Science.gov

Sample records for acoustic 4f imaging

  1. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology.

    PubMed

    Wei, Yadong; Tang, Zhilie; Zhang, Hanchao; He, Yongheng; Liu, Haifeng

    2008-04-14

    In this paper we present a new high-contrast photoacoustic tomography (PAT) imaging system using a 4f acoustic lens, a 64-element linear transducer array and peak-hold technology. This PAT imaging system has been developed to obtain three-dimensional (3D) PAT images of experimental samples. By utilizing a 4f acoustic lens, the photoacoustic (PA) signals generated from the sample are directly imaged on the imaging plane and collected by the 64-element linear transducer array, which changes them into the corresponding electronic signals. Then we can get one-dimensional (1D) images from the electronic signals using a peak detection-and-hold circuit. After vertical scanning with a stepping motor on the imaging plane, a 2D PA image of the sample is successfully obtained. Combined with the time-resolved technique, we can then get 3D PAT images. The results show that the reconstructed images agree well with the original samples. PMID:18542633

  2. Acoustic wavefront imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, J. P.; Hauser, M. R.

    We introduce a new class of experiments which provide graphic insights into the propagation of acoustic waves in anisotropic media. Simply stated, we have devised a means of observing the expanding acoustic wavefront from a point disturbance in a solid. The data may be viewed as a movie or a series of snapshots. The observed wavefronts represent the group-velocity surfaces of acoustic waves, which reflect the basic elastic anisotropy of the solid. The technique has been applied to coherent acoustic waves with frequencies in the megahertz range (at ambient temperatures) and to incoherent heat pulses in the hundred-gigahertz range (at liquid-helium temperatures). In this article, we first provide a pedagogical introduction to wave propagation in elastically anisotropic media, reviewing some early methods for visualizing acoustic waves. Next, we describe the acoustic wavefront imaging method and give representative results in crystals and composite materials. Finally, we show how this method relates to recent advances in phonon imaging and internal diffraction of ultrasound.

  3. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  4. Electromagnetic acoustic imaging.

    PubMed

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications. PMID:23357910

  5. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 ; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  6. Airborne synthetic aperture acoustic imaging.

    PubMed

    Soumekh, M

    1997-01-01

    This paper presents a system model and inversion for airborne synthetic aperture acoustic (SAA) imaging. The system model accurately represents the intercation of the acoustic source and the target region at near range values. Moreover, the model incorporates the fact that the relative speed of the vehicle's (transmitter/receiver) with respect to the target region is comparable to the acoustic wave propagation speed. The inversion utilizes the principle of spectral decomposition of spherical phase functions to develop a wavefront reconstruction method from SAA data. Processing issues and selection of appropriate acoustic FM-CW sources are discussed. Results are provided that exhibit the superior accuracy of the proposed SAA system model and inversion over their synthetic aperture radar (SAR) counterpart in which the vehicle's speed is assumed to be much smaller than the wave propagation speed. PMID:18282912

  7. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  8. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  9. An Opto-VLSI-based reconfigurable optical adddrop multiplexer employing an off-axis 4-f imaging system.

    PubMed

    Shen, Mingya; Xiao, Feng; Ahderom, Selam; Alameh, Kamal

    2009-08-01

    A novel reconfigurable optical add-drop multiplexer (ROADM) structure is proposed and demonstrated experimentally. The ROADM structure employs two arrayed waveguide gratings (AWGs), an array of optical fiber pairs, an array of 4-f imaging microlenses that are offset in relation to the axis of symmetry of the fiber pairs, and a reconfigurable Opto-VLSI processor that switches various wavelength channels between the fiber pairs to achieve add or drop multiplexing. Experimental results are shown, which demonstrate the principle of add/drop multiplexing with crosstalk of less than -27dB and insertion loss of less than 8dB over the Cband for drop and through operation modes. PMID:19654810

  10. Reflective echo tomographic imaging using acoustic beams

    DOEpatents

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  11. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  12. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  13. Pulsed-Source Interferometry in Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  14. Gauge Theory Formulation of Acoustical Imaging

    NASA Astrophysics Data System (ADS)

    Gan, W. S.

    There are many similarities between electromagnetic waves and sound waves. Maxwell's equation is the oldest gauge theory. Three main aspects of gauge theory are considered: (1) symmetries, (2) gauge invariance, (3) covariant form of the wave equation. Two of my discoveries mentioned in my earlier papers are revisited here: (1) symmetries of velocity field and stress field in the acoustic equations of motion, (2) a new stress field equation. Higher order Christoffel equation and higher order stress field equation are derived. The latter will form the basis of a new form of imaging the nonlinear elasticity imaging. The advantages of the application of gauge theory to acoustical imaging are mentioned.

  15. Imaging of Acoustic Waves in Sand

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  16. Magnetic resonance acoustic radiation force imaging

    PubMed Central

    McDannold, Nathan; Maier, Stephan E.

    2008-01-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are “stiffness weighted” and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery. PMID:18777934

  17. Underwater imaging with a moving acoustic lens.

    PubMed

    Kamgar-Parsi, B; Rosenblum, L J; Belcher, E O

    1998-01-01

    The acoustic lens is a high-resolution, forward-looking sonar for three dimensional (3-D) underwater imaging. We discuss processing the lens data for recreating and visualizing the scene. Acoustical imaging, compared to optical imaging, is sparse and low resolution. To achieve higher resolution, we obtain a denser sample by mounting the lens on a moving platform and passing over the scene. This introduces the problem of data fusion from multiple overlapping views for scene formation, which we discuss. We also discuss the improvements in object reconstruction by combining data from several passes over an object. We present algorithms for pass registration and show that this process can be done with enough accuracy to improve the image and provide greater detail about the object. The results of in-water experiments show the degree to which size and shape can be obtained under (nearly) ideal conditions. PMID:18267382

  18. Femtosecond imaging of nonlinear acoustics in gold.

    PubMed

    Pezeril, Thomas; Klieber, Christoph; Shalagatskyi, Viktor; Vaudel, Gwenaelle; Temnov, Vasily; Schmidt, Oliver G; Makarov, Denys

    2014-02-24

    We have developed a high-sensitivity, low-noise femtosecond imaging technique based on pump-probe time-resolved measurements with a standard CCD camera. The approach used in the experiment is based on lock-in acquisitions of images generated by a femtosecond laser probe synchronized to modulation of a femtosecond laser pump at the same rate. This technique allows time-resolved imaging of laser-excited phenomena with femtosecond time resolution. We illustrate the technique by time-resolved imaging of the nonlinear reshaping of a laser-excited picosecond acoustic pulse after propagation through a thin gold layer. Image analysis reveals the direct 2D visualization of the nonlinear acoustic propagation of the picosecond acoustic pulse. Many ultrafast pump-probe investigations can profit from this technique because of the wealth of information it provides over a typical single diode and lock-in amplifier setup, for example it can be used to image ultrasonic echoes in biological samples. PMID:24663778

  19. Real-time three-dimensional optoacoustic imaging using an acoustic lens system

    NASA Astrophysics Data System (ADS)

    Niederhauser, J. J.; Jaeger, M.; Frenz, M.

    2004-08-01

    In medical optoacoustics (photoacoustics), absorbing structures, such as blood vessels, hidden inside scattering media are illuminated with short laser pulses resulting in the generation of thermoelastic pressure transients. This initial three-dimensional (3D) acoustic pressure distribution, which exactly resembles the absorption distribution, was imaged into a water container with a 4f acoustic lens system. An optical dark-field stereo imaging system using a 30ns flash illumination light was used to capture a snapshot of the pressure-induced refraction index changes in the water container at a predetermined time after the original laser pulse. The imaging system works at 20Hz frame rate and was designed toward a theoretical resolution of 50?m. The proposed method directly provides 3D images of absorbing structures without the need of computational reconstruction algorithms.

  20. Acoustic imaging of objects buried in soil.

    PubMed

    Frazier, C H; Cadalli, N; Munson, D C; O'Brien, W D

    2000-07-01

    In this study, we demonstrate an acoustic system for high-resolution imaging of objects buried in soil. Our goal is to image cultural artifacts in order to assess in a rapid manner the historical significance of a potential construction site. We describe the imaging system and present preliminary images produced from data collected from a soil phantom. A mathematical model and associated computer software are developed in order to simulate the signals acquired by the system. We have built the imaging system, which incorporates a single element source transducer and a receiver array. The source and receiver array are moved together along a linear path to collect data. Using this system, we have obtained B-mode images of several targets by using delay-and-sum beamforming, and we have also applied synthetic aperture theory to this problem. PMID:10923879

  1. Determination of GaN solubility in supercritical ammonia with NH4F and NH4Cl mineralizer by in situ x-ray imaging of crystal dissolution

    NASA Astrophysics Data System (ADS)

    Schimmel, Saskia; Lindner, Michael; Steigerwald, Thomas G.; Hertweck, Benjamin; Richter, Theresia M. M.; Künecke, Ulrike; Alt, Nicolas S. A.; Niewa, Rainer; Schlücker, Eberhard; Wellmann, Peter J.

    2015-05-01

    Quantitative data on the solubility of GaN in supercritical ammonia using NH4F as mineralizer are reported. The solubility is determined by in situ x-ray imaging of the dissolution of GaN single crystals. First, solubility values obtained by this method with NH4Cl as mineralizer are presented and discussed with respect to existing literature data. Monitoring the dissolution process in situ reveals the time when the solubility limit is reached. Thus, it allows to distinguish the saturation of the solution from dissolution based on mass transport and deposition. This is a key advantage of solubility measurements by in situ x-ray imaging compared to gravimetric methods. Our results indicate that the solubility limit is reached much faster than usually assumed in gravimetric solubility studies and the solubility of GaN in ammonothermal media is significantly lower than reported so far.

  2. Acoustic Imaging of Snowpack Physical Properties

    NASA Astrophysics Data System (ADS)

    Kinar, N. J.; Pomeroy, J. W.

    2011-12-01

    Measurements of snowpack depth, density, structure and temperature have often been conducted by the use of snowpits and invasive measurement devices. Previous research has shown that acoustic waves passing through snow are capable of measuring these properties. An experimental observation device (SAS2, System for the Acoustic Sounding of Snow) was used to autonomously send audible sound waves into the top of the snowpack and to receive and process the waves reflected from the interior and bottom of the snowpack. A loudspeaker and microphone array separated by an offset distance was suspended in the air above the surface of the snowpack. Sound waves produced from a loudspeaker as frequency-swept sequences and maximum length sequences were used as source signals. Up to 24 microphones measured the audible signal from the snowpack. The signal-to-noise ratio was compared between sequences in the presence of environmental noise contributed by wind and reflections from vegetation. Beamforming algorithms were used to reject spurious reflections and to compensate for movement of the sensor assembly during the time of data collection. A custom-designed circuit with digital signal processing hardware implemented an inversion algorithm to relate the reflected sound wave data to snowpack physical properties and to create a two-dimensional image of snowpack stratigraphy. The low power consumption circuit was powered by batteries and through WiFi and Bluetooth interfaces enabled the display of processed data on a mobile device. Acoustic observations were logged to an SD card after each measurement. The SAS2 system was deployed at remote field locations in the Rocky Mountains of Alberta, Canada. Acoustic snow properties data was compared with data collected from gravimetric sampling, thermocouple arrays, radiometers and snowpit observations of density, stratigraphy and crystal structure. Aspects for further research and limitations of the acoustic sensing system are also discussed.

  3. Method and apparatus for acoustic imaging of objects in water

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  4. Imaging of acoustic fields using optical feedback interferometry.

    PubMed

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes. PMID:25606963

  5. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of

  6. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…

  7. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal heart function. Presented is the first use of transthoracic ARFI imaging in a serial study of heart failure in a porcine model. Results demonstrate the ability of transthoracic ARFI to image cyclically-varying stiffness changes in healthy and infarcted myocardium under good B-mode imaging conditions at depths in the range of 3-5 cm. Challenging imaging scenarios such as deep regions of interest, vigorous lateral motion and stable, reverberant clutter are analyzed and discussed. Results are then presented from the first study of clinical feasibility of transthoracic cardiac ARFI imaging. At the Duke University Medical Center, healthy volunteers and patients having magnetic resonance imaging-confirmed apical infarcts were enrolled for the study. The number of patients who met the inclusion criteria in this preliminary clinical trial was low, but results showed that the limitations seen in animal studies were not overcome by allowing transmit power levels to exceed the FDA mechanical index (MI) limit. The results suggested the primary source of image degradation was clutter rather than lack of radiation force. Additionally, the transthoracic method applied in its present form was not shown capable of tracking propagating ARFI-induced shear waves in the myocardium. Under current instrumentation and processing methods, results of these studies support feasibility for transthoracic ARFI in high-quality B-Mode imaging conditions. Transthoracic ARFI was not shown sensitive to infarct or to tracking heart failure in the presence of clutter and signal decorrelation. This work does provide evidence that transthoracic ARFI imaging is a safe non-invasive tool, but clinical efficacy as a diagnostic tool will need to be addressed by further development to overcome current challenges and increase robustness to sources of image degradation.

  8. Passive imaging in nondiffuse acoustic wavefields.

    PubMed

    Mulargia, Francesco; Castellaro, Silvia

    2008-05-30

    A main property of diffuse acoustic wavefields is that, taken any two points, each of them can be seen as the source of waves and the other as the recording station. This property is shown to follow simply from array azimuthal selectivity and Huygens principle in a locally isotropic wavefield. Without time reversal, this property holds approximately also in anisotropic azimuthally uniform wavefields, implying much looser constraints for undistorted passive imaging than those required by a diffuse field. A notable example is the seismic noise field, which is generally nondiffuse, but is found to be compatible with a finite aperture anisotropic uniform wavefield. The theoretical predictions were confirmed by an experiment on seismic noise in the mainland of Venice, Italy. PMID:18518643

  9. Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneities

    NASA Astrophysics Data System (ADS)

    Anastasio, Mark A.; Zhang, Jin; Pan, Xiaochuan

    2005-04-01

    Thermoacoustic tomography (TAT) is an emerging imaging technique with great potential for a wide range of biomedical imaging applications. It is customary in TAT to assume that the object is acoustically homogeneous, which can result in image artifacts in medical applications. In this work, we investigate an iterative reconstruction approach for TAT that can compensate for acoustic heterogeneities via inversion of a generalized Radon transform imaging model. We demonstrate numerically that the generalized Radon transform model can be inverted uniquely and stably by use of only half of the acquired measurement data. The effects of imperfect knowledge of the acoustic heterogeneity map are also investigated.

  10. Transient OH* Chemiluminescence Imaging of Acoustically Coupled Fuel Droplet Combustion

    NASA Astrophysics Data System (ADS)

    Wegener, Jeffrey; Sevilla, Cristhian; Smolke, Jennifer; Sung, Aaron; Chen, Kelvin; Smith, Owen; Karagozian, Ann

    2011-11-01

    This study focuses on combustion of liquid fuel droplets during exposure to external acoustic disturbances generated as standing waves within a closed acoustic waveguide. During such acoustic excitation, the mean flame orientation is observed to be dependent on the droplet's location relative to the pressure node (PN), and is consistent with the sign of a theoretical acoustic acceleration acting on the burning system. Yet experimentally estimated acoustic accelerations, measured from the degree of mean flame deflection, differ substantially in a quantitative sense from those predicted by theory.Phase-locked OH* chemiluminescence imaging reveals a deflected flame which oscillates in position relative to the droplet, with the largest degree of oscillation near the PN. A range of acoustic forcing frequencies and droplet locations are used to investigate flame movement over multiple acoustic cycles. The degree of flame oscillation, mean flame deflection angle, and fuel droplet burning rate all correlate with one another for different relative positions of the droplet. Supported by AFOSR.

  11. Optimization of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  12. Optimization of a biometric system based on acoustic images.

    PubMed

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  13. Axial resolution of laser opto-acoustic imaging: influence of acoustic attenuation and diffraction

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Alma, Herve; Tittel, Frank K.; Oraevsky, Alexander A.

    1998-05-01

    Laser optoacoustic imaging can be applied for characterization of layered and heterogeneous tissue structures in vivo. Accurate tissue characterization may provide: (1) means for medical diagnoses, and (2) pretreatment tissue properties important for therapeutic laser procedures. Axial resolution of the optoacoustic imaging is higher than that of optical imaging. However, the resolution may degrade due to either attenuation of high-frequency ultrasonic waves in tissue, or/and diffraction of low-frequency acoustic waves. The goal of this study was to determine the axial resolution as a function of acoustic attenuation and diffraction upon propagation of laser-induced pressure waves in water with absorbing layer, in breast phantoms, and in biological tissues. Acoustic pressure measurements were performed in absolute values using piezoelectric transducers. A layer or a small sphere of absorbing medium was placed within a medium with lower optical absorption. The distance between the acoustic transducer and the absorbing object was varied, so that the effects of acoustic attenuation and diffraction could be observed. The location of layers or spheres was measured from recorded optoacoustic pressure profiles and compared with real values measured with a micrometer. The experimental results were analyzed using theoretical models for spherical and planar acoustic waves. Our studies demonstrated that despite strong acoustic attenuation of high-frequency ultrasonic waves, the axial resolution of laser optoacoustic imaging may be as high as 20 micrometers for tissue layers located at a 5-mm depth. An axial resolution of 10 micrometers to 20 micrometers was demonstrated for an absorbing layer at a distance of 5 cm in water, when the resolution is affected only by diffraction. Acoustic transducers employed in optoacoustic imaging can have either high sensitivity or fast temporal response. Therefore, a high resolution may not be achieved with sensitive transducers utilized in breast imaging. For the laser optoacoustic imaging in breast phantoms, the axial resolution was better than 0.5 mm.

  14. Acoustic radiation force-based elasticity imaging methods

    PubMed Central

    Palmeri, Mark L.; Nightingale, Kathryn R.

    2011-01-01

    Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies. PMID:22419986

  15. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  16. Fracture analysis in borehole acoustic images using mathematical morphology

    NASA Astrophysics Data System (ADS)

    Xavier, Aldenize; Guerra, Carlos Eduardo; Andrade, André

    2015-06-01

    Fracture analysis is a geological task that treats so-called fracture attributes (location, direction (strike), slope (dip), and aperture) of the fractures that cross the borehole. It can be performed by direct measures on drill cores or interpreted on acoustic or electromagnetic images of the borehole wall. This activity has gained more importance in Brazil with the recent exploration of carbonate reservoirs of the Brazilian pre-salt. The acoustic imaging logging tool creates two images, the amplitude and the travel time. Only the amplitude image, which reflects the acoustic impedance of the borehole wall, is used to perform the fracture analysis. However, some misinterpretations may occur due to the qualitative nature of this interpretation being very dependent on the geologist’s expertise. Thus, we present a method of performing automation of the fracture analysis using acoustic amplitude images. This article is divided into two parts. In the first part, we present a mathematical model for the acoustic amplitude images along the borehole trajectory crossed by fractures. This model involves all fracture attributes in the generation of the images and is used to validate the results of fracture analysis. The second part presents the method for automatic fracture analysis. This method is composed of two stages. The first one performs fracture identification using an algorithm based on the mathematical morphology, which acts as an edge-detection tool that delimits the fracture region in the acoustic amplitude images. In the second stage, we apply an interpolating polynomial over the image region previously identified as fracture to extract the fracture attributes. The evaluation of this methodology is performed with synthetic images generated by the presented model that supports the results of the automatic fracture analysis performed using real acoustic amplitude images.

  17. CO2 leak detection through acoustic sensing and infrared imaging

    NASA Astrophysics Data System (ADS)

    Cui, Xiwang; Yan, Yong; Ma, Lin; Ma, Yifan; Han, Xiaojuan

    2014-04-01

    When CO2 leakage occurs from a high pressure enclosure, the CO2 jet formed can produce fierce turbulent flow generating acoustic emission with possible phase change, depending on the pressure of the enclosure, and a significant temperature drop in the region close to the releasing point. Acoustic Emission (AE) and infrared imaging technologiesare promising methods for on-line monitoring of such accidental leakage. In this paper, leakage experiments were carried out with a CO2 container under well controlled conditions in a laboratory. Acoustic signals and temperature distribution at the leakage area were acquired using an acoustic sensor and an infraredthermalimaging camera. The acoustic signal was analyzed in both time and frequency domains. The characteristics of the signal frequencies areidentified, and their suitability for leakage detectionis investigated. The location of the leakage can be identified by seeking the lowest temperature area or point in the infrared image.

  18. Nondestructive imaging of shallow buried objects using acoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Younis, Waheed A.; Stergiopoulos, Stergios; Havelock, David; Grodski, Julius

    2002-05-01

    The nondestructive three-dimensional acoustic tomography concept of the present investigation combines computerized tomography image reconstruction algorithms using acoustic diffracting waves together with depth information to produce a three-dimensional (3D) image of an underground section. The approach illuminates the underground area of interest with acoustic plane waves of frequencies 200-3000 Hz. For each transmitted pulse, the reflected-refracted signals are received by a line array of acoustic sensors located at a diametrically opposite point from the acoustic source line array. For a stratified underground medium and for a given depth, which is represented by a time delay in the received signal, a horizontal tomographic 2D image is reconstructed from the received projections. Integration of the depth dependent sequence of cross-sectional reconstructed images provides a complete three-dimensional overview of the inspected terrain. The method has been tested with an experimental system that consists of a line array of four-acoustic sources, providing plane waves, and a receiving line array of 32-acoustic sensors. The results indicate both the potential and the challenges facing the new methodology. Suggestions are made for improved performance, including an adaptive noise cancellation scheme and a numerical interpolation technique.

  19. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging.

    PubMed

    Thalhammer, Gregor; McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-04-12

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  20. Acoustic imaging in a water filled metallic pipe

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Turko, B. T.; Leskovar, B.

    1984-04-01

    A method is described for imaging the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  1. Acoustic imaging in a water filled metallic pipe

    SciTech Connect

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  2. Acoustic imaging of ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Baylosis, Benito E.

    1994-12-01

    A pulsed ultrasonic collection facility was used to study the accuracy of a previous program which models pulsed ultrasonic wave propagation. The previous program modeling was initially reviewed for its validity and found to have a scaling factor error. This error was corrected before a comparison of the theoretical and the experimental pulsed response was conducted. The excitation studied was a circular piston impulse input. For proper comparison, the acoustic potential produced by the program modeling (at a given distance from the acoustic source) was expressed in terms of acoustic pressure. Two separation distances were used to compare the output produced by the theoretical modeling and the measured experimental response. A general comparison of the experimental and the theoretical pulsed response appears to be in good agreement. The MATLAB program was used to perform all necessary mathematical computations and manipulations to produce a graphical representation of the collected data. The graphics program, AXUM, was used to compare the results graphically.

  3. Acoustic Radiation Force Impulse (ARFI) Imaging: a Review

    PubMed Central

    Nightingale, Kathy

    2012-01-01

    Acoustic radiation force based elasticity imaging methods are under investigation by many groups. These methods differ from traditional ultrasonic elasticity imaging methods in that they do not require compression of the transducer, and are thus expected to be less operator dependent. Methods have been developed that utilize impulsive (i.e. < 1 ms), harmonic (pulsed), and steady state radiation force excitations. The work discussed herein utilizes impulsive methods, for which two imaging approaches have been pursued: 1) monitoring the tissue response within the radiation force region of excitation (ROE) and generating images of relative differences in tissue stiffness (Acoustic Radiation Force Impulse (ARFI) imaging); and 2) monitoring the speed of shear wave propagation away from the ROE to quantify tissue stiffness (Shear Wave Elasticity Imaging (SWEI)). For these methods, a single ultrasound transducer on a commercial ultrasound system can be used to both generate acoustic radiation force in tissue, and to monitor the tissue displacement response. The response of tissue to this transient excitation is complicated and depends upon tissue geometry, radiation force field geometry, and tissue mechanical and acoustic properties. Higher shear wave speeds and smaller displacements are associated with stiffer tissues, and slower shear wave speeds and larger displacements occur with more compliant tissues. ARFI images have spatial resolution comparable to that of B-mode, often with greater contrast, providing matched, adjunctive information. SWEI images provide quantitative information about the tissue stiffness, typically with lower spatial resolution. A review these methods and examples of clinical applications are presented herein. PMID:22545033

  4. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    SciTech Connect

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  5. Performance Evaluation of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I.; Villacorta, Juan J.

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  6. Performance evaluation of a biometric system based on acoustic images.

    PubMed

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I; Villacorta, Juan J

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  7. Two-dimensional acoustic metamaterial structure for potential image processing

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Han, Yu; Li, Ying; Pai, Frank

    2015-12-01

    This paper presents modeling, analysis techniques and experiment of for two-Dimensional Acoustic metamaterial Structure for filtering acoustic waves. For a unit cell of an infinite two-Dimensional Acoustic metamaterial Structure, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed acoustic metamaterial structure is based on the concept of conventional mechanical vibration absorbers. It uses the incoming wave in the structure to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic metamaterial structure consisting of lumped mass and elastic membrane is fabricated in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic metamaterial structure do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic metamaterial structure can be used for absorption of low-frequency waves. Hence this special structure can be used in filtering the waves, and the potential using can increase the ultrasonic imaging quality.

  8. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  9. Contrast mechanism of magnetic domains in electron acoustic imaging

    NASA Astrophysics Data System (ADS)

    Song, H. Z.; Li, Y. X.; Zhao, K. Y.; Zeng, H. R.; Hui, S. X.; Li, G. R.; Yin, Q. R.

    2008-11-01

    Contrast origin of magnetic domain structure imaged by scanning electron acoustic microscopy (SEAM) is studied by analyzing qualitatively the interaction between an incident electron beam and a sample. Some parameters related to the acoustic signal detected by a piezoelectric transducer are obtained through solving a vibration equation. Contrasted with magnetic domain structures of Terfenol-D and Fe81Ga19 alloys obtained by SEAM in linear and nonlinear (second harmonic) modes, imaging mechanism of magnetic domains is attributed to piezomagnetic coupling mechanism, magnetostrictive coupling mechanism, and thermal-wave coupling mechanism.

  10. Optimal flushing agents for integrated optical and acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging.

  11. Optimal flushing agents for integrated optical and acoustic imaging systems.

    PubMed

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging. PMID:25985096

  12. Acoustic Molecular Imaging and Targeted Drug Delivery with Perfluorocarbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lanza, Gregory M.; Hughes, Michael. S.; Marsh, Jon N.; Scott, Michael J.; Zhang, Huiying; Lacy, Elizabeth K.; Allen, John S.; Wickline, Samuel A.

    2005-03-01

    Advances in molecular biology and cellular biochemistry are providing new opportunities for diagnostic medical imaging to "see" beyond the anatomical manifestations of disease to the earliest biochemical signatures of disease. Liquid perfluorocarbon nanoparticles provide inherent acoustic contrast when bound to targets, e.g., fibrin deposits in a thrombus, but unbound nanoparticles are undetectable. This nanoparticle platform may be further functionalized with paramagnetic metals, such as gadolinium, or radionuclides, with homing ligands, like anti-αvβ3-integrins, and therapeutic agents. Acoustic imaging of densely distributed biomarkers, e.g., fibrin epitopes, is readily accommodated with fundamental imaging, but for sparse biomarkers, e.g., integrins, we have developed and implemented novel, nonlinear imaging techniques based upon information-theoretic receivers (i.e., thermodynamic receivers). These novel receivers allow sensitive direct imaging of contrast development.

  13. Epipolar geometry of opti-acoustic stereo imaging.

    PubMed

    Negahdaripour, Shahriar

    2007-10-01

    Optical and acoustic cameras are suitable imaging systems to inspect underwater structures, both in regular maintenance and security operations. Despite high resolution, optical systems have limited visibility range when deployed in turbid waters. In contrast, the new generation of high-frequency (MHz) acoustic cameras can provide images with enhanced target details in highly turbid waters, though their range is reduced by one to two orders of magnitude compared to traditional low-/midfrequency (10s-100s KHz) sonar systems. It is conceivable that an effective inspection strategy is the deployment of both optical and acoustic cameras on a submersible platform, to enable target imaging in a range of turbidity conditions. Under this scenario and where visibility allows, registration of the images from both cameras arranged in binocular stereo configuration provides valuable scene information that cannot be readily recovered from each sensor alone. We explore and derive the constraint equations for the epipolar geometry and stereo triangulation in utilizing these two sensing modalities with different projection models. Theoretical results supported by computer simulations show that an opti-acoustic stereo imaging system outperforms a traditional binocular vision with optical cameras, particularly for increasing target distance and (or) turbidity. PMID:17699922

  14. Fast transforms for acoustic imaging--part I: theory.

    PubMed

    Ribeiro, Flávio P; Nascimento, Vítor H

    2011-08-01

    The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform (KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging. PMID:21342848

  15. Ideal flushing agents for integrated optical acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, K. Kirk; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2015-02-01

    An increased number of integrated optical acoustic intravascular imaging systems have been researched and hold great hope for accurate diagnosing of vulnerable plaques and for guiding atherosclerosis treatment. However, in any intravascular environment, vascular lumen is filled with blood, which is a high-scattering source for optical and high frequency ultrasound signals. Blood must be flushed away to make images clear. To our knowledge, no research has been performed to find the ideal flushing agent that works for both optical and acoustic imaging techniques. We selected three solutions, mannitol, dextran and iohexol, as flushing agents because of their image-enhancing effects and low toxicities. Quantitative testing of these flushing agents was performed in a closed loop circulation model and in vivo on rabbits.

  16. COMBINED PHOTO-ACOUSTIC AND ACOUSTIC IMAGING OF HUMAN BREAST SPECIMENS IN THE MAMMOGRAPHIC GEOMETRY

    PubMed Central

    Xie, Zhixing; Hooi, Fong Ming; Fowlkes, J Brian; Pinsky, Renee W.; Wang, Xueding; Carson, Paul L.

    2013-01-01

    A photo-acoustic volume imaging (PAVI) system was designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3-D ultrasound (AUS). The goal of the work described here was to validate the design and evaluate its performance in human breast tissues for non-invasive imaging of deeply positioned structures covering such geometry. The good penetration of nearinfrared light and high receiving sensitivity of a broad-bandwidth, 572-element, 2-D poly(vinyl difluoride) array at a low center frequency of 1 MHz were used with 20 channel simultaneous acquisition. Pseudo-lesions filled with dilute blood were imaged in three human breast specimens at various depths up to 49 mm. With near-infrared light illumination and 256-sample averaging, the extrapolated maximum depth in imaging a 2.4-mm blood-rich lesion with a 3-dB contrast-to-noise ratio in a compressed breast was 54 mm. Three-dimensional photo-acoustic volume image stacks of the breasts were co-registered with 3-D ultrasound image stacks, suggesting for the first time that PAVI, based on the intrinsic tissue contrast, can visualize tissue interfaces other than those with blood, including the inner skin surface and connective tissue sheets. With the designed system, PAVI revealed satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides in the mammographic geometry with mild compression. PMID:23972486

  17. Active cancellation system of acoustic noise in MR imaging.

    PubMed

    Chen, C K; Chiueh, T D; Chen, J H

    1999-02-01

    In this paper, we introduce a new neural-network architecture for reducing the acoustic noise level in magnetic resonance (MR) imaging processes. The proposed neural network (NN) consists of two cascaded time-delay NN's (TDNN's). This NN is used as the predictor of a feedback active noise control (ANC) system for reducing acoustic noises. Experimental results with real MR noises show that the proposed system achieved an average noise power attenuation of 18.75 dB, which compares favorably with previous studies. Preliminary results also show that with the proposed ANC system installed, acoustic MR noises are greatly attenuated while verbal communication during MRI sessions is not affected. PMID:9932340

  18. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  19. Image reconstruction with acoustic radiation force induced shear waves

    NASA Astrophysics Data System (ADS)

    McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.

    2003-05-01

    Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.

  20. Near-Field Imaging with Sound: An Acoustic STM Model

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2012-10-01

    The invention of scanning tunneling microscopy (STM) 30 years ago opened up a visual window to the nano-world and sparked off a bunch of new methods for investigating and controlling matter and its transformations at the atomic and molecular level. However, an adequate theoretical understanding of the method is demanding; STM images can be considered quantum theory condensed into a pictorial representation. A hands-on model is presented for demonstrating the imaging principles in introductory teaching. It uses sound waves and computer visualization to create mappings of acoustic resonators. The macroscopic simile is made possible by quantum-classical analogies between matter and sound waves. Grounding STM in acoustic experience may help to make the underlying quantum concepts such as tunneling less abstract to students.

  1. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  2. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard in human carotid artery plaques. It is shown in this capstone experiment that lipid filled regions in MRI correspond to areas of increased displacement in ARFI imaging while calcium and loose matrix components in MRI correspond to uniformly low displacements in ARFI imaging. This dissertation provides evidence to support that ARFI imaging may provide important prognostic and diagnostic information regarding stroke risk via measurements of plaque stiffness. More generally, the results have important implications for all acoustic radiation force based imaging methods used clinically.

  3. Nonlinear acoustic time reversal imaging using the scaling subtraction method

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Gliozzi, A. S.; Bruno, C. L. E.; Van Den Abeele, K.

    2008-11-01

    Lab experiments have shown that the imaging of nonlinear scatterers using time reversal acoustics can be a very promising tool for early stage damage detection. The potential applications are however limited by the need for an extremely accurate acquisition system. In order to let nonlinear features emerge from the background noise it is necessary to enhance the signal-to-noise ratio as much as possible. A comprehensive analysis to determine the nonlinear components in a recorded time signal, an alternative to those usually adopted (e.g. fast Fourier), is proposed here. The method is based on the nonlinear physical properties of the solution of the wave equation and takes advantage of the deficient system response scalability with the excitation amplitude. In this contribution, we outline the adopted procedure and apply it to a nonlinear time reversal imaging simulation to highlight the advantages with respect to traditional imaging based on a fast Fourier analysis of the recorded signals.

  4. A Dual Communication and Imaging Underwater Acoustic System

    NASA Astrophysics Data System (ADS)

    Fu, Tricia C.

    A dual communication and imaging underwater acoustic system is proposed and developed throughout this dissertation. Due to the wide variation in underwater channel characteristics, the research here focuses more on robustness to multipath in the shallow underwater acoustic environment, rather than high bit-rate applications and signaling schemes. Lower bit-rate (in the hundreds of bits per second (bps) to low kbps), applications such as the transfer of ecological telemetry data, e.g. conductivity or temperature data, are the primary focus of this dissertation. The parallels between direct sequence spread spectrum in digital communication and pulse-echo with pulse compression in imaging, and channel estimation in communication and range profile estimation in imaging are drawn, leading to a unified communications and imaging platform. A digital communication algorithm for channel order and channel coefficient estimation and symbol demodulation using Matching Pursuit (MP) with Generalized Multiple Hypothesis Testing (GMHT) is implemented in programmable DSP in real time with field experiment results in varying underwater environments for the single receiver (Rx), single transmitter (Tx) case. The custom and off-the-shelf hardware used in the single receiver, single transmitter set of experiments are detailed as well. This work is then extended to the single-input multiple-output (SIMO) case, and then to the full multiple-input multiple-output (MIMO) case. The results of channel estimation are used for simple range profile imaging reconstructions. Successful simulated and experimental results for both transducer array configurations are presented and analyzed. Non-real-time symbol demodulation and channel estimation is performed using experimental data from a scaled testing environment. New hardware based on cost-effective fish-finder transducers for a 6 Rx--1 Tx and 6 Rx--4 Tx transducer array is detailed. Lastly, in an application that is neither communication nor imaging, a generalized successive interference cancellation (GSIC)-based localization algorithm is used to localize discrete scatterers which are assumed to be more prominent than the surrounding clutter. Theory and experimental results are provided to support the feasability of GSIC localization for use with a dual communication and imaging underwater acoustic system.

  5. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment embedded in concrete are more encouraging in that they indicate that the intrinsic backscatter from degradations representing thickness reductions from 10 to 80% the shell thickness are sufficient to permit detection. It is recommended that a controlled experimental program be conducted in which sensor levels are calibrated against degradations to determine if current sensor technology can input sufficient power into the system to provide return levels within the dynamic range of the receivers.

  6. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, Kevin F.

    1994-01-01

    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.

  7. Multi-crack imaging using nonclassical nonlinear acoustic method

    NASA Astrophysics Data System (ADS)

    Zhang, Lue; Zhang, Ying; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2014-10-01

    Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.

  8. Object detection and imaging with acoustic time reversal mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    1993-11-01

    Focusing an acoustic wave on an object of unknown shape through an inhomogeneous medium of any geometrical shape is a challenge in underground detection. Optimal detection and imaging of objects needs the development of such focusing techniques. The use of a time reversal mirror (TRM) represents an original solution to this problem. It realizes in real time a focusing process matched to the object shape, to the geometries of the acoustic interfaces and to the geometries of the mirror. It is a self adaptative technique which compensates for any geometrical distortions of the mirror structure as well as for diffraction and refraction effects through the interfaces. Two real time 64 and 128 channel prototypes have been built in our laboratory and TRM experiments demonstrating the TRM performance through inhomogeneous solid and liquid media are presented. Applications to medical therapy (kidney stone detection and destruction) and to nondestructive testing of metallurgical samples of different geometries are described. Extension of this study to underground detection and imaging will be discussed.

  9. From Acoustic Segmentation to Language Processing: Evidence from Optical Imaging

    PubMed Central

    Obrig, Hellmuth; Rossi, Sonja; Telkemeyer, Silke; Wartenburger, Isabell

    2010-01-01

    During language acquisition in infancy and when learning a foreign language, the segmentation of the auditory stream into words and phrases is a complex process. Intuitively, learners use “anchors” to segment the acoustic speech stream into meaningful units like words and phrases. Regularities on a segmental (e.g., phonological) or suprasegmental (e.g., prosodic) level can provide such anchors. Regarding the neuronal processing of these two kinds of linguistic cues a left-hemispheric dominance for segmental and a right-hemispheric bias for suprasegmental information has been reported in adults. Though lateralization is common in a number of higher cognitive functions, its prominence in language may also be a key to understanding the rapid emergence of the language network in infants and the ease at which we master our language in adulthood. One question here is whether the hemispheric lateralization is driven by linguistic input per se or whether non-linguistic, especially acoustic factors, “guide” the lateralization process. Methodologically, functional magnetic resonance imaging provides unsurpassed anatomical detail for such an enquiry. However, instrumental noise, experimental constraints and interference with EEG assessment limit its applicability, pointedly in infants and also when investigating the link between auditory and linguistic processing. Optical methods have the potential to fill this gap. Here we review a number of recent studies using optical imaging to investigate hemispheric differences during segmentation and basic auditory feature analysis in language development. PMID:20725516

  10. Imaging of contact acoustic nonlinearity using synthetic aperture technique.

    PubMed

    Yun, Dongseok; Kim, Jongbeom; Jhang, Kyung-Young

    2013-09-01

    The angle beam incidence and reflection technique for the evaluation of contact acoustic nonlinearity (CAN) at solid-solid contact interfaces (e.g., closed cracks) has recently been developed to overcome the disadvantage of accessing both the inner and outer surfaces of structures for attaching pulsing and receiving transducers in the through-transmission of normal incidence technique. This paper proposes a technique for B-mode imaging of CAN based on the above reflection technique, which uses the synthetic aperture focusing technique (SAFT) and short-time Fourier transform (STFT) to visualize the distribution of the CAN-induced second harmonic magnitude as well as the nonlinear parameter. In order to verify the usefulness of the proposed method, a solid-solid contact interface was tested and the change of the contact acoustic nonlinearity according to the increasing contact pressure was visualized in images of the second harmonic magnitude and the relative nonlinear parameter. The experimental results showed good agreement with the previously developed theory identifying the dependence of the scattered second harmonics on the contact pressure. This technique can be used for the detection and improvement of the sizing accuracy of closed cracks that are difficult to detect using the conventional linear ultrasonic technique. PMID:23659874

  11. Fast transforms for acoustic imaging--part II: applications.

    PubMed

    Ribeiro, Flávio P; Nascimento, Vítor H

    2011-08-01

    In Part I ["Fast Transforms for Acoustic Imaging-Part I: Theory," IEEE Transactions on Image Processing], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT. PMID:21342849

  12. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.

    1994-01-01

    The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.

  13. Acoustic imaging of small water-lain sand deposits

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Max; Adair, Neal L.; Hoyal, David C. J. D.; Giffin, David E.

    2003-04-01

    Reduced-scale physical modeling of depositional systems, like submarine fans, river deltas, and point bars, provides insight into the formation and internal structure of the full-scale systems which may become economic hydrocarbon reservoirs. Turbid water with controlled sediment concentration and flow velocity is discharged into a 3 m×5 m tank of still water to create deposits up to typically 10 cm thick. These deposits are imaged by a pencil-beam high-frequency (7 MHz) acoustic system to capture the evolution of deposit topography and by a broad-beam lower-frequency system (150 kHz) to image an internal structure. An x-y positioning system moves the transducer to create detailed 3D images. At 7 MHz, the deposit surface is ``rough,'' so significant backscattered energy is detected even for non-normal incidence. This, together with the narrow beamwidth, allows the deposit elevation directly below the sensor to be measured independent of the local slope. The deposit surface is ``smooth'' to the 150 kHz system, so reflections come only from points of normal incidence. This makes imaging more complicated, but the lower frequencies penetrate the deposit and reveal some internal structure. Images from both systems will be shown and compared.

  14. Electromigration in Al thin films induced by surface acoustic waves: application to imaging.

    PubMed

    Tucoulou, R; Brunel, M; Roshchupkin, D V; Schelokov, I A; Colin, J; Grilhe, J

    1999-01-01

    The propagation of a high amplitude surface acoustic wave in an Al thin film induces a large-scale electromigration phenomenon resulting in a permanent etching of the acoustic field in the film. The etched patterns depend on the time of propagation and on the acoustic characteristics. Preliminary observations of a few grooved structures in Al films have been performed by different techniques. A first explanation of this phenomenon based on dynamical Grinfeld instabilities is proposed. By providing permanent pictures of acoustic fields emitted by transducers, this effect could be used to perform imaging of surface acoustic wave propagation. PMID:18238488

  15. Liver ablation guidance with acoustic radiation force impulse imaging

    PubMed Central

    Fahey, B J; Hsu, S J; Wolf, P D; Nelson, R C; Trahey, G E

    2008-01-01

    Previous studies have established the feasibility of monitoring radiofrequency (RF) ablation procedures with acoustic radiation force impulse (ARFI) imaging. However, questions remained regarding the utility of the technique in clinically realistic scenarios and at scanning depths associated with abdominal imaging in adults. We address several of these issues and detail recent progress towards the clinical relevance of the ARFI technique. Results from in vitro bovine tissues and an in vivo ovine model are presented. Additional experiments were conducted with a tissue-mimicking phantom and parallel receive tracking techniques in order to further support the clinical feasibility of the method. Thermal lesions created during RF ablation are visualized with high contrast in both in vitro and in vivo hepatic tissues, and radial lesion growth can be monitored throughout the duration of the procedure. ARFI imaging is implemented on a diagnostic ultrasonic scanner, and thus may be a convenient option to guide RF ablation procedures, particularly when electrode insertion is also performed with sonographic guidance. PMID:16861781

  16. Detection of Landmines from Acoustic Images Based on Cepstral Coefficients

    NASA Astrophysics Data System (ADS)

    Abd El-Samie, Fathi E.

    2009-12-01

    This paper introduces a cepstral approach for the automatic detection of landmines from acoustic images. This approach is based on treating the problem of landmine detection as a pattern recognition problem. Cepstral features are extracted from a group of landmine images which are transformed first to 1-D signals by lexicographic ordering. Mel frequency cepstral coefficients (MFCCs) and polynomial shaping coefficients are extracted from these 1-D signals to form a database of features, which can be used to train a neural network with the landmine features. The landmine detection can be performed by extracting features from any new image with the same method used in the training phase. These features are tested with the neural network to decide whether a landmine exists or not. The different domains are tested and compared for efficient feature extraction from the lexicographically ordered 1-D signals. Experimental results show the success of the proposed cepstral approach for landmine detection at low as well as high signal to noise ratios. Results also show that the discrete cosine transform is the most appropriate domain for feature extraction.

  17. Standing tree decay detection by using acoustic tomography images

    NASA Astrophysics Data System (ADS)

    Espinosa, Luis F.; Arciniegas, Andres F.; Prieto, Flavio A.; Cortes, Yolima; Brancheriau, Loïc.

    2015-04-01

    The acoustic tomographic technique is used in the diagnosis process of standing trees. This paper presents a segmentation methodology to separate defective regions in cross-section tomographic images obtained with Arbotom® device. A set of experiments was proposed using two trunk samples obtained from a eucalyptus tree, simulating defects by drilling holes with known geometry, size and position and using different number of sensors. Also, tomographic images from trees presenting real defects were studied, by testing two different species with significant internal decay. Tomographic images and photographs from the trunk cross-section were processed to align the propagation velocity data with a corresponding region, healthy or defective. The segmentation was performed by finding a velocity threshold value to separate the defective region; a logistic regression model was fitted to obtain the value that maximizes a performance criterion, being selected the geometric mean. Accuracy segmentation values increased as the number of sensors augmented; also the position influenced the result, obtaining improved results in the case of centric defects.

  18. Imaging Performance Evaluation Method of Wide-View Underwater Acoustic Lens by Geometrical Skew Ray Analysis

    NASA Astrophysics Data System (ADS)

    Sayuri Matsumoto,; Norihide Takeyama,; Takenobu Tsuchiya,; Nobuyuki Endoh,

    2010-07-01

    In the image formation performance of an underwater acoustic lens, the use of geometrical skew ray analysis for usually use in optical lens design field was examined. We measured acoustic pressure fields through a single lens, from which the acoustic energy distribution was obtained by using encircled energy. On the other hand, the analyzed acoustic energy distribution was evaluated by geometrical skew ray analysis under the measurement condition including the apodization of the source and effect of water temperature. We compared the measured and analyzed convergence positions, which the diameter of 80% of total amount of acoustic energy is the minimum. Then the both convergence positions correspond. As a result, it was shown that the image performance evaluation of a wide-view acoustic lens by geometrical skew ray analysis is useful.

  19. Dual-frequency acoustic droplet vaporization detection for medical imaging.

    PubMed

    Arena, Christopher B; Novell, Anthony; Sheeran, Paul S; Puett, Connor; Moyer, Linsey C; Dayton, Paul A

    2015-09-01

    Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and -0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and was independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a standalone diagnostic system to monitor the physical properties of the surrounding environment. PMID:26415125

  20. Acoustic and Elastodynamic Redatuming for VSP Salt Dome Flank Imaging

    NASA Astrophysics Data System (ADS)

    Lu, R.; Willis, M.; Toksoz, N.

    2007-12-01

    We apply an extension of the concept of Time Reversed Acoustics (TRA) for imaging salt dome flanks using Vertical Seismic Profile (VSP) data. We demonstrate its performance and capabilities on both synthetic acoustic and elastic seismic data from a Gulf of Mexico (GOM) model. This target-oriented strategy eliminates the need for the traditional complex process of velocity estimation, model building, and iterative depth migration to remove the effects of the salt canopy and surrounding overburden. In this study, we use data from surface shots recorded in a well from a walkaway VSP survey. The method, called redatuming, creates a geometry as if the source and receiver pairs had been located in the borehole at the positions of the receivers. This process generates effective downhole shot gathers without any knowledge of the overburden velocity structure. The resulting shot gathers are less complex since the VSP ray paths from the surface source are shortened and moved to be as if they started in the borehole, then reflected off the salt flank region and captured in the borehole. After redatuming, we apply multiple passes of prestack migration from the reference datum of the borehole. In our example, the first pass migration, using only simple vertical velocity gradient model, reveals the outline of the salt edge. A second pass of reverse-time prestack depth migration using the full, two-way wave equation, is performed with an updated velocity model that now consists of the velocity gradient and the salt dome. The second pass migration brings out the dipping sediments abutting the salt flank because these reflectors were illuminated by energy that bounced off the salt flank forming prismatic reflections.

  1. Full-Field Imaging of Acoustic Motion at Nanosecond Time and Micron Length Scales

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, John D.

