan; Li, Chunlong; Feng, Rennan; Sun, Changhao

    2017-06-02

    The aim of current study was to investigate the metabolic changes associated with histidine supplementation in serum and urine metabolic signatures and serum amino acid (AA) profiles. Serum and urine 1 H NMR-based metabolomics and serum AA profiles were employed in 32 and 37 obese women with metabolic syndrome (MetS) intervened with placebo or histidine for 12 weeks. Multivariable statistical analysis were conducted to define characteristic metabolites. In serum 1 H NMR metabolic profiles, increases in histidine, glutamine, aspartate, glycine, choline, and trimethylamine-N-oxide (TMAO) were observed; meanwhile, decreases in cholesterol, triglycerides, fatty acids and unsaturated lipids, acetone, and α/β-glucose were exhibited after histidine supplement. In urine 1 H NMR metabolic profiles, citrate, creatinine/creatine, methylguanidine, and betaine + TMAO were higher, while hippurate was lower in histidine supplement group. In serum AA profiles, 10 AAs changed after histidine supplementation, including increased histidine, glycine, alanine, lysine, asparagine, and tyrosine and decreased leucine, isoleucine, ornithine, and citrulline. The study showed a systemic metabolic response in serum and urine metabolomics and AA profiles to histidine supplementation, showing significantly changed metabolism in AAs, lipid, and glucose in obese women with MetS.

  2. Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women.

    PubMed

    Wilkinson, Daniel J; Bukhari, Syed S I; Phillips, Bethan E; Limb, Marie C; Cegielski, Jessica; Brook, Matthew S; Rankin, Debbie; Mitchell, William K; Kobayashi, Hisamine; Williams, John P; Lund, Jonathan; Greenhaff, Paul L; Smith, Kenneth; Atherton, Philip J

    2017-09-23

    Impaired anabolic responses to nutrition and exercise contribute to loss of skeletal muscle mass with ageing (sarcopenia). Here, we tested responses of muscle protein synthesis (MPS), in the under represented group of older women, to leucine-enriched essential amino acids (EAA) in comparison to a large bolus of whey protein (WP). Twenty-four older women (65 ± 1 y) received (N = 8/group) 1.5 g leucine-enriched EAA supplements (LEAA_1.5), 6 g LEAA (LEAA_6) in comparison to 40 g WP. A primed constant I.V infusion of 13 C 6 -phenylalanine was used to determine MPS at baseline and in response to feeding (FED) and feeding-plus-exercise (FED-EX; 6 × 8 unilateral leg extensions; 75%1-RM). We quantified plasma insulin/AA concentrations, leg femoral blood flow (LBF)/muscle microvascular blood flow (MBF), and anabolic signalling via immunoblotting. Plasma insulineamia and EAAemia were greater and more prolonged with WP than LEAA, although LEAA_6 peaked at similar levels to WP. Neither LEAA or WP modified LBF or MBF. FED increased MPS similarly in the LEAA_1.5, LEAA_6 and WP (P < 0.05) groups over 0-2 h, with MPS significantly higher than basal in the LEAA_6 and WP groups only over 0-4 h. However, FED-EX increased MPS similarly across all the groups from 0 to 4 h (P < 0.05). Only p-p70S6K1 increased with WP at 2 h in FED (P < 0.05), and at 2/4 h in FED-EX (P < 0.05). In conclusion, LEAA_1.5, despite only providing 0.6 g of leucine, robustly (perhaps maximally) stimulated MPS, with negligible trophic advantage of greater doses of LEAA or even to 40 g WP. Highlighting that composition of EAA, in particular the presence of leucine rather than amount is most crucial for anabolism. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry.

    PubMed

    Ochi, H; Sakai, Y; Koishihara, H; Abe, F; Bamba, T; Fukusaki, E

    2013-01-01

    We proposed an application methodology that combines metabolic profiling with multiple appropriate multivariate analyses and verified it on the industrial scale of the ripening process of Cheddar cheese to make practical use of hydrophilic low-molecular-weight compound profiling using gas chromatography-mass spectrometry to design optimal conditions and quality monitoring of the cheese ripening process. Principal components analysis provided an overview of the effect of sodium chloride content and kind of lactic acid bacteria starter on the metabolic profile in the ripening process of Cheddar cheese and orthogonal partial least squares-discriminant analysis unveiled the difference in characteristic metabolites. When the sodium chloride contents were different (1.6 and 0.2%) but the same lactic acid bacteria starter was used, the 2 cheeses were classified by orthogonal partial least squares-discriminant analysis from their metabolic profiles, but were not given perfect discrimination. Not much difference existed in the metabolic profile between the 2 cheeses. Compounds including lactose, galactose, lactic acid, 4-aminobutyric acid, and phosphate were identified as contents that differed between the 2 cheeses. On the other hand, in the case of the same salt content of 1.6%, but different kinds of lactic acid bacteria starter, an excellent distinctive discrimination model was obtained, which showed that the difference of lactic acid bacteria starter caused an obvious difference in metabolic profiles. Compounds including lactic acid, lactose, urea, 4-aminobutyric acid, galactose, phosphate, proline, isoleucine, glycine, alanine, lysine, leucine, valine, and pyroglutamic acid were identified as contents that differed between the 2 cheeses. Then, a good sensory prediction model for "rich flavor," which was defined as "thick and rich, including umami taste and soy sauce-like flavor," was constructed based on the metabolic profile during ripening using partial least

  4. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    PubMed

    Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  5. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  6. Isoleucine epimerization in the high-molecular-weight fraction of pleistocene Arctica

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Sejrup, Hans-Petter

    The extent of amino acid racemization, as traditionally determined in the entire (total acid hydrolysate) pool of amino acids comprising the organic remains of fossils, is a function of the integrated effects of a complex diagenetic reaction network. We investigated the possibility that some of the complications involved in protein diagenesis might be circumvented by isolating one component of the reaction network and studying the extent of racemization in that fraction alone. We used gel-filtration to extract the high-molecular-weight (HMW) fraction of proteinaceous matter from fossil and modem molluscan shells. This fraction contains the largest (ca. > 15,000 MW), most-pristine macromolecules and has been less affected by diagenesis than the more-degraded, lower molecular-weight fractions. Variations in the extent of racemization (isoleucine epimerization; alle/Ile) measured in the HMW fraction of subsamples taken along cross sections of Arctica shells from two interglacial sites, Bø and Fjøsanger, southwestern Norway, are within the range of analytical uncertainty [coefficient of variation (cv) = 5-8%], despite the strong gradient (cv = 20-24%) in alle/Ile of the total amino acid population. Because there is no age difference across a shell, this finding supports the idea that the HMW fraction contains more geochronologically reliable proteinaceous matter than the total amino acid pool. Weighted mean alle/Ile ratios in the HMW fraction of aliquots of powdered sample from the two shells overlap at ± 1σ, despite significantly different alle/Ile ratios in the total amino acid population of some shells from the two sites. The difference in alle/Ile ratios in the total population is attributed to a greater proportion of low-molecular-weight (ca. 300 MW), and hence, extensively epimerized molecules measured in gel-filtered samples from the Fjøsanger shell. Because the rate of epimerization in the HMW fraction is much lower than in the total population, the

  7. Metabolic Footprint Analysis Uncovers Strain Specific Overflow Metabolism and D-Isoleucine Production of Staphylococcus Aureus COL and HG001

    PubMed Central

    Dörries, Kirsten; Lalk, Michael

    2013-01-01

    During infection processes, Staphylococcus aureus is able to survive within the host and to invade tissues and cells. For studying the interaction between the pathogenic bacterium and the host cell, the bacterial growth behaviour and its metabolic adaptation to the host cell environment provides first basic information. In the present study, we therefore cultivated S. aureus COL and HG001 in the eukaryotic cell culture medium RPMI 1640 and analyzed the extracellular metabolic uptake and secretion patterns of both commonly used laboratory strains. Extracellular accumulation of D-isoleucine was detected starting during exponential growth of COL and HG001 in RPMI medium. This non-canonical D-amino acid is known to play a regulatory role in adaptation processes. Moreover, individual uptake of glucose, accumulation of acetate, further overflow metabolites, and intermediates of the branched-chain amino acid metabolism constitute unique metabolic footprints. Altogether these time-resolved footprint analyses give first metabolic insights into staphylococcal growth behaviour in a culture medium used for infection related studies. PMID:24312553

  8. Deuterium incorporation experiments from (3R)- and (3S)-[3-2H]leucine into characteristic isoprenoidal lipid-core of halophilic archaea suggests the involvement of isovaleryl-CoA dehydrogenase.

    PubMed

    Yamauchi, Noriaki; Tanoue, Ryo

    2017-11-01

    The stereochemical reaction course for the two C-3 hydrogens of leucine to produce a characteristic isoprenoidal lipid in halophilic archaea was observed using incubation experiments with whole cell Halobacterium salinarum. Deuterium-labeled (3R)- and (3S)-[3- 2 H]leucine were freshly prepared as substrates from 2,3-epoxy-4-methyl-1-pentanol. Incorporation of deuterium from (3S)-[3- 2 H]leucine and loss of deuterium from (3R)-[3- 2 H]leucine in the lipid-core of H. salinarum was observed. Taken together with the results of our previous report, involving the incubation of chiral-labeled [5- 2 H]leucine, these results strongly suggested an involvement of isovaleryl-CoA dehydrogenase in leucine conversion to isoprenoid lipid in halophilic archaea. The stereochemical course of the reaction (anti-elimination) might have been the same as that previously reported for mammalian enzyme reactions. Thus, these results suggested that branched amino acids were metabolized to mevalonate in archaea in a manner similar to other organisms.

  9. Structure of FabH and factors affecting the distribution of branched fatty acids in Micrococcus luteus.

    PubMed

    Pereira, Jose H; Goh, Ee-Been; Keasling, Jay D; Beller, Harry R; Adams, Paul D

    2012-10-01

    Micrococcus luteus is a Gram-positive bacterium that produces iso- and anteiso-branched alkenes by the head-to-head condensation of fatty-acid thioesters [coenzyme A (CoA) or acyl carrier protein (ACP)]; this activity is of interest for the production of advanced biofuels. In an effort to better understand the control of the formation of branched fatty acids in M. luteus, the structure of FabH (MlFabH) was determined. FabH, or β-ketoacyl-ACP synthase III, catalyzes the initial step of fatty-acid biosynthesis: the condensation of malonyl-ACP with an acyl-CoA. Analysis of the MlFabH structure provides insights into its substrate selectivity with regard to length and branching of the acyl-CoA. The most structurally divergent region of FabH is the L9 loop region located at the dimer interface, which is involved in the formation of the acyl-binding channel and thus limits the substrate-channel size. The residue Phe336, which is positioned near the catalytic triad, appears to play a major role in branched-substrate selectivity. In addition to structural studies of MlFabH, transcriptional studies of M. luteus were also performed, focusing on the increase in the ratio of anteiso:iso-branched alkenes that was observed during the transition from early to late stationary phase. Gene-expression microarray analysis identified two genes involved in leucine and isoleucine metabolism that may explain this transition.

