Sample records for acoustic cardiographic parameters

  1. 21 CFR 870.2840 - Apex cardiographic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Apex cardiographic transducer. 870.2840 Section 870.2840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2840 Apex...

  2. 21 CFR 870.2310 - Apex cardiograph (vibrocardiograph).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Apex cardiograph (vibrocardiograph). 870.2310 Section 870.2310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2310 Apex...

  3. 21 CFR 870.2310 - Apex cardiograph (vibrocardiograph).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Apex cardiograph (vibrocardiograph). 870.2310 Section 870.2310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2310 Apex...

  4. 21 CFR 870.2840 - Apex cardiographic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Apex cardiographic transducer. 870.2840 Section 870.2840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2840 Apex...

  5. A new method of cardiographic image segmentation based on grammar

    NASA Astrophysics Data System (ADS)

    Hamdi, Salah; Ben Abdallah, Asma; Bedoui, Mohamed H.; Alimi, Adel M.

    2011-10-01

    The measurement of the most common ultrasound parameters, such as aortic area, mitral area and left ventricle (LV) volume, requires the delineation of the organ in order to estimate the area. In terms of medical image processing this translates into the need to segment the image and define the contours as accurately as possible. The aim of this work is to segment an image and make an automated area estimation based on grammar. The entity "language" will be projected to the entity "image" to perform structural analysis and parsing of the image. We will show how the idea of segmentation and grammar-based area estimation is applied to real problems of cardio-graphic image processing.

  6. Beyond auscultation: acoustic cardiography in clinical practice.

    PubMed

    Wen, Yong-Na; Lee, Alex Pui-Wai; Fang, Fang; Jin, Chun-Na; Yu, Cheuk-Man

    2014-04-01

    Cardiac auscultation by stethoscope is widely used but limited by low sensitivity and accuracy. Phonocardiogram was developed in an attempt to provide quantitative and qualitative information of heart sounds and murmurs by transforming acoustic signal into visual wavelet. Although phonocardiogram provides objective heart sound information and holds diagnostic potentials of different heart problems, its examination procedure is time-consuming and it requires specially trained technicians to operate the device. Acoustic cardiography (AUDICOR, Inovise Medical, Inc., Portland, OR, USA) is a major recent advance in the evolution of cardiac auscultation technology. The technique is more efficient and less operator-dependent. It synchronizes cardiac auscultation with ECG recording and provides a comprehensive assessment of both mechanical and electronic function of the heart. The application of acoustic cardiography is far beyond auscultation only. It generates various parameters which have been proven to correlate with gold standards in heart failure diagnosis and ischemic heart disease detection. Its application can be extended to other diseases, including LV hypertrophy, constrictive pericarditis, sleep apnea and ventricular fibrillation. The newly developed ambulatory acoustic cardiography is potentially used in heart failure follow-up in both home and hospital setting. This review comprehensively summarizes acoustic cardiographic research, including the most recent development. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Prediction of acoustic feature parameters using myoelectric signals.

    PubMed

    Lee, Ki-Seung

    2010-07-01

    It is well-known that a clear relationship exists between human voices and myoelectric signals (MESs) from the area of the speaker's mouth. In this study, we utilized this information to implement a speech synthesis scheme in which MES alone was used to predict the parameters characterizing the vocal-tract transfer function of specific speech signals. Several feature parameters derived from MES were investigated to find the optimal feature for maximization of the mutual information between the acoustic and the MES features. After the optimal feature was determined, an estimation rule for the acoustic parameters was proposed, based on a minimum mean square error (MMSE) criterion. In a preliminary study, 60 isolated words were used for both objective and subjective evaluations. The results showed that the average Euclidean distance between the original and predicted acoustic parameters was reduced by about 30% compared with the average Euclidean distance of the original parameters. The intelligibility of the synthesized speech signals using the predicted features was also evaluated. A word-level identification ratio of 65.5% and a syllable-level identification ratio of 73% were obtained through a listening test.

  8. Acoustic parameters inversion and sediment properties in the Yellow River reservoir

    NASA Astrophysics Data System (ADS)

    Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei

    2018-03-01

    The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.

  9. Virtual Acoustics: Evaluation of Psychoacoustic Parameters

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    Current virtual acoustic displays for teleconferencing and virtual reality are usually limited to very simple or non-existent renderings of reverberation, a fundamental part of the acoustic environmental context that is encountered in day-to-day hearing. Several research efforts have produced results that suggest that environmental cues dramatically improve perceptual performance within virtual acoustic displays, and that is possible to manipulate signal processing parameters to effectively reproduce important aspects of virtual acoustic perception in real-time. However, the computational resources for rendering reverberation remain formidable. Our efforts at NASA Ames have been focused using a several perceptual threshold metrics, to determine how various "trade-offs" might be made in real-time acoustic rendering. This includes both original work and confirmation of existing data that was obtained in real rather than virtual environments. The talk will consider the importance of using individualized versus generalized pinnae cues (the "Head-Related Transfer Function"); the use of head movement cues; threshold data for early reflections and late reverberation; and consideration of the necessary accuracy for measuring and rendering octave-band absorption characteristics of various wall surfaces. In addition, a consideration of the analysis-synthesis of the reverberation within "everyday spaces" (offices, conference rooms) will be contrasted to the commonly used paradigm of concert hall spaces.

  10. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    NASA Astrophysics Data System (ADS)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide

  11. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dependencies and Ill-designed Parameters Within High-speed Videoendoscopy and Acoustic Signal Analysis.

    PubMed

    Schlegel, Patrick; Stingl, Michael; Kunduk, Melda; Kniesburges, Stefan; Bohr, Christopher; Döllinger, Michael

    2018-05-31

    The phonatory process is often judged during sustained phonation by analyzing the acoustic voice signal and the vocal fold vibrations. Many formulas and parameters have been suggested for qualifying the characteristics of the acoustic signal and the vocal fold vibrations during sustained phonation. These parameters are directly computed from the acoustic signal and the endoscopic glottal area waveform (GAW). The GAW is calculated from laryngeal high-speed videoendoscopy (HSV) recordings and describes the increase and decrease of the glottal area during the phonation process, that is, the opening and closing of the two oscillating vocal folds over time. However, some of the parameters have strong mathematical dependencies with one another and some are ill-defined. The purpose of this study is to identify mathematical dependencies between parameters with the aim of reducing their numbers and suggesting which parameters may best describe the properties of the GAW and the acoustical signal. In this preliminary investigation, 20 frequently used parameters are examined: 10 GAW only and 10 both GAW and acoustic parameters. In total 13 parameters can be neglected because of mathematical dependencies. In addition, nine of these parameters show problematic features that range from unexpected behavior to ill definition. Reducing the number of parameters appears to be necessary to standardize vocal fold function analysis. This may lead to better comparability of research results from different studies. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. A computer program for processing impedance cardiographic data: Improving accuracy through user-interactive software

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Naifeh, Karen; Thrasher, Chet

    1988-01-01

    This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes.

  14. [Acoustical parameters of toys].

    PubMed

    Harazin, Barbara

    2010-01-01

    Toys play an important role in the development of the sight and hearing concentration in children. They also support the development of manipulation, gently influence a child and excite its emotional activities. A lot of toys emit various sounds. The aim of the study was to assess sound levels produced by sound-emitting toys used by young children. Acoustical parameters of noise were evaluated for 16 sound-emitting plastic toys in laboratory conditions. The noise level was recorded at four different distances, 10, 20, 25 and 30 cm, from the toy. Measurements of A-weighted sound pressure levels and noise levels in octave band in the frequency range from 31.5 Hz to 16 kHz were performed at each distance. Taking into consideration the highest equivalent A-weighted sound levels produced by tested toys, they can be divided into four groups: below 70 dB (6 toys), from 70 to 74 dB (4 toys), from 75 to 84 dB (3 toys) and from 85 to 94 dB (3 toys). The majority of toys (81%) emitted dominant sound levels in octave band at the frequency range from 2 kHz to 4 kHz. Sound-emitting toys produce the highest acoustic energy at the frequency range of the highest susceptibility of the auditory system. Noise levels produced by some toys can be dangerous to children's hearing.

  15. Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.

    2000-01-01

    Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.

  16. Operational Parameters in Acoustic Signature Inspection of Railroad Wheels

    DOT National Transportation Integrated Search

    1980-04-01

    A brief summary is given of some prior studies which established the feasibility of using acoustic signatures for inspection of railroad wheels. The purpose of the present work was to elucidate operational parameters which would be of importance for ...

  17. The Effects of Size and Type of Vocal Fold Polyp on Some Acoustic Voice Parameters.

    PubMed

    Akbari, Elaheh; Seifpanahi, Sadegh; Ghorbani, Ali; Izadi, Farzad; Torabinezhad, Farhad

    2018-03-01

    Vocal abuse and misuse would result in vocal fold polyp. Certain features define the extent of vocal folds polyp effects on voice acoustic parameters. The present study aimed to define the effects of polyp size on acoustic voice parameters, and compare these parameters in hemorrhagic and non-hemorrhagic polyps. In the present retrospective study, 28 individuals with hemorrhagic or non-hemorrhagic polyps of the true vocal folds were recruited to investigate acoustic voice parameters of vowel/ æ/ computed by the Praat software. The data were analyzed using the SPSS software, version 17.0. According to the type and size of polyps, mean acoustic differences and correlations were analyzed by the statistical t test and Pearson correlation test, respectively; with significance level below 0.05. The results indicated that jitter and the harmonics-to-noise ratio had a significant positive and negative correlation with the polyp size (P=0.01), respectively. In addition, both mentioned parameters were significantly different between the two types of the investigated polyps. Both the type and size of polyps have effects on acoustic voice characteristics. In the present study, a novel method to measure polyp size was introduced. Further confirmation of this method as a tool to compare polyp sizes requires additional investigations.

  18. The Effects of Size and Type of Vocal Fold Polyp on Some Acoustic Voice Parameters

    PubMed Central

    Akbari, Elaheh; Seifpanahi, Sadegh; Ghorbani, Ali; Izadi, Farzad; Torabinezhad, Farhad

    2018-01-01

    Background Vocal abuse and misuse would result in vocal fold polyp. Certain features define the extent of vocal folds polyp effects on voice acoustic parameters. The present study aimed to define the effects of polyp size on acoustic voice parameters, and compare these parameters in hemorrhagic and non-hemorrhagic polyps. Methods In the present retrospective study, 28 individuals with hemorrhagic or non-hemorrhagic polyps of the true vocal folds were recruited to investigate acoustic voice parameters of vowel/ æ/ computed by the Praat software. The data were analyzed using the SPSS software, version 17.0. According to the type and size of polyps, mean acoustic differences and correlations were analyzed by the statistical t test and Pearson correlation test, respectively; with significance level below 0.05. Results The results indicated that jitter and the harmonics-to-noise ratio had a significant positive and negative correlation with the polyp size (P=0.01), respectively. In addition, both mentioned parameters were significantly different between the two types of the investigated polyps. Conclusion Both the type and size of polyps have effects on acoustic voice characteristics. In the present study, a novel method to measure polyp size was introduced. Further confirmation of this method as a tool to compare polyp sizes requires additional investigations. PMID:29749984

  19. Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Palchikovskiy, V. V.; Belyaev, I. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Khramtsov, I. V.; Korin, I. A.; Sorokin, E. V.; Kustov, O. Yu.

    2017-01-01

    The acoustic parameters of a new anechoic chamber constructed at Perm National Research Polytechnic University (PNRPU) are presented. This chamber is designed to be used, among other things, for measuring noise from aerodynamic sources. Sound-absorbing wedges lining the walls of the chamber were studied in an interferometer with normal wave incidence. The results are compared to the characteristics of sound-absorbing wedges of existing anechoic facilities. Metrological examination of the acoustic parameters of the PNRPU anechoic chamber demonstrates that free field conditions are established in it, which will make it possible to conduct quantitative acoustic experiments.

  20. Design parameters of a miniaturized piezoelectric underwater acoustic transmitter.

    PubMed

    Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J

    2012-01-01

    PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters--the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level.

  1. Parameter estimation in a structural acoustic system with fully nonlinear coupling conditions

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.

    1994-01-01

    A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear. As a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximations results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for systems excitations and data collection.

  2. Optimization of input parameters of acoustic-transfection for the intracellular delivery of macromolecules using FRET-based biosensors

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.

    2016-03-01

    Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.

  3. Enhanced nearfield acoustic holography for larger distances of reconstructions using fixed parameter Tikhonov regularization

    DOE PAGES

    Chelliah, Kanthasamy; Raman, Ganesh G.; Muehleisen, Ralph T.

    2016-07-07

    This paper evaluates the performance of various regularization parameter choice methods applied to different approaches of nearfield acoustic holography when a very nearfield measurement is not possible. For a fixed grid resolution, the larger the hologram distance, the larger the error in the naive nearfield acoustic holography reconstructions. These errors can be smoothed out by using an appropriate order of regularization. In conclusion, this study shows that by using a fixed/manual choice of regularization parameter, instead of automated parameter choice methods, reasonably accurate reconstructions can be obtained even when the hologram distance is 16 times larger than the grid resolution.

  4. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.

    PubMed

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L

    2018-03-01

    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  5. Effects of sound source location and direction on acoustic parameters in Japanese churches.

    PubMed

    Soeta, Yoshiharu; Ito, Ken; Shimokura, Ryota; Sato, Shin-ichi; Ohsawa, Tomohiro; Ando, Yoichi

    2012-02-01

    In 1965, the Catholic Church liturgy changed to allow priests to face the congregation. Whereas Church tradition, teaching, and participation have been much discussed with respect to priest orientation at Mass, the acoustical changes in this regard have not yet been examined scientifically. To discuss acoustic desired within churches, it is necessary to know the acoustical characteristics appropriate for each phase of the liturgy. In this study, acoustic measurements were taken at various source locations and directions using both old and new liturgies performed in Japanese churches. A directional loudspeaker was used as the source to provide vocal and organ acoustic fields, and impulse responses were measured. Various acoustical parameters such as reverberation time and early decay time were analyzed. The speech transmission index was higher for the new Catholic liturgy, suggesting that the change in liturgy has improved speech intelligibility. Moreover, the interaural cross-correlation coefficient and early lateral energy fraction were higher and lower, respectively, suggesting that the change in liturgy has made the apparent source width smaller. © 2012 Acoustical Society of America

  6. Speaker verification system using acoustic data and non-acoustic data

    DOEpatents

    Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  7. The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements

    USGS Publications Warehouse

    Carroll, R.D.

    1969-01-01

    A statistical analysis was made of the relationship of various acoustic parameters of volcanic rocks to compressional wave velocities for data obtained in a volcanic region in Nevada. Some additional samples, chiefly granitic rocks, were also included in the study to extend the range of parameters and the variety of siliceous rock types sampled. Laboratory acoustic measurements obtained on 62 dry core samples were grouped with similar measurements obtained from geophysical logging devices at several depth intervals in a hole from which 15 of the core samples had been obtained. The effects of lithostatic and hydrostatic load on changing the rock acoustic parameters measured in the hole were noticeable when compared with the laboratory measurements on the same core. The results of the analyses determined by grouping all of the data, however, indicate that dynamic Young's, shear and bulk modulus, shear velocity, shear and compressional characteristic impedance, as well as amplitude and energy reflection coefficients may be reliably estimated on the basis of the compressional wave velocities of the rocks investigated. Less precise estimates can be made of density based on the rock compressional velocity. The possible extension of these relationships to include many siliceous rocks is suggested. ?? 1969.

  8. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  9. Period for Normalization of Voice Acoustic Parameters in Indian Pediatric Cochlear Implantees.

    PubMed

    Joy, Jeena V; Deshpande, Shweta; Vaid, Dr Neelam

    2017-05-01

    The purpose of this study was to investigate the duration required by children with cochlear implants to approximate the norms of voice acoustic parameters. The study design is retrospective. Thirty children with cochlear implants (chronological ages ranging between 4.1 and 6.7 years) were divided into three groups, based on the postimplantation duration. Ten normal-hearing children (chronological ages ranging between 4 and 7 years) were selected as the control group. All implanted children underwent an objective voice analysis using Dr. Speech software (Tiger DRS, Inc., Seattle, WA, USA) at 6 months and at 1 and 2 years of implant use. Voice analysis was done for the children in the control group and means were derived for all the parameters analyzed to obtain the normal values. Habitual fundamental frequency (HFF), jitter (frequency variation), and shimmer (amplitude variation) were the voice acoustic parameters analyzed for the vowels |a|, |i|, and |u|. The obtained values of these parameters were then compared with the norms. HFF for the children with implant use for 6 months and 1 year did significantly differ from the control group. However, there was no significant difference (P > 0.5) observed in the children with implant use for 2 years, thus matching the norms. Jitter and shimmer showed a significant difference (P < 0.5) even at 2 years of implant use when compared with the control group. The findings of the study divulge that children with cochlear implants approximate age-matched normal-hearing kids with respect to the voice acoustic parameter of HFF by 2 years of implant use. However, jitter and shimmer were not found to stabilize for the duration studied. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Loudness and acoustic parameters of popular children's toys.

    PubMed

    Ghavami, Yaser; Bhatt, Jay; Maducdoc, Marlon; Yau, Amy; Mahboubi, Hossein; Ziai, Kasra; Lin, Harrison W; Djalilian, Hamid R

    2015-12-01

    This project was conducted to evaluate the loudness and acoustic parameters of toys designed for children. In addition, we investigated whether occluding the toys' speaker with tape would result in a significant loudness reduction; thereby potentially reducing the risk of noise induced hearing loss. Twenty-six toys were selected after an initial screening at two national retailers. Noise amplitudes at 0.25, 0.5, 1, 2, 4, and 8kHz were measured using a digital sound level meter at a distance of 0 and 30cm. The toys' speakers were then occluded using adhesive tape and the same acoustic parameters were re-measured. Mean maximum noise amplitude of the toys at 0cm and 30cm was 104dBA (range, 97-125dBA) and 76dBA (range, 67-86dBA), respectively. Mean maximum noise amplitude after occlusion at 0cm and 30cm distances was 88dBA (range, 73-110dBA) and 66dBA (range, 55-82dBA), respectively, with a p-value <0.001. Proper use of the loudest toys at a distant of 30cm between the speaker and the child's ear will likely not pose a risk of noise-induced hearing loss. However, since most toys are used at closer distances, use of adhesive tape is recommended as an effective modification to decrease the risk of hearing loss. Published by Elsevier Ireland Ltd.

  11. Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huidong; Deng, Zhiqun; Yuan, Yong

    2012-07-02

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. As part of the transmitter downsizing effort some of the design parameters of the lead zirconate titanate (PZT) ceramic tube transducer in the transmitter were studied, including the type of PZT, the backing material, the necessary drive voltage, the transmitting bandwidth and the length ofmore » the transducer. It was found that, to satisfy the 156-dB source level requirement of JSATS, a square wave with a 10-volt amplitude is required to drive 'soft' PZT transducers. PZT-5H demonstrated the best source level performance. For Navy types I and II, 16 volts or 18 volts were needed. Ethylene-propylene-diene monomer (EPDM) closed-cell foam was found to be the backing material providing the highest source level. The effect of tube length on the source level is also demonstrated in this paper, providing quantitative information for downsizing of small piezoelectric transmitters.« less

  12. Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter

    PubMed Central

    Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J.

    2012-01-01

    PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters—the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level. PMID:23012534

  13. Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters.

    PubMed

    Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong

    2017-04-01

    This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.

  14. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels

    PubMed Central

    2014-01-01

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583

  15. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    PubMed

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  16. Combined Use of Standard and Throat Microphones for Measurement of Acoustic Voice Parameters and Voice Categorization.

    PubMed

    Uloza, Virgilijus; Padervinskis, Evaldas; Uloziene, Ingrida; Saferis, Viktoras; Verikas, Antanas

    2015-09-01

    The aim of the present study was to evaluate the reliability of the measurements of acoustic voice parameters obtained simultaneously using oral and contact (throat) microphones and to investigate utility of combined use of these microphones for voice categorization. Voice samples of sustained vowel /a/ obtained from 157 subjects (105 healthy and 52 pathological voices) were recorded in a soundproof booth simultaneously through two microphones: oral AKG Perception 220 microphone (AKG Acoustics, Vienna, Austria) and contact (throat) Triumph PC microphone (Clearer Communications, Inc, Burnaby, Canada) placed on the lamina of thyroid cartilage. Acoustic voice signal data were measured for fundamental frequency, percent of jitter and shimmer, normalized noise energy, signal-to-noise ratio, and harmonic-to-noise ratio using Dr. Speech software (Tiger Electronics, Seattle, WA). The correlations of acoustic voice parameters in vocal performance were statistically significant and strong (r = 0.71-1.0) for the entire functional measurements obtained for the two microphones. When classifying into healthy-pathological voice classes, the oral-shimmer revealed the correct classification rate (CCR) of 75.2% and the throat-jitter revealed CCR of 70.7%. However, combination of both throat and oral microphones allowed identifying a set of three voice parameters: throat-signal-to-noise ratio, oral-shimmer, and oral-normalized noise energy, which provided the CCR of 80.3%. The measurements of acoustic voice parameters using a combination of oral and throat microphones showed to be reliable in clinical settings and demonstrated high CCRs when distinguishing the healthy and pathological voice patient groups. Our study validates the suitability of the throat microphone signal for the task of automatic voice analysis for the purpose of voice screening. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening.

    PubMed

    Uloza, Virgilijus; Padervinskis, Evaldas; Vegiene, Aurelija; Pribuisiene, Ruta; Saferis, Viktoras; Vaiciukynas, Evaldas; Gelzinis, Adas; Verikas, Antanas

    2015-11-01

    The objective of this study is to evaluate the reliability of acoustic voice parameters obtained using smart phone (SP) microphones and investigate the utility of use of SP voice recordings for voice screening. Voice samples of sustained vowel/a/obtained from 118 subjects (34 normal and 84 pathological voices) were recorded simultaneously through two microphones: oral AKG Perception 220 microphone and SP Samsung Galaxy Note3 microphone. Acoustic voice signal data were measured for fundamental frequency, jitter and shimmer, normalized noise energy (NNE), signal to noise ratio and harmonic to noise ratio using Dr. Speech software. Discriminant analysis-based Correct Classification Rate (CCR) and Random Forest Classifier (RFC) based Equal Error Rate (EER) were used to evaluate the feasibility of acoustic voice parameters classifying normal and pathological voice classes. Lithuanian version of Glottal Function Index (LT_GFI) questionnaire was utilized for self-assessment of the severity of voice disorder. The correlations of acoustic voice parameters obtained with two types of microphones were statistically significant and strong (r = 0.73-1.0) for the entire measurements. When classifying into normal/pathological voice classes, the Oral-NNE revealed the CCR of 73.7% and the pair of SP-NNE and SP-shimmer parameters revealed CCR of 79.5%. However, fusion of the results obtained from SP voice recordings and GFI data provided the CCR of 84.60% and RFC revealed the EER of 7.9%, respectively. In conclusion, measurements of acoustic voice parameters using SP microphone were shown to be reliable in clinical settings demonstrating high CCR and low EER when distinguishing normal and pathological voice classes, and validated the suitability of the SP microphone signal for the task of automatic voice analysis and screening.

  18. Parameters influencing focalization spot in time reversal of acoustic waves

    NASA Astrophysics Data System (ADS)

    Zophoniasson, Harald; Bolzmacher, Christian; Hafez, Moustafa

    2015-05-01

    Time reversal is an approach that can be used to focus acoustic waves in a particular location on a surface, allowing a multitouch tactile feedback interaction. The spatial resolution in this case depends on several parameters, such as geometrical parameters, frequency used and material properties, described by the Lamb wave theory. This paper highlights the impact of frequency, geometrical parameters such as plate thickness and transducer's surface on the focused spot dimensions. In this paper a study of the influence of the plate's thickness and the frequency bandwidth used in the focusing process is presented. It is also shown that the dimension of the piezoelectric diaphragms used has little influence on the spatial resolution. Resonant behavior of the plate and its implication on focus point dimension and focalization contrast were investigated.

  19. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.

    PubMed

    Mencio, Caitlin; Kuberan, Balagurunathan; Goller, Franz

    2017-02-01

    Neural control of complex vocal behaviors, such as birdsong and speech, requires integration of biomechanical nonlinearities through muscular output. Although control of airflow and tension of vibrating tissues are known functions of vocal muscles, it remains unclear how specific muscle characteristics contribute to specific acoustic parameters. To address this gap, we removed heparan sulfate chains using heparitinases to perturb neuromuscular transmission subtly in the syrinx of adult male zebra finches (Taeniopygia guttata). Infusion of heparitinases into ventral syringeal muscles altered their excitation threshold and reduced neuromuscular transmission changing their ability to modulate airflow. The changes in muscle activation dynamics caused a reduction in frequency modulation rates and elimination of many high-frequency syllables but did not alter the fundamental frequency of syllables. Sound amplitude was reduced and sound onset pressure was increased, suggesting a role of muscles in the induction of self-sustained oscillations under low-airflow conditions, thus enhancing vocal efficiency. These changes were reversed to preinfusion levels by 7 days after infusion. These results illustrate complex interactions between the control of airflow and tension and further define the importance of syringeal muscle in the control of a variety of acoustic song characteristics. In summary, the findings reported here show that altering neuromuscular transmission can lead to reversible changes to the acoustic structure of song. Understanding the full extent of muscle involvement in song production is critical in decoding the motor program for the production of complex vocal behavior, including our search for parallels between birdsong and human speech motor control. It is largely unknown how fine motor control of acoustic parameters is achieved in vocal organs. Subtle manipulation of syringeal muscle function was used to test how active motor control influences acoustic

  20. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  1. Noise disturbance in open-plan study environments: a field study on noise sources, student tasks and room acoustic parameters.

    PubMed

    Braat-Eggen, P Ella; van Heijst, Anne; Hornikx, Maarten; Kohlrausch, Armin

    2017-09-01

    The aim of this study is to gain more insight in the assessment of noise in open-plan study environments and to reveal correlations between noise disturbance experienced by students and the noise sources they perceive, the tasks they perform and the acoustic parameters of the open-plan study environment they work in. Data were collected in five open-plan study environments at universities in the Netherlands. A questionnaire was used to investigate student tasks, perceived sound sources and their perceived disturbance, and sound measurements were performed to determine the room acoustic parameters. This study shows that 38% of the surveyed students are disturbed by background noise in an open-plan study environment. Students are mostly disturbed by speech when performing complex cognitive tasks like studying for an exam, reading and writing. Significant but weak correlations were found between the room acoustic parameters and noise disturbance of students. Practitioner Summary: A field study was conducted to gain more insight in the assessment of noise in open-plan study environments at universities in the Netherlands. More than one third of the students was disturbed by noise. An interaction effect was found for task type, source type and room acoustic parameters.

  2. Monaural room acoustic parameters from music and speech.

    PubMed

    Kendrick, Paul; Cox, Trevor J; Li, Francis F; Zhang, Yonggang; Chambers, Jonathon A

    2008-07-01

    This paper compares two methods for extracting room acoustic parameters from reverberated speech and music. An approach which uses statistical machine learning, previously developed for speech, is extended to work with music. For speech, reverberation time estimations are within a perceptual difference limen of the true value. For music, virtually all early decay time estimations are within a difference limen of the true value. The estimation accuracy is not good enough in other cases due to differences between the simulated data set used to develop the empirical model and real rooms. The second method carries out a maximum likelihood estimation on decay phases at the end of notes or speech utterances. This paper extends the method to estimate parameters relating to the balance of early and late energies in the impulse response. For reverberation time and speech, the method provides estimations which are within the perceptual difference limen of the true value. For other parameters such as clarity, the estimations are not sufficiently accurate due to the natural reverberance of the excitation signals. Speech is a better test signal than music because of the greater periods of silence in the signal, although music is needed for low frequency measurement.

  3. Energy- and wave-based beam-tracing prediction of room-acoustical parameters using different boundary conditions.

    PubMed

    Yousefzadeh, Behrooz; Hodgson, Murray

    2012-09-01

    A beam-tracing model was used to study the acoustical responses of three empty, rectangular rooms with different boundary conditions. The model is wave-based (accounting for sound phase) and can be applied to rooms with extended-reaction surfaces that are made of multiple layers of solid, fluid, or poroelastic materials-the acoustical properties of these surfaces are calculated using Biot theory. Three room-acoustical parameters were studied in various room configurations: sound strength, reverberation time, and RApid Speech Transmission Index. The main objective was to investigate the effects of modeling surfaces as either local or extended reaction on predicted values of these three parameters. Moreover, the significance of modeling interference effects was investigated, including the study of sound phase-change on surface reflection. Modeling surfaces as of local or extended reaction was found to be significant for surfaces consisting of multiple layers, specifically when one of the layers is air. For multilayers of solid materials with an air-cavity, this was most significant around their mass-air-mass resonance frequencies. Accounting for interference effects made significant changes in the predicted values of all parameters. Modeling phase change on reflection, on the other hand, was found to be relatively much less significant.

  4. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans.

    PubMed

    Gingras, Bruno; Mohandesan, Elmira; Boko, Drasko; Fitch, W Tecumseh

    2013-07-01

    Anuran vocalizations, especially their advertisement calls, are largely species-specific and can be used to identify taxonomic affiliations. Because anurans are not vocal learners, their vocalizations are generally assumed to have a strong genetic component. This suggests that the degree of similarity between advertisement calls may be related to large-scale phylogenetic relationships. To test this hypothesis, advertisement calls from 90 species belonging to four large clades (Bufo, Hylinae, Leptodactylus, and Rana) were analyzed. Phylogenetic distances were estimated based on the DNA sequences of the 12S mitochondrial ribosomal RNA gene, and, for a subset of 49 species, on the rhodopsin gene. Mean values for five acoustic parameters (coefficient of variation of root-mean-square amplitude, dominant frequency, spectral flux, spectral irregularity, and spectral flatness) were computed for each species. We then tested for phylogenetic signal on the body-size-corrected residuals of these five parameters, using three statistical tests (Moran's I, Mantel, and Blomberg's K) and three models of genetic distance (pairwise distances, Abouheif's proximities, and the variance-covariance matrix derived from the phylogenetic tree). A significant phylogenetic signal was detected for most acoustic parameters on the 12S dataset, across statistical tests and genetic distance models, both for the entire sample of 90 species and within clades in several cases. A further analysis on a subset of 49 species using genetic distances derived from rhodopsin and from 12S broadly confirmed the results obtained on the larger sample, indicating that the phylogenetic signals observed in these acoustic parameters can be detected using a variety of genetic distance models derived either from a variable mitochondrial sequence or from a conserved nuclear gene. We found a robust relationship, in a large number of species, between anuran phylogenetic relatedness and acoustic similarity in the

  5. Finite-element analysis of scattering parameters of surface acoustic wave bandpass filter formed on barium titanate thin film

    NASA Astrophysics Data System (ADS)

    Timoshenko; Kalinchuk; Shirokov

    2018-04-01

    The frequency dependence of scattering parameters of interdigital surface acoustic wave transducers placed on ferroelectric barium titanate (BaTiO3) epitaxial film in c-phase coated over magnesium oxide has been studied using the finite-element method (FEM) approach along with the perfectly matched layer (PML) technique. The interdigital transducer which has a comb-like structure with aluminum electrodes excites the mechanical wave. The distance between the fingers allows tuning the frequency properties of the wave propagation. The magnesium oxide is taken as the substrate. The two-dimensional model of two-port surface acoustic wave filter is created to calculate scattering parameters and to show how to design the fixture in COMSOLTM. Some practical computational challenges of finite element modeling of SAW devices in COMSOLTM are shown. The effect of lattice misfit strain on acoustic properties of heterostructures of BaTiO3 epitaxial film in c-phase at room temperature is discussed in present article for two low-frequency surface acoustic resonances.

  6. Assessment of impact of acoustic and nonacoustic parameters on performance and well-being

    NASA Astrophysics Data System (ADS)

    Mellert, Volker; Weber, Reinhard; Nocke, Christian

    2004-05-01

    It is of interest to estimate the influence of the environment in a specific work place area on the performance and well-being of people. Investigations have been carried out for the cabin environment of an airplane and for class rooms. Acoustics is only one issue of a variety of environmental factors, therefore the combined impact of temperature, humidity, air quality, lighting, vibration, etc. on human perception is the subject of psychophysical research. Methods for the objective assessment of subjective impressions have been developed for applications in acoustics for a long time, e.g., for concert hall acoustics, noise evaluation, and sound design. The methodology relies on questionnaires, measurement of acoustic parameters, ear-related signal processing and analysis, and on correlation of the physical input with subjective output. Methodology and results are presented from measurements of noise and vibration, temperature and humidity in aircraft simulators, and of reverberation, coloring, and lighting in a primary school, and of the environmental perception. [The work includes research with M. Klatte, A. Schick from the Psychology Department of Oldenburg University, and M. Meis from Hoerzentrum Oldenburg GmbH and with the European Project HEACE (for partners see www.heace.org).

  7. Fine-tuning molecular acoustic models: sensitivity of the predicted attenuation to the Lennard-Jones parameters

    NASA Astrophysics Data System (ADS)

    Petculescu, Andi G.; Lueptow, Richard M.

    2005-01-01

    In a previous paper [Y. Dain and R. M. Lueptow, J. Acoust. Soc. Am. 109, 1955 (2001)], a model of acoustic attenuation due to vibration-translation and vibration-vibration relaxation in multiple polyatomic gas mixtures was developed. In this paper, the model is improved by treating binary molecular collisions via fully pairwise vibrational transition probabilities. The sensitivity of the model to small variations in the Lennard-Jones parameters-collision diameter (σ) and potential depth (ɛ)-is investigated for nitrogen-water-methane mixtures. For a N2(98.97%)-H2O(338 ppm)-CH4(1%) test mixture, the transition probabilities and acoustic absorption curves are much more sensitive to σ than they are to ɛ. Additionally, when the 1% methane is replaced by nitrogen, the resulting mixture [N2(99.97%)-H2O(338 ppm)] becomes considerably more sensitive to changes of σwater. The current model minimizes the underprediction of the acoustic absorption peak magnitudes reported by S. G. Ejakov et al. [J. Acoust. Soc. Am. 113, 1871 (2003)]. .

  8. Correlation between nasal obstruction symptoms and objective parameters of acoustic rhinometry and rhinomanometry.

    PubMed

    Kim, C S; Moon, B K; Jung, D H; Min, Y G

    1998-01-01

    Acoustic rhinometry and rhinomanometry have been used to assess nasal airway patency objectively. We compared nasal obstruction symptoms before and after decongestion with several parameters of these objective tests. The patients assessed their nasal obstruction using a visual analogue scale (VAS). Cross-sectional areas and nasal resistance were measured by acoustic rhinometry and rhinomanometry before and after topical application of 1% phenylephrine solution in 32 patients with nasal obstruction symptoms. There was no significant correlation between the difference in the VAS and the difference in nasal resistance. There was also no significant correlation between the difference in the VAS and minimal cross-sectional area and cross-sectional areas at 3.3 cm (CA3.3), CA4.0 and CA6.4 from the nosepiece both in the wide and narrow sides and in both nasal cavities before and after nasal decongestion. It is concluded that rhinomanometry and acoustic rhinometry may have no diagnostic value in estimating the severity of nasal obstruction symptoms.

  9. Acoustical characterization and parameter optimization of polymeric noise control materials

    NASA Astrophysics Data System (ADS)

    Homsi, Emile N.

    2003-10-01

    The sound transmission loss (STL) characteristics of polymer-based materials are considered. Analytical models that predict, characterize and optimize the STL of polymeric materials, with respect to physical parameters that affect performance, are developed for single layer panel configuration and adapted for layered panel construction with homogenous core. An optimum set of material parameters is selected and translated into practical applications for validation. Sound attenuating thermoplastic materials designed to be used as barrier systems in the automotive and consumer industries have certain acoustical characteristics that vary in function of the stiffness and density of the selected material. The validity and applicability of existing theory is explored, and since STL is influenced by factors such as the surface mass density of the panel's material, a method is modified to improve STL performance and optimize load-bearing attributes. An experimentally derived function is applied to the model for better correlation. In-phase and out-of-phase motion of top and bottom layers are considered. It was found that the layered construction of the co-injection type would exhibit fused planes at the interface and move in-phase. The model for the single layer case is adapted to the layered case where it would behave as a single panel. Primary physical parameters that affect STL are identified and manipulated. Theoretical analysis is linked to the resin's matrix attribute. High STL material with representative characteristics is evaluated versus standard resins. It was found that high STL could be achieved by altering materials' matrix and by integrating design solution in the low frequency range. A suggested numerical approach is described for STL evaluation of simple and complex geometries. In practice, validation on actual vehicle systems proved the adequacy of the acoustical characterization process.