    2002-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by employing dynamic holography using photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed capable of operation on the nanosecond time and micron length scales. Both acoustic amplitude and phase are recorded allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies at 800-900 MHz illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric to acoustic coupling and performance of these devices. Images of 256x240 pixels are recorded at 18Hz rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  2. Negative refraction induced acoustic concentrator and the effects of scattering cancellation, imaging, and mirage

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Cheng, Ying; Liu, Xiao-jun

    2012-07-01

    We present a three-dimensional acoustic concentrator capable of significantly enhancing the sound intensity in the compressive region with scattering cancellation, imaging, and mirage effects. The concentrator shell is built by isotropic gradient negative-index materials, which together with an exterior host medium slab constructs a pair of complementary media. The enhancement factor, which can approach infinity by tuning the geometric parameters, is always much higher than that of a traditional concentrator made by positive-index materials with the same size. The acoustic scattering theory is applied to derive the pressure field distribution of the concentrator, which is consistent with the numerical full-wave simulations. The inherent acoustic impedance match at the interfaces of the shell as well as the inverse processes of “negative refraction—progressive curvature—negative refraction” for arbitrary sound rays can exactly cancel the scattering of the concentrator. In addition, the concentrator shell can also function as an acoustic spherical magnifying superlens, which produces a perfect image with the same shape, with bigger geometric and acoustic parameters located at a shifted position. Then some acoustic mirages are observed whereby the waves radiated from (scattered by) an object located in the center region may seem to be radiated from (scattered by) its image. Based on the mirage effect, we further propose an intriguing acoustic transformer which can transform the sound scattering pattern of one object into another object at will with arbitrary geometric, acoustic, and location parameters.

  3. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  4. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    SciTech Connect

    Han, Jianning; Wen, Tingdun; Yang, Peng; Zhang, Lu

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  5. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    NASA Astrophysics Data System (ADS)

    Han, Jianning; Wen, Tingdun; Yang, Peng; Zhang, Lu

    2014-05-01

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  6. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  7. An Acoustic Charge Transport Imager for High Definition Television

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard

    1999-01-01

    This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode with an output data rate of 5MHz, which gives a maximum frame rate of 4 frames per second. The MIT/Polaroid group developed two cameras under this program. The cameras have effectively four times the current video spatial resolution and at 60 frames per second are double the normal video frame rate.

  8. Analysis of Particle Image Velocimetry (PIV) Data for Acoustic Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    Acoustic velocity measurements were taken using Particle Image Velocimetry (PIV) in a Normal Incidence Tube configuration at various frequency, phase, and amplitude levels. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Estimates of lower measurement sensitivity levels were determined based on PIV image quality, correlation, and noise level parameters used in the test. Comparison of measurements with linear acoustic theory are presented. The onset of nonlinear, harmonic frequency acoustic levels were also studied for various decibel and frequency levels ranging from 90 to 132 dB and 500 to 3000 Hz, respectively.

  9. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  10. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. PMID:26519093

  11. Acoustic imaging by second harmonic of phase-conjugate wave in inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Pyl'nov, Yu.; Pernod, P.; Preobrazhensky, V.

    2001-01-01

    Application of the supercritical magnetoelastic wave phase conjugation to harmonic imaging in acoustic C-scan microscopy is demonstrated. Second-harmonic generation by phase-conjugate wave is used for improvement of resolution of an imaging system. Possibility to compensate phase aberrations introduced in harmonic image by inhomogeneity of propagation medium is shown experimentally and explained theoretically.

  12. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies

    USGS Publications Warehouse

    Williams, J.H.; Johnson, C.D.

    2004-01-01

    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  13. Biosonar acoustic images for target localization and classification by bats

    NASA Astrophysics Data System (ADS)

    Simmons, James A.

    1997-07-01

    Echolocating bats use sonar to guide interception of insects, recognize objects by shape, and even track prey in clutter. Broadcasts of the big brown bat are 0.5 to 20 ms FM signals in the 20-100 kHz ultrasonic band. Insects consist of several reflecting glints, each equivalent in cross- section to a small sphere of 2 mm to 2 cm radius, while clutter is typically composed of numerous glints distributed over a large volume. The bats' signals extend in space for many target lengths, while ka values for each glint are 0.5 to 30 across the broadcast band. Bats perceive acoustic images having echo delay as their primary dimension, and space is perceived in terms of the distribution of target glints in range. Range disparities between the ears provide two 'looks' at each target from slightly different locations as well as information about azimuth. The bats auditory system encodes the FM sweeps of broadcasts and echoes as linear-period spectrograms with integration-times of 300-400 micrometers . Bats nevertheless perceive individual glints in targets for echo-delay separations well inside the integration-time window. Deconvolution is achieved by spectrogram correlation in the time domain and spectral shape transformation in the frequency-domain, with all output evidently being displayed in the time domina. Neural responses in the bat's auditory system seem limited in time precision to 20-50 micrometers at best and 300 microsecond(s) to 3 ms in a broader sample, and stimulus phase is thought to be lost for frequencies above 1-3 kHz. Yet bats perceive echo delay with an accuracy of 10-15 ns and have two-echo resolution of about 2 microsecond(s) . Moreover, bats perceive echo phase-shifts as the correctly corresponding shifts in echo delay. Successive images are subtracted to enhance perception of shape from multiple 'looks', and echo phase is an integral part of this critical process. Utterly novel time-scale magnification appears in the bat's neural responses to ultrasonic broadcasts and echoes, with time-stretch factors of roughly 10 to 100 that account for the bat's mysteriously high temporal acuity. Bats reconstruct time-domain features of FM broadcasts and echoes in a compact, distributed format that incorporates delay, phase, glint separation, and inter-ear delay differences along the same image dimension.

  14. OASIS in the sea: Measurement of the acoustic reflectivity of zooplankton with concurrent optical imaging

    NASA Astrophysics Data System (ADS)

    Jaffe, J. S.; Ohman, M. D.; De Robertis, A.

    A new instrument Optical-Acoustic Submersible Imaging System (OASIS) has been developed for three-dimensional acoustic tracking of zooplankton with concurrent optical imaging to verify the identity of the insonified organisms. OASIS also measures in situ target strengths (TS) of freely swimming zooplankton and nekton of known identity and 3-D orientation. The system consists of a three-dimensional acoustic imaging system (FishTV), a sensitive optical CCD camera with red-filtered strobe illumination, and ancillary oceanographic sensors. The sonar triggers the acquisition of an optical image when it detects the presence of a significant target in the precise location where the camera, strobe and sonar are co-registered. Acoustic TS can then be related to the optical image, which permits identification of the animal and its 3-D aspect. The system was recently deployed (August 1996) in Saanich Inlet, B.C., Canada. Motile zooplankton and nekton were imaged with no evidence of reaction to or avoidance of the OASIS instrument package. Target strengths of many acoustic reflectors were recorded in parallel with the optical images, triggered by the presence of an animal in the correct location of the sonar system. Inspection of the optical images, corroborated with zooplankton sampling with a MOCNESS net, revealed that the joint optically and acoustically sensed taxa at the site were the euphausiid Euphausia pacifica, the gammarid amphipod Orchomene obtusa, and a gadid fish. The simultaneous optical and acoustic images permitted an exact correlation of TS and taxa. Computer simulations from a model of the backscattered strength from euphausiids are in good agreement with the observed data.

  15. The path to COVIS: A review of acoustic imaging of hydrothermal flow regimes

    NASA Astrophysics Data System (ADS)

    Bemis, Karen G.; Silver, Deborah; Xu, Guangyu; Light, Russ; Jackson, Darrell; Jones, Christopher; Ozer, Sedat; Liu, Li

    2015-11-01

    Acoustic imaging of hydrothermal flow regimes started with the incidental recognition of a plume on a routine sonar scan for obstacles in the path of the human-occupied submersible ALVIN. Developments in sonar engineering, acoustic data processing and scientific visualization have been combined to develop technology which can effectively capture the behavior of focused and diffuse hydrothermal discharge. This paper traces the development of these acoustic imaging techniques for hydrothermal flow regimes from their conception through to the development of the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS has monitored such flow eight times a day for several years. Successful acoustic techniques for estimating plume entrainment, bending, vertical rise, volume flux, and heat flux are presented as is the state-of-the-art in diffuse flow detection.

  16. Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Ulissey, Michael; Stavros, A. T.; Oraevsky, Alexander; Lavin, Philip; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2015-03-01

    Functional opto-acoustic (OA) imaging was fused with gray-scale ultrasound acquired using a specialized duplex handheld probe. Feasibility Study findings indicated the potential to more accurately characterize breast masses for cancer than conventional diagnostic ultrasound (CDU). The Feasibility Study included OA imagery of 74 breast masses that were collected using the investigational Imagio® breast imaging system. Superior specificity and equal sensitivity to CDU was demonstrated, suggesting that OA fusion imaging may potentially obviate the need for negative biopsies without missing cancers in a certain percentage of breast masses. Preliminary results from a 100 subject Pilot Study are also discussed. A larger Pivotal Study (n=2,097 subjects) is underway to confirm the Feasibility Study and Pilot Study findings.

  17. Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel

    2011-04-01

    Strong reflection and scattering effects, arising at the boundaries of acoustically mismatched areas in living organisms, such as bones, lungs, and other air cavities, may introduce severe image artifacts into optoacoustic reconstructions. Yet, in many cases, an a priori knowledge on the location of strongly mismatched areas is available, either based on general anatomical knowledge or using other imaging modalities. In this letter, we suggest a statistical optoacoustic image reconstruction method, which uses a priori knowledge on the location of acoustic distortions in order to improve image quality and quantification. Significant improvements are showcased experimentally on tissue mimicking phantoms of different complexities.

  18. PhotoAcoustic-guided Focused UltraSound imaging (PAFUSion) for reducing reflection artifacts in photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Singh, Mithun K.; Steenbergen, Wiendelt

    2015-07-01

    Reflection artifacts caused by acoustic reflectors is an important problem in reflection-mode photoacoustic imaging. The light absorbed by skin and superficial optical absorbers may produce high photoacoustic signals, which traverse into the tissue and get reflected from structures having different acoustic impedance. These reflected photoacoustic signals, when reconstructed may appear in the region of interest, which causes complications in interpreting the images. We propose a novel method to identify and reduce reflection artifacts in photoacoustic images by making use of PhotoAcoustic-guided Focused UltraSound [PAFUSion]. Our method ultrasonically mimics the photoacoustic image formation process and thus delivers a clinically feasible way to reduce reflection artifacts. Simulation and phantom measurement results are presented to demonstrate the validity and impact of this method. Results show that PAFUSion technique can identify and differentiate reflection signals from the signals of interest and thus foresees good potential for improving photoacoustic imaging of deep tissue.

  19. Acoustic micro-Doppler radar for human gait imaging.

    PubMed

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars. PMID:17407918

  20. Imaging and analyzing the elasticity of vascular smooth muscle cells by atomic force acoustic microscope.

    PubMed

    Zhang, Bo; Cheng, Qian; Chen, Ming; Yao, Wengang; Qian, Menglu; Hu, Bing

    2012-08-01

    Vascular smooth muscle cells (VSMCs) play an important role in the good performance of the vasculature. To study the surface, intracellular structure and elasticity of VSMCs, atomic force acoustic microscope (AFAM) was used for imaging VSMCs from A7r5 rat aorta arteries. The topography images of VSMCs were obtained in contact mode and the acoustic images were obtained by AFAM in sample vibration mode. Then, the force curve measurement derived using Young's modulus of the interested areas was used for evaluating elasticity properties. The acoustic images were found in higher resolution with more information than the topography images. The force curves showed the difference in Young's modulus of the different parts of VSMC. These findings demonstrate that AFAM is useful for displaying the surface, structure and elasticity property of VSMCs clearly, with short scanning time, negligible harm or damage to cell and nanometer-level resolution. PMID:22698505

  1. Reconstructed imaging of acoustic cloak using time-lapse reversal method

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun

    2014-08-01

    We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.

  2. Computer Evaluation Of Real-Time X-Ray And Acoustic Images

    NASA Astrophysics Data System (ADS)

    Jacoby, M. H.; Loe, R. S.; Dondes, P. A.

    1983-03-01

    The weakest link in the inspection process is the subjective interpretation of data by inspectors. To overcome this troublesome fact computer based analysis systems have been developed. In the field of nondestructive evaluation (NDE) there is a large class of inspections that can benefit from computer analysis. X-ray images (both film and fluoroscopic) and acoustic images lend themselves to automatic analysis as do the one-dimensional signals associated with ultrasonic, eddy current and acoustic emission testing. Computer analysis can enhance and evaluate subtle details. Flaws can be located and measured, and accept-ance decisions made by computer in a consistent and objective manner. This paper describes the interactive, computer-based analysis of real-time x-ray images and acoustic images of graphite/epoxy adhesively bonded structures.

  3. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm. PMID:19380272

  4. Liver reserve function assessment by acoustic radiation force impulse imaging

    PubMed Central

    Sun, Xiao-Lan; Liang, Li-Wei; Cao, Hui; Men, Qiong; Hou, Ke-Zhu; Chen, Zhen; Zhao, Ya-E

    2015-01-01

    AIM: To evaluate the utility of liver reserve function by acoustic radiation force impulse (ARFI) imaging in patients with liver tumors. METHODS: Seventy-six patients with liver tumors were enrolled in this study. Serum biochemical indexes, such as aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (T-Bil), and other indicators were observed. Liver stiffness (LS) was measured by ARFI imaging, measurements were repeated 10 times, and the average value of the results was taken as the final LS value. Indocyanine green (ICG) retention was performed, and ICG-K and ICG-R15 were recorded. Child-Pugh (CP) scores were carried out based on patient’s preoperative biochemical tests and physical condition. Correlations among CP scores, ICG-R15, ICG-K and LS values were observed and analyzed using either the Pearson correlation coefficient or the Spearman rank correlation coefficient. Kruskal-Wallis test was used to compare LS values of CP scores, and the receiver-operator characteristic (ROC) curve was used to analyze liver reserve function assessment accuracy. RESULTS: LS in the ICG-R15 10%-20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.19 ± 0.27 vs 1.59 ± 0.32, P < 0.01). LS in the ICG-R15 > 20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.92 ± 0.29 vs 1.59 ± 0.32, P < 0.01). The LS value in patients with CP class A was lower than in patients with CP class B (1.57 ± 0.34 vs 1.86 ± 0.27, P < 0.05), while the LS value in patients with CP class B was lower than in patients with CP class C (1.86 ± 0.27 vs 2.47 ± 0.33, P < 0.01). LS was positively correlated with ICG-R15 (r = 0.617, P < 0.01) and CP score (r = 0.772, P < 0.01). Meanwhile, LS was negatively correlated with ICG-K (r = -0.673, P < 0.01). AST, ALT and T-Bil were positively correlated with LS, while ALB was negatively correlated with LS (P < 0.05). The ROC curve revealed that the when the LS value was 2.34 m/s, the Youden index was at its highest point, sensitivity was 69.2% and specificity was 92.1%. CONCLUSION: For patients with liver tumors, ARFI imaging is a useful tool for assessing liver reserve function. PMID:26327773

  5. Two dimensional photoacoustic imaging based on an acoustic lens and the peak-hold technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hanchao; Tang, Zhilie; He, Yongheng; Guo, Lina

    2007-06-01

    A new method of photoacoustic (PA) imaging based on an acoustic lens and the peak-hold technology is presented in this article. A fast PA imaging system, which consists of an acoustic lens, a 64-element linear transducer array, and a peak detection-and-hold circuit, is developed to obtain the two dimensional (2D) PA images of the experimental samples. By utilizing an acoustic lens, the PA signals generated from the sample are directly imaged on the imaging plane and collected by the 64-element linear transducer array which changes the PA signals into the corresponding electronic signals. Then the electronic signals are converted into a one dimensional image using the peak detection-and-hold circuit. After vertical scanning with a step motor on the imaging plane, the 2D PA image of the sample is achieved successfully. The results show that the images reconstructed in this experiment agree well with the original samples. Compared to other methods, this PA imaging system can acquire the PA images more rapidly without any complex algorithms, and it may provide a more convenient method for future in vivo noninvasive imaging of tissues and clinic diagnosis.

  6. A surface acoustic wave /SAW/ charge transfer imager

    NASA Technical Reports Server (NTRS)

    Papanicolauo, N. A.; Lin, H. C.

    1981-01-01

    An 80 MHz, 2-microsecond surface acoustic wave charge transfer device (SAW-CTD) has been fabricated in which surface acoustic waves are used to create traveling longitudinal electric fields in the silicon substrate and to replace the multiphase clocks of charge coupled devices. The traveling electric fields create potential wells which will carry along charges that may be stored in the wells; the charges may be injected into the wells by light. An optical application is proposed where the SAW-CTD structure is used in place of a conventional interline transfer design.

  7. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    PubMed

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis progression. PMID:27054831

  8. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Chris J.

    1992-01-01

    In this report we present the progress during the second six month period of the project. This includes both experimental and theoretical work on the acoustic charge transport (ACT) portion of the chip, the theoretical program modelling of both the avalanche photodiode (APD) and the charge transfer and overflow transistor and the materials growth and fabrication part of the program.

  9. Segmentation and classification of shallow subbottom acoustic data, using image processing and neural networks

    NASA Astrophysics Data System (ADS)

    Yegireddi, Satyanarayana; Thomas, Nitheesh

    2014-06-01

    Subbottom acoustic profiler provides acoustic imaging of the subbottom structure constituting the upper sediment layers of the seabed, which is essential for geological and offshore geo-engineering studies. Delineation of the subbottom structure from a noisy acoustic data and classification of the sediment strata is a challenging task with the conventional signal processing techniques. Image processing techniques utilise the spatial variability of the image characteristics, known for their potential in medical imaging and pattern recognition applications. In the present study, they are found to be good in demarcating the boundaries of the sediment layers associated with weak acoustic reflectivity, masked by noisy background. The study deals with application of image processing techniques, like segmentation in identification of subbottom features and extraction of textural feature vectors using grey level co-occurrence matrix statistics. And also attempted classification using Self Organised Map, an unsupervised neural network model utilising these feature vectors. The methodology was successfully demonstrated in demarcating the different sediment layers from the subbottom images and established the sediments constituting the inferred four subsurface sediment layers differ from each other. The network model was also tested for its consistency, with repeated runs of different configuration of the network. Also the ability of simulated network was tested using a few untrained test images representing the similar environment and the classification results show a good agreement with the anticipated.

  10. Design of an Acoustical Imaging Operator Based on the Singular Value Decomposition Method

    NASA Astrophysics Data System (ADS)

    Murata, Yorinobu; Minagawa, Keiji; Tamura, Yasutaka; Koyama, Kiyohito

    1994-05-01

    A new imaging operator has been developed for acoustical imaging using a 2ch m-sequence encoding array transducer. The new imaging operator has the ability to correct the poor orthogonal property of a transfer matrix. Moreover, images with many image points have been reconstructed by the new imaging operator. The new imaging operator has been composed on the basis of the singular-value decomposition (SVD) of the transfer matrix in the frequency domain. Characteristics of the new imaging operator are discussed by simulating the two-dimensional point spread functions (2-D PSFs). An image with a high dynamic range was obtained for a single object on the sampling image points by the method. Moreover, the method was able to reconstruct the image of the existing object outside the sampling image points.

  11. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  12. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    NASA Astrophysics Data System (ADS)

    Wen, Jihong; Shen, Huijie; Yu, Dianlong; Wen, Xisen

    2013-11-01

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  13. Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting

    NASA Astrophysics Data System (ADS)

    Quaegebeur, Nicolas; Padois, Thomas; Gauthier, Philippe-Aubert; Masson, Patrice

    2016-06-01

    In this paper, an alternative formulation of the time-domain beamforming is proposed using the generalized cross-correlation of measured signals. This formulation uses spatial weighting functions adapted to microphone positions and imaging points. The proposed approach is demonstrated for acoustic source localization using a microphone array, both theoretically and experimentally. An increase in accuracy of acoustic imaging results is shown for both narrow and broadband sources, while a factor of reduction up to 20 in the computation time can be achieved, allowing real-time or volumetric source localization over very large grids.

  14. Acoustical holographic recording with coherent optical read-out and image processing

    NASA Astrophysics Data System (ADS)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  15. Acoustic imaging of vapor bubbles through optically non-transparent media

    SciTech Connect

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1983-10-01

    A preliminary investigation of the feasibility of acoustic imaging of vapor bubbles through optically nontransparent media is described. Measurements are reported showing the echo signals produced by air filled glass spheres of various sizes positioned in an aqueous medium as well as signals produced by actual vapor bubbles within a water filled steel pipe. In addition, the influence of the metallic wall thickness and material on the amplitude of the echo signals is investigated. Finally several examples are given of the imaging of spherical bubbles within metallic pipes using a simulated array of acoustic transducers mounted circumferentially around the pipe. The measurement procedures and a description of the measuring system are also given.

  16. Compton scattering studies of 4f ferromagnetism

    NASA Astrophysics Data System (ADS)

    Cooper, M. J.; Duffy, J. A.; Banfield, Z. F.; Bebb, A. M.; Blaauw, L.; Shenton-Taylor, C.; Steer, C.; Taylor, J. W.

    2006-11-01

    Ferromagnetism can be studied in Compton scattering experiments, which use high-energy, elliptically polarised synchrotron radiation. The basis of the method and its interpretation in terms of site-specific moments will be explained and illustrated by a series of examples of archetypal compounds. For example, the hexaborides exhibit a wide range of electronic properties. Data will be presented for the heavy Fermion system CeB 6 and the controversial ferromagnet Ca 1-xLa xB 6. Undoped CeB 6 exhibits a delocalised spin moment, more characteristic of the 5d than the 4f orbital. Whereas the magnetism in the Ca 1-xLa xB 6 system has been suggested to be an extrinsic effect arising from iron contamination, our data indicate that the magnetism is intrinsic and inconsistent with what would be expected for an iron 3d moment. This supports the proposal that this system is, indeed, a weak itinerant ferromagnet. In Ru 2SrGdCu 20 8, we observe a combination of Gd 4f, Gd 5d and Ru 4d moments and the 5d moment appears to flip orientation below the Néel temperature.

  17. Acoustic Imaging of Ferroelectric Domains in BaTiO3 Single Crystals Using Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Zeng, Huarong; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion G.; Takekawa, Shunji; Kitamura, Kenji; Yin, Qingrui

    2007-01-01

    An “alternating-force-modulated” atomic force microscope (AFM) operating in the acoustic mode, generated by launching acoustic waves on the piezoelectric transducer that is attached to the cantilever, was used to visualize the ferroelectric domains in barium titanate (BaTiO3) single crystals by detecting acoustic vibrations generated by the tip and transmitted through the sample placed beneath it to the transducer. The acoustic signal was found to reflect locally elastic microstructures at low frequencies, while high-frequency acoustic images revealed strip like domain configurations of internal substructures in BaTiO3 single crystals. The underlying acoustic imaging mechanism using the AFM was discussed in terms of the interaction between the excited acoustic wave and ferroelectric domains.

  18. Unified imaging theory for x-ray and acoustic computerized tomography

    NASA Astrophysics Data System (ADS)

    Liu, Pingyu; Wang, Ge; Boyer, Arthur

    2004-10-01

    X-ray computerized tomography (CT) and acoustic CT are two main medical imaging modalities based on two intrinsically different physical phenomena. X-ray CT is based on x-ray"s attenuation when x-ray passes through medium. It has been well known that the Radon transform is the imaging theory for x-ray CT. Photoacoustic CT is a type of acoustic CT, which is based on differentiating electromagnetic energy absorption among media. In 1998 a new 3D reconstruction concept, the P-transform, was proposed to serve the imaging theory for photoacoustic CT. In this paper it was rigorously proved that both x-ray CT and photoacoustic CT are governed by a unified imaging theory. 3D data acquisition can be completed in 2p stereoangle. This new imaging theory realized, in part, the dream of all physicists, including Albert Einstein, who have long believed that our world is ultimately governed by few simple rules.

  19. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.

    PubMed

    Vogt, William C; Jia, Congxian; Wear, Keith A; Garra, Brian S; Joshua Pfefer, T

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  20. Noninvasive estimation of temperature elevations in biological tissues using acoustic nonlinearity parameter imaging.

    PubMed

    Liu, Xiaozhou; Gong, Xiufen; Yin, Chang; Li, Junlun; Zhang, Dong

    2008-03-01

    A method for noninvasively imaging temperature would assist the development of hyperthermia. In this study, the relationships between the acoustic nonlinearity parameters and the temperatures in porcine fat and liver were obtained. The temperature elevations induced by ultrasound irradiation of porcine fat and liver were then derived inversely from acoustic nonlinearity parameter imaging. These temperature elevations were compared with theoretical predictions and with those measured by a thermocouple. The temperature elevations at the focus in the fat and liver samples measured via a thermocouple were 21.1 +/- 0.8 degrees C and 15.7 +/- 0.6 degrees C, respectively, which coincided with those obtained by acoustic nonlinearity parameter imaging (22.0 +/- 1.4 degrees C in fat and 16.9 +/- 1.1 degrees C in liver). These may be compared with the theoretical predictions of elevations of 24.0 degrees C in fat and 19.7 degrees C in liver. The results of this study show that acoustic nonlinearity imaging may be a novel method for temperature evaluation in hyperthermia. (E-mail: xzliu@nju.edu.cn). PMID:18187251

  1. Selective magnetic resonance imaging of magnetic nanoparticles by Acoustically Induced Rotary Saturation (AIRS)

    PubMed Central

    Zhu, Bo; Witzel, Thomas; Jiang, Shan; Huang, Susie Y.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Purpose We introduce a new method to selectively detect iron oxide contrast agents using an acoustic wave to perturb the spin-locked water signal in the vicinity of the magnetic particles. The acoustic drive can be externally modulated to turn the effect on and off, allowing sensitive and quantitative statistical comparison and removal of confounding image background variations. Methods We demonstrate the effect in spin-locking experiments using piezoelectric actuators to generate vibrational displacements of iron oxide samples. We observe a resonant behavior of the signal changes with respect to the acoustic frequency where iron oxide is present. We characterize the effect as a function of actuator displacement and contrast agent concentration. Results The resonant effect allows us to generate block-design “modulation response maps” indicating the contrast agent’s location, as well as positive contrast images with suppressed background signal. We show the AIRS effect stays approximately constant across acoustic frequency, and behaves monotonically over actuator displacement and contrast agent concentration. Conclusion AIRS is a promising method capable of using acoustic vibrations to modulate the contrast from iron oxide nanoparticles and thus perform selective detection of the contrast agents, potentially enabling more accurate visualization of contrast agents in clinical and research settings. PMID:25537578

  2. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Owen, Neil (Inventor); Bailey, Michael R. (Inventor); Hossack, James (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  3. Electromagnetic-Acoustic Modeling of Fields Induced by Gradient Pulses in Diffusion Tensor Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Elshafiey, I.; Melapudi, V. R.; Udpa, L.

    2006-03-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) has recently gained popularity because of its capabilities in axonography of the central nervous system. Fast imaging sequences are used to reduce motion induced distortion effects on the diffusion signal, resulting in low signal levels, loud acoustic noise, and occasional peripheral nerve stimulation. Eddy current induced by diffusion gradient pulses is also a challenge to DT-MRI. Magnetic field associated with the eddy current is a major source of artifacts in scanner images. This paper introduces a finite element modeling of electromagnetic and acoustic fields in DT-MRI sequences. The analysis involves three dimensional modeling of the scanner and its interaction with pulses applied to gradient coils. Efficient modeling of induced fields is essential in optimizing parameter settings and improving performance of this imaging modality.

  4. Imaging of acoustic pressure radiation from vibrating microstructure in atmosphere using thermal microprobe

    NASA Astrophysics Data System (ADS)

    Ono, Takahito; Kim, Sang-Jin; Esashi, Masayoshi

    2007-05-01

    This letter reports on an imaging technique of acoustic pressure radiation (APR) from vibrating micro-/nanostructures and their mechanical defects. Resonance oscillation of micro-/nanometer beams in use of viscous environments is important for various sensing applications. Viscous dumping is the main energy loss mechanism, which determines the quality factor of resonance in viscous fluid. The APR due to viscous dumping is imaged using a scanning thermal flow sensor. A platinum heater or micromachined silicon heater is heated up by flowing a current, and the acoustic particle velocity which originated from APR is detected. Imaging of APR is demonstrated and compared with the actual vibration image. Also, strong APR is observed from a crack on the support of a silicon beam.

  5. Development of an Acoustic Lens for an Imaging Sonar for Autonomous Underwater Vehicle Urashima and Experimentation in a Water Tank

    NASA Astrophysics Data System (ADS)

    Tsukioka, Satoshi; Aoki, Taro; Ochi, Hiroshi; Shimura, Takuya; Sawa, Takao; Nakamura, Toshiaki; Anada, Tetsuo; Kaihou, Ieharu; Noda, Hiroaki

    2002-06-01

    Underwater imaging sonar has been developed for obstacle avoidance and navigation of the autonomous underwater vehicle (AUV) URASHIMA. The acoustic image, the distance and the azimuth of the target are obtained using an acoustic lens. Tone burst acoustic waves are transmitted and scattered at the target, and a direct image of the target can be created on a two-dimensional receiving array. The merits of the acoustic lens system are the possibility to omit the extensive calculation required for signal processing of received signals at each element to form two-dimensional beams, and reduction of equipment size. In this report, the outline of the imaging sonar with a single spherical lens and the experimental results for the acoustic lens in a water tank are presented. Then, theoretical calculation of the sound field through the lens using the parabolic equation method is introduced as a useful tool for improvement of lens performance to solve problems in resolution and aberration.

  6. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow.

    PubMed

    Sou, In Mei; Allen, John S; Layman, Christopher N; Ray, Chittaranjan

    2011-11-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  7. Characterization of acoustic streaming and heating using synchronized infrared thermography and particle image velocimetry.

    PubMed

    Layman, Christopher N; Sou, In Mei; Bartak, Rico; Ray, Chittaranjan; Allen, John S

    2011-09-01

    Real-time measurements of acoustic streaming velocities and surface temperature fields using synchronized particle image velocimetry and infrared thermography are reported. Measurements were conducted using a 20 kHz Langevin type acoustic horn mounted vertically in a model sonochemical reactor of either degassed water or a glycerin-water mixture. These dissipative phenomena are found to be sensitive to small variations in the medium viscosity, and a correlation between the heat flux and vorticity was determined for unsteady convective heat transfer. PMID:21514205

  8. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    NASA Astrophysics Data System (ADS)

    Sou, In Mei; Allen, John S.; Layman, Christopher N.; Ray, Chittaranjan

    2011-11-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed.

  9. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  10. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  11. 77 FR 321 - Section 4(f) Policy Paper

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... Federal Highway Administration Section 4(f) Policy Paper AGENCY: Federal Highway Administration (FHWA... draft Section 4(f) Policy Paper that will provide guidance on the procedures the FHWA will follow when... practicable. Background A copy of the proposed Section 4(f) Policy Paper is available for download and...

  12. 23 CFR 774.3 - Section 4(f) approvals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., RECREATION AREAS, WILDLIFE AND WATERFOWL REFUGES, AND HISTORIC SITES (SECTION 4(F)) § 774.3 Section 4(f... With Public Parks, Recreation Lands, Wildlife and Waterfowl Refuges, and Historic Sites; (3) Final... With Historic Sites; (4) Historic Bridges; Programmatic Section 4(f) Evaluation and Approval; and...

  13. Modern Techniques in Acoustical Signal and Image Processing

    SciTech Connect

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  14. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Christopher J.

    1993-01-01

    This report covers: (1) invention of a new, ultra-low noise, low operating voltage APD which is expected to offer far better performance than the existing volume doped APD device; (2) performance of a comprehensive series of experiments on the acoustic and piezoelectric properties of ZnO films sputtered on GaAs which can possibly lead to a decrease in the required rf drive power for ACT devices by 15dB; (3) development of an advanced, hydrodynamic, macroscopic simulator used for evaluating the performance of ACT and CTD devices and aiding in the development of the next generation of devices; (4) experimental development of CTD devices which utilize a p-doped top barrier demonstrating charge storage capacity and low leakage currents; (5) refinements in materials growth techniques and in situ controls to lower surface defect densities to record levels as well as increase material uniformity and quality.

  15. Investigation of an acoustical holography system for real-time imaging

    NASA Astrophysics Data System (ADS)

    Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.

    1998-07-01

    A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.

  16. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; Ehgamberdiev, Shuhrat; Landenkov, Oleg

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  17. X-ray imaging of surface acoustic waves generated in semiconductor crystals by an external transducer

    NASA Astrophysics Data System (ADS)

    Shilo, D.; Lakin, E.; Zolotoyabko, E.; Härtwig, J.; Baruchel, J.

    2003-03-01

    We demonstrate successful x-ray-diffraction imaging of high-frequency (0.29-GHz) surface acoustic waves (SAWs) propagating in semiconductor crystals (Si and GaAs) with no deposited electrodes on top of them. Experiments were performed at the ID19 beamline of the European Synchrotron Radiation Facility (Grenoble). We used the stroboscopic x-ray topography technique, in which x-ray bursts coming from the storage ring are synchronized with the excited acoustic waves. This technique is able to visualize individual acoustic wave fronts of traveling SAWs and their distortions caused by phonon scattering. In order to generate SAW in semiconductor crystals the latter were coupled to LiNbO3-based SAW transducers via contact liquids. The maximum SAW transmission is achieved for evanescent waves under optimized coupling conditions at the liquid/sample interface. The technique developed opens a way to directly study phonon interaction with defects in nonpiezoelectric and weakly piezoelectric crystals.

  18. The Effects of Nonlinear Propagation on Acoustic Source Imaging in One-Dimension

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah; Gee, Kent L.

    2006-10-01

    The acoustics of finite-amplitude (nonlinear) sound sources, such as rockets and jets, are not well understood. Characterization of sound pressure amplitudes, aeroacoustic source locations and frequency dependence of these sources is needed to assess the impact of the acoustic field on the launch equipment and surrounding environment. Nonlinear propagation of high-amplitude sound is being studied to determine if a source-imaging method called near-field acoustical holography (NAH), which is based on linear assumptions, can be used to estimate the source information mentioned. A one-dimensional numerical algorithm is being used to linearly and nonlinearly propagate the radiation from a monofrequency source. NAH is used to reconstruct the source information from the simulated data and the error is determined in decibels.

  19. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  20. Acoustic radiation force impulse imaging with an intra-cardiac probe

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen J.; Fahey, Brian J.; Dumont, Douglas M.; Trahey, Gregg E.

    2005-04-01

    Acoustic radiation force impulse (ARFI) imaging has been demonstrated to provide insight into the mechanical properties of tissue. The quality of ARFI images is dependent on the amount of acoustic energy from the radiation force pulse reaching the focus. Intra-cardiac probes provide an advantage for ARFI imaging of cardiac tissue, as the probe can be positioned close to the region of interest. The resulting ARFI images display local variations in tissue stiffnesses and show promise for monitoring and assessing the progress of cardiac ablations. The Siemens AcuNav intra-cardiac probe was used to image a tissue-mimicking phantom having 3 mm diameter spherical inclusions with an elastic modulus eight times greater than the surrounding tissue. The ARFI sequences formed high contrast, high resolution images of these inclusions up to depths of approximately 1.5 cm. The ARFI pulse sequences resulted in 0.8°C temperature increase on the transducer face, and the time constant associated with the return to equilibrium temperature was approximately 300 ms. The probe was used to examine an excised segment of an ovine right ventricle with a surface lesion created from radiofrequency ablations (RFA). In areas of healthy tissue, the ARFI images did not show any stiffer regions that would indicate the presence of a lesion. Although the lesion was not visible in conventional B-mode images, the ARFI images were able to show the boundaries between the lesion and the surrounding tissue.

  1. Optimization of Encoding Gradients for Magnetic Resonance Acoustic Radiation Force Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Watkins, Ron; Pauly, Kim Butts

    2009-04-01

    For HIFU treatments without significant heating, MR monitoring could be done by imaging the acoustic radiation force (MR-ARFI). MR-ARFI used motion-sensitizing gradients to encode the small displacement induced by the acoustic radiation force into the phase of the image. Unfortunately, large conventional gradients render the image sensitive to motion, and susceptible to artifacts, which are seen as a non-linear background phase and can be larger than the displacement-induced phase. In this work, MR-ARFI encoding gradients are optimized to minimize these problems. The proposed repeated bipolar gradients are robust against motion and eddy current, and the SNR is significantly enhanced at no cost of scan time or encoding sensitivity.

  2. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    SciTech Connect

    Xiong, Jichuan; Xu, Xiaodong E-mail: christ.glorieux@fys.kuleuven.be; Glorieux, Christ E-mail: christ.glorieux@fys.kuleuven.be; Matsuda, Osamu; Cheng, Liping

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  3. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    NASA Astrophysics Data System (ADS)

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  4. Acoustical and optical scattering and imaging of tissues: an overview

    NASA Astrophysics Data System (ADS)

    Ishimaru, Akira

    2001-05-01

    This talk will first give a general discussion on the ultrasound media characteristics of blood and spectral densities of tissues. The first-order scattering theory, multiple scattering theory, Doppler spectrum, cw and pulse scattering, focused beam, beam spot-size, speckle, texture, and rough interface effects will be presented. Imaging through tissues will then be discussed in terms of temporal and spatial resolutions, contrast, MTF (modulation transfer function), SAR and confocal imaging techniques, tomographic and holographic imaging, and inverse scattering. Next, we discuss optical diffusion in blood and tissues, radiative transfer theory, photon density waves, and polarization effects.

  5. Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection.

    PubMed

    Guo, Bin; Li, Jian; Zmuda, Henry; Sheplak, Mark

    2007-11-01

    Microwave-induced thermal acoustic imaging (TAI) is a promising early breast cancer detection technique, which combines the advantages of microwave stimulation and ultrasound imaging and offers a high imaging contrast, as well as high spatial resolution at the same time. A new multifrequency microwave-induced thermal acoustic imaging scheme for early breast cancer detection is proposed in this paper. Significantly more information about the human breast can be gathered using multiple frequency microwave stimulation. A multifrequency adaptive and robust technique (MART) is presented for image formation. Due to its data-adaptive nature, MART can achieve better resolution and better interference rejection capability than its data-independent counterparts, such as the delay-and-sum method. The effectiveness of this procedure is shown by several numerical examples based on 2-D breast models. The finite-difference time-domain method is used to simulate the electromagnetic field distribution, the absorbed microwave energy density, and the thermal acoustic field in the breast model. PMID:18018695

  6. Methods And Systems For Using Reference Images In Acoustic Image Processing

    DOEpatents

    Moore, Thomas L.; Barter, Robert Henry

    2005-01-04

    A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.

  7. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Pinton, Gianmarco

    2015-10-01

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it is necessary to quantify ultrasound image quality and its sources of degradation.

  8. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.

  9. Design for Aplanatic Fresnel Acoustic Lens for Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Mizutani, Koichi; Wakatsuki, Naoto; Nakamura, Toshiaki

    2009-07-01

    We designed several shapes of aplanatic Fresnel acoustic lenses to correct spherical and coma aberrations. These lenses were made of room temperature vulcanizable (RTV) silicone rubber, and were designed by combining several aplanatic lenses. The converged sound pressure fields of these lenses were calculated numerically with the two-dimensional finite difference time domain (2D FDTD) method. The focal sound pressures of these lenses were 8-9 dB larger than those of aplanatic biconvex lenses. Comparing several aplanatic Fresnel lenses, the best convergence was achieved by the lens having the smoothest first surface. We assumed the reason for this advantage was the smooth first surface itself. Thus to smooth the first surface and to enlarge the focal sound pressure, small steps on the first surface were removed by two methods. The first method approximates the first surface to a polynomial equation. The second method changes the curvature of the aplanatic lenses to minimize the small steps; this method is called bending. The evaluation of the lenses made by the two methods showed that the resolutions of these lenses were higher than 1. The lens made by bending showed higher sound pressure than the lens made by the approximated surface.

  10. Quantitative high-resolution acoustic imaging of the seafloor

    NASA Astrophysics Data System (ADS)

    Holland, C. W.; Dettmer, J.; Steininger, G.; Dosso, S. E.

    2013-12-01

    Quantifying the properties of the seafloor interface and near surface (a few tens of meters) is of considerable interest to science as well as industry. Scales of interest range from the order of tens of kilometers (survey size) down to less than a centimeter. These scales can be probed using an AUV equipped with a broadband source and a short streamer. The data are processed for energy (rather than peak) reflection coefficients and scattering cross-section versus bi-static angle. In order to tackle spatial scales ranging over 8 orders of magnitude of, it is useful to divide the parameter space into deterministic and stochastic parameters. The energy reflection coefficients contain information on deterministic properties including sound speed, density and attenuation vs depth in the upper tens of meters of sediment. Vertical resolution is a function of depth, but typically of order 0.1 m near surface. The statistical properties of the smaller scales, i.e., seafloor roughness and/or volume heterogeneities are obtained from the bi-static scattering data. Physics-based models are used to relate the sediment micro-structure (the Buckingham model) and sediment fluctuations (the Von Karman spectrum) to the acoustic observables. Quantitative parameter and inter-parameter uncertainties are obtained from Bayesian methods for both deterministic and stochastic parameters.

  11. Fast photoacoustic imaging with a line scanning optical-acoustical resolution photoacoustic microscope (LS-OAR-PAM)

    NASA Astrophysics Data System (ADS)

    Nuster, Robert; Paltauf, Guenther

    2015-07-01

    We present the concept, the setup and a preliminary experiment using optical ultrasound detection with a CCD camera combined with focused line excitation for photoacoustic microscopy. The line scanning optical-acoustical resolution photoacoustic microscope (LS-OAR-PAM) with optical ultrasound detection is capable of real-time B-scan imaging providing acoustical resolution within the individual B-scans and optical out of plane resolution up to a depth limited by optical diffusion. A 3D image is composed of reconstructed B-scan images recorded while scanning the excitation line along the sample surface. Proof of concept is shown by imaging a phantom containing black human hairs and carbon fibers. The obtained C-scan image clearly shows the different resolution in the two perpendicular directions, namely diffraction limited by optical focusing in scan direction and acoustically limited in direction parallel to line orientation by the properties of acoustic wave propagation.

  12. Focused acoustic beam imaging of grain structure and local Young's modulus with Rayleigh and surface skimming longitudinal waves

    SciTech Connect

    Martin, R. W.; Sathish, S.; Blodgett, M. P.

    2013-01-25

    The interaction of a focused acoustic beam with materials generates Rayleigh surface waves (RSW) and surface skimming longitudinal waves (SSLW). Acoustic microscopic investigations have used the RSW amplitude and the velocity measurements, extensively for grain structure analysis. Although, the presence of SSLW has been recognized, it is rarely used in acoustic imaging. This paper presents an approach to perform microstructure imaging and local elastic modulus measurements by combining both RSW and SSLW. The acoustic imaging of grain structure was performed by measuring the amplitude of RSW and SSLW signal. The microstructure images obtained on the same region of the samples with RSW and SSLW are compared and the difference in the contrast observed is discussed based on the propagation characteristics of the individual surface waves. The velocity measurements are determined by two point defocus method. The surface wave velocities of RSW and SSLW of the same regions of the sample are combined and presented as average Young's modulus image.

  13. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  14. Acoustic reciprocity of spatial coherence in ultrasound imaging.

    PubMed

    Bottenus, Nick; Üstüner, Kutay F

    2015-05-01

    A conventional ultrasound image is formed by transmitting a focused wave into tissue, time-shifting the backscattered echoes received on an array transducer, and summing the resulting signals. The van Cittert-Zernike theorem predicts a particular similarity, or coherence, of these focused signals across the receiving array. Many groups have used an estimate of the coherence to augment or replace the B-mode image in an effort to suppress noise and stationary clutter echo signals, but this measurement requires access to individual receive channel data. Most clinical systems have efficient pipelines for producing focused and summed RF data without any direct way to individually address the receive channels. We describe a method for performing coherence measurements that is more accessible for a wide range of coherence-based imaging. The reciprocity of the transmit and receive apertures in the context of coherence is derived and equivalence of the coherence function is validated experimentally using a research scanner. The proposed method is implemented on a commercial ultrasound system and in vivo short-lag spatial coherence imaging is demonstrated using only summed RF data. The components beyond the acquisition hardware and beamformer necessary to produce a real-time ultrasound coherence imaging system are discussed. PMID:25965679

  15. Acoustic Reciprocity of Spatial Coherence in Ultrasound Imaging

    PubMed Central

    Bottenus, Nick; Üstüner, Kutay F.

    2015-01-01

    A conventional ultrasound image is formed by transmitting a focused wave into tissue, time-shifting the backscattered echoes received on an array transducer and summing the resulting signals. The van Cittert-Zernike theorem predicts a particular similarity, or coherence, of these focused signals across the receiving array. Many groups have used an estimate of the coherence to augment or replace the B-mode image in an effort to suppress noise and stationary clutter echo signals, but this measurement requires access to individual receive channel data. Most clinical systems have efficient pipelines for producing focused and summed RF data without any direct way to individually address the receive channels. We describe a method for performing coherence measurements that is more accessible for a wide range of coherence-based imaging. The reciprocity of the transmit and receive apertures in the context of coherence is derived and equivalence of the coherence function is validated experimentally using a research scanner. The proposed method is implemented on a Siemens ACUSON SC2000™ultrasound system and in vivo short-lag spatial coherence imaging is demonstrated using only summed RF data. The components beyond the acquisition hardware and beamformer necessary to produce a real-time ultrasound coherence imaging system are discussed. PMID:25965679

  16. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-01-31

    During this phase of the project the research team concentrated on acquisition of acoustic emission data from the high porosity rock samples. The initial experiments indicated that the acoustic emission activity from high porosity Danian chalk were of a very low amplitude. Even though the sample underwent yielding and significant plastic deformation the sample did not generate significant AE activity. This was somewhat surprising. These initial results call into question the validity of attempting to locate AE activity in this weak rock type. As a result the testing program was slightly altered to include measuring the acoustic emission activity from many of the rock types listed in the research program. The preliminary experimental results indicate that AE activity in the sandstones is much higher than in the carbonate rocks (i.e., the chalks and limestones). This observation may be particularly important for planning microseismic imaging of reservoir rocks in the field environment. The preliminary results suggest that microseismic imaging of reservoir rock from acoustic emission activity generated from matrix deformation (during compaction and subsidence) would be extremely difficult to accomplish.

  17. Imaging textural variation in the acoustoelastic coefficient of aluminum using surface acoustic waves.

    PubMed

    Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G

    2015-11-01

    Much interest has arisen in nonlinear acoustic techniques because of their reported sensitivity to variations in residual stress, fatigue life, and creep damage when compared to traditional linear ultrasonic techniques. However, there is also evidence that the nonlinear acoustic properties are also sensitive to material microstructure. As many industrially relevant materials have a polycrystalline structure, this could potentially complicate the monitoring of material processes when using nonlinear acoustics. Variations in the nonlinear acoustoelastic coefficient on the same length scale as the microstructure of a polycrystalline sample of aluminum are investigated in this paper. This is achieved by the development of a measurement protocol that allows imaging of the acoustoelastic response of a material across a samples surface at the same time as imaging the microstructure. The development, validation, and limitations of this technique are discussed. The nonlinear acoustic response is found to vary spatially by a large factor (>20) between different grains. A relationship is observed when the spatial variation of the acoustoelastic coefficient is compared to the variation in material microstructure. PMID:26627757

  18. Three-dimensional ghost imaging using acoustic transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli

    2016-06-01

    We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.

  19. Resolution estimation and bias reduction in acoustic radiation force impulse imaging

    NASA Astrophysics Data System (ADS)

    Menon, Manoj G.

    Pathological conditions give rise to mechanical changes in tissue that can be exploited for the purpose of diagnosis and treatment of disease. Elasticity imaging is a field developed to creating images of tissue stiffness by mechanically exciting tissue and tracking the tissue response. Acoustic Radiation Force Impulse (ARFI) imaging is one such modality that measures the micron-scale displacements induced in tissue by local acoustic radiation forces using a high intensity ultrasound pulses generated by a standard diagnostic ultrasound scanner. Ultrasound pulses track displacements that are quantified using conventional correlation-based speckle-tracking methods. Generated displacement images can exhibit improved contrast of diseased tissue than conventional ultrasound techniques. In this thesis, the spatial resolution limits of ARFI imaging have been measured using novel simulation and experimental techniques. The full-width, half-maximum (FWHM) of the point-spread function (PSF), a measure of the resolution limit of an imaging system, was extracted by imaging a tissue-mimicking phantom composed of two bonded materials. The ARFI image of the material interface was an estimate of the step response of the system. The ARFI imaging resolution limit was further explored using FEM/acoustic field simulations and linear shift invariant (LSI) models. The ARFI imaging resolution limit was submillimeter, but was highly dependent on imaging parameters. ARFI axial resolution was limited by the correlation window length and tracking pulse parameters. When the correlation window length was less than 1 mm, FEM and LSI models suggest the mechanical response of the tissue influences the resolution, resulting in a larger FWHM than would be predicted by imaging and signal processing parameters alone. ARFI lateral resolution limit corresponded to the lateral two-way beamwidth of the tracking beam. Measuring ARFI imaging resolution capabilities on small phantom inclusions and tissue ablation lesions proved the validity of the step-response based estimated resolution limits on objects of relevant, circular geometry. ARFI imaging resolution was again primarily a function of imaging and signal processing parameters, in good agreement with modulus step phantom derived results. To improve the ability of ARFI imaging to resolve targets near bright boundaries, a method called envelope weighted normalization (EWN) was developed to reduce amplitude modulation of ultrasound signals, thereby reducing displacement estimation bias.