  10. High extracellular concentration of excitatory amino acids glutamate and aspartate in human brain abscess.

    PubMed

    Dahlberg, Daniel; Ivanovic, Jugoslav; Hassel, Bjørnar

    2014-04-01

    Brain abscesses often cause symptoms of brain dysfunction, including seizures, suggesting interference with normal neurotransmission. We determined the concentration of extracellular neuroactive amino acids in brain abscesses from 16 human patients. Glutamate was present at 3.6 mmol/L (median value, range 0.5-10.8), aspartate at 1.0 mmol/L (range 0.09-6.8). For comparison, in cerebroventricular fluid glutamate was ∼0.6 μmol/L, and aspartate was not different from zero. The total concentration of amino acids was higher in eight patients with seizures: 66 mmol/L (median value, range 19-109) vs. 21 mmol/L (range 4-52) in eight patients without seizures (p=0.026). The concentration of aspartate and essential amino acids tryptophan, phenylalanine, tyrosine, leucine, and isoleucine was higher in pus from patients with seizures (p⩽0.040), whereas that of glutamate was not (p=0.095). The median concentration of the non-proteinogenic, inhibitory amino acid taurine was similar in the two groups, 0.7-0.8 mmol/L (range 0.1-6.1). GABA could not be detected in pus. The patient groups did not differ with respect to abscess volume, the cerebral lobe affected, age, or time from symptom onset to surgery. Seven patients with extracerebral, intracranial abscesses had significantly lower pus concentration of glutamate (352 μmol/L, range 83-1368) and aspartate (71 μmol/L, range 22-330) than intracerebral abscesses (p<0.001). We conclude that excitatory amino acids glutamate and aspartate may reach very high concentrations in brain abscesses, probably contributing to symptoms through activation of glutamate receptors in the surrounding brain tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism

    PubMed Central

    Cole, Jeffrey T.; Sweatt, Andrew J.; Hutson, Susan M.

    2012-01-01

    In the brain, metabolism of the essential branched chain amino acids (BCAAs) leucine, isoleucine, and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT) isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). The BCATs are thought to participate in a α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from α-ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC) catalyzes the second, irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA) products of the BCAT reaction. Maple Syrup Urine Disease (MSUD) results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron. PMID:22654736

  12. Laser-Induced Acoustic Desorption/Electron Ionization of Amino Acids and Small Peptides

    NASA Astrophysics Data System (ADS)

    Jarrell, Tiffany M.; Owen, Benjamin C.; Riedeman, James S.; Prentice, Boone M.; Pulliam, Chris J.; Max, Joann; Kenttämaa, Hilkka I.

    2017-06-01

    Laser-induced acoustic desorption (LIAD) allows for desorption of neutral nonvolatile compounds independent of their volatility or thermal stability. Many different ionization methods have been coupled with LIAD. Hence, this setup provides a better control over the types of ions formed than other mass spectrometry evaporation/ionization methods commonly used to characterize biomolecules, such as ESI or MALDI. In this study, the utility of LIAD coupled with electron ionization (EI) was tested for the analysis of common amino acids with no derivatization. The results compared favorably with previously reported EI mass spectra obtained using thermal desorption/EI. Further, LIAD/EI mass spectra collected for hydrochloride salts of two amino acids were found to be similar to those measured for the neutral amino acids with the exception of the appearance of an HCl+● ion. However, the hydrochloride salt of arginine showed a distinctly different LIAD/EI mass spectrum than the previously published literature EI mass spectrum, likely due to its highly basic side chain that makes a specific zwitterionic form particularly favorable. Finally, EI mass spectra were measured for seven small peptides, including di-, tri-, and tetrapeptides. These mass spectra show a variety of ion types. However, an type ions are prevalent. Also, electron-induced dissociation (EID) of protonated peptides has been reported to form primarily an type ions. In addition, the loss of small neutral molecules and side-chain cleavages were observed that are reminiscent of other high-energy fragmentation methods, such as EID. Finally, the isomeric dipeptides LG and IG were found to produce drastically different EI mass spectra, thus allowing differentiation of the leucine and isoleucine amino acids in these dipeptides. [Figure not available: see fulltext.

  13. Fine tuning of the spectral properties of LH2 by single amino acid residues.

    PubMed

    Silber, Martina V; Gabriel, Günther; Strohmann, Brigitte; Garcia-Martin, Adela; Robert, Bruno; Braun, Paula

    2008-05-01

    The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.

  14. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways.

    PubMed

    van Geldermalsen, Michelle; Quek, Lake-Ee; Turner, Nigel; Freidman, Natasha; Pang, Angel; Guan, Yi Fang; Krycer, James R; Ryan, Renae; Wang, Qian; Holst, Jeff

    2018-06-26

    Cancer cells require increased levels of nutrients such as amino acids to sustain their rapid growth. In particular, leucine and glutamine have been shown to be important for growth and proliferation of some breast cancers, and therefore targeting the primary cell-surface transporters that mediate their uptake, L-type amino acid transporter 1 (LAT1) and alanine, serine, cysteine-preferring transporter 2 (ASCT2), is a potential therapeutic strategy. The ASCT2 inhibitor, benzylserine (BenSer), is also able to block LAT1 activity, thus inhibiting both leucine and glutamine uptake. We therefore aimed to investigate the effects of BenSer in breast cancer cell lines to determine whether combined LAT1 and ASCT2 inhibition could inhibit cell growth and proliferation. BenSer treatment significantly inhibited both leucine and glutamine uptake in MCF-7, HCC1806 and MDA-MB-231 breast cancer cells, causing decreased cell viability and cell cycle progression. These effects were not primarily leucine-mediated, as BenSer was more cytostatic than the LAT family inhibitor, BCH. Oocyte uptake assays with ectopically expressed amino acid transporters identified four additional targets of BenSer, and gas chromatography-mass spectrometry (GCMS) analysis of intracellular amino acid concentrations revealed that this BenSer-mediated inhibition of amino acid uptake was sufficient to disrupt multiple pathways of amino acid metabolism, causing reduced lactate production and activation of an amino acid response (AAR) through activating transcription factor 4 (ATF4). Together these data showed that BenSer blockade inhibited breast cancer cell growth and viability through disruption of intracellular amino acid homeostasis and inhibition of downstream metabolic and growth pathways.

  15. Nonprotein amino acids from seeds of Cycas circinalis and Phaseolus vulgaris.

    PubMed

    Li, C J; Brownson, D M; Mabry, T J; Perera, C; Bell, E A

    1996-05-01

    Our chemical studies on Cycas circinalis seeds from Guam has provided two new nonprotein amino acids, N-(3'-one-5'-methyl)-hexylalanine and leucine betaine. N-methylisoleucine, previously reported as a component of naturally occurring peptides, has been isolated as a free amino acid from the seeds of Phaseolus vulgaris (pinto bean), together with S-methylcysteine, pipecolic acid and a dipeptide, gamma-glutamyl-leucine.

  16. ToF-SIMS and principal component analysis of lipids and amino acids from inflamed and dysplastic human colonic mucosa.

    PubMed

    Urbini, Marco; Petito, Valentina; de Notaristefani, Francesco; Scaldaferri, Franco; Gasbarrini, Antonio; Tortora, Luca

    2017-10-01

    Here, time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis were combined to study the role of ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), in the colon cancer progression. ToF-SIMS was used to obtain mass spectra and chemical maps from the mucosal surface of human normal (NC), inflamed (IC), and dysplastic (DC) colon tissues. Chemical mapping with a lateral resolution of ≈ 1 μm allowed to evaluate zonation of fatty acids and amino acids as well as the morphological condition of the intestinal glands. High mass resolution ToF-SIMS spectra showed chemical differences in lipid and amino acid composition as a function of pathological state. In positive ion mode, mono- (MAG), di- (DAG), and triacylglycerol (TAG) signals were detected in NC tissues, while in IC and DC tissues, the only cholesterol was present as lipid class representative. Signals from fatty acids, collected in negative ion mode, were subjected to principal component analysis (PCA). PCA showed a strict correlation between IC and DC samples, due to an increase of stearic, arachidonic, and linoleic acid. In the same way, differences in the amino acid composition were highlighted through multivariate analysis. PCA revealed that glutamic acid, leucine/isoleucine, and valine fragments are related to IC tissues. On the other hand, tyrosine, methionine, and tryptophan peaks contributed highly to the separation of DC tissues. Finally, a classification of NC, IC, and DC patients was also achieved through hierarchical cluster analysis of amino acid fragments. In this case, human colonic inflammation showed a stronger relationship with normal than dysplastic condition. Graphical Abstract ᅟ.

  17. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis.

    PubMed

    Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan

    2017-04-01

    L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1  day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.

  18. Effect of Oral Supplementation with Branched-chain Amino Acid (BCAA) during Radiotherapy in Patients with Hepatocellular Carcinoma: A Double-Blind Randomized Study

    PubMed Central

    Lee, Ik Jae; Bae, Jung Im; You, Sei Hwan; Rhee, Yumie; Lee, Jong Ho

    2011-01-01

    Purpose The present study evaluated whether oral supplementation with a branched-chain amino acid (BCAA) improves the biochemical and amino acid profiles of liver tumor patients undergoing radiotherapy. Materials and Methods Patients were randomly assigned to one of 2 groups: a group given oral supplementation with BCAA granules (LIVACT granules; Samil Pharm Co., Korea, each granule containing L-isoleucine 952 mg, L-leucine 1,904 mg, and L-valine 1,144 mg) during radiotherapy, or a placebo group. Physical and biochemical examinations and measurements, including subjective symptoms, Child-Pugh class, body mass index, plasma albumin concentration, and plasma amino acid profiles were monitored. Results Fifty were enrolled between November 2005 and November 2006. We also analyzed data from 37 hepatocellular carcinoma (HCC) patients in order to evaluate a more homogenous group. The two groups of patients were comparable in terms of age, gender, Child-Pugh score, and underlying hepatitis virus type. Serum albumin, total protein, liver enzymes, and cholesterol showed a tendency to increase in the BCAA group. In this group, the percentage of cases that reverted to normal serum albumin levels between 3 and 10 weeks after administration of BCAA was significantly higher (41.18%) than in the placebo group (p=0.043). Conclusion Oral supplementation with a BCAA preparation seems to help HCC patients undergoing radiotherapy by increasing the BCAA concentration. PMID:21509160

  19. Effect of Oral Supplementation with Branched-chain Amino Acid (BCAA) during Radiotherapy in Patients with Hepatocellular Carcinoma: A Double-Blind Randomized Study.