  10. An uncertainty model of acoustic metamaterials with random parameters

    NASA Astrophysics Data System (ADS)

    He, Z. C.; Hu, J. Y.; Li, Eric

    2018-01-01

    Acoustic metamaterials (AMs) are man-made composite materials. However, the random uncertainties are unavoidable in the application of AMs due to manufacturing and material errors which lead to the variance of the physical responses of AMs. In this paper, an uncertainty model based on the change of variable perturbation stochastic finite element method (CVPS-FEM) is formulated to predict the probability density functions of physical responses of AMs with random parameters. Three types of physical responses including the band structure, mode shapes and frequency response function of AMs are studied in the uncertainty model, which is of great interest in the design of AMs. In this computation, the physical responses of stochastic AMs are expressed as linear functions of the pre-defined random parameters by using the first-order Taylor series expansion and perturbation technique. Then, based on the linear function relationships of parameters and responses, the probability density functions of the responses can be calculated by the change-of-variable technique. Three numerical examples are employed to demonstrate the effectiveness of the CVPS-FEM for stochastic AMs, and the results are validated by Monte Carlo method successfully.

  11. Dependence of acoustic levitation capabilities on geometric parameters.

    PubMed

    Xie, W J; Wei, B

    2002-08-01

    A two-cylinder model incorporating boundary element method simulations is developed, which builds up the relationship between the levitation capabilities and the geometric parameters of a single-axis acoustic levitator with reference to wavelength. This model proves to be successful in predicting resonant modes of the acoustic field and explaining axial symmetry deviation of the levitated samples near the reflector and emitter. Concave reflecting surfaces of a spherical cap, a paraboloid, and a hyperboloid of revolution are investigated systematically with regard to the dependence of the levitation force on the section radius R(b) and curvature radius R (or depth D) of the reflector. It is found that the levitation force can be remarkably enhanced by choosing an optimum value of R or D, and the possible degree of this enhancement for spherically curved reflectors is the largest. The degree of levitation force enhancement by this means can also be facilitated by enlarging R(b) and employing a lower resonant mode. The deviation of the sample near the reflector is found likely to occur in case of smaller R(b), larger D, and a higher resonant mode. The calculated dependence of levitation force on R, R(b), and the resonant mode is also verified by experiment and finally demonstrated to be in good agreement with experimental results, in which considerably a strong levitation force is achieved to levitate an iridium sphere which has the largest density of 22.6 g/cm(3).

  12. Magnetoactive Acoustic Metamaterials.

    PubMed

    Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming

    2018-04-11

    Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biventricular pacemaker optimization guided by comprehensive echocardiography-preliminary observations regarding the effects on systolic and diastolic ventricular function and third heart sound.

    PubMed

    Taha, Nima; Zhang, Jing; Ranjan, Rupesh; Daneshvar, Samuel; Castillo, Edilzar; Guillen, Elizabeth; Montoya, Martha C; Velasquez, Giovanna; Naqvi, Tasneem Z

    2010-08-01

    Doppler echocardiography of mitral inflow or aortic outflow or both has been validated and advocated to guide biventricular (Biv) pacemaker optimization. A comprehensive and tailored Doppler echocardiographic evaluation may be required in patients with heart failure to assist with Biv pacemaker optimization. The third heart sound (S(3)), an acoustic cardiographic parameter, has been demonstrated to be a highly specific finding for hemodynamic evaluation in patients with heart failure. The aims of this study were to evaluate the use of comprehensive Doppler echocardiography as a guide during Biv pacemaker optimization in patients after cardiac resynchronization therapy and to evaluate the feasibility of S(3) intensity to be a cost-efficient parameter for Biv pacemaker optimization compared with Doppler echocardiography. Comprehensive Doppler echocardiographic evaluations were performed during Biv pacemaker optimization in 44 patients referred for pacemaker optimization (mean age, 71 + or - 12 years; mean left ventricular ejection fraction, 34 + or - 11%). Blinded assessment of S(3) intensity was performed simultaneously using acoustic cardiography. The correlation and improvement in cardiac hemodynamics were analyzed between the methods. Echocardiographically guided optimization resulted in significant improvements in the left ventricular outflow velocity-time integral (15.92 + or - 4.77 to 18.51 + or - 5.19 cm, P < .001), ejection time (278 + or - 40 to 293 + or - 40 ms, P < .001), myocardial performance index (0.57 + or - 0.19 to 0.44 + or - 0.14, P < .002), and peak pulmonary artery systolic pressure (42 + or - 13 to 36 + or - 11 mm Hg, P < .04) and decreased S(3) intensity from 4.81 + or - 1.84 at baseline to 3.96 + or - 1.22 after optimization (P < .02) for the overall study group and from 6.63 + or - 1.37 to 4.85 + or - 1.13 (P < .001) in the 18 patients with baseline S(3) intensity > 5.0. The correlation between echocardiographic and acoustic cardiographic S

  14. Saturn systems holddown acoustic efficiency and normalized acoustic power spectrum.

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1972-01-01

    Saturn systems field acoustic data are used to derive mid- and far-field prediction parameters for rocket engine noise. The data were obtained during Saturn vehicle launches at the Kennedy Space Center. The data base is a sorted set of acoustic data measured during the period 1961 through 1971 for Saturn system launches SA-1 through AS-509. The model assumes hemispherical radiation from a simple source located at the intersection of the longitudinal axis of each booster and the engine exit plane. The model parameters are evaluated only during vehicle holddown. The acoustic normalized power spectrum and efficiency for each system are isolated as a composite from the data using linear numerical methods. The specific definitions of each allows separation. The resulting power spectra are nondimensionalized as a function of rocket engine parameters. The nondimensional Saturn system acoustic spectrum and efficiencies are compared as a function of Strouhal number with power spectra from other systems.

  15. Methods and apparatus for multi-parameter acoustic signature inspection

    DOEpatents

    Diaz, Aaron A [Richland, WA; Samuel, Todd J [Pasco, WA; Valencia, Juan D [Kennewick, WA; Gervais, Kevin L [Richland, WA; Tucker, Brian J [Pasco, WA; Kirihara, Leslie J [Richland, WA; Skorpik, James R [Kennewick, WA; Reid, Larry D [Benton City, WA; Munley, John T [Benton City, WA; Pappas, Richard A [Richland, WA; Wright, Bob W [West Richland, WA; Panetta, Paul D [Richland, WA; Thompson, Jason S [Richland, WA

    2007-07-24

    A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.

  16. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  17. On measurement of the acoustic nonlinearity parameter using the finite amplitude insertion substitution (FAIS) technique

    NASA Astrophysics Data System (ADS)

    Zeqiri, Bajram; Cook, Ashley; Rétat, Lise; Civale, John; ter Haar, Gail

    2015-04-01

    The acoustic nonlinearity parameter, B/A, is an important parameter which defines the way a propagating finite amplitude acoustic wave progressively distorts when travelling through any medium. One measurement technique used to determine its value is the finite amplitude insertion substitution (FAIS) method which has been applied to a range of liquid, tissue and tissue-like media. Importantly, in terms of the achievable measurement uncertainties, it is a relative technique. This paper presents a detailed study of the method, employing a number of novel features. The first of these is the use of a large area membrane hydrophone (30 mm aperture) which is used to record the plane-wave component of the acoustic field. This reduces the influence of diffraction on measurements, enabling studies to be carried out within the transducer near-field, with the interrogating transducer, test cell and detector positioned close to one another, an attribute which assists in controlling errors arising from nonlinear distortion in any intervening water path. The second feature is the development of a model which estimates the influence of finite-amplitude distortion as the acoustic wave travels from the rear surface of the test cell to the detector. It is demonstrated that this can lead to a significant systematic error in B/A measurement whose magnitude and direction depends on the acoustic property contrast between the test material and the water-filled equivalent cell. Good qualitative agreement between the model and experiment is reported. B/A measurements are reported undertaken at (20 ± 0.5) °C for two fluids commonly employed as reference materials within the technical literature: Corn Oil and Ethylene Glycol. Samples of an IEC standardised agar-based tissue-mimicking material were also measured. A systematic assessment of measurement uncertainties is presented giving expanded uncertainties in the range ±7% to ±14%, expressed at a confidence level close to 95

  18. Flight parameter estimation using instantaneous frequency and time delay measurements from a three-element planar acoustic array.

    PubMed

    Lo, Kam W

    2016-05-01

    The acoustic signal emitted by a turbo-prop aircraft consists of a strong narrowband tone superimposed on a broadband random component. A ground-based three-element planar acoustic array can be used to estimate the full set of flight parameters of a turbo-prop aircraft in transit by measuring the time delay (TD) between the signal received at the reference sensor and the signal received at each of the other two sensors of the array over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the reference sensor to improve the precision of the flight parameter estimates. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the aircraft velocity and altitude can be greatly reduced when IF measurements are used together with TD measurements. Two flight parameter estimation algorithms that utilize both IF and TD measurements are formulated and their performances are evaluated using both simulated and real data.

  19. Body mass index and acoustic voice parameters: is there a relationship.

    PubMed

    Souza, Lourdes Bernadete Rocha de; Santos, Marquiony Marques Dos

    2017-05-06

    Specific elements such as weight and body volume can interfere in voice production and consequently in its acoustic parameters, which is why it is important for the clinician to be aware of these relationships. To investigate the relationship between body mass index and the average acoustic voice parameters. Observational, cross-sectional descriptive study. The sample consisted of 84 women, aged between 18 and 40years, an average of 26.83 (±6.88). The subjects were grouped according to body mass index: 19 underweight; 23 normal ranges, 20 overweight and 22 obese and evaluated the fundamental frequency of the sustained vowel [a] and the maximum phonation time of the vowels [a], [i], [u], using PRAAT software. The data were submitted to the Kruskal-Wallis test to verify if there were differences between the groups regarding the study variables. All variables showed statistically significant results and were subjected to non-parametric test Mann-Whitney. Regarding to the average of the fundamental frequency, there was statistically significant difference between groups with underweight and overweight and obese; normal range and overweight and obese. The average maximum phonation time revealed statistically significant difference between underweight and obese individuals; normal range and obese; overweight and obese. Body mass index influenced the average fundamental frequency of overweight and obese individuals evaluated in this study. Obesity influenced in reducing maximum phonation time average. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    NASA Astrophysics Data System (ADS)

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  1. Effects of Weight Loss on Acoustic Parameters After Bariatric Surgery.

    PubMed

    de Souza, Lourdes Bernadete Rocha; Dos Santos, Marquiony Marques; Pernambuco, Leandro Araújo; de Almeida Godoy, Cynthia Meira; da Silva Lima, Deysianne Meire

    2018-05-01

    Patients with morbid obesity may present vocal alterations, since large accumulation of fat in the vocal tract may interfere with voice production of these individuals. Verify the neck circumference and the acoustic parameters of voice in obese women, before and after the bariatric surgery, and compare the results with a control group, with normal weight. Observational, longitudinal, descriptive study with patients referred to the SCODE (Obesity Surgery and Related Disorders Center) in a university hospital. The sample consisted of 25 morbidly obese women, age range 28-43 years and 23 non-obese women, aged 21-41 years control group. To measure the neck circumference, a tape measure was used and all participants were seated upright with the head positioned in the Frankfort horizontal plane. The fundamental frequency was calculated through the sustained emission of vowel [a] at usual intensity and pitch, to measure the fundamental frequency of the voice, that is, how much the vocal fold vibrates per second. After the recording, participants were prompted to produce vowels [a], [i], and [u] sustained at usual intensity and pitch, and a stopwatch was used to measure the maximum phonation time, to verify the balance between myoelastic and dynamic forces of the larynx. After 8 months post-surgery, the patients were recruited to be re-evaluated using the same pre-surgical data collection procedures. There was an increase in the mean value of f0. The maximum phonation time of all vowels increased after surgery. Obese individuals with post-surgery weight loss may present neck circumference, fundamental frequency, and maximum phonation time values closer to the mean values of normal weight individuals. In this study, weight loss was sufficient to adjust the acoustic parameter measurements.

  2. Developments in Acoustic Metamaterials for Acoustic Ground Cloaks

    NASA Astrophysics Data System (ADS)

    Kerrian, Peter Adam

    The objective of acoustic cloaking is to eliminate both the back scattered and forward scattered acoustic fields by redirecting the incident wave around an object. Acoustic ground cloaks, which conceal an object on a rigid reflecting surface, utilize a linear coordinate transformation to map the flat surface to a void by compressing space into two cloaking regions consisting of a homogeneous anisotropic acoustic metafluid. Transformation acoustics allows for the realization of a coordinate transformation through a reinterpretation of the scale factors as a new material in the original coordinate system. Previous work has demonstrated at least three types of unit cells exhibit homogeneous anisotropic mass density and homogeneous isotropic bulk modulus: alternating layers of homogeneous isotropic fluids, perforated plates and solid inclusions. The primary focus of this dissertation is to demonstrate underwater anisotropic mass density with a solid inclusion unit cell and realize an underwater perforated plate acoustic ground cloak. An in depth analysis into the methods used to characterize the effective material parameters of solid inclusion unit cells with water as the background fluid was performed for both single inclusion unit cells as well as multi-inclusion unit cells. The degree of density anisotropy obtainable for a rigid single inclusion unit cell is limited by the size of the inclusion. However, a greater degree of anisotropy can be achieved by introducing additional inclusions into the unit cell design. For example, including a foam material that is less dense than the background fluid, results in an anisotropic density tensor with one component greater than and one component less than the value of the background fluid. The results of a parametric study determined that for a multi-inclusion unit cell, the effective material parameters can be controlled by the dimensions of the rigid inclusion as well as the material parameters and dimensions of the foam

  3. Lingering Effects of Straw Phonation Exercises on Aerodynamic, Electroglottographic, and Acoustic Parameters.

    PubMed

    Kang, Jing; Xue, Chao; Piotrowski, David; Gong, Ting; Zhang, Yi; Jiang, Jack J

    2018-06-01

    This study aimed to investigate the duration of straw phonation effects using aerodynamic, electroglottographic, and acoustic metrics. Twenty-four participants were recruited to perform both a 5-minute and a 10-minute straw phonation exercise. Upon completion of the exercises, phonation threshold pressure (PTP), mean airflow, contact quotient, fundamental frequency, jitter, shimmer, and noise-to-harmonics ratio were measured over a 20-minute time frame. Parameters were measured before the intervention (baseline), immediately after the intervention (m0), 5 minutes (m5), 10 minutes (m10), 15 minutes (m15), and 20 minutes (m20) after the intervention. PTP significantly decreased immediately after 5 minutes of straw phonation and returned to initial state within 5 minutes. PTP remained decreased over 5 minutes after 10 minutes of straw phonation. Mean airflow increased immediately after both 5 minutes and 10 minutes of straw phonations and remained improved for 20 minutes. No significant changes were obtained for contact quotient and acoustic parameters over the intervention period. The results extended our knowledge of proper clinical application of straw phonation regarding the duration of exercise. This study confirmed that 10 minutes of straw phonation lead to optimal and relatively continuous effects in PTP and mean airflow. Although straw phonation did show lingering effects in aerodynamics, repeated practices were recommended to obtain optimum and therapeutic effects. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Voice disorders in children and its relationship with auditory, acoustic and vocal behavior parameters.

    PubMed

    Simões-Zenari, Marcia; Nemr, Katia; Behlau, Mara

    2012-06-01

    Parameters to distinguish normal from deviant voices in early childhood have not been established. The current study sought to auditorily and acoustically characterize voices of children, and to study the relationship between vocal behavior reported by teachers and the presence of vocal aberrations. One hundred children between four and 6 years and 11 months, who attended early childhood educational institutions, were included. The sample comprised 50 children with normal voices (NVG) and 50 with deviant voices (DVG) matched by gender and age. All participants were submitted to auditory and acoustic analysis of vocal quality and had their vocal behaviors assessed by teachers through a specific protocol. DVG had a higher incidence of breathiness (p<0.001) and roughness (p<0.001), but not vocal strain (p=0.546), which was similar in both groups. The average F(0) was lower in the DVG and a higher noise component was observed in this group as well. Regarding the protocol used "Aspects Related to Phonotrauma - Children's Protocol", higher means were observed for children from DVG in all analyzed aspects and also on the overall means (DVG=2.15; NVG=1.12, p<0.001). In NVG, a higher incidence of vocal behavior without alterations or with discrete alterations was observed, whereas a higher incidence of moderate, severe or extreme alterations of vocal behavior was observed in DVG. Perceptual assessment of voice, vocal acoustic parameters (F(0), noise and GNE), and aspects related to vocal trauma and vocal behavior differentiated the groups of children with normal voice and deviant voice. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Differences in acoustic and perceptual parameters of the voice between elderly and young women at habitual and high intensity.

    PubMed

    Mazzetto de Menezes, Keyla S; Master, Suely; Guzman, Marco; Bortnem, Cori; Ramos, Luiz Roberto

    2014-01-01

    The present study aimed to compare elderly and young female voices in habitual and high intensity. The effect of increased intensity on the acoustic and perceptual parameters was assessed. Sound pressure level, fundamental frequency, jitter, shimmer, and harmonic to noise ratio were obtained at habitual and high intensity voice in a group of 30 elderly women and 30 young women. Perceptual assessment was also performed. Both groups demonstrated an increase in sound pressure level and fundamental frequency from habitual voice to high intensity voice. No differences were found between groups in any acoustic variables on samples recorded with habitual intensity level. No significant differences between groups were found in habitual intensity level for pitch, hoarseness, roughness, and breathiness. Asthenia and instability obtained significant higher values in elderly than young participants, whereas, the elderly demonstrated lower values for perceived tension and loudness than young subjects. Acoustic and perceptual measures do not demonstrate evident differences between elderly and young speakers in habitual intensity level. The parameters analyzed may lack the sensitivity necessary to detect differences in subjects with normal voices. Phonation with high intensity highlights differences between groups, especially in perceptual parameters. Therefore, high intensity should be included to compare elderly and young voice. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  6. Acoustic transducer for nuclear reactor monitoring

    DOEpatents

    Ahlgren, Frederic F.; Scott, Paul F.

    1977-01-01

    A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.

  7. Voice change in end-stage renal disease patients after hemodialysis: correlation of subjective hoarseness and objective acoustic parameters.

    PubMed

    Jung, Soo Yeon; Ryu, Jung-Hwa; Park, Hae Sang; Chung, Sung Min; Ryu, Dong-Ryeol; Kim, Han Su

    2014-03-01

    Patients with end-stage renal disease (ESRD) who are treated with hemodialysis (HD) frequently complain about hoarseness after completion of each HD session. The HD treatment affects laryngeal volume and muscle function. This study attempted to evaluate the vocal effect of HD by acoustic and aerodynamic analysis and to determine the difference between voice change group (VCG) and nonvoice change group (NVCG). A total of 55 patients (34 females and 21 males) diagnosed with ESRD and undergoing outpatient HD were enrolled. The subjects were divided into the VCG (n=13) and NVCG (n=42) by the change of the Korean Voice Handicap Index score. Patients underwent weighing and acoustic, aerodynamic analysis before and after the HD. Fundamental frequency (F0), jitter, shimmer, noise-to-harmonics ratio (NHR), pitch range, habitual pitch, voice energy, and maximal phonation time (MPT) were obtained. The pre- and post-HD data were compared using paired t test. The results were compared after dividing the total group into the VCG and NVCG categories. Correlation between the change of the weight and change of the voice analysis result was certified by Pearson correlation coefficient. The F0 and habitual pitch increased in all subjects. The NHR and MPT parameters significantly decreased (P<0.05). In the NVCG group, all the results were same as the total group. In the VCG group, the NHR result differed from the total group. All acoustic parameters showed no statistically significant differences between the two groups. There was no correlation between the weight change (%) and the change of acoustic parameter results. The NVCG group of patient displayed improvement in NHR, whereas the VCG group showed no change. Weight change did not significantly correlate with the voice analysis results. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  8. Perceptually relevant parameters for virtual listening simulation of small room acoustics

    PubMed Central

    Zahorik, Pavel

    2009-01-01

    Various physical aspects of room-acoustic simulation techniques have been extensively studied and refined, yet the perceptual attributes of the simulations have received relatively little attention. Here a method of evaluating the perceptual similarity between rooms is described and tested using 15 small-room simulations based on binaural room impulse responses (BRIRs) either measured from a real room or estimated using simple geometrical acoustic modeling techniques. Room size and surface absorption properties were varied, along with aspects of the virtual simulation including the use of individualized head-related transfer function (HRTF) measurements for spatial rendering. Although differences between BRIRs were evident in a variety of physical parameters, a multidimensional scaling analysis revealed that when at-the-ear signal levels were held constant, the rooms differed along just two perceptual dimensions: one related to reverberation time (T60) and one related to interaural coherence (IACC). Modeled rooms were found to differ from measured rooms in this perceptual space, but the differences were relatively small and should be easily correctable through adjustment of T60 and IACC in the model outputs. Results further suggest that spatial rendering using individualized HRTFs offers little benefit over nonindividualized HRTF rendering for room simulation applications where source direction is fixed. PMID:19640043

  9. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring

    NASA Astrophysics Data System (ADS)

    Chai, Mengyu; Zhang, Zaoxiao; Duan, Quan

    2018-02-01

    An important objective of acoustic emission (AE) non-destructive monitoring is to accurately identify approaching critical damage and to avoid premature failure by means of the evolutions of AE parameters. One major drawback of most parameters such as count and rise time is that they are strongly dependent on the threshold and other settings employed in AE data acquisition system. This may hinder the correct reflection of original waveform generated from AE sources and consequently bring difficulty for the accurate identification of the critical damage and early failure. In this investigation, a new qualitative AE parameter based on Shannon's entropy, i.e. AE entropy is proposed for damage monitoring. Since it derives from the uncertainty of amplitude distribution of each AE waveform, it is independent of the threshold and other time-driven parameters and can characterize the original micro-structural deformations. Fatigue crack growth test on CrMoV steel and three point bending test on a ductile material are conducted to validate the feasibility and effectiveness of the proposed parameter. The results show that the new parameter, compared to AE amplitude, is more effective in discriminating the different damage stages and identifying the critical damage.

  10. Respiratory Muscle Strength, Sound Pressure Level, and Vocal Acoustic Parameters and Waist Circumference of Children With Different Nutritional Status.

    PubMed

    Pascotini, Fernanda dos Santos; Ribeiro, Vanessa Veis; Christmann, Mara Keli; Tomasi, Lidia Lis; Dellazzana, Amanda Alves; Haeffner, Leris Salete Bonfanti; Cielo, Carla Aparecida

    2016-01-01

    Relate respiratory muscle strength (RMS), sound pressure (SP) level, and vocal acoustic parameters to the abdominal circumference (AC) and nutritional status of children. This is a cross-sectional study. Eighty-two school children aged between 8 and 10 years, grouped by nutritional states (eutrophic, overweight, or obese) and AC percentile (≤25, 25-75, and ≥75), were included in the study. Evaluations of maximal inspiratory pressure (IPmax) and maximal expiratory pressure (EPmax) were conducted using the manometer and SP and acoustic parameters through the Multi-Dimensional Voice Program Advanced (KayPENTAX, Montvale, New Jersey). There were significant differences (P < 0.05) in the EPmax of children with AC between the 25th and 75th percentiles (72.4) and those less than or equal to the 25th percentile (61.9) and in the SP of those greater than or equal to the 75th percentile (73.4) and less than or equal to the 25th percentile (66.6). The IPmax, EPmax, SP levels, and acoustic variables were not different in relation to the nutritional states of the children. There was a strong and positive correlation between the coefficient of amplitude perturbations (shimmer), the harmonics-to-noise ratio and the variation of the fundamental frequency, respectively, 0.79 and 0.71. RMS and acoustic voice characteristics in children do not appear to be influenced by nutritional states, and respiratory pressure does not interfere with acoustic voice characteristics. However, localized fat, represented by the AC, alters the EPmax and the SP, each of which increases as the AC increases. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  12. Virtual acoustics displays

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-03-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  13. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  14. The roles of non-extensivity and dust concentration as bifurcation parameters in dust-ion acoustic traveling waves in magnetized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan Ghosh, Uday; Kumar Mandal, Pankaj, E-mail: pankajwbmsd@gmail.com; Chatterjee, Prasanta

    Dust ion-acoustic traveling waves are studied in a magnetized dusty plasma in presence of static dust and non-extensive distributed electrons in the framework of Zakharov-Kuznesstov-Burgers (ZKB) equation. System of coupled nonlinear ordinary differential equations is derived from ZKB equation, and equilibrium points are obtained. Nonlinear wave phenomena are studied numerically using fourth order Runge-Kutta method. The change from unstable to stable solution and consequently to asymptotic stable of dust ion acoustic traveling waves is studied through dynamical system approach. It is found that some dramatical features emerge when the non-extensive parameter and the dust concentration parameters are varied. Behavior ofmore » the solution of the system changes from unstable to stable and stable to asymptotic stable depending on the value of the non-extensive parameter. It is also observed that when the dust concentration is increased the solution pattern is changed from oscillatory shocks to periodic solution. Thus, non-extensive and dust concentration parameters play crucial roles in determining the nature of the stability behavior of the system. Thus, the non-extensive parameter and the dust concentration parameters can be treated as bifurcation parameters.« less

  15. Using paired visual and passive acoustic surveys to estimate passive acoustic detection parameters for harbor porpoise abundance estimates.

    PubMed

    Jacobson, Eiren K; Forney, Karin A; Barlow, Jay

    2017-01-01

    Passive acoustic monitoring is a promising approach for monitoring long-term trends in harbor porpoise (Phocoena phocoena) abundance. Before passive acoustic monitoring can be implemented to estimate harbor porpoise abundance, information about the detectability of harbor porpoise is needed to convert recorded numbers of echolocation clicks to harbor porpoise densities. In the present study, paired data from a grid of nine passive acoustic click detectors (C-PODs, Chelonia Ltd., United Kingdom) and three days of simultaneous aerial line-transect visual surveys were collected over a 370 km 2 study area. The focus of the study was estimating the effective detection area of the passive acoustic sensors, which was defined as the product of the sound production rate of individual animals and the area within which those sounds are detected by the passive acoustic sensors. Visually estimated porpoise densities were used as informative priors in a Bayesian model to solve for the effective detection area for individual harbor porpoises. This model-based approach resulted in a posterior distribution of the effective detection area of individual harbor porpoises consistent with previously published values. This technique is a viable alternative for estimating the effective detection area of passive acoustic sensors when other experimental approaches are not feasible.

  16. A PDE-based methodology for modeling, parameter estimation and feedback control in structural and structural acoustic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    A problem of continued interest concerns the control of vibrations in a flexible structure and the related problem of reducing structure-borne noise in structural acoustic systems. In both cases, piezoceramic patches bonded to the structures have been successfully used as control actuators. Through the application of a controlling voltage, the patches can be used to reduce structural vibrations which in turn lead to methods for reducing structure-borne noise. A PDE-based methodology for modeling, estimating physical parameters, and implementing a feedback control scheme for problems of this type is discussed. While the illustrating example is a circular plate, the methodology is sufficiently general so as to be applicable in a variety of structural and structural acoustic systems.

  17. Analysis of Acoustic Emission Parameters from Corrosion of AST Bottom Plate in Field Testing

    NASA Astrophysics Data System (ADS)

    Jomdecha, C.; Jirarungsatian, C.; Suwansin, W.

    Field testing of aboveground storage tank (AST) to monitor corrosion of the bottom plate is presented in this chapter. AE testing data of the ten AST with different sizes, materials, and products were employed to monitor the bottom plate condition. AE sensors of 30 and 150 kHz were used to monitor the corrosion activity of up to 24 channels including guard sensors. Acoustic emission (AE) parameters were analyzed to explore the AE parameter patterns of occurring corrosion compared to the laboratory results. Amplitude, count, duration, and energy were main parameters of analysis. Pattern recognition technique with statistical was implemented to eliminate the electrical and environmental noises. The results showed the specific AE patterns of corrosion activities related to the empirical results. In addition, plane algorithm was utilized to locate the significant AE events from corrosion. Both results of parameter patterns and AE event locations can be used to interpret and locate the corrosion activities. Finally, basic statistical grading technique was used to evaluate the bottom plate condition of the AST.

  18. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  19. Bi-layer plate-type acoustic metamaterials with Willis coupling

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-01-01

    Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.

  20. Listeners' expectation of room acoustical parameters based on visual cues

    NASA Astrophysics Data System (ADS)

    Valente, Daniel L.

    Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audio-visual study, in which participants are instructed to make spatial congruency and quantity judgments in dynamic cross-modal environments. The results of these psychophysical tests suggest the importance of consilient audio-visual presentation to the legibility of an auditory scene. Several studies have looked into audio-visual interaction in room perception in recent years, but these studies rely on static images, speech signals, or photographs alone to represent the visual scene. Building on these studies, the aim is to propose a testing method that uses monochromatic compositing (blue-screen technique) to position a studio recording of a musical performance in a number of virtual acoustical environments and ask subjects to assess these environments. In the first experiment of the study, video footage was taken from five rooms varying in physical size from a small studio to a small performance hall. Participants were asked to perceptually align two distinct acoustical parameters---early-to-late reverberant energy ratio and reverberation time---of two solo musical performances in five contrasting visual environments according to their expectations of how the room should sound given its visual appearance. In the second experiment in the study, video footage shot from four different listening positions within a general-purpose space was coupled with sounds derived from measured binaural impulse responses (IRs). The relationship between the presented image, sound, and virtual receiver position was examined. It was found that many visual cues caused different perceived events of the acoustic environment. This included the visual attributes of the space in which the performance was located as well as the visual attributes of the performer

  1. Auditorium acoustics evaluation based on simulated impulse response

    NASA Astrophysics Data System (ADS)

    Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe

    2004-05-01

    The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.

  2. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  3. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.

    PubMed

    Lin, Yutong; Lin, Lizhou; Cheng, Mouwen; Jin, Lifang; Du, Lianfang; Han, Tao; Xu, Lin; Yu, Alfred C H; Qin, Peng

    2017-03-01

    SonoVue microbubbles could serve as artificial nuclei for ultrasound-triggered stable and inertial cavitation, resulting in beneficial biological effects for future therapeutic applications. To optimize and control the use of the cavitation of SonoVue bubbles in therapy while ensuring safety, it is important to comprehensively understand the relationship between the acoustic parameters and the cavitation behavior of the SonoVue bubbles. An agarose-gel tissue phantom was fabricated to hold the SonoVue bubble suspension. 1-MHz transmitting transducer calibrated by a hydrophone was used to trigger the cavitation of SonoVue bubbles under different ultrasonic parameters (i.e., peak rarefactional pressure (PRP), pulse repetition frequency (PRF), and pulse duration (PD)). Another 7.5-MHz focused transducer was employed to passively receive acoustic signals from the exposed bubbles. The ultraharmonics and broadband intensities in the acoustic emission spectra were measured to quantify the extent of stable and inertial cavitation of SonoVue bubbles, respectively. We found that the onset of both stable and inertial cavitation exhibited a strong dependence on the PRP and PD and a relatively weak dependence on the PRF. Approximate 0.25MPa PRP with more than 20μs PD was considered to be necessary for ultraharmonics emission of SonoVue bubbles, and obvious broadband signals started to appear when the PRP exceeded 0.40MPa. Moreover, the doses of stable and inertial cavitation varied with the PRP. The stable cavitation dose initially increased with increasing PRP, and then decreased rapidly after 0.5MPa. By contrast, the inertial cavitation dose continuously increased with increasing PRP. Finally, the doses of both stable and inertial cavitation were positively correlated with PRF and PD. These results could provide instructive information for optimizing future therapeutic applications of SonoVue bubbles. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evaluation of vocal acoustic and efficiency analysis parameters in medical students and academic teachers with use of iris and diagnoscope specialist software.

    PubMed

    Zielińska-Bliźniewska, Hanna; Sułkowski, Wiesław J; Pietkiewicz, Piotr; Miłoński, Jarosław; Mazurek, Agnieszka; Olszewski, Jurek

    2012-06-01

    The aim of this study was to compare the parameters of vocal acoustic and vocal efficiency analyses in medical students and academic teachers with use of the IRIS and DiagnoScope Specialist software and to evaluate their usefulness in prevention and certification of occupational disease. The study group comprised 40 women, including students and employees of the Military Medical Faculty, Medical University of Łodź. After informed consent had been obtained from the participant women, the primary medical history was taken, videolaryngoscopic and stroboscopic examinations were performed and diagnostic vocal acoustic analysis was carried out with the use of the IRIS and Diagno-Scope Specialist software. Based on the results of the performed measurements, the statistical analysis evidenced the compatibility between two software programs, IRIS and DiagnoScope Specialist, with the only exception of the F4 formant. The mean values of vocal acoustic parameters in medical students and academic teachers, obtained by means of the IRIS software, can be used as standards for the female population not yet developed by the producer. When using the DiagnoScope Specialist software, some mean values were higher and some lower than the standards specified by the producer. The study evidenced the compatibility between two measurement software programs, IRIS and DiagnoScope Specialist, except for the F4 formant. It should be noted that the later has advantage over the former since the standard values of vocal acoustic parameters have been worked out by the producer. Moreover, they only slightly departed from the values obtained in our study and may be useful in diagnostics of occupational voice disorders.

  5. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    NASA Astrophysics Data System (ADS)

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  6. A numerical study of the effects of design parameters on the acoustics noise of a high efficiency propeller

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Huang, Jun; Yi, Mingxu; Zhang, Chaopu; Xiao, Qian

    2017-11-01

    A numerical study of a high efficiency propeller in the aerodynamic noise generation is carried out. Based on RANS, three-dimensional numerical simulation is performed to obtain the aerodynamic performance of the propeller. The result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A, which is derived from Ffowcs Williams-Hawkings equation, and compared with the data of wind tunnel. The propeller is modified for noise reduction by changing its geometrical parameters such as diameter, chord width and pitch angle. The trend of variation between aerodynamic analysis data and acoustic calculation result are compared and discussed for different modification tasks. Meaningful conclusions are drawn on the noise reduction of propeller.

  7. A novel and practical approach for determination of the acoustic nonlinearity parameter using a pulse-echo method

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing

    2016-02-01

    Measurements of the acoustic nonlinearity parameter β are frequently made for early detection of damage in various materials. The practical implementation of the measurement technique has been limited to the through-transmission setup for determining the nonlinearity parameter of the second harmonic wave. In this work, a feasibility study is performed to assess the possibility of using pulse-echo methods in determining the nonlinearity parameter β of solids with a stress-free boundary. The multi-Gaussian beam model is developed based on the quasilinear theory of the KZK equation. Simulation results and discussion are presented for the reflected beam fields of the fundamental and second harmonic waves, the uncorrected β behavior and the properties of total correction that incorporate reflection, attenuation and diffraction effects.

  8. Acoustics of a planetarium

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah; Leishman, Timothy W.; Utami, Sentagi

    2005-09-01

    Brigham Young University has recently constructed a planetarium with a 38-ft.-diameter dome. The facility also serves as a classroom. Since planetariums typically have poor acoustics due to their domed ceiling structures, acoustical recommendations were requested before its construction. The recommendations were made in an attempt to create an acceptable listening environment for lectures and other listening events. They were based in part on computer models and auralizations intended to predict the effectiveness of several acoustical treatments on the outer walls and on the dome itself. The recommendations were accepted and the planetarium was completed accordingly. A series of acoustical measurements was subsequently made in the room and the resulting acoustical parameters were mapped over the floor plan. This paper discusses these results and compares them with the predictions of the computer models.