  20. Fluorocarbon nanodrops as acoustic temperature probes.

    PubMed

    Mountford, Paul A; Smith, William S; Borden, Mark A

    2015-10-01

    This work investigated the use of superheated fluorocarbon nanodrops for ultrasound thermal imaging and the use of mixed fluorocarbons for tuning thermal and acoustic thresholds for vaporization. Droplets were fabricated by condensing phospholipid-coated microbubbles containing C3F8 and C4F10 mixed at various molar ratios. Vaporization temperatures first were measured in a closed system by optical transmission following either isothermal pressure release or isobaric heating. The vaporization temperature was found to depend linearly on the percentage of C4F10 in the droplet core, indicating excellent tunability under these fluorocarbon-saturated conditions. Vaporization temperatures were then measured in an open system using contrast-enhanced ultrasound imaging, where it was found that the mixed droplets behaved like pure C4F10 drops. Additionally, the critical mechanical index for vaporization was measured at the limits of therapeutic hyperthermia (37 and 60 C), and again the mixed droplets were found to behave like pure C4F10 drops. These results suggested that C3F8 preferentially dissolves out of the droplet core in open systems, as shown by a simple mass transfer model of multicomponent droplet dissolution. Finally, proof-of-concept was shown that pure C4F10 nanodrops can be used as an acoustic temperature probe. Overall, these results not only demonstrate the potential of superheated fluorocarbon emulsions for sonothermetry but also point to the limits of tunability for fluorocarbon mixtures owing to preferential release of the more soluble species to the atmosphere. PMID:26359919

  1. Near-Field Imaging with Sound: An Acoustic STM Model

    ERIC Educational Resources Information Center

    Euler, Manfred

    2012-01-01

    The invention of scanning tunneling microscopy (STM) 30 years ago opened up a visual window to the nano-world and sparked off a bunch of new methods for investigating and controlling matter and its transformations at the atomic and molecular level. However, an adequate theoretical understanding of the method is demanding; STM images can be…

  2. Near-Field Imaging with Sound: An Acoustic STM Model

    ERIC Educational Resources Information Center

    Euler, Manfred

    2012-01-01

    The invention of scanning tunneling microscopy (STM) 30 years ago opened up a visual window to the nano-world and sparked off a bunch of new methods for investigating and controlling matter and its transformations at the atomic and molecular level. However, an adequate theoretical understanding of the method is demanding; STM images can be

  3. Finite Difference Time Domain Analysis of Underwater Acoustic Lens System for Ambient Noise Imaging

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Miyazaki, Ayano; Ogasawara, Hanako; Yokoyama, Tomoki; Nakamura, Toshiaki

    2006-05-01

    Much attention has been paid to the new idea of detecting objects using ocean ambient noise. This concept is called ambient noise imaging (ANI). In this study, sound fields focused by an acoustic lens system constructed with a single biconcave lens were analyzed using the finite difference time domain (FDTD) method for realizing an ANI system. The size of the lens aperture that would have sufficient resolutionfor example, the beam width is 1 at 60 kHzwas roughly determined by comparing the image points and -3 dB areas of sound pressure fields generated by lenses with various apertures. Then, in another FDTD analysis, we successfully used a lens with a determined aperture to detect rigid target objects in an acoustic noise field generated by a large number of point sources.

  4. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    PubMed Central

    Yan, Huichen; Xu, Jia; Long, Teng; Zhang, Xudong

    2015-01-01

    Matched field processing (MFP) is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP) model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP) algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method. PMID:26457708

  5. Three-Dimensional Acoustic Tissue Model: A Computational Tissue Phantom for Image Analyses

    NASA Astrophysics Data System (ADS)

    Mamou, J.; Oelze, M. L.; O'Brien, W. D.; Zachary, J. F.

    A novel methodology to obtain three-dimensional (3D) acoustic tissue models (3DATMs) is introduced. 3DATMs can be used as computational tools for ultrasonic imaging algorithm development and analysis. In particular, 3D models of biological structures can provide great benefit to better understand fundamentally how ultrasonic waves interact with biological materials. As an example, such models were used to generate ultrasonic images that characterize tumor tissue microstructures. 3DATMs can be used to evaluate a variety of tissue types. Typically, excised tissue is fixed, embedded, serially sectioned, and stained. The stained sections are digitally imaged (24-bit bitmap) with light microscopy. Contrast of each stained section is equalized and an automated registration algorithm aligns consecutive sections. The normalized mutual information is used as a similarity measure, and simplex optimization is conducted to find the best alignment. Both rigid and non-rigid registrations are performed. During tissue preparation, some sections are generally lost; thus, interpolation prior to 3D reconstruction is performed. Interpolation is conducted after registration using cubic Hermite polynoms. The registered (with interpolated) sections yield a 3D histologic volume (3DHV). Acoustic properties are then assigned to each tissue constituent of the 3DHV to obtain the 3DATMs. As an example, a 3D acoustic impedance tissue model (3DZM) was obtained for a solid breast tumor (EHS mouse sarcoma) and used to estimate ultrasonic scatterer size. The 3DZM results yielded an effective scatterer size of 32.9 (±6.1) μm. Ultrasonic backscatter measurements conducted on the same tumor tissue in vivo yielded an effective scatterer size of 33 (±8) μm. This good agreement shows that 3DATMs may be a powerful modeling tool for acoustic imaging applications

  6. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  7. Finite element modelling for the investigation of edge effect in acoustic micro imaging of microelectronic packages

    NASA Astrophysics Data System (ADS)

    Shen Lee, Chean; Zhang, Guang-Ming; Harvey, David M.; Ma, Hong-Wei; Braden, Derek R.

    2016-02-01

    In acoustic micro imaging of microelectronic packages, edge effect is often presented as artifacts of C-scan images, which may potentially obscure the detection of defects such as cracks and voids in the solder joints. The cause of edge effect is debatable. In this paper, a 2D finite element model is developed on the basis of acoustic micro imaging of a flip-chip package using a 230 MHz focused transducer to investigate acoustic propagation inside the package in attempt to elucidate the fundamental mechanism that causes the edge effect. A virtual transducer is designed in the finite element model to reduce the coupling fluid domain, and its performance is characterised against the physical transducer specification. The numerical results showed that the under bump metallization (UBM) structure inside the package has a significant impact on the edge effect. Simulated wavefields also showed that the edge effect is mainly attributed to the horizontal scatter, which is observed in the interface of silicon die-to-the outer radius of solder bump. The horizontal scatter occurs even for a flip-chip package without the UBM structure.

  8. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    PubMed

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-01-01

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583

  9. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels

    PubMed Central

    2014-01-01

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583

  10. Acoustic radiation pressure: A 'phase contrast' agent for x-ray phase contrast imaging

    SciTech Connect

    Bailat, Claude J.; Hamilton, Theron J.; Rose-Petruck, Christoph; Diebold, Gerald J.

    2004-11-08

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high-resolution x-ray imaging of tissue and soft materials. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging microscopic tumor phantoms embedded into tissue with a thickness typically presented in mammography. The detection limit of micrometer size masses exceeds the resolution of currently available mammography imaging systems. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. The results presented here suggest that the method may permit the detection of tumors in soft tissue in their early stage of development.

  11. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  12. Acoustic property reconstruction of a pygmy sperm whale (Kogia breviceps) forehead based on computed tomography imaging.

    PubMed

    Song, Zhongchang; Xu, Xiao; Dong, Jianchen; Xing, Luru; Zhang, Meng; Liu, Xuecheng; Zhang, Yu; Li, Songhai; Berggren, Per

    2015-11-01

    Computed tomography (CT) imaging and sound experimental measurements were used to reconstruct the acoustic properties (density, velocity, and impedance) of the forehead tissues of a deceased pygmy sperm whale (Kogia breviceps). The forehead was segmented along the body axis and sectioned into cross section slices, which were further cut into sample pieces for measurements. Hounsfield units (HUs) of the corresponding measured pieces were obtained from CT scans, and regression analyses were conducted to investigate the linear relationships between the tissues' HUs and velocity, and HUs and density. The distributions of the acoustic properties of the head at axial, coronal, and sagittal cross sections were reconstructed, revealing that the nasal passage system was asymmetric and the cornucopia-shaped spermaceti organ was in the right nasal passage, surrounded by tissues and airsacs. A distinct dense theca was discovered in the posterior-dorsal area of the melon, which was characterized by low velocity in the inner core and high velocity in the outer region. Statistical analyses revealed significant differences in density, velocity, and acoustic impedance between all four structures, melon, spermaceti organ, muscle, and connective tissue (p < 0.001). The obtained acoustic properties of the forehead tissues provide important information for understanding the species' bioacoustic characteristics. PMID:26627786

  13. Applications of stereoscopic particle image velocimetry: Dust acoustic waves and velocity space distribution functions

    SciTech Connect

    Thomas, Edward Jr.; Williams, Jeremiah

    2006-05-15

    Two-dimensional particle image velocimetry (2D-PIV) techniques have been applied to dusty plasmas for the past 5 years. During that time, 2D-PIV has been used to provide detailed measurements of microparticle transport in dusty plasmas. However, a measurement of the third velocity vector direction is necessary to fully understand the microparticle transport. In this paper, stereoscopic particle image velocimetry (stereo-PIV) is used as a technique for obtaining all three-velocity vector components. This paper discusses the application of stereo-PIV techniques to measurements of dust acoustic waves and velocity space distribution functions in dusty plasmas.

  14. A comparison of traffic estimates of nocturnal flying animals using radar, thermal imaging, and acoustic recording.

    PubMed

    Horton, Kyle G; Shriver, W Gregory; Buler, Jeffrey J

    2015-03-01

    There are several remote-sensing tools readily available for the study of nocturnally flying animals (e.g., migrating birds), each possessing unique measurement biases. We used three tools (weather surveillance radar, thermal infrared camera, and acoustic recorder) to measure temporal and spatial patterns of nocturnal traffic estimates of flying animals during the spring and fall of 2011 and 2012 in Lewes, Delaware, USA. Our objective was to compare measures among different technologies to better understand their animal detection biases. For radar and thermal imaging, the greatest observed traffic rate tended to occur at, or shortly after, evening twilight, whereas for the acoustic recorder, peak bird flight-calling activity was observed just prior to morning twilight. Comparing traffic rates during the night for all seasons, we found that mean nightly correlations between acoustics and the other two tools were weakly correlated (thermal infrared camera and acoustics, r = 0.004 ± 0.04 SE, n = 100 nights; radar and acoustics, r = 0.14 ± 0.04 SE, n = 101 nights), but highly variable on an individual nightly basis (range = -0.84 to 0.92, range = -0.73 to 0.94). The mean nightly correlations between traffic rates estimated by radar and by thermal infrared camera during the night were more strongly positively correlated (r = 0.39 ± 0.04 SE, n = 125 nights), but also were highly variable for individual nights (range = -0.76 to 0.98). Through comparison with radar data among numerous height intervals, we determined that flying animal height above the ground influenced thermal imaging positively and flight call detections negatively. Moreover, thermal imaging detections decreased with the presence of cloud cover and increased with mean ground flight speed of animals, whereas acoustic detections showed no relationship with cloud cover presence but did decrease with increased flight speed. We found sampling methods to be positively correlated when comparing mean nightly traffic rates across nights. The strength of these correlations generally increased throughout the night, peaking 2-3 hours before morning twilight. Given the convergence of measures by different tools at this time, we suggest that researchers consider sampling flight activity in the hours before morning twilight when differences due to detection biases among sampling tools appear to be minimized. PMID:26263662

  15. Microstructure Imaging Using Frequency Spectrum Spatially Resolved Acoustic Spectroscopy F-Sras

    NASA Astrophysics Data System (ADS)

    Sharples, S. D.; Li, W.; Clark, M.; Somekh, M. G.

    2010-02-01

    Material microstructure can have a profound effect on the mechanical properties of a component, such as strength and resistance to creep and fatigue. SRAS—spatially resolved acoustic spectroscopy—is a laser ultrasonic technique which can image microstructure using highly localized surface acoustic wave (SAW) velocity as a contrast mechanism, as this is sensitive to crystallographic orientation. The technique is noncontact, nondestructive, rapid, can be used on large components, and is highly tolerant of acoustic aberrations. Previously, the SRAS technique has been demonstrated using a fixed frequency excitation laser and a variable grating period (к-vector) to determine the most efficiently generated SAWs, and hence the velocity. Here, we demonstrate an implementation which uses a fixed grating period with a broadband laser excitation source. The velocity is determined by analyzing the measured frequency spectrum. Experimental results using this "frequency spectrum SRAS" (f-SRAS) method are presented. Images of microstructure on an industrially relevant material are compared to those obtained using the previous SRAS method ("k-SRAS"), excellent agreement is observed. Moreover, f-SRAS is much simpler and potentially much more rapid than k-SRAS as the velocity can be determined at each sample point in one single laser shot, rather than scanning the grating period.

  16. Symmetry analysis for nonlinear time reversal methods applied to nonlinear acoustic imaging

    NASA Astrophysics Data System (ADS)

    Dos Santos, Serge; Chaline, Jennifer

    2015-10-01

    Using symmetry invariance, nonlinear Time Reversal (TR) and reciprocity properties, the classical NEWS methods are supplemented and improved by new excitations having the intrinsic property of enlarging frequency analysis bandwidth and time domain scales, with now both medical acoustics and electromagnetic applications. The analysis of invariant quantities is a well-known tool which is often used in nonlinear acoustics in order to simplify complex equations. Based on a fundamental physical principle known as symmetry analysis, this approach consists in finding judicious variables, intrinsically scale dependant, and able to describe all stages of behaviour on the same theoretical foundation. Based on previously published results within the nonlinear acoustic areas, some practical implementation will be proposed as a new way to define TR-NEWS based methods applied to NDT and medical bubble based non-destructive imaging. This paper tends to show how symmetry analysis can help us to define new methodologies and new experimental set-up involving modern signal processing tools. Some example of practical realizations will be proposed in the context of biomedical non-destructive imaging using Ultrasound Contrast Agents (ACUs) where symmetry and invariance properties allow us to define a microscopic scale-invariant experimental set-up describing intrinsic symmetries of the microscopic complex system.

  17. Eigenfunction analysis of stochastic backscatter for characterization of acoustic aberration in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Krogstad, Harald; Mo, Eirik; Angelsen, Bjørn A.

    2004-06-01

    Presented here is a characterization of aberration in medical ultrasound imaging. The characterization is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. Aberration correction based on this characterization takes the form of an aberration correction filter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wavelength of the transmit pulse. The scatterer distribution is therefore assumed to be δ correlated. This paper shows how maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction are presented for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtainable using data from a simulated point source.

  18. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    PubMed Central

    Hui, Jie; Li, Rui; Phillips, Evan H.; Goergen, Craig J.; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology. PMID:27069873

  19. Progress on developing acoustic-infrared imaging NDE: studying motions in crack faces

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; Islam, Md. S.

    2010-04-01

    In this paper, we present our progress in the CAREER project "Investigation of Hybrid Acoustic-Infrared NDE Imaging Mechanisms" supported by NSF Civil, Mechanical & Manufacturing Innovation Division, Sensors & Sensing Systems program directed by Dr. Shih-Chi Liu. The project ended in September, 2009. During the project, the PIs and her graduate students had investigated on several aspects of the innovative Sonic Infrared Imaging technology. Sonic Infrared Imaging is a novel technique which implements the concept of combining infrared (IR) sensing and imaging with pulsed (typically a fraction of a second) sonic/ultrasonic excitation. This technique has significant advantages over traditional NDE techniques as an effective, fast, and wide-area NDE method. The PI has studied the fundamental issues related to this technology, such as the non-linear vibration behavior induced in the target materials and structures through both experimental study and theoretical calculation.

  20. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop and refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.

  1. Acoustic Image Models for Obstacle Avoidance with Forward-Looking Sonar

    NASA Astrophysics Data System (ADS)

    Masek, T.; Kölsch, M.

    Long-range forward-looking sonars (FLS) have recently been deployed in autonomous unmanned vehicles (AUV). We present models for various features in acoustic images, with the goal of using this sensor for altitude maintenance, obstacle detection and obstacle avoidance. First, we model the backscatter and FLS noise as pixel-based, spatially-varying intensity distributions. Experiments show that these models predict noise with an accuracy of over 98%. Next, the presence of acoustic noise from two other sources including a modem is reliably detected with a template-based filter and a threshold learned from training data. Lastly, the ocean floor location and orientation is estimated with a gradient-descent method using a site-independent template, yielding sufficiently accurate results in 95% of the frames. Temporal information is expected to further improve the performance.

  2. Imaging living cells with a combined high-resolution multi-photon-acoustic microscope

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Weiss, Eike; Stark, Martin; Stracke, Frank; Riemann, Iris; Lemor, Robert; König, Karsten

    2007-02-01

    With increasing demand for in-vivo observation of living cells, microscope techniques that do not need staining become more and more important. In this talk we present a combined multi-photon-acoustic microscope with the possibility to measure synchronously properties addressed by ultrasound and two-photon fluorescence. Ultrasound probes the local mechanical properties of a cell, while the high resolution image of the two-photon fluorescence delivers insight in cell morphology and activity. In the acoustic part of the microscope an ultrasound wave, with a frequency of GHz, is focused by an acoustic sapphire lens and detected by a piezo electric transducer assembled to the lens. The achieved lateral resolution is in the range of 1μm. Contrast in the images arises mainly from the local absorption of sound in the cells, related to properties, such as mass density, stiffness and viscose damping. Additionally acoustic microscopy can access the cell shape and the state of the cell membrane as it is a intrinsic volume scanning technique.The optical part bases on the emission of fluorescent biomolecules naturally present in cells (e.g. NAD(P)H, protophorphyrin IX, lipofuscin, melanin). The nonlinear effect of two-photon absorption provides a high lateral and axial resolution without the need of confocal detection. In addition, in the near-IR cell damages are drastically reduced in comparison to direct excitation in the visible or UV. Both methods can be considered as minimal invasive, as they relay on intrinsic contrast mechanisms and dispense with the need of staining. First results on living cells are presented and discussed.

  3. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the seven quarter of the project the research team analyzed some of the acoustic velocity data and rock deformation data. The goal is to create a series of ''deformation-velocity maps'' which can outline the types of rock deformational mechanisms which can occur at high pressures and then associate those with specific compressional or shear wave velocity signatures. During this quarter, we began to analyze both the acoustical and deformational properties of the various rock types. Some of the preliminary velocity data from the Danian chalk will be presented in this report. This rock type was selected for the initial efforts as it will be used in the tomographic imaging study outlined in Task 10. This is one of the more important rock types in the study as the Danian chalk is thought to represent an excellent analog to the Ekofisk chalk that has caused so many problems in the North Sea. Some of the preliminary acoustic velocity data obtained during this phase of the project indicates that during pore collapse and compaction of this chalk, the acoustic velocities can change by as much as 200 m/s. Theoretically, this significant velocity change should be detectable during repeated successive 3-D seismic images. In addition, research continues with an analysis of the unconsolidated sand samples at high confining pressures obtained in Task 9. The analysis of the results indicate that sands with 10% volume of fines can undergo liquefaction at lower stress conditions than sand samples which do not have fines added. This liquefaction and/or sand flow is similar to ''shallow water'' flows observed during drilling in the offshore Gulf of Mexico.

  4. Intracardiac Acoustic Radiation Force Impulse Imaging: A Novel Imaging Method for Intraprocedural Evaluation of Radiofrequency Ablation Lesions

    PubMed Central

    Eyerly, Stephanie A.; Bahnson, Tristram D.; Koontz, Jason I.; Bradway, David P.; Dumont, Douglas M.; Trahey, Gregg E.; Wolf, Patrick D.

    2012-01-01

    Background Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation (AF) has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease post-procedure AF recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging technique that visualizes RFA lesions by mapping the relative elasticity contrast between compliant-unablated and stiff-RFA treated myocardium. Objective To determine if intraprocedure ARFI images can identify RFA treated myocardium in vivo. Methods In eight canines, an electroanatomical mapping (EAM) guided intracardiac echo catheter (ICE) was used to acquire 2D ARFI images along right atrial ablation lines before and after RFA. ARFI images were acquired during diastole with the myocardium positioned at the ARFI focus (1.5 cm) and parallel to the ICE transducer for maximal and uniform energy delivery to the tissue. Three reviewers categorized each ARFI image as depicting no lesion, non-contiguous, or contiguous lesion. For comparison, three separate reviewers confirmed RFA lesion presence and contiguity based on functional conduction block at the imaging plane location on EAM activation maps. Results Ten percent of ARFI images were discarded due to motion artifacts. Reviewers of the ARFI images detected RFA-treated sites with high sensitivity (95.7%) and specificity (91.5%). Reviewer identification of contiguous lesion had 75.3% specificity and 47.1% sensitivity. Conclusions Intracardiac ARFI imaging was successful in identifying endocardial RFA treatment when specific imaging conditions were maintained. Further advances in ARFI imaging technology would facilitate a wider range of imaging opportunities for clinical lesion evaluation. PMID:22772134

  5. The coordination chemistry and magnetism of some 3d-4f and 4f amino-polyalcohol compounds.

    PubMed

    Sharples, Joseph W; Collison, David

    2014-02-01

    Triethanolamine, teaH3, and diethanolamine, RdeaH2, 3d-4f and 4f compounds demonstrate an enormous variety in their structure and bonding. This review examines the synthetic strategies to these molecules and their magnetic properties, whilst trying to assess these ligands' suitability towards new SMMs and magnetic refrigerants. PMID:25009361

  6. The coordination chemistry and magnetism of some 3d–4f and 4f amino-polyalcohol compounds

    PubMed Central

    Sharples, Joseph W.; Collison, David

    2014-01-01

    Triethanolamine, teaH3, and diethanolamine, RdeaH2, 3d–4f and 4f compounds demonstrate an enormous variety in their structure and bonding. This review examines the synthetic strategies to these molecules and their magnetic properties, whilst trying to assess these ligands’ suitability towards new SMMs and magnetic refrigerants. PMID:25009361

  7. Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study

    NASA Astrophysics Data System (ADS)

    Jiang, C. P.; Lin, W. T.; Chen, W. S.

    2006-05-01

    Magnetic resonance image (MRI) is a promising monitoring tool for non-invasive real-time thermal guidance in high intensity focused ultrasound (HIFU) during thermal ablation surgery. However, this approach has two main drawbacks: 1) majority of components need to be redesigned to be MR compatible in order to avoid effecting MR images, and 2) the cost of operating MRI facilities is high. Alternately, ultrasound-stimulated acoustic emission (USAE) method has been applied for detecting thermal variations in tissues. An optical transparent phantom, made from polyacrylamide, containing thermal sensitive indicator protein (Bovine Serum Albumin), was prepared for observing the HIFU-induced denaturalization. A thermal-couple was set up for validation of temperature distribution. Experimental results show that thermal image can be captured clearly under stationary conditions.

  8. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging

    PubMed Central

    Qu, M.; Mehrmohammadi, M.; Emelianov, S.Y.

    2015-01-01

    Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA) imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA) and magneto-motive ultrasound (MMUS) signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles. The results indicated that during the delivery of nanoparticles to the vicinity of the cells, both PA and MMUS signals are almost linearly proportional. However, accumulation of nanoparticles within the cells leads to nonlinear MMUS-PA relationship, due to non-linear MMUS signal amplification. Therefore, through longitudinal MPA imaging, it is possible to monitor the delivery of nanoparticles and identify the endocytosis of the nanoparticles by living cells. PMID:26640773

  9. Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study

    SciTech Connect

    Jiang, C. P.; Lin, W. T.; Chen, W. S.

    2006-05-08

    Magnetic resonance image (MRI) is a promising monitoring tool for non-invasive real-time thermal guidance in high intensity focused ultrasound (HIFU) during thermal ablation surgery. However, this approach has two main drawbacks: 1) majority of components need to be redesigned to be MR compatible in order to avoid effecting MR images, and 2) the cost of operating MRI facilities is high. Alternately, ultrasound-stimulated acoustic emission (USAE) method has been applied for detecting thermal variations in tissues. An optical transparent phantom, made from polyacrylamide, containing thermal sensitive indicator protein (Bovine Serum Albumin), was prepared for observing the HIFU-induced denaturalization. A thermal-couple was set up for validation of temperature distribution. Experimental results show that thermal image can be captured clearly under stationary conditions.

  10. Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging.

    PubMed

    Shelton, Sarah E; Lindsey, Brooks D; Tsuruta, James K; Foster, F Stuart; Dayton, Paul A

    2016-03-01

    Ultrasound molecular imaging utilizes targeted microbubbles to bind to vascular targets such as integrins, selectins and other extracellular binding domains. After binding, these microbubbles are typically imaged using low pressures and multi-pulse imaging sequences. In this article, we present an alternative approach for molecular imaging using ultrasound that relies on superharmonic signals produced by microbubble contrast agents. Bound bubbles were insonified near resonance using a low frequency (4 MHz) element and superharmonic echoes were received at high frequencies (25-30 MHz). Although this approach was observed to produce declining image intensity during repeated imaging in both in vitro and in vivo experiments because of bubble destruction, the feasibility of superharmonic molecular imaging was demonstrated for transmit pressures, which are sufficiently high to induce shell disruption in bound microbubbles. This approach was validated using microbubbles targeted to the αvβ3 integrin in a rat fibrosarcoma model (n = 5) and combined with superharmonic images of free microbubbles to produce high-contrast, high-resolution 3-D volumes of both microvascular anatomy and molecular targeting. Image intensity over repeated scans and the effect of microbubble diameter were also assessed in vivo, indicating that larger microbubbles yield increased persistence in image intensity. Using ultrasound-based acoustic angiography images rather than conventional B-mode ultrasound to provide the underlying anatomic information facilitates anatomic localization of molecular markers. Quantitative analysis of relationships between microvasculature and targeting information indicated that most targeting occurred within 50 μm of a resolvable vessel (>100 μm diameter). The combined information provided by these scans may present new opportunities for analyzing relationships between microvascular anatomy and vascular targets, subject only to limitations of the current mechanically scanned system and microbubble persistence to repeated imaging at moderate mechanical indices. PMID:26678155

  11. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja U.; Tréhu, Anne M.; Collier, Robert W.; Suess, Erwin; Rehder, Gregor

    2003-06-01

    Submersible investigations of the Cascadia accretionary complex have identified localized venting of methane gas bubbles in association with gas hydrate occurrence. Acoustic profiles of these bubble plumes in the water column in the vicinity of Hydrate Ridge offshore Oregon provide new constraints on the spatial distribution of these gas vents and the fate of the gas in the water column. The gas vent sites remained active over the span of two years, but varied dramatically on time scales of a few hours. All plumes emanated from local topographic highs near the summit of ridge structures. The acoustic images of the bubble plumes in the water column disappear at water depths between 500 to 460 m, independent of the seafloor depth. This coincides with the predicted depth of the gas hydrate stability boundary of 510 to 490 m, suggesting that the presence of a hydrate skin on the bubble surface prevents them from rapid dissolution. The upper limit of the acoustic bubble plumes at 460 m suggests that dissolution of the residual bubbles is relatively rapid above the hydrate stability zone.

  12. Contribution of the supraglottic larynx to the vocal product: imaging and acoustic analysis

    NASA Astrophysics Data System (ADS)

    Gracco, L. Carol

    1996-04-01

    Horizontal supraglottic laryngectomy is a surgical procedure to remove a mass lesion located in the region of the pharynx superior to the true vocal folds. In contrast to full or partial laryngectomy, patients who undergo horizontal supraglottic laryngectomy often present with little or nor involvement to the true vocal folds. This population provides an opportunity to examine the acoustic consequences of altering the pharynx while sparing the laryngeal sound source. Acoustic and magnetic resonance imaging (MRI) data were acquired in a group of four patients before and after supraglottic laryngectomy. Acoustic measures included the identification of vocal tract resonances and the fundamental frequency of the vocal fold vibration. 3D reconstruction of the pharyngeal portion of each subjects' vocal tract were made from MRIs taken during phonation and volume measures were obtained. These measures reveal a variable, but often dramatic difference in the surgically-altered area of the pharynx and changes in the formant frequencies of the vowel/i/post surgically. In some cases the presence of the tumor created a deviation from the expected formant values pre-operatively with post-operative values approaching normal. Patients who also underwent radiation treatment post surgically tended to have greater constriction in the pharyngeal area of the vocal tract.

  13. Acoustic Property Reconstruction of a Neonate Yangtze Finless Porpoise's (Neophocaena asiaeorientalis) Head Based on CT Imaging

    PubMed Central

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W. L.; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise’s head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise’s head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier’s beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise’s melon. PMID:25856588

  14. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    PubMed

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon. PMID:25856588

  15. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    PubMed

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV. PMID:26627789

  16. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz. PMID:26026514

  17. Acoustic radiation contrast in MR images for breast cancer diagnostics--initial phantom study.

    PubMed

    Radicke, M; Mende, J; Kofahl, A-L; Wild, J; Ulucay, D; Habenstein, B; Deimling, M; Trautner, P; Weber, B; Maier, K

    2011-02-01

    Acoustic radiation contrast in magnetic resonance images is an approach to visualize the changes in ultrasonic loss and viscoelastic changes of the sample with the resolution of a magnetic resonance imaging (MRI) system. By irradiating ultrasound (US) into a tissue-mimicking sample, a displacement along the US beam path caused by the acoustic radiation force is obtained. This displacement varies with the US intensity, the duration of irradiation, the US attenuation and the viscoelastic properties of the sample. US pulses of 2.5 MHz with a duration of 20 ms and an intensity of <17 W/cm(2) are used. An MRI sequence was programmed to produce images in which the magnitude of the displacement is visualized by gray value changes. In addition, a finite element simulation of the measurements was performed to demonstrate the feasibility of the method. Through examination of the measurements and the simulations, information about viscoelastic changes was achieved. In this work, measurements on different breast phantoms are presented. PMID:21257089

  18. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P. Oshkai; M. Geveci; D. Rockwell; M. Pollack

    2002-12-12

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of,these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  19. Investigating the emotional response to room acoustics: A functional magnetic resonance imaging study.

    PubMed

    Lawless, M S; Vigeant, M C

    2015-10-01

    While previous research has demonstrated the powerful influence of pleasant and unpleasant music on emotions, the present study utilizes functional magnetic resonance imaging (fMRI) to assess the positive and negative emotional responses as demonstrated in the brain when listening to music convolved with varying room acoustic conditions. During fMRI scans, subjects rated auralizations created in a simulated concert hall with varying reverberation times. The analysis detected activations in the dorsal striatum, a region associated with anticipation of reward, for two individuals for the highest rated stimulus, though no activations were found for regions associated with negative emotions in any subject. PMID:26520354

  20. Contrast in Intracardiac Acoustic Radiation Force Impulse Images of Radiofrequency Ablation Lesions

    PubMed Central

    Eyerly, Stephanie A.; Bahnson, Tristram D.; Koontz, Jason I.; Bradway, David P.; Dumont, Douglas M.; Trahey, Gregg E.; Wolf, Patrick D.

    2014-01-01

    We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 μm) than at ablated sites (6.06 ± 0.94 μm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = −0.03 ± 0.28, CNR = 0.74 ± 0.68). PMID:24554293

  1. Acoustic Radiation Force Impulse (ARFI) Imaging of Zebrafish Embryo by High-Frequency Coded Excitation Sequence

    PubMed Central

    Park, Jinhyoung; Lee, Jungwoo; Lau, Sien Ting; Lee, Changyang; Huang, Ying; Lien, Ching-Ling; Shung, K. Kirk

    2011-01-01

    Acoustic radiation force impulse (ARFI) imaging has been developed as a non-invasive method for quantitative illustration of tissue stiffness or displacement. Conventional ARFI imaging (2–10 MHz) has been implemented in commercial scanners for illustrating elastic properties of several organs. The image resolution, however, is too coarse to study mechanical properties of micro-sized objects such as cells. This article thus presents a high-frequency coded excitation ARFI technique, with the ultimate goal of displaying elastic characteristics of cellular structures. Tissue mimicking phantoms and zebrafish embryos are imaged with a 100-MHz lithium niobate (LiNbO3) transducer, by cross-correlating tracked RF echoes with the reference. The phantom results show that the contrast of ARFI image (14 dB) with coded excitation is better than that of the conventional ARFI image (9 dB). The depths of penetration are 2.6 and 2.2 mm, respectively. The stiffness data of the zebrafish demonstrate that the envelope is harder than the embryo region. The temporal displacement change at the embryo and the chorion is as large as 36 and 3.6 μm. Consequently, this high-frequency ARFI approach may serve as a remote palpation imaging tool that reveals viscoelastic properties of small biological samples. PMID:22101757

  2. Image processing and data acquisition optimization for acoustic radiation force impulse imaging of in vivo breast masses

    NASA Astrophysics Data System (ADS)

    Sharma, Amy; Trahey, Gregg; Frinkley, Kristin; Soo, Mary Scott; Palmeri, Mark; Nightingale, Kathryn

    2005-04-01

    Acoustic Radiation Force Impulse (ARFI) imaging utilizes brief, high-energy acoustic pulses to excite tissue and ultrasonic correlation based tracking methods to monitor the resulting tissue displacement, which reflects the relative mechanical properties of tissue (i.e. stiffer tissue displaces less). ARFI image contrast is optimized utilizing tightly focused radiation force excitations at multiple axial and lateral locations throughout a 2D field of view. In an ongoing, IRB approved, clinical study, suspicious breast lesions are interrogated in vivo via multi-focal-zone ARFI prior to undergoing core biopsy. A Siemens SONOLINE Antares (TM) scanner and VF10-5 probe were configured to acquire ARFI data from multiple focal-zones and lateral locations. Data was acquired in real-time, and processed off-line. Processing included: filtering, parametric data analysis, normalization and combination of the multiple focal-zone data, and automatic edge detection. ARFI sequences were designed with varying pushing pulse frequencies and intensities. Contrast to noise ratio was evaluated in a tissue mimicking phantom for lesions at different depths using the different pushing pulse sequences. For shallower lesions (depth=10mm), CNR was higher than for deeper lesions, and did not vary appreciably for the different push sequences. For deeper lesions (depth=20mm), CNR increased with increasing push pulse intensity and decreasing push pulse frequency. With the pushing pulse transmit intensity calibrated (in a homogeneous phantom) to achieve uniform displacement at all axial depths, in vivo results yielded poor SNR at depth and did not achieve overall uniform displacement. In vivo, image quality improved with increasing push pulse intensity. To date, 27 masses have been interrogated using multi-focal-zone ARFI and overall good structural agreement exists between B-mode and ARFI images. Normalization and blending facilitate image generation from ARFI interrogation using different intensities at different focal depths.

  3. Intraperitoneal distribution of ultrasound contrast medium imaged with B-mode ultrasound and colour-stimulated acoustic emission imaging.

    PubMed

    Puls, R; Gebauer, B; Hildebrandt, B; Riess, H; Herrmann, M; Hosten, N; Albrecht, T

    2003-04-01

    Intraperitoneal port catheter systems for local delivery of cytotoxic drugs require imaging prior to chemotherapy to confirm homogenous distribution of an injected fluid in the entire peritoneal cavity. This study was performed to assess whether contrast-enhanced ultrasound (US) is a suitable imaging modality for this task. Twelve patients with peritoneal carcinosis and an implanted intraperitoneal port catheter system were studied before chemotherapy. Ultrasound examinations were performed after bolus injections of the microbubble contrast medium Levovist. Distribution of the contrast medium in the peritoneal cavity was imaged using B-mode US and colour-stimulated acoustic emission imaging (SAE). Contrast-enhanced CT imaging was used as term of reference for evaluating the US results. Distribution of the microbubbles in the peritoneal cavity was easily detected by both US methods. In 10 of 12 patients a free distribution in all abdominal quadrants was seen with both US techniques. In 2 of 12 patients, CT and US showed contrast medium limited to the perihepatic area. Therapy was stopped and surgical repositioning of the catheter was performed. Ultrasound after intraperitoneal injection of a microbubble contrast agent provides reliable information about the distribution of intraperitoneally injected fluid in the peritoneal cavity. This method is therefore well suited for imaging port catheter systems prior to chemotherapy. PMID:12664105

  4. Structural, magnetic, and energetic properties of Na2FePO4F, Li2FePO4F, NaFePO4F, and LiFePO4F from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Lebègue, S.; Larsson, P.; Ahuja, R.

    2009-08-01

    In this paper, we report on Na2FePO4F and Li2FePO4F, which are materials that are used as cathodes in batteries, using density functional theory with the LDA, LDA+U, GGA, or GGA+U approximations. Specifically, we study their crystal structure, electronic structure, and magnetic properties and provide similar information about the intermediate compounds LiFePO4F and NaFePO4F. Finally, the intercalation voltages of the corresponding batteries are calculated using various exchange-correlation approximations and conclusions are drawn about which one is the most suitable to use for the study of this class of materials.

  5. Acoustic quasi-holographic images of scattering by vertical cylinders from one-dimensional bistatic scans.

    PubMed

    Baik, Kyungmin; Dudley, Christopher; Marston, Philip L

    2011-12-01

    When synthetic aperture sonar (SAS) is used to image elastic targets in water, subtle features can be present in the images associated with the dynamical response of the target being viewed. In an effort to improve the understanding of such responses, as well as to explore alternative image processing methods, a laboratory-based system was developed in which targets were illuminated by a transient acoustic source, and bistatic responses were recorded by scanning a hydrophone along a rail system. Images were constructed using a relatively conventional bistatic SAS algorithm and were compared with images based on supersonic holography. The holographic method is a simplification of one previously used to view the time evolution of a target's response [Hefner and Marston, ARLO 2, 55-60 (2001)]. In the holographic method, the space-time evolution of the scattering was used to construct a two-dimensional image with cross range and time as coordinates. Various features for vertically hung cylindrical targets were interpreted using high frequency ray theory. This includes contributions from guided surface elastic waves, as well as transmitted-wave features and specular reflection. PMID:22225041

  6. Cycloidal order of 4f moments as a probe of chiral domains in DyMnO₃.

    PubMed

    Schierle, E; Soltwisch, V; Schmitz, D; Feyerherm, R; Maljuk, A; Yokaichiya, F; Argyriou, D N; Weschke, E

    2010-10-15

    Using soft x-ray diffraction at the Dy-M₅ resonance, pronounced circular dichroism in the ferroelectric phase of DyMnO₃ is observed in connection with sizable b and c components of the Dy-4f magnetic moments. This provides strong evidence for cycloidal order of the 4f moments, corroborating that inversion-symmetry breaking in this material is not accomplished by the Mn spins alone. The 4f circular dichroism allows us to image multiferroic domains that are imprinted on the surface of DyMnO₃ using the local charging by the x-ray beam via the photoelectric effect. PMID:21231008

  7. Negative refraction and imaging of acoustic waves in a two-dimensional square chiral lattice structure

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Dong; Wang, Yue-Sheng

    2016-05-01

    The negative refraction behavior and imaging effect for acoustic waves in a kind of two-dimensional square chiral lattice structure are studied in this paper. The unit cell of the proposed structure consists of four zigzag arms connected through a thin circular ring at the central part. The relation of the symmetry of the unit cell and the negative refraction phenomenon is investigated. Using the finite element method, we calculate the band structures and the equi-frequency surfaces of the system, and confirm the frequency range where the negative refraction is present. Due to the rotational symmetry of the unit cell, a phase difference is induced to the waves propagating from a point source through the structure to the other side. The phase difference is related to the width of the structure and the frequency of the source, so we can get a tunable deviated imaging. This kind of phenomenon is also demonstrated by the numerical simulation of two Gaussian beams that are symmetrical about the interface normal with the same incident angle, and the different negative refractive indexes are presented. Based on this special performance, a double-functional mirror-symmetrical slab is proposed for realizing acoustic focusing and beam separation. xml:lang="fr"

  8. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  9. Density Change of an Oxidized Nuclear Graphite by Acoustic Microscopy and Image Processing

    SciTech Connect

    Chi, Se Hwan; Contescu, Cristian I; Burchell, Timothy D

    2009-01-01

    The strong correlation between the density and the physical and mechanical properties of graphite suggests that the method of nondestructive density evaluation could be developed into a characterization technique of great value for the overall improvement of safety of graphite moderator reactors. In this study, the oxidation-induced density changes in nuclear graphite for VHTR were determined by a conventional destructive bulk density measurement method (BM), and by a new non-destructive method based on acoustic microscopy and image processing (AM). The results were compared in order to validate the applicability of the latter method. For a direct comparison of the results from both measurements, two specimens were prepared from a cylindrical graphite sample (1 inch diameter and 1 inch height, oxidized to 10% weight loss at 700 oC in air for 5 hours). The specimens were used for characterization by BM and AM methods, respectively. The results show that, even with a large standard deviation of the AM, the density changing trend from both methods appeared the same. Present observation may be attributed to the fact that AM images reflect characteristic density changes of the graphite sample through the acoustic impedance changes. This study demonstrates the possibility of using AM as a nondestructive technique for the evaluation of density changes in graphite when a database is prepared through a systematic series of experiments.

  10. Improving the resolution of three-dimensional acoustic imaging with planar phased arrays

    NASA Astrophysics Data System (ADS)

    Xenaki, Angeliki; Jacobsen, Finn; Fernandez-Grande, Efren

    2012-04-01

    This paper examines and compares two methods of improving the quality of three-dimensional beamforming with phased microphone arrays. The intended application is the detection of aerodynamic noise sources on wind turbines. Both methods employ Fourier based deconvolution. The first method involves a transformation of coordinates that tends to make the response to a point source, the point spread function, more shift invariant. The result is a significant improvement in sound source imaging in the transformed coordinate system. However, the inverse transformation to Cartesian coordinates introduces range dependent resolution limitations because of the irregular distribution of the focal points. The second method combines the transformation of coordinates with an alternative scanning technique. This method can be used in near field three-dimensional acoustic imaging to produce maps free of sidelobes and with constant resolution. The robustness of the proposed methods is validated both with computer simulations and experimentally.

  11. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  12. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-01-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with the low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for design of intravascular acoustic angiography transducers. PMID:25856384

  13. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    NASA Astrophysics Data System (ADS)

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  14. Green's Function Retrieval and Marchenko Imaging in a Dissipative Acoustic Medium.

    PubMed

    Slob, Evert

    2016-04-22

    Single-sided Marchenko equations for Green's function construction and imaging relate the measured reflection response of a lossless heterogeneous medium to an acoustic wave field inside this medium. I derive two sets of single-sided Marchenko equations for the same purpose, each in a heterogeneous medium, with one medium being dissipative and the other a corresponding medium with negative dissipation. Double-sided scattering data of the dissipative medium are required as input to compute the surface reflection response in the corresponding medium with negative dissipation. I show that each set of single-sided Marchenko equations leads to Green's functions with a virtual receiver inside the medium: one exists inside the dissipative medium and one in the medium with negative dissipation. This forms the basis of imaging inside a dissipative heterogeneous medium. I relate the Green's functions to the reflection response inside each medium, from which the image can be constructed. I illustrate the method with a one-dimensional example that shows the image quality. The method has a potentially wide range of imaging applications where the material under test is accessible from two sides. PMID:27152808

  15. Green's Function Retrieval and Marchenko Imaging in a Dissipative Acoustic Medium

    NASA Astrophysics Data System (ADS)

    Slob, Evert

    2016-04-01

    Single-sided Marchenko equations for Green's function construction and imaging relate the measured reflection response of a lossless heterogeneous medium to an acoustic wave field inside this medium. I derive two sets of single-sided Marchenko equations for the same purpose, each in a heterogeneous medium, with one medium being dissipative and the other a corresponding medium with negative dissipation. Double-sided scattering data of the dissipative medium are required as input to compute the surface reflection response in the corresponding medium with negative dissipation. I show that each set of single-sided Marchenko equations leads to Green's functions with a virtual receiver inside the medium: one exists inside the dissipative medium and one in the medium with negative dissipation. This forms the basis of imaging inside a dissipative heterogeneous medium. I relate the Green's functions to the reflection response inside each medium, from which the image can be constructed. I illustrate the method with a one-dimensional example that shows the image quality. The method has a potentially wide range of imaging applications where the material under test is accessible from two sides.

  16. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Musharraf Zaman, Ph.D.; Younane Abousleiman, Ph.D.

    2001-04-01

    The oil and gas industry has encountered significant problems in the production of oil and gas from weak rocks (such as chalks and limestones) and from unconsolidated sand formations. Problems include subsidence, compaction, sand production, and catastrophic shallow water sand flows during deep water drilling. Together these cost the petroleum industry hundreds of millions of dollars annually. The goals of this first quarterly report is to document the progress on the project to provide data on the acoustic imaging and mechanical properties of soft rock and marine sediments. The project is intended to determine the geophysical (acoustic velocities) rock properties of weak, poorly cemented rocks and unconsolidated sands. In some cases these weak formations can create problems for reservoir engineers. For example, it cost Phillips Petroleum 1 billion dollars to repair of offshore production facilities damaged during the unexpected subsidence and compaction of the Ekofisk Field in the North Sea (Sulak 1991). Another example is the problem of shallow water flows (SWF) occurring in sands just below the seafloor encountered during deep water drilling operations. In these cases the unconsolidated sands uncontrollably flow up around the annulus of the borehole resulting in loss of the drill casing. The $150 million dollar loss of the Ursa development project in the U.S. Gulf Coast resulted from an uncontrolled SWF (Furlow 1998a,b; 1999a,b). The first three tasks outlined in the work plan are: (1) obtain rock samples, (2) construct new acoustic platens, (3) calibrate and test the equipment. These have been completed as scheduled. Rock Mechanics Institute researchers at the University of Oklahoma have obtained eight different types of samples for the experimental program. These include: (a) Danian Chalk, (b) Cordoba Cream Limestone, (c) Indiana Limestone, (d) Ekofisk Chalk, (e) Oil Creek Sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. These weak rocks and sands are intended to represent analogs to the formations that present oil and gas engineers with problems during oil and gas production and drilling operations. A series of new axial acoustic sensors have been constructed (and tested) to allow measurement of compressional and shear wave velocities during high pressure triaxial tests on these weak rock and sand samples. In addition, equipment to be utilized over the next 18 months of the project have tested and calibrated. These include the load frames, triaxial pressure cells, pressure sensors, load cells, extensometers, and oscilloscopes have been calibrated and tested. The multichannel acoustic emission and acoustic pulse transmission systems have also been tested. Graduate research assistant, research faculty, and the laboratory technician have begun Tasks 4 and 5 which involve preparing the sand samples and rock samples for testing. The construction of the lateral acoustic sensors has also been started during this quarter as outlined in the project timeline. With the equipment having been tested and calibrated, and the samples now being prepared, the experiments are on schedule to be started in April, 2001.

  17. Variable ultrasound trigger delay for improved magnetic resonance acoustic radiation force imaging.

    PubMed

    Mougenot, Charles; Waspe, Adam; Looi, Thomas; Drake, James M

    2016-01-21

    Magnetic resonance acoustic radiation force imaging (MR-ARFI) allows the quantification of microscopic displacements induced by ultrasound pulses, which are proportional to the local acoustic intensity. This study describes a new method to acquire MR-ARFI maps, which reduces the measurement noise in the quantification of displacement as well as improving its robustness in the presence of motion. Two MR-ARFI sequences were compared in this study. The first sequence 'variable MSG' involves switching the polarity of the motion sensitive gradient (MSG) between odd and even image frames. The second sequence named 'static MSG' involves a variable ultrasound trigger delay to sonicate during the first or second MSG for odd and even image frames, respectively. As previously published, the data acquired with a variable MSG required the use of reference data acquired prior to any sonication to process displacement maps. In contrary, data acquired with a static MSG were converted to displacement maps without using reference data acquired prior to the sonication. Displacement maps acquired with both sequences were compared by performing sonications for three different conditions: in a polyacrylamide phantom, in the leg muscle of a freely breathing pig and in the leg muscle of pig under apnea. The comparison of images acquired at even image frames and odd image frames indicates that the sequence with a static MSG provides a significantly better steady state (p  <  0.001 based on a Student's t-test) than the images acquired with a variable MSG. In addition no reference data prior to sonication were required to process displacement maps for data acquired with a static MSG. The absence of reference data prior to sonication provided a 41% reduction of the spatial distribution of noise (p  <  0.001 based on a Student's t-test) and reduced the sensitivity to motion for displacements acquired with a static MSG. No significant differences were expected and observed for thermal maps acquired with a variable MSG and a static MSG. The use of a static MSG with a variable ultrasound trigger delay improves the ARFI displacement map quality without additional acquisition time and remains compatible with the simultaneous acquisition of MR thermal maps. PMID:26717008

  18. Variable ultrasound trigger delay for improved magnetic resonance acoustic radiation force imaging

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Waspe, Adam; Looi, Thomas; Drake, James M.