    PubMed

    Lee, Ik Jae; Seong, Jinsil; Bae, Jung Im; You, Sei Hwan; Rhee, Yumie; Lee, Jong Ho

    2011-03-01

    The present study evaluated whether oral supplementation with a branched-chain amino acid (BCAA) improves the biochemical and amino acid profiles of liver tumor patients undergoing radiotherapy. Patients were randomly assigned to one of 2 groups: a group given oral supplementation with BCAA granules (LIVACT granules; Samil Pharm Co., Korea, each granule containing L-isoleucine 952 mg, L-leucine 1,904 mg, and L-valine 1,144 mg) during radiotherapy, or a placebo group. Physical and biochemical examinations and measurements, including subjective symptoms, Child-Pugh class, body mass index, plasma albumin concentration, and plasma amino acid profiles were monitored. Fifty were enrolled between November 2005 and November 2006. We also analyzed data from 37 hepatocellular carcinoma (HCC) patients in order to evaluate a more homogenous group. The two groups of patients were comparable in terms of age, gender, Child-Pugh score, and underlying hepatitis virus type. Serum albumin, total protein, liver enzymes, and cholesterol showed a tendency to increase in the BCAA group. In this group, the percentage of cases that reverted to normal serum albumin levels between 3 and 10 weeks after administration of BCAA was significantly higher (41.18%) than in the placebo group (p=0.043). Oral supplementation with a BCAA preparation seems to help HCC patients undergoing radiotherapy by increasing the BCAA concentration.

  20. Branched-chain amino acids to tyrosine ratio value as a potential prognostic factor for hepatocellular carcinoma.

    PubMed

    Ishikawa, Toru

    2012-05-07

    The prognosis of hepatocellular carcinoma (HCC) depends on tumor extension as well as hepatic function. Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC; the Child-Pugh classification system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease, using serum albumin level to achieve accurate assessment of the status of protein metabolism. However, insufficient attention has been given to the status of amino acid (AA) metabolism in chronic liver disease and HCC. Fischer's ratio is the molar ratio of branched-chain AAs (BCAAs: leucine, valine, isoleucine) to aromatic AAs (phenylalanine, tyrosine) and is important for assessing liver metabolism, hepatic functional reserve and the severity of liver dysfunction. Although this ratio is difficult to determine in clinical situations, BCAAs/tyrosine molar concentration ratio (BTR) has been proposed as a simpler substitute. BTR correlates with various liver function examinations, including markers of hepatic fibrosis, hepatic blood flow and hepatocyte function, and can thus be considered as reflecting the degree of hepatic impairment. This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.

  1. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    PubMed

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  2. MISE: A Search for Organics on Europa

    NASA Astrophysics Data System (ADS)

    Whalen, Kelly; Lunine, Jonathan I.; Blaney, Diana L.

    2017-01-01

    NASA’s planned Europa Flyby Mission will try to assess the habitability of Jupiter’s moon, Europa. One of the selected instruments on the mission is the Mapping Imaging Spectrometer for Europa (MISE). MISE is a near-infrared imaging spectrometer that takes spectra in the 0.8-5 micron range, and it will be capable of mapping Europa’s surface chemical composition. A primary goal of the MISE instrument is to determine if Europa is capable of supporting life by searching for amino acid signatures in the infrared spectra. We present spectra of pure amino acid at MISE’s resolution, and we analyze the effect of chirality on these spectra. Lastly, we present model spectra for diluted/mixed amino acids to simulate more realistic concentrations. We show MISE can distinguish between different types of amino acids, such as isoleucine, leucine, and their enantiomers.

  3. The radiolysis and radioracemization of amino acids on silica surfaces

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Lemmon, R. M.

    1981-01-01

    Results are presented of experiments on the radioracemization of amino acids in the presence of silica surfaces such as may have been found on the prebiotic earth. L-leucine and a DL-leucine mixture deposited on samples of 1-quartz and an amorphous silica preparation (Syloid 63) was subjected to Co-60 gamma-ray irradiation, then analyzed by gas chromatography to determine the radiolysis and racemization rates. The quartz surface is found to have a marginal efficacy in enhancing radiolysis when compared with a crystalline L-leucine control, although enhancing radioracemization symmetrically by a factor of two. Both the radiolysis and radioracemization of L-leucine and DL-leucine on a Syloid-63 silica surface are observed to increase with increasing radiation dose, and to be substantially greater than in the crystalline controls. Additional experiments with the nonprotein amino acid isovaline deposited on Syloid 63 confirm the greater radiolysis susceptibility of amino acids deposited on silica with respect to the crystalline state, although racemization is not observed. The observations suggest that the presence of a silica surface would have a deleterious effect on any mechanism for the origin of molecular chirality relying on stereoselective beta-radiolysis.

  4. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    PubMed Central

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  5. Specificity of neutral amino acid uptake at the basolateral side of the epithelium in the cat salivary gland in situ.

    PubMed

    Bustamante, J C; Mann, G E; Yudilevich, D L

    1981-01-01

    1. Amino acid uptake was measured in resting cat submandibular glands with either a natural blood supply or perfused at constant flow with a Krebs-albumin solution. Following a bolus arterial injection of a 3H-labelled amino acid and D-[14C]mannitol (extracellular reference tracer), the venous effluent was immediately sampled sequentially. The maximal uptake, Umax, from the blood or perfusate was determined from the paired-tracer dilution curves using the expression: uptake % = (1 -- (3H/14C) X 100). 2. In glands with a natural blood supply, Umax values up to 46% were measured for short-chain (serine and alanine) and long-chain (valine, methionine, leucine, isoleucine, 1-amino-cyclopentane cyclopentane carboxylic acid, phenylalanine, tryptophan, tyrosine, histidine and glutamine) neutral amino acids. In contrast, Umax was negligible for amino acids of the imino-glycine group (proline and glycine) and the nonmetabolized amino acids, 2-aminoisobutyric acid (AIB) and methylaminoisobutyric acid (MeAIB). 3. In glands with a natural blood supply addition of an unlabelled amino acid to the tracer injectate reduced Umax for the test acid by up to 80%. The pattern of these interactions suggested the presence of two transport systems for neutral amino acids, one preferring short-chain and the other long-chain amino acids. 4. In glands perfused at constant flow rates with an amino acid-free Krebs-albumin solution high Umax values were measured: L-serine (66%), L-alanine (54%), L-leucine (43%), L-phenylalanine (42%) and L-tyrosine (51%). Only a low uptake was observed for L-proline (8%) and glycine (14%). There was no uptake of methylaminoisobutyric acid which confirms the result obtained in glands with an intact circulation. 5. Saturation of L-phenylalanine influx was observed in perfused glands as the perfusate concentration of unlabelled L-phenylalanine was increased from 0.5 to 20 mmol . 1-1. A Michaelis--Menten analysis based on a single entry system indicated an apparent

  6. Rapamycin blocks leucine-induced protein synthesis by suppressing mTORC1 activation in skeletal muscle of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine (Leu). To elucidate the molecular mechanism by which Leu stimulates protein synthesis in neonatal muscle, overnight fasted 7-day-old piglets were...

  7. Amino acid levels in nascent metabolic syndrome: A contributor to the pro-inflammatory burden.

    PubMed

    Reddy, Priya; Leong, Joseph; Jialal, Ishwarlal

    2018-05-01

    Metabolic Syndrome (MetS) is a cluster of cardio-metabolic risk factors characterized by low-grade inflammation which confers an increased risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Prior studies have linked elevated branched chain amino acids (BCAA) and aromatic amino acids (AAA) with T2DM and CVD. Due to the paucity of data in MetS, the aim of this study was to investigate the status of amino acids as early biomarkers of nascent MetS patients without T2DM and CVD or smoking. Healthy controls (n = 20) and MetS (n = 29) patients were recruited for the study. MetS was defined by criteria of National Cholesterol Education Program Adult Treatment Panel III of having at least 3 risk factors. Urinary amino acids were quantified by gas chromatography time-of-flight mass spectrometry at the Western NIH Metabolomics Center as expressed to urinary creatinine. Tyrosine and Isoleucine levels were significantly elevated in MetS patients. Isoleucine positively correlated with salient cardio-metabolic features and inflammatory biomarkers. Lysine and Methionine levels were decreased in MetS patients. Lysine correlated negatively with cardio-metabolic features and inflammatory bimarkers. Methionine also correlated negatively with blood pressure and certain inflammatory biomarkers. Our novel results suggest that with regards to the cardio-metabolic risk factors and pro-inflammatory features of MetS, isoleucine (BCAA) demonstrated a positive correlation while lysine demonstrated a negative correlation. Thus, increased levels of isoleucine and decreased levels of lysine could be potential early biomarkers of MetS. Copyright © 2018. Published by Elsevier Inc.

  8. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    PubMed

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  9. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy

    PubMed Central

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I.; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling. PMID:26020623

  10. Metabolic Patterns in Spirodela polyrhiza Revealed by 15N Stable Isotope Labeling of Amino Acids in Photoautotrophic, Heterotrophic, and Mixotrophic Growth Conditions

    PubMed Central

    Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.

    2018-01-01

    In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies. PMID:29904627

  11. Metabolic Patterns in Spirodela polyrhiza Revealed by 15N Stable Isotope Labeling of Amino Acids in Photoautotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    PubMed

    Evans, Erin M; Freund, Dana M; Sondervan, Veronica M; Cohen, Jerry D; Hegeman, Adrian D

    2018-01-01

    In this study we describe a [ 15 N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [ 15 N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.

  12. Metabolic patterns in Spirodela polyrhiza revealed by 15N stable isotope labeling of amino acids in photoautotrophic, heterotrophic, and mixotrophic growth conditions

    NASA Astrophysics Data System (ADS)

    Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.

    2018-05-01

    In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for fifteen of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of less than 100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.

  13. High Serum Essential Amino Acids as a Predictor of Skeletal Muscle Depletion in Patients With Cachexia and Advanced Gastrointestinal Cancers.

    PubMed

    Kitagawa, Moeko; Haji, Seiji; Amagai, Teruyoshi

    2017-10-01

    In recent years, the number of patients with cancer has increased. These patients are prone to sarcopenia as a result of the decrease in muscle mass and muscle weakness that occur in cancer cachexia. Amino Index Cancer Screening is carried out to evaluate cancer cachexia risk by examining amino acid concentration and analyzing amino acid balance. We conducted a retrospective chart review of consecutive patients with unresectable advanced gastrointestinal cancer (stage IV) receiving chemotherapy treatment (December 2012-September 2015) in an outpatient or in-hospital setting at our institution (N = 46). Data included characteristics, psoas muscle area per computed tomography, and biochemical blood test and serum amino acid profiles. Method 1: Comparison of biomarkers between 2 groups: psoas muscle index change rate (ΔPMI) decrease vs increase. Method 2.1: Correlation between ΔPMI and biomarkers. Method 2.2: Multiple regression of ΔPMI and biomarkers. EAA/TAA ratio (essential amino acids/total amino acids) in the decrease group was significantly higher than that in the increase group. Among all parameters, serum C-reactive protein (CRP), leucine, and isoleucine were negatively related to ΔPMI (correlation coefficients = -0.604, -0.540, -0.518; P = .004, .011, .016, respectively). On multiple regression analysis, serum CRP value was strongly related to ΔPMI ( r 2 = 0.452, β = -0.672, P = .001). Higher serum EAA/TAA ratio and CRP were associated with depletion in psoas muscle area, which led to a diagnosis of sarcopenia, in patients with advanced gastrointestinal cancers. These parameters at baseline could be predictors of cancer cachexia.