  9. An asymptotic model in acoustics: acoustic drift equations.

    PubMed

    Vladimirov, Vladimir A; Ilin, Konstantin

    2013-11-01

    A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.

  10. Acoustic properties of reticulated plastic foams

    NASA Astrophysics Data System (ADS)

    Cummings, A.; Beadle, S. P.

    1994-08-01

    Some general aspects of sound propagation in rigid porous media are discussed, particularly with reference to the use of a single - dimensionless - frequency parameter and the role of this, in the light of the possibility of varying gas properties, is examined. Steady flow resistance coefficients of porous media are also considered, and simple scaling relationships between these coefficients and `system parameters' are derived. The results of a series of measurements of the bulk acoustic properties of 12 geometrically similar, fully reticulated, polyurethane foams are presented, and empirical curve-fitting coefficients are found; the curve-fitting formulae are valid within the experimental range of values of the frequency parameter. Comparison is made between the measured data and an alternative, fairly recently published, semi-empirical set of formulae. Measurements of the steady flow-resistive coefficients are also given and both the acoustical and flow-resistive data are shown to be consistent with theoretical ideas. The acoustical and flow-resistive data should be of use in predicting the acoustic bulk properties of open-celled foams of types similar to those used in the experimental tests.

  11. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing

    2015-09-01

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.

  12. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications.

    PubMed

    Segura-Garcia, Jaume; Navarro-Ruiz, Juan Miguel; Perez-Solano, Juan J; Montoya-Belmonte, Jose; Felici-Castell, Santiago; Cobos, Maximo; Torres-Aranda, Ana M

    2018-02-26

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  13. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications

    PubMed Central

    Montoya-Belmonte, Jose; Cobos, Maximo; Torres-Aranda, Ana M.

    2018-01-01

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system. PMID:29495407

  14. Acoustic-radiation stress in solids. I - Theory

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.

    1984-01-01

    The general case of acoustic-radiation stress associated with quasi-compressional and quasi-shear waves propagating in infinite and semiinfinite lossless solids of arbitrary crystalline symmetry is studied. The Boussinesq radiation stress is defined and found to depend directly on an acoustic nonlinearity parameter which characterizes the radiation-induced static strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest principle of adiabatic invariance to a self-constrained system described by the nonlinear equations of motion allows the acoustic-radiation-induced static strain to be identified with a self-constrained variation in the time-averaged product of the internal energy density and displacement gradient. The time-averaged product is scaled by the acoustic nonlinearity parameter and represents the first-order nonlinearity in the virial theorem. Finally, the relationship between the Boussinesq and the Cauchy radiation stress is obtained in a closed three-dimensional form.

  15. Maxillary arch dimensions associated with acoustic parameters in prepubertal children.

    PubMed

    Hamdan, Abdul-Latif; Khandakji, Mohannad; Macari, Anthony Tannous

    2018-04-18

    To evaluate the association between maxillary arch dimensions and fundamental frequency and formants of voice in prepubertal subjects. Thirty-five consecutive prepubertal patients seeking orthodontic treatment were recruited (mean age = 11.41 ± 1.46 years; range, 8 to 13.7 years). Participants with a history of respiratory infection, laryngeal manipulation, dysphonia, congenital facial malformations, or history of orthodontic treatment were excluded. Dental measurements included maxillary arch length, perimeter, depth, and width. Voice parameters comprising fundamental frequency (f0_sustained), Habitual pitch (f0_count), Jitter, Shimmer, and different formant frequencies (F1, F2, F3, and F4) were measured using acoustic analysis prior to initiation of any orthodontic treatment. Pearson's correlation coefficients were used to measure the strength of associations between different dental and voice parameters. Multiple linear regressions were computed for the predictions of different dental measurements. Arch width and arch depth had moderate significant negative correlations with f0 ( r = -0.52; P = .001 and r = -0.39; P = .022, respectively) and with habitual frequency ( r = -0.51; P = .0014 and r = -0.34; P = .04, respectively). Arch depth and arch length were significantly correlated with formant F3 and formant F4, respectively. Predictors of arch depth included frequencies of F3 vowels, with a significant regression equation ( P-value < .001; R 2 = 0.49). Similarly, fundamental frequency f0 and frequencies of formant F3 vowels were predictors of arch width, with a significant regression equation ( P-value < .001; R 2 = 0.37). There is a significant association between arch dimensions, particularly arch length and depth, and voice parameters. The formant most predictive of arch depth and width is the third formant, along with fundamental frequency of voice.

  16. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  17. Influences of the Ratio of Polyol and MDI on the Acoustic Parameters of Polyurethane

    NASA Astrophysics Data System (ADS)

    Wang, Yonghua; Liu, Zheming; Wu, Haiquan; Zhang, Chengchun; Yu, Huadong; Ren, Luquan; Ichchou, Mohamed

    2018-05-01

    In this paper, the influence of different ratio of polyol and MDI on the absorption coefficient and acoustic parameters of polyurethane was studied. Ratio of 100:40 and 100:45 show the best sound absorption performance, and the change trend of transmission loss and sound absorption coefficient are opposite. The flow resistance increased with the increasing of the ratio of polyol and MDI, the greater the flow resistance, the worse the high frequency sound absorption property of the polyurethane. When the ratio of polyol and MDI keep 100:45, the minimum porosity of sample, the polyurethane porosity increase with the ratio of polyol and MDI increase.

  18. Deep Brain Stimulation of the Subthalamic Nucleus Parameter Optimization for Vowel Acoustics and Speech Intelligibility in Parkinson's Disease

    ERIC Educational Resources Information Center

    Knowles, Thea; Adams, Scott; Abeyesekera, Anita; Mancinelli, Cynthia; Gilmore, Greydon; Jog, Mandar

    2018-01-01

    Purpose: The settings of 3 electrical stimulation parameters were adjusted in 12 speakers with Parkinson's disease (PD) with deep brain stimulation of the subthalamic nucleus (STN-DBS) to examine their effects on vowel acoustics and speech intelligibility. Method: Participants were tested under permutations of low, mid, and high STN-DBS frequency,…

  19. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of researchmore » results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.« less

  20. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2015-09-30

    of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation... acoustic parameters in the ocean. APPROACH 1) Finite Element Modeling for Range Dependent Waveguides: Finite element modeling is applied to a...roughness measurements for reverberation modeling . GLISTEN data provide insight into the role of biology on acoustic propagation and scattering

  1. [Acoustic and aerodynamic characteristics of the oesophageal voice].

    PubMed

    Vázquez de la Iglesia, F; Fernández González, S

    2005-12-01

    The aim of the study is to determine the physiology and pathophisiology of esophageal voice according to objective aerodynamic and acoustic parameters (quantitative and qualitative parameters). Our subjects were comprised of 33 laryngectomized patients (all male) that underwent aerodynamic, acoustic and perceptual protocol. There is a statistical association between acoustic and aerodynamic qualitative parameters (phonation flow chart type, sound spectrum, perceptual analysis) among quantitative parameters (neoglotic pressure, phonation flow, phonation time, fundamental frequency, maximum intensity sound level, speech rate). Nevertheles, not always such observations bring practical resources to clinical practice. We consider that the facts studied may enable us to add, pragmatically, new resources to the more effective vocal rehabilitation to these patients. The physiology of esophageal voice is well understood by the method we have applied, also seeking for rehabilitation, improving oral communication skills in the laryngectomee population.

  2. Effect of classroom acoustics on the speech intelligibility of students.

    PubMed

    Rabelo, Alessandra Terra Vasconcelos; Santos, Juliana Nunes; Oliveira, Rafaella Cristina; Magalhães, Max de Castro

    2014-01-01

    To analyze the acoustic parameters of classrooms and the relationship among equivalent sound pressure level (Leq), reverberation time (T₃₀), the Speech Transmission Index (STI), and the performance of students in speech intelligibility testing. A cross-sectional descriptive study, which analyzed the acoustic performance of 18 classrooms in 9 public schools in Belo Horizonte, Minas Gerais, Brazil, was conducted. The following acoustic parameters were measured: Leq, T₃₀, and the STI. In the schools evaluated, a speech intelligibility test was performed on 273 students, 45.4% of whom were boys, with an average age of 9.4 years. The results of the speech intelligibility test were compared to the values of the acoustic parameters with the help of Student's t-test. The Leq, T₃₀, and STI tests were conducted in empty and furnished classrooms. Children showed better results in speech intelligibility tests conducted in classrooms with less noise, a lower T₃₀, and greater STI values. The majority of classrooms did not meet the recommended regulatory standards for good acoustic performance. Acoustic parameters have a direct effect on the speech intelligibility of students. Noise contributes to a decrease in their understanding of information presented orally, which can lead to negative consequences in their education and their social integration as future professionals.

  3. Lattice Boltzmann modeling to explain volcano acoustic source.

    PubMed

    Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza

    2018-06-22

    Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.

  4. Parameters effects study on pulse laser for the generation of surface acoustic waves in human skin detection applications

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen

    2015-10-01

    Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.

  5. Integrating voice evaluation: correlation between acoustic and audio-perceptual measures.

    PubMed

    Vaz Freitas, Susana; Melo Pestana, Pedro; Almeida, Vítor; Ferreira, Aníbal

    2015-05-01

    This article aims to establish correlations between acoustic and audio-perceptual measures using the GRBAS scale with respect to four different voice analysis software programs. Exploratory, transversal. A total of 90 voice records were collected and analyzed with the Dr. Speech (Tiger Electronics, Seattle, WA), Multidimensional Voice Program (Kay Elemetrics, NJ, USA), PRAAT (University of Amsterdam, The Netherlands), and Voice Studio (Seegnal, Oporto, Portugal) software programs. The acoustic measures were correlated to the audio-perceptual parameters of the GRBAS and rated by 10 experts. The predictive value of the acoustic measurements related to the audio-perceptual parameters exhibited magnitudes ranging from weak (R(2)a=0.17) to moderate (R(2)a=0.71). The parameter exhibiting the highest correlation magnitude is B (Breathiness), whereas the weaker correlation magnitudes were found to be for A (Asthenia) and S (Strain). The acoustic measures with stronger predictive values were local Shimmer, harmonics-to-noise ratio, APQ5 shimmer, and PPQ5 jitter, with different magnitudes for each one of the studied software programs. Some acoustic measures are pointed as significant predictors of GRBAS parameters, but they differ among software programs. B (Breathiness) was the parameter exhibiting the highest correlation magnitude. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  7. Some Sound Advice or a Short Course in School Acoustics

    ERIC Educational Resources Information Center

    McCandless, David

    1977-01-01

    The two major areas of acoustical problems are room acoustics and noise control. Some parameters of these areas are identified to illustrate that the best acoustical solutions occur in comprehensive planning at the very beginning of a project. (Author/MLF)

  8. Acoustic representation of tomographic data

    NASA Astrophysics Data System (ADS)

    Wampler, Cheryl; Zahrt, John D.; Hotchkiss, Robert S.; Zahrt, Rebecca; Kust, Mark

    1993-04-01

    Tomographic data and tomographic reconstructions are naturally periodic in the angle of rotation of the turntable and the polar angel of the coordinates in the object, respectively. Similarly, acoustic waves are periodic and have amplitude and wavelength as free parameters that can be fit to another representation. Work has been in progress for some time in bringing the acoustic senses to bear on large data sets rather than just the visual sense. We will provide several different acoustic representations of both raw data and density maps. Rather than graphical portrayal of the data and reconstructions, you will be presented various 'tone poems.'

  9. Perfect Undetectable Acoustic Device from Fabry-Pérot Resonances

    NASA Astrophysics Data System (ADS)

    Chen, Huanyang; Zhou, Yangyang; Zhou, Mengying; Xu, Lin; Liu, Qing Huo

    2018-02-01

    Transformation acoustics is a method to design novel acoustic devices, while the complexity of the material parameters hinders its progress. In this paper, we analytically present a three-dimensional perfect undetectable acoustic device from Fabry-Pérot resonances and confirm its functionality from Mie theory. Such a mechanism goes beyond the traditional transformation acoustics. In addition, such a reduced version can be realized by holey-structured metamaterials. Our theory paves a way to the implementation of three-dimensional transformation acoustic devices.

  10. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  11. Acoustic reflection log in transversely isotropic formations

    NASA Astrophysics Data System (ADS)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  12. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  13. Transmission acoustic microscopy investigation

    NASA Astrophysics Data System (ADS)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  14. Issues Related to Large Flight Hardware Acoustic Qualification Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Perry, Douglas C.; Kern, Dennis L.

    2011-01-01

    The characteristics of acoustical testing volumes generated by reverberant chambers or a circle of loudspeakers with and without large flight hardware within the testing volume are significantly different. The parameters attributing to these differences are normally not accounted for through analysis or acoustic tests prior to the qualification testing without the test hardware present. In most cases the control microphones are kept at least 2-ft away from hardware surfaces, chamber walls, and speaker surfaces to minimize the impact of the hardware in controlling the sound field. However, the acoustic absorption and radiation of sound by hardware surfaces may significantly alter the sound pressure field controlled within the chamber/speaker volume to a given specification. These parameters often result in an acoustic field that may provide under/over testing scenarios for flight hardware. In this paper the acoustic absorption by hardware surfaces will be discussed in some detail. A simple model is provided to account for some of the observations made from Mars Science Laboratory spacecraft that recently underwent acoustic qualification tests in a reverberant chamber.

  15. Acoustic waves in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison

    2013-09-01

    Seminal papers by Brutsaert (1964) and Brutsaert and Luthin (1964) provided the first rigorous theoretical framework for examining the poroelastic behavior of unsaturated soils, including an important application linking acoustic wave propagation to soil hydraulic properties. Theoretical developments during the 50 years that followed have led Lo et al., (2005) to a comprehensive model of these phenomena, but the relationship of its elasticity parameters to standard poroelasticity parameters measured in hydrogeology has not been established. In the present study, we develop this relationship for three key parameters, the Gassman modulus, Skempton coefficient, and Biot-Willis coefficient by generalizing them to an unsaturated porous medium. We demonstrate the remarkable result that well-known and widely applied relationships among these parameters for a porous medium saturated by a single fluid are also valid under very general conditions for unsaturated soils. We show further that measurement of the Biot-Willis coefficient along with three of the six elasticity coefficients in the model of Lo et al. (2005) is sufficient to characterize poroelastic behavior. The elasticity coefficients in the model of Lo et al. (2005) are sensitive to the dependence of capillary pressure on water saturation and its viscous-drag coefficients are functions of relative permeability, implying that hysteresis in the water retention curve and hydraulic conductivity function should affect acoustic wave behavior in unsaturated soils. To quantify these as-yet unknown effects, we performed numerical simulations for Dune sand at two representative wave excitation frequencies. Our results show that the acoustic wave investigated by Brutsaert and Luthin (1964) propagates at essentially the same speed during imbibition and drainage, but is attenuated more during drainage than imbibition. Overall, effects on acoustic wave behavior caused by hysteresis become more significant as the excitation

  16. Acoustic Quality Levels of Mosques in Batu Pahat

    NASA Astrophysics Data System (ADS)

    Azizah Adnan, Nor; Nafida Raja Shahminan, Raja; Khair Ibrahim, Fawazul; Tami, Hannifah; Yusuff, M. Rizal M.; Murniwaty Samsudin, Emedya; Ismail, Isham

    2018-04-01

    Every Friday, Muslims has been required to perform a special prayer known as the Friday prayers which involve the delivery of a brief lecture (Khutbah). Speech intelligibility in oral communications presented by the preacher affected all the congregation and determined the level of acoustic quality in the interior of the mosque. Therefore, this study intended to assess the level of acoustic quality of three public mosques in Batu Pahat. Good acoustic quality is essential in contributing towards appreciation in prayers and increasing khusyu’ during the worship, which is closely related to the speech intelligibility corresponding to the actual function of the mosque according to Islam. Acoustic parameters measured includes noise criteria (NC), reverberation time (RT) and speech transmission index (STI), and was performed using the sound level meter and sound measurement instruments. This test is carried out through the physical observation with the consideration of space and volume design as a factor affecting acoustic parameters. Results from all 3 mosques as the showed that the acoustic quality level inside these buildings are slightly poor which is at below 0.45 coefficients based on the standard. Among the factors that influencing the low acoustical quality are location, building materials, installation of sound absorption material and the number of occupants inside the mosque. As conclusion, the acoustic quality level of a mosque is highly depends on physical factors of the mosque such as the architectural design and space volume besides other factors as been identified by this study.

  17. Vocalisations and acoustic parameters of flock noise from feather pecking and non-feather pecking laying flocks.

    PubMed

    Bright, A

    2008-05-01

    1. In this study, the calling rates of vocalisations known to indicate distress and aversive events (Alarm calls, Squawks, Total vocalisations) and acoustic parameters of flock noise were quantified from feather and non-feather pecking laying flocks. 2. One hour of flock noise (background machinery and hen vocalisations) was recorded from 21 commercial free-range laying hen flocks aged > or =35 weeks. Ten of the flocks were classified as feather pecking (based on a plumage condition score) and 11 as non-feather pecking. 3. Recordings were made using a Sony DAT recorder and Audio-Technica omni-directional microphone, placed in the centre of the house-1.5 m from the ground. Avisoft-SASlab Pro was used to create and analyse audio spectrograms. 4. There was no effect of flock size or farm on call/s or acoustic parameters of flock noise. However, strain had an effect on the number of Total vocalisation/s; the Hebden Black flock made more calls than Lohmann flocks. Feather pecking flocks gave more Squawk/s and more Total vocalisation/s than non-feather pecking flocks. Feather pecking did not explain variation in alarm call rate or, intensity (dB) and frequency (Hz) measures of flock noise. 5. The differences between Squawk and Total vocalisation call rates of feather and non-feather pecking flocks are a new finding. An increase or change in flock calling rate may be evident before other conventional measures of laying hen welfare such as a drop in egg production or increase in plumage damage, thus enabling farmers to make management or husbandry changes to prevent an outbreak of feather pecking.

  18. Numerical investigation and electro-acoustic modeling of measurement methods for the in-duct acoustical source parameters.

    PubMed

    Jang, Seung-Ho; Ih, Jeong-Guon

    2003-02-01

    It is known that the direct method yields different results from the indirect (or load) method in measuring the in-duct acoustic source parameters of fluid machines. The load method usually comes up with a negative source resistance, although a fairly accurate prediction of radiated noise can be obtained from any method. This study is focused on the effect of the time-varying nature of fluid machines on the output results of two typical measurement methods. For this purpose, a simplified fluid machine consisting of a reservoir, a valve, and an exhaust pipe is considered as representing a typical periodic, time-varying system and the measurement situations are simulated by using the method of characteristics. The equivalent circuits for such simulations are also analyzed by considering the system as having a linear time-varying source. It is found that the results from the load method are quite sensitive to the change of cylinder pressure or valve profile, in contrast to those from the direct method. In the load method, the source admittance turns out to be predominantly dependent on the valve admittance at the calculation frequency as well as the valve and load admittances at other frequencies. In the direct method, however, the source resistance is always positive and the source admittance depends mainly upon the zeroth order of valve admittance.

  19. Acoustic analysis of oropharyngeal swallowing using Sonar Doppler.

    PubMed

    Soria, Franciele Savaris; Silva, Roberta Gonçalves da; Furkim, Ana Maria

    2016-01-01

    During the aging process, one of the functions that changes is swallowing. These alterations in oropharyngeal swallowing may be diagnosed by methods that allow both the diagnosis and biofeedback monitoring by the patient. One of the methods recently described in the literature for the evaluation of swallowing is the Sonar Doppler. To compare the acoustic parameters of oropharyngeal swallowing between different age groups. This was a field, quantitative, study. Examination with Sonar Doppler was performed in 75 elderly and 72 non-elderly adult subjects. The following acoustic parameters were established: initial frequency, first peak frequency, second peak frequency; initial intensity, final intensity; and time for the swallowing of saliva, liquid, nectar, honey, and pudding, with 5- and 10-mL free drinks. Objective, measurable data were obtained; most acoustic parameters studied between adult and elderly groups with respect to consistency and volume were significant. When comparing elderly with non-elderly adult subjects, there is a modification of the acoustic pattern of swallowing, regarding both consistency and food bolus volume. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. Electron acoustic nonlinear structures in planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.

    2018-04-01

    In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.

  1. Flight parameter estimation using instantaneous frequency and direction of arrival measurements from a single acoustic sensor node.

    PubMed

    Lo, Kam W

    2017-03-01

    When an airborne sound source travels past a stationary ground-based acoustic sensor node in a straight line at constant altitude and constant speed that is not much less than the speed of sound in air, the movement of the source during the propagation of the signal from the source to the sensor node (commonly referred to as the "retardation effect") enables the full set of flight parameters of the source to be estimated by measuring the direction of arrival (DOA) of the signal at the sensor node over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the sensor node to improve the precision of the flight parameter estimates when the source spectrum contains a harmonic line of constant frequency. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the flight parameters can be reduced when IF measurements are used together with DOA measurements. Two flight parameter estimation algorithms that utilize both IF and DOA measurements are described and their performances are evaluated using both simulated data and real data.

  2. Simulating environmental and psychological acoustic factors of the operating room.

    PubMed

    Bennett, Christopher L; Dudaryk, Roman; Ayers, Andrew L; McNeer, Richard R

    2015-12-01

    In this study, an operating room simulation environment was adapted to include quadraphonic speakers, which were used to recreate a composed clinical soundscape. To assess validity of the composed soundscape, several acoustic parameters of this simulated environment were acquired in the presence of alarms only, background noise only, or both. These parameters were also measured for comparison from size-matched operating rooms at Jackson Memorial Hospital. The parameters examined included sound level, reverberation time, and predictive metrics of speech intelligibility in quiet and noise. It was found that the sound levels and acoustic parameters were comparable between the simulated environment and the actual operating rooms. The impact of the background noise on the perception of medical alarms was then examined, and was found to have little impact on the audibility of the alarms. This study is a first in kind report of a comparison between the environmental and psychological acoustical parameters of a hospital simulation environment and actual operating rooms.

  3. Superresonance phenomenon from acoustic black holes in neo-Newtonian theory

    NASA Astrophysics Data System (ADS)

    Salako, I. G.; Jawad, Abdul

    2016-03-01

    We explore the possibility of the acoustic analogue of a super-radiance like phenomenon, i.e. the amplification of a sound wave by reflection from the ergo-region of a rotating acoustic black hole in the fluid draining bathtub model in the presence of the pressure to be amplified or reduced in agreement with the value of the parameter (γ = 1 + knρ0n-1 c2 ). We remark that the interval of frequencies depend upon the neo-Newtonian parameter γ (Ω¯H = 2 1+γΩH) and becomes narrow in this work. As a consequence, the tuning of the neo-Newtonian parameter (γ = 1 + knρ0n-1 c2 ) changes the rate of loss of the acoustic black hole mass.

  4. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.

    PubMed

    Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas

    2017-04-01

    The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).

  5. Estimating suspended sediment using acoustics in a fine-grained riverine system, Kickapoo Creek at Bloomington, Illinois

    USGS Publications Warehouse

    Manaster, Amanda D.; Domanski, Marian M.; Straub, Timothy D.; Boldt, Justin A.

    2016-08-18

    Acoustic technologies have the potential to be used as a surrogate for measuring suspended-sediment concentration (SSC). This potential was examined in a fine-grained (97-100 percent fines) riverine system in central Illinois by way of installation of an acoustic instrument. Acoustic data were collected continuously over the span of 5.5 years. Acoustic parameters were regressed against SSC data to determine the accuracy of using acoustic technology as a surrogate for measuring SSC in a fine-grained riverine system. The resulting regressions for SSC and sediment acoustic parameters had coefficients of determination ranging from 0.75 to 0.97 for various events and configurations. The overall Nash-Sutcliffe model-fit efficiency was 0.95 for the 132 observed and predicted SSC values determined using the sediment acoustic parameter regressions. The study of using acoustic technologies as a surrogate for measuring SSC in fine-grained riverine systems is ongoing. The results at this site are promising in the realm of surrogate technology.

  6. Acoustic and spectral characteristics of young children's fricative productions: A developmental perspective

    NASA Astrophysics Data System (ADS)

    Nissen, Shawn L.; Fox, Robert Allen

    2005-10-01

    Scientists have made great strides toward understanding the mechanisms of speech production and perception. However, the complex relationships between the acoustic structures of speech and the resulting psychological percepts have yet to be fully and adequately explained, especially in speech produced by younger children. Thus, this study examined the acoustic structure of voiceless fricatives (/f, θ, s, /sh/) produced by adults and typically developing children from 3 to 6 years of age in terms of multiple acoustic parameters (durations, normalized amplitude, spectral slope, and spectral moments). It was found that the acoustic parameters of spectral slope and variance (commonly excluded from previous studies of child speech) were important acoustic parameters in the differentiation and classification of the voiceless fricatives, with spectral variance being the only measure to separate all four places of articulation. It was further shown that the sibilant contrast between /s/ and /sh/ was less distinguished in children than adults, characterized by a dramatic change in several spectral parameters at approximately five years of age. Discriminant analysis revealed evidence that classification models based on adult data were sensitive to these spectral differences in the five-year-old age group.

  7. A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2015-08-01

    The acoustic cloak, which can make an object hard to detect acoustically in a homogeneous background, has attracted great attention from researchers in recent years. The inhomogeneous background media were considered in this paper. The relative constitutive parameters were derived for acoustic cloaks working in multilayered media. And a unidirectional acoustic cloak for layered background media was proposed, designed and implemented successfully in a wide frequency range. In water and NaCl aqueous solution, the acoustic cloak was designed and realized with homogeneous metamaterials which were composed of steel and porous materials. The effective parameters of the unit cells of the cloak were determined by using the effective medium theory. Numerical results demonstrated excellent cloaking performance and showed that such a device could be physically realized with natural materials which will greatly promote the real applications of an invisibility cloak in inhomogeneous backgrounds.

  8. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-01

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  9. Anomalous acoustic dispersion in architected microlattice metamaterials

    NASA Astrophysics Data System (ADS)

    KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara

    The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.

  10. High sensitivity of p-modes near the acoustic cutoff frequency to solar model parameters

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.

    1991-01-01

    The p-mode frequencies of low l have been calculated for solar models with initial helium mass fraction varying from Y = 0.2753-0.2875. The differences in frequency of the p-modes in the frequency range, 2500-4500 microHz, do not exceed 1-5 microHz among the models. But in the vicinity of the acoustic cutoff frequency, near 5000 microHz the p-mode frequency differences are enhanced by a factor of 4. The enhanced sensitivity of p-modes near the acoustic cutoff frequency was further tested by calculating and comparing p-mode frequencies of low l for two solar models one incorporating the Eddington T-tau relation and the other the Krishna Swamy T-tau relation. Again, it is found that p-modes with frequencies near the acoustic cutoff frequency show a significant increase in sensitivity to the different T-tau relations, compared to lower frequency p-modes. It is noted that frequencies above the acoustic cutoff frequency are complex, hence, cannot be modeled by the adiabatic pulsation code (assumes real eigenfrequencies) used in these calculations.

  11. Acoustic Scattering by Near-Surface Inhomogeneities in Porous Media

    DTIC Science & Technology

    1990-02-21

    surfaces [8]. Recently, this empirical model has been replaced by a more rigorous mi- crostructural model [9]. Here, the acoustical characteristics of...boundaries. A discussion of how ground acoustic characteristics are modelled then follows, with the chapter being concluded by a brief summary. 3.1...of ground acoustic char- acteristics, with particular emphasis on the Four parameter model of Atten- borough, that will be used extensively later. 48

  12. Evaluation of bridge cables corrosion using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2010-04-01

    Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  13. Sediment Acoustics: Wideband Model, Reflection Loss and Ambient Noise Inversion

    DTIC Science & Technology

    2010-01-01

    DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment acoustics : Wideband model , reflection loss and...Physically sound models of acoustic interaction with the ocean floor including penetration, reflection and scattering in support of MCM and ASW needs...OBJECTIVES (1) Consolidation of the BIC08 model of sediment acoustics , its verification in a variety of sediment types, parameter reduction and

  14. Acoustic metasurface for refracted wave manipulation

    NASA Astrophysics Data System (ADS)

    Han, Li-Xiang; Yao, Yuan-Wei; Zhang, Xin; Wu, Fu-Gen; Dong, Hua-Feng; Mu, Zhong-Fei; Li, Jing-bo

    2018-02-01

    Here we present a design of a transmitted acoustic metasurface based on a single row of Helmholtz resonators with varying geometric parameters. The proposed metasurface can not only steer an acoustic beam as expected from the generalized Snell's law of refraction, but also exhibits various interesting properties and potential applications such as insulation of two quasi-intersecting transmitted sound waves, ultrasonic Bessel beam generator, frequency broadening effect of anomalous refraction and focusing.

  15. Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-04-01

    Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).

  16. Two-dimensional modulated ion-acoustic excitations in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif S.; Tabi, Conrad B.; Kofané, Timoléon C.

    2017-09-01

    Two-dimensional modulated ion-acoustic waves are investigated in an electronegative plasma. Through the reductive perturbation expansion, the governing hydrodynamic equations are reduced to a Davey-Stewartson system with two-space variables. The latter is used to study the modulational instability of ion-acoustic waves along with the effect of plasma parameters, namely, the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). A parametric analysis of modulational instability is carried out, where regions of plasma parameters responsible for the emergence of modulated ion-acoustic waves are discussed, with emphasis on the behavior of the instability growth rate. Numerically, using perturbed plane waves as initial conditions, parameters from the instability regions give rise to series of dromion solitons under the activation of modulational instability. The sensitivity of the numerical solutions to plasma parameters is discussed. Some exact solutions in the form one- and two-dromion solutions are derived and their response to the effect of varying α and σn is discussed as well.

  17. Acoustic characteristics of the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang

    2015-10-01

    The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.

  18. Acoustic classification of zooplankton

    NASA Astrophysics Data System (ADS)

    Martin Traykovski, Linda V.

    1998-11-01

    Work on the forward problem in zooplankton bioacoustics has resulted in the identification of three categories of acoustic scatterers: elastic-shelled (e.g. pteropods), fluid-like (e.g. euphausiids), and gas-bearing (e.g. siphonophores). The relationship between backscattered energy and animal biomass has been shown to vary by a factor of ~19,000 across these categories, so that to make accurate estimates of zooplankton biomass from acoustic backscatter measurements of the ocean, the acoustic characteristics of the species of interest must be well-understood. This thesis describes the development of both feature based and model based classification techniques to invert broadband acoustic echoes from individual zooplankton for scatterer type, as well as for particular parameters such as animal orientation. The feature based Empirical Orthogonal Function Classifier (EOFC) discriminates scatterer types by identifying characteristic modes of variability in the echo spectra, exploiting only the inherent characteristic structure of the acoustic signatures. The model based Model Parameterisation Classifier (MPC) classifies based on correlation of observed echo spectra with simplified parameterisations of theoretical scattering models for the three classes. The Covariance Mean Variance Classifiers (CMVC) are a set of advanced model based techniques which exploit the full complexity of the theoretical models by searching the entire physical model parameter space without employing simplifying parameterisations. Three different CMVC algorithms were developed: the Integrated Score Classifier (ISC), the Pairwise Score Classifier (PSC) and the Bayesian Probability Classifier (BPC); these classifiers assign observations to a class based on similarities in covariance, mean, and variance, while accounting for model ambiguity and validity. These feature based and model based inversion techniques were successfully applied to several thousand echoes acquired from broadband (~350 k

  19. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    NASA Astrophysics Data System (ADS)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  20. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  1. Model parameter extraction of lateral propagating surface acoustic waves with coupling on SiO2/grating/LiNbO3 structure

    NASA Astrophysics Data System (ADS)

    Zhang, Benfeng; Han, Tao; Li, Xinyi; Huang, Yulin; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    This paper investigates how lateral propagation of Rayleigh and shear horizontal (SH) surface acoustic waves (SAWs) changes with rotation angle θ and SiO2 and electrode thicknesses, h SiO2 and h Cu, respectively. The extended thin plate model is used for purpose. First, the extraction method is presented for determining parameters appearing in the extended thin plate model. Then, the model parameters are expressed in polynomials in terms of h SiO2, h Cu, and θ. Finally, a piston mode structure without phase shifters is designed using the extracted parameters. The possible piston mode structures can be searched automatically by use of the polynomial expression. The resonance characteristics are analyzed by both the extended thin plate model and three-dimensional (3D) finite element method (FEM). Agreement between the results of both methods confirms validity and effectiveness of the parameter extraction process and the design technique.

  2. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  3. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    PubMed

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  4. Modeling temperature and moisture state effects on acoustic velocity in wood

    Treesearch

    Shan Gao; X. Wang; L. Wang; R.B. Bruce

    2011-01-01

    Previous research has proved the concept of acoustic wave propagation methods for evaluating wood quality of trees and logs during forest operations. As commercial acoustic equipment is implemented in field for various purposes, one has to consider the influence of operating temperature on acoustic velocity — a key parameter for wood property prediction. Our field...

  5. Design of acoustic emission monitoring system based on VC++

    NASA Astrophysics Data System (ADS)

    Yu, Yang; He, Wei

    2015-12-01

    At present, a lot of companies at home and abroad have researched and produced a batch of specialized monitoring instruments for acoustic emission (AE). Most of them cost highly and the system function exists in less stable and less portability for the testing environment and transmission distance and other aspects. Depending on the research background and the status quo, a dual channel intelligent acoustic emission monitoring system was designed based on Microsoft Foundation Classes in Visual Studio C++ to solve some of the problems in the acoustic emission research and meet the needs of actual monitoring task. It contains several modules such as main module, acquisition module, signal parameters setting module and so on. It could give out corrosion AE waveform and signal parameters results according to the main menu selected parameters. So the needed information could be extracted from the experiments datum to solve the problem deeply. This soft system is the important part of AE detection g system.

  6. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  7. Experimental research of the influence of the strength of ore samples on the parameters of an electromagnetic signal during acoustic excitation in the process of uniaxial compression

    NASA Astrophysics Data System (ADS)

    Yavorovich, L. V.; Bespal`ko, A. A.; Fedotov, P. I.

    2018-01-01

    Parameters of electromagnetic responses (EMRe) generated during uniaxial compression of rock samples under excitation by deterministic acoustic pulses are presented and discussed. Such physical modeling in the laboratory allows to reveal the main regularities of electromagnetic signals (EMS) generation in rock massive. The influence of the samples mechanical properties on the parameters of the EMRe excited by an acoustic signal in the process of uniaxial compression is considered. It has been established that sulfides and quartz in the rocks of the Tashtagol iron ore deposit (Western Siberia, Russia) contribute to the conversion of mechanical energy into the energy of the electromagnetic field, which is expressed in an increase in the EMS amplitude. The decrease in the EMS amplitude when the stress-strain state of the sample changes during the uniaxial compression is observed when the amount of conductive magnetite contained in the rock is increased. The obtained results are important for the physical substantiation of testing methods and monitoring of changes in the stress-strain state of the rock massive by the parameters of electromagnetic signals and the characteristics of electromagnetic emission.

  8. Acoustic invisibility cloaks of arbitrary shapes for complex background media

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2016-04-01

    We report on the theoretical investigation of the acoustic cloaks working in complex background media in this paper. The constitutive parameters of arbitrary-shape cloaks are derived based on the transformation acoustic theory and coordinate transformation technique. The detailed analysis of boundaries conditions and potential applications of the cloaks are also presented in our work. To overcome the difficulty of achieving the materials with ideal parameters in nature, concentric alternating layered isotropic materials is adopted to approximate the required properties of the cloak. Theoretical design and excellent invisibility are demonstrated by numerical simulations. The inhomogeneous medium and arbitrary-shape acoustic cloaks grow closer to real application and may be a new hot spot in future.