    2016-01-01

    Magnetic resonance acoustic radiation force imaging (MR-ARFI) allows the quantification of microscopic displacements induced by ultrasound pulses, which are proportional to the local acoustic intensity. This study describes a new method to acquire MR-ARFI maps, which reduces the measurement noise in the quantification of displacement as well as improving its robustness in the presence of motion. Two MR-ARFI sequences were compared in this study. The first sequence ‘variable MSG’ involves switching the polarity of the motion sensitive gradient (MSG) between odd and even image frames. The second sequence named ‘static MSG’ involves a variable ultrasound trigger delay to sonicate during the first or second MSG for odd and even image frames, respectively. As previously published, the data acquired with a variable MSG required the use of reference data acquired prior to any sonication to process displacement maps. In contrary, data acquired with a static MSG were converted to displacement maps without using reference data acquired prior to the sonication. Displacement maps acquired with both sequences were compared by performing sonications for three different conditions: in a polyacrylamide phantom, in the leg muscle of a freely breathing pig and in the leg muscle of pig under apnea. The comparison of images acquired at even image frames and odd image frames indicates that the sequence with a static MSG provides a significantly better steady state (p  <  0.001 based on a Student’s t-test) than the images acquired with a variable MSG. In addition no reference data prior to sonication were required to process displacement maps for data acquired with a static MSG. The absence of reference data prior to sonication provided a 41% reduction of the spatial distribution of noise (p  <  0.001 based on a Student’s t-test) and reduced the sensitivity to motion for displacements acquired with a static MSG. No significant differences were expected and observed for thermal maps acquired with a variable MSG and a static MSG. The use of a static MSG with a variable ultrasound trigger delay improves the ARFI displacement map quality without additional acquisition time and remains compatible with the simultaneous acquisition of MR thermal maps.

  19. Shear wave elasticity imaging based on acoustic radiation force and optical detection.

    PubMed

    Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2012-09-01

    Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial resolution. PMID:22749816

  20. Preliminary study of copper oxide nanoparticles acoustic and magnetic properties for medical imaging

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-03-01

    The implementation of multimodal imaging in medicine is highly beneficial as different physical properties may provide complementary information, augmented detection ability, and diagnosis verification. Nanoparticles have been recently used as contrast agents for various imaging modalities. Their significant advantage over conventional large-scale contrast agents is the ability of detection at early stages of the disease, being less prone to obstacles on their path to the target region, and possible conjunction to therapeutics. Copper ions play essential role in human health. They are used as a cofactor for multiple key enzymes involved in various fundamental biochemistry processes. Extremely small size copper oxide nanoparticles (CuO-NPs) are readily soluble in water with high colloidal stability yielding high bioavailability. The goal of this study was to examine the magnetic and acoustic characteristics of CuO-NPs in order to evaluate their potential to serve as contrast imaging agent for both MRI and ultrasound. CuO-NPs 7nm in diameter were synthesized by hot solution method. The particles were scanned using a 9.4T MRI and demonstrated a concentration dependent T1 relaxation time shortening phenomenon. In addition, it was revealed that CuO-NPs can be detected using the ultrasonic B-scan imaging. Finally, speed of sound based ultrasonic computed tomography was applied and showed that CuO-NPs can be clearly imaged. In conclusion, the preliminary results obtained, positively indicate that CuO-NPs may be imaged by both MRI and ultrasound. The results motivate additional in-vivo studies, in which the clinical utility of fused images derived from both modalities for diagnosis improvement will be studied.

  1. Evaluation of real-time acoustical holography for breast imaging and biopsy guidance

    NASA Astrophysics Data System (ADS)

    Lehman, Constance D.; Andre, Michael P.; Fecht, Barbara A.; Johansen, Jennifer M.; Shelby, Ronald L.; Shelby, Jerod O.

    1999-05-01

    Ultrasound is an attractive modality for adjunctive characterization of certain breast lesions, but it is not considered specific for cancer and it is not recommended for screening. An imaging technique remarkably different from pulse-echo ultrasound, termed Optical SonographyTM (Advanced Diagnostics, Inc.), uses the through-transmission signal. The method was applied to breast examinations in 41 asymptomatic and symptomatic women ranging in age from 18 to 83 years to evaluate this imaging modality for detection and characterization of breast disease and normal tissue. This approach uses coherent sound and coherent light to produce real-time, large field-of-view images with pronounced edge definition in soft tissues of the body. The system patient interface was modified to improve coupling to the breast and bring the chest wall to within 3 cm of the sound beam. System resolution (full width half maximum of the line-spread function) was 0.5 mm for a swept-frequency beam centered at 2.7 MHz. Resolution degrades slightly in the periphery of the very large 15.2-cm field of view. Dynamic range of the reconstructed 'raw' images (no post processing) was 3000:1. Included in the study population were women with dense parenchyma, palpable ductal carcinoma in situ with negative mammography, superficial and deep fibroadenomas, and calcifications. Successful breast imaging was performed in 40 of 41 women. These images were then compared with images generated using conventional X-ray mammography and pulse-echo ultrasound. Margins of lesions and internal textures were particularly well defined and provided substantial contrast to fatty and dense parenchyma. In two malignant lesions, Optical SonographyTM appeared to approximate more closely tumor extent compared to mammography than pulse-echo sonography. These preliminary studies indicate the method has unique potential for detecting, differentiating, and guiding the biopsy of breast lesions using real-time acoustical holography.

  2. Acoustic radiation force impulse imaging of vulnerable plaques: a finite element method parametric analysis

    PubMed Central

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.; Palmeri, Mark L.

    2012-01-01

    Plaque rupture is the most common cause of complications such as stroke and coronary heart failure. Recent histopathological evidence suggests that several plaque features, including a large lipid core and a thin fibrous cap, are associated with plaques most at risk for rupture. Acoustic Radiation Force Impulse (ARFI) imaging, a recently developed ultrasound-based elasticity imaging technique, shows promise for imaging these features noninvasively. Clinically, this could be used to distinguish vulnerable plaques, for which surgical intervention may be required, from those less prone to rupture. In this study, a parametric analysis using Finite-Element Method (FEM) models was performed to simulate ARFI imaging of five different carotid artery plaques across a wide range of material properties. It was demonstrated that ARFI could resolve the softer lipid pool from the surrounding, stiffer media and fibrous cap and was most dependent upon the stiffness of the lipid pool component. Stress concentrations due to an ARFI excitation were located in the media and fibrous cap components. In all cases, the maximum Von Mises stress was < 1.2 kPa. In comparing these results with others investigating plaque rupture, it is concluded that while the mechanisms may be different, the Von Mises stresses imposed by ARFI are orders of magnitude lower than the stresses associated with blood pressure. PMID:23122224

  3. A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging

    SciTech Connect

    Kaneko, Shogo; Tomoda, Motonobu; Matsuda, Osamu

    2014-01-15

    We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.

  4. Measurement of microbubble-induced acoustic microstreaming using microparticle image velocimetry

    NASA Astrophysics Data System (ADS)

    Tho, Paul; Zhu, Yonggang; Manasseh, Richard; Ooi, Andrew

    2005-02-01

    Micro particle image velocimetry (PIV) measurements of the velocity fields around oscillating gas bubbles in microfluidic geometries were undertaken. Two sets of experiments were performed. The first measured the acoustic microstreaming around a gas bubble with a radius of 195 μm attached to a wall in a chamber of 30 mm× 30 mm× 0.66 mm. Under acoustic excitation, vigorous streaming in the form of a circulation around on the bubble was observed. The streaming flow was highest near the surface of the bubble with velocities around 1mm/s measured. The velocity magnitude decreased rapidly with increasing distance from the bubble. The velocity field determined by micro-PIV matched the streaklines of the fluorescent particles very well. The second set of experiments measured the streaming at the interface between a trapped air bubble and water inside a microchannel of cross section 100 μm × 90 μm. The streaming flow was limited to within a short distance from the interface and was observed as a looping flow, moving towards the interface from the top and being circulated back from the bottom of the channel. The characteristic streaming velocity was in the order of 100 μm/s.

  5. Acoustically induced tissue displacement for shear wave elasticity imaging using MRI

    NASA Astrophysics Data System (ADS)

    Haworth, Kevin; Kripfgans, Oliver; Steele, Derek; Swanson, Scott; Sutin, Alexander; Sarvazyan, Armen

    2005-09-01

    Palpitation detects tissue abnormalities by exploiting the vast range of elastic properties found in vivo. The method is limited by tactile sensitivity and the inability to probe tissues at depth. Recent efforts seek to remove these limitation by developing a medical imaging modality based on radiation force shear wave excitation. Our approach uses an acoustic source to launch a shear wave in a tissue-mimicking phantom and MRI to record microscopic displacements. Gelatin (10% wt/vol) was used for the tissue-mimicking phantom. Results for in situ elasticity were obtained using an air-backed 10-cm-diam piezoelectric crystal. To correct for future in vivo beam aberrations, we also employ a high-pressure 1-bit time-reversal cavity. Frequency and pulse duration were selected to optimize the TRA system for acoustic output pressure. Shear wave displacements were recorded by MRI in 1-ms time increments in a complete basis that allowed for 3-D reconstruction and analysis. The Lamé coefficients are then derived from the shear wave velocity and attenuation.

  6. Imaging of 3D Ocean Turbulence Microstructure Using Low Frequency Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Kolyukhin, Dmitriy; Keers, Henk

    2015-04-01

    In the past decade the technique of imaging the ocean structure with low-frequency signal (Hz), produced by air-guns and typically employed during conventional multichannel seismic data acquisition, has emerged. The method is based on extracting and stacking the acoustic energy back-scattered by the ocean temperature and salinity micro- and meso-structure (1 - 100 meters). However, a good understanding of the link between the scattered wavefield utilized by the seismic oceanography and physical processes in the ocean is still lacking. We describe theory and the numerical implementation of a 3D time-dependent stochastic model of ocean turbulence. The velocity and temperature are simulated as homogeneous Gaussian isotropic random fields with the Kolmogorov-Obukhov energy spectrum in the inertial subrange. Numerical modeling technique is employed for sampling of realizations of random fields with a given spatial-temporal spectral tensor. The model used is shown to be representative for a wide range of scales. Using this model, we provide a framework to solve the forward and inverse acoustic scattering problem using marine seismic data. Our full-waveform inversion method is based on the ray-Born approximation which is specifically suitable for the modelling of small velocity perturbations in the ocean. This is illustrated by showing a good match between synthetic seismograms computed using ray-Born and synthetic seismograms produced with a more computationally expensive finite-difference method.

  7. High-resolution acoustic-radiation-force-impulse imaging for assessing corneal sclerosis.

    PubMed

    Shih, Cho-Chiang; Huang, Chih-Chung; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    In ophthalmology, detecting the biomechanical properties of the cornea can provide valuable information about various corneal pathologies, including keratoconus and the phototoxic effects of ultraviolet radiation on the cornea. Also, the mechanical properties of the cornea can be used to evaluate the recovery from corneal refractive surgeries. Therefore, noninvasive and high-resolution estimation of the stiffness distribution in the cornea is important in ophthalmic diagnosis. The present study established a method for high-resolution acoustic-radiation-force-impulse (ARFI) imaging based on a dual-frequency confocal transducer in order to obtain a relative stiffness map, which was used to assess corneal sclerosis. An 11-MHz pushing element was used to induce localized displacements of tissue, which were monitored by a 48-MHz imaging element. Since the tissue displacements are directly correlated with the tissue elastic properties, the stiffness distribution in a tiny region of the cornea can be found by a mechanical B/D scan. The experimental system was verified using tissue-mimicking phantoms that included different geometric structures. Ex vivo cornea experiments were carried out using fresh porcine eyeballs. Corneas with localized sclerosis were created artificially by the injection of a formalin solution. The phantom experiments showed that the distributions of stiffness within different phantoms can be recognized clearly using ARFI imaging, and the measured lateral and axial resolutions of this imaging system were 177 and 153 μ m, respectively. The ex vivo experimental results from ARFI imaging showed that a tiny region of localized sclerosis in the cornea could be distinguished. All of the obtained results demonstrate that high-resolution ARFI imaging has considerable potential for the clinical diagnosis of corneal sclerosis. PMID:23584258

  8. Measuring soft tissue elasticity by monitoring surface acoustic waves using image plane digital holography

    NASA Astrophysics Data System (ADS)

    Li, Shiguang; Oldenburg, Amy L.

    2011-03-01

    The detection of tumors in soft tissues, such as breast cancer, is important to achieve at the earliest stages of the disease to improve patient outcome. Tumors often exhibit a greater elastic modulus compared to normal tissues. In this paper, we report our first study to measure elastic properties of soft tissues by mapping the surface acoustic waves (SAWs) with image plane digital holography. The experimental results show that the SAW velocity is proportional to the square root of elastic modulus over a range from 3.7-122kPa in homogeneous tissue phantoms, consistent with Rayleigh wave theory. This technique also permits detection of the interface of two-layer phantoms 10mm deep under surface and the interface depth by quantifying the SAW dispersion.

  9. Failure prediction in ceramic composites using acoustic emission and digital image correlation

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis; Jones, Eric; Przybyla, Craig

    2016-02-01

    The objective of the work performed here was to develop a methodology for linking in-situ detection of localized matrix cracking to the final failure location in continuous fiber reinforced CMCs. First, the initiation and growth of matrix cracking are measured and triangulated via acoustic emission (AE) detection. High amplitude events at relatively low static loads can be associated with initiation of large matrix cracks. When there is a localization of high amplitude events, a measurable effect on the strain field can be observed. Full field surface strain measurements were obtained using digital image correlation (DIC). An analysis using the combination of the AE and DIC data was able to predict the final failure location.

  10. Design and Numerical Evaluation of Off-Axis Aplanatic Straubel Mirror for Underwater Acoustic Imaging

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Mizutani, Koichi; Wakatsuki, Naoto; Nakamura, Toshiaki

    2012-07-01

    An aplanatic Straubel mirror was designed for underwater acoustic imaging. However, there was a problem in that incident sound waves coming into the aplanatic Straubel mirror were interrupted by a receiver array placed in front of the mirror. An off-axis Straubel mirror is proposed to solve this problem. In this study, an off-axis aplanatic Straubel mirror is designed and evaluated using numerical calculation to verify the feasibility of the off-axis design. Upon comparison of the off-axis and ordinary aplanatic Straubel mirrors, the off-axis mirror shows almost the same convergence property as the ordinary one when a receiver array exists. The off-axis aplanatic Straubel mirror is compared with an aplanatic Fresnel lens because this lens is not affected by the receiver. The results show that the off-axis mirror showed a smaller aberration than the aplanatic Fresnel lens at a wider angle of view.

  11. Acoustic characterization of ultrasound contrast microbubbles and echogenic liposomes: Applications to imaging and drug-delivery

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu

    Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed with the goal of demonstrating their potential as ultrasound agents with simultaneous imaging and drug/gene delivery applications --- 'dual-purpose' contrast agents. Both in vitro acoustic studies and ultrasound imaging (performed in NDSU by our collaborators) showed the echogenicity of the various formulations studied. We believe that this echogenicity results from the larger diameter liposomes present in the polydisperse suspension obtained after reconstitution of the lyophilized powders. Although, ultrasound excitation (< 5 MHz) alone was incapable of causing optimal release of contents, a dual-triggering strategy (with enzymes or redox) proved successful, resulting in a total release of up to 80-90%. Considering these experimental results, it can be concluded that these novel formulations hold the potential of providing powerful treatment strategies for many diseases, including cardiovascular ones and various cancers.

  12. The standard thermodynamic properties of 4 f metal dichlorides

    NASA Astrophysics Data System (ADS)

    Chervonnyi, A. D.; Chervonnaya, N. A.

    2008-02-01

    The experimental data on heterogeneous and homogeneous equilibria with the participation of 4f metal dichlorides LnCl2 (where Ln = La, …, Lu) were analyzed using the thermodynamic functions of these substances in the gaseous and condensed states described earlier. These data and appearance potential AP(Ln+/LnCl2) measurements were used to calculate the enthalpies of sublimation Δsub H {298/o}. The enthalpies of atomization of these compounds under standard conditions were also calculated. Correlations between the enthalpies of sublimation and crystal lattice structure of 4 f metal trifluorides, trichlorides, and dichlorides are described.

  13. A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model

    PubMed Central

    Maeda, Azusa; Conroy, Leigh; McMullen, Jesse D.; Silver, Jason I.; Stapleton, Shawn; Vitkin, Alex; Lindsay, Patricia; Burrell, Kelly; Zadeh, Gelareh; Fehlings, Michael G.; DaCosta, Ralph S.

    2013-01-01

    In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal in vivo imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for ex vivo tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature in situ. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) in vivo. In vivo power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous in vivo imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich imaging data sets, including over extended periods, for preclinical in vivo spinal cord research. PMID:23516432

  14. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P Oshkai; M Geveci; D Rockwell; M Pollack

    2004-05-24

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  15. Dynamic simulation of viscoelastic soft tissue in acoustic radiation force creep imaging.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2014-09-01

    Acoustic radiation force (ARF) creep imaging applies step ARF excitation to induce creep displacement of soft tissue, and the corresponding time-dependent responses are used to estimate soft tissue viscoelasticity or its contrast. Single degree of freedom (SDF) and homogeneous analytical models have been used to characterize soft tissue viscoelasticity in ARF creep imaging. The purpose of this study is to investigate the fundamental limitations of the commonly used SDF and homogeneous assumptions in ARF creep imaging. In this paper, finite element (FE) models are developed to simulate the dynamic behavior of viscoelastic soft tissue subjected to step ARF. Both homogeneous and heterogeneous models are studied with different soft tissue viscoelasticity and ARF configurations. The results indicate that the SDF model can provide good estimations for homogeneous soft tissue with high viscosity, but exhibits poor performance for low viscosity soft tissue. In addition, a smaller focal region of the ARF is desirable to reduce the estimation error with the SDF models. For heterogeneous media, the responses of the focal region are highly affected by the local heterogeneity, which results in deterioration of the effectiveness of the SDF and homogeneous simplifications. PMID:24975997

  16. Experimental study on acoustic subwavelength imaging of holey-structured metamaterials by resonant tunneling.

    PubMed

    Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai

    2014-04-01

    A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency. PMID:25234968

  17. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26255624

  18. An application of time-reversed acoustics to the imaging of a salt-dome flank

    NASA Astrophysics Data System (ADS)

    Willis, M. E.; Lu, R.; Campman, X.; Toksöz, N.; Zhang, Y.; de Hoop, M. V.

    2005-12-01

    We present results of applying the concept of time-reversed acoustics (TRA) to the imaging of a salt-dome flank in a v(z) medium. A simulated multi-level walk-away VSP survey with sources at the surface and receivers in the borehole can be sorted into an equivalent reverse VSP (RVSP) with effective downhole sources and surface receivers. We apply the TRA process to the RVSP traces and create a zero offset seismic section as if it had been collected from collocated downhole sources and receivers. This procedure effectively redatums the wavefield from the surface to the borehole, eliminating the need for any complicated processing. The redatummed traces are created by summing the autocorrelations of the traces in the RVSP common shot gather. Theory says that each shot gather should be from receivers which completely surround the source. From practical considerations, we only have available the RVSP common receivers on the earth's surface, so we obtain an approximate zero offset section. Even with this restriction, our example shows that the results are encouraging. The image of the salt dome flank is created from the redatummed traces using a standard post-stack depth migration algorithm. This image compares favorably with the salt dome flank model.

  19. SIMULTANEOUS BILATERAL REAL-TIME 3-D TRANSCRANIAL ULTRASOUND IMAGING AT 1 MHZ THROUGH POOR ACOUSTIC WINDOWS

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%–29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging—the ultrasound brain helmet—and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field. PMID:23415287

  20. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment.

    PubMed

    Offin, Douglas G; Birkin, Peter R; Leighton, Timothy G

    2014-03-14

    Electrochemical and high-speed imaging techniques are used to study the abilities of ultrasonically-activated bubbles to clean out micropores. Cylindrical pores with dimensions (diameter × depth) of 500 μm × 400 μm (aspect ratio 0.8), 125 μm × 350 μm (aspect ratio 2.8) and 50 μm × 200 μm (aspect ratio 4.0) are fabricated in glass substrates. Each pore is contaminated by filling it with an electrochemically inactive blocking organic material (thickened methyl salicylate) before the substrate is placed in a solution containing an electroactive species (Fe(CN)6(3-)). An electrode is fabricated at the base of each pore and the Faradaic current is used to monitor the decontamination as a function of time. For the largest pore, decontamination driven by ultrasound (generated by a horn type transducer) and bulk fluid flow are compared. It is shown that ultrasound is much more effective than flow alone, and that bulk fluid flow at the rates used cannot decontaminate the pore completely, but that ultrasound can. In the case of the 125 μm pore, high-speed imaging is used to elucidate the cleaning mechanisms involved in ultrasonic decontamination and reveals that acoustic bubble entrapment is a key feature. The smallest pore is used to explore the limits of decontamination and it is found that ultrasound is still effective at this size under the conditions employed. PMID:24477554

  1. A Compressive Multi-Frequency Linear Sampling Method for Underwater Acoustic Imaging.

    PubMed

    Alqadah, Hatim F

    2016-06-01

    This paper investigates the use of a qualitative inverse scattering method known as the linear sampling method (LSM) for imaging underwater scenes using limited aperture receiver configurations. The LSM is based on solving a set of unstable integral equations known as the far-field equations and whose stability breaks down even further for under-sampled observation aperture data. Based on the results of a recent study concerning multi-frequency LSM imaging, we propose an iterative inversion method that is founded upon a compressive sensing framework. In particular, we leverage multi-frequency diversity in the data by imposing a partial frequency variation prior on the solution which we show is justified when the frequency bandwidth is sampled finely enough. We formulate an alternating direction method of multiplier approach to minimize the proposed cost function. Proof of concept is established through numerically generated data as well as experimental acoustic measurements taken in a shallow pool facility at the U.S Naval Research Laboratory. PMID:27093719

  2. Nonlinear refraction measurements in presence of nonlinear absorption using phase object in a 4f system

    NASA Astrophysics Data System (ADS)

    Boudebs, G.; Cherukulappurath, S.

    2005-06-01

    We report a technique to measure the value of the nonlinear refractive index of materials in presence of nonlinear absorption using a phase object at the entry of a 4f coherent imaging system. We show that it is possible to obtain a signal approximately due only to the induced nonlinear refraction in presence of two photon absorption. Experimental and simulated Z-scan transmittance profiles with and without phase object, as well as acquired and calculated images are presented here in order to validate our approach. We show also that the use of a reference material simplifies the measurement procedure avoiding computer fits.

  3. Inferences of Particle Size and Composition From Video-like Images Based on Acoustic Data: Grotto Plume, Main Endeavor Field

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Rona, P. A.; Santilli, K.; Dastur, J.; Silver, D.

    2004-12-01

    Optical and acoustic scattering from particles in a seafloor hydrothermal plume can be related if the particle properties and scattering mechanisms are known. We assume Rayleigh backscattering of sound and Mie forward scattering of light. We then use the particle concentrations implicit in the observed acoustic backscatter intensity to recreate the optical image a camera would see given a particular lighting level. The motivation for this study is to discover what information on particle size and composition in the buoyant plume can be inferred from a comparison of the calculated optical images (based on acoustic data) with actual video images from the acoustic acquisition cruise and the IMAX film "Volcanoes of the Deep Sea" (Stephen Low Productions, Inc.). Because the geologists, biologists and oceanographers involved in the study of seafloor hydrothermal plumes all "see" plumes in different ways, an additional motivation is to create more realistic plume images from the acoustic data. By using visualization techniques, with realistic lighting models, we can convert the plume image from mechanical waves (sound) to electromagnetic waves (light). The resulting image depends on assumptions about the particle size distribution and composition. Conversion of the volume scattering coefficients from Rayleigh to Mie scattering is accomplished by an extinction scale factor that depends on the wavelengths of light and sound and on the average particle size. We also make an adjustment to the scattered light based on the particles reflectivity (albedo) and color. We present a series of images of acoustic data for Grotto Plume, Main Endeavour Field (within the Endeavour ISS Site) using both realistic lighting models and traditional visualization techniques to investigate the dependence of the images on assumptions about particle composition and size. Sensitivity analysis suggests that the visibility of the buoyant plume increases as the intensity of supplied light increases, the particle size decreases, and the particle reflectivity increases. However, decreasing the particle size (and thus increasing the extinction scale factor) results in a wider, less defined plume and increases the relative importance of the acoustic background noise; the best fit of our calculated optical images to the character of actual video images of the bottom few meters of the plumes (the acoustic data volume is 55 m tall) suggests that average particle size is fairly large ( 1000 ? m) in the buoyant plume. This suggests that existing data on particle size distributions underestimates the average particle size; the best explanation is the breakup of aggregates of particles during collection and filtering of water samples (no in situ measurements exist). We also investigate the effects of particle color on plume color by using models based on data collected by Feely et al (1987), Walker and Baker (1988), and Mottl and McConachy (1990). Highly reflective particles result in result in sharper-edged plumes suggesting that pyrite (albedo 0.6) and chalcopyrite (albedo 0.3) are the dominant particle compositions. This study shows that plume particles in the buoyant plume are probably larger than previously suspected and a predominance of pyrite and chalcopyrite is necessary to explain the high reflectance of black smoker plumes.

  4. In vivo study of transverse carpal ligament stiffness using acoustic radiation force impulse (ARFI) imaging.

    PubMed

    Shen, Zhilei Liu; Vince, D Geoffrey; Li, Zong-Ming

    2013-01-01

    The transverse carpal ligament (TCL) forms the volar boundary of the carpal tunnel and may provide mechanical constraint to the median nerve, leading to carpal tunnel syndrome. Therefore, the mechanical properties of the TCL are essential to better understand the etiology of carpal tunnel syndrome. The purpose of this study was to investigate the in vivo TCL stiffness using acoustic radiation force impulse (ARFI) imaging. The shear wave velocity (SWV) of the TCL was measured using Virtual Touch IQ(TM) software in 15 healthy, male subjects. The skin and the thenar muscles were also examined as reference tissues. In addition, the effects of measurement location and ultrasound transducer compression on the SWV were studied. The SWV of the TCL was dependent on the tissue location, with greater SWV values within the muscle-attached region than those outside of the muscle-attached region. The SWV of the TCL was significantly smaller without compression (5.21 ± 1.08 m/s) than with compression (6.62 ± 1.18 m/s). The SWV measurements of the skin and the thenar muscles were also affected by transducer compression, but to different extents than the SWV of the TCL. Therefore to standardize the ARFI imaging procedure, it is recommended that a layer of ultrasound gel be maintained to minimize the effects of tissue compression. This study demonstrated the feasibility of ARFI imaging for assessing the stiffness characteristics of the TCL in vivo, which has the potential to identify pathomechanical changes of the tissue. PMID:23861919

  5. In Vivo Study of Transverse Carpal Ligament Stiffness Using Acoustic Radiation Force Impulse (ARFI) Imaging

    PubMed Central

    Shen, Zhilei Liu; Vince, D. Geoffrey; Li, Zong-Ming

    2013-01-01

    The transverse carpal ligament (TCL) forms the volar boundary of the carpal tunnel and may provide mechanical constraint to the median nerve, leading to carpal tunnel syndrome. Therefore, the mechanical properties of the TCL are essential to better understand the etiology of carpal tunnel syndrome. The purpose of this study was to investigate the in vivo TCL stiffness using acoustic radiation force impulse (ARFI) imaging. The shear wave velocity (SWV) of the TCL was measured using Virtual Touch IQTM software in 15 healthy, male subjects. The skin and the thenar muscles were also examined as reference tissues. In addition, the effects of measurement location and ultrasound transducer compression on the SWV were studied. The SWV of the TCL was dependent on the tissue location, with greater SWV values within the muscle-attached region than those outside of the muscle-attached region. The SWV of the TCL was significantly smaller without compression (5.21 ± 1.08 m/s) than with compression (6.62 ± 1.18 m/s). The SWV measurements of the skin and the thenar muscles were also affected by transducer compression, but to different extents than the SWV of the TCL. Therefore to standardize the ARFI imaging procedure, it is recommended that a layer of ultrasound gel be maintained to minimize the effects of tissue compression. This study demonstrated the feasibility of ARFI imaging for assessing the stiffness characteristics of the TCL in vivo, which has the potential to identify pathomechanical changes of the tissue. PMID:23861919

  6. Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation

    NASA Astrophysics Data System (ADS)

    Modgil, Dimple; Anastasio, Mark A.; La Rivière, Patrick J.

    2010-03-01

    Previous research correcting for variable speed of sound in photoacoustic tomography (PAT) based on a generalized radon transform (GRT) model assumes first-order geometrical acoustics (GA) approximation. In the GRT model, the pressure is related to the optical absorption, in an acoustically inhomogeneous medium, through integration over nonspherical isochronous surfaces. Previous research based on the GRT model assumes that the path taken by acoustic rays is linear and neglects amplitude perturbations to the measured pressure. We have derived a higher-order GA expression that takes into account the first-order effect in the amplitude of the measured signal and higher-order perturbation to the travel times. The higher-order perturbation to travel time incorporates the effect of ray bending. Incorrect travel times can lead to image distortion and blurring. These corrections are expected to impact image quality and quantitative PAT. We have previously shown that travel-time corrections in 2-D suggest that perceivable differences in the isochronous surfaces can be seen when the second-order travel-time perturbations are taken into account with a 10% speed-of-sound variation. In this work, we develop iterative image reconstruction algorithms that incorporate this higher-order GA approximation assuming that the speed of sound map is known. We evaluate the effect of higher-order GA approximation on image quality and accuracy.

  7. High resolution imaging beyond the acoustic diffraction limit in deep tissue via ultrasound-switchable NIR fluorescence

    PubMed Central

    Pei, Yanbo; Wei, Ming-Yuan; Cheng, Bingbing; Liu, Yuan; Xie, Zhiwei; Nguyen, Kytai; Yuan, Baohong

    2014-01-01

    Fluorescence imaging in deep tissue with high spatial resolution is highly desirable because it can provide details about tissue's structural, functional, and molecular information. Unfortunately, current fluorescence imaging techniques are limited either in penetration depth (microscopy) or spatial resolution (diffuse light based imaging) as a result of strong light scattering in deep tissue. To overcome this limitation, we developed an ultrasound-switchable fluorescence (USF) imaging technique whereby ultrasound was used to switch on/off the emission of near infrared (NIR) fluorophores. We synthesized and characterized unique NIR USF contrast agents. The excellent switching properties of these agents, combined with the sensitive USF imaging system developed in this study, enabled us to image fluorescent targets in deep tissue with spatial resolution beyond the acoustic diffraction limit. PMID:24732947

  8. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors.

    PubMed

    Cassiède, M; Shaw, J M

    2015-04-01

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [-35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study. PMID:25933884

  9. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  10. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    NASA Astrophysics Data System (ADS)

    Cassiède, M.; Shaw, J. M.

    2015-04-01

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [-35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  11. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F.

    PubMed Central

    Rozen, F; Edery, I; Meerovitch, K; Dever, T E; Merrick, W C; Sonenberg, N

    1990-01-01

    The mechanism of ribosome binding to eucaryotic mRNAs is not well understood, but it requires the participation of eucaryotic initiation factors eIF-4A, eIF-4B, and eIF-4F and the hydrolysis of ATP. Evidence has accumulated in support of a model in which these initiation factors function to unwind the 5'-proximal secondary structure in mRNA to facilitate ribosome binding. To obtain direct evidence for initiation factor-mediated RNA unwinding, we developed a simple assay to determine RNA helicase activity, and we show that eIF-4A or eIF-4F, in combination with eIF-4B, exhibits helicase activity. A striking and unprecedented feature of this activity is that it functions in a bidirectional manner. Thus, unwinding can occur either in the 5'-to-3' or 3'-to-5' direction. Unwinding in the 5'-to-3' direction by eIF-4F (the cap-binding protein complex), in conjunction with eIF-4B, was stimulated by the presence of the RNA 5' cap structure, whereas unwinding in the 3'-to-5' direction was completely cap independent. These results are discussed with respect to cap-dependent versus cap-independent mechanisms of ribosome binding to eucaryotic mRNAs. Images PMID:2304461

  12. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    PubMed

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit. PMID:23039546

  13. Bats use a neuronally implemented computational acoustic model to form sonar images.

    PubMed

    Simmons, James A

    2012-04-01

    This paper reexamines neurophysiological results from echolocating big brown bats to propose a new perspective on FM biosonar processing in the auditory system. Individual auditory neurons are frequency-tuned and respond to brief, 2-10 ms FM sweeps with an average of one spike per sound to register their tuned frequencies, to detect echo arrival, or to register a local null in the echo spectrum. When initiated by the broadcast, these responses comprise a cascade of single spikes distributed across time in neurons tuned to different frequencies that persists for 30-50 ms, long after the sound has ended. Their progress mirrors the broadcast's propagation away from the bat and the return of echoes for distances out to 5-8 m. Each returning echo evokes a similar pattern of single spikes that coincide with ongoing responses to the broadcast to register the target's distance and shape. The hypothesis advanced here is that this flow of responses over time acts as an internal model of sonar acoustics that the bat executes using neuronal computations distributed across many neurons to accumulate a dynamic image of the bat's surroundings. PMID:22436892

  14. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    NASA Astrophysics Data System (ADS)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  15. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies.

  16. A simulation technique for 3D MR-guided acoustic radiation force imaging

    PubMed Central

    Payne, Allison; de Bever, Josh; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies. PMID:25652481

  17. Single- and Multiple- Track Location Shear Wave and Acoustic Radiation Force Impulse Imaging: Matched Comparison of Contrast, CNR, and Resolution

    PubMed Central

    Hollender, Peter J.; Rosenzweig, Stephen J.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2014-01-01

    Acoustic radiation force impulse (ARFI) imaging and shear wave elasticity imaging (SWEI) use the dynamic response of tissue to impulsive mechanical stimulus to characterize local elasticity. A variant of conventional, multiple track location SWEI (MTL-SWEI), denoted single track location SWEI (STL-SWEI) offers the promise of creating speckle-free shear wave images. This work compares the three imaging modalities using a high push and track beam density combined acquisition sequence to image inclusions of different sizes and contrasts. STL-SWEI is shown to have significantly higher CNR than MTL-SWEI, allowing for operation at higher resolution. ARFI and STL-SWEI perform similarly in the larger inclusions, with STL-SWEI providing better visualization of small targets ≤2.5 mm in diameter. The processing of each modality introduces different trade-offs between smoothness and resolution of edges and structures; these are discussed in detail. PMID:25701531

  18. A theoretical study of inertial cavitation from acoustic radiation force impulse (ARFI) imaging and implications for the mechanical index

    PubMed Central

    Church, Charles C.; Labuda, Cecille; Nightingale, Kathryn

    2014-01-01

    The mechanical index (MI) attempts to quantify the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a nonthermal mechanism. The current formulation of the MI implicitly assumes that the acoustic field is generated using the short pulse durations appropriate to B-mode imaging. However, acoustic radiation force impulse (ARFI) imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of increased pulse durations on the thresholds for inertial cavitation was studied computationally in water, urine, blood, cardiac and skeletal muscle, brain, kidney, liver and skin. The results show that while the effect of pulse duration on cavitation thresholds in the three liquids can be considerable, reducing them by, e.g., 6% – 24% at 1 MHz, the effect in tissue is minor. More importantly, the frequency dependence of the MI appears to be unnecessarily conservative, i.e., that the magnitude of the exponent on frequency could be increased to 0.75. Comparison of these theoretical results with experimental measurements suggests that some tissues do not contain the pre-existing, optimally sized bubbles assumed for the MI. This means that in these tissues the MI is not necessarily a strong predictor of the probability for an adverse biological effect. PMID:25592457

  19. Acoustic radiation force impulse imaging for assessing liver fibrosis in alcoholic liver disease

    PubMed Central

    Kiani, Anita; Brun, Vanessa; Lainé, Fabrice; Turlin, Bruno; Morcet, Jeff; Michalak, Sophie; Le Gruyer, Antonia; Legros, Ludivine; Bardou-Jacquet, Edouard; Gandon, Yves; Moirand, Romain

    2016-01-01

    AIM: To evaluate the performance of elastography by ultrasound with acoustic radiation force impulse (ARFI) in determining fibrosis stage in patients with alcoholic liver disease (ALD) undergoing alcoholic detoxification in relation to biopsy. METHODS: Eighty-three patients with ALD undergoing detoxification were prospectively enrolled. Each patient underwent ARFI imaging and a liver biopsy on the same day. Fibrosis was staged according to the METAVIR scoring system. The median of 10 valid ARFI measurements was calculated for each patient. RESULTS: Sixty-nine males and thirteen females (one patient excluded due to insufficient biopsy size) were assessed with a mean alcohol consumption of 132.4 ± 128.8 standard drinks per week and mean cumulative year duration of 17.6 ± 9.5 years. Sensitivity and specificity were respectively 82.4% (0.70-0.95) and 83.3% (0.73-0.94) (AUROC = 0.87) for F ≥ 2 with a cut-off value of 1.63m/s; 82.4% (0.64-1.00) and 78.5% (0.69-0.89) (AUROC = 0.86) for F ≥ 3 with a cut-off value of 1.84m/s; and 92.3% (0.78-1.00] and 81.6% (0.72-0.90) (AUROC = 0.89) for F = 4 with a cut-off value of 1.94 m/s. CONCLUSION: ARFI is an accurate, non-invasive and easy method for assessing liver fibrosis in patients with ALD undergoing alcoholic detoxification.

  20. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  1. Quantitative non-linear ultrasonic imaging of targets with significant acoustic impedance contrast--an experimental study.

    PubMed

    Guillermin, Régine; Lasaygues, Philippe; Rabau, Guy; Lefebvre, Jean-Pierre

    2013-08-01

    This study deals with the reconstruction, from ultrasonic measured data, of the sound speed profile of a penetrable two-dimensional target of arbitrary cross-section embedded in an infinite medium. Green's theorem is used to obtain a domain integral representation of the acoustical scattered field, and a discrete formulation of the inverse problem is obtained using a moment method. An iterative non-linear algorithm minimizing the discrepancy between the measured and computed scattered fields is used to reconstruct the sound speed profile in the region of interest. The minimization process is performed using a conjugated-gradient method. An experimental study with significant acoustical impedance contrast targets immersed in water was performed. Images of the sound speed profile obtained by inversion of experimental data are presented. PMID:23927099

  2. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    SciTech Connect

    Kuehn, Kerry, K.

    2008-10-28

    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii) they are stable, but not in the region of the stability diagram which has been studied by this experimenter. Our second objective was to use the apparatus to study other optically opaque fluids. To this end, we have obtained the first ultrasound images of Rayleigh-Bénard convection in a ferrofluid (EFH1). This project has provided a vehicle for the scientific training of five undergraduate research assistants during the past four years. It allowed students at Wisconsin Lutheran College, a small undergraduate liberal arts college in Milwaukee, to become directly involved in a significant scientific project from its inception through publication of scientific results. The funding of this project has also strengthened the research and teaching infrastructure at the Wisconsin Lutheran College in three major ways. The project has funded the PI and his students in the design and construction of a major piece of scientific apparatus which is capable of performing novel studies of Rayleigh-Bénard convection in opaque fluids. With the acquisition of this apparatus, we are able to embark on a broad research program to study problems in pattern formation in alloys, ferro-fluids, opaque gels, and liquid metals under thermal or magnetic stresses. This project has allowed the PI to purchase auxiliary equipment necessary for establishing a fluid dynamics research laboratory at the College. And this project has served as an impetus for the College to invest in a new machine shop in the basement of the Science Building at the College in order to support this, and other, scientific projects at the College. The PI has presented work funded by this grant at physics and engineering colloquia at a nearby university and at the keynote presentation at an undergraduate research symposium at Wisconsin Lutheran College. Also, the work was featured in local magazine and newspaper articles, and is described on the PI's research webpage. Such scientific outreach serves to advance the cause of science by making it interesting and accessible to a wider audience, and to bring attention to the work done by the Office of Basic Energy Sciences of the Department of Energy.

  3. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.

    PubMed

    Yu, Ying; Shen, Guofeng; Zhou, Yufeng; Bai, Jingfeng; Chen, Yazhu

    2013-11-01

    With the popularity of ultrasound therapy in clinics, characterization of the acoustic field is important not only to the tolerability and efficiency of ablation, but also for treatment planning. A quantitative method was introduced to assess the intensity distribution of a focused ultrasound beam using a hydrophone and an infrared camera with no prior knowledge of the acoustic and thermal parameters of the absorber or the configuration of the array elements. This method was evaluated in both theoretical simulations and experimental measurements. A three-layer model was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the sonication and the consequent temperature elevation. Experiments were carried out to measure the acoustic pressure with the hydrophone and the temperature elevation with the infrared camera. The percentage differences between the derived results and the simulation are <4.1% for on-axis intensity and <21.1% for -6-dB beam width at heating times up to 360 ms in the focal region of three phased-array ultrasound transducers using two different absorbers. The proposed method is an easy, quick and reliable approach to calibrating focused ultrasound transducers with satisfactory accuracy. PMID:23972377

  4. Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

    NASA Astrophysics Data System (ADS)

    Simandoux, Olivier; Stasio, Nicolino; Gateau, Jérome; Huignard, Jean-Pierre; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2015-03-01

    We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 μm inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 μm diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about -20 dB, much lower than the -120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip.

  5. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    PubMed

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan. PMID:25927794

  6. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.

  7. Cytochrome P450-Dependent Catabolism of Vitamin K: ω-Hydroxylation Catalyzed by Human CYP4F2 and CYP4F11

    PubMed Central

    Edson, Katheryne Z.; Prasad, Bhagwat; Unadkat, Jashvant D.; Suhara, Yoshitomo; Okano, Toshio; Guengerich, F. Peter

    2013-01-01

    Vitamin K plays an essential role in many biological processes including blood clotting, maintenance of bone health, and inhibition of arterial calcification. A menaquinone form of vitamin K, MK4, is increasingly recognized for its key roles in mitochondrial electron transport, as a ligand for the nuclear receptor SXR, which controls expression of genes involved in transport and metabolism of endo- and xenobiotics, and as a pharmacotherapeutic in the treatment of osteoporosis. Although cytochrome P450 (CYP) 4F2 activity is recognized as an important determinant of phylloquinone (K1) metabolism, the enzymes involved in menaquinone catabolism have not been studied previously. CYP4F2 and CYP4F11 were expressed and purified and found to be equally efficient as in vitro catalysts of MK4 ω-hydroxylation. CYP4F2, but not CYP4F11, catalyzed sequential metabolism of MK4 to the ω-acid without apparent release of the intermediate aldehyde. The ω-alcohol could also be metabolized to the acid by microsomal NAD+-dependent alcohol and aldehyde dehydrogenases. LC-MS/MS analysis of trypsinized human liver microsomes (using surrogate peptide approach) revealed mean concentrations of CYP4F2 and CYP4F11 to be 14.3 and 8.4 pmol/mg protein, respectively. Microsomal MK4 ω-hydroxylation activities correlated with the CYP4F2 V433M genotype but not CYP4F11 D446N genotype. Collectively, these data expand the lexicon of vitamin K ω-hydroxylases to include the ‘orphan’ P450 CYP4F11 and identify a common variant, CYP4F2 (rs2108622), as a major pharmacogenetic variable influencing MK4 catabolism. PMID:24138531

  8. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  9. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  10. Acoustic profiles and images of the Palos Verdes margin: implications concerning deposition from the White's Point outfall

    NASA Astrophysics Data System (ADS)

    Hampton, Monty A.; Karl, Herman A.; Murray, Christopher J.

    2002-05-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes Shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km 2, which encompasses a volume of about 3.2 million m 3. The deposit's basal reflector is acoustically distinct over most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.

  11. Acoustic profiles and images of the Palos Verdes margin: Implications concerning deposition from the White's Point outfall

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Murray, C.J.

    2002-01-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes Shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km2, which encompasses a volume of about 3.2 million m3. The deposit's basal reflector is acoustically distinct over most of the mapped area. implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs. ?? 2002 Elsevier Science Ltd. All rights reserved.

  12. Acoustic profiles and images of the Palos Verdes Margin: Implications concerning deposition from the White's Point outfall

    SciTech Connect

    Hampton, M A.; Karl, H; Murray, Christopher J. )

    2001-12-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km{sup 2}, which encompasses a volume of about 3.2 million m{sup 3}. The deposit's basal reflector is acoustically distinct over most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.

  13. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  14. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images.

    PubMed

    Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2014-08-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103

  15. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images

    PubMed Central

    Hesford, Andrew J.; Tillett, Jason C.; Astheimer, Jeffrey P.; Waag, Robert C.

    2014-01-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103

  16. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  17. Comparative evaluation of ultrasonic lenses and electric point contacts for acoustic flux imaging in piezoelectric single crystals

    NASA Astrophysics Data System (ADS)

    Twerdowski, E.; Pluta, M.; Wannemacher, R.; Grill, W.

    2008-03-01

    Conducting micro-spheres approximating point probes have been employed to piezoelectrically excite and detect ultrasonic wave packages in anisotropic single crystals. Imaging based on the detection of magnitude and phase is performed in transmission. The experimental data can be used for the determination of the elastic constants of the material. Here we compare this approach with imaging using conventional ultrasonic lenses and water as a coupling fluid. The large bandwidth and the absence of internal lens echoes in the Coulomb excitation and detection scheme permit unperturbed monitoring of multiple echoes in plane-parallel samples and the detailed investigation of mode conversion processes of longitudinal and transverse waves at the surfaces of the crystal. Due to differences in the coupling between the probes and the ultrasound in the sample, excitation of ultrasound by an acoustic lens or an electrical point contact, respectively, result in noticeably different phonon focusing patterns. This is illustrated for lithium niobate single crystals.

  18. Feasibility of Near Real-Time Lesion Assessment During Radiofrequency Catheter Ablation in Humans Using Acoustic Radiation Force Impulse Imaging

    PubMed Central

    Bahnson, Tristram D.; Eyerly, Stephanie A.; Hollender, Peter J.; Doherty, Joshua R.; Kim, Young-Joong; Trahey, Gregg E.; Wolf, Patrick D.

    2015-01-01

    Background Visual confirmation of radiofrequency ablation (RFA) lesions during clinical cardiac ablation procedures could improve procedure efficacy, safety, and efficiency. It was previously shown that acoustic radiation force impulse (ARFI) imaging can identify RFA lesions in vitro and in vivo in an animal model. This is the “first-in-human” feasibility demonstration of intracardiac ARFI imaging of RFA lesions in patients undergoing catheter ablation for atrial flutter (AFL) or atrial fibrillation (AF). Methods and Results Patients scheduled for right atrial (RA) ablation for AFL or left atrial (LA) ablation for drug refractory AF were eligible for imaging. Diastole-gated intracardiac ARFI images were acquired using one of two equipment configurations: (1) a Siemens ACUSON S2000™ ultrasound scanner and 8/10Fr AcuNav™ ultrasound catheter, or (2) a CARTO 3™ integrated Siemens SC2000™ and 10Fr SoundStar™ ultrasound catheter. A total of 11 patients (AFL = 3; AF = 8) were imaged. ARFI images were acquired of ablation target regions, including the RA cavotricuspid isthmus (CTI), and the LA roof, pulmonary vein ostia, posterior wall, posterior mitral valve annulus, and the ridge between the pulmonary vein and LA appendage. ARFI images revealed increased relative myocardial stiffness at ablation catheter contact sites after RFA and at anatomical mapping-tagged RFA treatment sites. Conclusions ARFI images from a pilot group of patients undergoing catheter ablation for AFL and AF demonstrate the ability of this technique to identify intra-procedure RFA lesion formation. The results encourage further refinement of ARFI imaging clinical tools and continued investigation in larger clinical trials. PMID:25132292

  19. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  20. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge of El Hierro. These precursory signals have revealed important to improve and optimize the detection of early warning signals of volcanic unrest episodes at El Hierro.