  14. Homez, a homeobox leucine zipper gene specific to the vertebrate lineage.

    PubMed

    Bayarsaihan, Dashzeveg; Enkhmandakh, Badam; Makeyev, Aleksandr; Greally, John M; Leckman, James F; Ruddle, Frank H

    2003-09-02

    This work describes a vertebrate homeobox gene, designated Homez (homeodomain leucine zipper-encoding gene), that encodes a protein with an unusual structural organization. There are several regions within Homez, including three atypical homeodomains, two leucine zipper-like motifs, and an acidic domain. The gene is ubiquitously expressed in human and murine tissues, although the expression pattern is more restricted during mouse development. Genomic analysis revealed that human and mouse genes are located at 14q11.2 and 14C, respectively, and are composed of two exons. The zebrafish and pufferfish homologs share high similarity to mammalian sequences, particularly within the homeodomain sequences. Based on homology of homeodomains and on the similarity in overall protein structure, we delineate Homez and members of ZHX family of zinc finger homeodomain factors as a subset within the superfamily of homeobox-containing proteins. The type and composition of homeodomains in the Homez subfamily are vertebrate-specific. Phylogenetic analysis indicates that Homez lineage was separated from related genes >400 million years ago before separation of ray- and lobe-finned fishes. We apply a duplication-degeneration-complementation model to explain how this family of genes has evolved.

  15. The PPARgamma agonist FMOC-L-leucine protects both mature and immature brain.

    PubMed

    Maurois, Pierre; Rocchi, Stéphane; Pages, Nicole; Bac, Pierre; Stables, James P; Gressens, Pierre; Vamecq, Joseph

    2008-01-01

    (N-[9-fluorenylmethoxycarbonyl]-)-L-leucine (FMOC-L-leucine) and rosiglitazone, two ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), were evaluated in mature (adult mice) and immature (pups) brain injury models. In adult magnesium-deficient mice, a model responsive to both neuroprotective and anti-seizure compounds, FMOC-L-leucine, but not rosiglitazone, protected against audiogenic seizures. The protection afforded by FMOC-L-leucine was alleviated by the PPARgamma antagonist GW9662 (1-2 mg/kg) and was induced in 50% animals by 4.8+/-1.2 mg/kg. At this dose, FMOC-L-leucine modified audiogenic seizure phase durations in convulsing mice differently than prototype antiepileptic drugs did. FMOC-L-leucine (up to 100 mg/kg) was inactive in the 6 Hz seizure test, an adult animal model largely responsive to anti-seizure drugs. In a model of neonatal brain injury, FMOC-L-leucine (4 microg/kg) was neuroprotective against cerebral ibotenate toxicity. It reduced significantly the size of lesions in grey but not in white matter, while rosiglitazone (10 microg/kg) was inactive. Taken as a whole, the present data support neuroprotective potentialities of FMOC-L-leucine towards both mature and immature brain. The PPAR-based protection of immature brain is more important as it is known that classic adult brain protectants (GABA(A) activators, N-methyl-D-aspartate and sodium channel blockers) may be toxic for immature brain. The PPARgamma agonist FMOC-L-leucine is likely to be devoid of these classic protective mechanisms because of its inactivity in the 6 Hz seizure test, its activity in the audiogenic test being explained by neuroprotective rather than intrinsic anti-seizure mechanisms. Targeting PPARs might be thus a promising way to protect immature brain.

  16. Metabolite Profiles and the Risk of Developing Diabetes

    PubMed Central

    Wang, Thomas J.; Larson, Martin G.; Vasan, Ramachandran S.; Cheng, Susan; Rhee, Eugene P.; McCabe, Elizabeth; Lewis, Gregory D.; Fox, Caroline S.; Jacques, Paul F.; Fernandez, Céline; O’Donnell, Christopher J.; Carr, Stephen A.; Mootha, Vamsi K.; Florez, Jose C.; Souza, Amanda; Melander, Olle; Clish, Clary B.; Gerszten, Robert E.

    2011-01-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines, and other polar metabolites were profiled in baseline specimens using liquid chromatography-tandem mass spectrometry. Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly-significant associations with future diabetes: isoleucine, leucine, valine, tyrosine, and phenylalanine. A combination of three amino acids predicted future diabetes (>5-fold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential importance of amino acid metabolism early in the pathogenesis of diabetes, and suggest that amino acid profiles could aid in diabetes risk assessment. PMID:21423183

  17. Metabolite profiles and the risk of developing diabetes.

    PubMed

    Wang, Thomas J; Larson, Martin G; Vasan, Ramachandran S; Cheng, Susan; Rhee, Eugene P; McCabe, Elizabeth; Lewis, Gregory D; Fox, Caroline S; Jacques, Paul F; Fernandez, Céline; O'Donnell, Christopher J; Carr, Stephen A; Mootha, Vamsi K; Florez, Jose C; Souza, Amanda; Melander, Olle; Clish, Clary B; Gerszten, Robert E

    2011-04-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography-tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.

  18. UPLC-QTOFMS-based metabolomic analysis of the serum of hypoxic preconditioning mice

    PubMed Central

    Liu, Jie; Zhang, Gang; Chen, Dewei; Chen, Jian; Yuan, Zhi-Bin; Zhang, Er-Long; Gao, Yi-Xing; Xu, Gang; Sun, Bing-Da; Liao, Wenting; Gao, Yu-Qi

    2017-01-01

    Hypoxic preconditioning (HPC) is well-known to exert a protective effect against hypoxic injury; however, the underlying molecular mechanism remains unclear. The present study utilized a serum metabolomics approach to detect the alterations associated with HPC. In the present study, an animal model of HPC was established by exposing adult BALB/c mice to acute repetitive hypoxia four times. The serum samples were collected by orbital blood sampling. Metabolite profiling was performed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS), in conjunction with univariate and multivariate statistical analyses. The results of the present study confirmed that the HPC mouse model was established and refined, suggesting significant differences between the control and HPC groups at the molecular levels. HPC caused significant metabolic alterations, as represented by the significant upregulation of valine, methionine, tyrosine, isoleucine, phenylalanine, lysophosphatidylcholine (LysoPC; 16:1), LysoPC (22:6), linoelaidylcarnitine, palmitoylcarnitine, octadecenoylcarnitine, taurine, arachidonic acid, linoleic acid, oleic acid and palmitic acid, and the downregulation of acetylcarnitine, malate, citrate and succinate. Using MetaboAnalyst 3.0, a number of key metabolic pathways were observed to be acutely perturbed, including valine, leucine and isoleucine biosynthesis, in addition to taurine, hypotaurine, phenylalanine, linoleic acid and arachidonic acid metabolism. The results of the present study provided novel insights into the mechanisms involved in the acclimatization of organisms to hypoxia, and demonstrated the protective mechanism of HPC. PMID:28901489

  19. Acetolactate metabolism and the presence of a dehydroxy acid dehydratase in micro-organisms

    PubMed Central

    Wixom, R. L.

    1965-01-01

    1. The growth characteristics of nine micro-organisms on complex broth and defined media, usually with a single nitrogen source (other than vitamins), were examined as a necessary step before growth of cells for enzyme assays. Six of these bacteria gave a positive colour test with a creatine–potassium hydroxide reagent, indicating the presence of acetoin, which other investigators have shown is formed via the intermediate, α-acetolactate. 2. Cell-free extracts of exponential-phase cells of Bacillus subtilis, Staphylococcus aureus, Proteus morganii, Acetobacter rancens (two strains), A. kuetzingianus, A. acetosus, Acetomonas (Acetobacter) melanogenus and Acetomonas (Acetobacter) suboxydans (A.T.C.C. no. 621) were found to contain the enzyme, dihydroxy acid dehydratase (2,3-dihydroxy acid hydro-lyase). 3. The specific activity of the dehydratase from organisms grown on valine- and isoleucine-deficient media was greater than those grown on a complex broth or media containing complete amino acid mixtures. The omission of valine plus isoleucine from a medium containing 19 amino acids caused an increase in the dehydratase specific activity of Staphylococcus aureus and Proteus morganii. 4. The rate of keto acid formation from αβ-dihydroxyisovalerate by extracts of six of the above-named organisms was faster than, but somewhat proportional to, the similar rate from αβ-dihydroxy-β-methyl-n-valerate as substrate. 5. These findings may be related to acetolactate synthesis, acetoin formation and valine–isoleucine biosynthesis in the above-mentioned micro-organisms. PMID:14348203

  20. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer's disease: A prospective study in eight cohorts.

    PubMed

    Tynkkynen, Juho; Chouraki, Vincent; van der Lee, Sven J; Hernesniemi, Jussi; Yang, Qiong; Li, Shuo; Beiser, Alexa; Larson, Martin G; Sääksjärvi, Katri; Shipley, Martin J; Singh-Manoux, Archana; Gerszten, Robert E; Wang, Thomas J; Havulinna, Aki S; Würtz, Peter; Fischer, Krista; Demirkan, Ayse; Ikram, M Arfan; Amin, Najaf; Lehtimäki, Terho; Kähönen, Mika; Perola, Markus; Metspalu, Andres; Kangas, Antti J; Soininen, Pasi; Ala-Korpela, Mika; Vasan, Ramachandran S; Kivimäki, Mika; van Duijn, Cornelia M; Seshadri, Sudha; Salomaa, Veikko

    2018-06-01

    Metabolite, lipid, and lipoprotein lipid profiling can provide novel insights into mechanisms underlying incident dementia and Alzheimer's disease. We studied eight prospective cohorts with 22,623 participants profiled by nuclear magnetic resonance or mass spectrometry metabolomics. Four cohorts were used for discovery with replication undertaken in the other four to avoid false positives. For metabolites that survived replication, combined association results are presented. Over 246,698 person-years, 995 and 745 cases of incident dementia and Alzheimer's disease were detected, respectively. Three branched-chain amino acids (isoleucine, leucine, and valine), creatinine and two very low density lipoprotein (VLDL)-specific lipoprotein lipid subclasses were associated with lower dementia risk. One high density lipoprotein (HDL; the concentration of cholesterol esters relative to total lipids in large HDL) and one VLDL (total cholesterol to total lipids ratio in very large VLDL) lipoprotein lipid subclass was associated with increased dementia risk. Branched-chain amino acids were also associated with decreased Alzheimer's disease risk and the concentration of cholesterol esters relative to total lipids in large HDL with increased Alzheimer's disease risk. Further studies can clarify whether these molecules play a causal role in dementia pathogenesis or are merely markers of early pathology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Leucine Stimulates Insulin Secretion via Down-regulation of Surface Expression of Adrenergic α2A Receptor through the mTOR (Mammalian Target of Rapamycin) Pathway

    PubMed Central

    Yang, Jun; Dolinger, Michael; Ritaccio, Gabrielle; Mazurkiewicz, Joseph; Conti, David; Zhu, Xinjun; Huang, Yunfei

    2012-01-01

    The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients. PMID:22645144

  2. Reduced amino acids in the bovine uterine lumen of cloned versus in vitro fertilized pregnancies prior to implantation.