  9. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  10. Development of Biological Acoustic Impedance Microscope and its Error Estimation

    NASA Astrophysics Data System (ADS)

    Hozumi, Naohiro; Nakano, Aiko; Terauchi, Satoshi; Nagao, Masayuki; Yoshida, Sachiko; Kobayashi, Kazuto; Yamamoto, Seiji; Saijo, Yoshifumi

    This report deals with the scanning acoustic microscope for imaging cross sectional acoustic impedance of biological soft tissues. A focused acoustic beam was transmitted to the tissue object mounted on the "rear surface" of plastic substrate. A cerebellum tissue of rat and a reference material were observed at the same time under the same condition. As the incidence is not vertical, not only longitudinal wave but also transversal wave is generated in the substrate. The error in acoustic impedance assuming vertical incidence was estimated. It was proved that the error can precisely be compensated, if the beam pattern and acoustic parameters of coupling medium and substrate had been known.

  11. A dimension-wise analysis method for the structural-acoustic system with interval parameters

    NASA Astrophysics Data System (ADS)

    Xu, Menghui; Du, Jianke; Wang, Chong; Li, Yunlong

    2017-04-01

    The interval structural-acoustic analysis is mainly accomplished by interval and subinterval perturbation methods. Potential limitations for these intrusive methods include overestimation or interval translation effect for the former and prohibitive computational cost for the latter. In this paper, a dimension-wise analysis method is thus proposed to overcome these potential limitations. In this method, a sectional curve of the system response surface along each input dimensionality is firstly extracted, the minimal and maximal points of which are identified based on its Legendre polynomial approximation. And two input vectors, i.e. the minimal and maximal input vectors, are dimension-wisely assembled by the minimal and maximal points of all sectional curves. Finally, the lower and upper bounds of system response are computed by deterministic finite element analysis at the two input vectors. Two numerical examples are studied to demonstrate the effectiveness of the proposed method and show that, compared to the interval and subinterval perturbation method, a better accuracy is achieved without much compromise on efficiency by the proposed method, especially for nonlinear problems with large interval parameters.

  12. Acoustic wayfinding: A method to measure the acoustic contrast of different paving materials for blind people.

    PubMed

    Secchi, Simone; Lauria, Antonio; Cellai, Gianfranco

    2017-01-01

    Acoustic wayfinding involves using a variety of auditory cues to create a mental map of the surrounding environment. For blind people, these auditory cues become the primary substitute for visual information in order to understand the features of the spatial context and orient themselves. This can include creating sound waves, such as tapping a cane. This paper reports the results of a research about the "acoustic contrast" parameter between paving materials functioning as a cue and the surrounding or adjacent surface functioning as a background. A number of different materials was selected in order to create a test path and a procedure was defined for the verification of the ability of blind people to distinguish different acoustic contrasts. A method is proposed for measuring acoustic contrast generated by the impact of a cane tip on the ground to provide blind people with environmental information on spatial orientation and wayfinding in urban places. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    PubMed Central

    Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size. PMID:27180912

  14. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.

    PubMed

    Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-16

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  15. A non-collinear mixing technique to measure the acoustic nonlinearity parameter of adhesive bond

    NASA Astrophysics Data System (ADS)

    Ju, Taeho; Achenbach, Jan. D.; Jacobs, Laurence J.; Qu, Jianmin

    2018-04-01

    In this work, we employed a wave mixing technique with an incident longitudinal wave and a shear wave to measure the Acoustic Nonlinearity Parameter (ANLP) of adhesive bonds. An adhesive transfer tape (F-9473PC) was used as an adhesive material: two aluminum plates are bonded together by the tape. To achieve a high signal to noise ratio, the optimal interaction angle and frequency ratio between the two incident waves were carefully selected so resonance occurs primarily in the adhesive layer, which somewhat suppressed the resonance in the aluminum plates. One of the most significant features of this method is that the measurements need only one-side access to the sample being measured. To demonstrate the effectiveness of the proposed technique, the adhesively bonded aluminum sample was placed in a temperature-controlled chamber for thermal aging. The ANLP of the thermally aged sample was compared with that of a freshly made adhesive sample. The results show that the ANLP increases with aging time and temperature.

  16. Surface acoustic waves voltage controlled directional coupler

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  17. Acoustic detection of air shower cores

    NASA Technical Reports Server (NTRS)

    Gao, X.; Liu, Y.; Du, S.

    1985-01-01

    At an altitude of 1890m, a pre-test with an Air shower (AS) core selector and a small acoustic array set up in an anechoic pool with a volume of 20x7x7 cu m was performed, beginning in Aug. 1984. In analyzing the waveforms recorded during the effective working time of 186 hrs, three acoustic signals which cannot be explained as from any source other than AS cores were obtained, and an estimation of related parameters was made.

  18. Design of a broadband ultra-large area acoustic cloak based on a fluid medium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Jiang, Ping

    2014-10-01

    A broadband ultra-large area acoustic cloak based on fluid medium was designed and numerically implemented with homogeneous metamaterials according to the transformation acoustics. In the present work, fluid medium as the body of the inclusion could be tuned by changing the fluid to satisfy the variant acoustic parameters instead of redesign the whole cloak. The effective density and bulk modulus of the composite materials were designed to agree with the parameters calculated from the coordinate transformation methodology by using the effective medium theory. Numerical simulation results showed that the sound propagation and scattering signature could be controlled in the broadband ultra-large area acoustic invisibility cloak, and good cloaking performance has been achieved and physically realized with homogeneous materials. The broadband ultra-large area acoustic cloaking properties have demonstrated great potentials in the promotion of the practical applications of acoustic cloak.

  19. Using Approximate Bayesian Computation to infer sex ratios from acoustic data.

    PubMed

    Lehnen, Lisa; Schorcht, Wigbert; Karst, Inken; Biedermann, Martin; Kerth, Gerald; Puechmaille, Sebastien J

    2018-01-01

    Population sex ratios are of high ecological relevance, but are challenging to determine in species lacking conspicuous external cues indicating their sex. Acoustic sexing is an option if vocalizations differ between sexes, but is precluded by overlapping distributions of the values of male and female vocalizations in many species. A method allowing the inference of sex ratios despite such an overlap will therefore greatly increase the information extractable from acoustic data. To meet this demand, we developed a novel approach using Approximate Bayesian Computation (ABC) to infer the sex ratio of populations from acoustic data. Additionally, parameters characterizing the male and female distribution of acoustic values (mean and standard deviation) are inferred. This information is then used to probabilistically assign a sex to a single acoustic signal. We furthermore develop a simpler means of sex ratio estimation based on the exclusion of calls from the overlap zone. Applying our methods to simulated data demonstrates that sex ratio and acoustic parameter characteristics of males and females are reliably inferred by the ABC approach. Applying both the ABC and the exclusion method to empirical datasets (echolocation calls recorded in colonies of lesser horseshoe bats, Rhinolophus hipposideros) provides similar sex ratios as molecular sexing. Our methods aim to facilitate evidence-based conservation, and to benefit scientists investigating ecological or conservation questions related to sex- or group specific behaviour across a wide range of organisms emitting acoustic signals. The developed methodology is non-invasive, low-cost and time-efficient, thus allowing the study of many sites and individuals. We provide an R-script for the easy application of the method and discuss potential future extensions and fields of applications. The script can be easily adapted to account for numerous biological systems by adjusting the type and number of groups to be

  20. The comparison of acoustic and psychic parameters of subjective tinnitus.

    PubMed

    Karatas, Erkan; Deniz, Murat

    2012-02-01

    We aim to assess the correlation between audiometric data, and psychotic and acoustic measures associated with subjective tinnitus (ST) and to clarify the importance of the psychological process in determining the degree of subjective annoyance and disability due to tinnitus. Fifty-four patients experiencing unilateral ST were allocated for the study. Acoustic assessment of patients including LDL (loudness discomfort levels), MML (minimum masking level) and RI (residual inhibition) was performed. Tinnitus Handicap Inventory (THI), Beck Depression Inventory (BDI) and Visual Analog Scale (VAS) tests were performed for the psychological aspects of subjective annoyance. RI was positive in 23 patients with 13 frequency-matched stimuli at 8,000 Hz. Masking treatment response was successful in 16 RI-positive patients. Mean and standard deviation (SD) of THI scores were 38.77 ± 23.63. Ten patients (%18.51) with tinnitus had ≥ 17 points score, which was significant for BDI. Mean and SD were 5.01 ± 2.31 for VAS-1 scores (severity of tinnitus), 7.98 ± 2.79 for VAS-2 (frequency and duration of tinnitus), 5.77 ± 2.72 for VAS-3 (discomfort level), 3.56 ± 3.30 for VAS-4 (attention deficit) and 3.31 ± 3.31 for VAS-5 (sleep disorders). A significant correlation was found between the tinnitus duration time, age, gender and THI scores (P < 0.05). There were statistically significant correlations between VAS 1, 2, 3 scores and LDL, MML and RI (P > 0.05). RI might be largely frequency dependent and was found as an indicator for the masking treatment response. We did not notice statistically significant correlations between audiometric data and THI and BDI. There were correlations between with VAS and LDL and with MML and RI. VAS was simpler and easier for the assessment of ST. We should consider the psychological aspects of ST and assess it as a symptom separately with acoustic and psychotic tests.

  1. An acoustical study of English word stress produced by Americans and Koreans

    NASA Astrophysics Data System (ADS)

    Yang, Byunggon

    2002-05-01

    Acoustical correlates of stress can be divided into duration, intensity, and fundamental frequency. This study examined the acoustical difference in the first two syllables of stressed English words produced by ten American and Korean speakers. The Korean subjects scored very high in TOEFL. They read, at a normal speed, a fable from which the acoustical parameters of eight words were analyzed. In order to make the data comparison meaningful, each parameter was collected at 100 dynamic time points proportional to the total duration of the two syllables. Then, the ratio of the parameter sum of the first rime to that of the second rime was calculated to determine the relative prominence of the syllables. Results showed that the durations of the first two syllables were almost comparable between the Americans and Koreans. However, statistically significant differences showed up in the diphthong pronunciations and in the words with the second syllable stressed. Also, remarkably high r-squared values were found between pairs of the three acoustical parameters, which suggests that either one or a combination of two or more parameters may account for the prominence of a syllable within a word. [Work supported by Korea Science Foundation R01-1999-00229.

  2. Nonlinear Acoustical Assessment of Precipitate Nucleation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2004-01-01

    The purpose of the present work is to show that measurements of the acoustic nonlinearity parameter in heat treatable alloys as a function of heat treatment time can provide quantitative information about the kinetics of precipitate nucleation and growth in such alloys. Generally, information on the kinetics of phase transformations is obtained from time-sequenced electron microscopical examination and differential scanning microcalorimetry. The present nonlinear acoustical assessment of precipitation kinetics is based on the development of a multiparameter analytical model of the effects on the nonlinearity parameter of precipitate nucleation and growth in the alloy system. A nonlinear curve fit of the model equation to the experimental data is then used to extract the kinetic parameters related to the nucleation and growth of the targeted precipitate. The analytical model and curve fit is applied to the assessment of S' precipitation in aluminum alloy 2024 during artificial aging from the T4 to the T6 temper.

  3. [Applicability of voice acoustic analysis with vocal loading testto diagnostics of occupational voice diseases].

    PubMed

    Niebudek-Bogusz, Ewa; Sliwińska-Kowalska, Mariola

    2006-01-01

    An assessment of the vocal system, as a part of the medical certification of occupational diseases, should be objective and reliable. Therefore, interest in the method of acoustic voice analysis enabling objective assessment of voice parameters is still growing. The aim of the present study was to evaluate the applicability of acoustic analysis with vocal loading test to the diagnostics of occupational voice disorders. The results of acoustic voice analysis were compared using IRIS software for phoniatrics, before and after a 30-min vocal loading test in 35 female teachers with diagnosed occupational voice disorders (group I) and in 31 female teachers with functional dysphonia (group II). In group I, vocal effort produced significant abnormalities in voice acoustic parameters, compared to group II. These included significantly increased mean fundamental frequency (Fo) value (by 11 Hz) and worsened jitter, shimmer and NHR parameters. Also, the percentage of subjects showing abnormalities in voice acoustic analysis was higher in this group. Conducting voice acoustic analysis before and after the vocal loading test makes it possible to objectively confirm irreversible voice impairments in persons with work-related pathologies of the larynx, which is essential for medical certification of occupational voice diseases.

  4. The prediction of acoustical particle motion using an efficient polynomial curve fit procedure

    NASA Technical Reports Server (NTRS)

    Marshall, S. E.; Bernhard, R.

    1984-01-01

    A procedure is examined whereby the acoustic model parameters, natural frequencies and mode shapes, in the cavities of transportation vehicles are determined experimentally. The acoustic model shapes are described in terms of the particle motion. The acoustic modal analysis procedure is tailored to existing minicomputer based spectral analysis systems.

  5. The Identification of the Deformation Stage of a Metal Specimen Based on Acoustic Emission Data Analysis

    PubMed Central

    Zou, Shenao; Yan, Fengying; Yang, Guoan; Sun, Wei

    2017-01-01

    The acoustic emission (AE) signals of metal materials have been widely used to identify the deformation stage of a pressure vessel. In this work, Q235 steel samples with different propagation distances and geometrical structures are stretched to get the corresponding acoustic emission signals. Then the obtained acoustic emission signals are de-noised by empirical mode decomposition (EMD), and then decomposed into two different frequency ranges, i.e., one mainly corresponding to metal deformation and the other mainly corresponding to friction signals. The ratio of signal energy between two frequency ranges is defined as a new acoustic emission characteristic parameter. Differences can be observed at different deformation stages in both magnitude and data distribution range. Compared with other acoustic emission parameters, the proposed parameter is valid in different setups of the propagation medium and the coupled stiffness. PMID:28387703

  6. Comparing the Exposure-Response Relationships of Physiological and Traditional Vocal Warm-ups on Aerodynamic and Acoustic Parameters in Untrained Singers.

    PubMed

    Kang, Jing; Xue, Chao; Chou, Adriana; Scholp, Austin; Gong, Ting; Zhang, Yi; Chen, Zhen; Jiang, Jack J

    2018-02-05

    The aim of this study was to quantify the effects of traditional and physiological warm-up exercises and to determine the optimal duration of these methods using acoustic and aerodynamic metrics. Twenty-six subjects were recruited to participate in both straw phonation exercises (physiological vocal warm-up) and traditional singing exercises (traditional vocal warm-up) for 20 minutes each, 24 hours apart. Phonation threshold pressure (PTP), fundamental frequency, jitter, shimmer, and noise-to-harmonics ratio were measured before the intervention (m0), as well as after 5 minutes (m5), 10 minutes (m10), 15 minutes (m15), and 20 minutes (m20) of intervention. PTP decreased significantly after straw phonation and reached a minimum value at 10 minutes (P < 0.001) and remained stable in traditional singing exercises. There were significant differences in fundamental frequency and shimmer from m0 to m15 and m20 in the traditional singing group (P = 0.001, P = 0.001, P = 0.001, and P = 0.002, respectively). No significant changes in acoustic parameters were observed after straw phonation. Both straw phonation exercises and traditional singing exercises are effective for voice warm-up. Straw phonation improves the subjects' fatigue resistance and vocal economy, resulting in a reduced PTP, whereas traditional singing exercises focus on technical singing skills, leading to an improvement of acoustic variables. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Acoustic Facies Analysis of Side-Scan Sonar Data

    NASA Astrophysics Data System (ADS)

    Dwan, Fa Shu

    Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope

  8. A statistical-based approach for acoustic tomography of the atmosphere.

    PubMed

    Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid

    2014-01-01

    Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.

  9. The sound strength parameter G and its importance in evaluating and planning the acoustics of halls for music.

    PubMed

    Beranek, Leo

    2011-05-01

    The parameter, "Strength of Sound G" is closely related to loudness. Its magnitude is dependent, inversely, on the total sound absorption in a room. By comparison, the reverberation time (RT) is both inversely related to the total sound absorption in a hall and directly related to its cubic volume. Hence, G and RT in combination are vital in planning the acoustics of a concert hall. A newly proposed "Bass Index" is related to the loudness of the bass sound and equals the value of G at 125 Hz in decibels minus its value at mid-frequencies. Listener envelopment (LEV) is shown for most halls to be directly related to the mid-frequency value of G. The broadening of sound, i.e., apparent source width (ASW) is given by degree of source broadening (DSB) which is determined from the combined effect of early lateral reflections as measured by binaural quality index (BQI) and strength G. The optimum values and limits of these parameters are discussed.

  10. Acoustic Characterization of a Multi-Rotor Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Feight, Jordan; Gaeta, Richard; Jacob, Jamey

    2017-11-01

    In this study, the noise produced by a small multi-rotor rotary wing aircraft, or drone, is measured and characterized. The aircraft is tested in different configurations and environments to investigate specific parameters and how they affect the acoustic signature of the system. The parameters include rotor RPM, the number of rotors, distance and angle of microphone array from the noise source, and the ambient environment. The testing environments include an anechoic chamber for an idealized setting and both indoor and outdoor settings to represent real world conditions. PIV measurements are conducted to link the downwash and vortical flow structures from the rotors with the noise generation. The significant factors that arise from this study are the operational state of the aircraft and the microphone location (or the directivity of the noise source). The directivity in the rotor plane was shown to be omni-directional, regardless of the varying parameters. The tonal noise dominates the low to mid frequencies while the broadband noise dominates the higher frequencies. The fundamental characteristics of the acoustic signature appear to be invariant to the number of rotors. Flight maneuvers of the aircraft also significantly impact the tonal content in the acoustic signature.

  11. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  12. The acoustical design of vehicles-a challenge for qualitative evaluation

    NASA Astrophysics Data System (ADS)

    Schulte-Fortkamp, Brigitte; Genuit, Klaus; Fiebig, Andre

    2005-09-01

    Whenever the acoustical design of vehicles is explored, the crucial question about the appropriate method of evaluation arises. Research shows that not only acoustic but also non-acoustic parameters have a major influence on the way sounds are evaluated. Therefore, new methods of evaluation have to be implemented. Methods are needed which give the opportunity to test the quality of the given ambience and to register the effects and evaluations in their functional interdependence as well as the influence of personal and contextual factors. Moreover, new methods have to give insight into processes of evaluation and their contextual parameters. In other words, the task of evaluating acoustical ambiences consists of designating a set of social, psychological, and cultural conditions which are important to determine particular individual and collective behavior, attitudes, and also emotions relative to the given ambience. However, no specific recommendations exist yet which comprise particular descriptions of how to assess those specific sound effects. That is why there is a need to develop alternative methods of evaluation with whose help effects of acoustical ambiences can be better predicted. A method of evaluation will be presented which incorporates a new sensitive approach for the evaluation of vehicle sounds.

  13. Scaling of membrane-type locally resonant acoustic metamaterial arrays.

    PubMed

    Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R

    2012-10-01

    Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.

  14. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    PubMed

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.

  15. Acoustics in Halls for Speech and Music

    NASA Astrophysics Data System (ADS)

    Gade, Anders C.

    This chapter deals specifically with concepts, tools, and architectural variables of importance when designing auditoria for speech and music. The focus will be on cultivating the useful components of the sound in the room rather than on avoiding noise from outside or from installations, which is dealt with in Chap. 11. The chapter starts by presenting the subjective aspects of the room acoustic experience according to consensus at the time of writing. Then follows a description of their objective counterparts, the objective room acoustic parameters, among which the classical reverberation time measure is only one of many, but still of fundamental value. After explanations on how these parameters can be measured and predicted during the design phase, the remainder of the chapter deals with how the acoustic properties can be controlled by the architectural design of auditoria. This is done by presenting the influence of individual design elements as well as brief descriptions of halls designed for specific purposes, such as drama, opera, and symphonic concerts. Finally, some important aspects of loudspeaker installations in auditoria are briefly touched upon.

  16. Acoustic Analysis of Voice and Electroglottography in Patients With Laryngopharyngeal Reflux.

    PubMed

    Ramírez, Daphne Anahit Morales; Jiménez, Víctor Manuel Valadez; López, Xochiquetzal Hernández; Ysunza, Pablo Antonio

    2018-05-01

    Laryngopharyngeal reflux (LPR) refers to the flow of gastric acid content into the laryngopharynx. It has been reported that 10% of the patients consulting an otolaryngologist present with this condition. Signs of LPR can be identified during flexible or rigid laryngoscopy. The Voice Handicap Index (VHI) is a reliable tool for detecting the impact of voice disorders, and acoustic assessment of voice including acoustic analysis of voice (AAV) and electroglottography (EGG) provide objective data of voice production and voice disorders. This study aimed to describe changes in AAV, EGG, and VHI in patients who present with LPR compared with a matched control group of healthy subjects. Seventeen patients with LPR were studied. A group of healthy subjects matched by age and gender without any history of voice disorder, LPR, or gastroesophageal reflux disease was assembled. Both groups of patients were studied by VHI, flexible laryngoscopy, AAV, and EGG. All patients with LPR demonstrated abnormal VHI values. Shimmer, jitter, open quotient, and irregularity were significantly increased in the patients with LPR. Nonsignificant correlations were found between VHI scores and abnormal acoustic parameters in patients with LPR. Although abnormal acoustic parameters of patients with LPR were not predictive of the overall VHI score, the abnormal acoustic parameters of patients with LPR suggest a decrease in adequate laryngeal control during phonation. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Nondestructive online testing method for friction stir welding using acoustic emission

    NASA Astrophysics Data System (ADS)

    Levikhina, Anastasiya

    2017-12-01

    The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.

  18. Origin of acoustic emission produced during single point machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R,.; Carpenter, S.H.; Armentrout, D.L.

    1991-01-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emissionmore » produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent. 21 refs., 19 figs., 4 tabs.« less

  19. Origin of acoustic emission produced during single point machining

    NASA Astrophysics Data System (ADS)

    Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.

    1991-05-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emission produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent.

  20. Acoustical and Other Physical Properties of Marine Sediments

    DTIC Science & Technology

    1991-01-01

    Granular Structure of Rocks 4. Anisotropic Poroelasticity and Biot’s Parameters PART 1 A simple analytical model has been developed to describe the...mentioned properties. PART 4 Prediction of wave propagation in a submarine environment re- quires modeling the acoustic response of ocean bottom...Biot’s theory is a promising approach for modelling acoustic wave propa- gation in ocean sediments which generally consist of elastic or viscoelastic

  1. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  2. Acoustical power amplification and damping by temperature gradients.

    PubMed

    Biwa, Tetsushi; Komatsu, Ryo; Yazaki, Taichi

    2011-01-01

    Ceperley proposed a concept of a traveling wave heat engine ["A pistonless Stirling engine-The traveling wave heat engine," J. Acoust. Soc. Am. 66, 1508-1513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ωτα; ω is the angular frequency and τα is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea, a three-stage acoustic power amplifier is developed, which attains the gain up to 10 with a moderate temperature ratio of 2.3.

  3. Acoustical monitoring of fish behavior in a tank

    NASA Astrophysics Data System (ADS)

    Conti, Stephan G.; Maurer, Benjamin D.; Roux, Philippe; Fauvel, Christian; Demer, David A.; Waters, Kendall R.

    2004-10-01

    In recent publications, it has been demonstrated that the total scattering cross section of fish moving in a tank can be estimated from ensembles of reverberation time series. However, the reproducibility of these measurements is influenced by parameters such as the motion or the behavior of the fish. In this work, we propose to observe acoustically the behavior of fish in a tank, and to measure their average speed. The total scattering cross section of live fish (sardines, sea bass and bocaccio) in a tank was measured repeatedly over multiple days. The species used in this study have different behaviors, which are reflected in the acoustical measurements. Depending on the behavior of the fish, such as the average displacement between two acoustic pings or the aggregation type, the total scattering cross section is different. Correlation between the acoustical measurements and the day and night behavior of the fish is demonstrated. Interpretation of such measurements can lead to monitoring acoustically and nonintrusively the behavior of fish in tanks.

  4. Acoustic metamaterials: From local resonances to broad horizons

    PubMed Central

    Ma, Guancong; Sheng, Ping

    2016-01-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692

  5. In-situ acoustic signature monitoring in additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  6. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  7. Molecular dynamics simulations of acoustic absorption by a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ayub, M.; Zander, A. C.; Huang, D. M.; Howard, C. Q.; Cazzolato, B. S.

    2018-06-01

    Acoustic absorption by a carbon nanotube (CNT) was studied using molecular dynamics (MD) simulations in a molecular domain containing a monatomic gas driven by a time-varying periodic force to simulate acoustic wave propagation. Attenuation of the sound wave and the characteristics of the sound field due to interactions with the CNT were studied by evaluating the behavior of various acoustic parameters and comparing the behavior with that of the domain without the CNT present. A standing wave model was developed for the CNT-containing system to predict sound attenuation by the CNT and the results were verified against estimates of attenuation using the thermodynamic concept of exergy. This study demonstrates acoustic absorption effects of a CNT in a thermostatted MD simulation, quantifies the acoustic losses induced by the CNT, and illustrates their effects on the CNT. Overall, a platform was developed for MD simulations that can model acoustic damping induced by nanostructured materials such as CNTs, which can be used for further understanding of nanoscale acoustic loss mechanisms associated with molecular interactions between acoustic waves and nanomaterials.

  8. Modeling of natural acoustic frequencies of a gas-turbine plant combustion chamber

    NASA Astrophysics Data System (ADS)

    Zubrilin, I. A.; Gurakov, N. I.; Zubrilin, R. A.; Matveev, S. G.

    2017-05-01

    The paper presents results of determination of natural acoustic frequencies of a gas-turbine plant annular combustion chamber model using 3D-simulation. At the beginning, a calculation procedure for determining natural acoustic frequencies of the gas-turbine plant combustion chamber was worked out. The effect of spatial inhomogeneity of the flow parameters (fluid composition, pressure, temperature) arising in combustion and some geometrical parameters (cooling holes of the flame tube walls) on the calculation results is studied. It is found that the change of the fluid composition in combustion affects the acoustic velocity not more than 5%; therefore, the air with a volume variable temperature can be taken as a working fluid in the calculation of natural acoustic frequencies. It is also shown that the cooling holes of the flame tube walls with diameter less than 2 mm can be neglected in the determination of the acoustic modes in the frequency range of up to 1000 Hz. This reduces the number of the grid-model elements by a factor of six in comparison with a model that considers all of the holes. Furthermore, a method of export of spatial inhomogeneity of the flow parameters from a CFD solver sector model to the annular combustion chamber model in a modal solver is presented. As a result of the obtained model calculation, acoustic modes of the combustion chamber in the frequency range of up to 1000 Hz are determined. For a standard engine condition, a potentially dangerous acoustic mode with a frequency close to the ripple frequency of the precessing vortex core, which is formed behind the burner device of this combustion chamber, is detected.

  9. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.

    2008-01-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter extracted from acoustic harmonic generation measurements. The parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  10. Wearable Monitoring Devices for Assistive Technology: Case Studies in Post-Polio Syndrome

    PubMed Central

    Andreoni, Giuseppe; Mazzola, Marco; Perego, Paolo; Standoli, Carlo Emilio; Manzoni, Simone; Piccini, Luca; Molteni, Franco

    2014-01-01

    The correct choice and customization of an orthosis are crucial to obtain the best comfort and efficiency. This study explored the feasibility of a multivariate quantitative assessment of the functional efficiency of lower limb orthosis through a novel wearable system. Gait basographic parameters and energetic indexes were analysed during a Six-Minute Walking Test (6-MWT) through a cost-effective, non-invasive polygraph device, with a multichannel wireless transmission, that carried out electro-cardiograph (ECG); impedance-cardiograph (ICG); and lower-limb accelerations detection. Four subjects affected by Post-Polio Syndrome (PPS) were recruited. The wearable device and the semi-automatic post-processing software provided a novel set of objective data to assess the overall efficiency of the patient-orthosis system. Despite the small number of examined subjects, the results obtained with this new approach encourage the application of the method thus enlarging the dataset to validate this promising protocol and measuring system in supporting clinical decisions and out of a laboratory environment. PMID:24469354

  11. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  12. Acoustic Emission Measurements for Tool Wear Evaluation in Drilling

    NASA Astrophysics Data System (ADS)

    Gómez, Martín P.; Migliori, Julio; Ruzzante, José E.; D'Attellis, Carlos E.

    2009-03-01

    In this work, the tool condition in a drilling process of SAE 1040 steel samples was studied by means of acoustic emission. The studied drill bits were modified with artificial and real failures, such as different degrees of wear in the cutting edge and in the outer corner. Some correlation between mean power of the acoustic emission parameters and the drill bit wear condition was found.

  13. Acoustic emission monitoring of degradation of cross ply laminates.

    PubMed

    Aggelis, D G; Barkoula, N M; Matikas, T E; Paipetis, A S

    2010-06-01

    The scope of this study is to relate the acoustic activity of damage in composites to the failure mechanisms associated with these materials. Cross ply fiber reinforced composites were subjected to tensile loading with recording of their acoustic activity. Acoustic emission (AE) parameters were employed to monitor the transition of the damage mechanism from transverse cracking (mode I) to delamination (mode II). Wave propagation measurements in between loading steps revealed an increase in the relative amplitude of the propagated wave, which was attributed to the development of delamination that confined the wave to the top longitudinal plies of the composite.

  14. Effects of the non-extensive parameter on the propagation of ion acoustic waves in five-component cometary plasma system

    NASA Astrophysics Data System (ADS)

    Mahmoud, Abeer A.

    2018-01-01

    Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey q-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.

  15. Comparison of Spatial Correlation Parameters between Full and Model Scale Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Giacomoni, Clothilde

    2016-01-01

    The current vibro-acoustic analysis tools require specific spatial correlation parameters as input to define the liftoff acoustic environment experienced by the launch vehicle. Until recently these parameters have not been very well defined. A comprehensive set of spatial correlation data were obtained during a scale model acoustic test conducted in 2014. From these spatial correlation data, several parameters were calculated: the decay coefficient, the diffuse to propagating ratio, and the angle of incidence. Spatial correlation data were also collected on the EFT-1 flight of the Delta IV vehicle which launched on December 5th, 2014. A comparison of the spatial correlation parameters from full scale and model scale data will be presented.

  16. Acoustical considerations for secondary uses of government facilities

    NASA Astrophysics Data System (ADS)

    Evans, Jack B.

    2003-10-01

    Government buildings are by their nature, public and multi-functional. Whether in meetings, presentations, documentation processing, work instructions or dispatch, speech communications are critical. Full-time occupancy facilities may require sleep or rest areas adjacent to active spaces. Rooms designed for some other primary use may be used for public assembly, receptions or meetings. In addition, environmental noise impacts to the building or from the building should be considered, especially where adjacent to hospitals, hotels, apartments or other urban sensitive land uses. Acoustical criteria and design parameters for reverberation, background noise and sound isolation should enhance speech intelligibility and privacy. This presentation looks at unusual spaces and unexpected uses of spaces with regard to room acoustics and noise control. Examples of various spaces will be discussed, including an atrium used for reception and assembly, multi-jurisdictional (911) emergency control center, frequent or long-duration use of emergency generators, renovations of historically significant buildings, and the juxtaposition of acoustically incompatible functions. Brief case histories of acoustical requirements, constraints and design solutions will be presented, including acoustical measurements, plan illustrations and photographs. Acoustical criteria for secondary functional uses of spaces will be proposed.

  17. Perception of music dynamics in concert hall acoustics.

    PubMed

    Pätynen, Jukka; Lokki, Tapio

    2016-11-01

    Dynamics is one of the principal means of expressivity in Western classical music. Still, preceding research on room acoustics has mostly neglected the contribution of music dynamics to the acoustic perception. This study investigates how the different concert hall acoustics influence the perception of varying music dynamics. An anechoic orchestra signal, containing a step in music dynamics, was rendered in the measured acoustics of six concert halls at three seats in each. Spatial sound was reproduced through a loudspeaker array. By paired comparison, naive subjects selected the stimuli that they considered to change more during the music. Furthermore, the subjects described their foremost perceptual criteria for each selection. The most distinct perceptual factors differentiating the rendering of music dynamics between halls include the dynamic range, and varying width of sound and reverberance. The results confirm the hypothesis that the concert halls render the performed music dynamics differently, and with various perceptual aspects. The analysis against objective room acoustic parameters suggests that the perceived dynamic contrasts are pronounced by acoustics that provide stronger sound and more binaural incoherence by a lateral sound field. Concert halls that enhance the dynamics have been found earlier to elicit high subjective preference.

  18. Tunable two-dimensional acoustic meta-structure composed of funnel-shaped unit cells with multi-band negative acoustic property

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong

    2015-10-01

    This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.

  19. Frequency-Based Spatial Correlation Assessments of the Ares I Subscale Acoustic Model Test Firings

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Houston, J.

    2012-01-01

    The Marshall Space Flight Center has performed a series of test firings to simulate and understand the acoustic environments generated for the Ares I liftoff profiles. Part of the instrumentation package had special sensor groups to assess the acoustic field spatial correlation features for the various test configurations. The spatial correlation characteristics were evaluated for all of the test firings, inclusive of understanding the diffuse to propagating wave amplitude ratios, the acoustic wave decays, and the incident angle of propagating waves across the sensor groups. These parameters were evaluated across the measured frequency spectra and the associated uncertainties for each parameter were estimated.

  20. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  1. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  2. Methods and apparatus for non-acoustic speech characterization and recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  3. Translational illusion of acoustic sources by transformation acoustics.

    PubMed

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  4. Characterization of Acoustic Emission Parameters During Testing of Metal Liner Reinforced with Fully Resin Impregnated CNG Cylinder

    NASA Astrophysics Data System (ADS)

    Kenok, R.; Jomdecha, C.; Jirarungsatian, C.

    The aim of this paper is to study the acoustic emission (AE) parameters obtained from CNG cylinders during pressurization. AE from flaw propagation, material integrity, and pressuring of cylinder was the main objective for characterization. CNG cylinders of ISO 11439, resin fully wrapped type and metal liner type, were employed to test by hydrostatic stressing. The pressure was step increased until 1.1 time of operating pressure. Two AE sensors, resonance frequency of 150 kHz, were mounted on the cylinder wall to detect the AE throughout the testing. From the experiment results, AE can be detected from pressuring rate, material integrity, and flaw propagation from the cylinder wall. AE parameters including Amplitude, Count, Energy (MARSE), Duration and Rise time were analyzed to distinguish the AE data. The results show that the AE of flaw propagation was different in character from that of pressurization. Especially, AE detected from flaws of resin wrapped and metal liner was significantly different. To locate the flaw position, both the AE sensors can be accurately used to locate the flaw propagation in a linear pattern. The error was less than ±5 cm.

  5. Effect of magnetic quantization on ion acoustic waves ultra-relativistic dense plasma

    NASA Astrophysics Data System (ADS)

    Javed, Asif; Rasheed, A.; Jamil, M.; Siddique, M.; Tsintsadze, N. L.

    2017-11-01

    In this paper, we have studied the influence of magnetic quantization of orbital motion of the electrons on the profile of linear and nonlinear ion-acoustic waves, which are propagating in the ultra-relativistic dense magneto quantum plasmas. We have employed both Thomas Fermi and Quantum Magneto Hydrodynamic models (along with the Poisson equation) of quantum plasmas. To investigate the large amplitude nonlinear structure of the acoustic wave, Sagdeev-Pseudo-Potential approach has been adopted. The numerical analysis of the linear dispersion relation and the nonlinear acoustic waves has been presented by drawing their graphs that highlight the effects of plasma parameters on these waves in both the linear and the nonlinear regimes. It has been noticed that only supersonic ion acoustic solitary waves can be excited in the above mentioned quantum plasma even when the value of the critical Mach number is less than unity. Both width and depth of Sagdeev potential reduces on increasing the magnetic quantization parameter η. Whereas the amplitude of the ion acoustic soliton reduces on increasing η, its width appears to be directly proportional to η. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in the dense astrophysical environments such as magnetars and in intense-laser plasma interactions.