  1. Study of the laser induced acoustic under water source aim at imaging and detecting

    NASA Astrophysics Data System (ADS)

    Yu, Xiaotang; Xin, Jianguo; Chen, Jiabin

    2015-11-01

    This paper addresses itself to the problem of interaction mechanism of laser induced acoustic source under water. The main photo-acoustic mechanisms include thermal expansion, vaporization and optical breakdown as well as the photon beam pressure. We integrate these into a compound model and compare numerical calculation and simulation results with the existing experimental data. The different energy density thresholds between different mechanisms are calculated. We optimize original thermal expansion by considering various laser pulse-shapes especially Gaussian laser. When discussing vaporization, random bubbles distribution is studied instead of single bubble alone for the first time. Detection distance, pulse duration, laser energy and spot size in heating area all have effect on sound filed intensity, which are studied through this paper.

  2. Copper Causes Regiospecific Formation of C4 F8 -Containing Six-Membered Rings and their Defluorination/Aromatization to C4 F4 -Containing Rings in Triphenylene/1,4-C4 F8 I2 Reactions.

    PubMed

    Rippy, Kerry C; Bukovsky, Eric V; Clikeman, Tyler T; Chen, Yu-Sheng; Hou, Gao-Lei; Wang, Xue-Bin; Popov, Alexey A; Boltalina, Olga V; Strauss, Steven H

    2016-01-18

    The presence of Cu in reactions of triphenylene (TRPH) and 1,4-C4 F8 I2 at 360 °C led to regiospecific substitution of TRPH ortho C(β) atoms to form C4 F8 -containing rings, completely suppressing substitution on C(α) atoms. In addition, Cu caused selective reductive-defluorination/aromatization (RD/A) to form C4 F4 -containing aromatic rings. Without Cu, the reactions of TRPH and 1,4-C4 F8 I2 were not regiospecific and no RD/A was observed. These results, supported by DFT calculations, are the first examples of Cu-promoted 1) regiospecific perfluoroannulation, 2) preparative C-F activation, and 3) RD/A. HPLC-purified products were characterized by X-ray diffraction, low-temperature PES, and (1) H/(19) F NMR. PMID:26581454

  3. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

    2015-12-01

    This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

  4. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

    2016-04-01

    This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

  5. Acoustic radiation force impulse imaging for real-time observation of lesion development during radiofrequency ablation procedures

    NASA Astrophysics Data System (ADS)

    Fahey, Brian J.; Trahey, Gregg E.

    2005-04-01

    When performing radiofrequency ablation (RFA) procedures, physicians currently have little or no feedback concerning the success of the treatment until follow-up assessments are made days to weeks later. To be successful, RFA must induce a thermal lesion of sufficient volume to completely destroy a target tumor or completely isolate an aberrant cardiac pathway. Although ultrasound, computed tomography (CT), and CT-based fluoroscopy have found use in guiding RFA treatments, they are deficient in giving accurate assessments of lesion size or boundaries during procedures. As induced thermal lesion size can vary considerably from patient to patient, the current lack of real-time feedback during RFA procedures is troublesome. We have developed a technique for real-time monitoring of thermal lesion size during RFA procedures utilizing acoustic radiation force impulse (ARFI) imaging. In both ex vivo and in vivo tissues, ARFI imaging provided better thermal lesion contrast and better overall appreciation for lesion size and boundaries relative to conventional sonography. The thermal safety of ARFI imaging for use at clinically realistic depths was also verified through the use of finite element method models. As ARFI imaging is implemented entirely on a diagnostic ultrasound scanner, it is a convenient, inexpensive, and promising modality for monitoring RFA procedures in vivo.

  6. Acoustic characterization and contrast imaging of microbubbles encapsulated by polymeric shells coated or filled with magnetic nanoparticles.

    PubMed

    Sciallero, Claudia; Grishenkov, Dmitry; Kothapalli, Satya V V N; Oddo, Letizia; Trucco, Andrea

    2013-11-01

    The combination of superparamagnetic iron oxide nanoparticles with polymeric air-filled microbubbles is used to produce two types of multimodal contrast agents to enhance medical ultrasound and magnetic resonance imaging. The nanoparticles are either covalently linked to the shell or physically entrapped into the shell. In this paper, the characterization of the acoustic properties (backscattered power, fracturing pressure, attenuation and dispersion of the ultrasonic wave) and ultrasound imaging of the two types of magnetic microbubbles are presented. In vitro B-mode images are generated using a medical ultrasound scanner by applying a nonconventional signal processing technique that is suitable to detect polymeric bubbles and based on the combination of multipulse excitation and chirp coding. Even if both types of microbubbles can be considered to be effective ultrasound contrast agents, the different structure of the shell loaded with nanoparticles has a pronounced effect on the echogenicity and the detection sensitivity of the imaging technique. The best results are obtained using microbubbles that are externally coated with nanoparticles. A backscattered power of 20 dB was achieved at lower concentration, and an increment of 8 dB in the contrast-to-tissue ratio was observed with respect to the more rigid microbubbles with particles entrapped into the shell. PMID:24180801

  7. Modifications of eukaryotic initiation factor 4F (eIF4F) in adult cardiocytes by adenoviral gene transfer: differential effects on eIF4F activity and total protein synthesis rates.

    PubMed

    Saghir, A N; Tuxworth, W J; Hagedorn, C H; McDermott, P J

    2001-06-01

    In adult feline cardiocytes, increases in eukaryotic initiation factor 4F (eIF4F) activity are correlated with accelerated rates of total protein synthesis produced in response to increased load. Adenoviral gene transfer was employed to increase either eIF4F complex formation or the phosphorylation of eIF4E on Ser-209. To simulate load,cardiocytes were electrically stimulated to contract (2 Hz,5 ms pulses). Non-stimulated cardiocytes were used as controls.Adenovirus-mediated overexpression of wild-type eIF4E increased the total eIF4E pool by 120-140% above endogenous levels after 24 h and produced a corresponding increase in eIF4F content.However, it did not accelerate total protein synthesis rates inquiescent cardiocytes; neither did it potentiate the increase produced by contraction. To modify the affinity of eIF4F, cardiocytes were infected with a mutant (eIF4E/W56F) with a decreased binding affinity for the mRNA cap. Overexpression of eIF4E/W56F increased the quantity of eIF4F but the rate of total protein synthesis was decreased inquiescent and contracting cardiocytes. Overexpression of a mutant that blocked eIF4E phosphorylation (eIF4E/S209A) increased the quantity ofeIF4F without any significant effect on total protein synthesis rates in quiescent or contracting cardiocytes. Overexpression of the eIF4Ekinase Mnk-1 increased eIF4E phosphorylation without a corresponding increase in eIF4F complex formation or in the rate of total protein synthesis. We conclude the following: (1) eIF4F assembly is increased by raising eIF4E levels via adenoviral gene transfer; (2) the capbinding affinity of eIF4F is a rate-limiting determinant for total protein synthesis rates; and (3) increases in the quantity of eIF4Falone or in eIF4E phosphorylation are not sufficient to accelerate total protein synthesis rates. PMID:11368785

  8. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    PubMed Central

    Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process. PMID:24381518

  9. Investigation of the Near-Field Acoustic and Flow Properties of Imperfectly Expanded Supersonic Jets using Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Munday, David; Liu, Junhui; Kailasanath, K.

    2008-11-01

    The flow fields of imperfectly Expanded Supersonic Jets from conical CD nozzles are investigated by Particle Image Velocimetry. This nozzle geometry represents the exhaust nozzles on high-performance military engines. The results are compared with shadowgraph to bring out the details of the highly accelerated regions where seed particles may lag behind the flow, viz. the shocks and Prandtl-Meyer fans. Nozzles with three area ratios are examined over a wide range of under- and over-expanded conditions as well as the design conditions for each nozzle. It is found that this type of nozzle is not shock free at the design condition due to the sharp change of the geometry in the throat area. Both near-field and far-field acoustic measurements are presented. Flow-field and near-field acoustic measurements are compared with Numerical simulations in the accompanying presentation by Liu, Kailasanath and Ramamurti. The distributions of the centerline static pressure and noise spectra are in good agreement with the corresponding experimental data.

  10. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.

    PubMed

    Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process. PMID:24381518

  11. Investigation of the acoustic field in a standing wave thermoacoustic refrigerator using time-resolved particule image velocimetry

    NASA Astrophysics Data System (ADS)

    Blanc-Benon, Ph.; Poignand, G.; Jondeau, E.

    2012-09-01

    In thermoacoustic devices, the full understanding of the heat transfer between the stack and the heat exchangers is a key issue to improve the global efficiency of these devices. The goal of this paper is to investigate the vortex structures, which appear at the stack plates extremities and may impact the heat transfer. Here, the aerodynamic field between a stack and a heat exchanger is characterised with a time-resolved particle image velocimetry (TR- PIV) set-up. Measurements are performed in a standing wave thermoacoustic refrigerator operating at a frequency of 200 Hz. The employed TR-PIV set-up offers the possibility to acquire 3000 instantaneous velocity fields at a frequency of 3125 Hz (15 instantaneous velocity fields per acoustic period). Measurements show that vortex shedding can occur at high pressure level, when a nonlinear acoustic regime preveals, leading to an additional heating generated by viscous dissipation in the gap between the stack and the heat exchangers and a loss of efficiency.

  12. Compressive sensing beamforming based on covariance for acoustic imaging with noisy measurements.

    PubMed

    Zhong, Siyang; Wei, Qingkai; Huang, Xun

    2013-11-01

    Compressive sensing, a newly emerging method from information technology, is applied to array beamforming and associated acoustic applications. A compressive sensing beamforming method (CSB-II) is developed based on sampling covariance matrix, assuming spatially sparse and incoherent signals, and then examined using both simulations and aeroacoustic measurements. The simulation results clearly show that the proposed CSB-II method is robust to sensing noise. In addition, aeroacoustic tests of a landing gear model demonstrate the good performance in terms of resolution and sidelobe rejection. PMID:24181989

  13. Development of a Doppler Acoustic Imaging System for Borehole Wall to Evaluate Fluid Flow Distribution around Subsurface Fractures

    NASA Astrophysics Data System (ADS)

    Saito, Jin; Niitsuma, Hiroaki

    2001-05-01

    We are in the process of developing a doppler borehole televiewer (DBHTV) which quantitatively evaluates the permeability of independent subsurface fractures in a borehole. The system employs an ultrasonic pulsed Doppler method, and is compatible with the conventional acoustic borehole imaging system called borehole televiewer (BHTV). Using the DBHTV, back-scattered waves from fine particles in the borehole fluid such as drill mud or cuttings in a water filled borehole are detected along with the reflected waves from the borehole wall, and the Doppler shift of the back-scattered waves is used to estimate the fluid velocity. A method to estimate the distribution of Doppler shift was examined using a laboratory experimental model. An attempt to locate the sampling volume and a method to quantitatively estimate the flow velocity by scanning the transducer are examined. This study shows that the location of permeable fractures, the distribution of fluid velocity and the fluid volume can be visualized using the DBHTV.

  14. Enhanced delivery of gold nanoparticles by acoustic cavitation for photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Hsin; Liao, Ai-Ho; Lin, Jia-Yu; Lee, Cheng-Ru; Wu, Cheng-Ham; Liu, Tzu-Min; Wang, Churng-Ren; Li, Pai-Chi

    2013-03-01

    Gold-nanorods incorporated with microbubbles (AuMBs) were introduced as a photoacoustic/ultrasound dual- modality contrast agent in our previous study. The application can be extended to theragnosis purpose. With the unique physical characteristics of AuMBs, we propose an enhanced delivery method for the encapsulated particles. For example, laser thermotherapy mediated by plasmonic nanoparticles can be made more effective by using microbubbles as a targeted carrier and acoustic cavitation for enhanced sonoporation. The hypothesis was experimentally tested. Firts, these AuMBs first act as molecular probes with binding to specific ligands. The improved targeting efficacy was macroscopically observed by an ultrasound system. The extended retention of targeted AuMB was observed and recorded for 30 minutes in a CT-26 tumor bearing mouse. Secondly, cavitation induced by time-varying acoustic field was also applied to disrupt the microbubbles and cause increased transient cellular permeability (a.k.a., sonoporation). Multimodal optical microscope based on a Cr:forsterite laser was used to directly observe these effects. The microscope can acquired third-harmonic generation (THG) and two-photon fluorescent (2PF) signals produced by the AuMBs. In vitro examination shows approximately a 60% improvement in terms of fluorescence signals from the cellular uptake of gold nanoparticles after sonoporation treatment. Therefore, we conclude that the controlled release is feasible and can further improve the therapeutic effects of the nanoparticles.

  15. Comments on the thermoelectric power of intermetallic rare-earth compounds with well localized 4f shells

    NASA Astrophysics Data System (ADS)

    Szukiel, A. E.

    2016-05-01

    The anomalous temperature variation of the thermoelectric power in the metallic rare-earth compounds with well-localized 4f shells is sometimes interpreted as resulting from the conduction electrons scattering in the Born approximation on the acoustic phonons and on the localized spins in the s-f exchange interaction. Such an interpretation relies on the results of some theoretical works where the sign reversal and the maxima of the thermoelectric power were obtained within these simple models. In the present paper we prove that neither the electron-phonon scattering nor the magnetic s-f scattering in the Born approximation (nor both of them) do lead to the effects mentioned above.

  16. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    SciTech Connect

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.; Khan, Fenton; Mueller, Robert P.; Nagy, William T.; Richmond, Marshall C.; Weiland, Mark A.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to merging and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.

  17. Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Jami L.; van Wijk, Kasper; Caron, James N.; Timmerman, Miriam

    2016-02-01

    Conventional contacting transducers for ultrasonic wave detection are highly sensitive and tuned for real-time imaging with fixed array geometries. However, optical detection provides an alternative to contacting transducers when a small sensor footprint, a large frequency bandwidth, or non-contacting detection is required. Typical optical detection relies on a Doppler-shifted reflection of light from the target, but gas coupled-laser acoustic detection (GCLAD) provides an alternative optical detection method for photoacoustic (PA) and ultrasound imaging that does not involve surface reflectivity. Instead, GCLAD is a line-detector that measures the deflection of an optical beam propagating parallel to the sample, as the refractive index of the air near the sample is affected by particle displacement on the sample surface. We describe the underlying principles of GCLAD and derive a formula for quantifying the surface displacement from a remote GCLAD measurement. We discuss a design for removing the location-dependent displacement bias along the probe beam and a method for measuring the attenuation coefficient of the surrounding air. GCLAD results are used to quantify the surface displacement in a laser-ultrasound experiment, which shows 94% agreement to line-integrated data from a commercial laser vibrometer point detector. Finally, we demonstrate the feasibility of PA imaging of an artery-sized absorber using a detector 5.8 cm from a phantom surface.

  18. Near-infrared absorbing polymer nano-particle as a sensitive contrast agent for photo-acoustic imaging.

    PubMed

    Aoki, Hiroyuki; Nojiri, Mayumi; Mukai, Rieko; Ito, Shinzaburo

    2015-01-01

    Polymer nano-particles (PNPs) with a near-infrared (NIR) light absorption were prepared by the nano-emulsion method to develop contrast agents for photo-acoustic (PA) imaging. The PNP containing silicon naphthalocyanine showed a high absorption coefficient up to 10(10) M(-1) cm(-1). This is comparable to plasmonic gold nano-particles, which have been studied as PA contrast agents. For the PNP larger than 100 nm, the enhancement of the PA signal was observed compared to the gold nano-particle with a similar absorption coefficient and size. In the case of the PNP, the heat by the light absorption is confined in the particle due to the low thermal diffusivity of polymer materials. We showed that the strong thermal confinement effect of PNP results in the enhancement of the efficiency of the PA signal generation and that the PA intensity can be enhanced by the increase of the Grüneisen parameter of the matrix polymer of PNP. The PA signal from the PNP of poly(methyl methacrylate) was 9-fold larger than that of gold nano-particles with the same absorption coefficient. We demonstrated that in the in vivo PA imaging the detection limit of PNP was of the order of 10(-13) M. The NIR absorbing PNP will be a promising candidate of a sensitive contrast agent for PA imaging. PMID:25407911

  19. The screening of 4f moments and delocalization in the compressed light rare earths

    SciTech Connect

    McMahan, A K; Scalettar, R T; Jarrell, M

    2009-08-19

    Spin and charge susceptibilities and the 4f{sup n}, 4f{sup n{+-}1} configuration weights are calculated for compressed Ce (n=1), Pr (n=2), and Nd (n=3) metals using dynamical mean field theory combined with the local-density approximation. At ambient and larger volumes these trivalent rare earths are pinned at sharp 4f{sup n} configurations, their 4f moments assume atomic-limiting values, are unscreened, and the 4f charge fluctuations are small indicating little f state density near the Fermi level. Under compresssion there is dramatic screening of the moments and an associated increase in both the 4f charge fluctuations and static charge susceptibility. These changes are coincident with growing weights of the 4f{sup n-1} configurations, which it is argued are better measures of delocalization than the 4f{sup n+1} weights which are compromised by an increase in the number of 4f electrons caused by rising 6s, 6p bands. This process is continuous and prolonged as a function of volume, with strikingly similarity among the three rare earths, aside from the effects moderating and shifting to smaller volumes for the heavier members. The observed {alpha}-{gamma} collapse in Ce occurs over the large-volume half of this evolution, the Pr analog at smaller volumes, and Nd has no collapse.

  20. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  1. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  2. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  3. Opto-acoustic imaging system for early breast cancer diagnostics: experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Khokhlova, Tanya D.; Zharinov, Alexei M.; Kozhushko, Viktor V.; Pelivanov, Ivan M.; Karabutov, Alexander A.

    2006-03-01

    Optoacoustic (OA) imaging is based on the generation of thermoelastic stress waves by heating an object in an optically heterogeneous medium with a short laser pulse. The stress waves contain information on the distribution of structures with enhanced optical absorption that can be used for early cancer diagnostics. This technique has already been applied in-vivo for breast cancer diagnostics and yielded higher contrast of obtained images than that of X-ray or ultrasonic images. The resolution was comparable with that yielded by ultrasonic imaging. Therefore, OA imaging is a very promising technique and it is being rapidly developed. Research in the area is now mostly targeted to the development of OA wave detection systems and image reconstruction algorithms. In this work a new design of receiving array transducer, that allows to enhance image resolution is proposed. The array consists of 64 focused piezo-elements made of PVDF slabs imposed on a spherical surface. Resolution yielded by the array in different directions is determined. Several tissue irradiation geometries and laser wavelengths are considered for optimization of the OA image contrast. Obtained results are used for maximum imaging depth studies. All the investigations include both numerical modelling and experiment.

  4. Acoustic Rhinometry (AR): An Alternative Method to Image Nasal Airway Geometry

    NASA Astrophysics Data System (ADS)

    Straszek, S. P.

    In acoustic rhinometry (AR) a sound pulse enters the nasal cavity, where it is reflected due to changes in the local impedances. From the incident and reflected sound signal we use the Ware-Aki algorithm to calculate an area-distance relationship. The method has been validated in nasal cavity models with known dimensions, and in humans and animals, where the dimensions were measured by other methods as well, (CT-scanning, MR scanning and fluid displacement). In small animals AR seems to underestimate the cross-sectional areas, probably due to violation of several assumptions for the method. Future studies should aim at development of better-scaled equipment, better sound generation, better microphones, better algorithms, and better validation

  5. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-04-30

    Three major goals were accomplished during this phase. First, a study was completed of the effects of stress-induced changes in anisotropic elastic moduli in sandstone. Second, a new method for measuring the anisotropic poroelastic moduli from acoustic data was developed. Third, a series of triaxial experiments were conducted on unconsolidated sands to identify pressure/stress conditions where liquefaction occurs under high confining pressures. Stress-induced changes in anisotropic Young's moduli and shear moduli were observed during deformational pathway experiments. A new method was made for the acquisition of compressional and shear wave velocities along a series of 3-dimensional raypaths through a core sample as it is subjected to deformation. Three different deformational pathway experiments were conducted. During the hydrostatic deformation experiment, little or no anisotropy was observed in either the Young's moduli or shear moduli. Significant deformational anisotropies were observed in both moduli during the uniaxial strain test and the triaxial compression experiment but each had a different nature. During the triaxial experiment the axial and lateral Young's moduli and shear moduli continued to diverge as load was applied. During the uniaxial strain experiment the anisotropy was ''locked in'' early in the loading phase but then remained steady as both the confining pressure and axial stress were applied. A new method for measuring anisotropic Biot's effective stress parameters has also been developed. The method involves measuring the compressional and shear wave velocities in the aforementioned acoustic velocity experiments while varying stress paths. For a stress-induced transversely isotropic medium the acoustic velocity data are utilized to calculate the five independent elastic stiffness components. Once the elastic stiffness components are determined these can be used to calculate the anisotropic Biot's effective stress parameters, {alpha}{sub v} and {alpha}{sub h}, using the equations of Abousleiman et al. (1996). A series of experiments have been conducted, on an initially inherently isotropic Berea sandstone rock sample, to dynamically determine these anisotropic Biot's parameters during deformational pathway experiments. Data acquired during hydrostatic, triaxial, and uniaxial strain pathway experiments indicates that Biot's effective stress parameter changes significantly if the applied stresses are not hydrostatic. Variations, as large as 20% between the axial (vertical) and lateral (horizontal) Biot's effective stress parameters, were observed in some experiments. A series of triaxial compression experiments have been conducted on unconsolidated sand (Oil Creek sand) to determine the pressure/stress conditions which would be favorable for liquefaction. Liquefaction of geopressured sands is thought to be one of the major causative mechanisms of damaging shallow water flows. The experiments were developed to determine if: (1) liquefaction could be made to occur in this particular sand at high confining pressures, and (2) the state of liquefication had the same nature at high pressure conditions typical of shallow water flows as it does in low confining pressure soil mechanics tests. A series of undrained triaxial experiments were successfully used to document that the Oil Creek sand could undergo liquefaction. The nature (i.e., the shape of the deformational pathway in mean pressure/shear stress space) was very similar to those observed in soil mechanics experiments. The undrained triaxial experiments also indicated that this sand would strain soften at relatively high confining pressures--a necessary precursor to liquefaction. These experiments serve as a starting point for a series of acoustic experiments to determine the signature of compressional and shear wave properties as the sand packs approach the state of liquefaction (and shallow water flows).

  6. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging.

    PubMed

    Jones, Ryan M; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections. Although presented in an imaging context, our results may also be applicable to the problem of transmit focusing through the skull. PMID:26605827

  7. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections. Although presented in an imaging context, our results may also be applicable to the problem of transmit focusing through the skull.

  8. B-Mode and Acoustic Radiation Force Impulse (ARFI) Imaging of Prostate Zonal Anatomy: Comparison with 3T T2-Weighted MR Imaging

    PubMed Central

    Palmeri, Mark L.; Miller, Zachary A.; Glass, Tyler J.; Garcia-Reyes, Kirema; Gupta, Rajan T.; Rosenzweig, Stephen J.; Kauffman, Christopher; Polascik, Thomas J.; Buck, Andrew; Kulbacki, Evan; Madden, John; Lipman, Samantha L.; Rouze, Ned C.; Nightingale, Kathryn R.

    2015-01-01

    Prostate cancer (PCa) is the most common non-cutaneous malignancy among men in the United States and the second leading cause of cancer-related death. Multi-parametric magnetic resonance imaging (mpMRI) has gained recent popularity to characterize PCa. Acoustic Radiation Force Impulse (ARFI) imaging has the potential to aid PCa diagnosis and management by using tissue stiffness to evaluate prostate zonal anatomy and lesions. MR and B-mode/ARFI in vivo imaging datasets were compared with one another and with gross pathology measurements made immediately after radical prostatectomy. Images were manually segmented in 3D Slicer to delineate the central gland (CG) and prostate capsule, and 3D models were rendered to evaluate zonal anatomy dimensions and volumes. Both imaging modalities showed good correlation between estimated organ volume and gross pathologic weights. Ultrasound and MR total prostate volumes were well correlated (R2 = 0.77), but B-mode images yielded prostate volumes that were larger (16.82% ± 22.45%) than MR images, due to overestimation of the lateral dimension (18.4% ± 13.9%), with less significant differences in the other dimensions (7.4% ± 17.6%, anterior-to-posterior, and −10.8% ± 13.9%, apex-to-base). ARFI and MR CG volumes were also well correlated (R2 = 0.85). CG volume differences were attributed to ARFI underestimation of the apex-to-base axis (−28.8% ± 9.4%) and ARFI overestimation of the lateral dimension (21.5% ± 14.3%). B-mode/ARFI imaging yielded prostate volumes and dimensions that were well correlated with MR T2-weighted image (T2WI) estimates, with biases in the lateral dimension due to poor contrast caused by extraprostatic fat. B-mode combined with ARFI imaging is a promising low-cost, portable, real-time modality that can complement mpMRI for PCa diagnosis, treatment planning, and management. PMID:25060914

  9. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  10. Bioenergetic programming of macrophages by the apolipoprotein A-I mimetic peptide 4F.

    PubMed

    Datta, Geeta; Kramer, Philip A; Johnson, Michelle S; Sawada, Hirotaka; Smythies, Lesley E; Crossman, David K; Chacko, Balu; Ballinger, Scott W; Westbrook, David G; Mayakonda, Palgunachari; Anantharamaiah, G M; Darley-Usmar, Victor M; White, C Roger

    2015-05-01

    The apoA-I (apolipoprotein A-I) mimetic peptide 4F favours the differentiation of human monocytes to an alternatively activated M2 phenotype. The goal of the present study was to test whether the 4F-mediated differentiation of MDMs (monocyte-derived macrophages) requires the induction of an oxidative metabolic programme. 4F treatment induced several genes in MDMs that play an important role in lipid metabolism, including PPARγ (peroxisome-proliferator-activated receptor γ) and CD36. Addition of 4F was associated with a significant increase in FA (fatty acid) uptake and oxidation compared with vehicle treatment. Mitochondrial respiration was assessed by measurement of the OCR (oxygen-consumption rate). 4F increased basal and ATP-linked OCR as well as maximal uncoupled mitochondrial respiration. These changes were associated with a significant increase in ΔΨm (mitochondrial membrane potential). The increase in metabolic activity in 4F-treated MDMs was attenuated by etomoxir, an inhibitor of mitochondrial FA uptake. Finally, addition of the PPARγ antagonist T0070907 to 4F-treated MDMs reduced the expression of CD163 and CD36, cell-surface markers for M2 macrophages, and reduced basal and ATP-linked OCR. These results support our hypothesis that the 4F-mediated differentiation of MDMs to an anti-inflammatory phenotype is due, in part, to an increase in FA uptake and mitochondrial oxidative metabolism. PMID:25742174

  11. L-4F Alters Hyperlipidemic (but not Normal) Mouse Plasma to Reduce Platelet Aggregation

    PubMed Central

    Buga, Georgette M.; Navab, Mohamad; Imaizumi, Satoshi; Reddy, Srinivasa T.; Yekta, Babak; Hough, Greg; Chanslor, Shawn; Anantharamaiah, G.M.; Fogelman, Alan M.

    2010-01-01

    Objective Hyperlipidemia is associated with platelet hyper-reactivity. We hypothesized that L-4F, an apoA-I mimetic peptide, would inhibit platelet aggregation in hyperlipidemic mice. Methods and Results Injecting L-4F into apoE null and LDL receptor null mice resulted in a significant reduction in platelet aggregation in response to agonists but there was no reduction in platelet aggregation after injection of L-4F into wild-type (WT) mice. Consistent with these results, injection of L-4F into apoE null mice prolonged bleeding time but not in WT mice. Incubating L-4F in vitro with apoE null platelet rich plasma also resulted in decreased platelet aggregation. However, incubating washed platelets from either apoE null or WT mice with L-4F did not alter aggregation. Compared to wild-type mice, unstimulated platelets from apoE null mice contained significantly more 12-HETE, thromboxane A2 (TXA2), prostaglandins D2 (PGD2) and E2 (PGE2). In response to agonists, platelets from L-4F treated apoE null mice formed significantly less TXA2, PGD2 PGE2, and 12-HETE. Conclusions By binding plasma oxidized lipids that cause platelet hyper-reactivity in hyperlipidemic mice, L-4F decreases platelet aggregation. PMID:19965777

  12. Imaging Acoustic Phonon Dynamics on the Nanometer-Femtosecond Spatiotemporal Length-Scale with Ultrafast Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Plemmons, Dayne; Flannigan, David

    Coherent collective lattice oscillations known as phonons dictate a broad range of physical observables in condensed matter and act as primary energy carriers across a wide range of material systems. Despite this omnipresence, analysis of phonon dynamics on their ultrashort native spatiotemporal length scale - that is, the combined nanometer (nm), spatial and femtosecond (fs), temporal length-scales - has largely remained experimentally inaccessible. Here, we employ ultrafast electron microscopy (UEM) to directly image discrete acoustic phonons in real-space with combined nm-fs resolution. By directly probing electron scattering in the image plane (as opposed to the diffraction plane), we retain phase information critical for following the evolution, propagation, scattering, and decay of phonons in relation to morphological features of the specimen (i.e. interfaces, grain boundaries, voids, ripples, etc.). We extract a variety of morphologically-specific quantitative information from the UEM videos including phonon frequencies, phase velocities, and decays times. We expect these direct manifestations of local elastic properties in the vicinity of material defects and interfaces will aide in the understanding and application of phonon-mediated phenomena in nanostructures. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.

  13. Error Analysis and the Computation of Turbulent Fluctuations for 3D Volume Reconstructions of Acoustic Images of Black Smoker Plumes

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2002-12-01

    We present an error analysis and statistical description of 3D volume reconstructions and measurements based on our acoustic images of a high-temperature black smoker-type plume. Sources of error include (1) the intrinsic variance due to particle motion in the plume since the acoustic images are based on backscatter from small (5-100 μm) particles, (2) noise produced by the ROV Jason system on which the sonar was mounted, and (3) unwanted echos from the surrounding seafloor returning through the sonar sidelobes. Additional fluctuations in the particle concentration due to plume turbulence lead to time variations in the measured backscatter. The data were collected in July 2000 by a SM2000 (330 MHz) sonar mounted on the ROV Jason. The sonar system was calibrated to record absolute backscatter pressure. The squared magnitude of backscattered pressure is converted to differential backscatter cross-section per unit volume (units 1/m), which is proportional to particulate concentration. Three-dimensional imaging data were obtained by a combination of time gating, digital beamforming, and mechanical scanning for resolution in range, azimuth, and elevation, respectively. Several different processing steps were applied to the data to reduce the error: (a) averaging along the pings with a range window of 1 m reduced the standard error in a single ping due to intrinsic variance from 1 to 0.44, (b) narrow-band notch filtering reduced the effects of tonal noise, (c) bursts effected by occasional impulsive noise events were simply eliminated from further processing, (d) successive pings were subtracted in an effort to cancel out the effects of unwanted sidelobe returns. The resulting data were interpolated onto a uniform 3D grid with 0.5 m spacing. The statistics of six successive 3D volumes were computed. Averaging the six volumes further reduced the standard error to 0.18. The total rms error, computed as the sample standard deviation divided by the square root of 6 (the number of volumes averaged into the mean), includes all sources of random error and falls in the range 0.1-0.4x10-4 1/m. Intrinsic error (18% of mean) and rms error are both low compared to mean backscattering cross-section (core maximum is 1.1x10-4 1/m) and similar to minimum values (core minimum is 0.3x10-4 1/m). Total fluctuation in the plume structure during 20 minutes of recording (all volumes) falls in the range 0.1-3.0x10-4 1/m, with the largest values in the plume core reflecting the high variability expected in a plume core. The rms fluctuations decay upwards along the plume axis at a similar rate as the mean backscattering cross-section, indicating that the dilution process is self-similar, as in buoyant plume models, even though particles are not true passive tracers. The effective plume width increases at the predicted rate of 0.1 m/m for a fully developed plume. Despite significant error levels, the turbulence structure of the plume is observed in the acoustic data and provides some constraints on the entrainment and dilution mechanisms.

  14. Near-infrared absorbing polymer nano-particle as a sensitive contrast agent for photo-acoustic imaging

    NASA Astrophysics Data System (ADS)

    Aoki, Hiroyuki; Nojiri, Mayumi; Mukai, Rieko; Ito, Shinzaburo

    2014-11-01

    Polymer nano-particles (PNPs) with a near-infrared (NIR) light absorption were prepared by the nano-emulsion method to develop contrast agents for photo-acoustic (PA) imaging. The PNP containing silicon naphthalocyanine showed a high absorption coefficient up to 1010 M-1 cm-1. This is comparable to plasmonic gold nano-particles, which have been studied as PA contrast agents. For the PNP larger than 100 nm, the enhancement of the PA signal was observed compared to the gold nano-particle with a similar absorption coefficient and size. In the case of the PNP, the heat by the light absorption is confined in the particle due to the low thermal diffusivity of polymer materials. We showed that the strong thermal confinement effect of PNP results in the enhancement of the efficiency of the PA signal generation and that the PA intensity can be enhanced by the increase of the Grneisen parameter of the matrix polymer of PNP. The PA signal from the PNP of poly(methyl methacrylate) was 9-fold larger than that of gold nano-particles with the same absorption coefficient. We demonstrated that in the in vivo PA imaging the detection limit of PNP was of the order of 10-13 M. The NIR absorbing PNP will be a promising candidate of a sensitive contrast agent for PA imaging.Polymer nano-particles (PNPs) with a near-infrared (NIR) light absorption were prepared by the nano-emulsion method to develop contrast agents for photo-acoustic (PA) imaging. The PNP containing silicon naphthalocyanine showed a high absorption coefficient up to 1010 M-1 cm-1. This is comparable to plasmonic gold nano-particles, which have been studied as PA contrast agents. For the PNP larger than 100 nm, the enhancement of the PA signal was observed compared to the gold nano-particle with a similar absorption coefficient and size. In the case of the PNP, the heat by the light absorption is confined in the particle due to the low thermal diffusivity of polymer materials. We showed that the strong thermal confinement effect of PNP results in the enhancement of the efficiency of the PA signal generation and that the PA intensity can be enhanced by the increase of the Grneisen parameter of the matrix polymer of PNP. The PA signal from the PNP of poly(methyl methacrylate) was 9-fold larger than that of gold nano-particles with the same absorption coefficient. We demonstrated that in the in vivo PA imaging the detection limit of PNP was of the order of 10-13 M. The NIR absorbing PNP will be a promising candidate of a sensitive contrast agent for PA imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04724a

  15. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Yuki, Yukako; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-06-01

    Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans. PMID:27044800

  16. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  17. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  18. Eigenspace based minimum variance beamforming applied to ultrasound imaging of acoustically hard tissues.

    PubMed

    Mehdizadeh, Saeed; Austeng, Andreas; Johansen, Tonni F; Holm, Sverre

    2012-10-01

    Minimum variance (MV) based beamforming techniques have been successfully applied to medical ultrasound imaging. These adaptive methods offer higher lateral resolution, lower sidelobes, and better definition of edges compared to delay and sum beamforming (DAS). In standard medical ultrasound, the bone surface is often visualized poorly, and the boundaries region appears unclear. This may happen due to fundamental limitations of the DAS beamformer, and different artifacts due to, e.g., specular reflection, and shadowing. The latter can degrade the robustness of the MV beamformers as the statistics across the imaging aperture is violated because of the obstruction of the imaging beams. In this study, we employ forward/backward averaging to improve the robustness of the MV beamforming techniques. Further, we use an eigen-spaced minimum variance technique (ESMV) to enhance the edge detection of hard tissues. In simulation, in vitro, and in vivo studies, we show that performance of the ESMV beamformer depends on estimation of the signal subspace rank. The lower ranks of the signal subspace can enhance edges and reduce noise in ultrasound images but the speckle pattern can be distorted. PMID:22868562

  19. Photo-acoustic imaging of blue nanoparticle targeted brain tumor for intra-operative glioma delineation

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Wang, Xueding; Koo Lee, Yong-Eun; Hah, HoeJin; Kim, Gwangseong; Chen, Thomas; Orrienger, Daniel; Sagher, Oren; Kopelman, Raoul

    2011-07-01

    Distinguishing the tumor from the background neo-plastic tissue is challenging for cancer surgery such as surgical resection of glioma. Attempts have been made to use visible or fluorescent markers to delineate the tumors during surgery. However, the systemic injection of the dyes requires high dose, resulting in negative side effects. A novel method to delineate rat brain tumors intra-operatively, as well as post-operatively, using a highly sensitive photoacoustic imaging technique enhanced by tumor targeting blue nanoparticle as contrast agent is demonstrated. The nanoparticles are made of polyacrylamide (PAA) matrix with covalently linked Coomassie-Blue dye. They contain 7.0% dye and the average size is 80nm. Their surface was conjugated with F3 peptide for active tumor targeting. These nanoparticles are nontoxic, chemically inert and have long plasma circulation lifetime, making them suitable as nanodevices for imaging using photoacoustics. Experiments on phantoms and rat brains tumors ex-vivo demonstrate the high sensitivity of photoacoustic imaging in delineating the tumor, containing contrast agent at concentrations too low to be visualized by eye. The control tumors without nanoparticles did not show any enhanced signal. This study shows that photoacoustic imaging facilitated with the nanoparticle contrast agent could contribute to future surgical procedures for glioma.

  20. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?

    PubMed

    Oralkan, Omer; Ergun, A Sanli; Johnson, Jeremy A; Karaman, Mustafa; Demirci, Utkan; Kaviani, Kambiz; Lee, Thomas H; Khuri-Yakub, Butrus T

    2002-11-01

    Piezoelectric materials have dominated the ultrasonic transducer technology. Recently, capacitive micromachined ultrasonic transducers (CMUTs) have emerged as an alternative technology offering advantages such as wide bandwidth, ease of fabricating large arrays, and potential for integration with electronics. The aim of this paper is to demonstrate the viability of CMUTs for ultrasound imaging. We present the first pulse-echo phased array B-scan sector images using a 128-element, one-dimensional (1-D) linear CMUT array. We fabricated 64- and 128-element 1-D CMUT arrays with 100% yield and uniform element response across the arrays. These arrays have been operated in immersion with no failure or degradation in performance over the time. For imaging experiments, we built a resolution test phantom roughly mimicking the attenuation properties of soft tissue. We used a PC-based experimental system, including custom-designed electronic circuits to acquire the complete set of 128 x 128 RF A-scans from all transmit-receive element combinations. We obtained the pulse-echo frequency response by analyzing the echo signals from wire targets. These echo signals presented an 80% fractional bandwidth around 3 MHz, including the effect of attenuation in the propagating medium. We reconstructed the B-scan images with a sector angle of 90 degrees and an image depth of 210 mm through offline processing by using RF beamforming and synthetic phased array approaches. The measured 6-dB lateral and axial resolutions at 135 mm depth were 0.0144 radians and 0.3 mm, respectively. The electronic noise floor of the image was more than 50 dB below the maximum mainlobe magnitude. We also performed preliminary investigations on the effects of crosstalk among array elements on the image quality. In the near field, some artifacts were observable extending out from the array to a depth of 2 cm. A tail also was observed in the point spread function (PSF) in the axial direction, indicating the existence of crosstalk. The relative amplitude of this tail with respect to the mainlobe was less than -20 dB. PMID:12484483

  1. Innovative acoustic reflection imaging techniques and application to clinical breast tomography

    NASA Astrophysics Data System (ADS)

    Schmidt, Steve P.

    Conventional ultrasound techniques use beam-formed, constant sound speed ray models for fast image reconstruction. However, these techniques are inadequate for the emerging new field of ultrasound tomography (UST). We present a new technique for reconstruction of reflection images from UST data. We have extended the planar Kirchhoff migration method used in geophysics, and combined it with sound speed and attenuation data obtained from the transmission signals to create reflection ultrasound images that are corrected for refractive and attenuative effects. The resulting techniques were applied to simulated numerical phantom data, physical phantom data and in-vivo breast data obtained with an experimental ring transducer prototype. Additionally, the ring transducer was customized to test compatibility with an existing ultrasound workstation. We were able to obtain independently recorded radio-frequency (RF) data for individual transmit-receive pair combinations for all 128 transducers. The signal data was then successfully reconstructed into reflection data using the Kirchhoff migration techniques. The results from the use of sound speed and attenuation corrections lead to significant improvements in image quality, particularly in dense tissues where the refractive and scattering effects are the greatest. The procedure was applied to a variety of breast densities and masses of different natures. The resulting reflection images successfully resolved boundaries and textures. The reflection characteristics of tomographic ultrasound maintain an indispensible position in the quantification of proper mass identification. The results of this project indicate the clinical significance of the invocation of properly compensated Kirchhoff based reconstruction method with the use of sound speed and attenuation parameters for the visualization and classification of masses and tissue.

  2. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  3. Investigations of electron attachment to the perfluorocarbon molecules c-C4F8, 2-C4F8, 1,3 C4F6, and c-C5F8

    NASA Astrophysics Data System (ADS)

    Feil, Stefan; Mrk, Tilmann D.; Mauracher, Andreas; Scheier, Paul; Mayhew, Chris A.

    2008-11-01

    Non-dissociative and dissociative electron attachment to a series of gas-phase perfluorocarbons (PFCs), namely octafluorocyclobutane, c-C4F8, octafluorobut-2-ene (perfluoro-2-butene), 2-C4F8, hexafluorobuta-1,3-diene (1,3 perfluorobutadiene), 1,3 C4F6, and octafluorocyclopentene (perfluorocyclopentene), c-C5F8, of importance to technological plasmas, have been investigated using two different, but complimentary, instruments available in Innsbruck over the electron energy range 0-20 eV. Anion yields as a function of electron energy have been recorded, with the positions and intensities of the electron attachment resonances being determined. One of these instruments is a double focusing sector field mass spectrometer (VG-ZAB-2SEQ), which has been used for measurements requiring high sensitivity and for obtaining accurate relative anion yields. It has also been used to determine the electron detachment lifetimes of the parent anions under various accelerating voltages, and these results are also presented. The second instrument (CELIA) is a trochoidal electron monochromator coupled to a quadrupole mass filter with a pulse counting system for detecting product anionic species. This provides a much higher energy resolution than the VG-ZAB, which makes it a better instrument to investigate narrow energy resonances close to 0 eV. The results of anion yields, peak positions and the relative intensities presented in this paper are compared with previous data of electron attachment to the above PFCs, including investigations by Professor Eugen Illenberger.

  4. HAER PA,35SCRAN,4F (sheet 1 of 1) Delaware, Lackawanna & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HAER PA,35-SCRAN,4-F- (sheet 1 of 1) - Delaware, Lackawanna & Western Railroad, Scranton Yards, Scrap Platform, 350 feet South of South Washington Avenue & River Street, Scranton, Lackawanna County, PA

  5. Heterometallic 3d-4f cubane clusters inserted in polyoxometalate matrices.

    PubMed

    Nohra, Brigitte; Mialane, Pierre; Dolbecq, Anne; Rivière, Eric; Marrot, Jérôme; Sécheresse, Francis

    2009-05-21

    Unprecedented molecular and bidimensional compounds based on monovacant polyoxometalates capped by heterometallic 3d-4f {LnCu(3)(OH)(3)O} (Ln = La, Gd, Eu) cubane fragments have been characterized and their magnetic properties investigated. PMID:19532927

  6. Enhanced characterization of calcified areas in intravascular ultrasound virtual histology images by quantification of the acoustic shadow: validation against computed tomography coronary angiography.

    PubMed

    Broersen, Alexander; de Graaf, Michiel A; Eggermont, Jeroen; Wolterbeek, Ron; Kitslaar, Pieter H; Dijkstra, Jouke; Bax, Jeroen J; Reiber, Johan H C; Scholte, Arthur J

    2016-04-01

    We enhance intravascular ultrasound virtual histology (VH) tissue characterization by fully automatic quantification of the acoustic shadow behind calcified plaque. VH is unable to characterize atherosclerosis located behind calcifications. In this study, the quantified acoustic shadows are considered calcified to approximate the real dense calcium (DC) plaque volume. In total, 57 patients with 108 coronary lesions were included. A novel post-processing step is applied on the VH images to quantify the acoustic shadow and enhance the VH results. The VH and enhanced VH results are compared to quantitative computed tomography angiography (QTA) plaque characterization as reference standard. The correlation of the plaque types between enhanced VH and QTA differs significantly from the correlation with unenhanced VH. For DC, the correlation improved from 0.733 to 0.818. Instead of an underestimation of DC in VH with a bias of 8.5 mm(3), there was a smaller overestimation of 1.1 mm(3) in the enhanced VH. Although tissue characterization within the acoustic shadow in VH is difficult, the novel algorithm improved the DC tissue characterization. This algorithm contributes to accurate assessment of calcium on VH and could be applied in clinical studies. PMID:26667446

  7. Evaluating Directional Resolution of Aplanatic Acoustic Lens for Designing Ambient Noise Imaging System

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Sato, Yuji; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2009-07-01

    In our previous studies, it was verified that a spherical biconcave lens with an aperture diameter of 2.0 m has a sufficient directional resolution (e.g., a beam width of 1 at 60 kHz) for realizing an ambient noise imaging (ANI) system. In this study, an aplanatic lens that corrects both spherical and coma aberrations with the same aperture was designed for an ANI system, and its directional resolution was evaluated. First, in order to predict the resolution, we performed a numerical analysis using the finite difference time domain (FDTD) method. Second, the numerical analysis results were verified by a small-scale trial of one-fifth of full size in a water tank. The shapes of the -3 dB areas were similar between the numerical analysis and experimental results at small incidence angles, and the -3 dB areas do not overlap at 1 increments of incidence angle. The resolution of the aplanatic lens was closer to that of an ideal lens than to that of the spherical lens. Finally, it was satisfied that the present lens has sufficient directional resolution for use in an ANI system.

  8. A method of construction of information images of the acoustic signals of the human bronchopulmonary system

    NASA Astrophysics Data System (ADS)

    Bureev, A. Sh.; Zhdanov, D. S.; Zemlyakov, I. Yu.; Kiseleva, E. Yu.; Khokhlova, L. A.

    2015-11-01

    The present study focuses on the development of a method of identification of respiratory sounds and noises of a human naturally and in various pathological conditions. The existing approaches based on a simple method of frequency and time signal analysis, have insufficient specificity, efficiency and unambiguous interpretation of the results of a clinical study. An algorithm for a phase selection of respiratory cycles and analysis of respiratory sounds resulting from bronchi examination of a patient has been suggested. The algorithm is based on the method of phase timing analysis of bronchi phonograms. The results of the phase-frequency algorithm with high resolution reflects a time position of the traceable signals and the individual structure of recorded signals. This allows using the proposed method for the formation of information images (models) of the diagnostically significant fragments. A weight function, frequency parameters of which can be selectively modified, is used for this purpose. The vision of the weighting function is specific to each type of respiratory noise, traditionally referred to quality characteristics (wet or dry noise, crackling, etc.).

  9. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  10. Excitation of dysprosium atom levels belonging to even 4f96s26p and 4f106p2 configurations

    NASA Astrophysics Data System (ADS)

    Smirnov, Yuriy Mikhailovich

    2015-01-01

    Excitation of radiative transitions of dysprosium atoms from even levels belonging to 4 f 96 s 26 p and 4 f 106 p 2 configurations has been studied by experiment. Sixty-six excitation cross sections measured at an exciting electron energy of 30 eV. Four optical excitation functions recorded in the electron energy range of 0-200 eV. A classification based on known DyI energy levels proposed for several spectral lines. In most cases excitation cross-sections measured do not exceed 1 × 10-18 cm2 as the parity of upper levels studied in the present paper coincide with the parity of the DyI ground level which is the initial level in the excitation process.

  11. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments: Phase II

    SciTech Connect

    Rudzinsky, J.; Bondaryk, J.; Conti, M.