    PubMed

    Groebner, Anna E; Zakhartchenko, Valeri; Bauersachs, Stefan; Rubio-Aliaga, Isabel; Daniel, Hannelore; Büttner, Mathias; Reichenbach, Horst D; Meyer, Heinrich H D; Wolf, Eckhard; Ulbrich, Susanne E

    2011-10-01

    Fetal overgrowth and placental abnormalities frequently occur in pregnancies following somatic cell nuclear transfer (SCNT). An optimal intrauterine supply of amino acids (AA) is of specific importance for the development of the bovine preimplantation embryo, and a defective regulation of AA supply might contribute to pregnancy failures. Thus, we analyzed 41 AA and derivatives by liquid chromatography-tandem mass spectrometry in uterine flushings of day 18 pregnant heifers carrying in vitro fertilized (IVF) or SCNT embryos, which were cultured under identical conditions until transfer to recipients. The concentrations of several AA were reduced in samples from SCNT pregnancies: L-leucine (1.8-fold), L-valine (1.6-fold), L-isoleucine (1.9-fold), L-phenylalanine (1.5-fold), L-glutamic acid (3.9-fold), L-aspartic acid (4.0-fold), L-proline (2.6-fold), L-alanine (2.0-fold), L-arginine (2.5-fold), and L-lysine (1.9-fold). The endometrial transcript abundance for the AA transporter solute carrier family 7 (amino acid transporter, L-type), member 8 (SLC7A8) was also 2.4-fold lower in SCNT pregnancies. O-phosphoethanolamine (PetN) was 11-fold (p=0.0001) reduced in the uterine fluid of animals carrying an SCNT conceptus, pointing toward changes of the phospholipid metabolism. We provide evidence for disturbed embryo-maternal interactions in the preimplantation period after transfer of SCNT embryos, which may contribute to developmental abnormalities. These are unlikely related to the major embryonic pregnancy recognition signal interferon-tau, because similar activities were detected in uterine flushings of the SCNT and IVF groups.

  3. The radiolysis and radioracemization of amino acids on clays

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hall, H.; Chow, G.; Yi, L.; Lemmon, R. M.

    1985-01-01

    The effects of the surfaces of kaolinite and bentonite clays on the radiolysis and radioracemization of L-leucine and its hydrochloride salt have been investigated experimentally. L-leucine and its hydrochloride salt were deposited on the clays and the amino acid/clay preparations were irradiated by a Co-60 gamma-ray source which induced 2-89 percent radiolysis. The efficiency of radiolysis and radioracemization were measured using gas chromatography. Results were obtained for leucine in 0.1 M aqueous solution for comparison with the clay-deposted leucine and leucine hydrochloride. It is found that radiolysis and radioracemization in the samples occurred according to a pseudo-first-order rate law. Comparison of the specific rate constants showed that leucine and its hydrochloride salt were the most resistant to both radiolysis and radioracemization, followed by leucine and its hydrochloride salt on kaolin. Leucine and its HCl salt on bentonite, and leucine in aqueous solution were found to be the least resistant to radiolysis and radioracemization. The experimental results are intepreted with respect to the Vester-Ulbricht mechanism for the origin of optical activity.

  4. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    PubMed

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  5. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations.

    PubMed

    Chen, Tianlu; Ni, Yan; Ma, Xiaojing; Bao, Yuqian; Liu, Jiajian; Huang, Fengjie; Hu, Cheng; Xie, Guoxiang; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2016-02-05

    Recent studies revealed strong evidence that branched-chain and aromatic amino acids (BCAAs and AAAs) are closely associated with the risk of developing type 2 diabetes in several Western countries. The aim of this study was to evaluate the potential role of BCAAs and AAAs in predicting the diabetes development in Chinese populations. The serum levels of valine, leucine, isoleucine, tyrosine, and phenylalanine were measured in a longitudinal and a cross sectional studies with a total of 429 Chinese participants at different stages of diabetes development, using an ultra-performance liquid chromatography triple quadruple mass spectrometry platform. The alterations of the five AAs in Chinese populations are well in accordance with previous reports. Early elevation of the five AAs and their combined score was closely associated with future development of diabetes, suggesting an important role of these metabolites as early markers of diabetes. On the other hand, the five AAs were not as good as existing clinical markers in differentiating diabetic patients from their healthy counterparts. Our findings verified the close correlation of BCAAs and AAAs with insulin resistance and future development of diabetes in Chinese populations and highlighted the predictive value of these markers for future development of diabetes.

  6. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations

    PubMed Central

    Chen, Tianlu; Ni, Yan; Ma, Xiaojing; Bao, Yuqian; Liu, Jiajian; Huang, Fengjie; Hu, Cheng; Xie, Guoxiang; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2016-01-01

    Recent studies revealed strong evidence that branched-chain and aromatic amino acids (BCAAs and AAAs) are closely associated with the risk of developing type 2 diabetes in several Western countries. The aim of this study was to evaluate the potential role of BCAAs and AAAs in predicting the diabetes development in Chinese populations. The serum levels of valine, leucine, isoleucine, tyrosine, and phenylalanine were measured in a longitudinal and a cross sectional studies with a total of 429 Chinese participants at different stages of diabetes development, using an ultra-performance liquid chromatography triple quadruple mass spectrometry platform. The alterations of the five AAs in Chinese populations are well in accordance with previous reports. Early elevation of the five AAs and their combined score was closely associated with future development of diabetes, suggesting an important role of these metabolites as early markers of diabetes. On the other hand, the five AAs were not as good as existing clinical markers in differentiating diabetic patients from their healthy counterparts. Our findings verified the close correlation of BCAAs and AAAs with insulin resistance and future development of diabetes in Chinese populations and highlighted the predictive value of these markers for future development of diabetes. PMID:26846565

  7. The concentration of free amino acids in blood serum of dairy cows with primary ketosis.

    PubMed

    Marczuk, J; Brodzki, P; Brodzki, A; Kurek, Ł

    2018-03-01

    Ketosis is a common condition found in the initial stages of lactation in high-yielding dairy cows. The major cause of ketosis is a negative energy balance. During the energy deficiency, proteolysis processes develop parallel to lipolysis. During proteolysis, muscle tissue can be used as a source of amino acid. To date, the participation of amino acids in gluconeogenesis (glucogenic amino acids) and ketogenesis (ketogenic amino acids) has not been determined in detail. This paper presents the study on determination of the parameters of protein and free amino acid metabolism in blood serum of dairy cows with primary ketosis compared to healthy cows. This study contributes to better understanding of the role of amino acids in pathogenesis of ketosis. A total of 30 cows, divided into two groups: experimental (15 cows with ketosis) and control (15 healthy cows), were included in the study. The concentrations of glucose, β-hydroxybutyrate, total protein, albumin, urea, and free amino acids were determined in peripheral blood. Statistically significantly higher concentrations of glutamine, glutamic acid, isoleucine (p≤0.001), and tyrosine (p≤0.05) were found in cows with primary ketosis compared to healthy cows. Significant decrease in the concentrations of asparagine, histidine, methionine, and serine (p≤0.001), alanine, leucine, lysine and proline (p≤0.05) was observed. Significant increase of total ketogenic and glucogenic amino acids (p≤0.05), and an increased ratio of total ketogenic and glucogenic amino acids to total amino acids (p≤0.001) were noted in cows with ketosis. In our study, the changes, in particular observed in amino acid concentration in cows with primary ketosis, indicate its intensive use in both ketogenesis and gluconeogenesis processes. Therefore, a detailed understanding of the role that amino acids play in gluconeogenesis and ketogenesis will improve ketosis diagnostics and monitoring the course of a ketosis episode. Perhaps, the

  8. Leucine and Protein Metabolism in Obese Zucker Rats

    PubMed Central

    She, Pengxiang; Olson, Kristine C.; Kadota, Yoshihiro; Inukai, Ayami; Shimomura, Yoshiharu; Hoppel, Charles L.; Adams, Sean H.; Kawamata, Yasuko; Matsumoto, Hideki; Sakai, Ryosei; Lang, Charles H.; Lynch, Christopher J.

    2013-01-01

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA) dehydrogenase complex (BCKDC) activities. Male obese Zucker rats (11-weeks old) had increased body weight (BW, 53%), liver (107%) and fat (∼300%), but lower plantaris and gastrocnemius masses (−21–24%). Plasma BCAAs and BCKAs were elevated 45–69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%), leucine (Leu) turnover and proteolysis [35% per g fat free mass (FFM), urinary markers of proteolysis: 3-methylhistidine (183%) and 4-hydroxyproline (766%)] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (−47–66%). A process disposing of circulating BCAAs, protein synthesis, was increased 23–29% by obesity in whole-body (FFM corrected), gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193–418%) than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and

  9. Metabolic Mechanism for l-Leucine-Induced Metabolome To Eliminate Streptococcus iniae.

    PubMed

    Du, Chao-Chao; Yang, Man-Jun; Li, Min-Yi; Yang, Jun; Peng, Bo; Li, Hui; Peng, Xuan-Xian

    2017-05-05

    Crucial metabolites that modulate hosts' metabolome to eliminate bacterial pathogens have been documented, but the metabolic mechanisms are largely unknown. The present study explores the metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae in tilapia. GC-MS-based metabolomics was used to investigate the tilapia liver metabolic profile in the presence of exogenous l-leucine. Thirty-seven metabolites of differential abundance were determined, and 11 metabolic pathways were enriched. Pattern recognition analysis identified serine and proline as crucial metabolites, which are the two metabolites identified in survived tilapias during S. iniae infection, suggesting that the two metabolites play crucial roles in l-leucine-induced elimination of the pathogen by the host. Exogenous l-serine reduces the mortality of tilapias infected by S. iniae, providing a robust proof supporting the conclusion. Furthermore, exogenous l-serine elevates expression of genes IL-1β and IL-8 in tilapia spleen, but not TNFα, CXCR4 and Mx, suggesting that the metabolite promotes a phagocytosis role of macrophages, which is consistent with the finding that l-leucine promotes macrophages to kill both Gram-positive and Gram-negative bacterial pathogens. Therefore, the ability of phagocytosis enhanced by exogenous l-leucine is partly attributed to elevation of l-serine. These results demonstrate a metabolic mechanism by which exogenous l-leucine modulates tilapias' metabolome to enhance innate immunity and eliminate pathogens.

  10. Determination of branched chain amino acids, methionine, phenylalanine, tyrosine and alpha-keto acids in plasma and dried blood samples using HPLC with fluorescence detection.