  6. Solving transient acoustic boundary value problems with equivalent sources using a lumped parameter approach.

    PubMed

    Fahnline, John B

    2016-12-01

    An equivalent source method is developed for solving transient acoustic boundary value problems. The method assumes the boundary surface is discretized in terms of triangular or quadrilateral elements and that the solution is represented using the acoustic fields of discrete sources placed at the element centers. Also, the boundary condition is assumed to be specified for the normal component of the surface velocity as a function of time, and the source amplitudes are determined to match the known elemental volume velocity vector at a series of discrete time steps. Equations are given for marching-on-in-time schemes to solve for the source amplitudes at each time step for simple, dipole, and tripole source formulations. Several example problems are solved to illustrate the results and to validate the formulations, including problems with closed boundary surfaces where long-time numerical instabilities typically occur. A simple relationship between the simple and dipole source amplitudes in the tripole source formulation is derived so that the source radiates primarily in the direction of the outward surface normal. The tripole source formulation is shown to eliminate interior acoustic resonances and long-time numerical instabilities.

  7. Applications of acoustics in the measurement of coal slab thickness

    NASA Technical Reports Server (NTRS)

    Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.

    1980-01-01

    The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.

  8. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  9. Transition radiation on a superlattice in finite thickness plate generated by two acoustic waves

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, A. R.; Parazian, V. V.; Saharian, A. A.

    2018-01-01

    Forward transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate by two acoustic waves. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. Zone structures appear in the plate, which makes it possible (by an appropriate choice of the frequencies of the two acoustic waves) to control the spectral-angular distribution of the radiation through changes in the parameters of the medium. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic waves. Numerical examples are presented for a plate of fused quartz.

  10. Three-dimensional broadband omnidirectional acoustic ground cloak

    NASA Astrophysics Data System (ADS)

    Zigoneanu, Lucian; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-04-01

    The control of sound propagation and reflection has always been the goal of engineers involved in the design of acoustic systems. A recent design approach based on coordinate transformations, which is applicable to many physical systems, together with the development of a new class of engineered materials called metamaterials, has opened the road to the unconstrained control of sound. However, the ideal material parameters prescribed by this methodology are complex and challenging to obtain experimentally, even using metamaterial design approaches. Not surprisingly, experimental demonstration of devices obtained using transformation acoustics is difficult, and has been implemented only in two-dimensional configurations. Here, we demonstrate the design and experimental characterization of an almost perfect three-dimensional, broadband, and, most importantly, omnidirectional acoustic device that renders a region of space three wavelengths in diameter invisible to sound.

  11. High frequency acoustic reflections from an air-snow interface

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Albert, D. G.; Lieb-Lappen, R.; Fegyveresi, J. M.

    2016-12-01

    High frequency wave propagation methods can be used to determine in situ near surface micro-pore geometry parameters in real Earth materials including snow. To this end, we have been developing a portable ultrasonic transducer rig to make measurements of acoustic reflections from a variety of natural porous media. Fresh natural snow, in particular, is a difficult material to characterize, as any mechanical interaction is likely to damage the fragile pores and grain bonds. Because acoustic waves are sensitive to the porous material properties, they potentially can be used to measure snow properties in a non-destructive manner. Such methods have already been demonstrated on cohesive porous materials including manufactured foams, porous metals, and sintered glass beads. We conducted high frequency, oblique-angle and near vertical reflection measurements on snow samples in a cold room. We then compare the acoustically derived snow physical parameters, including porosity, with values determined from micro-computed tomography (μCT) and with standard (but destructive) laboratory measurements. Preliminary results using a manufactured open cell foam following previous work by Fellah et al., (2003) shows very good agreement between values of porosity determined from the acoustic measurements and the values determined from μCT image analysis and gravimetric determination. Similarly, preliminary results comparing acoustic measurements of natural, dry snow samples prepared in the laboratory show good agreement between acoustically-derived porosity values and porosity values derived through independent means. Fellah, Z.E.A., S. Berger, W. Lauriks, C. Depollier, C. Aristegui, and J.Y. Chapelon, (2003b), Measuring the porosity and tortuosity of porous materials via reflected waves at oblique incidence, J. Acous. Soc. Am., 113, 2424-2433.

  12. Acoustic energy relations in Mudejar-Gothic churches.

    PubMed

    Zamarreño, Teófilo; Girón, Sara; Galindo, Miguel

    2007-01-01

    Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy.

  13. Impact factors and the optimal parameter of acoustic structure quantification in the assessment of liver fibrosis.

    PubMed

    Huang, Yang; Liu, Guang-Jian; Liao, Bing; Huang, Guang-Liang; Liang, Jin-Yu; Zhou, Lu-Yao; Wang, Fen; Li, Wei; Xie, Xiao-Yan; Wang, Wei; Lu, Ming-De

    2015-09-01

    The aims of the present study are to assess the impact factors on acoustic structure quantification (ASQ) ultrasound and find the optimal parameter for the assessment of liver fibrosis. Twenty healthy volunteers underwent ASQ examinations to evaluate impact factors in ASQ image acquisition and analysis. An additional 113 patients with liver diseases underwent standardized ASQ examinations, and the results were compared with histologic staging of liver fibrosis. We found that the right liver displayed lower values of ASQ parameters than the left (p = 0.000-0.021). Receive gain experienced no significant impact except gain 70 (p = 0.193-1.000). With regard to different diameter of involved vessels in regions of interest, the group ≤2.0 mm differed significantly with the group 2.1-5.0 mm (p = 0.000-0.033) and the group >5.0 mm (p = 0.000-0.062). However, the region of interest size (p = 0.438-1.000) and depth (p = 0.072-0.764) had no statistical impact. Good intra- and inter-operator reproducibilities were found in both image acquisitions and offline image analyses. In the liver fibrosis study, the focal disturbance ratio had the highest correlation with histologic fibrosis stage (r = 0.67, p < 0.001). In conclusion, the testing position, receive gain and involved vessels were the main factors in ASQ examinations and focal disturbance ratio was the optimal parameter in the assessment of liver fibrosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Yang; Wu, Ying; Zhang, Xiao-Liu; Ni, Xu; Chen, Ze-Guo; Lu, Ming-Hui; Chen, Yan-Feng

    2013-10-01

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  15. On noninvasive assessment of acoustic fields acting on the fetus

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2014-05-01

    The aim of this study is to verify a noninvasive technique for assessing the characteristics of acoustic fields in the audible range arising in the uterus under the action of maternal voice, external sounds, and vibrations. This problem is very important in view of actively developed methods for delivery of external sounds to the uterus: music, maternal voice recordings, sounds from outside the mother's body, etc., that supposedly support development of the fetus at the prenatal stage psychologically and cognitively. However, the parameters of acoustic signals have been neither measured nor normalized, which may be dangerous for the fetus and hinder actual assessment of their impact on fetal development. The authors show that at frequencies below 1 kHz, acoustic pressure in the uterus may be measured noninvasively using a hydrophone placed in a soft capsule filled with liquid. It was found that the acoustic field at frequencies up to 1 kHz arising in the uterus under the action of an external sound field has amplitude-frequency parameters close to those of the external field; i.e., the external field penetrates the uterus with hardly any difficulty.

  16. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol

    NASA Astrophysics Data System (ADS)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh

    2017-07-01

    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  17. Ultrasonic superlensing jets and acoustic-fork sheets

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on ;hyper; or ;super; lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical 'snail-fork' shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices.

  18. Influence of Architectural Features and Styles on Various Acoustical Measures in Churches

    NASA Astrophysics Data System (ADS)

    Carvalho, Antonio Pedro Oliveira De.

    This work reports on acoustical field measurements made in a major survey of 41 Catholic churches in Portugal that were built in the last 14 centuries. A series of monaural and binaural acoustical measurements was taken at multiple source/receiver positions in each church using the impulse response with noise burst method. The acoustical measures were Reverberation Time (RT), Early Decay Time (EDT), Clarity (C80), Definition (D), Center Time (TS), Loudness (L), Bass Ratios based on the Reverberation Time and Loudness rm (BR_-RT and rm BR_-L), Rapid Speech Transmission Index (RASTI), and the binaural Coherence (COH). The scope of this research is to investigate how the acoustical performance of Catholic churches relates to their architectural features and to determine simple formulas to predict acoustical measures by the use of elementary architectural parameters. Prediction equations were defined among the acoustical measures to estimate values at individual locations within each room as well as the mean values in each church. Best fits with rm R^2~0.9 were not uncommon among many of the measures. Within and interchurch differences in the data for the acoustical measures were also analyzed. The variations of RT and EDT were identified as much smaller than the variations of the other measures. The churches tested were grouped in eight architectural styles, and the effect of their evolution through time on these acoustical measures was investigated. Statistically significant differences were found regarding some architectural styles that can be traced to historical changes in Church history, especially to the Reformation period. Prediction equations were defined to estimate mean acoustical measures by the use of fifteen simple architectural parameters. The use of the Sabine and Eyring reverberation time equations was tested. The effect of coupled spaces was analyzed, and a new algorithm for the application of the Sabine equation was developed, achieving an average of

  19. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  20. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  1. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  2. Aerodynamic and acoustic performance of high Mach number inlets

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Clark, L. R.; Cherng, J. C.; Tag, I.

    1977-01-01

    Experimental results were obtained for two types of high Mach number inlets, one with a translating centerbody and one with a fixed geometry (collapsing cowl) without centerbody. The aerodynamic and acoustic performance of these inlets was examined. The effects of several parameters such as area ratio and length-diameter ratio were investigated. The translating centerbody inlet was found to be superior to the collapsing cowl inlet both acoustically and aerodynamically, particularly for area ratios greater than 1.5. Comparison of length-diameter ratio and area ratio effects on performance near choked flow showed the latter parameter to be more significant. Also, greater high frequency noise attenuation was achieved by increasing Mach number from low to high subsonic values.

  3. Subjective scaling of spatial room acoustic parameters influenced by visual environmental cues

    PubMed Central

    Valente, Daniel L.; Braasch, Jonas

    2010-01-01

    Although there have been numerous studies investigating subjective spatial impression in rooms, only a few of those studies have addressed the influence of visual cues on the judgment of auditory measures. In the psychophysical study presented here, video footage of five solo music∕speech performers was shown for four different listening positions within a general-purpose space. The videos were presented in addition to the acoustic signals, which were auralized using binaural room impulse responses (BRIR) that were recorded in the same general-purpose space. The participants were asked to adjust the direct-to-reverberant energy ratio (D∕R ratio) of the BRIR according to their expectation considering the visual cues. They were also directed to rate the apparent source width (ASW) and listener envelopment (LEV) for each condition. Visual cues generated by changing the sound-source position in the multi-purpose space, as well as the makeup of the sound stimuli affected the judgment of spatial impression. Participants also scaled the direct-to-reverberant energy ratio with greater direct sound energy than was measured in the acoustical environment. PMID:20968367

  4. Reconstructed imaging of acoustic cloak using time-lapse reversal method

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun

    2014-08-01

    We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.

  5. Efficient sensor network vehicle classification using peak harmonics of acoustic emissions

    NASA Astrophysics Data System (ADS)

    William, Peter E.; Hoffman, Michael W.

    2008-04-01

    An application is proposed for detection and classification of battlefield ground vehicles using the emitted acoustic signal captured at individual sensor nodes of an ad hoc Wireless Sensor Network (WSN). We make use of the harmonic characteristics of the acoustic emissions of battlefield vehicles, in reducing both the computations carried on the sensor node and the transmitted data to the fusion center for reliable and effcient classification of targets. Previous approaches focus on the lower frequency band of the acoustic emissions up to 500Hz; however, we show in the proposed application how effcient discrimination between battlefield vehicles is performed using features extracted from higher frequency bands (50 - 1500Hz). The application shows that selective time domain acoustic features surpass equivalent spectral features. Collaborative signal processing is utilized, such that estimation of certain signal model parameters is carried by the sensor node, in order to reduce the communication between the sensor node and the fusion center, while the remaining model parameters are estimated at the fusion center. The transmitted data from the sensor node to the fusion center ranges from 1 ~ 5% of the sampled acoustic signal at the node. A variety of classification schemes were examined, such as maximum likelihood, vector quantization and artificial neural networks. Evaluation of the proposed application, through processing of an acoustic data set with comparison to previous results, shows that the improvement is not only in the number of computations but also in the detection and false alarm rate as well.

  6. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  7. Challenges in Rotorcraft Acoustic Flight Prediction and Validation

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2003-01-01

    Challenges associated with rotorcraft acoustic flight prediction and validation are examined. First, an outline of a state-of-the-art rotorcraft aeroacoustic prediction methodology is presented. Components including rotorcraft aeromechanics, high resolution reconstruction, and rotorcraft acoustic prediction arc discussed. Next, to illustrate challenges and issues involved, a case study is presented in which an analysis of flight data from a specific XV-15 tiltrotor acoustic flight test is discussed in detail. Issues related to validation of methodologies using flight test data are discussed. Primary flight parameters such as velocity, altitude, and attitude are discussed and compared for repeated flight conditions. Other measured steady state flight conditions are examined for consistency and steadiness. A representative example prediction is presented and suggestions are made for future research.

  8. Speech adjustments for room acoustics and their effects on vocal effort

    PubMed Central

    Bottalico, Pasquale

    2016-01-01

    Objectives The aims of the present study are: (1) to analyze the effects of the acoustical environment and the voice style on time dose (Dt_p,) and fundamental frequency (mean fo and standard deviation std_fo), while taking into account the effect of short term vocal fatigue; (2) to predict the self-reported vocal effort from the voice acoustical parameters. Methods Ten male and ten female subjects were recorded while reading a text in normal and loud styles, in three rooms - anechoic, semi-reverberant and reverberant –with and without acrylic glass panels 0.5 m from the mouth, which increased external auditory feedback. Subjects quantified how much effort was required to speak in each condition on a visual analogue scale after each task. Results (Aim1) In the loud style, Dt_p, fo and std_fo increased. The Dt_p was higher in the reverberant room compared to the other two rooms. Both genders tended to increase fo in less reverberant environments, while a more monotonous speech was produced in rooms with greater reverberation. All three voice parameters increased with short-term vocal fatigue. (Aim2) A model of the vocal effort to acoustic vocal parameters is proposed. The SPL (Sound Pressure Level) contributed to 66% of the variance explained by the model, followed by the fundamental frequency (30%) and the modulation in amplitude (4%). Conclusions The results provide insight into how voice acoustical parameters can predict vocal effort. In particular, it increased when SPL and fo increased and when the amplitude voice modulation (std_ΔSPL) decreased. PMID:28029555

  9. Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-21

    Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less

  10. Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems

    NASA Astrophysics Data System (ADS)

    Barnkob, Rune; Nama, Nitesh; Ren, Liqiang; Huang, Tony Jun; Costanzo, Francesco; Kähler, Christian J.

    2018-01-01

    The acoustic motion of fluids and particles in confined and acoustically leaky systems is receiving increasing attention for its use in medicine and biotechnology. A number of contradicting physical and numerical models currently exist, but their validity is uncertain due to the unavailability of hard-to-access experimental data for validation. We provide experimental benchmarking data by measuring 3D particle trajectories and demonstrate that the particle trajectories can be described numerically without any fitting parameter by a reduced-fluid model with leaky impedance-wall conditions. The results reveal the hitherto unknown existence of a pseudo-standing wave that drives the acoustic streaming as well as the acoustic radiation force on suspended particles.

  11. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  12. A Comparative Experimental Study on the Use of Machine Learning Approaches for Automated Valve Monitoring Based on Acoustic Emission Parameters

    NASA Astrophysics Data System (ADS)

    Ali, Salah M.; Hui, K. H.; Hee, L. M.; Salman Leong, M.; Al-Obaidi, M. A.; Ali, Y. H.; Abdelrhman, Ahmed M.

    2018-03-01

    Acoustic emission (AE) analysis has become a vital tool for initiating the maintenance tasks in many industries. However, the analysis process and interpretation has been found to be highly dependent on the experts. Therefore, an automated monitoring method would be required to reduce the cost and time consumed in the interpretation of AE signal. This paper investigates the application of two of the most common machine learning approaches namely artificial neural network (ANN) and support vector machine (SVM) to automate the diagnosis of valve faults in reciprocating compressor based on AE signal parameters. Since the accuracy is an essential factor in any automated diagnostic system, this paper also provides a comparative study based on predictive performance of ANN and SVM. AE parameters data was acquired from single stage reciprocating air compressor with different operational and valve conditions. ANN and SVM diagnosis models were subsequently devised by combining AE parameters of different conditions. Results demonstrate that ANN and SVM models have the same results in term of prediction accuracy. However, SVM model is recommended to automate diagnose the valve condition in due to the ability of handling a high number of input features with low sampling data sets.

  13. Non-blind acoustic invisibility by dual layers of homogeneous single-negative media

    PubMed Central

    Gao, He; Zhu, Yi-fan; Fan, Xu-dong; Liang, Bin; Yang, Jing; Cheng, Jian-Chun

    2017-01-01

    Non-blind invisibility cloaks allowing the concealed object to sense the outside world have great application potentials such as in high-precision sensing or underwater camouflage. However the existing designs based on coordinate transformation techniques need complicated spatially-varying negative index or intricate multi-layered configurations, substantially increasing the difficulty in practical realization. Here we report on the non-blind acoustic invisibility for a circular object in free space with simple distribution of cloak parameters. The mechanism is that, instead of utilizing the transformation acoustics technique, we develop the analytical formulae for fast prediction of the scattering from the object and then use an evolutionary optimization to retrieve the desired cloak parameters for minimizing the scattered field. In this way, it is proven possible to break through the fundamental limit of complementary condition that must be satisfied by the effective parameters of the components in transformation acoustics-based cloaks. Numerical results show that the resulting cloak produces a non-bflind invisibility as perfect as in previous designs, but only needs two layers with homogenous single-negative parameters. With full simplification in parameter distribution and broken symmetry in complementary relationship, our scheme opens new route to free-space non-blind invisibility, taking a significant step towards real-world application of cloaking devices. PMID:28195227

  14. Non-blind acoustic invisibility by dual layers of homogeneous single-negative media

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhu, Yi-Fan; Fan, Xu-Dong; Liang, Bin; Yang, Jing; Cheng, Jian-Chun

    2017-02-01

    Non-blind invisibility cloaks allowing the concealed object to sense the outside world have great application potentials such as in high-precision sensing or underwater camouflage. However the existing designs based on coordinate transformation techniques need complicated spatially-varying negative index or intricate multi-layered configurations, substantially increasing the difficulty in practical realization. Here we report on the non-blind acoustic invisibility for a circular object in free space with simple distribution of cloak parameters. The mechanism is that, instead of utilizing the transformation acoustics technique, we develop the analytical formulae for fast prediction of the scattering from the object and then use an evolutionary optimization to retrieve the desired cloak parameters for minimizing the scattered field. In this way, it is proven possible to break through the fundamental limit of complementary condition that must be satisfied by the effective parameters of the components in transformation acoustics-based cloaks. Numerical results show that the resulting cloak produces a non-bflind invisibility as perfect as in previous designs, but only needs two layers with homogenous single-negative parameters. With full simplification in parameter distribution and broken symmetry in complementary relationship, our scheme opens new route to free-space non-blind invisibility, taking a significant step towards real-world application of cloaking devices.

  15. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  16. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1994-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  17. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  18. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  19. Unified multiphase modeling for evolving, acoustically coupled systems consisting of acoustic, elastic, poroelastic media and septa

    NASA Astrophysics Data System (ADS)

    Lee, Joong Seok; Kang, Yeon June; Kim, Yoon Young

    2012-12-01

    This paper presents a new modeling technique that can represent acoustically coupled systems in a unified manner. The proposed unified multiphase (UMP) modeling technique uses Biot's equations that are originally derived for poroelastic media to represent not only poroelastic media but also non-poroelastic ones ranging from acoustic and elastic media to septa. To recover the original vibro-acoustic behaviors of non-poroelastic media, material parameters of a base poroelastic medium are adjusted depending on the target media. The real virtue of this UMP technique is that interface coupling conditions between any media can be automatically satisfied, so no medium-dependent interface condition needs to be imposed explicitly. Thereby, the proposed technique can effectively model any acoustically coupled system having locally varying medium phases and evolving interfaces. A typical situation can occur in an iterative design process. Because the proposed UMP modeling technique needs theoretical justifications for further development, this work is mainly focused on how the technique recovers the governing equations of non-poroelastic media and expresses their interface conditions. We also address how to describe various boundary conditions of the media in the technique. Some numerical studies are carried out to demonstrate the validity of the proposed modeling technique.

  20. Acoustic sensors in the helmet detect voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-09-01

    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at www.arl.army.mil/acoustics). Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  1. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    PubMed

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  2. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles

    PubMed Central

    Srivastava, Kyle H.; Elemans, Coen P.H.

    2015-01-01

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859

  3. Effects of melody and technique on acoustical and musical features of western operatic singing voices.

    PubMed

    Larrouy-Maestri, Pauline; Magis, David; Morsomme, Dominique

    2014-05-01

    The operatic singing technique is frequently used in classical music. Several acoustical parameters of this specific technique have been studied but how these parameters combine remains unclear. This study aims to further characterize the Western operatic singing technique by observing the effects of melody and technique on acoustical and musical parameters of the singing voice. Fifty professional singers performed two contrasting melodies (popular song and romantic melody) with two vocal techniques (with and without operatic singing technique). The common quality parameters (energy distribution, vibrato rate, and extent), perturbation parameters (standard deviation of the fundamental frequency, signal-to-noise ratio, jitter, and shimmer), and musical features (fundamental frequency of the starting note, average tempo, and sound pressure level) of the 200 sung performances were analyzed. The results regarding the effect of melody and technique on the acoustical and musical parameters show that the choice of melody had a limited impact on the parameters observed, whereas a particular vocal profile appeared depending on the vocal technique used. This study confirms that vocal technique affects most of the parameters examined. In addition, the observation of quality, perturbation, and musical parameters contributes to a better understanding of the Western operatic singing technique. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  4. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  5. Acoustic and perceptual characteristics of the voice in patients with vocal polyps after surgery and voice therapy.

    PubMed

    Petrovic-Lazic, Mirjana; Jovanovic, Nadica; Kulic, Milan; Babac, Snezana; Jurisic, Vladimir

    2015-03-01

    The aim of the study was to assess the effect of endolaryngeal phonomicrosurgery (EPM) and voice therapy in patients with vocal fold polyps using perceptual and acoustic analysis before and after both therapies. The acoustic tests and perceptual evaluation of voice were carried out on 41 female patients with vocal fold polyp before and after EPM and voice therapy. Both therapy strategies were performed. Used acoustic parameters were Jitter percent (Jitt), pitch perturbation quotient (PPQ), shimmer percent (Shim), amplitude perturbation quotient (APQ), fundamental frequency variation (vF0), noise-to-harmonic ratio (NHR), Voice Turbulence Index (VTI). For perceptual evaluation, GRB scale was used. Results indicated higher values of investigated parameters in patients' group than in the control group (P < 0.01). Good correlation between the perceptual hoarseness factors of GRB scale and objective acoustic voice parameters were observed. All analyzed acoustic parameters improved after the phonomicrosurgery and voice therapy and tend to approach to values of the control group. For Jitt percent, Shim percent, vF0, VTI, and NHR, there were statistically significant differences. Perceptual voice evaluation revealed statistically significantly (P < 0.01) decreased rating of G (grade), R (rough) and B (breathy) after surgery and voice therapy. Our data indicated that both acoustic and perceptual characteristic of voice in patients with vocal polyps significantly improved after phonomicrosurgical and voice treatment. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  7. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  8. A review of bias flow liners for acoustic damping in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Lahiri, C.; Bake, F.

    2017-07-01

    The optimized design of bias flow liner is a key element for the development of low emission combustion systems in modern gas turbines and aero-engines. The research of bias flow liners has a fairly long history concerning both the parameter dependencies as well as the methods to model the acoustic behaviour of bias flow liners under the variety of different bias and grazing flow conditions. In order to establish an overview over the state of the art, this paper provides a comprehensive review about the published research on bias flow liners and modelling approaches with an extensive study of the most relevant parameters determining the acoustic behaviour of these liners. The paper starts with a historical description of available investigations aiming on the characterization of the bias flow absorption principle. This chronological compendium is extended by the recent and ongoing developments in this field. In a next step the fundamental acoustic property of bias flow liner in terms of the wall impedance is introduced and the different derivations and formulations of this impedance yielding the different published model descriptions are explained and compared. Finally, a parametric study reveals the most relevant parameters for the acoustic damping behaviour of bias flow liners and how this is reflected by the various model representations. Although the general trend of the investigated acoustic behaviour is captured by the different models fairly well for a certain range of parameters, in the transition region between the resonance dominated and the purely bias flow related regime all models lack the correct damping prediction. This seems to be connected to the proper implementation of the reactance as a function of bias flow Mach number.

  9. Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.

    PubMed

    Gumerov, Nail A; Akhatov, Iskander S

    2017-02-01

    The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.

  10. The acoustic correlates of valence depend on emotion family.

    PubMed

    Belyk, Michel; Brown, Steven

    2014-07-01

    The voice expresses a wide range of emotions through modulations of acoustic parameters such as frequency and amplitude. Although the acoustics of individual emotions are well understood, attempts to describe the acoustic correlates of broad emotional categories such as valence have yielded mixed results. In the present study, we analyzed the acoustics of emotional valence for different families of emotion. We divided emotional vocalizations into "motivational," "moral," and "aesthetic" families as defined by the OCC (Ortony, Clore, and Collins) model of emotion. Subjects viewed emotional scenarios and were cued to vocalize congruent exclamations in response to them, for example, "Yay!" and "Damn!". Positive valence was weakly associated with high-pitched and loud vocalizations. However, valence interacted with emotion family for both pitch and amplitude. A general acoustic code for valence does not hold across families of emotion, whereas family-specific codes provide a more accurate description of vocal emotions. These findings are consolidated into a set of "rules of expression" relating vocal dimensions to emotion dimensions. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  11. The contrast between alveolar and velar stops with typical speech data: acoustic and articulatory analyses.

    PubMed

    Melo, Roberta Michelon; Mota, Helena Bolli; Berti, Larissa Cristina

    2017-06-08

    This study used acoustic and articulatory analyses to characterize the contrast between alveolar and velar stops with typical speech data, comparing the parameters (acoustic and articulatory) of adults and children with typical speech development. The sample consisted of 20 adults and 15 children with typical speech development. The analyzed corpus was organized through five repetitions of each target-word (/'kap ə/, /'tapə/, /'galo/ e /'daɾə/). These words were inserted into a carrier phrase and the participant was asked to name them spontaneously. Simultaneous audio and video data were recorded (tongue ultrasound images). The data was submitted to acoustic analyses (voice onset time; spectral peak and burst spectral moments; vowel/consonant transition and relative duration measures) and articulatory analyses (proportion of significant axes of the anterior and posterior tongue regions and description of tongue curves). Acoustic and articulatory parameters were effective to indicate the contrast between alveolar and velar stops, mainly in the adult group. Both speech analyses showed statistically significant differences between the two groups. The acoustic and articulatory parameters provided signals to characterize the phonic contrast of speech. One of the main findings in the comparison between adult and child speech was evidence of articulatory refinement/maturation even after the period of segment acquisition.

  12. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  13. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage

    PubMed Central

    Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming

    2017-01-01

    The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts. PMID:28773017

  14. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage.

    PubMed

    Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming

    2017-06-16

    The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts.

  15. Acoustics and hydrodynamics of a drop impact on a water surface

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2017-01-01

    Hydrodynamic and acoustic processes associated with a drop impact on a water surface were studied experimentally. Acoustic signals were detected underwater (with a hydrophone) and in air (with a microphone), the flow pattern was recorded with a high-speed camera, and the surface perturbation was monitored with a laser detector. The dimensionless parameters of flows (Reynolds, Froude, and Weber numbers) induced by the impact varied with fall height within the ranges of 5000 < Re < 20000, 20 < Fr < 350, and 70 < We < 1000. The sequence of acoustic signals incorporated an impact pulse at the moment of contact between a drop and the surface and a series of acoustic packets attributable to the resonance emission of gas cavities. The top of the impact pulse, which was detected clearly in the entire fall height range, had a complex structure with short high-frequency and longer low-frequency oscillations. The total number and the parameters of emitted acoustic packets depended to a considerable extent on the fall height. The cases of lacking, one-time, and repeated emission of packets were noted in a series of experiments performed at a constant fall height. The analysis of video data showed that the signal variability was induced by considerable differences in the scenarios of water entry of a drop, which assumed an ovoid shape at the end trajectory segment, in the mentioned experiments.

  16. Acoustical stability of a sonoluminescing bubble

    NASA Astrophysics Data System (ADS)

    Holzfuss, Joachim; Rüggeberg, Matthias; Holt, R. Glynn

    2002-10-01

    In the parameter region for sonoluminescence of a single levitated bubble in a water-filled resonator it is observed that the bubble may have an enormous spatial stability leaving it ``pinned'' in the fluid and allowing it to emit light pulses of picosecond accuracy. We report here observations of a complex harmonic structure in the acoustic field surrounding a sonoluminescing bubble. We show that this complex sound field determines the position of the bubble and may either increase or decrease its spatial stability. The acoustic environment of the bubble is the result of the excitation of high-order normal modes of the resonator by the outgoing shock wave generated by the bubble collapse.

  17. Integrating acoustic telemetry into mark-recapture models to improve the precision of apparent survival and abundance estimates.

    PubMed

    Dudgeon, Christine L; Pollock, Kenneth H; Braccini, J Matias; Semmens, Jayson M; Barnett, Adam

    2015-07-01

    Capture-mark-recapture models are useful tools for estimating demographic parameters but often result in low precision when recapture rates are low. Low recapture rates are typical in many study systems including fishing-based studies. Incorporating auxiliary data into the models can improve precision and in some cases enable parameter estimation. Here, we present a novel application of acoustic telemetry for the estimation of apparent survival and abundance within capture-mark-recapture analysis using open population models. Our case study is based on simultaneously collecting longline fishing and acoustic telemetry data for a large mobile apex predator, the broadnose sevengill shark (Notorhynchus cepedianus), at a coastal site in Tasmania, Australia. Cormack-Jolly-Seber models showed that longline data alone had very low recapture rates while acoustic telemetry data for the same time period resulted in at least tenfold higher recapture rates. The apparent survival estimates were similar for the two datasets but the acoustic telemetry data showed much greater precision and enabled apparent survival parameter estimation for one dataset, which was inestimable using fishing data alone. Combined acoustic telemetry and longline data were incorporated into Jolly-Seber models using a Monte Carlo simulation approach. Abundance estimates were comparable to those with longline data only; however, the inclusion of acoustic telemetry data increased precision in the estimates. We conclude that acoustic telemetry is a useful tool for incorporating in capture-mark-recapture studies in the marine environment. Future studies should consider the application of acoustic telemetry within this framework when setting up the study design and sampling program.

  18. Determining the acoustic properties of the lens using a high-frequency ultrasonic needle transducer.

    PubMed

    Huang, Chih-Chung; Zhou, Qifa; Ameri, Hossein; Wu, Da Wei; Sun, Lei; Wang, Shyh-Hau; Humayun, Mark S; Shung, K Kirk

    2007-12-01

    Ultrasonic parameters including sound velocity and attenuation coefficient have recently been found to be useful in characterizing the cataract lens noninvasively. However, the regional changes of these acoustic parameters in the lens cannot be detected directly by those ultrasonic measurements. This prompted us to fabricate a 46-MHz needle transducer (lead magnesium niobate-lead titanate [PMN-PT] single crystal) with an aperture size of 0.4 mm and a diameter of 0.9 mm for directly measuring the sound velocity and frequency-dependent attenuation coefficient in lenses. These parameters have been shown to be related to the hardness of a cataract, and hence this technique may allow surgeons to detect the acoustic properties of the cataract via a small incision on the cornea before/during phacoemulsification surgery. To verify the performance of the needle transducer, experiments were performed on porcine lenses in which two types of cataracts (nucleus and cortical) were induced artificially. The needle transducer was mounted on a positioning system and its tip was inserted into the lens, allowing the anterior-to-posterior profiles of acoustic parameters along the lens axis to be obtained immediately. The experimental results show that the acoustic parameters are not constant within a single normal lens. The sound velocity and ultrasound attenuation coefficient (at 46 MHz) were 1701.2 +/- 8.4 m/s (mean +/- SD) and 9.42 +/- 0.57 dB/mm, respectively, at the nucleus, and 1597.2 +/- 9.6, 1589.3 +/- 6.1 m/s and 0.42 +/- 0.26 and 0.40 +/- 0.33 dB/mm close to the anterior and posterior capsules, respectively. Finally, the data obtained demonstrate that regional variations in the acoustic properties of lenses corresponding to the hardness of different types of cataract can be detected sensitively by a needle transducer.

  19. Morphological basis for the evolution of acoustic diversity in oscine songbirds

    PubMed Central

    Riede, Tobias; Goller, Franz

    2014-01-01

    Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires. PMID:24500163

  20. Morphological basis for the evolution of acoustic diversity in oscine songbirds.

    PubMed

    Riede, Tobias; Goller, Franz

    2014-03-22

    Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires.

  1. Determination of thermal and acoustic comfort inside a vehicle's cabin

    NASA Astrophysics Data System (ADS)

    Ene, Alexandra; Catalina, Tiberiu; Vartires, Andreea

    2018-02-01

    Thermal and acoustic comfort, inside a vehicle's cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  2. Speech Adjustments for Room Acoustics and Their Effects on Vocal Effort.

    PubMed

    Bottalico, Pasquale

    2017-05-01

    The aims of the present study are (1) to analyze the effects of the acoustical environment and the voice style on time dose (D t_p ) and fundamental frequency (mean f 0 and standard deviation std_f 0 ) while taking into account the effect of short-term vocal fatigue and (2) to predict the self-reported vocal effort from the voice acoustical parameters. Ten male and ten female subjects were recorded while reading a text in normal and loud styles, in three rooms-anechoic, semi-reverberant, and reverberant-with and without acrylic glass panels 0.5 m from the mouth, which increased external auditory feedback. Subjects quantified how much effort was required to speak in each condition on a visual analogue scale after each task. (Aim1) In the loud style, D t_p , f 0 , and std_f 0 increased. The D t_p was higher in the reverberant room compared to the other two rooms. Both genders tended to increase f 0 in less reverberant environments, whereas a more monotonous speech was produced in rooms with greater reverberation. All three voice parameters increased with short-term vocal fatigue. (Aim2) A model of the vocal effort to acoustic vocal parameters is proposed. The sound pressure level contributed to 66% of the variance explained by the model, followed by the f 0 (30%) and the modulation in amplitude (4%). The results provide insight into how voice acoustical parameters can predict vocal effort. In particular, it increased when SPL and f 0 increased and when the amplitude voice modulation decreased. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Acoustic and Perceptual Analyses of Adductor Spasmodic Dysphonia in Mandarin-speaking Chinese.

    PubMed

    Chen, Zhipeng; Li, Jingyuan; Ren, Qingyi; Ge, Pingjiang

    2018-02-12

    The objective of this study was to examine the perceptual structure and acoustic characteristics of speech of patients with adductor spasmodic dysphonia (ADSD) in Mandarin. Case-Control Study MATERIALS AND METHODS: For the estimation of dysphonia level, perceptual and acoustic analysis were used for patients with ADSD (N = 20) and the control group (N = 20) that are Mandarin-Chinese speakers. For both subgroups, a sustained vowel and connected speech samples were obtained. The difference of perceptual and acoustic parameters between the two subgroups was assessed and analyzed. For acoustic assessment, the percentage of phonatory breaks (PBs) of connected reading and the percentage of aperiodic segments and frequency shifts (FS) of vowel and reading in patients with ADSD were significantly worse than controls, the mean harmonics-to-noise ratio and the fundamental frequency standard deviation of vowel as well. For perceptual evaluation, the rating of speech and vowel in patients with ADSD are significantly higher than controls. The percentage of aberrant acoustic events (PB, frequency shift, and aperiodic segment) and the fundamental frequency standard deviation and mean harmonics-to-noise ratio were significantly correlated with the perceptual rating in the vowel and reading productions. The perceptual and acoustic parameters of connected vowel and reading in patients with ADSD are worse than those in normal controls, and could validly and reliably estimate dysphonia of ADSD in Mandarin-speaking Chinese. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Viscoelastic assessment of anal canal function using acoustic reflectometry: a clinically useful technique.