    1999-07-01

    The nuclear power industry is concerned with corrosive thinning of portions of the metallic pressure boundary, particularly in areas that are not directly accessible for inspection. This study investigated the feasibility of detecting these thickness degradations using ultrasonic imaging. A commercial ultrasonic system was used to carry out several full-scale, controlled laboratory experiments. Measurements of 0.5 MHz shear wave levels propagated in 25-mm-thick steel plate embedded in concrete showed 1.4-1.6 dB of signal loss for each centimeter of two-way travel in the steel plate (compared to previous numerical predictions of 3-4 dB), and 1.3 dB of signal loss per centimeter of two-way travel in steel plates embedded in concrete prior to setting of the concrete (i.e., plastic). Negligible losses were measured in plates with a decoupling treatment applied between the steel and concrete to simulate the unbonded portions of the pressure boundary. Scattered signals from straight slots of different size and shape were investigated. The return from a 4-mm-deep rectangular slots exhibited levels 23 dB down relative to incidence and 4-6 dB higher than those obtained from both ''v'' shaped and rounded slots of similar depth. The system displayed an input/output dynamic range of 125 dB and measurement variability less than 1-2dB. Based on these results, a 4-mm-deep, rounded degradation embedded 30 cm in concrete has expected returns of -73dB relative to the input and should therefore be detectable. Results of this and a prior study indicate that the technique has merit and should be developed more fully and demonstrated in the field.

  12. Role of load in regulating eIF-4F complex formation in adult feline cardiocytes.

    PubMed

    Tuxworth, W J; Wada, H; Ishibashi, Y; McDermott, P J

    1999-10-01

    This study examined whether cardiocyte load increases eIF-4F complex formation. To increase load in vitro, adult feline cardiocytes were electrically stimulated to contract (1 Hz, 5-ms pulses). eIF-4F complex formation, measured by eIF-4G association with eIF-4E, increased 57 +/- 16% after 4 h of contraction compared with controls. eIF-4F complex formation did not increase on electrical stimulation with 2,3-butanedione monoxime (BDM), an inhibitor of active tension. Both insulin and phorbol ester increased eIF-4F complex formation, but these increases were unaffected by BDM. Insulin caused a shift of eIF-4E binding proteins (4E-BPs) into their hyperphosphorylated gamma-isoforms and dissociation of 4E-BPs from eIF-4E. Rapamycin inhibited 4E-BP phosphorylation in response to insulin but had no effect on eIF-4F complex formation. Electrically stimulated contraction caused a partial shift of 4E-BP1 and 4E-BP2 into the gamma-isoforms, but it had no effect on 4E-BP association with eIF-4E. Rapamycin blocked the increase in eIF-4F complex formation in electrically stimulated cardiocytes and depressed contractility. These data indicate that cardiocyte load causes a tension-dependent increase in eIF-4F complex formation that does not require dissociation of 4E-BPs from eIF-4E. PMID:10516161

  13. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  14. Comparison of deconvolution methods for the visualization of acoustic sources based on cross-spectral imaging function beamforming

    NASA Astrophysics Data System (ADS)

    Chu, Zhigang; Yang, Yang

    2014-10-01

    DAMAS, DAMAS2, NNLS, Fourier-based NNLS, CLEAN and CLEAN-SC are typical deconvolution methods, which have been used in the visualization of acoustic sources based on beamforming to improve the spatial resolution and the dynamic range effectively. It is of great significance to demonstrate and compare properties of these methods comprehensively. In this paper, these methods are applied to cross-spectral imaging function (CSIF) beamforming with auto-spectra exclusion and their properties are demonstrated and compared with each other first by computational simulations consisting of a single source, two incoherent sources and two coherent sources. All the deconvolution methods can visualize single source or incoherent sources in the region where the assumption of shift invariant point spread function is valid accurately and clearly. Not only the spatial resolution is improved dramatically, but also the sidelobes are eliminated effectively. In addition, these methods rank in a diminishing sequence of sidelobe elimination ability from CLEAN-SC, CLEAN, DAMAS, Fourier-based NNLS, NNLS to DAMAS2. When the sources are out of the valid region, only DAMAS, NNLS, CLEAN and CLEAN-SC succeed in visualizing the sources and CLEAN-SC and CLEAN acquire the cleanest source images, then DAMAS, finally NNLS, while DAMAS2 and Fourier-based NNLS fail to not only locate the sources but also capture the strengths. DAMAS, DAMAS2, NNLS and Fourier-based NNLS have good availability for coherent sources in the valid region. In contrast, CLEAN fails to remove sidelobes effectively and CLEAN-SC can only detect one source. DAMAS2 and Fourier-based NNLS also perform poorly for coherent sources out of the valid region. Additionally, DAMAS2 and Fourier-based NNLS consume a minimum of time to conduct a calculation, CLEAN and CLEAN-SC take the second place, whereas DAMAS and NNLS are the slowest. Then a series of experiments are performed on small loudspeakers to validate simulations and compare robustness of these deconvolution methods in practical applications. Some practical factors such as the frequency response characteristic mismatch among the measurement devices have almost no influence on the results of CLEAN-SC, bring some change to the results of DAMAS, DAMAS2, NNLS and Fourier-based NNLS in terms of reconstructed maximum values, sidelobes, etc., and contribute plenty of extra sidelobe contaminations to the results of CLEAN. The conclusions play a guiding significance on the application of these deconvolution methods in practical engineering.

  15. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  16. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  17. TARGETING THE eIF4F TRANSLATION INITIATION COMPLEX: A CRITICAL NEXUS FOR CANCER DEVELOPMENT

    PubMed Central

    Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum

    2014-01-01

    Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor (eIF) 4F, the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and pre-clinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes such as cell growth and proliferation, enhanced cell survival, and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g. Ras, PI3K/AKT/TOR, and Myc), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as anti-neoplastic agents. PMID:25593033

  18. Evaluating the Feasibility of Acoustic Radiation Force Impulse Shear Wave Elasticity Imaging of the Uterine Cervix With an Intracavity Array: A Simulation Study

    PubMed Central

    Feltovich, Helen; Homyk, Andrew D.; Carlson, Lindsey C.; Hall, Timothy J.

    2015-01-01

    The uterine cervix softens, shortens, and dilates throughout pregnancy in response to progressive disorganization of its layered collagen microstructure. This process is an essential part of normal pregnancy, but premature changes are associated with preterm birth. Clinically, there are no reliable noninvasive methods to objectively measure cervical softening or assess cervical microstructure. The goal of these preliminary studies was to evaluate the feasibility of using an intracavity ultrasound array to generate acoustic radiation force impulse (ARFI) excitations in the uterine cervix through simulation, and to optimize the acoustic radiation force (ARF) excitation for shear wave elasticity imaging (SWEI) of the tissue stiffness. The cervix is a unique soft tissue target for SWEI because it has significantly greater acoustic attenuation (α = 1.3 to 2.0 dB·cm−1·MHz−1) than other soft tissues, and the pathology being studied tends to lead to an increase in tissue compliance, with healthy cervix being relatively stiff compared with other soft tissues (E ≈ 25 kPa). Additionally, the cervix can only be accessed in vivo using a transvaginal or catheter-based array, which places additional constraints on the excitation focal characteristics that can be used during SWEI. Finite element method (FEM) models of SWEI show that larger-aperture, catheter-based arrays can utilize excitation frequencies up to 7 MHz to generate adequate focal gain up to focal depths 10 to 15 mm deep, with higher frequencies suffering from excessive amounts of near-field acoustic attenuation. Using full-aperture excitations can yield ~40% increases in ARFI-induced displacements, but also restricts the depth of field of the excitation to ~0.5 mm, compared with 2 to 6 mm, which limits the range that can be used for shear wave characterization of the tissue. The center-frequency content of the shear wave particle velocity profiles ranges from 1.5 to 2.5 kHz, depending on the focal configuration and the stiffness of the material being imaged. Overall, SWEI is possible using catheter-based imaging arrays to generate adequate displacements in cervical tissue for shear wave imaging, although specific considerations must be made when optimizing these arrays for this shear wave imaging application. PMID:24081254

  19. Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging.

    PubMed

    Lindsey, Brooks D; Rojas, Juan D; Martin, K Heath; Shelton, Sarah E; Dayton, Paul A

    2014-10-01

    Recently, dual-frequency transducers have enabled high-spatial-resolution and high-contrast imaging of vasculature with minimal tissue artifacts by transmitting at a low frequency and receiving broadband superharmonic echoes scattered by microbubble contrast agents. In this work, we examine the imaging parameters for optimizing contrast-to-tissue ratio (CTR) for dual-frequency imaging and the relationship with spatial resolution. Confocal piston transducers are used in a water bath setup to measure the SNR, CTR, and axial resolution for ultrasound imaging of nonlinear scattering of microbubble contrast agents when transmitting at a lower frequency (1.5 to 8 MHz) and receiving at a higher frequency (7.5 to 25 MHz). Parameters varied include the frequency and peak negative pressure of transmitted waves, center frequency of the receiving transducer, microbubble concentration, and microbubble size. CTR is maximized at the lowest transmission frequencies but would be acceptable for imaging in the 1.5 to 3.5 MHz range. At these frequencies, CTR is optimized when a receiving transducer with a center frequency of 10 MHz is used, with the maximum CTR of 25.5 dB occurring when transmitting at 1.5 MHz with a peak negative pressure of 1600 kPa and receiving with a center frequency of 10 MHz. Axial resolution is influenced more heavily by the receiving center frequency, with a weak decrease in measured pulse lengths associated with increasing transmit frequency. A microbubble population containing predominately 4-μm-diameter bubbles yielded the greatest CTR, followed by 1- and then 2-μm bubbles. Varying concentration showed little effect over the tested parameters. CTR dependence on transmit frequency and peak pressure were confirmed through in vivo imaging in two rodents. These findings may lead to improved imaging of vascular remodeling in superficial or luminal cancers such as those of the breast, prostate, and colon. PMID:25265176

  20. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  1. Does the 4f-shell contribute to bonding in tetravalent lanthanide halides?

    SciTech Connect

    Ji, Wen-Xin; Xu, Wei; Xiao, Yi; Wang, Shu-Guang

    2014-12-28

    Lanthanide tetrahalide molecules LnX{sub 4} (Ln = Ce, Pr, Tb; X = F, Cl, Br, I) have been investigated by density functional theory at the levels of the relativistic Zero Order Regular Approximation and the relativistic energy-consistent pseudopotentials, using frozen small- and medium-cores. The calculated bond lengths and vibrational frequencies are close to the experimental data. Our calculations indicate 4f shell contributions to bonding in LnX{sub 4}, in particular for the early lanthanides, which show significant overlap between the Ln 4f-shell and the halogen np-shells. The 4f shells contribute to Ln-X bonding in LnX{sub 4} about one third more than in LnX{sub 3}.

  2. Infrared imaging and acoustic sizing of a bubble inside a micro-electro-mechanical system piezo ink channel

    NASA Astrophysics Data System (ADS)

    van der Bos, Arjan; Segers, Tim; Jeurissen, Roger; van den Berg, Marc; Reinten, Hans; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2011-08-01

    Piezo drop-on-demand inkjet printers are used in an increasing number of applications because of their reliable deposition of droplets onto a substrate. Droplets of a few picoliters are ejected from an inkjet nozzle at frequencies of up to 100 kHz. However, the entrapment of an air microbubble in the ink channel can severely impede the productivity and reliability of the printing system. The air bubble disturbs the channel acoustics, resulting in disrupted drop formation or failure of the jetting process. Here we study a micro-electro-mechanical systems-based printhead. By using the actuating piezo transducer in receive mode, the acoustical field inside the channel was monitored, clearly identifying the presence of an air microbubble inside the channel during failure of the jetting process. The infrared visualization technique allowed for the accurate sizing of the bubble, including its dynamics, inside the intact printhead. A model was developed to calculate the mutual interaction between the channel acoustics and the bubble dynamics. The model was validated by simultaneous acoustical and infrared detection of the bubble. The model can predict the presence and size of entrapped air bubbles inside an operating ink channel purely from the acoustic response.

  3. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  4. Broadband Acoustic Hyperbolic Metamaterial

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Xie, Yangbo; Sui, Ni; Wang, Wenqi; Cummer, Steven A.; Jing, Yun

    2015-12-01

    In this Letter, we report on the design and experimental characterization of a broadband acoustic hyperbolic metamaterial. The proposed metamaterial consists of multiple arrays of clamped thin plates facing the y direction and is shown to yield opposite signs of effective density in the x and y directions below a certain cutoff frequency, therefore, yielding a hyperbolic dispersion. Partial focusing and subwavelength imaging are experimentally demonstrated at frequencies between 1.0 and 2.5 kHz. The proposed metamaterial could open up new possibilities for acoustic wave manipulation and may find usage in medical imaging and nondestructive testing.

  5. Broadband Acoustic Hyperbolic Metamaterial.

    PubMed

    Shen, Chen; Xie, Yangbo; Sui, Ni; Wang, Wenqi; Cummer, Steven A; Jing, Yun

    2015-12-18

    In this Letter, we report on the design and experimental characterization of a broadband acoustic hyperbolic metamaterial. The proposed metamaterial consists of multiple arrays of clamped thin plates facing the y direction and is shown to yield opposite signs of effective density in the x and y directions below a certain cutoff frequency, therefore, yielding a hyperbolic dispersion. Partial focusing and subwavelength imaging are experimentally demonstrated at frequencies between 1.0 and 2.5 kHz. The proposed metamaterial could open up new possibilities for acoustic wave manipulation and may find usage in medical imaging and nondestructive testing. PMID:26722924

  6. Kondo-like 4f delocalization in Gd at high pressure

    SciTech Connect

    Maddox, B R; Lazicki, A; Yoo, C S; Iota, V; Chen, M; McMahan, A K; Hu, M Y; Chow, P; Scalettar, R T; Pickett, W E

    2005-11-28

    We present resonant inelastic x-ray scattering (RIXS) and x-ray emission spectroscopy (XES) results which suggest Kondo-like aspects in the delocalization of 4f electrons in Gd metal to 113 GPa. Analysis of the RIXS data reveal a prolonged and continuous process throughout the entire pressure range, so that the volume collapse transition at 59 GPa is only part of the delocalization phenomenon. Moreover, the L{sub {gamma}1} XES spectra indicate no apparent change in the bare 4f moment across the collapse, suggesting that Kondo screening is responsible for the expected Pauli-like behavior in magnetic susceptibility.

  7. Regulation of Pou4f3 Gene Expression in Hair Cells by 5 DNA in Mice

    PubMed Central

    Masuda, Masatsugu; Dulon, Didier; Pak, Kwang; Mullen, Lina M.; Li, Yan; Erkman, Linda; Ryan, Allen F.

    2011-01-01

    The POU-domain transcription POU4F3 is expressed in the sensory cells of the inner ear. Expression begins shortly after commitment to the hair cell (HC) fate, and continues throughout life. It is required for terminal HC differentiation and survival. To explore regulation of the murine Pou4f3 gene, we linked enhanced green fluorescent protein (eGFP) to 8.5 kb of genomic sequence 5 to the start codon in transgenic mice. eGFP was uniformly present in all embryonic and neonatal HCs. Expression of eGFP was also observed in developing Merkel cells and olfactory neurons as well as adult inner and vestibular HCs, mimicking the normal expression pattern of POU4F3 protein, with the exception of adult outer HCs. Apparently ectopic expression was observed in developing inner ear neurons. On a Pou4f3 null background, the transgene produced expression in embryonic HCs which faded soon after birth both in vivo and in vitro. Pou4f3 null HCs treated with caspase 3 and 9 inhibitors survived longer than untreated HCs, but still showed reduced expression of eGFP. The results suggest the existence of separate enhancers for different HC types, as well as strong autoregulation of the Pou4f3 gene. Bioinformatic analysis of four divergent mammalian species revealed three highly-conserved regions within the transgene: 400 bp immediately 5 to the Pou4f3 ATG, a short sequence at -1.3 kb, and a longer region at -8.2 to -8.5 kb. The latter contained E-box motifs that bind bHLH transcription factors, including motifs activated by ATOH1. Co-transfection of HEK293 or VOT-E36 cells with ATOH1 and the transgene as a reporter enhanced eGFP expression when compared to the transgene alone. Chromatin immunoprecipitation of the three highly conserved regions revealed binding of ATOH1 to the distal-most conserved region. The results are consistent with regulation of Pou4f3 in HCs by ATOH1 at a distal enhancer. PMID:21958861

  8. Evaluating the Acoustic Effect of Over-the-Rotor Foam-Metal Liner Installed on a Low Speed Fan Using Virtual Rotating Microphone Imaging

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.

    2010-01-01

    An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.

  9. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect

    Tittmann, B. R.; Xi, X.

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

  10. Structure-based description of a step-by-step synthesis of homo- and heterodinuclear (4f, 4f ') lanthanide complexes.

    PubMed

    Costes, Jean-Pierre; Dahan, Françoise; Nicodème, Franck

    2003-10-01

    The stepwise course of the synthesis of homo- (4f, 4f) and heterodilanthanide (4f, 4f ') complexes has been investigated through structural determination of the intermediate and final products occurring in the process. In the first step, the tripodal ligand H(3)L is reacted with Ln(NO(3))(3) x 5H(2)O to give a complex (H(3)L)Ln(NO(3))(3) in which the ligand does exist in a zwitterionic form. This unexpected feature has been definitely supported by a structural determination performed on a closely related complex (HL')(3)Ln(NO(3))(3) (1). These species are fairly stable and may be isolated. In basic medium, (H(3)L)Ln(NO(3))(3) is deprotonated to yield a neutral LLn complex crystallized as LLnNaClO(4) (2), the lanthanide ion being linked to the inner N(4)O(3) coordination site of the ligand. Finally, addition of Ln'(NO(3))(3) x 5H(2)O (Ln' being similar or different from Ln) to the LLn complex yields the desired homo- or heterodinuclear LLnLn'(NO(3))(3) complex 3, where the Ln' ion is coordinated to the outer O(3)O(3) coordination site of the tripodal ligand. Complex 1 (Ln = La) crystallizes in the triclinic space group P1 (No. 2): a = 11.1883(7) A, b = 11.8993(9) A, c = 16.4197(10) A, alpha = 81.900 (6) degrees, beta = 79.406(5) degrees, gamma = 79.470(6) degrees, V = 2099.5(2) A(3), Z = 2. Complex 2 (Ln = Eu) crystallizes in the monoclinic space group P2(1)/n (No. 14): a = 13.6333(13) A, b = 15.3799(12) A, c = 17.1473(13) A, beta = 111.283(10) degrees, V = 3350.2(5) A(3), Z = 4. Complex 3 (Ln = Ln' = Dy) crystallizes in the trigonal space group R3 (No. 148) with a = b = 23.847(3) A, c = 42.982(2) A, V = 21168(4) A(3), Z = 18. Complex 3 possesses a Dy(O(phenoxo))(3)Dy core, and a nitrato anion has been replaced by a eta(2)-chelated o-vanillin anion. We did not succeed in obtaining crystals of any of the heterodinuclear LLnLn'(NO(3))(3) entities, but their existence was unambiguously confirmed by positive fast atom bombardment mass spectrometry experiments. PMID:14514333

  11. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development.

    PubMed

    Mao, Chai-An; Agca, Cavit; Mocko-Strand, Julie A; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W; Arnone, Maria Ina; Frishman, Laura J; Klein, William H

    2016-03-16

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. PMID:26962139

  12. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development

    PubMed Central

    Mocko-Strand, Julie A.; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W.; Arnone, Maria Ina; Frishman, Laura J.; Klein, William H.

    2016-01-01

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. PMID:26962139

  13. Contribution of the 4 f -core-excited states in determination of atomic properties in the Promethium Isoelectronic Sequence

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Safronova, U. I.; Safronova, A. S.

    2014-05-01

    The atomic properties of Pm-like ions were comprehensively studied using relativistic atomic codes with the main emphasis on W ion. Excitation energies of the 4f14 nl (with nl = 5 s , 6 s , 5 p , 6 p , 5 d , 6 d , and 5 f) states in Pm-like ions with nuclear charge Z ranging from 74 to 100 are evaluated within the framework of relativistic many-body theory (RMBPT). First- and second-order Coulomb energies and first- and second-order Breit corrections to the energies are calculated. The important question of what is the ground state in Pm-like ions was answered. Properties of the 4 f -core-excited states are evaluated using the multiconfiguration relativistic Hebrew University Lawrence Livermore Atomic Code (HULLAC code) and the Hartree-Fock-Relativistic method (COWAN code). Our large scale calculations includes the following set of configurations: 4f14 5 s , 4f14 5 p , 4f13 5s2 , 4f13 5p2 , 4f13 5 s 5 p , 4f12 5s2 5 p , 4f12 5 s 5p2 , and 4f12 5p3 . Excitation energies, transition rates, and lifetimes in Pm-like tungsten are evaluated with additional inclusion of the 4f11 5s2 5p2 , 4f11 5 s 5p3 , 4f10 5s2 5p3 , and 4f10 5 s 5p4 configurations. Wavelengths of the 5 s - 5 p transitions are obtained by the COWAN, HULLAC, and RMBPT codes. This research was sponsored by DOE under the OFES grant DE-FG02-08ER54951 and in part by NNSA Cooperative Agreement DE-NA0001984. Work at Lawrence Livermore National Lab. was performed under the auspices of DOE under Contract DE-AC52-07NA27344.

  14. Synthesis and spectral investigations of Mn(II) ions doped NaCaAlPO4F3 phosphor

    NASA Astrophysics Data System (ADS)

    Pushpa Manjari, V.; Rama Krishna, Ch.; Muntaz Begum, Sk.; Ravikumar, R. V. S. S. N.

    2014-01-01

    Mn(II) ions doped NaCaAlPO4F3 phosphor was synthesized by using solid state reaction method. The prepared sample was characterized by various spectroscopic techniques such as powder XRD, SEM with EDS, Optical absorption, electron paramagnetic resonance (EPR) and photoluminescence. From powder XRD, the average crystallite size was calculated about 46 nm. SEM images showed the irregular shaped entities present in the sample. Optical absorption spectrum gave the absorption bands in UV-VIS region which are the characteristic of Mn(II) ions in octahedral symmetry. The room temperature EPR spectrum exhibited a six weak hyperfine splitting lines centered at g = 2.0. Photoluminescence spectrum showed the emission peaks in visible region, from yellow to red with an excitation wavelength of 465 nm. From the emission spectral data, the CIE chromaticity coordinates were also calculated as (x = 0.661, y = 0.338).

  15. Function of the p86 subunit of eukaryotic initiation factor (iso)4F as a microtubule-associated protein in plant cells.

    PubMed Central

    Bokros, C L; Hugdahl, J D; Kim, H H; Hanesworth, V R; van Heerden, A; Browning, K S; Morejohn, L C

    1995-01-01

    The isozyme form of eukaryotic initiation factor 4F [eIF-(iso)4F] from wheat germ is composed of a p28 subunit that binds the 7-methylguanine cap of mRNA and a p86 subunit having unknown function. The p86 subunit was found to have limited sequence similarity to a kinesin-like protein encoded by the katA gene of Arabidopsis thaliana. Native wheat germ eIF-(iso)4F and bacterially expressed p86 subunit and p86-p28 complex bound to taxol-stabilized maize microtubules (MTs) in vitro. Binding saturation occurred at 1 mol of p86 per 5-6 mol of polymerized tubulin dimer, demonstrating a substoichiometric interaction of p86 with MTs. No evidence was found for a direct interaction of the p28 subunit with MTs. Unlike kinesin, cosedimentation of eIF-(iso)4F with MTs was neither reduced by MgATP nor enhanced by adenosine 5'-[gamma-imido]triphosphate. Both p86 subunit and p86-p28 complex induced the bundling of MTs in vitro. The p86 subunit was immunolocalized to the cytosol in root maize cells and existed in three forms: fine particles, coarse particles, and linear patches. Many coarse particles and linear patches were colocalized or closely associated with cortical MT bundles in interphase cells. The results indicate that the p86 subunit of eIF-(iso)4F is a MT-associated protein that may simultaneously link the translational machinery to the cytoskeleton and regulate MT disposition in plant cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7624381

  16. 48 CFR 47.303-4 - F.o.b. origin, freight prepaid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false F.o.b. origin, freight... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-4 F.o.b. origin, freight prepaid. (a) Explanation of delivery term. F.o.b. origin, freight prepaid means— (1) Free of expense...

  17. 48 CFR 47.303-4 - F.o.b. origin, freight prepaid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false F.o.b. origin, freight... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-4 F.o.b. origin, freight prepaid. (a) Explanation of delivery term. F.o.b. origin, freight prepaid means— (1) Free of expense...

  18. 48 CFR 47.303-4 - F.o.b. origin, freight prepaid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false F.o.b. origin, freight... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-4 F.o.b. origin, freight prepaid. (a) Explanation of delivery term. F.o.b. origin, freight prepaid means— (1) Free of expense...

  19. Late-onset Charcot-Marie-Tooth disease 4F caused by periaxin gene mutation.

    PubMed

    Tokunaga, Shoko; Hashiguchi, Akihiro; Yoshimura, Akiko; Maeda, Kengo; Suzuki, Takashi; Haruki, Hiroyo; Nakamura, Tomonori; Okamoto, Yuji; Takashima, Hiroshi

    2012-11-01

    We identified the main features of Charcot-Marie-Tooth (CMT) disease, type 4F, caused by a periaxin gene (PRX) mutation in Japanese patients. Periaxin is known as one of the key myelination molecules, forming tight junction between myelin loop and axon. We collected 427 DNA samples from individuals with CMT or CMT-related neuropathy, negative for PMP22 duplication. We investigated PRX mutations using a purpose-built resequencing array screen during the period 2006-2012. We detected two types of PRX mutations in three patients; one patient showed a novel homozygous p.D651N mutation and the other two showed homozygous p.R1070X mutation. All PRX mutations reported so far have been of nonsense or frameshift type. In this study, we found homozygous missense mutation p.D651N. Aspartate 651 is located in a repeat domain; its position might indicate an important function. PRX mutations usually lead to early-onset, autosomal-recessive demyelinating CMT neuropathy 4F (CMT4F) or Dejerine-Sottas disease; their clinical phenotypes are severe. In our three patients, the onset of the disease was at the age of 27 years or later, and their clinical phenotypes were milder compared with those reported in previous studies. We showed a variation of clinical phenotypes for CMT4F caused by a novel, nonsense PRX mutation. PMID:22847150

  20. 28 CFR 55.5 - Coverage under section 4(f)(4).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Coverage under section 4(f)(4). 55.5 Section 55.5 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) IMPLEMENTATION OF THE PROVISIONS OF THE VOTING RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Nature of Coverage § 55.5 Coverage...

  1. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-01

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  2. 48 CFR 47.303-4 - F.o.b. origin, freight prepaid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Administration prescribes commercial zones at Subpart B of 49 CFR part 372); and (2) The cost of transportation... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false F.o.b. origin, freight... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-4 F.o.b. origin,...

  3. 48 CFR 47.303-4 - F.o.b. origin, freight prepaid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Administration prescribes commercial zones at Subpart B of 49 CFR part 372); and (2) The cost of transportation... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. origin, freight... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-4 F.o.b. origin,...

  4. 48 CFR 47.305-4 - F.o.b. destination solicitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. destination... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-4 F.o.b. destination solicitations. (a) When preparing f.o.b destination solicitations, the contracting officer shall refer to...

  5. 48 CFR 47.305-4 - F.o.b. destination solicitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false F.o.b. destination... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-4 F.o.b. destination solicitations. (a) When preparing f.o.b destination solicitations, the contracting officer shall refer to...

  6. 28 CFR 55.8 - Relationship between section 4(f)(4) and section 203(c).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Relationship between section 4(f)(4) and section 203(c). 55.8 Section 55.8 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) IMPLEMENTATION OF THE PROVISIONS OF THE VOTING RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Nature of Coverage §...

  7. Multi-cations doped LiVPO4F cathode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Sun, Xiaofei; Xu, Youlong; Teng, Feng; Sun, Gongyu; Chen, Yanjun; Chen, Guogang

    2015-05-01

    The multi-cations doped LiVPO4F, nominally Li0.97Cr0.01V0.95Al0.01Nb0.02PO4F0.97, is prepared by Chromium (Cr) doping on lithium site and Al-Nb co-doping on vanadium site via a conventional carbothermal reduction (CTR) route. The crystallographic lattice volume, particle size and morphology are not obviously changed comparing with un-doped LiVPO4F. However, the high rate and lifetime cycling performances are noticeably improved although the capacities at very low currents are slightly decreased. The reversible capacity at 1/10 C, 1 C, 2 C and 4 C of the pristine LiVPO4F is 143 mA h g-1, 99 mA h g-1, 86 mA h g-1 and 70 mA h g-1, respectively, while that of the doped counterpart is 138 mA h g-1, 102 mA h g-1, 95 mA h g-1 and 82 mA h g-1, respectively. The capacity retention after 100 galvanostatic cycles at 1.5 C is enhanced from 85.4% to 90.9% by such multi-cations doping. Moreover, the initial coulombic efficiency is significantly increased from 81.8% to 90.3% as well.

  8. Improving the Battery Performance of LiVPO4F by Chromium Doping

    NASA Astrophysics Data System (ADS)

    Liu, Yanghao; Xu, Youlong; Sun, Xiaofei

    2013-12-01

    Polyanion LiVPO4F has been recently recognized as a promising high energy cathode material for next generation rechargeable lithium batteries. With the aim of performance advancement in this paper, 3 at.% chromium are used to dope LiVPO4F during carbothermal reduction synthesis. Rietveld refinement of X-ray diffraction pattern indicates that most of the chromium favors occupying the lithium site. Energy dispersive X-ray spectrum on selected area of the particle further demonstrates successful Cr doping into LiVPO4F. Both the rate capability and cycling performance of LiVPO4F are found noticeably improved possibly due to the stabilized crystalline structure and increased electric conductivity by Cr doping. The specific discharge capacities at C/24, C/5, 1 C and 8 C rates are 144.3, 135.1, 108.5 and 89.6 mA h g-1, respectively. Moreover, it delivers a capacity of 128.7 mA h g-1 at C/2 with the retention of 88.2% after 100 cycles.

  9. Proposed Plan for the Burma Road Rubble Pit (231-4F)

    SciTech Connect

    Palmer, E.

    1995-11-01

    The purpose of this proposed plan is to describe the preferred alternative for addressing the Burma Road Rubble Pit (BRRP) source unit soils (231-4F) located at the SRS in Aiken, South Carolina and to provide an opportunity for public input into the remedial action selection process.

  10. Effectiveness of imaging seismic attenuation using visco-acoustic full waveform tomography: Examples from the Seattle Fault Zone and Northern Perth Basin

    NASA Astrophysics Data System (ADS)

    Takam Takougang, E.; Calvert, A. J.

    2012-12-01

    Attenuation characterizes the decrease in amplitude of seismic waves as they propagate away from the source. A seismic wave propagating in the subsurface will suffer from two types of attenuation: Intrinsic attenuation and scattering attenuation. Scattering attenuation is due to small scale heterogeneity in the subsurface, whereas intrinsic attenuation arises from inelastic rock properties. Intrinsic attenuation can provide key information about the subsurface, which can be of value to the mining as well as the oil and gas industry. However, accurate imaging of intrinsic seismic attenuation using visco-acoustic full-waveform tomography is not straight forward. Attenuation models recovered by visco-acoustic waveform tomography are often contain contaminated by scattering effects as well as elastic mode conversion artefacts due to the inability of the visco-acoustic approximation to perfectly predict the amplitude of visco-elastic field data. The effect of scattering can be reduced if a velocity model with a high resolution is used. This usually necessitates a two-step inversion approach consisting of first recovering the velocity model and later, the attenuation model. In this study, we present a specific preconditioning of the data based on matching the amplitude variation with offset (AVO) of the field and modelled visco-acoustic data, and a specific inversion approach based on a sequential recovering of the seismic velocity and attenuation models using the visco-acoustic approximation. Our purpose is to improve the quality of the recovered attenuation model by decoupling the reconstruction of velocity and attenuation, thus reducing artefacts. We apply the method to two different areas: The Seattle Fault Zone in Puget Sound in the northwestern USA, using marine seismic reflection data from the Seismic Hazards investigation in Puget Sound (SHIPS) survey collected in 1998, and the Allanooka area within the Northern Perth Basin using high resolution seismic reflection data collected in 2010 for groundwater modelling. In the Allanooka area, we investigate the use of joint inversion of controlled source electromagnetic (CSEM) and seismic data to obtain a more accurate starting velocity model for full-waveform tomography, where the starting usable frequency for waveform tomography is relatively large. We assess the reliability of the results with a set of visco-elastic modelling tests.

  11. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  12. Human Enteric Microsomal CYP4F Enzymes O-Demethylate the Antiparasitic Prodrug Pafuramidine

    PubMed Central

    Wang, Michael Zhuo; Wu, Judy Qiju; Bridges, Arlene S.; Zeldin, Darryl C.; Kornbluth, Sally; Tidwell, Richard R.; Hall, James Edwin; Paine, Mary F.

    2008-01-01

    CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we characterized the enteric enzymes that catalyze the initial O-demethylation of DB289 to the intermediate metabolite, M1. M1 formation in HIM was catalyzed by cytochrome P450 (P450) enzymes, as evidenced by potent inhibition by 1-aminoben-zotriazole and the requirement for NADPH. Apparent Km and Vmax values ranged from 0.6 to 2.4 μM and from 0.02 to 0.89 nmol/min/mg protein, respectively (n = 9). Of the P450 chemical inhibitors evaluated, ketoconazole was the most potent, inhibiting M1 formation by 66%. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, inhibited M1 formation in a concentration-dependent manner (up to 95%). Immunoinhibition with an antibody raised against CYP4F2 showed concentration-dependent inhibition of M1 formation (up to 92%), whereas antibodies against CYP3A4/5 and CYP2J2 had negligible to modest effects. M1 formation rates correlated strongly with arachidonic acid ω-hydroxylation rates (r2 = 0.94, P < 0.0001, n = 12) in a panel of HIM that lacked detectable CYP4A11 protein expression. Quantitative Western blot analysis revealed appreciable CYP4F expression in these HIM, with a mean (range) of 7 (3–18) pmol/mg protein. We conclude that enteric CYP4F enzymes could play a role in the first-pass biotransformation of DB289 and other xenobiotics. PMID:17709372

  13. Characterization of Core Samples from a Hardened Crust Layer in Tank 4F

    SciTech Connect

    Hay, M. L.

    2005-09-28

    Waste removal operations in Tank 4F are scheduled to begin in late 2005 to provide material for Sludge Batch 5. Mining/probing operations to support installation of submersible mixer pumps encountered a hard layer of material at {approx}45'' to 50'' from the bottom of the tank. Attempts at penetrating the hard layer using a manual mining tool in several different risers were not successful. A core-sampling tool was used to obtain samples of the hard crust layer in Tank 4F for characterization. Three 12'' core samples and a dip sample of the supernate near the surface of the hard layer were sent to Savannah River National Laboratory (SRNL) for characterization. X-ray Diffraction (XRD) results for the crystalline solids from both sample FTF-434 and FTF-435 identifies the major component of both samples as Burkeite (Na{sub 6}(CO{sub 3})(SO{sub 4}){sub 2}). All of the other data collected on the crystalline solids from the Tank 4F core samples support this conclusion. The conditions in Tank 4F for the last twenty years have been ideal for Burkeite formation. The tank has been largely undisturbed with a tank temperature consistently above 30 C, a carbonate to sulfate molar ratio in the supernate conducive to Burkeite formation, and slow evaporation of the supernate phase. Thermodynamic modeling and the results of a Burkeite solubility test confirm that a ratio of 1:1:12 for the volumes of Burkeite solids, supernate, and inhibited water will dissolve all of the Burkeite. These ratios could be used to remove the 6'' layer of Burkeite from Tank 4F with no mixing. However, the thermodynamic modeling and the solubility test neglect the sludge layer beneath the Burkeite crust in Tank 4F. Settled sludge in Savannah River Site (SRS) high-level waste tanks usually contains greater than 75% interstitial supernate by volume. If the supernate in the sludge layer should mix into the solution used to dissolve the Burkeite, significantly more inhibited water would be needed to dissolve the Burkeite layer. Additionally, the average thickness of the Burkeite layer across the diameter of the tank may be thicker or thinner than the 6'' assumed for modeling purposes. The 6'' thickness assumed for the Burkeite layer was based on the 6'' plug of solids found in one core sample. An average thickness greater than 6'' would increase the amount of water needed to dissolve the Burkeite.

  14. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    PubMed

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and The Strategic Environmental Research and Development Program.]. PMID:24517797

  15. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: Design/operation/preliminary results

    NASA Astrophysics Data System (ADS)

    Kennedy, J. L.; Marston, T. M.; Lee, K.; Lopes, J. L.; Lim, R.

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and The Strategic Environmental Research and Development Program.

  16. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  17. Photochromism and Photomagnetism of a 3d-4f Hexacyanoferrate at Room Temperature.

    PubMed

    Cai, Li-Zhen; Chen, Qing-Song; Zhang, Cui-Juan; Li, Pei-Xin; Wang, Ming-Sheng; Guo, Guo-Cong

    2015-09-01

    Polycyanometallate compounds with both photochromism and photomagnetism have appealing applications in optical switches and memories, but such optical behaviors were essentially restricted to the cryogenic temperature. We realized, for the first time, the photochromism and photomagnetism of 3d-4f hexacyanoferrates at room temperature (RT) in [Eu(III)(18C6)(H2O)3]Fe(III)(CN)6·2H2O (18C6 = 18-crown-6). Photoinduced electron transfer (PET) from crown to Fe(III) yields long-lived charge-separated species at RT in air in the solid state and also weakens the magnetic susceptibility significantly. The PET mechanism and changing trend of photomagnetism differ significantly from those reported for known 3d-4f hexacyanoferrates. This work not only develops a new type of inorganic-organic hybrid photochromic material but opens a new avenue for RT photomagnetic polycyanometallate compounds. PMID:26284651

  18. Atomic Near-Degeneracy For Photoemission: Generality of 4f Excitations

    SciTech Connect

    Bagus, Paul S.; Broer, R.; Ilton, Eugene S.

    2008-09-01

    In a previous study of the 3s X-ray photoelectron spectra, XPS, of Mn, we identified a new intra-atomic many-body effect that lead to an ~50% increase in the predicted exchange splitting of the main high spin and low spin XPS peaks. The new many-body effect involved the promotion of one electron from the M shell, 3s, 3p, and 3d, into a 4f orbital and a redistribution of the remaining electrons over the M shell orbitals; of particular importance were frustrated Auger configurations. FAC’s where the 3s shell was filled. In the present work, we demonstrate the general importance of these 4f FAC’s by showing that they are of comparable importance for increasing the 3s exchange splitting in Ni as they were in Mn.

  19. Threshold kinetic processes for t-C4F9I. [for solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Wilson, J. W.; Humes, D. H.; Weaver, W. R.; Enderson, T.; Tabibi, B. M.

    1985-01-01

    To determine the relative threshold of the lasant gas t-C4F9I in comparison to n-C3F7I, the pump energy to reach threshold for photodissociation iodine lasing is measured in a common aparatus. The comparison is made for the threshold energies in the iodide pressure range up to 50 Torr when 64-J electric input into a flashlamp is used for pumping. It is shown from the results that qualitative differences between the thresholds of the two gases result from the degree to which steady state is achieved by the time threshold is reached. The estimated recombination rate for t-C4F9I is found to be much larger than the value given by Ershov et al (1978).

  20. Competition between 3d and 4f magnetism in Ce2Fe2S5

    NASA Astrophysics Data System (ADS)

    Schneidewind, A.; Mills, A. M.; Schnelle, W.; Stockert, O.; Ouladdiaf, B.; Ruck, M.

    2007-03-01

    Magnetic susceptibility measurements and neutron powder diffraction were performed on the rare-earth transition-metal sulfide Ce2Fe2S5 to study the effect of the substitution of nonmagnetic La(4f0) by Ce4f1). Ce2Fe2S5, which is isostructural to La2Fe2S5, contains Fe ions within chains of iron-sulfur octahedra and tetrahedra that are interconnected by Ce ions. Two antiferromagnetic phases, both with the propagation vector τ=({1}/{2} {1}/{2} 0), are observed: at 5 K⩽T⩽80 K ordering of the Fe moments is found; at T⩽5 K the Ce ions also participate in the magnetic ordering.

  1. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    PubMed

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. PMID:26371501

  2. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5 ) and in vitro canine livers (n=3 ) were tested, as well as HIFU lesions in in vitro canine livers (n=5 ). Results demonstrated that attenuations obtained from the phantoms showed a good correlation ({{R}2}=0.976 ) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm-1 MHz-1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm-1 MHz-1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  3. Contribution of Eu 4f states to the magnetic anisotropy of EuO

    SciTech Connect

    Arenholz, E.; Schmehl, A.; Schlom, D.G.; van der Laan, G.

    2008-09-11

    Anisotropic x-ray magnetic linear dichroism (AXMLD) provides a novel element-, site-, shell-, and symmetry-selective techniques to study the magnetic anisotropy induced by a crystalline electric field. The weak Eu2+ M4,5 AXMLD observed in EuO(001) indicates that the Eu 4f states are not rotationally invariant and hence contribute weakly to the magnetic anisotropy of EuO. The results are contrasted with those obtained for 3d transition metal oxides.

  4. Long-term tropospheric trend of octafluorocyclobutane (c-C4F8 or PFC-318)

    NASA Astrophysics Data System (ADS)

    Oram, D. E.; Mani, F. S.; Laube, J. C.; Newland, M. J.; Reeves, C. E.; Sturges, W. T.; Penkett, S. A.; Brenninkmeijer, C. A. M.; Rckmann, T.; Fraser, P. J.

    2012-01-01

    Air samples collected at Cape Grim, Tasmania between 1978 and 2008 and during a series of more recent aircraft sampling programmes have been analysed to determine the atmospheric abundance and trend of octafluorocyclobutane (c-C4F8 or PFC-318). c-C4F8 has an atmospheric lifetime in excess of 3000 yr and a global warming potential (GWP) of 10 300 (100 yr time horizon), making it one of the most potent greenhouse gases detected in the atmosphere to date. The abundance of c-C4F8 in the Southern Hemisphere has risen from 0.35 ppt in 1978 to 1.2 ppt in 2010, and is currently increasing at a rate of around 0.03 ppt yr-1. It is the third most abundant perfluorocarbon (PFC) in the present day atmosphere, behind CF4 (~75 ppt) and C2F6 (~4 ppt). Although a number of potential sources of c-C4F8 have been reported, including the electronics and semi-conductor industries, there remains a large discrepancy in the atmospheric budget. Using a 2-D global model to derive top-down global emissions based on the Cape Grim measurements yields a recent (2007) emission rate of around 1.1 Gg yr-1 and a cumulative emission up to and including 2007 of 38.1 Gg. Emissions reported on the EDGAR emissions database for the period 1986-2005 represent less than 1% of the top-down emissions for the same period, which suggests there is a large unaccounted for source of this compound. It is also apparent that the magnitude of this source has varied considerably over the past 30 yr, declining sharply in the late 1980s before increasing again in the mid-1990s.

  5. Long-term tropospheric trend of octafluorocyclobutane (c-C4F8 or PFC-318)

    NASA Astrophysics Data System (ADS)

    Oram, D. E.; Mani, F. S.; Laube, J. C.; Newland, M. J.; Reeves, C. E.; Sturges, W. T.; Penkett, S. A.; Brenninkmeijer, C. A. M.; Rckmann, T.; Fraser, P. J.

    2011-07-01

    Air samples collected at Cape Grim, Tasmania between 1978 and 2008 and during a series of more recent aircraft sampling programmes have been analysed to determine the atmospheric abundance and trend of octafluorocyclobutane (-C4F8 or PFC-318). c-C4F8 has an atmospheric lifetime in excess of 3000 yr and a global warming potential (GWP) of 10 300 (100 yr time horizon), making it one of the most potent greenhouse gases detected in the atmosphere to date. The abundance of c-C4F8 in the Southern Hemisphere has risen from 0.35 ppt in 1978 to 1.2 ppt in 2010, and is currently increasing at a rate of around 0.03 ppt yr-1. It is the third most abundant perfluorocarbon (PFC) in the present day atmosphere, behind CF4 (~75 ppt) and C2F6 (~4 ppt). The origin of c-C4F8 is unclear. Using a 2-D global model to derive top-down global emissions based on the Cape Grim measurements yields a recent (2007) emission rate of around 1.1 Gg yr-1 and a cumulative emission up to and including 2007 of 38.1 Gg. Emissions reported on the EDGAR emissions database for the period 1986-2005 represent less than 1 % of the top-down emissions for the same period, which suggests there is a large unaccounted for source of this compound. It is also apparent that the magnitude of this source has varied considerably over the past 30 yr, declining sharply in the late 1980s before increasing again in the mid-1990s.

  6. Extended analysis of the 5g. -->. 4f emissions in H/sub 2/

    SciTech Connect

    Chang, E.S.; Pulchtopek, S.; Eyler, E.E.

    1984-01-15

    An analysis starting from Hund's case d has been used to extend the work of Herzberg and Jungen on the 5g..-->..4f emissions in H/sub 2/. A simple analytical expression for the line intensities is presented that agrees with their calculations is about 1%. All of the experimentally observed lines have been accounted for by including higher vibrational levels in our calculations.

  7. Superhydrophobic treatment using atmospheric-pressure He/C4F8 plasma for buoyancy improvement

    NASA Astrophysics Data System (ADS)

    Noh, Sooryun; Moon, A.-Young; Moon, Se Youn

    2015-04-01

    A superhydrophobic miniature boat was fabricated with aluminum alloy plates treated with atmospheric-pressure helium (He)/octafluorocyclobutane (C4F8) plasma using 13.56 MHz rf power. When only 0.13% C4F8 was added to He gas, the contact angle of the surface increased to 140° and the surface showed superhydrophobic properties. On the basis of chemical and morphological analyses, fluorinated functional groups (CF, CF2, and CF3) and nano-/micro-sized particles were detected on the Al surface. These features brought about superhydrophobicity similar to the lotus effect. While the miniature boat, assembled with plasma-treated plates, was immersed in water, a layer of air (i.e., a plastron) surrounded the superhydrophobic surfaces. This effect contributed to the development of a 4.7% increase in buoyancy. In addition, the superhydrophobic properties lasted for two months under the submerged condition. These results demonstrate that treatment with atmospheric-pressure He/C4F8 plasma is a promising method of improving the load capacity and antifouling properties, and reducing the friction of marine ships through a fast and low-cost superhydrophobic treatment process.

  8. The 4f multipole ordering effect on core-level spectroscopies of Ce intermetallics

    NASA Astrophysics Data System (ADS)

    Sasabe, Norimasa; Tonai, Hironori; Uozumi, Takayuki

    The 3 d transition metal compounds and 4 f rare earth compounds show attractive phenomena, such as superconductivity and Kondo effect, due to strong electron correlations among localized 3 d and 4 f electrons. Especially, multipole ordering of orbital and/or spin in 4 f and 5 fcompounds are attracting much attention these years. For example, CeB6 is known to show antiferro-quadrupolar (AFQ) ordering below 3.2K. X-ray core-level spectroscopy is an efficient technique to investigate the electronic states of strongly correlated systems. Recent years, experimental techniques have been rapidly developing and, especially, the progress in experimental resolution has enabled us to observe fine spectral features, which were not formerly observed. These advantages will enable us to observe spectral fine features related with the multipole ordering. In this study, we discuss multipole ordering effects on X-ray spectra for CeB6, especially paying attention on the polarization dependence. In order to simulate the electronic state of CeB6 with the multipole ordering, we use an impurity Anderson model including realistic valence structure and a simplified RKKY interaction.