    PubMed

    Kand'ár, Roman; Záková, Pavla; Jirosová, Jana; Sladká, Michaela

    2009-01-01

    The determination of branched chain amino acids [BCAA; valine (Val), leucine (Leu), isoleucine (Ile)], alpha-keto acids derived from BCAA [BCKA; alpha-ketoisovaleric acid (KIV), alpha-ketoisocaproic acid (KIC), alpha-ketomethylvaleric acid (KMV)], methionine (Met), phenylalanine (Phe) and tyrosine (Tyr) is currently the most reliable approach for the diagnosis of maple syrup urine disease (MSUD), hypermethioninemia, phenylketonuria (PKU) and tyrosinemia. The aim of this study was to develop rapid and simple HPLC methods for measurement of BCAA, Met, Phe, Tyr and BCKA in plasma and dried blood samples. Samples of peripheral venous blood with EDTA as anticoagulant were obtained from a group of healthy blood donors (n=70, 35 females, 27-41 years of age and 35 males, 28-43 years of age). Blood-spot samples from a group of newborns (n=80, 40 girls and 40 boys 3-5 days of age) were collected onto #903 Specimen Collection Paper and allowed to dry for at least 24 h before analysis. Prior to separation, the amino acids (AA) were derivatized with o-phthaldialdehyde (OPA) and BCKA with o-phenylenediamine (OPD). Reverse phase column chromatography (LiChroCart 125-4 Purospher RP-18e, 5 microm) was used for separation and fluorescence detection used to monitoring of effluent. For AA analysis, 25 mmol/L sodium hydrogenphosphate-methanol (90:10, v/v), pH 6.5+/-0.1 was used as mobile phase A and 100% methanol was used as mobile phase B. Measurement of BCKA used a mixture of methanol and deionized water (55:45, v/v) as mobile phase A and mobile phase B consisted of 100% methanol. Analytical performance of these methods was satisfactory for the determination of all AA and BCKA. The intra-assay and inter-assay coefficients of variation were below 10% and recovery ranged from 90%-110%. We have developed simple, rapid and selective HPLC methods with fluorescence detection for the determination of BCAA, Met, Phe, Tyr and BCKA in plasma and dried blood samples.

  11. Site reactivity in the free radicals induced damage to leucine residues: a theoretical study.

    PubMed

    Medina, M E; Galano, A; Alvarez-Idaboy, J R

    2015-02-21

    Several recent computational studies have tried to explain the observed selectivity in radical damage to proteins. In this work we use Density Functional Theory and Transition State Theory including tunnelling corrections, reaction path degeneracy, the effect of diffusion, and the role of free radicals to get further insights into this important topic. The reaction between a leucine derivative and free radicals of biological significance, in aqueous and lipid media, has been investigated. Both thermochemical and kinetic analyses, in both hydrophilic and hydrophobic environments, have been carried out. DPPH, ˙OOH, ˙OOCH3, ˙OOCH2Cl, ˙OOCHCl2 and ˙OOCHCH2 radicals do not react with the target molecule. The reactions are proposed to be kinetically controlled. The leucine gamma site was the most reactive for the reactions with ˙N3, ˙OOCCl3, ˙OCH3, ˙OCH2Cl, and ˙OCHCl2 radicals, with rate constants equal to 1.97 × 10(5), 3.24 × 10(4), 6.68 × 10(5), 5.98 × 10(6) and 8.87 × 10(8) M(-1) s(-1), respectively, in aqueous solution. The ˙Cl, ˙OH and ˙OCCl3 radicals react with leucine at the beta, gamma, and delta positions at rates close to the diffusion limit with the alpha position which is the slowest path and the most thermodynamically favored. The presented results confirm that the Bell-Evans-Polanyi principle does not apply for the reactions between amino acid residues and free radicals. Regarding the influence of the environment on the reactivity of the studied series of free radicals towards leucine residues, it is concluded that hydrophilic media slightly lower the reactivity of the studied radicals, compared to hydrophobic ones, albeit the trends in reactivity are very similar.

  12. Uptake and release of amino acids in the fetal-placental unit in human pregnancies.

    PubMed

    Holm, Maia Blomhoff; Bastani, Nasser Ezzatkhah; Holme, Ane Moe; Zucknick, Manuela; Jansson, Thomas; Refsum, Helga; Mørkrid, Lars; Blomhoff, Rune; Henriksen, Tore; Michelsen, Trond Melbye

    2017-01-01

    The current concepts of human fetal-placental amino acid exchange and metabolism are mainly based on animal-, in vitro- and ex vivo models. We aimed to determine and assess the paired relationships between concentrations and arteriovenous differences of 19 amino acids on the maternal and fetal sides of the human placenta in a large study sample. This cross-sectional in vivo study included 179 healthy women with uncomplicated term pregnancies. During planned cesarean section, we sampled blood from incoming and outgoing vessels on the maternal (radial artery and uterine vein) and fetal (umbilical vein and artery) sides of the placenta. Amino acid concentrations were measured by liquid chromatography-tandem mass spectrometry. We calculated paired arteriovenous differences and performed Wilcoxon signed-rank tests and Spearman's correlations. In the umbilical circulation, we observed a positive venoarterial difference (fetal uptake) for 14 amino acids and a negative venoarterial difference (fetal release) for glutamic acid (p<0.001). In the maternal circulation, we observed a positive arteriovenous difference (uteroplacental uptake) for leucine (p = 0.005), isoleucine (p = 0.01), glutamic acid (p<0.001) and arginine (p = 0.04) and a negative arteriovenous difference (uteroplacental release) for tyrosine (p = 0.002), glycine (p = 0.01) and glutamine (p = 0.02). The concentrations in the maternal artery and umbilical vein were correlated for all amino acids except tryptophan, but we observed no correlations between the uteroplacental uptake and the fetal uptake or the umbilical vein concentration. Two amino acids showed a correlation between the maternal artery concentration and the fetal uptake. Our human in vivo study expands the current insight into fetal-placental amino acid exchange, and discloses some differences from what has been previously described in animals. Our findings are consistent with the concept that the fetal supply of amino acids in the human is the

  13. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep

    PubMed Central

    Rozance, Paul J.; Thorn, Stephanie R.; Friedman, Jacob E.; Hay, William W.

    2012-01-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion. PMID:22649066

  14. Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model

    PubMed Central

    Piccolo, Brian D.; Graham, James L.; Stanhope, Kimber L.; Fiehn, Oliver; Havel, Peter J.

    2016-01-01

    Elevations of plasma concentrations of branched-chain amino acids (BCAAs) are observed in human insulin resistance and type 2 diabetes mellitus (T2DM); however, there has been some controversy with respect to the passive or causative nature of the BCAA phenotype. Using untargeted metabolomics, plasma BCAA and other metabolites were assessed in lean control Sprague-Dawley rats (LC) and temporally during diabetes development in the UCD-T2DM rat model, i.e., prediabetic (PD) and 2 wk (D2W), 3 mo (D3M), and 6 mo (D6M) post-onset of diabetes. Plasma leucine, isoleucine, and valine concentrations were elevated only in D6M rats compared with D2W rats (by 28, 29, and 30%, respectively). This was in contrast to decreased plasma concentrations of several other amino acids in D3M and/or D6M relative to LC rats (Ala, Arg, Glu, Gln, Met, Ser, Thr, and Trp). BCAAs were positively correlated with fasting glucose and negatively correlated with plasma insulin, total body weight, total adipose tissue weight, and gastrocnemius muscle weight in the D3M and D6M groups. Multivariate analysis revealed that D3M and D6M UCD-T2DM rats had lower concentrations of amino acids, amino acid derivatives, 1,5-anhydroglucitol, and conduritol-β-opoxide and higher concentrations of uronic acids, pantothenic acids, aconitate, benzoic acid, lactate, and monopalmitin-2-glyceride relative to PD and D2W UCD-T2DM rats. The UCD-T2DM rat does not display elevated plasma BCAA concentrations until 6 mo post-onset of diabetes. With the acknowledgement that this is a rodent model of T2DM, the results indicate that elevated plasma BCAA concentrations are not necessary or sufficient to elicit an insulin resistance or T2DM onset. PMID:27094034

  15. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION : DELETION OF INDIVIDUAL AMINO ACIDS FROM GROWTH MIXTURE OF TEN ESSENTIAL AMINO ACIDS. SIGNIFICANT CHANGES IN URINARY NITROGEN.

    PubMed

    Robscheit-Robbins, F S; Miller, L L; Whipple, G H

    1947-02-28

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  16. Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp.

    PubMed

    Chen, Wen Ming; Sheu, Fu Sian; Sheu, Shih Yi

    2011-09-10

    A brownish yellow pigmented bacterial strain, designated antisso-27, was recently isolated from a water area of saltpan in Southern Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain antisso-27 belongs the genus Aquimarina in the family Flavobacteriacea and its only closest neighbor is Aquimarina spongiae (96.6%). Based on screening for algicidal activity, strain antisso-27 exhibits potent activity against the toxic cyanobacterium Microcystis aeruginosa. Both the strain antisso-27 bacterial culture and its culture filtrate show algicidal activity against the toxic cyanobacterium, indicating that an algicidal substance is released from strain antisso-27. The algicidal activity of strain antisso-27 occurs during the late stationary phase of bacterial growth. Strain antisso-27 can synthesize an algicidal protein with a molecular mass of 190 kDa, and its isoelectric point is approximately 9.4. This study explores the nature of this algicidal protein such as L-amino acid oxidase with broad substrate specificity. The enzyme is most active with L-leucine, L-isoleucine, L-methionine and L-valine and the hydrogen peroxide generated by its catalysis mediates algicidal activity. This is the first report on an Aquimarina strain algicidal to the toxic M. aeruginosa and the algicidal activity is generated through its enzymatic activity of L-amino acid oxidase. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion.

    PubMed

    Anderson, Kristin A; Huynh, Frank K; Fisher-Wellman, Kelsey; Stuart, J Darren; Peterson, Brett S; Douros, Jonathan D; Wagner, Gregory R; Thompson, J Will; Madsen, Andreas S; Green, Michelle F; Sivley, R Michael; Ilkayeva, Olga R; Stevens, Robert D; Backos, Donald S; Capra, John A; Olsen, Christian A; Campbell, Jonathan E; Muoio, Deborah M; Grimsrud, Paul A; Hirschey, Matthew D

    2017-04-04

    Sirtuins are NAD + -dependent protein deacylases that regulate several aspects of metabolism and aging. In contrast to the other mammalian sirtuins, the primary enzymatic activity of mitochondrial sirtuin 4 (SIRT4) and its overall role in metabolic control have remained enigmatic. Using a combination of phylogenetics, structural biology, and enzymology, we show that SIRT4 removes three acyl moieties from lysine residues: methylglutaryl (MG)-, hydroxymethylglutaryl (HMG)-, and 3-methylglutaconyl (MGc)-lysine. The metabolites leading to these post-translational modifications are intermediates in leucine oxidation, and we show a primary role for SIRT4 in controlling this pathway in mice. Furthermore, we find that dysregulated leucine metabolism in SIRT4KO mice leads to elevated basal and stimulated insulin secretion, which progressively develops into glucose intolerance and insulin resistance. These findings identify a robust enzymatic activity for SIRT4, uncover a mechanism controlling branched-chain amino acid flux, and position SIRT4 as a crucial player maintaining insulin secretion and glucose homeostasis during aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Regulation of transmural transport of amino acid/metal conjugates by dietary calcium in crustacean digestive tract.