    PubMed

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2012-02-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis. The aim of this study was to assess whether the parameters measured in anal acoustic reflectometry are clinically valid between continent and fecally incontinent subjects. This was an age- and sex-matched study of continent and incontinent women. The study was conducted at a university teaching hospital. One hundred women (50 with fecal incontinence and 50 with normal bowel control) were included in the study. Subjects were age matched to within 5 years. Parameters measured with anal acoustic reflectometry and manometry were compared between incontinent and continent groups using a paired t test. Diagnostic accuracy was assessed by the use of receiver operator characteristic curves. Four of the 5 anal acoustic reflectometry parameters at rest were significantly different between continent and incontinent women (eg, opening pressure in fecally incontinent subjects was 31.6 vs 51.5 cm H2O in continent subjects, p = 0.0001). Both anal acoustic reflectometry parameters of squeeze opening pressure and squeeze opening elastance were significantly reduced in the incontinent women compared with continent women (50 vs 99.1 cm H2O, p = 0.0001 and 1.48 vs 1.83 cm H2O/mm, p = 0.012). In terms of diagnostic accuracy, opening pressure at rest measured by reflectometry was significantly superior in discriminating between continent and incontinent women in comparison with resting pressure measured with manometry (p = 0.009). Anal acoustic reflectometry is a new, clinically valid technique in the assessment of continent and incontinent subjects. This technique, which assesses the response of the anal canal to distension and relaxation, provides a detailed viscoelastic assessment of anal canal function. This technique

  5. Acoustic emission from trabecular bone during mechanical testing: the effect of osteoporosis and osteoarthritis.

    PubMed

    Leichter, I; Bivas, A; Margulies, J Y; Roman, I; Simkin, A

    1990-01-01

    This study examines the relation between the nature of acoustic emission signals emitted from cancellous bone under compression and the mechanical properties of the tissue. The examined bone specimens were taken from 12 normal, 31 osteoporotic and six osteoarthritic femoral heads. The mechanical behaviour of the osteoporotic bone specimens was found to be significantly different from that of the normal specimens both in the pre-yield and post-yield ranges. In the osteoarthritic bones only the elastic behaviour was significantly different. The rates of acoustic events before yield and beyond it were found to be significantly higher both in the osteoporotic and osteoarthritic bone specimens. The average peak amplitude of the signals was also significantly higher in the diseased bones. Stepwise regression analysis showed that a combination of the acoustic emission parameters could significantly predict some mechanical properties of the bone. The energy absorbed during compression and the ultimate compressive stress of the specimens could be estimated from the rate of pre-yield acoustic events, the average amplitude of the signals and the rate of post-yield events. However, the explanation power of the acoustic emission parameters was only moderate. The nature of acoustic emission signals was thus demonstrated to be a potential tool for assessing bone quality.

  6. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  7. Acoustic emission of rock mass under the constant-rate fluid injection

    NASA Astrophysics Data System (ADS)

    Shadrin Klishin, AV, VI

    2018-03-01

    The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.

  8. Understanding the acoustics of Papal Basilicas in Rome by means of a coupled-volumes approach

    NASA Astrophysics Data System (ADS)

    Martellotta, Francesco

    2016-11-01

    The paper investigates the acoustics of the four World-famous Papal Basilicas in Rome, namely Saint Peter's, St. John Lateran's, St. Paul's outside the Walls, and Saint Mary's Major. They are characterized by different dimensions, materials, and architectural features, as well as by a certain number of similarities. In addition, their complexity determines significant variation in their acoustics depending on the relative position of source and receivers. A detailed set of acoustic measurements was carried out in each church, using both spatial (B-format) and binaural microphones, and determining the standard ISO 3382 descriptors. The results are analyzed in relation to the architectural features, pointing out the differences observed in terms of listening experience. Finally, in order to explain some of the results found in energy-based parameters, the churches were analyzed as a system of acoustically coupled volumes. The latter explained most of the anomalies observed in the distribution of acoustic parameters, while showing at the same time that secondary spaces (aisles, chapels) play a different role depending on the amount of sound absorption located in the main nave.

  9. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  10. Acoustic emission evolution during sliding friction of Hadfield steel single crystal

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.

  11. Experimental Acoustic Velocity Measurements in a Tidally Affected Stream

    USGS Publications Warehouse

    Storm, J.B.; ,

    2002-01-01

    The U.S. Geological Survey (USGS) constructed a continuous steamgaging station on the tidally affected Escatawpa River at Interstate 10 near Orange Grove, Mississippi, in August 2001. The gage collects water quantity parameters of stage and stream velocity, and water quality parameters of water temperature, specific conductance, and salinity. Data are transmitted to the local USGS office via the GOES satellite and are presented on a near real-time web page. Due to tidal effects, the stream has multiple flow regimes which include downstream, bi-directional, and reverse flows. Advances in acoustic technology have made it possible to gage streams of this nature where conventional methods have been unsuccessful. An experimental mount was designed in an attempt to recognize, describe, and quantify these flow regimes by using acoustic Doppler equipment.

  12. Study of acoustic correlates associate with emotional speech

    NASA Astrophysics Data System (ADS)

    Yildirim, Serdar; Lee, Sungbok; Lee, Chul Min; Bulut, Murtaza; Busso, Carlos; Kazemzadeh, Ebrahim; Narayanan, Shrikanth

    2004-10-01

    This study investigates the acoustic characteristics of four different emotions expressed in speech. The aim is to obtain detailed acoustic knowledge on how a speech signal is modulated by changes from neutral to a certain emotional state. Such knowledge is necessary for automatic emotion recognition and classification and emotional speech synthesis. Speech data obtained from two semi-professional actresses are analyzed and compared. Each subject produces 211 sentences with four different emotions; neutral, sad, angry, happy. We analyze changes in temporal and acoustic parameters such as magnitude and variability of segmental duration, fundamental frequency and the first three formant frequencies as a function of emotion. Acoustic differences among the emotions are also explored with mutual information computation, multidimensional scaling and acoustic likelihood comparison with normal speech. Results indicate that speech associated with anger and happiness is characterized by longer duration, shorter interword silence, higher pitch and rms energy with wider ranges. Sadness is distinguished from other emotions by lower rms energy and longer interword silence. Interestingly, the difference in formant pattern between [happiness/anger] and [neutral/sadness] are better reflected in back vowels such as /a/(/father/) than in front vowels. Detailed results on intra- and interspeaker variability will be reported.

  13. Objective approach for analysis of noise source characteristics and acoustic conditions in noisy computerized embroidery workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Mansoorizadeh, Muharram

    2014-03-01

    It is highly important to analyze the acoustic properties of workrooms in order to identify best noise control measures from the standpoint of noise exposure limits. Due to the fact that sound pressure is dependent upon environments, it cannot be a suitable parameter for determining the share of workroom acoustic characteristics in producing noise pollution. This paper aims to empirically analyze noise source characteristics and acoustic properties of noisy embroidery workrooms based on special parameters. In this regard, reverberation time as the special room acoustic parameter in 30 workrooms was measured based on ISO 3382-2. Sound power quantity of embroidery machines was also determined based on ISO 9614-3. Multiple linear regression was employed for predicting reverberation time based on acoustic features of the workrooms using MATLAB software. The results showed that the measured reverberation times in most of the workrooms were approximately within the ranges recommended by ISO 11690-1. Similarity between reverberation time values calculated by the Sabine formula and measured values was relatively poor (R (2) = 0.39). This can be due to the inaccurate estimation of the acoustic influence of furniture and formula preconditions. Therefore, this value cannot be considered representative of an actual acoustic room. However, the prediction performance of the regression method with root mean square error (RMSE) = 0.23 s and R (2) = 0.69 is relatively acceptable. Because the sound power of the embroidery machines was relatively high, these sources get the highest priority when it comes to applying noise controls. Finally, an objective approach for the determination of the share of workroom acoustic characteristics in producing noise could facilitate the identification of cost-effective noise controls.

  14. Comparative effect of beclomethasone dipropionate and cetirizine on acoustic rhinometry parameters in children with perennial allergic rhinitis: a randomized controlled trial.

    PubMed

    Malizia, V; Fasola, S; Ferrante, G; Cilluffo, G; Gagliardo, R; Landi, M; Montalbano, L; Marchese, D; La Grutta, S

    2018-04-24

    The effect of intranasal corticosteroids and oral antihistamines on acoustic rhinometry parameters was not directly compared in previous studies. Objectives: The primary aim was to compare the effect of 21-day treatment with nasal beclomethasone dipropionate (nBDP) versus cetirizine (CTZ) on nasal patency measured by acoustic rhinometry in children with PAR. Comparing their effect on nasal cytology, symptom severity, sleep quality and quality of life was the secondary aim. In this 21-day, open-label, randomized controlled study, 34 PAR children (6-14 years) with Total 5 Symptom Score (T5SS) ≥5 received nBDP 100 µg per nostril twice daily or CTZ 10 mg tablets once daily. Effect measures were the least square mean changes (LSmc) in nasal volume and Minimal Cross-sectional Area (MCA), nasal cytology, T5SS, Pittsburgh Sleep Quality Index (PSQI) and Paediatric Rhinoconjunctivitis Quality of Life Questionnaire (PRQLQ). After 21 days, nBDP improved nasal volume and MCA more than CTZ (LSmc 2.21 cm3 vs 0.20 cm3, p=0.013 and LSmc 0.63 cm2 vs 0.13 cm2, p=0.002, respectively). In the nBDP group, with respect to the CTZ group, larger improvement was found in: eosinophil (LSmc -1.10 vs -0.40, p=0.031) and neutrophil (LSmc -0.97 vs -0.17, p=0.010) classes, T5SS (LSmc -5.63 vs -3.54, p=0.008), PSQI (LSmc -1.30 vs -0.19, p=0.025) and PRQLQ total scores (LSmc -1.15 vs -0.69, p=0.031). In children with PAR, nBDP is more effective than CTZ in improving nasal patency measured by acoustic rhinometry, with associated beneficial effects on nasal cytology, symptoms, sleep quality and quality of life.

  15. Acoustic Emission during Intermittent Creep in an Aluminum-Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.

    2018-01-01

    The use of high-speed methods to measure deformation, load, and the dynamics of deformation bands, as well as the correlation between the intermittent creep characteristics of the AlMg6 aluminum-magnesium alloy and the parameters of the acoustic emission signals, has been studied experimentally. It has been established that the emergence and rapid expansion of the primary deformation band, which generates a characteristic acoustic emission signal in the frequency range of 10-1000 Hz, is a trigger for the development of a deformation step in the creep curve. The results confirm the accuracy of the mechanism of generating an acoustic signal associated with the emergence of a dislocation band on the external surface of the specimen.

  16. Remote Acoustic Emission Monitoring of Metal Ware and Welded Joints

    NASA Astrophysics Data System (ADS)

    Kapranov, Boris I.; Sutorikhin, Vladimir A.

    2017-10-01

    An unusual phenomenon was revealed in the metal-ultrasound interaction. Microwave sensor generates surface electric conductivity oscillations from exposure to elastic ultrasonic vibrations on regions of defects embracing micro-defects termed as “crack mouth.” They are known as the region of “acoustic activity,” method of Acoustic Emission (AE) method. It was established that the high phase-modulation coefficient of reflected field generates intentional Doppler radar signal with the following parameters: amplitude-1-5 nm, 6-30 dB adjusted to 70- 180 mm. This phenomenon is termed as “Gorbunov effect,” which is applied as a remote non-destructive testing method replacing ultrasonic flaw detection and acoustic emission methods.

  17. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    PubMed Central

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  18. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  19. Acoustic Analysis of Nasal Vowels in Monguor Language

    NASA Astrophysics Data System (ADS)

    Zhang, Hanbin

    2017-09-01

    The purpose of the study is to analyze the spectrum characteristics and acoustic features for the nasal vowels [ɑ˜] and [ɔ˜] in Monguor language. On the base of acoustic parameter database of the Monguor speech, the study finds out that there are five main zero-pole pairs appearing for the nasal vowel [ɔ˜] and two zero-pole pairs appear for the nasal vowel [ɔ˜]. The results of regression analysis demonstrate that the duration of the nasal vowel [ɔ˜] or the nasal vowel [ɔ˜] can be predicted by its F1, F2 and F3 respectively.

  20. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jianning; Wen, Tingdun; Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with thatmore » of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.« less

  1. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  2. Sound field simulation and acoustic animation in urban squares

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  3. Negative radiation forces on spheres illuminated by acoustic Bessel beams.

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.

    2007-11-01

    An analytical solution for the scattering of an acoustic Bessel beam by a sphere centered on the beam has made it possible to explore the way the acoustic radiation force on elastic and fluid spheres depends on beam and material parameters. Situations have been previously noted where, even in the absence of absorption, the radiation force of the beam on the sphere is opposite the direction of beam propagation [1]. In extensions of that work, conditions have been identified for such a force reversal on solid spheres and elastic shells. Negative radiation forces may be useful for manipulation of objects in reduced gravity and of biological cells (with single beam acoustic tweezers). The finite element method (FEM) has been used to evaluate the total acoustic field in the region near the sphere. This makes it possible to evaluate the radiation force from numerical integration of an appropriate projection of the Brillouin radiation stress tensor. FEM and analytical results agree for plane wave and Bessel beam illumination. 1. P. L. Marston, J. Acoust. Soc. Am. 120, 3518-3524 (2006).

  4. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  5. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  6. Dynamic model including piping acoustics of a centrifugal compression system

    NASA Astrophysics Data System (ADS)

    van Helvoirt, Jan; de Jager, Bram

    2007-04-01

    This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.

  7. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  8. Characterization of compressed earth blocks using low frequency guided acoustic waves.

    PubMed

    Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok

    2016-05-01

    The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks.

  9. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    NASA Astrophysics Data System (ADS)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  10. Analysis of Particle Image Velocimetry (PIV) Data for Acoustic Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    Acoustic velocity measurements were taken using Particle Image Velocimetry (PIV) in a Normal Incidence Tube configuration at various frequency, phase, and amplitude levels. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Estimates of lower measurement sensitivity levels were determined based on PIV image quality, correlation, and noise level parameters used in the test. Comparison of measurements with linear acoustic theory are presented. The onset of nonlinear, harmonic frequency acoustic levels were also studied for various decibel and frequency levels ranging from 90 to 132 dB and 500 to 3000 Hz, respectively.

  11. Acoustic parameters of infant-directed singing in mothers of infants with down syndrome.

    PubMed

    de l'Etoile, Shannon; Behura, Samarth; Zopluoglu, Cengiz

    2017-11-01

    This study compared the acoustic parameters and degree of perceived warmth in two types of infant-directed (ID) songs - the lullaby and the playsong - between mothers of infants with Down syndrome (DS) and mothers of typically-developing (TD) infants. Participants included mothers of 15 DS infants and 15 TD infants between 3 and 9 months of age. Each mother's singing voice was digitally recorded while singing to her infant and subjected to feature extraction and data mining. Mothers of DS infants and TD infants sang both lullabies and playsongs with similar frequency. In comparison with mothers of TD infants, mothers of DS infants used a higher maximum pitch and more key changes during playsong. Mothers of DS infants also took more time to establish a rhythmic structure in their singing. These differences suggest mothers are sensitive to the attentional and arousal needs of their DS infants. Mothers of TD infants sang with a higher degree of perceived warmth which does not agree with previous observations of "forceful warmth" in mothers of DS infants. In comparison with lullaby, all mothers sang playsong with higher overall pitch and slower tempo. Playsongs were also distinguished by higher levels of spectral centroid properties related to emotional expressivity, as well as higher degrees of perceived warmth. These similarities help to define specific song types, and suggest that all mothers sing in an expressive manner that can modulate infant arousal, including mothers of DS infants. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. [Acoustic analysis and characteristics of vocal range in Beijing Opera actors].

    PubMed

    Qu, C; Liu, Y

    2000-02-01

    To get the objective acoustic parameters of the voice of Beijing Opera actors and set a foundation for the training and protection of the special professional voice. Seventy-three (age 16-57 years) professional actors and students were asked to produce sustained comfortable vowels /a/ and /i/, and to sing two pieces of songs which were in the category of Xipi and Erhuang respectively. Dr. Speech for windows version 3.0 was used to get the acoustic parameters of the vowels and the songs. F0 of the vowels /a/ and /i/ of different Hangdangs were Chou (272.6 +/- 42.0) Hz (mean +/- s), (304.2 +/- 22.1) Hz; Xiaosheng (499.3 +/- 34.0) Hz, (485.4 +/- 18.7) Hz; Laosheng (335.6 +/- 60.0) Hz, (317.9 +/- 45.1) Hz; Hualian (319.0 +/- 61.3) Hz, (340.1 +/- 68.8) Hz; Laodan (427.6 +/- 47.2) Hz, (437.7 +/- 45.8) Hz; Huadan (535.8 +/- 48.8) Hz, (561.6 +/- 29.2) Hz; Qingyi (548.0 +/- 69.5) Hz, (543.5 +/- 79.3) Hz; these and other acoustic parameters of vowels such as Jitter, Shimmer and NNE were all within the normal range given by the software. The vocal range of Beijing Opera actors was from 1.7 to 2.8 oct, and most of the highest and the lowest pitches were higher than that of tenor or soprano. These findings may help to provide insight regarding the acoustic characteristics of the voice of Beijing Opera actors.

  13. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    Acoustical oceanography is one way to study the ocean, its internal layers, boundaries and all processes occurring within using underwater acoustics. Acoustical sensing techniques allows for the measurement of ocean processes from within that logistically or financially preclude traditional in-situ measurements. Acoustic signals propagate as pressure wavefronts from a source to a receiver through an ocean medium with variable physical parameters. The water column physical parameters that change acoustic wave propagation in the ocean include temperature, salinity, current, surface roughness, seafloor bathymetry, and vertical stratification over variable time scales. The impacts of short-time scale water column variability on acoustic wave propagation include coherent and incoherent surface reflections, wavefront arrival time delay, focusing or defocusing of the intensity of acoustic beams and refraction of acoustic rays. This study focuses on high-frequency broadband acoustic waves, and examines the influence of short-time scale water column variability on broadband high-frequency acoustics, wavefronts, from 7 to 28 kHz, in shallow water. Short-time scale variability is on the order of seconds to hours and the short-spatial scale variability is on the order of few centimeters. Experimental results were collected during an acoustic experiment along 100 m isobaths and data analysis was conducted using available acoustic wave propagation models. Three main topics are studied to show that acoustic waves are viable as a remote sensing tool to measure oceanographic parameters in shallow water. First, coherent surface reflections forming striation patterns, from multipath receptions, through rough surface interaction of broadband acoustic signals with the dynamic sea surface are analyzed. Matched filtered results of received acoustic waves are compared with a ray tracing numerical model using a sea surface boundary generated from measured water wave spectra at the time of

  14. Elastic versus acoustic inversion for marine surveys

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wu, Zedong

    2018-04-01

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory - at least for a hard water bottom case - it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  15. Elastic versus acoustic inversion for marine surveys

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wu, Zedong

    2018-07-01

    Full wavefield inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume that acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory—at least for a hard waterbottom case—it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We, therefore, conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and notable artefacts for layer reflection data. Based on these results, it would appear that at least the inversions of large offset marine data should be fully elastic rather than acoustic, unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), an acoustic-only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  16. Laryngeal findings and acoustic changes in hubble-bubble smokers.

    PubMed

    Hamdan, Abdul-latif; Sibai, Abla; Oubari, Dima; Ashkar, Jihad; Fuleihan, Nabil

    2010-10-01

    The purpose of our investigation was to evaluate the laryngeal findings and acoustic changes in hubble-bubble smokers. A total of 42 subjects with history of hubble-bubble smoking were recruited for this study. A corresponding group with a history of cigarette smoking and controls were matched. All subjects underwent laryngeal video-endostroboscopic evaluation and acoustic analysis. In the hubble-bubble smoking group, 61.9% were males. The average age was 30.02 +/- 9.48 years and the average number of years of smoking was 8.09 +/- 6.45 years. Three subjects had dysphonia at the time of examination. The incidence of benign lesions of the vocal folds in the hubble-bubble group was 21.5%, with edema being the most common at 16.7% followed by cyst at 4.8%. The incidence of laryngeal findings was significantly higher in the hubble-bubble group compared to controls. In the cigarette-smoking group, the most common finding was vocal fold cyst in 14.8% followed by polyps in 7.4%, and edema, sulcus vocalis and granuloma. These findings were not significantly different from the hubble-bubble group except for the thick mucus, which was significantly higher in the latter. There were no significant changes in any of the acoustic parameters between hubble-bubble smokers and controls except for the VTI and MPT, which were significantly lower in the hubble-bubble group. In comparison with the cigarette-smoking group, hubble-bubble smokers had significantly higher Fundamental frequency and habitual pitch (p value 0.042 and 0.008, respectively). The laryngeal findings in hubble-bubble smokers are comparable to cigarette smokers. These laryngeal findings are not translated acoustically, as all the acoustic parameters are within normal range compared to controls.

  17. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2018-01-01

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nuclear cardiograph and scintigraphy

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P.

    1975-01-01

    Extensive advances in the technology of detectors, data analysis systems, and tracers used have resulted in greatly expanded applications of radioisotopes to the assessment of cardiac function and disease. The development of nuclear cardiology has proceeded along four lines: (1) radionuclide angiography, (2) myocardial perfusion imaging, (3) intracoronary microsphere imaging, and (4) regional myocardial blood flow determination using inert gases.

  19. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  20. Panel acoustic contribution analysis.

    PubMed

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  1. Acoustic and elastic waveform inversion best practices

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast

  2. Effect of acute acoustic stress on anorectal function sensation in healthy human.

    PubMed

    Gonlachanvit, S; Rhee, J; Sun, W M; Chey, W D

    2005-04-01

    Little is known about the effects of acute acoustic stress on anorectal function. To determine the effects of acute acoustic stress on anorectal function and sensation in healthy volunteers. Ten healthy volunteers (7 M, 3 F, mean age 34 +/- 3 years) underwent anorectal manometry, testing of rectal compliance and sensation using a barostat with and without acute noise stress on separate days. Rectal perception was assessed using an ascending method of limits protocol and a 5-point Likert scale. Arousal and anxiety status were evaluated using a visual analogue scale. Acoustic stress significantly increased anxiety score (P < 0.05). Rectal compliance was significantly decreased with acoustic stress compared with control P (P < 0.000001). In addition, less intraballoon volume was needed to induce the sensation of severe urgency with acoustic stress (P < 0.05). Acoustic stress had no effect on hemodynamic parameters, anal sphincter pressure, threshold for first sensation, sensation of stool, or pain. Acute acoustic stimulation increased anxiety scores, decreased rectal compliance, and enhanced perception of severe urgency to balloon distention but did not affect anal sphincter pressure in healthy volunteers. These results may offer insight into the pathogenesis of stress-in-induced diarrhoea and faecal urgency.

  3. Variability in English vowels is comparable in articulation and acoustics

    PubMed Central

    Noiray, Aude; Iskarous, Khalil; Whalen, D. H.

    2014-01-01

    The nature of the links between speech production and perception has been the subject of longstanding debate. The present study investigated the articulatory parameter of tongue height and the acoustic F1-F0 difference for the phonological distinction of vowel height in American English front vowels. Multiple repetitions of /i, ɪ, e, ε, æ/ in [(h)Vd] sequences were recorded in seven adult speakers. Articulatory (ultrasound) and acoustic data were collected simultaneously to provide a direct comparison of variability in vowel production in both domains. Results showed idiosyncratic patterns of articulation for contrasting the three front vowel pairs /i-ɪ/, /e-ε/ and /ε-æ/ across subjects, with the degree of variability in vowel articulation comparable to that observed in the acoustics for all seven participants. However, contrary to what was expected, some speakers showed reversals for tongue height for /ɪ/-/e/ that was also reflected in acoustics with F1 higher for /ɪ/ than for /e/. The data suggest the phonological distinction of height is conveyed via speaker-specific articulatory-acoustic patterns that do not strictly match features descriptions. However, the acoustic signal is faithful to the articulatory configuration that generated it, carrying the crucial information for perceptual contrast. PMID:25101144

  4. Is dust acoustic wave a new plasma acoustic mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less

  5. Theoretical and Experimental Investigation of Particle Trapping via Acoustic Bubbles

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Fang, Zecong; Merritt, Brett; Saadat-Moghaddam, Darius; Strack, Dillon; Xu, Jie; Lee, Sungyon

    2014-11-01

    One important application of lab-on-a-chip devices is the trapping and sorting of micro-objects, with acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force on micro-particles and trap them, when this radiation force exceeds the drag force that acts to keep the particles in motion. In this study, we theoretically evaluate the magnitudes of these two forces for varying actuation frequencies and voltages. In particular, the secondary radiation force is calculated directly from bubble oscillation shapes that have been experimentally measured for varying acoustic parameters. Finally, based on the force estimates, we predict the threshold voltage and frequency for trapping and compare them to the experimental results.

  6. Dispersion and Input Control Capability in European Large Size Reverberant Acoustic Chambers

    NASA Astrophysics Data System (ADS)

    Yarza, A.; Lopez, J.; Ozores, E.

    2012-07-01

    The acoustic test in reverberant chamber is one of the load cases to be proved during the environmental test campaign that demonstrates the capability of a space- unit to survive the launch phase. The crucial requirement for the large size structures is often the survival of the acoustic vibration test, and can be defined as the design driver load case in many circumstances. In addition, the commercial market demands lighter structures as an objective to reduce costs. For an efficient optimisation of the product it is very important to have powerful structural analysis tools in order to obtain knowledge of the structural needs and to refine existing methods for the prediction of structural loads experienced during acoustic testing. In the same line, as part of the contributors involved in the test it is important to acquire knowledge of the characteristics of the reverberant chamber itself and the behaviour of the fluid. With this purpose, EADS CASA Espacio (ECE) has used the measured data of the parameters of the fluid extracted from test of the deployable reflectors validated in the past five years, with the final objective to improve and optimise the capability to face up the acoustic test. In this paper experimental data extracted from acoustic tests performed to space-units are presented. Information related to two European large size acoustic chambers are used. The pressure field inside the acoustic chamber has been post-processed with the objective to study the behaviour of the fluid during the test. The diffuseness of the pressure field and the control capability of the acoustic profile are parameters to be considered as contributors for the design of the structures. The homogeneity of the microphones’ measurements is taken into account to describe the dispersion of the pressure inside the reverberant chamber along the frequency domain. Upon of that, the capability of the facilities to control the input profile is analysed from a statistical point of view

  7. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  8. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  9. An analysis of blade vortex interaction aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Lee, D. J.

    1985-01-01

    The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

  10. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  11. Parameter extraction of coupling-of-modes equations including coupling between two surface acoustic waves on SiO2/Cu/LiNbO3 structures

    NASA Astrophysics Data System (ADS)

    Huang, Yulin; Bao, Jingfu; Li, Xinyi; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    This paper describes extraction of parameters of an extended coupling-of-modes (COM) model including coupling between Rayleigh and shear-horizontal (SH) surface acoustic waves (SAW) on the SiO2-overlay/Cu-grating/LiNbO3-substrate structure. First, dispersion characteristics of two SAWs are calculated by the finite element method (FEM), and are fitted with those given by the extended COM. Then variation of COM parameters is expressed in polynomials in terms of the SiO2 and Cu thicknesses and the rotation angle Θ of LiNbO3. Then it is shown how the optimal Θ giving the SH SAW suppression changes with the thicknesses. The result agrees well with that obtained directly by FEM. It is also shown the optimal Θ changes abruptly at certain Cu thickness, and is due to decoupling between two SAW modes.

  12. Program for the feasibility of developing a high pressure acoustic levitator

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.

    1988-01-01

    This is the final report for the program for the feasibility of developing a high-pressure acoustic levitator (HPAL). It includes work performed during the period from February 15, 1987 to October 26, 1987. The program was conducted for NASA under contract number NAS3-25115. The HPAL would be used for containerless processing of materials in the 1-g Earth environment. Results show that the use of increased gas pressure produces higher sound pressure levels. The harmonics produced by the acoustic source are also reduced. This provides an improvement in the capabilities of acoustic levitation in 1-g. The reported processing capabilities are directly limited by the design of the Medium Pressure Acoustic Levitator used for this study. Data show that sufficient acoustic intensities can be obtained to levitate and process a specimen of density 5 g/cu cm at 1500 C. However, it is recommended that a working engineering model of the HPAL be developed. The model would be used to establish the maximum operating parameters of furnace temperature and sample density.

  13. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Peterson, A. M.

    1979-01-01

    In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.

  14. Acoustic Analysis and Electroglottography in Elite Vocal Performers.

    PubMed

    Villafuerte-Gonzalez, Rocio; Valadez-Jimenez, Victor M; Sierra-Ramirez, Jose A; Ysunza, Pablo Antonio; Chavarria-Villafuerte, Karen; Hernandez-Lopez, Xochiquetzal

    2017-05-01

    Acoustic analysis of voice (AAV) and electroglottography (EGG) have been used for assessing vocal quality in patients with voice disorders. The effectiveness of these procedures for detecting mild disturbances in vocal quality in elite vocal performers has been controversial. To compare acoustic parameters obtained by AAV and EGG before and after vocal training to determine the effectiveness of these procedures for detecting vocal improvements in elite vocal performers. Thirty-three elite vocal performers were studied. The study group included 14 males and 19 females, ages 18-40 years, without a history of voice disorders. Acoustic parameters were obtained through AAV and EGG before and after vocal training using the Linklater method. Nonsignificant differences (P > 0.05) were found between values of fundamental frequency (F 0 ), shimmer, and jitter obtained by both procedures before vocal training. Mean F 0 was similar after vocal training. Jitter percentage as measured by AAV showed nonsignificant differences (P > 0.05) before and after vocal training. Shimmer percentage as measured by AAV demonstrated a significant reduction (P < 0.05) after vocal training. As measured by EGG after vocal training, shimmer and jitter were significantly reduced (P < 0.05); open quotient was significantly increased (P < 0.05); and irregularity was significantly reduced (P < 0.05). AAV and EGG were effective for detecting improvements in vocal function after vocal training in male and female elite vocal performers undergoing vocal training. EGG demonstrated better efficacy for detecting improvements and provided additional parameters as compared to AAV. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the

  16. [Acoustic conditions in open plan office - Application of technical measures in a typical room].

    PubMed

    Mikulski, Witold

    2018-03-09

    Noise in open plan offices should not exceed acceptable levels for the hearing protection. Its major negative effects on employees are nuisance and impediment in execution of work. Specific technical solutions should be introduced to provide proper acoustic conditions for work performance. Acoustic evaluation of a typical open plan office was presented in the article published in "Medycyna Pracy" 5/2016. None of the rooms meets all the criteria, therefore, in this article one of the rooms was chosen to apply different technical solutions to check the possibility of reaching proper acoustic conditions. Acoustic effectiveness of those solutions was verified by means of digital simulation. The model was checked by comparing the results of measurements and calculations before using simulation. The analyzis revealed that open plan offices supplemented with signals for masking speech signals can meet all the required criteria. It is relatively easy to reach proper reverberation time (i.e., sound absorption). It is more difficult to reach proper values of evaluation parameters determined from A-weighted sound pressure level (SPLA) of speech. The most difficult is to provide proper values of evaluation parameters determined from speech transmission index (STI). Finally, it is necessary (besides acoustic treatment) to use devices for speech masking. The study proved that it is technically possible to reach proper acoustic condition. Main causes of employees complaints in open plan office are inadequate acoustic work conditions. Therefore, it is necessary to apply specific technical solutions - not only sound absorbing suspended ceiling and high acoustic barriers, but also devices for speech masking. Med Pr 2018;69(2):153-165. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Fiber-optic system for checking the acoustical parameters of gas-turbine engine flow-through passages

    NASA Astrophysics Data System (ADS)

    Vinogradov, Vasiliy Y.; Morozov, Oleg G.; Nureev, Ilnur I.; Kuznetzov, Artem A.

    2015-03-01

    In this paper we consider the integrated approach to development of the aero-acoustical methods for diagnostics of aircraft gas-turbine engine flow-through passages by using as the base the passive fiber-optic and location technologies.

  18. Acoustic metamaterials with circular sector cavities and programmable densities.

    PubMed

    Akl, W; Elsabbagh, A; Baz, A

    2012-10-01

    Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.

  19. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  20. Acoustic environmental accuracy requirements for response determination

    NASA Technical Reports Server (NTRS)

    Pettitt, M. R.

    1983-01-01

    A general purpose computer program was developed for the prediction of vehicle interior noise. This program, named VIN, has both modal and statistical energy analysis capabilities for structural/acoustic interaction analysis. The analytic models and their computer implementation were verified through simple test cases with well-defined experimental results. The model was also applied in a space shuttle payload bay launch acoustics prediction study. The computer program processes large and small problems with equal efficiency because all arrays are dynamically sized by program input variables at run time. A data base is built and easily accessed for design studies. The data base significantly reduces the computational costs of such studies by allowing the reuse of the still-valid calculated parameters of previous iterations.

  1. An acoustic switch.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2014-01-01

    The benefits derived from the development of acoustic transistors which act as switches or amplifiers have been reported in the literature. Here we propose a model of acoustic switch. We theoretically demonstrate that the device works: the input signal is totally restored at the output when the switch is on whereas the output signal nulls when the switch is off. The switch, on or off, depends on a secondary acoustic field capable to manipulate the main acoustic field. The model relies on the attenuation effect of many oscillating bubbles on the main travelling wave in the liquid, as well as on the capacity of the secondary acoustic wave to move the bubbles. This model evidences the concept of acoustic switch (transistor) with 100% efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. An approach for estimating acoustic power in a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao; Qiu, Limin; Duan, Chaoxiang; You, Xiaokuan; Zhi, Xiaoqin

    2017-10-01

    Acoustic power at the cold end of regenerator is the measure of gross cooling capacity for a pulse tube cryocooler (PTC), which cannot be measured directly. Conventionally, the acoustic power can only be derived from the measurement of velocity, pressure and their phase angle, which is still a challenge for an oscillating flow at cryogenic temperatures. A new method is proposed for estimating the acoustic power, which takes use of the easily measurable parameters, such as the pressure and temperature, instead of the velocity and phase angle between the pressure and velocity at cryogenic temperatures. The ratio of acoustic powers at the both ends of isothermal components, like regenerator, heat exchangers, can be conveniently evaluated by using the ratio of pressure amplitudes and the local temperatures. The ratio of acoustic powers at the both ends of adiabatic components, like transfer line and pulse tube, is obtained by using the ratio of pressure amplitudes. Accuracy of the approach for evaluating the acoustic power for the regenerator is analyzed by comparing the results with those from REGEN 3.3 and references. For the cold end temperature range of 40-80 K, the deviation is less than 5% if the phase angle at the cold end of regenerator is around -30°. The simple method benefits estimating the acoustic power and optimizing the PTC performance without interfering the cryogenic flow field.

  3. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  4. Estimation of Ocean and Seabed Parameters and Processes Using Low Frequency Acoustic Signals

    DTIC Science & Technology

    2011-09-01

    Dr. Mohsen Badiey (University of Delaware), Kevin Smith (Naval Postgraduate School), Dr. James F. Lynch and Dr. Y.-T. Lin (Woods Hole Oceanographic...Wilson (ARL, University of Texas) in this topic. 3. Finite Element Modeling of wave propagation: Doctoral student, Hui- Kwan Kim, is modeling wave...student Hui- Kwan Kim is focusing on finite element modeling of wave propagation. RESULTS 1. Acoustic variability in the presence of internal waves

  5. Response of cat cerebellar vermis induced by sound. II. The role of the mossy and climbing fibers in acoustic transmission to the cerebellar cortex and influence of stimuli parameters.

    PubMed

    Jastreboff, P J; Tarnecki, R

    1975-01-01

    Experiments were performed on cats under Chloralose or Nembutal anesthesia. The parameters of the acoustic click stimuli were found to have a strong influence on the responses registered from both the surface of the cerebellar vermis lobuli V up VII as well as from single units. It was shown that a stimulus frequency rate not greater than 1/2 s should be used, since higher frequencies caused strong attenuation of the response. The type of anesthesia did not change the latencies of reactions of both evoked potentials and single units. However, decreasing the strength of the click resulted in increased response latencies, in the case of single unit reactions. A very strong influence of weak visual stimuli on units was also observed. It is suggested that mossy fibers are the most important fibers in the transmission of acoustic information to the cerebellar cortex.