  9. Utilizing 3d-4f magnetic interaction to slow the magnetic relaxation of heterometallic complexes.

    PubMed

    Li, Xiao-Lei; Min, Fan-Yong; Wang, Chao; Lin, Shuang-Yan; Liu, Zhiliang; Tang, Jinkui

    2015-05-01

    The synthesis, structural characterization, and magnetic properties of four related heterometallic complexes with formulas [Dy(III)2Co(II)(C7H5O2)8]·6H2O (1), [Dy(III)2Ni(II)(C7H5O2)8]·(C7H6O2)2 (2), Tb(III)2Co(II)(C7H5O2)8 (3), and Dy(III)2Cd(II)(C7H5O2)8 (4) were reported. Each of complexes has a perfectly linear arrangement of the metal ions with two terminal Ln(III) (Ln(III) = Dy(III), Tb(III)) ions and one central M(II) (M(II) = Co(II), Ni(II), Cd(II)) ion. It was found that 1-3 displayed obvious magnetic interactions between the spin carriers according to the direct current (dc) susceptibility measurements. Alternating current (ac) magnetic susceptibility measurements indicate that complexes 1-4 all exhibit single-molecule magnet (SMM) behavior, while the replacement of the diamagnetic Cd(II) by paramagnetic ions leads to a significant slowing of the relaxation thanks to the magnetic interactions between 3d and 4f ions, resulting in higher relaxation barrier for complexes 1 and 2. Moreover, both Dy2Co and Dy2Ni compounds exhibit dual relaxation pathways that may originate from the single ion behavior of individual Dy(III) ions and the coupling between Dy(III) and Co(II)/Ni(II) ions, respectively, which can be taken as the feature of 3d-4f SMMs. The Ueff for 1 of 127 K is a relatively high value among the reported 3d-4f SMMs. The results demonstrate that the magnetic coupling between 3d and 4f ions is crucial to optimize SMM parameters. The synthetic approach illustrated in this work represents an efficient route to design nd-4f based SMMs via incorporating suitable paramagnetic 3d and even 4d and 5d ions into the d-f system. PMID:25906391

  10. Molecular modeling and identification of substrate binding site of orphan human cytochrome P450 4F22.

    PubMed

    Kumar, Suresh

    2011-01-01

    Cytochrome P450s are superfamily of heme proteins which generally monooxygenate hydrophobic compounds. The human cytochrome P450 4F22 (CYP4F22) was categorized into "orphan" CYPs because of its unknown function. CYP4F22 is a potential drug target for cancer therapy. However, three-dimensional structure, the active site topology and substrate specificity of CYP4F22 remain unclear. In this study, a three-dimensional model of human P450 4F22 was constructed by comparative modeling using Modeller 9v5. The resulting model was refined by energy minimization subjected to the quality assessment from both geometric and energetic aspects and was found to be of reasonable quality. Docking approach was employed to dock arachidonic acid into the active site of CYP4F22 in order to probe the ligand-binding modes. As a result, several key residues were identified to be responsible for the binding of arachidonic acid with CYP4F22. These findings provide useful information for understanding the biological roles of CYP4F22 and structure-based drug design. PMID:22102778

  11. Acoustic-emission linear-pulse holography

    SciTech Connect

    Collins, H.D.; Lemon, D.K.; Busse, L.J.

    1982-06-01

    This paper describes Acoustic Emission Linear Pulse Holography which combines the advantages of linear imaging and acoustic emission into a single NDE inspection system. This unique system produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. Conventional linear holographic imaging uses an ultrasonic transducer to transmit energy into the volume being imaged. When the crack or defect reflects that energy, the crack acts as a new source of acoustic waves. To formulate an image of that source, a receiving transducer is scanned over the volume of interest and the phase of the received signals is measured at successive points on the scan. The innovation proposed here is the utilization of the crack generated acoustic emission as the acoustic source and generation of a line image of the crack as it grows. A thirty-two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The phases are calculated using the pulse time-of-flight (TOF) times from the reference transducer to the array of receivers. Computer reconstruction of the image is accomplished using a one-dimensional FFT algorithm (i.e., backward wave). Experimental results are shown which graphically illustrate the unique acoustic emission images of a single point and a linear crack in a 100 mm x 1220 mm x 1220 mm aluminum plate.

  12. Revealing, identifying, and assessing flaws in operating equipment by the acoustic emission image recognition method under strong background noise condition

    NASA Astrophysics Data System (ADS)

    Muravin, Gregory; Muravin, Boris; Lezvisky, Ludmila

    2004-05-01

    The analysis has shown that high pressure and high temperature piping in fossil and nuclear power plants suffer from unexpected and rarely predictable failures. To guarantee operational safety and to prevent failures authors have performed the complex investigations and have created Quantitative Acoustic Emission NDI technology for revealing, identifying and assessing flaws in equipment operated under strong background noise condition. These enabled: Overall inspection of the piping operated under stress, temperature, pressure, steam flow and loading, variation. Locating suspected zones and zones of flaw development with low J-integral value and the great variation of the dynamic range of flaws danger level. Identification of flaw types and their danger level. Detection of defective components in service prior to shut down. The continuous and the burst Acoustic Emission (AE) were used in combination as an information tool. As result, the significant number of flaws such as creep at stage 3a-3b, closed-edge micro-cracks, systems of randomly dispersed pores and inclusions, plastic deformation development around them, or/and individual micro-cracking were revealed, identified and assessed in 50 operating high energy piping. The findings and assessing flaw danger level obtained by QAE NDI were confirmed by independent NDI methods as TOFD, X-ray, replication, metallurgical investigations, etc. The findings and assessing flaw danger level obtained by QAE NDI were confirmed by independent NDI methods such as TOFD, X-ray, replication, metallurgical investigations, etc

  13. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  14. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  15. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    DOEpatents

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  16. Assessment of the Stiffness of Major Salivary Glands in Primary Sjögren's Syndrome through Quantitative Acoustic Radiation Force Impulse Imaging.

    PubMed

    Zhang, Shanshan; Zhu, Jiaan; Zhang, Xia; He, Jing; Li, Jianguo

    2016-03-01

    The purpose of the study described here was to evaluate salivary gland stiffness in primary Sjögren's syndrome (pSS) via acoustic radiation force impulse imaging, including Virtual Touch tissue quantification (VTQ) and Virtual Touch tissue imaging quantification (VTIQ). Twenty-one patients with pSS and 11 healthy patients were included, and the paired parotid and submandibular glands of all of the patients were examined using VTQ and VTIQ. Differences between the two groups were compared with independent and paired t-tests. The VTQ value for the parotid in the pSS group was significantly higher than that obtained for the control group (1.33 ± 0.22 and 1.18 ± 0.04 m/s, respectively, p < 0.01). The VTIQ values for the parotid and submandibular gland were both significantly higher in the pSS group than in the control group (p < 0.05). In the pSS group, a positive correlation was observed between the VTQ and VTIQ results for the parotid and submandibular glands. In summary, the stiffness of the major salivary glands in patients with pSS was increased compared with that of patients with normal glands. This finding indicates that VTQ and VTIQ imaging may be valuable adjuncts to gray-scale ultrasonography for the clinical diagnosis of pSS. PMID:26715188

  17. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  18. Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA

    NASA Astrophysics Data System (ADS)

    Kasaya, Takafumi; Kanamatsu, Toshiya; Sawa, Takao; Kinosita, Masataka; Tukioka, Satoshi; Yamamoto, Fujio

    2011-02-01

    Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.

  19. Transitions between the 4 f -core-excited states in Ir16 +,Ir17 +, and Ir18 + ions for clock applications

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Flambaum, V. V.; Safronova, M. S.

    2015-08-01

    Iridium ions near 4 f -5 s level crossings are the leading candidates for a new type of atomic clocks with a high projected accuracy and a very high sensitivity to the temporal variation of the fine structure constant α . To identify spectra of these ions in experiment accurate calculations of the spectra and electromagnetic transition probabilities should be performed. Properties of the 4 f -core-excited states in Ir16 +,Ir17 +, and Ir18 + ions are evaluated using relativistic many-body perturbation theory and Hartree-Fock-relativistic method (COWAN code). We evaluate excitation energies, wavelengths, oscillator strengths, and transition rates. Our large-scale calculations included the following set of configurations: 4 f145 s ,4 f145 p ,4 f135 s2,4 f135 p2,4 f135 s 5 p ,4 f125 s25 p , and 4 f125 s 5 p2 in Pm-like Ir16 +; 4 f14,4 f135 s ,4 f135 p ,4 f125 s2,4 f125 s 5 p , and 4 f125 p2 in Nd-like Ir17 +; and 4 f13,4 f125 s ,4 f125 p ,4 f115 s2 , and 4 f115 s 5 p in Pr-like Ir18 +. The 5 s -5 p transitions are illustrated by the synthetic spectra in the 180-200 Å range. Large contributions of magnetic-dipole transitions to lifetimes of low-lying states in the region below 2.5 Ry are demonstrated.

  20. Flow Sorting and Sequencing Meadow Fescue Chromosome 4F1[C][W

    PubMed Central

    Kopecký, David; Martis, Mihaela; Číhalíková, Jarmila; Hřibová, Eva; Vrána, Jan; Bartoš, Jan; Kopecká, Jitka; Cattonaro, Federica; Stočes, Štěpán; Novák, Petr; Neumann, Pavel; Macas, Jiří; Šimková, Hana; Studer, Bruno; Asp, Torben; Baird, James H.; Navrátil, Petr; Karafiátová, Miroslava; Kubaláková, Marie; Šafář, Jan; Mayer, Klaus; Doležel, Jaroslav

    2013-01-01

    The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before. PMID:24096412

  1. Identifying Clinically Significant Prostate Cancers using 3-D In Vivo Acoustic Radiation Force Impulse Imaging with Whole-Mount Histology Validation.

    PubMed

    Palmeri, Mark L; Glass, Tyler J; Miller, Zachary A; Rosenzweig, Stephen J; Buck, Andrew; Polascik, Thomas J; Gupta, Rajan T; Brown, Alison F; Madden, John; Nightingale, Kathryn R

    2016-06-01

    Overly aggressive prostate cancer (PCa) treatment adversely affects patients and places an unnecessary burden on our health care system. The inability to identify and grade clinically significant PCa lesions is a factor contributing to excessively aggressive PCa treatment, such as radical prostatectomy, instead of more focal, prostate-sparing procedures such as cryotherapy and high-dose radiation therapy. We have performed 3-D in vivo B-mode and acoustic radiation force impulse (ARFI) imaging using a mechanically rotated, side-fire endorectal imaging array to identify regions suspicious for PCa in 29 patients being treated with radical prostatectomies for biopsy-confirmed PCa. Whole-mount histopathology analyses were performed to identify regions of clinically significant/insignificant PCa lesions, atrophy and benign prostatic hyperplasia. Regions of suspicion for PCa were reader-identified in ARFI images based on boundary delineation, contrast, texture and location. These regions of suspicion were compared with histopathology identified lesions using a nearest-neighbor regional localization approach. Of all clinically significant lesions identified on histopathology, 71.4% were also identified using ARFI imaging, including 79.3% of posterior and 33.3% of anterior lesions. Among the ARFI-identified lesions, 79.3% corresponded to clinically significant PCa lesions, with these lesions having higher indices of suspicion than clinically insignificant PCa. ARFI imaging had greater sensitivity for posterior versus anterior lesions because of greater displacement signal-to-noise ratio and finer spatial sampling. Atrophy and benign prostatic hyperplasia can cause appreciable prostate anatomy distortion and heterogeneity that confounds ARFI PCa lesion identification; however, in general, ARFI regions of suspicion did not coincide with these benign pathologies. PMID:26947445

  2. XeCl laser pumped iodine laser using t-C4F9I

    NASA Technical Reports Server (NTRS)

    Hwang, In Heon; Han, Kwang S.; Lee, Ja H.

    1989-01-01

    An iodine photodissociation laser using t-C4F9I as the active material was pumped by a XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodine pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.

  3. XeCl laser pumped iodine laser using t-C4F9I

    NASA Technical Reports Server (NTRS)

    Hwang, In Heon; Han, Kwang S.

    1989-01-01

    An iodine photodissociation laser using t-C4F9I as the active material was pumped by an XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodide pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.

  4. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of E F show some deviations due to electron correlation effects. Furthermore, the electronic structures of \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} in the paramagnetic and hidden-order phases are summarized based on various ARPES studies. The present status of the field as well as possible future directions are also discussed.

  5. Evidence for the photoemission nature of Gd 4f resonant photoemission

    SciTech Connect

    Mishra, S.R.; Gammon, W.J.; Cummins, T.R.; Waddill, G.D.; Laan, G. van der; Goodman, K.W.; Tobin, J.G.

    1998-12-31

    The constructive interference between direct and indirect channels above the absorption threshold of a core level leads to a massive increase in the emission cross section leading to a phenomenon called resonant photoemission. Using novel magnetic linear dichroism in angular distribution photoelectron spectroscopy experiment, the authors have tried to understand the nature of the resonant photoemission process in Gd metal. The presence of dichroism in Gd 4f photoemission intensity at a photo energy corresponding to resonant photoemission clearly demonstrates the photoemission-like nature of the resonant photoemission process.

  6. 4-[F-18]fluoroproline: A potential tracer for collagen synthesis. Radiosynthesis and biological evaluation

    SciTech Connect

    Hamacher, K.; Herz, M.; Truckenbrodt, R.

    1996-05-01

    Proline is an important constituent of the structural protein collagen. It has been shown that its fluorinated analogs (2S,4S)- and particularly (2S,4R)-4-fluoroproline are also incorporated into collagen (Gottlieb et al., Biochemistry (1965), 4: 2507). 4-[F-18]fluoroproline is therefore a potential probe for studying abnormal collagen synthesis e. g. in tumors, lung fibrosis and liver cirrhosis. We have evaluated the two diastereomeric forms using a transplantable osteosarcoma in mice as an in vivo model for elevated collagen synthesis, and a MCF 7 mamma carcinoma cell line for monolayer incubation studies.

  7. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    PubMed

    Fujimori, Shin-Ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers ([Formula: see text]) or high-energy synchrotron radiations ([Formula: see text]) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of [Formula: see text] ([Formula: see text], [Formula: see text], and [Formula: see text]) and [Formula: see text] with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant [Formula: see text] compounds such as [Formula: see text], their electronic structures can be well-described by the band-structure calculation assuming that all [Formula: see text] electrons are itinerant. In contrast, the band structures of localized [Formula: see text] compounds such as [Formula: see text] and [Formula: see text] are essentially explained by the localized model that treats [Formula: see text] electrons as localized core states. In regards to heavy fermion [Formula: see text]-based compounds such as the hidden-order compound [Formula: see text], their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of E F show some deviations due to electron correlation effects. Furthermore, the electronic structures of [Formula: see text] in the paramagnetic and hidden-order phases are summarized based on various ARPES studies. The present status of the field as well as possible future directions are also discussed. PMID:26974712

  8. Acoustic televiewer log images of natural fractures and bedding planes in the Toa Baja Borehole, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Paillet, Frederick L.; Goldberg, David

    Although borehole conditions made acoustic televiewer logging difficult in the Toa Baja borehole, more than 180 meters of continuous, acceptable quality televiewer logs were obtained in the intervals from 730 to 880 meters and from 2,515 to 2,675 meters in depth, indicating the presence of fractures that appear to be open in situ. Most of the largest, possibly open fractures in these intervals are either nearly parallel to directions given by the dipmeter log and may represent solution openings or minor washouts along bedding planes, or dip steeply to the south or southwest across bedding. The televiewer log confirms the presence of an apparently open set of fractures near 867 meters in depth, where circulation was lost during drilling, and in the interval from 2,600 to 2,650 meters in depth, where the temperature log indicates anomalous heat flow in the surrounding formation.

  9. Acoustic televiewer log images of natural fractures and bedding planes in the Toa Baja borehole, Puerto Rico

    SciTech Connect

    Paillet, F.L.; Goldberg, D. )

    1991-03-01

    Although borehole conditions made acoustic televiewer logging difficult in the Toa Baja borehole, more than 180 meters of continuous, acceptable quality televiewer logs were obtained in the intervals from 730 to 880 meters and from 2,515 to 2,675 meters in depth, indicating the presence of fractures in these intervals are either nearly parallel to directions given by the dipmeter log and may represent solution openings or minor washouts along bedding planes, or dip steeply to the south or southwest across bedding. The televiewer log confirms the presence of an apparently open set of fractures near 867 meters in depth, where circulation was lost during drilling, and in the interval from 2,600 to 2,650 meters in depth, where the temperature log indicates anomalous heat flow in the surrounding formation.

  10. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  11. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. D.; Busse, L. J.; Lemon, D. K.

    1985-07-30

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  12. 4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice

    PubMed Central

    Wool, Geoffrey D.; Cabana, Veneracion G.; Lukens, John; Shaw, Peter X.; Binder, Christoph J.; Witztum, Joseph L.; Reardon, Catherine A.; Getz, Godfrey S.

    2011-01-01

    Our objective was to contrast the effect of apolipoprotein (apo) A-I mimetic peptides, such as 4F and 4F-Pro-4F (Pro), on nascent and mature atherosclerotic lesions and on levels of antibodies against oxidation-specific epitopes. Chow-fed apoE?/? mice were injected intraperitoneally with either the 4F peptide or a tandem helix apoA-I mimetic peptide (Pro) every other day. Mice treated with 4F, but not Pro, for 4 wk starting at 10 wk of age showed a dramatic decrease in atherosclerosis at 2 arterial sites. However, neither peptide was effective in mice treated for 8 wk starting at 20 wk of age; lesions were larger and more mature at this time point. Peptide treatment caused increased production of antibodies against oxidation-specific epitopes, including a disproportionate induction of the IgM natural antibody (NAb) E06/T15 to oxidized phospholipids. In summary, 4F, but not the tandem peptide Pro, effectively inhibited early atherogenesis but was ineffective against more mature lesions. Two different apoA-I mimetic peptides increased titers of natural antibodies against oxidation-specific epitopes.Wool, G. D., Cabana, V. G., Lukens, J., Shaw, P. X., Binder, C. J., Witztum, J. L., Reardon, C. A., Getz, G. S. 4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice. PMID:20876212

  13. [Randomized comparison of 4F and 6F catheters for diagnostic coronary angiographies via the femoral approach].

    PubMed

    Ballout, J; André, F; Cottin, Y; Laurent, G; Eicher, J C; Bulté, C; Zeller, M; Jirina, K; Louis, P; Wolf, J E

    2000-01-01

    The use of 6F catheters has been validated for coronary angiography. The use of small-caliber catheters is a more recent development. The aim of this study was to assess the feasibility, the cost and complications of coronary angiography using the femoral approach with 4F catheters. The authors undertook a randomized prospective study of 4F Care Infiniti catheters (N = 100) and 6F Spertorque Plus catheters (N = 100) in hospitalised patients. Criteria of non-inclusion were valvular pathology, acute myocardial infarction, aorto-coronary bypass or aorto-femoral bypass procedures. No statistical difference was observed between the two groups with respect to feasibility, to duration of the procedure, or of irradiation or to cost. The quality of the angiograms was good except in one patient in the 4F group; 4 patients in the 6F group required a 4F catheter to complete their examination. Left ventricular catheterisation was more difficult with 4F catheters (p = 0.016). Use of 4F catheters was associated with injection of significantly less contrast (p = 0.00007), reduced the duration of compression (p < 10(-6)) and its complications (p = 0.004). The authors conclude that 4F catheters are safe and well tolerated. They are associated with less patient morbidity, without any loss in quality of the angiogrammes. Other studies in valvular heart disease and after coronary bypass surgery should lead to the generalisation of their use in all coronary patients. PMID:11227716

  14. Azide interaction with 4f and 5f ions in aqueous solutions. I. Trivalent ions

    SciTech Connect

    Musikas, C.; Cuillerdier, C.; Livet, J.; Forchioni, A.; Chachaty, C.

    1983-08-31

    Solvent extraction and UV, Raman, and NMR spectroscopic studies were carried out on trivalent actinide and lanthanide aqueous azido complexes. Unlike trivalent d transition ions (..beta../sub 11/ approx. = 10/sup 5/) 5f and 4f aqueous azido complexes are weak (..beta../sub 11/ approx. = 2.5 for neodymium azide complexes (Nd(N/sub 3/)/sup 2 +/)), but the trivalent actinides exhibit formation constants 1 order of magnitude higher than the lanthanides. All the spectroscopic methods indicate that we are dealing with inner-sphere complexes and actinide-lanthanide differences must be attributed to higher covalent contributions in the 5f azides. /sup 15/N NMR combined with /sup 1/H NMR served to investigate the azide binding properties. With the trivalent 5f and 4f ions the binding occurs by one of the terminal nitrogen atoms. The M-N bond distance is close to 2.75 A. The lanthanide(III)-(linear azide) moieties are bent with a bond angle close to 135/sup 0/, unlike the homologous linear thiocyanate complexes. 7 figures, 4 tables.

  15. Investigations on Pva:. NH4F: ZrO2 Composite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Radha, K. P.; Selvasekarapandian, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    Composite polymer electrolytes have been prepared using Poly (vinyl alcohol), ammonium fluoride, nanofiller ZrO2 by solution casting technique. The amorphous nature of the composite polymer electrolyte has been confirmed by XRD analysis. FTIR analysis confirms the complex formation among the polymer, salt and nanofiller. The maximum ionic conductivity for 85 PVA:15 NH4F has been found to be 6.9 × 10-6 Scm-1 at ambient temperature. In the present work, the addition of 2 mol% nanofilller ZrO2 to the electrolyte 85PVA:15NH4F enhances the conductivity to 3.4 × 10-5 Scm-1. The temperature dependence of the conductivity of composite polymer electrolytes obeys Arrhenius relation. In the modulus spectra, there is a long tail at low frequencies which is an evidence for large capacitance associated with the electrodes. In the high frequency region, ∈'(ω) value saturates and giving rise to the dielectric constant of the material.

  16. Sequential Synthesis of 3d-3d'-4f Heterometallic Heptanuclear Clusters in between Lacunary Polyoxometalates.

    PubMed

    Sato, Rinta; Suzuki, Kosuke; Minato, Takuo; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-03-01

    In this work, we have successfully created several unprecedented discrete 3d-3d'-4f heterotrimetallic clusters in between lacunary polyoxometalates (POMs). By the three-step sequential introduction of metal cations into a trivacant lacunary POM TBA4H6[A-α-SiW9O34] (TBA = tetra-n-butylammonium) in organic media, five kinds of sandwich-type POMs with double-diamond-shaped 3d-3d'-4f heptanuclear clusters (IIIFeM4Ln2, TBAnHm[FeM4{Ln(L)2}2O2(A-α-SiW9O34)2], M = Mn(3+), Cu(2+); Ln = Gd(3+), Dy(3+), Lu(3+); L = acac (acetylacetonate), hfac (hexafluoroacetylacetonate)) were successfully synthesized for the first time. By introduction of two [Ln(L)2](+) units on the ends of pentanuclear clusters [FeMn4O18(OH)2](23-) and [FeCu4O18(OH)2](27-), the magnetic interactions between Mn(3+)-Mn(3+) and Cu(2+)-Cu(2+) could be modulated. Among a series of the heterometallic heptanuclear compounds, IIIFeMn4Lu2 exhibited the slow magnetic relaxation characteristic for a single-molecule magnet under the zero applied magnetic fields. PMID:26914662

  17. Lattice dynamics and elastic properties of the 4f electron system: CeN

    NASA Astrophysics Data System (ADS)

    Kanchana, V.; Vaitheeswaran, G.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Eriksson, O.

    2011-11-01

    The electronic structure, structural stability, and lattice dynamics of cerium mononitride are investigated using ab initio density-functional methods involving an effective potential derived from the generalized gradient approximation and without special treatment for the 4f states. The 4f states are hence allowed to hop from site to site, without an on-site Hubbard U, and contribute to the bonding, in a picture often referred to as itinerant. It is argued that this picture is appropriate for CeN at low temperatures, while the anomalous thermal expansion observed at elevated temperatures indicates entropy-driven localization of the Ce f electrons, similar to the behavior of elemental cerium. The elastic constants are predicted from the total energy variation of strained crystals and are found to be large, typical for nitrides. The phonon dispersions are calculated showing no soft modes, and the Grüneisen parameter behaves smoothly. The electronic structure is also calculated using the quasiparticle self-consistent GW approximation (where G denotes the Green's function and W denotes the screened interaction). The Fermi surface of CeN is dominated by large egg-shaped electron sheets centered on the X points, which stem from the p-f mixing around the X point. In contrast, assuming localized f electrons leads to a semimetallic picture with small band overlaps around X.

  18. Experimental and theoretical investigations of four 3d-4f butterfly single-molecule magnets.

    PubMed

    Zou, Hua-Hong; Sheng, Liang-Bing; Liang, Fu-Pei; Chen, Zi-Lu; Zhang, Yi-Quan

    2015-11-14

    The syntheses, structures, and characterization of four 3d-4f butterfly clusters are described. With different polyhydroxy Schiff-base ligands 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L1) and 2-(2,3-dihydroxpropyliminomethyl)-6-methoxyphenol (H3L2), three heterotetranuclear NiLn complexes (NiDy-L1 (1), NiTb-L2 (2), NiDy-L2 (3)) and one heterohexanuclear CoDy complex (4) were obtained. The three heterotetranuclear NiLn complexes display a central planar butterfly topology. The heterohexanuclear complex was built from butterfly CoDy clusters and two Dy(III) ions by the bridging of pivalate. The vertices of the body positions of the butterfly are occupied by transition metal ions in all four complexes. Magnetic analyses indicate that the complexes exhibit typical single-molecule magnet behaviour with anisotropy barriers of 33.7 cm(-1), 60.3 cm(-1), 39.6 cm(-1), and 18.4 cm(-1) for 1-4, respectively. Ab initio calculations were performed on these complexes, and the low lying electronic structure of each Ln(III) (Ln = Dy, Tb) ion and the magnetic interactions were determined. It was found that the two Ln ions may have much more contribution to the total relaxation barrier through the stronger 3d-4f exchange couplings compared to weak Ln-Ln interactions. PMID:26443303

  19. A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging.

    PubMed

    Ma, Jianguo; Martin, K; Dayton, Paul A; Jiang, Xiaoning

    2014-05-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, -6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  20. A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning

    2014-01-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  1. Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept

    NASA Astrophysics Data System (ADS)

    Van Damme, Bart; Van Den Abeele, Koen; Li, YiFeng; Matar, Olivier Bou

    2011-05-01

    In view of emerging imaging technologies based on the combination of Time Reversed Acoustics (TRA) with Nonlinear Elastic Wave Spectroscopy (NEWS) for the detection and localization of micro-damage in solids, we have investigated the benefits of chirped source signal excitation, inverse filtering techniques, and the implementation of chaotic cavity transducers to improve the quality of energy focusing, especially for weakly reverberant media. Chaotic cavity transducer focusing is defined as the hardware-software combination of a piezoelectric ceramic glued on a cavity of chaotic shape on the one hand with the reciprocal Time Reversal (or Inverse Filter) technique on the other hand. Experimental data for reverberant and nonreverberant composite plates show that the use of chirps, inverse filtering and chaotic cavity transducers significantly enhances the focusing process, and enables focusing in a nonreverberant medium using only one transducer. As a potential exploitation, the application of the chaotic cavity transducer concept for synthetic imaging is examined, revealing several properties similar to phased arrays.

  2. Small-Scale Trial for Evaluating Directional Resolution of Single Spherical Biconcave Acoustic Lens in Designing of Ambient Noise Imaging System

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki

    2008-05-01

    Ambient noise imaging (ANI) is the revolutionary idea of detecting objects by using natural ocean background noise. From the analysis results obtained by the finite difference time domain (FDTD) method in our previous studies, it was supposed that a spherical biconcave lens with an aperture diameter of 2.0 m has a sufficient directional resolution (for example, the beam width is 1 at 60 kHz) for realizing an ANI system. In this study, to confirm the analysis results, we performed a small-scale trial of one-fifth space in a water tank. The lens, made of acrylic resin, has an aperture diameter of 400 mm and a radius of curvature of 500 mm. A burst pulse of 25 cycles at 300 kHz, whose frequency increases 5 times, was radiated from the sound source. The sound pressure after passage through the acoustic lens was measured by moving the receiver around the image point. Results show that the shapes of -3 dB areas are similar to the FDTD analysis results at small incidence angles. It was verified that this lens has a sufficient directional resolution for use in the ANI system, because -3 dB areas do not overlap each other.

  3. XPS spectra of uranyl minerals and synthetic uranyl compounds. I: The U 4f spectrum

    NASA Astrophysics Data System (ADS)

    Schindler, M.; Hawthorne, F. C.; Freund, M. S.; Burns, P. C.

    2009-05-01

    The occurrence and binding energies of the U 6+, U 5+ and U 4+ bands in the U 4f 7/2 peak of 19 uranyl minerals of different composition and structure were measured by XPS. The results suggest that these minerals can be divided into the following four groups: (1) Uranyl-hydroxy-hydrate compounds with no or monovalent interstitial cations; (2) Uranyl-hydroxy-hydrate minerals with divalent interstitial cations; (3) Uranyl-oxysalt minerals with ( TO n) groups ( T = Si, P, and C) in which all equatorial O-atoms of the uranyl-polyhedra are shared with ( TO n) groups; (4) Uranyl-oxysalt minerals with ( TO n) groups ( T = S and Se), in which some equatorial O-atoms are shared only between uranyl polyhedra. The average binding energies of the U 6+and U 4+ bands shift to lower values with (1) incorporation of divalent cations and (2) increase in the Lewis basicity of the anion group bonded to U. The first observation is a consequence of an increase in the bond-valence transfer from the interstitial species (cations, H 2O) groups to the O-atoms of the uranyl-groups, which results in an electron transfer from O to U 6+. The second trend correlates with an increase in the covalency of the U sbnd O bonds with increase in Lewis basicity of the anion group, which results in a shift of the electron density from O to U. The presence of U 4+ on the surface of uranyl minerals can be detected by the shape of the U 4f 7/2 peak, and the occurrence of the U 5f peak and satellite peaks belonging to the U 4f 5/2 peak. The presence of U 4+ in some of the uranyl minerals and synthetics examined may be related to the conditions during their formation. A charge-balance mechanism is proposed for the incorporation of lower-valence U in the structure of uranyl minerals. Exposure of a Na-substituted metaschoepite crystal in air and to Ultra-High Vacuum results in dehydration of its surface structure associated with a shift of the U 6+ bands to higher binding energies. The latter observation indicates a shift in electron density from U to O, which must be related to structural changes inside the upper surface layers of Na-substituted metaschoepite.

  4. Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice.

    PubMed

    Weihrauch, Dorothee; Xu, Hao; Shi, Yang; Wang, Jingli; Brien, Jennifer; Jones, Deron W; Kaul, Sushma; Komorowski, Richard A; Csuka, Mary Ellen; Oldham, Keith T; Pritchard, Kirkwood A

    2007-09-01

    Systemic sclerosis (scleroderma, SSc) is an autoimmune, connective tissue disorder that is characterized by impaired vascular function, increased oxidative stress, inflammation of internal organs, and impaired angiogenesis. Tight skin mice (Tsk(-/+)) have a defect in fibrillin-1, resulting in replication of many of the myocardial and vascular features seen in humans with SSc. D-4F is an apolipoprotein A-I (apoA-I) mimetic that improves vascular function in diverse diseases such as hypercholesterolemia, influenza, and sickle cell disease. Tsk(-/+) mice were treated with either phosphate-buffered saline (PBS) or D-4F (1 mg.kg(-1).day(-1) for 6-8 wk). Acetylcholine and flow-induced vasodilation were examined in facialis arteries. Proinflammatory HDL (p-HDL) in murine and human plasma samples was determined by the cell-free assay. Angiostatin levels in murine and human plasma samples were determined by Western blot analysis. Hearts were examined for changes in angiostatin and autoantibodies against oxidized phosphotidylcholine (ox-PC). Angiogenic potential in thin sections of murine hearts was assessed by an in vitro vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) tube formation assay. D-4F improved endothelium-, endothelial nitric oxide synthase-dependent, and flow-mediated vasodilation in Tsk(-/+) mice. Tsk(-/+) mice had higher plasma p-HDL and angiostatin levels than C57BL/6 mice, as did SSc patients compared with healthy control subjects. Tsk(-/+) mice also had higher triglycerides than C57BL/6 mice. D-4F reduced p-HDL, angiostatin, and triglycerides in the plasma of Tsk(-/+) mice. Tsk(-/+) hearts contained notably higher levels of angiostatin and autoantibodies against ox-PC than those of control hearts. D-4F ablated angiostatin in Tsk(-/+) hearts and reduced autoantibodies against ox-PC by >50% when compared with hearts from untreated Tsk(-/+) mice. Angiogenic potential in Tsk(-/+) hearts was increased only when the Tsk(-/+) mice were treated with D-4F (1 mg.kg(-1).day(-1), 6-8 wk), and cultured sections of hearts from the D-4F-treated Tsk(-/+) mice were incubated with D-4F (10 microg/ml, 5-7 days). Failure to treat the thin sections of hearts and Tsk(-/+) mice with D-4F resulted in loss of VEGF-induced EC tube formation. D-4F improves vascular function, decreases myocardial inflammation, and restores angiogenic potential in the hearts of Tsk(-/+) mice. As SSc patients have increased plasma p-HDL and angiostatin levels similar to the Tsk(-/+) mice, D-4F may be effective at treating vascular complications in patients with SSc. PMID:17496220

  5. 3d-4f magnetic interaction with density functional theory plus u approach: local Coulomb correlation and exchange pathways.

    PubMed

    Zhang, Yachao; Yang, Yang; Jiang, Hong

    2013-12-12

    The 3d-4f exchange interaction plays an important role in many lanthanide based molecular magnetic materials such as single-molecule magnets and magnetic refrigerants. In this work, we study the 3d-4f magnetic exchange interactions in a series of Cu(II)-Gd(III) (3d(9)-4f(7)) dinuclear complexes based on the numerical atomic basis-norm-conserving pseudopotential method and density functional theory plus the Hubbard U correction approach (DFT+U). We obtain improved description of the 4f electrons by including the semicore 5s5p states in the valence part of the Gd-pseudopotential. The Hubbard U correction is employed to treat the strongly correlated Cu-3d and Gd-4f electrons, which significantly improve the agreement of the predicted exchange constants, J, with experiment, indicating the importance of accurate description of the local Coulomb correlation. The high efficiency of the DFT+U approach enables us to perform calculations with molecular crystals, which in general improve the agreement between theory and experiment, achieving a mean absolute error smaller than 2 cm(-1). In addition, through analyzing the physical effects of U, we identify two magnetic exchange pathways. One is ferromagnetic and involves an interaction between the Cu-3d, O-2p (bridge ligand), and the majority-spin Gd-5d orbitals. The other one is antiferromagnetic and involves Cu-3d, O-2p, and the empty minority-spin Gd-4f orbitals, which is suppressed by the planar Cu-O-O-Gd structure. This study demonstrates the accuracy of the DFT+U method for evaluating the 3d-4f exchange interactions, provides a better understanding of the exchange mechanism in the Cu(II)-Gd(III) complexes, and paves the way for exploiting the magnetic properties of the 3d-4f compounds containing lanthanides other than Gd. PMID:24274078

  6. Influence of the CYP4F2 polymorphism on the risk of hemorrhagic complications in coumarin-treated patients

    PubMed Central

    Chen, Peng; Sun, Ye-Qi; Yang, Guo-Ping; Li, Rong; Pan, Jie; Zhou, Yu-Sheng

    2016-01-01

    Objectives: To evaluate the impact of the CYP4F2 polymorphism on bleeding complications and over-anticoagulation due to coumarin. Methods: A comprehensive literature search was performed to look for eligible studies published prior to February 2015 in EMBASE and PubMed. References were strictly identified by inclusion and exclusion criteria, and authors of primary studies were consulted for additional information and data. Revman 5.3 software was used to analyze the impact of the CYP4F2 polymorphism on hemorrhagic complications and over-anticoagulation events (international normalized ratio >4). Results: Eight studies involving 3,101 samples met the specified inclusion criteria. Compared with wild-type homozygotes (CYP4F2*1*1), carriers of the CYP4F2*3 variant had no significant effects on total bleeding events (odds ratio [OR]: 0.86; 95% confidence interval [CI]: 0.71-1.05; p=0.15), major hemorrhage complications in coumarin users (OR: 0.80; 95% CI: 0.64-1.01; p=0.06). Patients carried CYP4F2*3 also had nonsignificant associations with the risk of over-anticoagulation (relative risk [RR]: 079; 95% CI: 0.59-1.06; p=0.12). We found a lower risk in patients with homozygotes for CYP4F2*3, but there was no statistical significance (RR: 0.66; 95% CI: 0.43-1.01; p=0.05). Conclusion: This meta-analysis indicated the impact of the CYP4F2 polymorphism on bleeding complications and over-anticoagulation in coumarin-treated patients failed to reach the level of statistical significance. However, large-scale and well designed studies are necessary to determine conclusively the association between the CYP4F2 polymorphism and hemorrhage risk. PMID:27052278

  7. Section and stroboscopic diffraction imaging of the magneto-acoustic vibrations in FeBO3 by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Matsouli, Ioanna; Pernot, Etienne; Baruchel, José; Kvardakov, Vladimir; Chabert, Laurent; Palmer, Stuart B.

    1999-05-01

    Ultrasonic waves, excited in an FeBO3 crystal via magneto-elastic coupling, were visualized using synchrotron radiation diffraction imaging (`topography'). In particular, restricted volume images were used in order to distinguish the contribution of the various parts of a thin (50 µm) sample to the diffracted beam. The magnetic field dependence of the sound velocity was then exploited to tune the FeBO3 crystal at a resonance four times the ESRF single bunch frequency, allowing stroboscopic section imaging and the deconvolution of the time-integration effect. This set of experiments confirmed that the vibrating crystal model used to explain the focusing of x-rays in FeBO3 at certain resonances is correct.

  8. Surface and bulk 4f-photoemission spectra of CeIn{sub 3} and CeSn{sub 3}

    SciTech Connect

    Kim, H.; Tjernberg, O.; Chiaia, G.; Kumigashira, H.; Takahashi, T.; Duo, L.; Sakai, O.; Kasaya, M.; Lindau, I.

    1997-07-01

    Resonant photoemission spectroscopy was performed on CeIn{sub 3} and CeSn{sub 3} at the 4d-4f and 3d-4f core thresholds. Using the different surface sensitivity between the two photon energies, surface and bulk 4f-photoemission spectra were derived for both compounds. With the noncrossing approximation of the Anderson impurity model, the 4d-4f resonant spectra together with the surface and bulk spectra were self-consistently analyzed to obtain the microscopic parameters such as the 4f-electron energy and the hybridization strength with conduction electrons. The result shows a substantial difference in these parameters between the surface and the bulk, indicating that it is important to take into account the surface effect in analyzing photoemission spectra of Ce compounds. It is also found that the 4f surface core-level shift is different between CeIn{sub 3} and CeSn{sub 3}. {copyright} {ital 1997} {ital The American Physical Society}

  9. Inducible CYP4F12 enhances Hepatitis C virus infection via association with viral nonstructural protein 5B.

    PubMed

    Zhu, Sheng-Li; Wang, Li; Cao, Zhong-Ying; Wang, Jun; Jing, Ming-Zhen; Xia, Zhang-Chuan; Ao, Fang; Ye, Lin-Bai; Liu, Shi; Zhu, Ying

    2016-02-26

    Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) functions as an RNA-dependent RNA polymerase in the HCV replication complex derived from the endoplasmic reticulum in hepatic cells. In this study, NS5B was used as bait in a yeast two-hybrid assay to screen a human liver cDNA library. We confirmed that CYP4F12, a member of the cytochrome P450 superfamily, interacted with NS5B. Furthermore, overexpression of CYP4F12 facilitated HCV replication. In contrast, knockdown of CYP4F12 by specific shRNA decreased HCV replication and viral protein expression. Moreover, our results demonstrated that HCV infection increased the binding of the transcription factor SREBP1 to the CYP4F12 promoter and activated the promoter activity, which indicated that HCV infection increased the expression of CYP4F12 through the SREBP1 pathway. Our results showed that HCV infection induced expression of CYP4F12 protein, which bound to the HCV replication complex to facilitate viral replication. PMID:26845356

  10. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  11. Pu 4f XPS spectra analyzed in the Anderson impurity model

    SciTech Connect

    Cox, L.E.; Peek, J.M.; Allen, J.W.

    1998-05-09

    X-ray photoemission spectra of the {alpha},{beta},{gamma}, and {delta} phases of Pu have been analyzed using the Gunnarsson-Schonhammer implementation of the Anderson impurity model. Changes in the relative intensities of the two spectral features representing mixed f{sup 5} and f{sup 6} final states are in reasonable agreement with the model`s predictions. The coulomb terms, U{sub ff} and U{sub fc}, are quite consistent with those derived from atomic and LDA calculations. Multiplet structure, which agrees with atomic calculations for 4f{sup 13}5f{sup 5}, strongly suggests 5f localization in the final state.

  12. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    SciTech Connect

    Thompson, Joe E; Nair, S; Stockert, O; Witte, U; Nicklas, M; Schedler, R; Bianchi, A; Fisk, Z; Wirth, S; Steglich, K

    2009-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

  13. 4f metals (compounds) under High Pressure (and Temperature): f-electron Correlation Physics

    NASA Astrophysics Data System (ADS)

    Lipp, Magnus; Jenei, Zsolt; Cynn, Hyunchae; Evans, William; Physics Division Team

    The physics of 4f-electron correlation governs the behavior of the most interesting group in the periodic table, the rare-earth elements. Arguably the most celebrated example is cerium with its iso-structural (fcc) volume collapse (VC) from the γ- to the α-phase ending in a critical point. Close to the VC cerium is even auxetic since its Poisson's ratio becomes negative. Radiography tells us that both phases continue on into the melt, possibly separated by a first order transition. The presence of the f-electron can be interrogated via X-ray emission spectroscopy of the satellite intensity of the L γ radiation. Across the VC it experiences a step-like drop which could be interpreted as a discontinuous decrease of the 4f-moment or occupancy. The theoretical models (Hubbard-Mott or Kondo) explain these phenomena with the behavior of the f-electrons themselves or their spin but the contribution of the lattice-phonons also plays an important part. However, its share in the entropy change across the VC decreases with temperature. This work was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The X-ray studies were performed at HPCAT (Sector 16), APS/ANL. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA, DOE-BES and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357.

  14. Acoustic Inversion in Optoacoustic Tomography: A Review

    PubMed Central

    Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel

    2013-01-01

    Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060

  15. Acoustic Characterization of Mesoscale Objects

    SciTech Connect

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  16. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  17. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  18. Plasma-surface interactions of nanoporous silica during plasma-based pattern transfer using C{sub 4}F{sub 8} and C{sub 4}F{sub 8}/Ar gas mixtures

    SciTech Connect

    Hua Xuefeng; Stolz, Christian; Oehrlein, G.S.; Lazzeri, P.; Coghe, N.; Anderle, M.; Inoki, C.K.; Kuan, T.S.; Jiang, P.

    2005-01-01

    We have investigated plasma surface interactions of nanoporous silica (NPS) films with porosities up to 50%, and SiO{sub 2} with C{sub 4}F{sub 8}/Ar discharges used for plasma etching. The pore size was about 2-3 nm for all films. In highly polymerizing plasmas (e.g., pure C{sub 4}F{sub 8} discharges), the porous structure of NPS material favors surface polymerization over etching and porosity-corrected etching rates (CER) were suppressed and lower than SiO{sub 2} etching rate for the same conditions. The etching rates of NPS were dramatically enhanced in ion rich discharges (e.g., C{sub 4}F{sub 8}/90%Ar) and the CER in this case is greater than the SiO{sub 2} etching rate. Both x-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (static SIMS) show that fairly thick ({approx}2-3 nm) fluorocarbon layers exist on the NPS surface during C{sub 4}F{sub 8} etching. This layer blocks the direct interaction of ions with the NPS surface and results in a low etching rate. For C{sub 4}F{sub 8}/90%Ar discharges, little fluorocarbon coverage is observed for NPS surfaces and the direct ion surface interaction is significantly enhanced, explaining the enhancement of CER. We can deduce from analysis of angular resolved XPS data that the surface of NPS materials and SiO{sub 2} remain smooth during C{sub 4}F{sub 8} etching. For C{sub 4}F{sub 8}/90%Ar etching, the NPS surfaces became rough. The surface roughening is due to angle-dependent ion etching effects. These surface models were directly verified by the transmission electron microscopy. Depth profiling study of NPS partially etched using C{sub 4}F{sub 8} or C{sub 4}F{sub 8}/90%Ar discharges using dynamic SIMS indicates that the plasma induced modification of NPS was enhanced significantly compared with SiO{sub 2} due to the porous structure, which allows the plasma attack of the subsurface region. The modified layer thickness is related to the overall porosity and dramatically increases for NPS with an overall porosity of 50%. The distinct etching behavior of high porosity NPS ({approx}50%) in fluorocarbon-based discharges relative to NPS material with lower overall porosity is possibly due to interconnected pores, which allow plasma species to more easily penetrate into the subsurface region.

  19. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring

    NASA Astrophysics Data System (ADS)

    Nozawa, Takashi; Ozawa, Kazumi; Asakura, Yuuki; Kohyama, Akira; Tanigawa, Hiroyasu

    2014-12-01

    Understanding the cracking process of the composites is essential to establish the design basis for practical applications. This study aims to investigate the damage accumulation process and its anisotropy for nano-infiltration transient eutectic sintered (NITE) SiC/SiC composites by various characterization techniques such as the acoustic emission (AE), digital image correlation (DIC) and electrical resistivity (ER) measurements. Cracking behavior below the proportional limit stress (PLS) was specifically addressed. Similar to the other generic SiC/SiC composites, the 1st AE event was identified below the PLS for NITE SiC/SiC composites with a dependency of fabric orientation. The DIC results support that the primary failure mode depending on fiber orientation affected more than the other minor modes did. Detailed AE waveform analysis by wavelet shows a potential to classify the failure behavior depending on architecture. Cracking below the PLS is a potential concern in component deign but the preliminary ER measurements imply that the impact of cracking below the PLS on composite function was limited.

  20. Results of magnetic resonance imaging assessment, acoustic analysis, phonatory function and perceptual rating of glottic insufficiency before and after fat augmentation: correlated with subjective rating.

    PubMed

    Hsiung, Ming-Wang; Chen, Yen-Yu; Pai, Lu; Lin, Chao-Jung; Wang, Hsing-Won

    2003-01-01

    Autogenous fat augmentation has been proven effective in the treatment of glottic insufficiency (GI) using both subjective and objective methods of evaluation. However, no information is available in published research regarding the effectiveness and predictability of value parameters with regard to patients' perceptions and concerns. This article retrospectively examines the correlation between subjective and objective examinations and subjective ratings (SRs) in patients with presbylaryngis (n = 14) and sulcus vocalis (n = 2). Acoustic analysis, phonatory function, magnetic resonance imaging (MRI) assessment, and perceptual rating data were evaluated against SRs using pre- and postoperative test results in 16 patients. The mean time over which subjective and objective examinations were performed was 10 months. Twelve patients reported excellent results, while no change was observed in 4 patients. When compared against SR, the kappa value of jitter, shimmer, harmonic to noise ratio, phonation time, grade, roughness, breathiness, and MRI were 0.25, 0, -0.08, -0.11, -0.11, 0.18, 0, and 1, respectively. The agreement between the MRI and SR values was complete, and was the only relationship shown to be significant (p < 0.001). MRI assessment is an effective and reliable examination tool which can be considered for use in assessing the progress of the post-fat injection operation in GI patients during follow-up examinations. Furthermore, due to the excellent agreement between MRI assessment and the patients' subjective feelings, the SR value may serve as a good index of fat survival. PMID:12824728

  1. A MoS2 coating strategy to improve the comprehensive electrochemical performance of LiVPO4F

    NASA Astrophysics Data System (ADS)

    Liu, Zhaomeng; Peng, Wenjie; Shih, Kaimin; Wang, Jiexi; Wang, Zhixing; Guo, Huajun; Yan, Guochun; Li, Xinhai; Song, Liubin

    2016-05-01

    To improve the electrochemical performance of LiVPO4F at room and elevated temperature focusing on the stability of LiVPO4F electrode/electrolyte interface, for the first time, MoS2 nanosheets are introduced to modify LiVPO4F/C composites. The coating of MoS2 layers on the surface of LiVPO4F/C nanoparticles is realized via a solution method followed by low-temperature calcination. Morphological observations present that the MoS2 sheets are homogeneously wrapped around the LiVPO4F/C particles. When employed as cathode materials for lithium ion batteries, the MoS2-modified LiVPO4F/C composites exhibit superior high-rate capability and greatly improved cycle ability compared to bare one, and the sample coated with 1.75 wt% MoS2 (2M-LVPF) delivers the best electrochemical performance. In particular, it maintains the capacity retention of 91.7% in 100 cycles at 2.0C and delivers a reversible specific capacity of 112 mAh g-1 at a high rate of 8.0C under room temperature. More importantly, it shows greatly improved cycling stability at elevated temperature (55 °C), maintaining 88.1% of its initial capacity at 0.5C after 50 cycles. The reasons for such improvement lie in the MoS2 coating layer acting as a physical barrier between electrode and electrolyte, as well as electronic/ionic conducting framework for LiVPO4F particles.

  2. Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis.