    PubMed

    Abdel-Malak, Rania; Ahearn, Gregory A

    2014-03-01

    Effects of luminal Ca(2+) and Mn(2+) on transmural mucosal to serosal (MS) transport of (3) H-L-leucine were characterized in the isolated and perfused intestine of the American lobster, Homarus americanus. (3) H-L-leucine MS transport in the presence of 20 µM Mn(2+) was a sigmoidal function of luminal amino acid concentration, following the Hill equation for multisite cooperative, carrier-mediated, transport. Luminal Ca(2+) was a non-competitive inhibitor of Mn(2+) -stimulated (3) H-L-leucine MS flux. Amino acid transport was hyperbolically stimulated by luminal Ca(2+) or Mn(2+). During 20 µM Mn(2+) -stimulation of (3) H-L-leucine MS flux, addition of 25 mM Ca(2+) strongly reduced amino acid transport Jmax , without affecting amino acid binding properties. Hyperbolic luminal Mn(2+) stimulation of 20 µM (3) H-L-leucine MS flux was also strongly inhibited by 25 mM luminal Ca(2+) , significantly reducing 20 µM (3) H-L-leucine Jmax . Increasing the luminal concentration of verapamil, a calcium channel blocker, significantly increased MS transport of 20 µM (3) H-L-leucine in the presence of 100 nM Mn(2+) by reducing diffusional Ca(2+) uptake into intestinal epithelial cells through verapamil-sensitive channels. A model is proposed supporting the concept of molecular mimicry, whereby (3) H-L-leucine enters lobster intestinal epithelial cells by one or more amino acid-specific transporters and by a dipeptide-like transporter that is capable of binding and transporting peptide molecular mimics (bis-complexes) between Ca(2+) or Mn(2+) and (3) H-L-leucine using the membrane potential as a major driving force for the transport event. According to the model, Ca(2+) entry through apical Ca(2+) channels regulates the magnitude of the membrane potential and therefore the size of the driving force for bis-complex uptake. © 2013 Wiley Periodicals, Inc.

  19. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine

    PubMed Central

    Jando, Julia; Camargo, Simone M. R.; Herzog, Brigitte

    2017-01-01

    Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary

  20. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species

    PubMed Central

    Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela

    2017-01-01

    Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes—Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress. PMID:28542385

  1. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species.

    PubMed

    Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela

    2017-01-01

    Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes-Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress.

  2. Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development.

    PubMed

    Jang, Yu Kyung; Jung, Eun Sung; Lee, Hyun-Ah; Choi, Doil; Lee, Choong Hwan

    2015-11-04

    Non-targeted metabolomic analysis of hot pepper (Capsicum annuum "CM334") was performed at six development stages [16, 25, 36, 38, 43, and 48 days post-anthesis (DPA)] to analyze biochemical changes. Distinct distribution patterns were observed in the changes of metabolites, gene expressions, and antioxidant activities by early (16-25 DPA), breaker (36-38 DPA), and later (43-48 DPA) stages. In the early stages, glycosides of luteolin, apigenin, and quercetin, shikimic acid, γ-aminobutyric acid (GABA), and putrescine were highly distributed but gradually decreased over the breaker stage. At later stages, leucine, isoleucine, proline, phenylalanine, capsaicin, dihydrocapsaicin, and kaempferol glycosides were significantly increased. Pathway analysis revealed metabolite-gene interactions in the biosynthesis of amino acids, capsaicinoids, fatty acid chains, and flavonoids. The changes in antioxidant activity were highly reflective of alterations in metabolites. The present study could provide useful information about nutrient content at each stage of pepper cultivation.

  3. Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental–Computational Study

    DOE PAGES

    Song, Lingshuang; Yang, Lin; Meng, Jie; ...

    2016-12-29

    Here, we present a joint experimental-computational study to quantitatively describe the thermodynamics of hydrophobic leucine amino acids in aqueous solution. X-ray scattering data were acquired at a series of solute and salt concentrations to effectively measure inter-leucine interactions, indicating that a major scattering peak is observed consistently at q = 0.83 Å -1. Atomistic molecular dynamics simulations were then performed and compared with the scattering data, achieving high consistency at both small and wider scattering angles (q = 0$-$1.5 Å -1). This experimental-computational consistence enables a first glimpse of the leucineleucine interacting landscape, where two leucine molecules are aligned mostlymore » in a parallel fashion, as opposed to anti-parallel, but also allows us to derive effective leucine-leucine interactions in solution. Collectively, this combined approach of employing experimental scattering and molecular simulation enables a quantitative characterization on effective inter-molecular interactions of hydrophobic amino acids, critical for protein function and dynamics such as protein folding.« less

  4. Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental–Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Lingshuang; Yang, Lin; Meng, Jie

    Here, we present a joint experimental-computational study to quantitatively describe the thermodynamics of hydrophobic leucine amino acids in aqueous solution. X-ray scattering data were acquired at a series of solute and salt concentrations to effectively measure inter-leucine interactions, indicating that a major scattering peak is observed consistently at q = 0.83 Å -1. Atomistic molecular dynamics simulations were then performed and compared with the scattering data, achieving high consistency at both small and wider scattering angles (q = 0$-$1.5 Å -1). This experimental-computational consistence enables a first glimpse of the leucineleucine interacting landscape, where two leucine molecules are aligned mostlymore » in a parallel fashion, as opposed to anti-parallel, but also allows us to derive effective leucine-leucine interactions in solution. Collectively, this combined approach of employing experimental scattering and molecular simulation enables a quantitative characterization on effective inter-molecular interactions of hydrophobic amino acids, critical for protein function and dynamics such as protein folding.« less

  5. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid.

    PubMed Central

    Burstein, Y; Kantour, F; Schechter, I

    1976-01-01

    Analyses of amino-acid sequences of the total cell-free products programmed by the mRNA of MOPC-104E gamma light (L)-chain show that over 95% of the products have sequences of a distinct protein that correspond to the L-chain precursor. In this precursor an extra piece is coupled to the NH2-terminus of the mature L-chain. Analyses of products labeled with [3H]alanine, [3H]leucine, and [3H]proline demonstrate that the extra piece is composed of at least 18 residues. Analyses of [35S]methione-labeled product indicate that the extra piece may contain an additional NH2-terminal methionine, which is detected in about 10% of the molecules. Partial recovery of the NJ2-terminal methionine (alanine, leucine, and proline are recovered in yields close to theoretical, greater than 95%) suggests that it is the initiator methionine, which is known to be short lived in eukaryotes due to rapid hydrolysis. Thus, the extra piece seems to be 19 residues in length, and it contains one methionine at the NH2-terminus, three alanines at positions 2, 12, and 17, and five leucines at positions 6, 8, 10, 11, and 13. The close gathering of leucine residues, as well as their abundance (26%), suggest that the extra piece would be quite hydrophobic. Hydrophobicity seems to be a general property of the extra piece, since similar clusters of leucine were found in the precursors of 3 KL-chains (Burstein, Y. & Schechter, I. (1976) Biochem. J. 157, 145-151). The NH2-terminus of the mature MOPC-104E gamma L-chain is blocked by pyroglutamic acid. The fact that in the precursor a peptide segment precedes this NH2-terminus establishes that pyroglutamic acid is not the initiator residue for synthesis of the L-chain. Apparently, the pyroglutamic acid is formed by cyclization of glutamic acid or glutamine during cleavage of the extra piece to yield the mature L-chain. Images PMID:822420

  6. Characteristics of a leucine aminoacyl transfer RNA synthetase from Tritrichomonas augusta.

    PubMed

    Horner, J; Champney, W S; Samuels, R

    1991-04-01

    This study has investigated the characteristics of a leucine aminoacyl transfer RNA synthetase enzyme from Tritrichomonas augusta. Differential centrifugation and DEAE-cellulose column chromatography were used for partial enzyme purification. The column purification increased the synthetase activity 125-fold over the unfractionated cell extract. The conditions for maximum [3H] leucine charging were 37 degrees C for 20 min, with protein at 180 micrograms ml-1 using yeast leucine tRNA as an acceptor. The optimal reaction conditions were 14 mM-Mg acetate, 3 mM-ATP, 3 mM-spermidine and 5.5 mM-putrescine. Acceptor activity with T. augusta transfer RNA was 8-fold higher than with yeast transfer RNA and 25-fold higher than with Escherichia coli transfer RNA. The partially purified enzyme fraction had comparable changing activities for both leucine and valine.

  7. Metabonomics study of the effects of pretreatment with glycyrrhetinic acid on mesaconitine-induced toxicity in rats.

    PubMed

    Sun, Bo; Zhang, Ming; Zhang, Qi; Ma, Kunpeng; Li, Haijing; Li, Famei; Dong, Fangting; Yan, Xianzhong

    2014-07-03

    Aconitum carmichaelii Debx. (Fuzi), a commonly use traditional Chinese medicine (TCM), has often been used in combination with Rhizoma Glycyrrhizae (Gancao) to reduce its toxicity due to diester diterpenoid alkaloids aconitine, mesaconitine, and hypaconitine. However, the mechanism of detoxication is still unclear. Glycyrrhetinic acid (GA) is the metabolite of glycyrrhizinic acid (GL), the major component of Gancao. In present study, the effect of GA on the changes of metabolic profiles induced by mesaconitine was investigated using NMR-based metabolomic approaches. Fifteen male Wistar rats were divided into a control group, a group administered mesaconitine alone, and a group administered mesaconitine with one pretreatment with GA. Their urine samples were used for NMR spectroscopic metabolic profiling. Statistical analyses such as orthogonal projections to latent structures-discriminant analysis (OPLS-DA), t-test, hierarchical cluster, and pathway analysis were used to detect the effects of pretreatment with GA on mesaconitine-induced toxicity. The OPLS-DA score plots showed the metabolic profiles of GA-pretreated rats apparently approach to those of normal rats compared to mesaconitine-induced rats. From the t-test and boxplot results, the concentrations of leucine/isoleucine, lactate, acetate, succinate, trimethylamine (TMA), dimethylglycine (DMG), 2-oxo-glutarate, creatinine/creatine, glycine, hippurate, tyrosine and benzoate were significantly changed in metabolic profiles of mesaconitine-induced rats. The disturbed metabolic pathways include amino acid biosynthesis and metabolism. GA-pretreatment can mitigate the metabolic changes caused by mesaconitine-treatment on rats, indicating that prophylaxis with GA could reduce the toxicity of mesaconitine at the metabolic level. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Consuming Lower-Protein Nutrition Bars with Added Leucine Elicits Postprandial Changes in Appetite Sensations in Healthy Women.