  6. The Use of Artificial Neural Networks to Estimate Speech Intelligibility from Acoustic Variables: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Metz, Dale Evan; And Others

    1992-01-01

    A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…

  7. Acoustic fluidization and the scale dependence of impact crater morphology

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Gaffney, E. S.

    1983-01-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  8. Acoustic design of boundary segments in aircraft fuselages using topology optimization and a specialized acoustic pressure function

    NASA Astrophysics Data System (ADS)

    Radestock, Martin; Rose, Michael; Monner, Hans Peter

    2017-04-01

    In most aviation applications, a major cost benefit can be achieved by a reduction of the system weight. Often the acoustic properties of the fuselage structure are not in the focus of the primary design process, too. A final correction of poor acoustic properties is usually done using insulation mats in the chamber between the primary and secondary shell. It is plausible that a more sophisticated material distribution in that area can result in a substantially reduced weight. Topology optimization is a well-known approach to reduce material of compliant structures. In this paper an adaption of this method to acoustic problems is investigated. The gap full of insulation mats is suitably parameterized to achieve different material distributions. To find advantageous configurations, the objective in the underlying topology optimization is chosen to obtain good acoustic pressure patterns in the aircraft cabin. An important task in the optimization is an adequate Finite Element model of the system. This can usually not be obtained from commercially available programs due to the lack of special sensitivity data with respect to the design parameters. Therefore an appropriate implementation of the algorithm has been done, exploiting the vector and matrix capabilities in the MATLABQ environment. Finally some new aspects of the Finite Element implementation will also be presented, since they are interesting on its own and can be generalized to efficiently solve other partial differential equations as well.

  9. Acoustic levitation of an object larger than the acoustic wavelength.

    PubMed

    Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C

    2017-06-01

    Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.

  10. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  11. Evaluation of moving-coil loudspeaker and passive radiator parameters using normal-incidence sound transmission measurements: theoretical developments.

    PubMed

    Leishman, Timothy W; Anderson, Brian E

    2013-07-01

    The parameters of moving-coil loudspeaker drivers are typically determined using direct electrical excitation and measurement. However, as electro-mechano-acoustical devices, their parameters should also follow from suitable mechanical or acoustical evaluations. This paper presents the theory of an acoustical method of excitation and measurement using normal-incidence sound transmission through a baffled driver as a plane-wave tube partition. Analogous circuits enable key parameters to be extracted from measurement results in terms of open and closed-circuit driver conditions. Associated tools are presented that facilitate adjacent field decompositions and derivations of sound transmission coefficients (in terms of driver parameters) directly from the circuits. The paper also clarifies the impact of nonanechoic receiving tube terminations and the specific benefits of downstream field decompositions.

  12. Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.

    2017-12-01

    Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.

  13. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.

    PubMed

    Ogam, Erick; Depollier, Claude; Fellah, Z E A

    2010-09-01

    Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.

  14. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  15. Acoustic neuroma

    MedlinePlus

    ... Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... that makes it hard to hear conversations Ringing ( tinnitus ) in the affected ear Less common symptoms include: ...

  16. Comparison between 1-minute and 15-minute averages of turbulence parameters

    NASA Technical Reports Server (NTRS)

    Noble, John M.

    1993-01-01

    Sonic anemometers are good instruments for measuring temperature and wind speed and are fast enough to calculate the temperature and wind structure parameters used to calculate the variance in the acoustic index of refraction. However, the turbulence parameters are typically 15-minute averaged point measurements. There are several problems associated with making point measurements and using them to represent a turbulence field. Some of the sonic anemometer data analyzed from the Joint Acoustic Propagation Experiment (JAPE) conducted during July 1991 at DIRT Site located at White Sands Missile Range, New Mexico, are examined.

  17. Correlation Between Acoustic Measurements and Self-Reported Voice Disorders Among Female Teachers.

    PubMed

    Lin, Feng-Chuan; Chen, Sheng Hwa; Chen, Su-Chiu; Wang, Chi-Te; Kuo, Yu-Ching

    2016-07-01

    Many studies focused on teachers' voice problems and most of them were conducted using questionnaires, whereas little research has investigated the relationship between self-reported voice disorders and objective quantification of voice. This study intends to explore the relationship of acoustic measurements according to self-reported symptoms and its predictive value of future dysphonia. This is a case-control study. Voice samples of 80 female teachers were analyzed, including 40 self-reported voice disorders (VD) and 40 self-reported normal voice (NVD) subjects. The acoustic measurements included jitter, shimmer, and noise-to-harmonics ratio (NHR). Levene's t test and logistic regression were used to analyze the differences between VD and NVD and the relationship between self-reported voice conditions and the acoustic measurements. To examine whether acoustic measurements can be used to predict further voice disorders, we applied a receiver operating characteristic (ROC) curve to determine the cutoff values and the associated sensitivity and specificity. The results showed that jitter, shimmer, and the NHR of VD were significantly higher than those of NVD. Among the parameters, the NHR and shimmer demonstrated the highest correlation with self-reported voice disorders. By using the NHR ≥0.138 and shimmer ≥0.470 dB as the cutoff values, the ROC curve displayed 72.5% of sensitivity and 75% of specificity, and the overall positive predictive value for subsequent dysphonia achieved 60%. This study demonstrated a significant correlation between acoustic measurements and self-reported dysphonic symptoms. NHR and ShdB are two acoustic parameters that are more able to reflect vocal abnormalities and, probably, to predict subsequent subjective voice disorder. Future research recruiting more subjects in other occupations and genders shall validate the preliminary results revealed in this study. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All

  18. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Mahmood, Shahzad, E-mail: shahzadm100@gmail.com

    2016-05-15

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions aremore » also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.« less

  19. Double negative acoustic metastructure for attenuation of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu

    2018-03-01

    Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.

  20. Reducing the dimensions of acoustic devices using anti-acoustic-null media

    NASA Astrophysics Data System (ADS)

    Li, Borui; Sun, Fei; He, Sailing

    2018-02-01

    An anti-acoustic-null medium (anti-ANM), a special homogeneous medium with anisotropic mass density, is designed by transformation acoustics (TA). Anti-ANM can greatly compress acoustic space along the direction of its main axis, where the size compression ratio is extremely large. This special feature can be utilized to reduce the geometric dimensions of classic acoustic devices. For example, the height of a parabolic acoustic reflector can be greatly reduced. We also design a brass-air structure on the basis of the effective medium theory to materialize the anti-ANM in a broadband frequency range. Numerical simulations verify the performance of the proposed anti-ANM.

  1. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2016-06-21

    the "Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical Society of America (Vol. 134, No . 4, Pt. 2 of 2 , October20 13...also listed. Fourteen (14) of these publications appeared in the " Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical

  2. A wave model for rigid-frame porous materials using lumped parameter concepts

    NASA Astrophysics Data System (ADS)

    Rossetti, S.; Gardonio, P.; Brennan, M. J.

    2005-08-01

    The work presented in this paper concerns the behaviour of porous media when exposed to a normal incidence sound field. A propagating wave model based on lumped parameter concepts of acoustic mass, stiffness and damping is used to investigate the absorption phenomena due to the wave propagation in the layer(s) and interference effects due to the wave reflection-transmission at the interfaces of the layer(s). Results from the theoretical model have been validated by measurements on samples of consolidated rubber granulate material. Two typical installations where a layer of porous material is placed next to a rigid wall, and where it is placed at a distance from a rigid wall are used as reference cases. The geometrical and physical properties of porous materials can be described by such parameters as the non-dimensional shape factor and the porosity. The propagating model introduced is used to investigate the effect of these two parameters on acoustic absorption and thus relate the physical properties to the acoustic behaviour.

  3. Relationships between objective acoustic indices and acoustic comfort evaluation in nonacoustic spaces

    NASA Astrophysics Data System (ADS)

    Kang, Jian

    2004-05-01

    Much attention has been paid to acoustic spaces such as concert halls and recording studios, whereas research on nonacoustic buildings/spaces has been rather limited, especially from the viewpoint of acoustic comfort. In this research a series of case studies has been carried out on this topic, considering various spaces including shopping mall atrium spaces, library reading rooms, football stadia, swimming spaces, churches, dining spaces, as well as urban open public spaces. The studies focus on the relationships between objective acoustic indices such as sound pressure level and reverberation time and perceptions of acoustic comfort. The results show that the acoustic atmosphere is an important consideration in such spaces and the evaluation of acoustic comfort may vary considerably even if the objective acoustic indices are the same. It is suggested that current guidelines and technical regulations are insufficient in terms of acoustic design of these spaces, and the relationships established from the case studies between objective and subjective aspects would be useful for developing further design guidelines. [Work supported partly by the British Academy.

  4. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  5. Simulation of Acoustics for Ares I Scale Model Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Putnam, Gabriel; Strutzenberg, Louise L.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  6. [Acoustic voice analysis using the Praat program: comparative study with the Dr. Speech program].

    PubMed

    Núñez Batalla, Faustino; González Márquez, Rocío; Peláez González, M Belén; González Laborda, Irene; Fernández Fernández, María; Morato Galán, Marta

    2014-01-01

    The European Laryngological Society (ELS) basic protocol for functional assessment of voice pathology includes 5 different approaches: perception, videostroboscopy, acoustics, aerodynamics and subjective rating by the patient. In this study we focused on acoustic voice analysis. The purpose of the present study was to correlate the results obtained by the commercial software Dr. Speech and the free software Praat in 2 fields: 1. Narrow-band spectrogram (the presence of noise according to Yanagihara, and the presence of subharmonics) (semi-quantitative). 2. Voice acoustic parameters (jitter, shimmer, harmonics-to-noise ratio, fundamental frequency) (quantitative). We studied a total of 99 voice samples from individuals with Reinke's oedema diagnosed using videostroboscopy. One independent observer used Dr. Speech 3.0 and a second one used the Praat program (Phonetic Sciences, University of Amsterdam). The spectrographic analysis consisted of obtaining a narrow-band spectrogram from the previous digitalised voice samples by the 2 independent observers. They then determined the presence of noise in the spectrogram, using the Yanagihara grades, as well as the presence of subharmonics. As a final result, the acoustic parameters of jitter, shimmer, harmonics-to-noise ratio and fundamental frequency were obtained from the 2 acoustic analysis programs. The results indicated that the sound spectrogram and the numerical values obtained for shimmer and jitter were similar for both computer programs, even though types 1, 2 and 3 voice samples were analysed. The Praat and Dr. Speech programs provide similar results in the acoustic analysis of pathological voices. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  7. Two-dimensional arbitrarily shaped acoustic cloaks composed of homogeneous parts

    NASA Astrophysics Data System (ADS)

    Li, Qi; Vipperman, Jeffrey S.

    2017-10-01

    Acoustic cloaking is an important application of acoustic metamaterials. Although the topic has received much attention, there are a number of areas where contributions are needed. In this paper, a design method for producing acoustic cloaks with arbitrary shapes that are composed of homogeneous parts is presented. The cloak is divided into sections, each of which, in turn, is further divided into two parts, followed by the application of transformation acoustics to derive the required properties for cloaking. With the proposed mapping relations, the properties of each part of the cloak are anisotropic but homogeneous, which can be realized using two alternating layers of homogeneous and isotropic materials. A hexagonal and an irregular cloak are presented as design examples. The full wave simulations using COMSOL Multiphysics finite element software show that the cloaks function well at reducing reflections and shadows. The variation of the cloak properties is investigated as a function of three important geometric parameters used in the transformations. A balance can be found between cloaking performance and materials properties that are physically realizable.

  8. Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.

    2007-01-01

    A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.

  9. Spherical nonlinear ion-acoustic solitary waves in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-03-01

    Propagation of spherical nonlinear ion-acoustic solitary waves in positive and negative ion plasmas with superthermal electrons is investigated. The effects of perturbations of the azimuthal and zenith-angle as well as the radial coordinate on the solitary wave profile are reported. The existence domains and the characteristics of the spherical solitary pulses are examined. The solitary excitations are found to be strongly dependent on the plasma parameters; the mass ratio of the positive-to-negative ions, electrons superthermality, and the spherical geometry. The role of superthermal electrons in formation of the spherical nonlinear ion-acoustic solitary excitations for two ion mass groups in Titan's upper atmosphere is investigated.

  10. Acoustic Guided Wave Testing of Pipes of Small Diameters

    NASA Astrophysics Data System (ADS)

    Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.

    2017-10-01

    Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.

  11. Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow

    NASA Astrophysics Data System (ADS)

    Pozdeeva, I. G.; Mitrofanova, O. V.

    2018-03-01

    The mechanism of generation of acoustic oscillations associated with the formation of stable vortex structures in the moving fluid was considered for the impact swirl flow. Experimental studies were carried out to determine the relationship between large-scale vortex motion and acoustic effects in hydro-mechanical systems. It was shown that a sharp change of the amplitude-frequency characteristic of the acoustic oscillations of hydro-mechanical system corresponds to the maximal flow rate of the swirl flow. The established connection between the generation of sound waves and geometrical and regime parameters of the hydro-mechanical system formed the basis for the developed method of diagnostics of the processes of vortex formation.

  12. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.

    PubMed

    Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  13. An experimental comparison of various methods of nearfield acoustic holography

    DOE PAGES

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    2017-05-19

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  14. An experimental comparison of various methods of nearfield acoustic holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  15. One-dimensional pressure transfer models for acoustic-electric transmission channels

    NASA Astrophysics Data System (ADS)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  16. Experiments on stress dependent borehole acoustic waves.

    PubMed

    Hsu, Chaur-Jian; Kane, Michael R; Winkler, Kenneth; Wang, Canyun; Johnson, David Linton

    2011-10-01

    In the laboratory setup, a borehole traverses a dry sandstone formation, which is subjected to a controlled uniaxial stress in the direction perpendicular to the borehole axis. Measurements are made in a single loading-unloading stress cycle from zero to 10 MPa and then back down to zero stress. The applied stress and the presence of the borehole induce anisotropy in the bulk of the material and stress concentration around the borehole, both azimuthally and radially. Acoustic waves are generated and detected in the water-filled borehole, including compressional and shear headwaves, as well as modes of monopole, dipole, quadrupole, and higher order azimuthal symmetries. The linear and non-linear elastic parameters of the formation material are independently quantified, and utilized in conjunction with elastic theories to predict the characteristics of various borehole waves at zero and finite stress conditions. For example, an analytic theory is developed which is successfully used to estimate the changes of monopole tube mode at low frequency resulted from uniaxial stress, utilizing the measured material third order elasticity parameters. Comparisons between various measurements as well as that between experiments and theories are also presented. © 2011 Acoustical Society of America

  17. High frequency acoustic propagation under variable sea surfaces

    NASA Astrophysics Data System (ADS)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are

  18. Biot theory and acoustical properties of high porosity fibrous materials and plastic foams

    NASA Technical Reports Server (NTRS)

    Allard, J.; Aknine, A.

    1987-01-01

    Experimental values of acoustic wave propagation constant and characteristic impedance in fibrous materials, and normal absorption for two plastic foams, were compared to theoretical predictions obtained with Biot's theory. The best agreement was observed for fibrous materials between Biot's theory and Delany and Bazley experiments for a nearly zero mass coupling parameter. For foams, the lambda/4 structure resonance effect on absorption was calculated by using four-pole modelling of the medium. A significant mass coupling parameter is then necessary for obtaining agreement between the behavior of the measured absorption coefficients and the theoretical predictions. It is shown how the formalism used for predicting foams absorption coefficients may be used for studying the acoustic behavior of multi-layered media.

  19. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-11-01

    Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.

  20. A semi-empirical model relating micro structure to acoustic properties of bimodal porous material

    NASA Astrophysics Data System (ADS)

    Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine

    2015-01-01

    Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.

  1. An all fiber-optic multi-parameter structure health monitoring system

    DOE PAGES

    Hu, Chennan; Yu, Zhihao; Wang, Anbo

    2016-08-24

    In this article, we present an all fiber-optics based multi-parameter structure health monitoring system, which is able to monitor strain, temperature, crack and thickness of metal structures. This system is composed of two optical fibers, one for laser-acoustic excitation and the other for acoustic detection. A nano-second 1064 nm pulse laser was used for acoustic excitation and a 2 mm fiber Bragg grating was used to detect the acoustic vibration. The feasibility of this system was demonstrated on an aluminum test piece by the monitoring of the temperature, strain and thickness changes, as well as the appearance of an artificialmore » crack. The multiplexing capability of this system was also preliminarily demonstrated.« less

  2. An all fiber-optic multi-parameter structure health monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chennan; Yu, Zhihao; Wang, Anbo

    In this article, we present an all fiber-optics based multi-parameter structure health monitoring system, which is able to monitor strain, temperature, crack and thickness of metal structures. This system is composed of two optical fibers, one for laser-acoustic excitation and the other for acoustic detection. A nano-second 1064 nm pulse laser was used for acoustic excitation and a 2 mm fiber Bragg grating was used to detect the acoustic vibration. The feasibility of this system was demonstrated on an aluminum test piece by the monitoring of the temperature, strain and thickness changes, as well as the appearance of an artificialmore » crack. The multiplexing capability of this system was also preliminarily demonstrated.« less

  3. Acoustic monitoring of first responder's physiology for health and performance surveillance

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2002-08-01

    Acoustic sensors have been used to monitor firefighter and soldier physiology to assess health and performance. The Army Research Laboratory has developed a unique body-contacting acoustic sensor that can monitor the health and performance of firefighters and soldiers while they are doing their mission. A gel-coupled sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. This technology can monitor heartbeats, breaths, blood pressure, motion, voice, and other indicators that can provide vital feedback to the medics and unit commanders. Diverse physiological parameters can be continuously monitored with acoustic sensors and transmitted for remote surveillance of personnel status. Body-worn acoustic sensors located at the neck, breathing mask, and wrist do an excellent job at detecting heartbeats and activity. However, they have difficulty extracting physiology during rigorous exercise or movements due to the motion artifacts sensed. Rigorous activity often indicates that the person is healthy by virtue of being active, and injury often causes the subject to become less active or incapacitated making the detection of physiology easier. One important measure of performance, heart rate variability, is the measure of beat-to-beat timing fluctuations derived from the interval between two adjacent beats. The Lomb periodogram is optimized for non-uniformly sampled data, and can be applied to non-stationary acoustic heart rate features (such as 1st and 2nd heart sounds) to derive heart rate variability and help eliminate errors created by motion artifacts. Simple peak-detection above or below a certain threshold or waveform derivative parameters can produce the timing and amplitude features necessary for the Lomb periodogram and cross-correlation techniques. High-amplitude motion artifacts may contribute to a different

  4. Electro-acoustic sensors based on AlN thin film: possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Wingqvist, Gunilla

    2011-06-01

    The non-ferroelectric polar wurtzite aluminium nitride (AlN) material has been shown to have potential for various sensor applications both utilizing the piezoelectric effect directly for pressure sensors or indirectly for acoustic sensing of various physical, chemical and biochemical sensor applications. Especially, sputter deposited AlN thin films have played a central role for successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device - the thin film bulk acoustic resonator (FBAR or TFBAR), with its primary use for high frequency filter applications for the telecom industry. AlN has been the dominating choice for commercial application due to compatibility with the integrated circuit technology, low acoustic and dielectric losses, high acoustic velocity in combination with comparably high (but still for some applications limited) electromechanical coupling. Recently, increased piezoelectric properties (and also electromechanical coupling) in the AlN through the alloying with scandium nitride (ScN) have been identified both experimentally and theoretically. Inhere, the utilization of piezoelectricity in electro-acoustic sensing will be discussed together with expectation on acoustic FBAR sensor performance with variation in piezoelectric material properties in the parameter space around AlN due to alloying, in view of the ScxAl1-xN (0

  5. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, L. A.; Galvão, R. M. O.; Instituto de Física, Universidade de São Paulo, 05508-900 São Paulo

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  6. In situ acoustic-based analysis system for physical and chemical properties of the lower Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Farrelly, F. A.; Petri, A.; Pitolli, L.; Pontuale, G.

    2004-01-01

    The environmental acoustic reconnaissance and sounding experiment (EARS), is composed of two parts: the environmental acoustic reconnaissance (EAR) instrument and the environmental acoustic sounding experiment (EASE). They are distinct, but have the common objective of characterizing the acoustic environment of Mars. The principal goal of the EAR instrument is "listening" to Mars. This could be a most significant experiment if one thinks of everyday life experience where hearing is possibly the most important sense after sight. Not only will this contribute to opening up this important area of planetary exploration, which has been essentially ignored until now, but will also bring the general public closer in contact with our most proximate planet. EASE is directed at characterizing acoustic propagation parameters, specifically sound velocity and absorption, and will provide information regarding important physical and chemical parameters of the lower Martian atmosphere; in particular, water vapor content, specific heat capacity, heat conductivity and shear viscosity, which will provide specific constraints in determining its composition. This would enable one to gain a deeper understanding of Mars and its analogues on Earth. Furthermore, the knowledge of the physical and chemical parameters of the Martian atmosphere, which influence its circulation, will improve the comprehension of its climate now and in the past, so as to gain insight on the possibility of the past presence of life on Mars. These aspect are considered strategic in the contest of its exploration, as is clearly indicated in NASA's four main objectives on "Long Term Mars Exploration Program" (http://marsweb.jpl.nasa.gov/mer/science).

  7. Ultrasound acoustic wave energy transfer and harvesting

    NASA Astrophysics Data System (ADS)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  8. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    PubMed

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  9. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  10. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  11. Results From a Parametric Acoustic Liner Experiment Using P and W GEN1 HSR Mixer/Ejector Model

    NASA Technical Reports Server (NTRS)

    Boyd, Kathleen C.; Wolter, John D.

    2004-01-01

    This report documents the results of an acoustic liner test performed using a Gen 1 HSR mixer/ejector model installed on the Jet Exit Rig in the Nozzle Acoustic Test Rig in the Aeroacoustic Propulsion Laboratory or NASA Glenn Research Center. Acoustic liner effectiveness and single-component thrust performance results are discussed. Results from 26 different types of single-degree-of-freedom and bulk material liners are compared with each other and against a hardwall baseline. Design parameters involving all aspects of the facesheet, the backing cavity, and the type of bulk material were varied in order to study the effects of these design features on the acoustic impedance, acoustic effectiveness and on nozzle thrust performance. Overall, the bulk absorber liners are more effective at reducing the jet noise than the single-degree-of-freedom liners. Many of the design parameters had little effect on acoustic effectiveness, such as facesheeet hole diameter and honeycomb cell size. A relatively large variation in the impedance of the bulk absorber in a bulk liner is required to have a significant impact on the noise reduction. The thrust results exhibit a number of consistent trends, supporting the validity of this new addition to the facility. In general, the thrust results indicate that thrust performance benefits from increased facesheet thickness and decreased facesheet porosity.

  12. Treated cabin acoustic prediction using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Ingraham, Steven T.; Moore, James A.

    1987-01-01

    The application of statistical energy analysis (SEA) to the modeling and design of helicopter cabin interior noise control treatment is demonstrated. The information presented here is obtained from work sponsored at NASA Langley for the development of analytic modeling techniques and the basic understanding of cabin noise. Utility and executive interior models are developed directly from existing S-76 aircraft designs. The relative importance of panel transmission loss (TL), acoustic leakage, and absorption to the control of cabin noise is shown using the SEA modeling parameters. It is shown that the major cabin noise improvement below 1000 Hz comes from increased panel TL, while above 1000 Hz it comes from reduced acoustic leakage and increased absorption in the cabin and overhead cavities.

  13. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  14. An experimental device for characterizing degassing processes and related elastic fingerprints: Analog volcano seismo-acoustic observations.

    PubMed

    Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego

    2018-05-01

    A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.

  15. An experimental device for characterizing degassing processes and related elastic fingerprints: Analog volcano seismo-acoustic observations

    NASA Astrophysics Data System (ADS)

    Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego

    2018-05-01

    A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.

  16. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  17. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy.

    PubMed

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  18. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  19. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    NASA Astrophysics Data System (ADS)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  20. Application of the acoustic voice quality index for objective measurement of dysphonia severity.

    PubMed

    Núñez-Batalla, Faustino; Díaz-Fresno, Estefanía; Álvarez-Fernández, Andrea; Muñoz Cordero, Gabriela; Llorente Pendás, José Luis

    Over the past several decades, many acoustic parameters have been studied as sensitive to and to measure dysphonia. However, current acoustic measures might not be sensitive measures of perceived voice quality. A meta-analysis which evaluated the relationship between perceived overall voice quality and several acoustic-phonetic correlates, identified measures that do not rely on the extraction of the fundamental period, such the measures derived from the cepstrum, and that can be used in sustained vowel as well as continuous speech samples. A specific and recently developed method to quantify the severity of overall dysphonia is the acoustic voice quality index (AVQI) that is a multivariate construct that combines multiple acoustic markers to yield a single number that correlates reasonably with overall vocal quality. This research is based on one pool of voice recordings collected in two sets of subjects: 60 vocally normal and 58 voice disordered participants. A sustained vowel and a sample of connected speech were recorded and analyzed to obtain the six parameters included in the AVQI using the program Praat. Statistical analysis was completed using SPSS for Windows, version 12.0. Correlation between perception of overall voice quality and AVQI: A significant difference exists (t(95) = 9.5; p<.000) between normal and dysphonic voices. The findings of this study demonstrate the clinical feasibility of the AVQI as a measure of dysphonia severity. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  1. Acoustic-Perceptual Correlates of Voice in Indian Hindu Purohits.

    PubMed

    Balasubramanium, Radish Kumar; Karuppali, Sudhin; Bajaj, Gagan; Shastry, Anuradha; Bhat, Jayashree

    2018-05-16

    Purohit, in the Indian religious context (Hindu), means priest. Purohits are professional voice users who use their voice while performing regular worships and rituals in temples and homes. Any deviations in their voice can have an impact on their profession. Hence, there is a need to investigate the voice characteristics of purohits using perceptual and acoustic analyses. A total of 44 men in the age range of 18-30 years were divided into two groups. Group 1 consisted of purohits who were trained since childhood (n = 22) in the traditional gurukul system. Group 2 (n = 22) consisted of normal controls. Phonation and spontaneous speech samples were obtained from all the participants at a comfortable pitch and loudness. The Praat software (Version 5.3.31) and the Speech tool were used to analyze the traditional acoustic and cepstral parameters, respectively, whereas GRBAS was used to perceptually evaluate the voice. Results of the independent t test revealed no significant differences across the groups for perceptual and traditional acoustic measures except for intensity, which was significantly higher in purohits' voices at P < 0.05. However, the cepstral values (cepstral peak prominence and smoothened cepstral peak prominence) were much higher in purohits than in controls at P < 0.05 CONCLUSIONS: Results revealed that purohits did not exhibit vocal deviations as analyzed through perceptual and acoustic parameters. In contrast, cepstral measures were higher in Indian Hindu purohits in comparison with normal controls, suggestive of a higher degree of harmonic organization in purohits. Further studies are required to analyze the physiological correlates of increased cepstral measures in purohits' voices. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  3. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    NASA Astrophysics Data System (ADS)

    Brantut, Nicolas

    2018-02-01

    Acoustic emission and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenised wave velocity measurements and approximate source locations. Here I present a numerical method and its implementation in a free software to perform a joint inversion of acoustic emission locations together with the three-dimensional, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from acoustic emissions and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of acoustic emissions progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse acoustic emissions are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15%, with an increase in anisotropy of up to 20%. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localised changes associated with microcracking and damage generation.

  4. Damping parameter study of a perforated plate with bias flow

    NASA Astrophysics Data System (ADS)

    Mazdeh, Alireza

    role of LES for research studies concerned with damping properties of liners is limited to validation of other empirical or theoretical approaches. This research has shown that LES can go beyond that and can be used for performing parametric studies to characterize the sensitivity of acoustic properties of multi--perforated liners to the changes in the geometry and flow conditions and be used as a tool to design acoustic liners. The conducted research provides an insightful understanding about the contribution of different flow and geometry parameters such as perforated plate thickness, aperture radius, porosity factors and bias flow velocity. While the study agrees with previous observations obtained by analytical or experimental methods, it also quantifies the impact from these parameters on the acoustic impedance of perforated plate, a key parameter to determine the acoustic performance of any system. The conducted study has also explored the limitations and capabilities of commercial tool when are applied for performing simulation studies on damping properties of liners. The overall agreement between LES results and previous studies proves that commercial tools can be effectively used for these applications under certain conditions.

  5. Perceptual and acoustic study of professionally trained versus untrained voices.

    PubMed

    Brown, W S; Rothman, H B; Sapienza, C M

    2000-09-01

    Acoustic and perceptual analyses were completed to determine the effect of vocal training on professional singers when speaking and singing. Twenty professional singers and 20 nonsingers, acting as the control, were recorded while sustaining a vowel, reading a modified Rainbow Passage, and singing "America the Beautiful." Acoustic measures included fundamental frequency, duration, percent jitter, percent shimmer, noise-to-harmonic ratio, and determination of the presence or absence of both vibrato and the singer's formant. Results indicated that, whereas certain acoustic parameters differentiated singers from nonsingers within sex, no consistently significant trends were found across males and females for either speaking or singing. The most consistent differences were the presence or absence of the singer's vibrato and formant in the singers versus the nonsingers, respectively. Perceptual analysis indicated that singers could be correctly identified with greater frequency than by chance alone from their singing, but not their speaking utterances.

  6. Method for using acoustic sounder categories to determine atmospheric stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, J.F.

    1979-01-01

    Capabilities of the diffusion meteorologist have been expanded by the acoustic sounder, an economical tool for monitoring in real time the height of the mixed layer. The acoustic sounder continuously measures the rate of change in the height of the mixed layer which is an important parameter in calculating the transport and diffusion of radioactive and nonradioactive air pollutants. Continuous record of convective cells, gravity waves, inversions, and frontal systems permit analysis of the synoptic (analysis of stability in terms of simultaneous weather information) and complex (analysis of the stability of a single place by the relative frequencies of variousmore » stability types or groups of such types) stabilities of the local area. Sounder data obtained at the Savannah River Plant was compared on an hourly basis to data obtained at the WJBF-TV tower located approximately 20 km northwest of the acoustic sounder site.« less

  7. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  8. Design and Performance of AN Electrostrictive-Polymer Acoustic Actuator

    NASA Astrophysics Data System (ADS)

    Heydt, R.; Kornbluh, R.; Pelrine, R.; Mason, V.

    1998-08-01

    This paper discusses a novel electroacoustic transducer that uses the electrostrictive response of a polymer film. The active element of the transducer is a thin silicone-rubber film, with graphite powder electrodes on each side, that forms an array of bubble-like radiating elements. In experiments, radiated acoustic pressure and harmonic distortion of the electrostrictive-film actuator were measured in the frequency band 50-2000 Hz. A simple acoustic model was also developed to study the effect of various design and operating parameters on the actuator performance. Preliminary results from the experiments and simulations show that the electrostrictive-polymer-film actuator has the potential to be an efficient, compact, and lightweight electroacoustic transducer.

  9. Developments in the Implementation of Acoustic Droplet Ejection for Protein Crystallography.

    PubMed

    Wu, Ping; Noland, Cameron; Ultsch, Mark; Edwards, Bonnie; Harris, David; Mayer, Robert; Harris, Seth F

    2016-02-01

    Acoustic droplet ejection (ADE) enables crystallization experiments at the low-nanoliter scale, resulting in rapid vapor diffusion equilibration dynamics and efficient reagent usage in the empirical discovery of structure-enabling protein crystallization conditions. We extend our validation of this technology applied to the diverse physicochemical property space of aqueous crystallization reagents where dynamic fluid analysis coupled to ADE aids in accurate and precise dispensations. Addition of crystallization seed stocks, chemical additives, or small-molecule ligands effectively modulates crystallization, and we here provide examples in optimization of crystal morphology and diffraction quality by the acoustic delivery of ultra-small volumes of these cofactors. Additional applications are discussed, including set up of in situ proteolysis and alternate geometries of crystallization that leverage the small scale afforded by acoustic delivery. Finally, we describe parameters of a system of automation in which the acoustic liquid handler is integrated with a robotic arm, plate centrifuge, peeler, sealer, and stacks, which allows unattended high-throughput crystallization experimentation. © 2015 Society for Laboratory Automation and Screening.

  10. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  11. Three-dimensional broadband acoustic illusion cloak for sound-hard boundaries of curved geometry

    PubMed Central

    Kan, Weiwei; Liang, Bin; Li, Ruiqi; Jiang, Xue; Zou, Xin-ye; Yin, Lei-lei; Cheng, Jianchun

    2016-01-01

    Acoustic illusion cloaks that create illusion effects by changing the scattered wave have many potential applications in a variety of scenarios. However, the experimental realization of generating three-dimensional (3D) acoustic illusions under detection of broadband signals still remains challenging despite the paramount importance for practical applications. Here we report the design and experimental demonstration of a 3D broadband cloak that can effectively manipulate the scattered field to generate the desired illusion effect near curved boundaries. The designed cloak simply comprises positive-index anisotropic materials, with parameters completely independent of either the cloaked object or the boundary. With the ability of manipulating the scattered field in 3D space and flexibility of applying to arbitrary geometries, our method may take a major step toward the real world application of acoustic cloaks and offer the possibilities of building advanced acoustic devices with versatile functionalities. PMID:27833141

  12. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  13. Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Di-Chao; Zhu, Xing-Feng; Wei, Qi; Wu, Da-Jian; Liu, Xiao-Jun

    2018-01-01

    An acoustic metasurface (AM) composed of space-coiling subunits is proposed to generate acoustic Airy-like beams (ALBs) by manipulating the transmitted acoustic phase. The self-accelerating, self-healing, and non-diffracting features of ALBs are demonstrated using finite element simulations. We further employ two symmetrical AMs to realize two symmetrical ALBs, resulting in highly efficient acoustic focusing. At the working frequency, the focal intensity can reach roughly 20 times that of the incident wave. It is found that the highly efficient acoustic focusing can circumvent obstacles in the propagating path and can be maintained in a broad frequency bandwidth. In addition, simply changing the separation between the two AMs can modulate the focal length of the proposed AM lens. ALBs generated by AMs and the corresponding AM lens may benefit applications in medical ultrasound imaging, biomedical therapy, and particle trapping and manipulation.

  14. Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2018-03-01

    The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.

  15. Acoustic integrated extinction.

    PubMed

    Norris, Andrew N

    2015-05-08

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  16. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2018-03-01

    In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2 +1 D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

  17. A survey of acoustic conditions and noise levels in secondary school classrooms in England.

    PubMed

    Shield, Bridget; Conetta, Robert; Dockrell, Julie; Connolly, Daniel; Cox, Trevor; Mydlarz, Charles

    2015-01-01

    An acoustic survey of secondary schools in England has been undertaken. Room acoustic parameters and background noise levels were measured in 185 unoccupied spaces in 13 schools to provide information on the typical acoustic environment of secondary schools. The unoccupied acoustic and noise data were correlated with various physical characteristics of the spaces. Room height and the amount of glazing were related to the unoccupied reverberation time and therefore need to be controlled to reduce reverberation to suitable levels for teaching and learning. Further analysis of the unoccupied data showed that the introduction of legislation relating to school acoustics in England and Wales in 2003 approximately doubled the number of school spaces complying with current standards. Noise levels were also measured during 274 lessons to examine typical levels generated during teaching activities in secondary schools and to investigate the influence of acoustic design on working noise levels in the classroom. Comparison of unoccupied and occupied data showed that unoccupied acoustic conditions affect the noise levels occurring during lessons. They were also related to the time spent in disruption to the lessons (e.g., students talking or shouting) and so may also have an impact upon student behavior in the classroom.