    PubMed

    Moreira, Roberto S; Irigoyen, Maria; Sanches, Talita R; Volpini, Rildo A; Camara, Niels O S; Malheiros, Denise M; Shimizu, Maria H M; Seguro, Antonio C; Andrade, Lucia

    2014-09-01

    Kidney injury, heart injury, and cytokine-induced vascular hyperpermeability are associated with high rates of morbidity and mortality in sepsis. Although the mechanism remains unknown, apolipoprotein A-I (apoA-I) mimetic peptide 4F reduces inflammation and protects HDL levels, which are reduced in sepsis. We hypothesized that 4F also protects kidneys and hearts in a rat model of cecal ligation and puncture (CLP). We divided Wistar rats into groups: sham-operated (control), CLP, and CLP+4F (10 mg/kg body wt ip, 6 h after CLP). At 24 h post-CLP, we evaluated cardiac function, mean arterial pressure (MAP), heart rate (HR), baroreflex sensitivity, total cholesterol, LDL, HDL, serum cytokines, and inulin clearance. We performed immunoblotting for protein regulators of vascular permeability (Slit2 and Robo4) and endothelial nitric oxide synthase (eNOS) in kidney tissue. We evaluated heart mitochondria with electron microscopy. Although there was no difference in MAP, the HR was significantly higher in CLP rats than in control and CLP+4F rats. In CLP+4F rats, baroreflex sensitivity and cardiac function were completely protected from the effects of CLP, as was glomerular filtration; heart mitochondria morphology was improved; sepsis-induced changes in serum cholesterol, LDL, HDL, and apoA-I were less common; all cytokines were lower than in CLP rats; and expression of Slit2, Robo4, and eNOS was completely restored. Administration of 4F inhibits inflammatory responses and strengthens the vascular barrier, protecting kidneys and hearts in an HDL-dependent manner. To determine the extent of the protective effect of 4F, further studies are needed. PMID:24920733

  3. Use of the 4F Roesch Inferior Mesenteric Catheter in Embolization Procedures in the Pelvis: A Review of 300 Cases

    SciTech Connect

    Kroencke, Thomas J. Kluner, Claudia; Hamm, Bernd; Gauruder-Burmester, Annett

    2007-04-15

    The aim of this study is to evaluate the use of a 4F Roesch inferior mesenteric (RIM) catheter for pelvic embolization procedures. Between October 2000 and January 2006, 364 patients (357 female, 7 male; age: 23-67 years) underwent embolization of various pathologies [uterine fibroids (n = 324), pure adenomyosis of the uterus (n = 19), postpartum hemorrhage (n =1), traumatic or postoperative hemorrhage (n = 9), bleeding related to cervical cancer (n =7), AV malformation of the uterus (n = 2) and high-flow priapism (n = 2)] at a single institution. In all cases, bilateral catheterization was primarily attempted with the use of a 4F hook-shaped braided endhole catheter (Roesch-Inferior-Mesenteric, RIM-Catheter, Cordis, Miami, FL). Frequency of initial failure to catheterize the vascular territory of interest and carry out the embolization were recorded and the types of difficulty encountered were noted. Catherization of the main stem of the vessel territory of interest with the use of a unilateral femoral approach and the 4F RIM catherer was successful in 334/364 (91.8%) the embolization cases. Bilateral catheterization of the internal iliac arteries using a single common femoral artery access and the 4F RIM catheter was achieved in 322/364 (88.5%) patients. In 12/364 (3.3%) patients, a contralateral puncture was performed and the same 4F catheter was used. In 28/364 (7.7%) cases the 4F RIM catheter was exchanged for a catheter with a cobra-shaped or sidewinder configuration. The 4F RIM catheter is a simple and valuable alternative to catheters and techniques commonly employed for pelvic artery embolization.

  4. Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in human intestinal microsomes.

    PubMed

    Hashizume, Takanori; Imaoka, Susumu; Mise, Masashi; Terauchi, Yoshiaki; Fujii, Toshihiko; Miyazaki, Hisashi; Kamataki, Tetsuya; Funae, Yoshihiko

    2002-01-01

    The purpose of the study was to elucidate human intestinal cytochrome P450 isoform(s) involved in the metabolism of an antihistamine, ebastine, having two major pathways of hydroxylation and N-dealkylation. The ebastine dealkylase in human intestinal microsomes was CYP3A4, based on the inhibition studies with antibodies against CYP1A, CYP2A, CYP2C, CYP2D, CYP2E, and CYP3A isoforms and their selective inhibitors. However, ebastine hydroxylase could not be identified. We then examined the inhibitory effects of anti-CYP4F antibody and 17-octadecynoic acid, an inhibitor of the CYP4 family, on ebastine hydroxylation in intestinal microsomes, since CYP4F was recently found to be the predominant ebastine hydroxylase in monkey intestine; and a novel CYP4F isoform (CYP4F12), also capable of hydroxylating ebastine, was found to exist in human intestine. However, the inhibitory effects were only partial (about 20%) and thus it was thought that, although human CYP4F was involved in ebastine hydroxylation, another predominant enzyme exists. Further screening showed that the hydroxylation was inhibited by arachidonic acid. CYP2J2 was selected as a candidate expressed in the intestine and closely related to arachidonic acid metabolism. The catalytic activity of recombinant CYP2J2 was much higher than that of CYP4F12. Anti-CYP2J antibody inhibited the hydroxylation to about 70% in human intestinal microsomes. These results demonstrate that CYP2J2 is the predominant ebastine hydroxylase in human intestinal microsomes. Thus, the present paper for the first time indicates that, in human intestinal microsomes, both CYP2J and CYP4F subfamilies not only metabolize endogenous substrates but also are involved in the drug metabolism. PMID:11752129

  5. Altered Leukotriene B4 metabolism in CYP4F18-deficient mice does not impact inflammation following renal ischemia

    PubMed Central

    Winslow, Valeria; Vaivoda, Rachel; Vasilyev, Aleksandr; Dombkowski, David; Douaidy, Karim; Stark, Christopher; Drake, Justin; Guilliams, Evin; Choudhary, Dharamainder; Preffer, Frederic; Stoilov, Ivaylo; Christmas, Peter

    2014-01-01

    Inflammatory responses to infection and injury must be restrained and negatively regulated to minimize damage to host tissue. One proposed mechanism involves enzymatic inactivation of the pro-inflammatory mediator leukotriene B4, but it is difficult to dissect the roles of various metabolic enzymes and pathways. A primary candidate for a regulatory pathway is omega oxidation of leukotriene B4 in neutrophils, presumptively by CYP4F3A in humans and CYP4F18 in mice. This pathway generates ω, ω-1, and ω-2 hydroxylated products of leukotriene B4, depending on species. We created mouse models targeting exons 8 and 9 of the Cyp4f18 allele that allows both conventional and conditional knockout of Cyp4f18. Neutrophils from wild-type mice convert leukotriene B4 to 19-hydroxy leukotriene B4, and to a lesser extent 18-hydroxy leukotriene B4, whereas these products were not detected in neutrophils from conventional Cyp4f18 knockouts. A mouse model of renal ischemia-reperfusion injury was used to investigate the consequences of loss of CYP4F18 in vivo. There were no significant changes in infiltration of neutrophils and other leukocytes into kidney tissue as determined by flow cytometry and immunohistochemistry, or renal injury as assessed by histological scoring and measurement of blood urea nitrogen. It is concluded that CYP4F18 is necessary for omega oxidation of leukotriene B4 in neutrophils, and is not compensated by other CYP enzymes, but loss of this metabolic pathway is not sufficient to impact inflammation and injury following renal ischemia-reperfusion in mice. PMID:24632148

  6. Modification of Kirchhoff migration with variable sound speed and attenuation for acoustic imaging of media and application to tomographic imaging of the breast

    PubMed Central

    Schmidt, Steven; Duric, Nebojsa; Li, Cuiping; Roy, Olivier; Huang, Zhi-Feng

    2011-01-01

    Purpose: To explore the feasibility of improving cross-sectional reflection imaging of the breast using refractive and attenuation corrections derived from ultrasound tomography data. Methods: The authors have adapted the planar Kirchhoff migration method, commonly used in geophysics to reconstruct reflection images, for use in ultrasound tomography imaging of the breast. Furthermore, the authors extended this method to allow for refractive and attenuative corrections. Using clinical data obtained with a breast imaging prototype, the authors applied this method to generate cross-sectional reflection images of the breast that were corrected using known distributions of sound speed and attenuation obtained from the same data. Results: A comparison of images reconstructed with and without the corrections showed varying degrees of improvement. The sound speed correction resulted in sharpening of detail, while the attenuation correction reduced the central darkening caused by path length dependent losses. The improvements appeared to be greatest when dense tissue was involved and the least for fatty tissue. These results are consistent with the expectation that denser tissues lead to both greater refractive effects and greater attenuation. Conclusions: Although conventional ultrasound techniques use time-gain control to correct for attenuation gradients, these corrections lead to artifacts because the true attenuation distribution is not known. The use of constant sound speed leads to additional artifacts that arise from not knowing the sound speed distribution. The authors show that in the context of ultrasound tomography, it is possible to construct reflection images of the breast that correct for inhomogeneous distributions of both sound speed and attenuation. PMID:21452737

  7. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    NASA Technical Reports Server (NTRS)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors that they produce.

  8. Non-intrusive telemetry applications in the oilsands: from visible light and x-ray video to acoustic imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Shaw, John M.

    2013-06-01

    While the production, transport and refining of oils from the oilsands of Alberta, and comparable resources elsewhere is performed at industrial scales, numerous technical and technological challenges and opportunities persist due to the ill defined nature of the resource. For example, bitumen and heavy oil comprise multiple bulk phases, self-organizing constituents at the microscale (liquid crystals) and the nano scale. There are no quantitative measures available at the molecular level. Non-intrusive telemetry is providing promising paths toward solutions, be they enabling technologies targeting process design, development or optimization, or more prosaic process control or process monitoring applications. Operation examples include automated large object and poor quality ore during mining, and monitoring the thickness and location of oil water interfacial zones within separation vessels. These applications involve real-time video image processing. X-ray transmission video imaging is used to enumerate organic phases present within a vessel, and to detect individual phase volumes, densities and elemental compositions. This is an enabling technology that provides phase equilibrium and phase composition data for production and refining process development, and fluid property myth debunking. A high-resolution two-dimensional acoustic mapping technique now at the proof of concept stage is expected to provide simultaneous fluid flow and fluid composition data within porous inorganic media. Again this is an enabling technology targeting visualization of diverse oil production process fundamentals at the pore scale. Far infrared spectroscopy coupled with detailed quantum mechanical calculations, may provide characteristic molecular motifs and intermolecular association data required for fluid characterization and process modeling. X-ray scattering (SAXS/WAXS/USAXS) provides characteristic supramolecular structure information that impacts fluid rheology and process fouling. The intent of this contribution is to present some of the challenges and to provide an introduction grounded in current work on non-intrusive telemetry applications - from a mine or reservoir to a refinery!

  9. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    NASA Technical Reports Server (NTRS)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2009-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce

  10. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  11. Acoustic imaging of the passage of turbidity currents and associated hydraulic jumps on underlying cyclic step bedforms. Squamish, BC

    NASA Astrophysics Data System (ADS)

    Hughes Clarke, J. E.

    2013-12-01

    Active channelized turbidity currents have been repeatedly imaged in 60m of water on the Squamish prodelta. Previously in 2011 and 2012, the prodelta has been repetitively surveyed on daily and hourly timescales and is thus known to exhibit trains of bedforms along the channel floors that resemble cyclic steps that migrate upslope intermittently. Beyond the channel mouths, clear turbidity current flows had previously been detected using a seabed mounted ADCP. In order to directly observe the passage of the flow in the channelized section of the prodelta, in June 2013 a vessel was moored using 4 anchors directly above one of the channels. The vessel operated two hull-mounted single beam sonars at 28 and 200 kHz and a multibeam sonar at 95 kHz, all imaging a near stationary point or swath within or across the channel. In addition a 1200 kHz ADCP was suspended 12m above the seabed and two 500 kHz imaging multibeams were suspended 10m above the channel floor. One of the suspended multibeams was oriented facing upslope examining a 150m range, 120 degree, plan view sector of the channel. The second suspended multibeam was oriented downward to derive a ~30m long along-track section over the length of one of the bedforms. A mechanically dipped CTD and optical backscatter probe was lower repeatedly directly into the active flows until it touched the seabed at about one minute periods. Over a period of 5 days, between 1 and 7 discrete flows per day were monitored passing by within one hour of low water. Their head velocities ranged from ~ 0.5 to 2.5m/s and their thicknesses were generally in the 3-5m range. Looking upstream in plan view, the lobate head of the approaching flows could be seen to be constricted to specific talwegs within the channel floor and rise up and over successive cyclic step bedforms. The higher velocity flows exhibit clear turbulent eddies on their upper surface. The duration of the high velocity component of the flow rarely lasted for more than a few minutes. For the two highest velocity flows observed, a clear hydraulic jump could be seen in the suspended multibeam imagery just downstream of the base of the stoss face of the imaged bedform. The hull mounted sonars clearly reveal massive release of gas from the seabed in the wake of the head passage. Bathymetric surface differences from surveys from the preceding and following high tide period indicated multiple active feeder channels descending from the lip of the delta.

  12. Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2

    SciTech Connect

    Lumadue, J.A.; Glick, A.B.; Ruddle, F.H.

    1987-12-01

    Among the earliest expressed antigens on the surface of activated human lymphocytes is the surface antigen 4F2. The authors have used DNA-mediated gene transfer and fluorescence-activated cell sorting to obtain cell lines that contain the gene encoding the large subunit of the human 4F2 antigen in a mouse L-cell background. Human DNAs cloned from these cell lines were subsequently used as hybridization probes to isolate a full-length cDNA clone expressing 4F2. Sequence analysis of the coding region has revealed an amino acid sequence of 529 residues. Hydrophobicity plotting has predicted a probable structure for the protein that includes an external carboxyl terminus, an internal leader sequence, a single hydrophobic transmembrane domain, and two possible membrane-associated domains. The 4F2 cDNA detects a single 1.8-kilobase mRNA in T-cell and B-cell lines. RNA gel blot analysis of RNA derived from quiescent and serum-stimulated Swiss 3T3 fibroblasts reveals a cell-cycle modulation of 4F2 gene expression: the mRNA is present in quiescent fibroblasts but increases 8-fold 24-36 hr after stimulation, at the time of maximal DNA synthesis.

  13. Effects of feedstock availability on the negative ion behavior in a C4F8 inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Xia; Gao, Fei; Wang, Ya-Ping; Wang, You-Nian; Bogaerts, Annemie

    2015-07-01

    In this paper, the negative ion behavior in a C4F8 inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (10-30 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C2F6, CHF3, and C4F8. This behavior is explained by the availability of feedstock C4F8 gas as a source of the negative ions, as well as by the presence of low energy electrons due to vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C4F8 molecules, and at high pressure (50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C4F8 plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted.

  14. The Electronegativity Analysis of c-C4F8 as a Potential Insulation Substitute of SF6

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoling; Jiao, Juntao; Li, Bing; Xiao, Dengming

    2016-03-01

    The density distributions related to gas electronegativity for c-C4F8 gas, including negative ion, electron number and electron energy densities in the discharge process, are derived theoretically in both plane-to-plane and point-to-plane electrode geometries. These calculations have been performed through the Boltzmann equation in the condition of a steady-state Townsend (SST) experiment and a fluid model in the condition of both uniform and non-uniform electric fields. The electronegativity coefficients a = n-/ne of c-C4F8 and SF6 are compared to further describe the electron affinity of c-C4F8. The result shows that c-C4F8 represents an obvious electron-attachment performance in the discharge process. However, c-C4F8 still has much weaker gas electronegativity than SF6, whose electronegativity coefficient is lower than that of SF6 by at least three orders of magnitude. supported by National Natural Science Foundation of China (No. 51337006)

  15. eIF4F suppression in breast cancer affects maintenance and progression

    PubMed Central

    Nasr, Z; Robert, F; Porco, JA; Muller, WJ; Pelletier, J

    2016-01-01

    Levels of eukaryotic initiation factor 4E (eIF4E) are frequently elevated in human cancers and in some instances have been associated with poor prognosis and outcome. Here we utilize transgenic and allograft breast cancer models to demonstrate that increased mammalian target of rapamycin (mTOR) signalling can be a significant contributor to breast cancer progression in vivo. Suppressing mTOR activity, as well as levels and activity of the downstream translation regulators, eIF4E and eIF4A, delayed breast cancer progression, onset of associated pulmonary metastasis in vivo and breast cancer cell invasion and migration in vitro. Translation of vascular endothelial growth factor (VEGF), matrix metallopeptidase 9 (MMP9) and cyclin D1 mRNAs, which encode products associated with the metastatic phenotype, is inhibited upon eIF4E suppression. Our results indicate that the mTOR/eIF4F axis is an important contributor to tumor maintenance and progression programs in breast cancer. Targeting this pathway may be of therapeutic benefit. PMID:22484424

  16. The function of the Periaxin gene during nerve repair in a model of CMT4F.

    PubMed

    Williams, Anna C; Brophy, Peter J

    2002-04-01

    Mutations in the Periaxin (PRX) gene are known to cause autosomal recessive demyelinating Charcot-Marie-Tooth (CMT4F) and Dejerine-Sottas disease. The pathogenesis of these diseases is not fully understood. However, progress is being made by studying both the periaxin-null mouse, a mouse model of the disease, and the protein-protein interactions of periaxin. L-periaxin is a constituent of the dystroglycan-dystrophin-related protein-2 complex linking the Schwann cell cytoskeleton to the extracellular matrix. Although periaxin-null mice myelinate normally, they develop a demyelinating peripheral neuropathy later in life. This suggests that periaxin is required for the stable maintenance of a normal myelin sheath. We carried out sciatic nerve crushes in 6-week-old periaxin-null mice, and, 6 weeks later, found that although the number of myelinated axons had returned to normal, the axon diameters remained smaller than in the contralateral uncrushed nerve. Not only do periaxin-null mice have more hyper-myelinated axons than their wild-type counterparts but they also recapitulate this hypermyelination during regeneration. Therefore, periaxin-null mice can undergo peripheral nerve remyelination, but the regulation of peripheral myelin thickness is disrupted. PMID:12090399

  17. Local Symmetry Effects in Actinide 4f X-ray Absorption in Oxides.

    PubMed

    Butorin, Sergei M; Modin, Anders; Vegelius, Johan R; Suzuki, Michi-To; Oppeneer, Peter M; Andersson, David A; Shuh, David K

    2016-04-19

    A systematic X-ray absorption study at actinide N6,7 (4f → 6d transitions) edges was performed for light-actinide oxides including data obtained for the first time for NpO2, PuO2, and UO3. The measurements were supported by ab initio calculations based on local-density-approximation with added 5f-5f Coulomb interaction (LDA+U). Improved energy resolution compared to common experiments at actinide L2,3 (2p → 6d transitions) edges allowed us to resolve the major structures of the unoccupied 6d density of states (DOS) and estimate the crystal-field splittings in the 6d shell directly from the spectra of light-actinide dioxides. The measurements demonstrated an enhanced sensitivity of the N6,7 spectral shape to changes in the compound crystal structure. For nonstoichiometric NpO2-x, the filling of the entire band gap with Np 6d states was observed thus supporting a phase coexistence of Np metal and stoichiometric NpO2 which is in agreement with the tentative Np-O phase diagram. PMID:27008406

  18. The extreme ultraviolet emissions of W23+(4f5)

    NASA Astrophysics Data System (ADS)

    Pütterich, T.; Jonauskas, V.; Neu, R.; Dux, R.; ASDEX Upgrade Team

    2013-07-01

    In order to comply with the special challenges (open 4f-shell, configuration mixing) of simulating the spectrum of W23+ an extensive atomic model was implemented using the flexible atomic code (FAC). In detail, the basis functions from 11 configurations were used to model about 12000 levels, which give rise to roughly 60 million transitions including nearly 6 million electric and magnetic dipole transitions. A collisional radiative model has been put together which could handle the size of the input data. The modelled spectra (4-40 nm) show low sensitivity on the electron density, which validates the comparison of EBIT and tokamak spectra. The emissions between 4 and 7 nm are discussed in the context of the observations at fusion plasmas. In this range, the influence of W23+ is limited due to the small contribution to the measurement - however, elements of the presented modelling might explain the second, not understood spectral feature at 6 nm. Further details of the spectra are only briefly discussed as a close comparison to experimental data requires also models for the neighbouring ionisation stages. Additionally, the importance of configuration mixing becomes apparent motivating further investigations on neighbouring ionisation stages with similarly complex models.

  19. The Ba 4d-4f giant dipole resonance in complex Ba/Si compounds

    SciTech Connect

    Sahle, Ch. J.; Sternemann, C.; Sternemann, H.; Tse, J. S.; Gordon, R. A.; Desgreniers, S.; Maekawa, S.; Yamanaka, S.; Lehmkuhler, F.; Wieland, D. C.F.; Mende, K.; Huotari, S.; Tolan, M.

    2014-08-06

    The shape of the Ba 4d–4f giant dipole resonance is studied for Ba atoms embedded inside complex Si networks covering structures consisting of Si nanocages and nanotubes, i.e. the clathrate Ba8Si46, the complex compound BaSi6, and the semiconducting BaSi2. Here, non-resonant x-ray Raman scattering is used to investigate confinement effects on the shape of the giant resonance in the vicinity of the Ba NIV, V-edge. The distinct momentum transfer dependence of the spectra is analyzed and discussed. The measurements are compared to calculations of the giant resonance within time-dependent local density approximation in the dipole limit. No modulation of the giant resonance's shape for Ba atoms confined in different local environments was observed, in contrast to the calculations. The absence of such shape modulation for complex Ba/Si compounds is discussed providing important implications for further studies of giant resonance phenomena utilizing both theory and experiment.

  20. 4 f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Amorese, A.; Dellea, G.; Fanciulli, M.; Seiro, S.; Geibel, C.; Krellner, C.; Makarova, I. P.; Braicovich, L.; Ghiringhelli, G.; Vyalikh, D. V.; Brookes, N. B.; Kummer, K.

    2016-04-01

    The potential of resonant inelastic soft x-ray scattering to measure 4 f crystal electric-field excitation spectra in Ce Kondo lattices has been examined. Spectra have been obtained for several Ce systems and show a well-defined structure determined by crystal-field, spin-orbit, and charge-transfer excitations only. The spectral shapes of the excitation spectra can be well understood in the framework of atomic multiplet calculations. For CeCu2Si2 we found notable disagreement between the inelastic x-ray-scattering spectra and theoretical calculations when using the crystal-field scheme proposed from inelastic neutron scattering. Modified sets of crystal-field parameters yield better agreement. Our results also show that, with the very recent improvements of soft x-ray spectrometers in resolution to below 30 meV at the Ce M4 ,5 edges, resonant inelastic x-ray scattering could be an ideal tool to determine the crystal-field scheme in Ce Kondo lattices and other rare-earth compounds.

  1. Pressure-enhanced superconductivity in Eu3Bi2S4F4

    DOE PAGESBeta

    Luo, Yongkang; Zhai, Hui -Fei; Zhang, Pan; Xu, Zhu -An; Cao, Guang -Han; Thompson, J. D.

    2014-12-17

    The pressure effect on the newly discovered charge-transferred BiS2-based superconductor, Eu3Bi2S4F4, with a Tc of 1.5 K at ambient pressure, is investigated by transport and magnetic measurements. Accompanied with the enhancement of metallicity under pressures, the onset superconducting transition temperature increases abruptly around 1.0 GPa, reaching ~10.0 K at 2.26 GPa. Alternating current magnetic susceptibility measurements indicate that a new superconducting phase with a higher Tc emerges and dominates at high pressures. In the broad pressure window of 0.68GPa≤p≤2.00 GPa, the high-Tc phase coexists with the low-Tc phase. Hall effect measurements reveal a significant difference in electronic structures between themore » two superconducting phases. As a result, our work devotes the effort to establish the commonality of pressure effect on the BiS2-based superconductors, and also uncovers the importance of electron carrier density in the high-Tc phase.« less

  2. A Search for EUV Emission from the O4f Star Zeta Puppis

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Vallerga, John

    1996-01-01

    We obtained a 140 ks EUVE observation of the O4f star, zeta Puppis. Because of its low ISM column density and highly ionized stellar wind, a unique EUV window is accessible for viewing between 128 to 140 A, suggesting that this star may he the only O star observable with the EUVE. Although no SW spectrometer wavelength bin had a signal to noise greater than 3, a bin at 136 A had a signal to noise of 2.4. This bin is where models predict the brightest line due to OV emission should occur. We present several EUV line emission models. These models were constrained by fitting the ROSAT PSPC X-ray data and our EUVE data. If the OV emission is real, the best fits to the data suggest that there are discrepancies in our current understanding of EUV/X-ray production mechanisms. In particular, the emission measure of the EUV source is found to be much greater than the total wind emission measure, suggesting that the EUV shock must produce a very large density enhancement. In addition, the location of the EUV and X-ray shocks are found to be separated by approx. 0.3 stellar radii, but the EUV emission region is found to be approx. 400 times larger than the X-ray emission region. We also discuss the implications of a null detection and present relevant upper limits.

  3. Cryogenic etching processes applied to porous low-k materials using SF6/C4F8 plasmas

    NASA Astrophysics Data System (ADS)

    Leroy, F.; Zhang, L.; Tillocher, T.; Yatsuda, K.; Maekawa, K.; Nishimura, E.; Lefaucheux, P.; de Marneffe, J.-F.; Baklanov, M. R.; Dussart, R.

    2015-11-01

    Cryogenic etching processes in SF6 and SF6/C4F8 plasmas were successfully applied to porous organosilicate glasses. Such materials are low-k candidates for advanced interconnects. Their integration is very challenging because of plasma induced damage. These two chemistries (SF6 and SF6/C4F8) have demonstrated a promising capability of significantly reducing the damage caused by plasma etching. Desorbed species were analyzed during the wafer warm-up from cryogenic to room temperature by in situ mass spectrometry. An equivalent damage layer (EDL) was evaluated by ex situ Fourier transform infrared (FTIR) spectroscopy and in situ ellipsometry. An anneal step at 350 °C seems efficient to completely desorb the remaining CF x species. Anisotropic profiles were obtained using both chemistries. The selectivity is enhanced using SF6/C4F8 process at low temperature.

  4. A 4F2-cross-point phase change memory using nano-crystalline doped GeSbTe material

    NASA Astrophysics Data System (ADS)

    Takaura, Norikatsu; Kinoshita, Masaharu; Tai, Mitsuharu; Ohyanagi, Takasumi; Akita, Kenichi; Morikawa, Takahiro

    2015-04-01

    This paper reports on the use of nano-crystalline doped GeSbTe, or nano-GST, to fabricate a cross-point phase change memory with 4F2 cell size and test results obtained for it. We show the characteristics of a poly-Si diode select device with a high on-off ratio and data writing in a 4F2 memory cell array. The advantages of nano-GST over conventional GeSbTe are presented in terms of neighboring disturbance and 4F2 cross-point array formation. The memory cells’ high drivability, low power, and selective write and read performances are demonstrated. The scalability of the diode current density is also presented.

  5. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  6. Spatiotemporally resolved granular acoustics

    NASA Astrophysics Data System (ADS)

    Owens, Eli; Daniels, Karen

    2011-03-01

    Acoustic techniques provide a non-invasive method of characterizing granular material properties; however, there are many challenges in formulating accurate models of sound propagation due to the inherently heterogeneous nature of granular materials. In order to quantify acoustic responses in space and time, we perform experiments in a photoelastic granular material in which the internal stress pattern (in the form of force chains) is visible. We utilize two complementary methods, high-speed imaging and piezoelectric transduction, to provide particle-scale measurements of the amplitude of the acoustic wave. We observe that the average wave amplitude is largest within particles experiencing the largest forces. The force-dependence of this amplitude is in qualitative agreement with a simple Hertzian-like model for contact area. In addition, we investigate the power spectrum of the propagating signal using the piezoelectric sensors. For a Gaussian wave packet input, we observe a broad spectrum of transmitted frequencies below the driving frequency, and we quantify the characteristic frequencies and corresponding length scales of our material as the system pressure is varied.

  7. The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane.

    PubMed

    Fort, Joana; de la Ballina, Laura R; Burghardt, Hans E; Ferrer-Costa, Carles; Turnay, Javier; Ferrer-Orta, Cristina; Usón, Isabel; Zorzano, Antonio; Fernández-Recio, Juan; Orozco, Modesto; Lizarbe, María Antonia; Fita, Ignacio; Palacín, Manuel

    2007-10-26

    4F2hc (CD98hc) is a multifunctional type II membrane glycoprotein involved in amino acid transport and cell fusion, adhesion, and transformation. The structure of the ectodomain of human 4F2hc has been solved using monoclinic (Protein Data Bank code 2DH2) and orthorhombic (Protein Data Bank code 2DH3) crystal forms at 2.1 and 2.8 A, respectively. It is composed of a (betaalpha)(8) barrel and an antiparallel beta(8) sandwich related to bacterial alpha-glycosidases, although lacking key catalytic residues and consequently catalytic activity. 2DH3 is a dimer with Zn(2+) coordination at the interface. Human 4F2hc expressed in several cell types resulted in cell surface and Cys(109) disulfide bridge-linked homodimers with major architectural features of the crystal dimer, as demonstrated by cross-linking experiments. 4F2hc has no significant hydrophobic patches at the surface. Monomer and homodimer have a polarized charged surface. The N terminus of the solved structure, including the position of Cys(109) residue located four residues apart from the transmembrane domain, is adjacent to the positive face of the ectodomain. This location of the N terminus and the Cys(109)-intervening disulfide bridge imposes space restrictions sufficient to support a model for electrostatic interaction of the 4F2hc ectodomain with membrane phospholipids. These results provide the first crystal structure of heteromeric amino acid transporters and suggest a dynamic interaction of the 4F2hc ectodomain with the plasma membrane. PMID:17724034

  8. High-Resolution Acoustic Imaging in the Agadir-Canyon Region, NW-Africa: Morphology, Processes and Geohazards

    NASA Astrophysics Data System (ADS)

    Krastel, S.; Wynn, R. B.; Feldens, P.; Unverricht, D.; Huehnerbach, V.; Stevenson, C.; Glogowski, S.; Schuerer, A.

    2014-12-01

    Agadir Canyon is one of the largest submarine canyons in the World, supplying giant submarine sediment gravity flows to the Agadir Basin and the wider Moroccan Turbidite System. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during Cruise MSM32. We collected ~ 1500 km of high-resolution seismic 2D-lines in combination with a dense net of hydroacoustic data. About 1000 km2 of sea floor were imaged during three deployments of TOBI (deep-towed sidescan sonar operated by the National Oceanography Centre Southampton). A total of 186 m of gravity cores and several giant box cores were recovered at more than 50 stations. The new data show that Agadir canyon is the source area of the world's largest submarine sediment flow, which occurred about 60,000 years ago. Up to 160 km3 of sediment was transported to the deep ocean in a single catastrophic event. For the first time, sediment flows of this scale have been tracked along their entire flow pathway. A major landslide area was identified south of Agadir Canyon. Landslide material enters Agadir canyon in about 2500 m water depth; the material is transported as debrite for at least another 200 km down the canyon. Initial data suggest that the last major slide from this source entered Agadir canyon at least 130,000 years ago. A large field of living deep-water corals was imaged north of Agadir canyon. To our knowledge, these are the first living cold water corals recovered off the coast of Morocco (except for the Gulf of Cadiz). They represent an important link between the known cold-water coral provinces off Mauritania and in the Gulf of Cádiz.

  9. Acoustic superlens using membrane-based metamaterials

    NASA Astrophysics Data System (ADS)

    Park, Jong Jin; Park, Choon Mahn; Lee, K. J. B.; Lee, Sam H.

    2015-02-01

    We report construction of an acoustic superlensing using two dimensional membrane-based negative-density metamaterials. When two point sources separated by a distance of 1/17 of the wavelength are placed near to a surface of the metamaterial slab, well-resolved images are formed on the opposite surface across the slab. The mechanism for the subwavelength resolution is the surface wave stemming from negative density. Potential applications include acoustic imaging and sensing.

  10. Resonant photoemission study of the 4f spectral function of cerium in Ce/Fe(100) interfaces

    SciTech Connect

    Witkowski, N.; Bertran, F.; Gourieux, T.; Kierren, B.; Malterre, D.; Panaccione, G.

    1997-11-01

    In this paper, we present a resonant photoemission study of the cerium 4f spectral function in Ce/Fe(100) interfaces. By covering cerium ultrathin films with lanthanum, we completely suppress the surface contribution of the spectra. Then we show that the cerium atoms at the interface are in an intermediate valent state, whereas the f{sup 1} configuration is stabilized in the top layer. This method allows us to obtain the genuine 4f spectral function of the interface, and could be extended to a study of Ce-based compounds. {copyright} {ital 1997} {ital The American Physical Society}

  11. Assignment of 4f->5d excitation spectra of Nd{sup 3+} in crystals using the simple model

    SciTech Connect

    Xia Shangda; Duan Changkui . E-mail: duanck@cqupt.edu.cn; Deng Quan; Ruan Gang

    2005-09-15

    The measured low-temperature (4f){sup 3}->(4f){sup 2}5d excitation spectra of Nd{sup 3+} doped in crystals YPO{sub 4}, CaF{sub 4} and LiYF{sub 4} [van Pieterson et al., Phys. Rev. B 65 (2002) 045113] are assigned and analyzed using the simple model proposed by Duan et al. [Phys. Rev. B 66 (2002) 155108] and Ning et al. [J. Alloy. Compd. 366 (2004) 34]. The agreement between theoretical and observed energies and intensities are acceptable, and at the same time the spectra are assigned in more detail.

  12. The use of acoustic imaging to reveal fossil fluvial systems—a case study from the southwestern Sea of Galilee

    NASA Astrophysics Data System (ADS)

    Reshef, Moshe; Ben-Avraham, Zvi; Tibor, Gideon; Marco, Shmuel

    2007-01-01

    The analysis of reflected, high-resolution seismic data shows a distinct separation of regions with good and poor seismic penetration. Additional analysis of core data revealed good correlation between grain size and seismic penetration. As a case study, a shallow geophysical survey using a Chirp profiler was conducted in the southwestern part of the Sea of Galilee. By correlating the seismic and core data we found that areas with good seismic penetration represent coarse clastics, while poor seismic penetration is related to fine clays. New detailed bathymetric mapping and bottom morphology images combined with the penetration characteristics of the Chirp signal reveal a large alluvial fan consisting mainly of coarse material (sand to pebbles). A fine-grained band of mostly clay-size material, associated with an asymmetric bathymetric channel, continues the trend of the old entrance of the Yavniel Creek into the Sea of Galilee. We interpret the fine-clay stripe to be a low energy streambed of the Yavniel Creek. The clear relations between the reflected Chirp signal and the grain size of the water-bottom sediments suggests that this type of survey can be used to characterize depositional environments.

  13. Time-series observations of hydrothermal discharge using an acoustic imaging sonar: a NEPTUNE observatory case study

    NASA Astrophysics Data System (ADS)

    Xu, Guangyu; Bemis, Karen; Jackson, Darrell; Light, Russ

    2015-04-01

    One intriguing feature of a mid-ocean ridge hydrothermal system is the intimate interconnections among hydrothermal, geological, oceanic, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. In this study, we present the time-series observations of a seafloor hydrothermal vent made using the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS is currently connected to the NEPTUNE observatory to monitor the hydrothermal discharge from the Grotto mound on the Endeavour Segment. Since its deployment in 2010, COVIS has recorded a 3-year long dataset of the shape and outflow fluxes of the buoyant plumes above Grotto along with the areal coverage of its diffuse flow discharge. The interpretation of these data in light of contemporaneous observations of ocean currents, venting temperature, and seismicity made using other NEPTUNE observatory instruments reveals significant impacts of ocean currents and geological events on hydrothermal venting. In this study, we summarize these findings in the hope of forming a more complete understanding of the intricate interconnections among oceanic, geological, and hydrothermal processes.

  14. Cyclo-octafluorobutane (PFC-318, c-C4F8) in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Muhle, J.; Vollmer, M. K.; Ivy, D. J.; Fraser, P.; Arnold, T.; Harth, C. M.; Salameh, P.; O'Doherty, S.; Young, D.; Steele, P.; Krummel, P. B.; Leist, M.; Rhee, T. S.; Schmidbauer, N.; Lunder, C.; Kim, J.; Kim, K.; Reimann, S.; Simmonds, P.; Prinn, R. G.; Weiss, R. F.

    2011-12-01

    The perfluorocarbon (PFC) cyclo-octafluorobutane (PFC-318, c-C4F8) is a very long-lived (up to 3,200 years) and potent greenhouse gas (100-year global warming potential up to 10,300) with a wide range of industrial uses. We present an update of our PFC-318 archived air and in situ measurements from remote and urban AGAGE (Advanced Global Atmospheric Gases Experiment) sites and affiliated stations in both hemispheres. Most importantly, we have significantly improved our Southern Hemisphere (SH) data density by measuring the Cape Grim Air Archive (1970s-2010). Combined with our previously presented measurements of archived Northern Hemisphere (NH) flasks (1973-2009), we provide thirty year spanning records for both hemispheres. We have also further extended our in situ records by continuing our measurements at all remote stations, with the longest hemispheric records starting in November 2007 at Jungfraujoch (NH) and in June 2010 at Cape Grim (SH). We compare our data with those of Oram (1999) and Oram et al. (2011), who focus on SH data alone, and with other previous data sets. From our measurements, we derive emission estimates using a chemical transport model and inverse method, and compare our results to previous measurement based emission estimates (top-down) and to the EDGAR emission database (bottom-up). As stated previously (Mühle et al., 2010), we find emissions of ~1 Gg/yr in recent years while EDGAR estimates only 0.02 Gg/yr for 2005, similar to what Oram et al. (2011) find. We conclude that PFC-318 is the third most important PFC in terms of abundance and CO2-equivalent emissions. We continue to observe mostly baseline concentrations at remote AGAGE stations and urban sites in the USA, Europe, and Australia, in contrast to frequent pollution episodes measured at sites in East Asia, indicating significant regional emissions in East Asia, as found by Saito et al. (2010). EDGAR, Emission Database for Global Atmospheric Research, release version 4.1. http://edgar.jrc.ec.europa.eu, last accessed 2011. Mühle et al., Cyclo-octafluorobutane (PFC-318) in the global atmosphere, Abstract A51D-0143, AGU Fall Meeting, San Francisco, CA, 13-17 Dec., 2010. Oram, Trends of long-lived anthropogenic halocarbons in the Southern Hemisphere and model calculation of global emissions, Ph.D. thesis, University of East Anglia, Norwich, U.K., 1999. Oram et al., Long-term tropospheric trend of octafluorocyclobutane (c-C4F8 or PFC-318), Atmos. Chem. Phys. Discuss., 11, 7, 19089-19111, 10.5194/acpd-11-19089-2011, 2011. Saito et al., Large Emissions of Perfluorocarbons in East Asia Deduced from Continuous Atmospheric Measurements, Environ. Sci. Technol., 44(11), 4089-4095, doi:10.1021/es1001488, 2010.

  15. Imaging Transverse Isotropic Properties of Muscle by Monitoring Acoustic Radiation Force Induced Shear Waves using a 2D Matrix Ultrasound Array

    PubMed Central

    Wang, Michael; Byram, Brett; Palmeri, Mark; Rouze, Ned; Nightingale, Kathryn

    2013-01-01

    A 2D matrix ultrasound array is used to monitor acoustic radiation force impulse (ARFI) induced shear wave propagation in 3D in excised canine muscle. From a single acquisition, both the shear wave phase and group velocity can be calculated to estimate the shear wave speed (SWS) along and across the fibers, as well as the fiber orientation in 3D. The true fiber orientation found using the 3D Radon Transform on B-mode volumes of the muscle was used to verify the fiber direction estimated from shear wave data. For the simplified imaging case when the ARFI push can be oriented perpendicular to the fibers, the error in estimating the fiber orientation using phase and group velocity measurements was 3.5 ±2.6° and 3.4 ±1.4° (mean ± standard deviation), respectively, over six acquisitions in different muscle samples. For the more general case when the push is oblique to the fibers, the angle between the push and the fibers is found using the dominant orientation of the shear wave displacement magnitude. In 30 acquisitions on six different muscle samples with oblique push angles up to 40°, the error in the estimated fiber orientation using phase and group velocity measurements was 5.4±2.9° and 5.3±3.2°, respectively, after estimating and accounting for the additional unknown push angle. Either the phase or group velocity measurements can be used to estimate fiber orientation and SWS along and across the fibers. Although it is possible to perform these measurements when the push is not perpendicular to the fibers, highly oblique push angles induce lower shear wave amplitudes which can cause inaccurate SWS measurements. PMID:23686942

  16. Normal values of liver shear wave velocity in healthy children assessed by acoustic radiation force impulse imaging using a convex probe and a linear probe.

    PubMed

    Fontanilla, Teresa; Cañas, Teresa; Macia, Araceli; Alfageme, Marta; Gutierrez Junquera, Carolina; Malalana, Ana; Luz Cilleruelo, Maria; Roman, Enriqueta; Miralles, Maria

    2014-03-01

    Acoustic radiation force impulse (ARFI) is an image-guided ultrasound elastography method that allows quantification of liver stiffness by measurement of shear wave velocity. One purpose of the work described in this article was to determine the normal liver stiffness values of healthy children using ARFI with two different probes, 4 C1 and 9 L4. Another purpose was to evaluate the effects of site of measurement, age, gender and body mass index on liver stiffness values. This prospective study included 60 healthy children (newborn to 14 y) divided into four age groups. One thousand two hundred ARFI measurements were performed, that is, 20 measurements per patient (5 measurements in each lobe, with each probe). Means, standard deviations (SD) and confidence intervals for velocity were calculated for each hepatic lobe and each probe in each age group and for the whole group. Mean shear wave velocity measured in the right lobe was 1.19 ± 0.04 m/s (SD = 0.13) with the 4 C1 transducer and 1.15 ± 0.04 m/s (SD = 0.15) with the 9 L4 transducer. Age had a small effect on shear wave measurements. Body mass index and sex had no significant effects on ARFI values, whereas site of measurement had a significant effect, with lower ARFI values in the right hepatic lobe. ARFI is a non-invasive technique that is feasible to perform in children with both the 4 C1 and 9 L4 probes. The aforementioned velocity values obtained in the right lobe may be used as reference values for normal liver stiffness in children. PMID:24361222

  17. Imaging an object buried in the sediment bottom of a deep sea by linearized inversion of synthetic and experimental scattered acoustic wavefields

    NASA Astrophysics Data System (ADS)

    Guillermin, R.; Lasaygues, P.; Sessarego, J. P.; Wirgin, A.

    2000-12-01

    This paper is concerned with the reconstruction, from measured (synthetic and experimental) data, of a 2D penetrable fluid-like cylindrical object of arbitrary cross-section imbedded in a fluid-like (sediment) half-space separated by a plane interface from another fluid half-space (deep water) wherein propagates a plane acoustic interrogating wave. The Green theorem is used to provide (1) a domain integral representation (DIR) of the scattered field and (2) a domain integral equation (DIE) for the pressure field in a test region containing the object. Both the DIE and DIR are discretized by collocation, thereby leading to a linear system of equations for the discretized pressure in the test region and a linear transform for the discretized pressure outside the test region. This is the means adopted herein for generating synthetic scattered field data. The inverse problem is linearized by replacing the (unknown) field in the test region by the (known) field which is established in the water/sediment system in the absence of the object. Using this Born approximation and minimizing the discrepancy between the measured and model scattered fields gives rise to a linear system of equations for the (unknown) discretized index-of-refraction contrast function in the test region. Due to its ill conditioned nature, the linear system is solved by a singular value decomposition technique. Images of the index-of-refraction contrast representation of the object obtained by inversion of both simulated and experimentally measured scattered field data are presented and compared.

  18. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: Examination of noise conduction through the ear canal, head, and bodya)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.

    2007-01-01

    Approaches were examined for reducing acoustic noise levels heard by subjects during functional magnetic resonance imaging (fMRI), a technique for localizing brain activation in humans. Specifically, it was examined whether a device for isolating the head and ear canal from sound (a “helmet”) could add to the isolation provided by conventional hearing protection devices (i.e., earmuffs and earplugs). Both subjective attenuation (the difference in hearing threshold with versus without isolation devices in place) and objective attenuation (difference in ear-canal sound pressure) were measured. In the frequency range of the most intense fMRI noise (1–1.4 kHz), a helmet, earmuffs, and earplugs used together attenuated perceived sound by 55–63 dB, whereas the attenuation provided by the conventional devices alone was substantially less: 30–37 dB for earmuffs, 25–28 dB for earplugs, and 39–41 dB for earmuffs and earplugs used together. The data enabled the clarification of the relative importance of ear canal, head, and body conduction routes to the cochlea under different conditions: At low frequencies (≤500 Hz), the ear canal was the dominant route of sound conduction to the cochlea for all of the device combinations considered. At higher frequencies (>500 Hz), the ear canal was the dominant route when either earmuffs or earplugs were worn. However, the dominant route of sound conduction was through the head when both earmuffs and earplugs were worn, through both ear canal and body when a helmet and earmuffs were worn, and through the body when a helmet, earmuffs, and earplugs were worn. It is estimated that a helmet, earmuffs, and earplugs together will reduce the most intense fMRI noise levels experienced by a subject to 60–65 dB SPL. Even greater reductions in noise should be achievable by isolating the body from the surrounding noise field. PMID:11206150

  19. Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields

    NASA Astrophysics Data System (ADS)

    Uemura, Yuuki; Sasaki, Kazuma; Minami, Kyohei; Sato, Toshio; Choi, Pak-Kon; Takeuchi, Shinichi

    2015-07-01

    We observed the behavior of acoustic cavitation by sonochemical luminescence and ultrasound B-mode imaging with ultrasound diagnostic equipment in a standing-wave ultrasound field and focused ultrasound field. Furthermore, in order to investigate the influence of acoustic streaming on acoustic cavitation bubbles, we performed flow analysis of the sound field using particle image velocimetry. We found that acoustic cavitation bubbles are stirred by circulating acoustic streaming and local vortexes occurring in the water tank of the standing-wave ultrasound exposure system. We considered that the acoustic cavitation bubbles are carried away by acoustic streaming due to the high ultrasound pressure in the focused ultrasound field.

  20. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  1. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  2. Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation

    SciTech Connect

    Lee, Sanghun Park, Sung Soo

    2013-08-15

    Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The core–shell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: • Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. • The unit-cell parameters from experimental studies are reproduced by the core–shell model. • Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. • It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

  3. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly.

    PubMed

    Gandin, Valentina; Masvidal, Laia; Cargnello, Marie; Gyenis, Laszlo; McLaughlan, Shannon; Cai, Yutian; Tenkerian, Clara; Morita, Masahiro; Balanathan, Preetika; Jean-Jean, Olivier; Stambolic, Vuk; Trost, Matthias; Furic, Luc; Larose, Louise; Koromilas, Antonis E; Asano, Katsura; Litchfield, David; Larsson, Ola; Topisirovic, Ivan

    2016-01-01

    Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2β phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2β mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2β and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation. PMID:27040916

  4. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly

    PubMed Central

    Gandin, Valentina; Masvidal, Laia; Cargnello, Marie; Gyenis, Laszlo; McLaughlan, Shannon; Cai, Yutian; Tenkerian, Clara; Morita, Masahiro; Balanathan, Preetika; Jean-Jean, Olivier; Stambolic, Vuk; Trost, Matthias; Furic, Luc; Larose, Louise; Koromilas, Antonis E.; Asano, Katsura; Litchfield, David; Larsson, Ola; Topisirovic, Ivan

    2016-01-01

    Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2β phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2β mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2β and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation. PMID:27040916

  5. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    SciTech Connect

    Bagus, Paul S.; Nelin, Constance J.; Ilton, Eugene S.

    2013-12-28

    X-ray photoelectron spectroscopy (XPS), and in particular the U4f level, has been widely used to elucidate the chemical state of uranium in various materials. In large part, previous experimental work has relied on comparing the U4f spectra of an unknown to some “standard” or using qualitative intuitive judgments on the expected behavior of the primary lines and satellite structures as a function of oxidation state and bonding environment. Such approaches are useful and can be sufficiently robust to make defensible claims. Nonetheless, there is no quantitative understanding of the chemistry and physics that control satellite structures or even the shape of the primary peaks. To address this issue, we used a rigorous, strictly ab initio theoretical approach to investigate the U(4f) XPS of U oxides with formal U(VI) and U(IV) oxidation states. Our theoretical studies are based on the electronic structures of embedded cluster models, where bonding between U and O is explicitly incorporated. We demonstrate that treatment of the many-body character of the cluster wavefunctions is essential to correctly model and interpret the U4f XPS. Here we definitively show that shake configurations, where an electron is transferred from a dominantly O2p bonding orbital into dominantly 5f or 6d antibonding orbitals, are indeed responsible for the major satellite feat