    PubMed

    Bolster, Douglas R; Rahn, Maike; Kamil, Alison G; Bristol, Lindsey T; Goltz, Shellen R; Leidy, Heather J; Blaze Mt, Melvin; Nunez, Michael A; Guo, Elizabeth; Wang, Jianquan; Harkness, Laura S

    2018-04-20

    Higher-protein meals (>25 g protein/meal) have been associated with enhanced satiety but the role of amino acids is unclear. Leucine has been proposed to stimulate satiety in rodents but has not been assessed in humans. We assessed the acute effects of lower-protein nutrition bars, enhanced with a leucine peptide (LP), on postprandial appetite sensations in combination with plasma leucine and peptide YY (PYY) in healthy women. Utilizing a double-blind randomized crossover design, 40 healthy women [28 ± 7.5 y; body mass index (BMI, in kg/m2): 23.5 ± 2.4] consumed the following isocaloric (180 kcal) pre-loads on 3 separate visits: control bar [9 g protein with 0 g added LP (0-g LP)] or treatment bars [11 g protein with 2 g added LP (2-g LP) or 13 g protein with 3 g added LP (3-g LP)]. Pre- and postprandial hunger, desire to eat, prospective food consumption (PFC), fullness, and plasma leucine were assessed every 30 min for 240 min. Plasma PYY was assessed hourly for 240 min (n = 24). Main effects of time (P < 0.0001) and treatment (P < 0.03) were detected for postprandial hunger, desire to eat, PFC, and fullness. Post hoc analyses revealed that the 2-g and 3-g LP bars elicited greater increases in fullness and greater decreases in PFC compared with 0-g LP (all, P < 0.05) with no differences between the 2-g and 3-g LP bars. The 2-g bar elicited greater decreases in hunger and desire to eat compared with the 0-g LP bar (both, P ≤ 0.01), whereas 3-g LP did not. Appetite incremental areas under the curves (iAUCs) and PYY outcomes were not different between bars. A treatment × time interaction was detected for plasma leucine with increases occurring in a leucine-dose-dependent manner (P < 0.0001). Despite the dose-dependent increases in plasma leucine following the consumption of lower-protein bars enhanced with LP, only the 2-g LP bar elicited consistent postprandial changes in select appetite sensations compared with the 0-g LP bar. This study was

  9. Metabolomic Profiling of Post-Mortem Brain Reveals Changes in Amino Acid and Glucose Metabolism in Mental Illness Compared with Controls.

    PubMed

    Zhang, Rong; Zhang, Tong; Ali, Ali Muhsen; Al Washih, Mohammed; Pickard, Benjamin; Watson, David G

    2016-01-01

    Metabolomic profiling was carried out on 53 post-mortem brain samples from subjects diagnosed with schizophrenia, depression, bipolar disorder (SDB), diabetes, and controls. Chromatography on a ZICpHILIC column was used with detection by Orbitrap mass spectrometry. Data extraction was carried out with m/z Mine 2.14 with metabolite searching against an in-house database. There was no clear discrimination between the controls and the SDB samples on the basis of a principal components analysis (PCA) model of 755 identified or putatively identified metabolites. Orthogonal partial least square discriminant analysis (OPLSDA) produced clear separation between 17 of the controls and 19 of the SDB samples (R2CUM 0.976, Q2 0.671, p-value of the cross-validated ANOVA score 0.0024). The most important metabolites producing discrimination were the lipophilic amino acids leucine/isoleucine, proline, methionine, phenylalanine, and tyrosine; the neurotransmitters GABA and NAAG and sugar metabolites sorbitol, gluconic acid, xylitol, ribitol, arabinotol, and erythritol. Eight samples from diabetic brains were analysed, six of which grouped with the SDB samples without compromising the model (R2 CUM 0.850, Q2 CUM 0.534, p-value for cross-validated ANOVA score 0.00087). There appears on the basis of this small sample set to be some commonality between metabolic perturbations resulting from diabetes and from SDB.

  10. Leucine and HMB differentially modulate proteasome system in skeletal muscle under different sarcopenic conditions.

    PubMed

    Baptista, Igor L; Silva, Willian J; Artioli, Guilherme G; Guilherme, Joao Paulo L F; Leal, Marcelo L; Aoki, Marcelo S; Miyabara, Elen H; Moriscot, Anselmo S

    2013-01-01

    In the present study we have compared the effects of leucine supplementation and its metabolite β-hydroxy-β-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB.

  11. Leucine and HMB Differentially Modulate Proteasome System in Skeletal Muscle under Different Sarcopenic Conditions

    PubMed Central

    Baptista, Igor L.; Silva, Willian J.; Artioli, Guilherme G.; Guilherme, Joao Paulo L. F.; Leal, Marcelo L.; Aoki, Marcelo S.; Miyabara, Elen H.; Moriscot, Anselmo S.

    2013-01-01

    In the present study we have compared the effects of leucine supplementation and its metabolite β-hydroxy-β-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB. PMID:24124592

  12. Leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent regeneration.

    PubMed

    Takayama, Kazuya; Muto, Akihiko; Kikuchi, Yutaka

    2018-05-29

    In animal regeneration, control of position-dependent cell proliferation is crucial for the complete restoration of patterned appendages in terms of both, shape and size. However, detailed mechanisms of this process are largely unknown. In this study, we identified leucine/glutamine and v-ATPase/lysosomal acidification, via mechanistic target of rapamycin complex 1 (mTORC1) activation, as effectors of amputation plane-dependent zebrafish caudal fin regeneration. mTORC1 activation, which functions in cell proliferation, was regulated by lysosomal acidification possibly via v-ATPase activity at 3 h post amputation (hpa). Inhibition of lysosomal acidification resulted in reduced growth factor-related gene expression and suppression of blastema formation at 24 and 48 hpa, respectively. Along the proximal-distal axis, position-dependent lysosomal acidification and mTORC1 activation were observed from 3 hpa. We also report that Slc7a5 (L-type amino acid transporter), whose gene expression is position-dependent, is necessary for mTORC1 activation upstream of lysosomal acidification during fin regeneration. Furthermore, treatment with leucine and glutamine, for both proximal and distal fin stumps, led to an up-regulation in cell proliferation via mTORC1 activation, indicating that leucine/glutamine signaling possesses the ability to change the position-dependent regeneration. Our findings reveal that leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent zebrafish fin regeneration.

  13. Diet quality influences isotopic discrimination among amino acids in an aquatic vertebrate

    PubMed Central

    Chikaraishi, Yoshito; Steffan, Shawn A; Takano, Yoshinori; Ohkouchi, Naohiko

    2015-01-01

    Stable nitrogen isotopic composition of amino acids (δ15NAA) has recently been employed as a powerful tool in ecological food web studies, particularly for estimating the trophic position (TP) of animal species in food webs. However, the validity of these estimates depends on the consistency of the trophic discrimination factor (TDF; - Δδ15NAA at each shift of trophic level) among a suite of amino acids within the tissues of consumer species. In this study, we determined the TDF values of amino acids in tadpoles (the Japanese toad, Bufo japonicus) reared exclusively on one of three diets that differed in nutritional quality. The diets were commercial fish-food pellets (plant and animal biomass), bloodworms (animal biomass), and boiled white rice (plant carbohydrate), representing a balanced, protein-rich, and protein-poor diet, respectively. The TDF values of two “source amino acids” (Src-AAs), methionine and phenylalanine, were close to zero (0.3–0.5‰) among the three diets, typifying the values reported in the literature (∼0.5‰ and ∼0.4‰, respectively). However, TDF values of “trophic amino acids” (Tr-AAs) including alanine, valine, leucine, isoleucine, and glutamic acid varied by diet: for example, the glutamic acid TDF was similar to the standard value (∼8.0‰) when tadpoles were fed either the commercial pellets (8.0‰) or bloodworms (7.9‰), but when they were fed boiled rice, the TDF was significantly reduced (0.6‰). These results suggest that a profound lack of dietary protein may alter the TDF values of glutamic acid (and other Tr-AAs and glycine) within consumer species, but not the two Src-AAs (i.e., methionine and phenylalanine). Knowledge of how a nutritionally poor diet can influence the TDF of Tr- and Src-AAs will allow amino acid isotopic analyses to better estimate TP among free-roaming animals. PMID:26045955

  14. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  15. 21 CFR 582.5406 - Leucine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Leucine. 582.5406 Section 582.5406 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  16. 21 CFR 582.5406 - Leucine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Leucine. 582.5406 Section 582.5406 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  17. 21 CFR 582.5406 - Leucine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Leucine. 582.5406 Section 582.5406 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  18. 21 CFR 582.5406 - Leucine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Leucine. 582.5406 Section 582.5406 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  19. 21 CFR 582.5406 - Leucine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Leucine. 582.5406 Section 582.5406 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  20. The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa.

    PubMed

    Aguilar, J A; Zavala, A N; Díaz-Pérez, C; Cervantes, C; Díaz-Pérez, A L; Campos-García, J

    2006-03-01

    Evidence suggests that the Pseudomonas aeruginosa PAO1 gnyRDBHAL cluster, which is involved in acyclic isoprenoid degradation (A. L. Díaz-Pérez, N. A. Zavala-Hernández, C. Cervantes, and J. Campos-García, Appl. Environ. Microbiol. 70:5102-5110, 2004), corresponds to the liuRABCDE cluster (B. Hoschle, V. Gnau, and D. Jendrossek, Microbiology 151:3649-3656, 2005). A liu (leucine and isovalerate utilization) homolog cluster was found in the PAO1 genome and is related to the catabolism of acyclic monoterpenes of the citronellol family (AMTC); it was named the atu cluster (acyclic terpene utilization), consisting of the atuCDEF genes and lacking the hydroxymethyl-glutaryl-coenzyme A (CoA) lyase (HMG-CoA lyase) homolog. Mutagenesis of the atu and liu clusters showed that both are involved in AMTC and leucine catabolism by encoding the enzymes related to the geranyl-CoA and the 3-methylcrotonyl-CoA pathways, respectively. Intermediary metabolites of the acyclic monoterpene pathway, citronellic and geranic acids, were accumulated, and leucine degradation rates were affected in both atuF and liuD mutants. The alpha subunit of geranyl-CoA carboxylase and the alpha subunit of 3-methylcrotonyl-CoA carboxylase (alpha-MCCase), encoded by the atuF and liuD genes, respectively, were both induced by citronellol, whereas only the alpha-MCCase subunit was induced by leucine. Both citronellol and leucine also induced a LacZ transcriptional fusion at the liuB gene. The liuE gene encodes a probable hydroxy-acyl-CoA lyase (probably HMG-CoA lyase), an enzyme with bifunctional activity that is essential for both AMTC and leucine degradation. P. aeruginosa PAO1 products encoded by the liuABCD cluster showed a higher sequence similarity (77.2 to 79.5%) with the probable products of liu clusters from several Pseudomonas species than with the atuCDEF cluster from PAO1 (41.5%). Phylogenetic studies suggest that the atu cluster from P. aeruginosa could be the result of horizontal transfer