  18. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  19. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    PubMed

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  20. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  1. Small-amplitude acoustics in bulk granular media

    NASA Astrophysics Data System (ADS)

    Henann, David L.; Valenza, John J., II; Johnson, David L.; Kamrin, Ken

    2013-10-01

    We propose and validate a three-dimensional continuum modeling approach that predicts small-amplitude acoustic behavior of dense-packed granular media. The model is obtained through a joint experimental and finite-element study focused on the benchmark example of a vibrated container of grains. Using a three-parameter linear viscoelastic constitutive relation, our continuum model is shown to quantitatively predict the effective mass spectra in this geometry, even as geometric parameters for the environment are varied. Further, the model's predictions for the surface displacement field are validated mode-by-mode against experiment. A primary observation is the importance of the boundary condition between grains and the quasirigid walls.

  2. New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.

    2004-01-01

    A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and

  3. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  4. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  5. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H [Albuquerque, NM; Fleming, James G [Albuquerque, NM; Tuck, Melanie R [Albuquerque, NM

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  6. Design and simulation of a microfluidic device for acoustic cell separation.

    PubMed

    Shamloo, Amir; Boodaghi, Miad

    2018-03-01

    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Acoustic bubble sorting for ultrasound contrast agent enrichment.

    PubMed

    Segers, Tim; Versluis, Michel

    2014-05-21

    An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.

  8. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  9. Underwater Wireless Sensor Networks: how do acoustic propagation models impact the performance of higher-level protocols?

    PubMed

    Llor, Jesús; Malumbres, Manuel P

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios.

  10. Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols?

    PubMed Central

    Llor, Jesús; Malumbres, Manuel P.

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios. PMID:22438712

  11. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  12. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.

    PubMed

    James, Kevin R; Dowling, David R

    2008-09-01

    In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.

  13. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  14. Generation and characterization of surface layers on acoustically levitated drops.

    PubMed

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs.

  15. Performance Evaluation of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I.; Villacorta, Juan J.

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  16. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs

    PubMed Central

    Amézquita, Adolfo; Flechas, Sandra Victoria; Lima, Albertina Pimentel; Gasser, Herbert; Hödl, Walter

    2011-01-01

    In species-rich assemblages of acoustically communicating animals, heterospecific sounds may constrain not only the evolution of signal traits but also the much less-studied signal-processing mechanisms that define the recognition space of a signal. To test the hypothesis that the recognition space is optimally designed, i.e., that it is narrower toward the species that represent the higher potential for acoustic interference, we studied an acoustic assemblage of 10 diurnally active frog species. We characterized their calls, estimated pairwise correlations in calling activity, and, to model the recognition spaces of five species, conducted playback experiments with 577 synthetic signals on 531 males. Acoustic co-occurrence was not related to multivariate distance in call parameters, suggesting a minor role for spectral or temporal segregation among species uttering similar calls. In most cases, the recognition space overlapped but was greater than the signal space, indicating that signal-processing traits do not act as strictly matched filters against sounds other than homospecific calls. Indeed, the range of the recognition space was strongly predicted by the acoustic distance to neighboring species in the signal space. Thus, our data provide compelling evidence of a role of heterospecific calls in evolutionarily shaping the frogs' recognition space within a complex acoustic assemblage without obvious concomitant effects on the signal. PMID:21969562

  17. Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.

    PubMed

    Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice

    2018-05-01

    Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.

  18. Modulation by steroid hormones of a "sexy" acoustic signal in an Oscine species, the Common Canary Serinus canaria.

    PubMed

    Rybak, Fanny; Gahr, Manfred

    2004-06-01

    The respective influence of testosterone and estradiol on the structure of the Common Canary Serinus canaria song was studied by experimentally controlling blood levels of steroid hormones in males and analyzing the consequent effects on acoustic parameters. A detailed acoustic analysis of the songs produced before and after hormonal manipulation revealed that testosterone and estradiol seem to control distinct song parameters independently. The presence of receptors for testosterone and estradiol in the brain neural pathway controlling song production strongly suggests that the observed effects are mediated by a steroid action at the neuronal level.

  19. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  20. Sound reproduction in personal audio systems using the least-squares approach with acoustic contrast control constraint.

    PubMed

    Cai, Yefeng; Wu, Ming; Yang, Jun

    2014-02-01

    This paper describes a method for focusing the reproduced sound in the bright zone without disturbing other people in the dark zone in personal audio systems. The proposed method combines the least-squares and acoustic contrast criteria. A constrained parameter is introduced to tune the balance between two performance indices, namely, the acoustic contrast and the spatial average error. An efficient implementation of this method using convex optimization is presented. Offline simulations and real-time experiments using a linear loudspeaker array are conducted to evaluate the performance of the presented method. Results show that compared with the traditional acoustic contrast control method, the proposed method can improve the flatness of response in the bright zone by sacrificing the level of acoustic contrast.

  1. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    NASA Astrophysics Data System (ADS)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  2. Hybrid Electrostatic/Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won K.; Trinh, Eugene H.; Chung, Sang K.; Elleman, Daniel D.

    1987-01-01

    Because electrostatic and acoustic forces independent of each other, hybrid levitator especially suitable for studies of drop dynamics. Like all-acoustic or all-electrostatic systems, also used in studies of containerless material processing. Vertical levitating force applied to sample by upper and lower electrodes. Torques or vibrational forces in horizontal plane applied by acoustic transducers. Electrically charged water drop about 4 mm in diameter levitated electrostatically and rotated acoustically until it assumed dumbell shape and broke apart.

  3. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  4. Acoustic agglomeration of fine particles based on a high intensity acoustical resonator

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Zeng, Xinwu; Tian, Zhangfu

    2015-10-01

    Acoustic agglomeration (AA) is considered to be a promising method for reducing the air pollution caused by fine aerosol particles. Removal efficiency and energy consuming are primary parameters and generally have a conflict with each other for the industry applications. It was proved that removal efficiency is increased with sound intensity and optimal frequency is presented for certain polydisperse aerosol. As a result, a high efficiency and low energy cost removal system was constructed using acoustical resonance. High intensity standing wave is generated by a tube system with abrupt section driven by four loudspeakers. Numerical model of the tube system was built base on the finite element method, and the resonance condition and SPL increase were confirmd. Extensive tests were carried out to investigate the acoustic field in the agglomeration chamber. Removal efficiency of fine particles was tested by the comparison of filter paper mass and particle size distribution at different operating conditions including sound pressure level (SPL), and frequency. The experimental study has demonstrated that agglomeration increases with sound pressure level. Sound pressure level in the agglomeration chamber is between 145 dB and 165 dB from 500 Hz to 2 kHz. The resonance frequency can be predicted with the quarter tube theory. Sound pressure level gain of more than 10 dB is gained at resonance frequency. With the help of high intensity sound waves, fine particles are reduced greatly, and the AA effect is enhanced at high SPL condition. The optimal frequency is 1.1kHz for aerosol generated by coal ash. In the resonace tube, higher resonance frequencies are not the integral multiplies of the first one. As a result, Strong nonlinearity is avoided by the dissonant characteristic and shock wave is not found in the testing results. The mechanism and testing system can be used effectively in industrial processes in the future.

  5. An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks

    NASA Astrophysics Data System (ADS)

    Li, Baolei; Li, Tinghua; Wu, Jun; Hui, Ming; Yuan, Gang; Zhu, Yongsheng

    2017-01-01

    Based on transformation acoustics, an arbitrary-shaped acoustic cloak capable of functioning as an information exchange-enabling internal cloak and a movement-allowing external cloak is presented. The general expressions of material parameters for the acoustic cloaks with arbitrarily conformal or non-conformal boundaries are derived, and then the performances of developed cloaks are validated by full-wave simulations. Finally, the different characteristics of the linear and nonlinear transformations-based cloaks are compared and analyzed. The proposed cloak could lead to wider applications beyond that of normal cloaks, since it effectively compensates the insufficiencies of traditional internal and external cloaks. Besides, this work also provides a new method to design bifunctional device and suggests an alternative way to make a large object invisible.

  6. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  7. Changes After Voice Therapy in Acoustic Voice Analysis of Chinese Patients With Voice Disorders.

    PubMed

    Lu, Dan; Chen, Fei; Yang, Hui; Yu, Rong; Zhou, Qi; Zhang, Xinyuan; Ren, Jia; Zheng, Yitao; Zhang, Xiaoyan; Zou, Jian; Wang, Haiyang; Liu, Jun

    2018-05-01

    This study aimed to evaluate the effects of voice therapy on patients with voice disorders by comparing the acoustic parameter changes before and after treatment. This is a retrospective study. Forty-five female patients with early-stage vocal nodules or polyps, postoperative patients, and patients with chronic laryngitis were divided into three subgroups. Videostroboscopic, acoustic analysis (fundamental frequency, jitter, shimmer, mean harmonics-to-noise ratio), and maximum phonation time (MPT) were measured before and after treatment. Fifty healthy female volunteers were the control group. After treatment, 24.4% of nodules or polyps had decreased in size, 11.1% of patients with chronic laryngitis and postoperative patients had reduced edema, and the mucosal wave of vocal folds had different degrees of recovery in postoperative patients. All acoustic analysis values and MPT in the patient group were statistically worse than in the control group, except for fundamental frequency before treatment (P > 0.05). After treatment, the acoustic analysis and MPT values were improved. However, the jitter, mean harmonics-to-noise ratio, and MPT values in the patient group were still worse after voice therapy than in the control group (P < 0.05). Most of acoustic analysis values can be useful as a complementary tool in diagnosis and assessment of voice disorders; however, it is not recommended to use a single parameter to assess voice quality. Voice therapy can improve voice quality in patients with voice disorders, but a period longer than 8 weeks is recommended for these patients. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Review of Progress in Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  9. PRSA hydrogen tank thermal acoustic oscillation study

    NASA Technical Reports Server (NTRS)

    Riemer, D. H.

    1979-01-01

    The power reactant storage assembly (PRSA) hydrogen tank test data were reviewed. Two hundred and nineteen data points illustrating the effect of flow rate, temperature ratio and configuration were identified. The test data were reduced to produce the thermal acoustic oscillation parameters. Frequency and amplitude were determined for model correlation. A comparison of PRSA hydrogen tank test data with the analytical models indicated satisfactory agreement for the supply and poor agreement for the full line.

  10. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  11. Acoustic propagation in rigid ducts with blockage

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.

  12. Coherent changes of multifractal properties of continuous acoustic emission at failure of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Panteleev, Ivan; Bayandin, Yuriy; Naimark, Oleg

    2017-12-01

    This work performs a correlation analysis of the statistical properties of continuous acoustic emission recorded in different parts of marble and fiberglass laminate samples under quasi-static deformation. A spectral coherent measure of time series, which is a generalization of the squared coherence spectrum on a multidimensional series, was chosen. The spectral coherent measure was estimated in a sliding time window for two parameters of the acoustic emission multifractal singularity spectrum: the spectrum width and the generalized Hurst exponent realizing the maximum of the singularity spectrum. It is shown that the preparation of the macrofracture focus is accompanied by the synchronization (coherent behavior) of the statistical properties of acoustic emission in allocated frequency intervals.

  13. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.

    PubMed

    Manh, Tung; Jensen, Geir Uri; Johansen, Tonni F; Hoff, Lars

    2013-08-01

    Medical ultrasound transducers require matching layers to couple energy from the piezoelectric ceramic into the tissue. Composites of type 0-3 are often used to obtain the desired acoustic impedances, but they introduce challenges at high frequencies, i.e. non-uniformity, attenuation, and dispersion. This paper presents novel acoustic matching layers made as silicon-polymer 1-3 composites, fabricated by deep reactive ion etch (DRIE). This fabrication method is well-established for high-volume production in the microtechnology industry. First estimates for the acoustic properties were found from the iso-strain theory, while the Finite Element Method (FEM) was employed for more accurate modeling. The composites were used as single matching layers in 15 MHz ultrasound transducers. Acoustic properties of the composite were estimated by fitting the electrical impedance measurements to the Mason model. Five composites were fabricated. All had period 16 μm, while the silicon width was varied to cover silicon volume fractions between 0.17 and 0.28. Silicon-on-Insulator (SOI) wafers were used to get a controlled etch stop against the buried oxide layer at a defined depth, resulting in composites with thickness 83 μm. A slight tapering of the silicon side walls was observed; their widths were 0.9 μm smaller at the bottom than at the top, corresponding to a tapering angle of 0.3°. Acoustic parameters estimated from electrical impedance measurements were lower than predicted from the iso-strain model, but fitted within 5% to FEM simulations. The deviation was explained by dispersion caused by the finite dimensions of the composite and by the tapered walls. Pulse-echo measurements on a transducer with silicon volume fraction 0.17 showed a two-way -6 dB relative bandwidth of 50%. The pulse-echo measurements agreed with predictions from the Mason model when using material parameter values estimated from electrical impedance measurements. The results show the feasibility of

  14. Flute ``breath support'' perception and its acoustical correlates

    NASA Astrophysics Data System (ADS)

    Cossette, Isabelle A.; Sabourin, Patrick

    2004-05-01

    Music educators and performers commonly refer to ``breath support'' in flute playing, yet the term ``support'' is neither well-defined nor consistently used. Different breathing strategies used by professional flautists who were instructed to play with and without support were previously identified by the authors. In the current study, 14 musical excerpts with and without support were recorded by five professional flautists. Eleven professional flautists listened to the recordings in a random order and ranked (1 to 6) how much of the following sound qualities they judged to be in each example: support, intonation, control and musical expressiveness. Answers to the test showed that musical expressiveness was associated more closely with the supported excerpts than the answers about support itself. The ratings for each sound quality were highly intercorrelated. Acoustical parameters were analyzed (frequency and centroid variation within each note) and compared with the results of the perception test in order to better understand how the acoustical and psychological variables were related. The acoustical analysis of the central part of the notes did not show evident correlation with the answers of the perception test. [Work funded by the Social Sciences and Humanities Research Council of Canada.

  15. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  16. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  17. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  18. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  20. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  1. Rating, ranking, and understanding acoustical quality in university classrooms

    NASA Astrophysics Data System (ADS)

    Hodgson, Murray

    2002-08-01

    Nonoptimal classroom acoustical conditions directly affect speech perception and, thus, learning by students. Moreover, they may lead to voice problems for the instructor, who is forced to raise his/her voice when lecturing to compensate for poor acoustical conditions. The project applied previously developed simplified methods to predict speech intelligibility in occupied classrooms from measurements in unoccupied and occupied university classrooms. The methods were used to predict the speech intelligibility at various positions in 279 University of British Columbia (UBC) classrooms, when 70% occupied, and for four instructor voice levels. Classrooms were classified and rank ordered by acoustical quality, as determined by the room-average speech intelligibility. This information was used by UBC to prioritize classrooms for renovation. Here, the statistical results are reported to illustrate the range of acoustical qualities found at a typical university. Moreover, the variations of quality with relevant classroom acoustical parameters were studied to better understand the results. In particular, the factors leading to the best and worst conditions were studied. It was found that 81% of the 279 classrooms have "good," "very good," or "excellent" acoustical quality with a "typical" (average-male) instructor. However, 50 (18%) of the classrooms had "fair" or "poor" quality, and two had "bad" quality, due to high ventilation-noise levels. Most rooms were "very good" or "excellent" at the front, and "good" or "very good" at the back. Speech quality varied strongly with the instructor voice level. In the worst case considered, with a quiet female instructor, most of the classrooms were "bad" or "poor." Quality also varies with occupancy, with decreased occupancy resulting in decreased quality. The research showed that a new classroom acoustical design and renovation should focus on limiting background noise. They should promote high instructor speech levels at the back

  2. Research on Acoustical Scattering, Diffraction Catastrophes, Optics of Bubbles, Photoacoustics, and Acoustical Phase Conjugation.

    DTIC Science & Technology

    1987-09-15

    optical levitation of bubbles; D. Acoustical and optical diffraction catastrophes (theory and optical simulation of transverse cusps, experiments with...35 C. Optical Levitation of Bubbles in Water by the Radiation Pressure of a Laser Beam: An Acoustically Quiet Levitator ...radiation pressure of a laser beam: an acoustically quiet levitator ," J. Acoust . Soc. Am. (submitted July 1987). C. Books (and sections thereof) Published

  3. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  4. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    PubMed

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  5. Acoustic imaging and mirage effects with high transmittance in a periodically perforated metal slab

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Dong; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-11-01

    In this paper, we present a high-quality superlens to focus acoustic waves using a periodically perforated metallic structure which is made of zinc and immersed in water. By changing a geometrical parameter gradually, a kind of gradient-index phononic crystal lens is designed to attain the mirage effects. The acoustic waves can propagate along an arc-shaped trajectory which is precisely controlled by the angle and frequency of the incident waves. The negative refraction imaging effect depends delicately on the transmittance of the solid structure. The acoustic impedance matching between the solid and the liquid proposed in this article, which is determined by the effective density and group velocity of the unit-cell, is significant for overcoming the inefficiency problem of acoustic devices. This study focuses on how to obtain the high transmittance imaging and mirage effects based on the adequate material selection and geometrical design.

  6. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  7. Methods of generating synthetic acoustic logs from resistivity logs for gas-hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, Myung W.

    1999-01-01

    Methods of predicting acoustic logs from resistivity logs for hydrate-bearing sediments are presented. Modified time average equations derived from the weighted equation provide a means of relating the velocity of the sediment to the resistivity of the sediment. These methods can be used to transform resistivity logs into acoustic logs with or without using the gas hydrate concentration in the pore space. All the parameters except the unconsolidation constants, necessary for the prediction of acoustic log from resistivity log, can be estimated from a cross plot of resistivity versus porosity values. Unconsolidation constants in equations may be assumed without rendering significant errors in the prediction. These methods were applied to the acoustic and resistivity logs acquired at the Mallik 2L-38 gas hydrate research well drilled at the Mackenzie Delta, northern Canada. The results indicate that the proposed method is simple and accurate.

  8. Leak detection in gas pipeline by acoustic and signal processing - A review

    NASA Astrophysics Data System (ADS)

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.

    2015-12-01

    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  9. An Expendable Source for Measuring Shallow Water Acoustic Propagation and Geo-Acoustic Bottom Properties

    DTIC Science & Technology

    2015-09-30

    Propagation and Geo -Acoustic Bottom Properties Harry A DeFerrari RSMAS – University of Miami 4600 Rickenbacker Causeway Miami FL. 33149...limited information about the ocean acoustic environment and the geo -acoustic properties of the bottom. The objective here is to measure the pulse...models and estimate the geo -acoustic properties of the bottom by inversion. APPROACH M-sequences have long been the workhorse of basic research

  10. Occipital and external acoustic meatus to axis angle as a predictor of the oropharyngeal space in healthy volunteers: a novel parameter for craniocervical junction alignment.

    PubMed

    Morizane, Kazuaki; Takemoto, Mitsuru; Neo, Masashi; Fujibayashi, Shunsuke; Otsuki, Bungo; Kawata, Tomotoshi; Matsuda, Shuichi

    2018-05-01

    The occipito-C2 angle (O-C2a) influences the oropharyngeal space. However, O-C2a has several limitations. There is no normal value of O-C2a because of the wide individual variations, and O-C2a does not reflect translation of the cranium to the axis, another factor influencing the oropharyngeal space in patients with atlantoaxial subluxation. The objective of this study was to propose a novel parameter that accounts for craniocervical junction alignment (CJA) and the oropharyngeal space. This is a post hoc analysis of craniocervical radiological parameters from another study. Forty healthy volunteers were included in the study. Craniocervical measurement parameters included the occipital and external acoustic meatus to axis angle (O-EAa), the C2 tilting angle (C2Ta), O-C2a, and the anterior-posterior distance of the narrowest oropharyngeal airway space (nPAS). We collected 40 healthy volunteers' lateral cervical radiographs in neutral, flexion, extension, protrusion, and retraction positions. We measured O-C2a, C2Ta (formed by the inferior end plate of C2 and a line connecting the external acoustic meatus and the midpoint of the inferior end plate of C2 [EA-line]), O-EAa (formed by the McGregor line and the EA-line), and nPAS. We evaluated the inter-rater and intrarater reliability of O-EAa and C2Ta, and the associations between each of the measured parameters. The inter-rater and intrarater reliabilities of measuring O-EAa and C2Ta were excellent. The neutral position O-EAa values remained in a narrower range (mean±standard deviation, 90.0°±5.0°) than O-C2a (15.6°±6.7°) (Levene test of equality of variances, p=.044). In the linear mixed-effects models, sex, O-C2a, C2Ta, and O-EAa were significantly associated with nPAS. The marginal R 2 values for the mixed-effect models, which express the variance explained by fixed effects, were 0.605 and 0.632 for the O-C2a and O-EAa models, respectively. In all models, the subaxial alignment (C2-C6a) had no significant

  11. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  12. Acoustically-Responsive Scaffolds: Control of Growth Factor Release for Tissue Regeneration Using Ultrasound

    NASA Astrophysics Data System (ADS)

    Moncion, Alexander

    Administration of exogenous growth factors (GFs) is a proposed method of stimulating tissue regeneration. Conventional administration routes, such as at-site or systemic injections, have yielded problems with efficacy and/or safety, thus hindering the translation of GF-based regenerative techniques. Hydrogel scaffolds are commonly used as biocompatible delivery vehicles for GFs. Yet hydrogels do not afford spatial or temporal control of GF release - two critical parameters for tissue regeneration. Controlled delivery of GFs is critical for angiogenesis, which is a crucial process in tissue engineering that provides oxygen and nutrients to cells within an implanted hydrogel scaffold. Angiogenesis requires multiple GFs that are presented with distinct spatial and temporal profiles. Thus, controlled release of GFs with spatiotemporal modulation would significantly improve tissue regeneration by recapitulating endogenous GF presentation. In order to achieve this goal, we have developed acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels doped with sonosensitive perfluorocarbon (PFC) emulsions capable of encapsulating various payloads. Focused, mega-Hertz range, ultrasound (US) can modulate the release of a payload non-invasively and in an on-demand manner from ARSs via physical mechanisms termed acoustic droplet vaporization (ADV) and inertial cavitation (IC). This work presents the relationship between the ADV/IC thresholds and various US and hydrogel parameters. These physical mechanisms were used for the controlled release of fluorescent dextran in vitro and in vivo to determine the ARS and US parameters that yielded optimal payload release. The optimal ARS and US parameters were used to demonstrate the controlled release of basic fibroblast growth factor from an in vivo subcutaneous implant model - leading to enhanced angiogenesis and perfusion. Additionally, different acoustic parameters and PFCs were tested and optimized to demonstrate the

  13. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    PubMed

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  14. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    PubMed Central

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms. PMID:22969330

  15. Acoustic Analysis of the Tremulous Voice: Assessing the Utility of the Correlation Dimension and Perturbation Parameters

    ERIC Educational Resources Information Center

    Shao, Jun; MacCallum, Julia K.; Zhang, Yu; Sprecher, Alicia; Jiang, Jack J.

    2010-01-01

    Acoustic analysis may provide a useful means to quantitatively characterize the tremulous voice. Signals were obtained from 25 subjects with diagnoses of either Parkinson's disease or vocal polyps exhibiting vocal tremor. These were compared to signals from 24 subjects with normal voices. Signals were analyzed via correlation dimension and several…

  16. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  17. Acoustic Neuroma Association

    MedlinePlus

    ... Gold Sponsor NSPC Brain & Spine Surgery Learn More Gold Sponsor University of Colorado Acoustic Neuroma Program and Rocky Mountain Gamma Knife Center Learn More Gold Sponsor USC Acoustic Neuroma Center Learn More Gold ...

  18. Optical pulse characteristics of sonoluminescence at low acoustic drive levels.

    PubMed

    Arakeri, V H; Giri, A

    2001-06-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E 58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. 94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well.

  19. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    NASA Astrophysics Data System (ADS)

    Arakeri, Vijay H.; Giri, Asis

    2001-06-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E 58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. 94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well.

  20. Carbon Nanotube Underwater Acoustic Thermophone

    DTIC Science & Technology

    2016-09-23

    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...Traditional acoustic transduction typically begins with the generation of electrical excitation pulsed through an amplifier into an electro- acoustic

  1. Acoustic building infiltration measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehleisen, Ralph T.; Raman, Ganesh

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  2. Ion-acoustic supersolitons and double layers in plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Gao, D.-N.; Zhang, J.; Yang, Y.; Duan, W.-S.

    2017-08-01

    Supersoliton (SS) can be mainly featured in two ways, namely, by focusing on subsidiary maxima on its electric field or by meeting the requirement that the appropriate Sagdeev pseudopotential (SP) has three local extrema between the equilibrium conditions and its amplitude. In this paper, by using the SP method, double layers and ion-acoustic SSs are studied in a plasma with Maxwellian cold electrons, nonthermal hot electrons, and fluid ions. The existence of the SS regime in parameter space is obtained in a methodical fashion. The existence domains for positive solitary waves are also presented. It is found that there is no SSs at the acoustic speed.

  3. The accidental (acoustical) tourist

    NASA Astrophysics Data System (ADS)

    Van Kirk, Wayne

    2002-11-01

    The acoustical phenomenon observed at an ancient temple in the Great Ball Court at Chichen Itza was described as ''little short of amazing--an ancient whispering gallery'' by Silvanus G. Morley, leader of the Carnegie Institute's archaeological team that excavated and restored these structures in the 1920s. Since then, many others have experienced the extraordinary acoustics at Chichen Itza and other Maya sites. Despite these reports, archaeologists and acousticians have until recently shown little interest in understanding these phenomena. After experiencing Chichen Itza's remarkable acoustics as a tourist in 1994, the author commenced collecting and disseminating information about acoustical phenomena there and at other Mayan sites, hoping to stimulate interest among archaeologists and acousticians. Were these designs accidental or intentional? If intentional, how was the knowledge obtained? How were acoustical features used? This paper highlights the author's collection of anecdotal reports of mysterious Mayan acoustics (http://http://www.ianlawton.com/pa1.htm<\\/A>), recommended reading for scientists and engineers who wish to pursue this fascinating study. Also recounted are some of the reactions of archaeologists-ranging from curious, helpful, and insightful to humorous and appalling--to outsiders' efforts to bring serious scientific attention to the new field of acoustical archaeology.

  4. Diagnosing Acoustic Neuroma

    MedlinePlus

    ... Other symptoms of the acoustic neuroma include asymmetric tinnitus (ringing in the ear), dizziness and disequilibrium (difficulty ... than 80% of patients having acoustic neuromas have tinnitus. Tinnitus is usually described as hissing, ringing, buzzing ...

  5. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  6. Texture measurement of shaped material by impulse acoustic microscopy

    PubMed

    Eyraud; Nadal; Gondard

    2000-03-01

    All the microstructural parameters involved in metallurgical processes are difficult to determine directly on a shaped material. The aim of this paper is to use an impulse line-focus acoustic microscope (LFAM) as a non-destructive alternative to X-ray diffraction for measuring texture of slightly anisotropic materials. We apply it to characterize the rolling and annealing texture for tantalum sheets.

  7. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  8. Acoustic changes of the voice as signs of vocal fatigue in radio broadcasters: preliminary findings.

    PubMed

    Guzmán, Marco; Malebrán, María Celina; Zavala, Paulina; Saldívar, Patricio; Muñoz, Daniel

    2013-01-01

    Vocal fatigue is one of the most common voice symptoms. It usually refers to the sensation of vocal tiredness after a long period of speaking or singing. The purpose of this study was to compare the acoustic characteristics of the voice before and after a long period of voice use in a group of radio broadcasters. Eight radio broadcasters with normal voices were assessed. We used cepstrum, energy ratio, noise to harmonic ratio and soft phonation index as acoustic variables to assess the possible pre-post vocal loading changes objectively. There were no statistically significant pre-post differences in any of the acoustic parameters. Although cepstrum at high pitch did not show a significant difference, it obtained the greatest difference among the acoustic variables. The acoustic measurements used in the present study might not be sensitive enough or appropriate for detecting vocal changes after a long period of voice use, whether in reading (as reported in previous research) or speaking tasks. Moreover, a longer period of vocal loading would eventually reveal more evident and consistent acoustic voice changes. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  9. Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.

    2013-12-01

    Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal

  10. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  11. Acoustic Emission Parameters of Three Gorges Sandstone during Shear Failure

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Liu, Yixin; Peng, Shoujian

    2016-12-01

    In this paper, an experimental investigation of sandstone samples from the Three Gorges during shear failure was conducted using acoustic emission (AE) and direct shear tests. The AE count rate, cumulative AE count, AE energy, and amplitude of the sandstone samples were determined. Then, the relationships among the AE signals and shearing behaviors of the samples were analyzed in order to detect micro-crack initiation and propagation and reflect shear failure. The results indicated that both the shear strength and displacement exhibited a logarithmic relationship with the displacement rate at peak levels of stress. In addition, the various characteristics of the AE signals were apparent in various situations. The AE signals corresponded with the shear stress under different displacement rates. As the displacement rate increased, the amount of accumulative damage to each specimen decreased, while the AE energy peaked earlier and more significantly. The cumulative AE count primarily increased during the post-peak period. Furthermore, the AE count rate and amplitude exhibited two peaks during the peak shear stress period due to crack coalescence and rock bridge breakage. These isolated cracks later formed larger fractures and eventually caused ruptures.

  12. Acoustic Characterization of Fluorinert FC-43 Liquid with Helium Gas Bubbles: Numerical Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhille, Christian; Pantea, Cristian; Sinha, Dipen N.

    In this work, we define the acoustic characteristics of a biphasic fluid consisting of static helium gas bubbles in liquid Fluorinert FC-43 and study the propagation of ultrasound of finite amplitudes in this medium. Very low sound speed and high sound attenuation are found, in addition to a particularly high acoustic nonlinear parameter. This result suggests the possibility of using this medium as a nonlinear enhancer in various applications. In particular, parametric generation of low ultrasonic frequencies is studied in a resonator cavity as a function of driving pressure showing high conversion efficiency. This work suggests that this medium couldmore » be used for applications such as parametric arrays, nondestructive testing, diagnostic medicine, sonochemistry, underwater acoustics, and ultrasonic imaging and to boost the shock formation in fluids.« less

  13. Acoustic Characterization of Fluorinert FC-43 Liquid with Helium Gas Bubbles: Numerical Experiments

    DOE PAGES

    Vanhille, Christian; Pantea, Cristian; Sinha, Dipen N.

    2017-01-19

    In this work, we define the acoustic characteristics of a biphasic fluid consisting of static helium gas bubbles in liquid Fluorinert FC-43 and study the propagation of ultrasound of finite amplitudes in this medium. Very low sound speed and high sound attenuation are found, in addition to a particularly high acoustic nonlinear parameter. This result suggests the possibility of using this medium as a nonlinear enhancer in various applications. In particular, parametric generation of low ultrasonic frequencies is studied in a resonator cavity as a function of driving pressure showing high conversion efficiency. This work suggests that this medium couldmore » be used for applications such as parametric arrays, nondestructive testing, diagnostic medicine, sonochemistry, underwater acoustics, and ultrasonic imaging and to boost the shock formation in fluids.« less

  14. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  15. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  16. Vowel Acoustic Space Development in Children: A Synthesis of Acoustic and Anatomic Data

    ERIC Educational Resources Information Center

    Vorperian, Houri K.; Kent, Ray D.

    2007-01-01

    Purpose: This article integrates published acoustic data on the development of vowel production. Age specific data on formant frequencies are considered in the light of information on the development of the vocal tract (VT) to create an anatomic-acoustic description of the maturation of the vowel acoustic space for English. Method: Literature…

  17. The characters of ion acoustic rogue waves in nonextensive plasma

    NASA Astrophysics Data System (ADS)

    Du, Hai-su; Lin, Mai-mai; Gong, Xue; Duan, Wen-shan

    2017-10-01

    Several well-known nonlinear waves in the rational solutions of the nonlinear Schrödinger equation are studied in two-component plasmas consisting of ions fluid and nonextensive electrons, such as Kuznetsov-Ma breather (K-M), bright soliton, rogue wave (RW), Akhmediev breather (AB) and dark soliton, and so on. In this paper, we have investigated the characteristics of K-M, AB, and RW's propagation in plasma with nonextensive electron distribution, and the dependence of amplitude and width for ion acoustic rogue waves in this system. It is found that K-M' triplet is appearance-disappearance-appearance-disappearance. AB solitons only appear once and RW is a single wave that appears from nowhere and then disappears. It is also noted that the wave number and nonextensive parameter of electrons have a significant influence on the maximum envelope amplitude, but, the influence of the width was not significant. At the same time, the effects of the small parameter, which represent the nonlinear strength, on the amplitude and width of ion acoustic rogue waves are also being highlighted.

  18. Acoustical qualification of Teatro Nuovo in Spoleto before refurbishing works

    NASA Astrophysics Data System (ADS)

    Cocchi, Alessandro; Cesare Consumi, Marco; Shimokura, Ryota

    2004-05-01

    To qualify the acoustical quality of an opera house two different approaches are now available: one is based on responses of qualified listeners (subjective judgments) compared with objective values of selected parameters, the other on comparison tests conducted in suited rooms and on a model of the auditory brain system (preference). In the occasion of the refurbishment of an opera house known for the Two Worlds Festival edited yearly by the Italian Composer G. C. Menotti, a large number of measurements were taken with different techniques, so it is possible to compare the different methods and also the results with some geometrical criterion, based on the most simple rules of musical harmony, now neglected as our attention is attracted to computer simulations, computer aided measurement techniques and similar modern methods. From this work some link between well known acoustical parameters (not known at the time when architects sketched the shape of ancient opera houses) and geometrical criteria (well known at the time when ancient opera houses were built) will be shown.

  19. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  20. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1988-01-01

    Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  1. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1987-01-01

    Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  2. Laser acoustic emission thermal technique (LAETT): a technique for generating acoustic emission in dental composites.

    PubMed

    Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H

    1996-01-01

    This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.

  3. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  4. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  5. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    NASA Astrophysics Data System (ADS)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  6. Acoustic properties of a short-finned pilot whale head with insight into temperature influence on tissues' sound velocity.

    PubMed

    Dong, Jianchen; Song, Zhongchang; Li, Songhai; Gong, Zining; Li, Kuan; Zhang, Peijun; Zhang, Yu; Zhang, Meng

    2017-10-01

    Acoustic properties of odontocete head tissues, including sound velocity, density, and acoustic impedance, are important parameters to understand dynamics of its echolocation. In this paper, acoustic properties of head tissues from a freshly dead short-finned pilot whale (Globicephala macrorhynchus) were reconstructed using computed tomography (CT) and ultrasound. The animal's forehead soft tissues were cut into 188 ordered samples. Sound velocity, density, and acoustic impedance of each sample were either directly measured or calculated by formula, and Hounsfield Unit values (HUs) were obtained from CT scanning. According to relationships between HUs and sound velocity, HUs and density, as well as HUs and acoustic impedance, distributions of acoustic properties in the head were reconstructed. The inner core in the melon with low-sound velocity and low-density is an evidence for its potential function of sound focusing. The increase in acoustic impedance of forehead tissues from inner core to outer layer may be important for the acoustic impedance matching between the outer layer tissue and seawater. In addition, temperature dependence of sound velocity in soft tissues was also examined. The results provide a guide to the simulation of the sound emission of the short-finned pilot whale.

  7. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  8. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  9. Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslami, Parvin; Mottaghizadeh, Marzieh

    2012-06-15

    By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio ofmore » the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.« less

  10. The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    1994-01-01

    The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.

  11. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Allen, Christopher; Chu, S. Reynold

    2008-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles to ensure compliance with acoustic requirements and thus provide a safe and habitable acoustic environment for the crews, and to validate developed models via building physical mockups and conducting acoustic measurements.

  12. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  13. Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.

    PubMed

    Rideout, Brendan P; Dosso, Stan E; Hannay, David E

    2013-09-01

    This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.

  14. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  15. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  16. What Is an Acoustic Neuroma

    MedlinePlus

    ... CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Italian Japanese Korean Portuguese Romanian Spanish What is Acoustic Neuroma? Each heading slides to reveal information. Important ...

  17. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. Formore » the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.« less

  18. The effect of artificial rain on backscattered acoustic signal: first measurements

    NASA Astrophysics Data System (ADS)

    Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir

    The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented

  19. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  20. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.