Sample records for acoustic delay lines

  1. Topological Acoustic Delay Line

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  2. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  3. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Kumar, A.; Xu, S.; Zou, J.

    2016-10-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  4. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  5. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  6. Realization of compact tractor beams using acoustic delay-lines

    NASA Astrophysics Data System (ADS)

    Marzo, A.; Ghobrial, A.; Cox, L.; Caleap, M.; Croxford, A.; Drinkwater, B. W.

    2017-01-01

    A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.

  7. A novel shock and heat tolerant gyrosensor utilizing a one-port surface acoustic wave reflective delay line

    NASA Astrophysics Data System (ADS)

    Oh, Haekwan; Fu, Chen; Yang, Sang Sik; Wang, Wen; Lee, Keekeun

    2012-04-01

    A surface acoustic wave (SAW)-based gyroscope with an 80 MHz central frequency was fabricated on a 128° YX LiNbO3 piezoelectric substrate. The fabricated gyroscope is composed of a SAW resonator, metallic dots and a SAW reflective delay line. The SAW resonator, which is activated by a voltage-controlled oscillator, generates a stable standing wave with a large amplitude at an 80 MHz resonant frequency, and the metallic dots induce a Coriolis force and generate a secondary SAW in the direction orthogonal to the propagating standing wave. The SAW reflective delay line is employed to measure the Coriolis effect by analyzing the deviations in the resonant frequency of the SAW reflective delay line. A combined finite element method/boundary element method was utilized to extract the optimal device parameters prior to fabrication. The device was fabricated according to the modeling results and then measured on a rate table. When the device was subjected to an angular rotation, a secondary SAW from the vibrating metallic dots was generated owing to the Coriolis force, resulting in a perturbation of the propagating SAW in the SAW reflective delay line. Depending on the angular velocity, the reflection peak of SAW reflective delay line was changed linearly, and this change was measured by the network analyzer. The measured results matched the modeling results well. The obtained sensitivity was approximately 1.23 deg/(deg/s) in an angular rate range of 0-2000 deg s-1. Good thermal and shock stabilities were observed during the evaluation process proving the shock and heat robustness of the fabricated SAW gyroscope.

  8. Modeling of SAW Delay Lines

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. To aid in the development of SAW sensors for IVHM applications, a first order model of a SAW Delay line has been created.

  9. Development of wireless, chipless neural stimulator by using one-port surface acoustic wave delay line and diode-capacitor interface

    NASA Astrophysics Data System (ADS)

    Kim, Jisung; Kim, Saehan; Lee, Keekeun

    2017-06-01

    For the first time, a wireless and chipless neuron stimulator was developed by utilizing a surface acoustic wave (SAW) delay line, a diode-capacitor interface, a sharp metal tip, and antennas for the stimulation of neurons in the brain. The SAW delay line supersedes presently existing complex wireless transmission systems composed of a few thousands of transistors, enabling the fabrication of wireless and chipless transceiver systems. The diode-capacitor interface was used to convert AC signals to DC signals and induce stimulus pulses at a sharp metal probe. A 400 MHz RF energy was wirelessly radiated from antennas and then stimulation pulses were observed at a sharp gold probe. A ˜5 m reading distance was obtained using a 1 mW power from a network analyzer. The cycles of electromagnetic (EM) radiation from an antenna were controlled by shielding the antenna with an EM absorber. Stimulation pulses with different amplitudes and durations were successfully observed at the probe. The obtained pulses were ˜0.08 mV in amplitude and 3-10 Hz in frequency. Coupling-of-mode (COM) and SPICE modeling simulations were also used to determine the optimal structural parameters for SAW delay line and the values of passive elements. On the basis of the extracted parameters, the entire system was experimentally implemented and characterized.

  10. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2018-04-02

    We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal. We describe a comprehensive theoretical model for studying the signal and the noise at the output of a general forced delay-line oscillator with an instantaneous gain saturation and an amplitude-to-phase conversion. The results indicate that the magnitude and the bandwidth of the oscillator response to a small perturbation can be controlled by adjusting the injection ratio and the injected frequency. For signals with a frequency that is smaller than the device bandwidth, the oscillator noise is dominated by the noise of the injected signal. This noise is highly suppressed by mixing the oscillator output with the injected signal. Hence, the device sensitivity at frequencies below its bandwidth is limited only by the internal noise that is added in a single roundtrip in the oscillator cavity. We demonstrate the use of a forced oscillator as an acoustic fiber sensor in an optoelectronic oscillator. A good agreement is obtained between theory and experiments. The magnitude of the output signal can be controlled by adjusting the injection ratio while the noise power at low frequencies is not enhanced as in sensors that are based on a free-running oscillator.

  11. Microwave fiber optics delay line

    NASA Astrophysics Data System (ADS)

    Slayman, C.; Yen, H. W.

    1980-01-01

    A microwave delay line is one of the devices used in EW systems for preserving the frequency and phase contents of RF signals. For such applications, delay lines are required to have large dynamic range, wide bandwidth, low insertion loss, and a linear response. The basic components of a fiber-optics delay line are: an optical source, a wideband optical modulator, a spool of single-mode fiber with appropriate length to provide a given microwave signal delay, and a high-speed photodetector with an RF amplifier. This contract program is to study the feasibility of such a fiber-optic delay line in the frequency range of 4.0 to 6.5 GHz. The modulation scheme studied is the direct modulation of injection lasers. The most important issue identified is the frequency response of the injection laser and the photodetector.

  12. Advanced optical delay line demonstrator

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Hogenhuis, Harm

    2004-09-01

    TNO TPD, in cooperation with Micromega-Dynamics and Dutch Space, has designed an advanced Optical Delay Line (ODL) for use in future ground based and space interferometry missions. The work is performed under NIVR contract in preparation for GENIE and DARWIN. Using the ESO PRIMA DDL requirements as a baseline, the delay line can be used for PRIMA and GENIE without any modifications. The delay line design is modular and flexible, which makes scaling for other applications a relatively easy task. The ODL has a single linear motor actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye with SiC mirrors and CFRP structure. Magnetic bearings provide frictionless and wear free operation with zerohysteresis. The delay line is currently being assembled and will be subjected to a comprehensive test program in the second half of 2004.

  13. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  14. Surface acoustic wave unidirectional transducers for quantum applications

    NASA Astrophysics Data System (ADS)

    Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per

    2017-02-01

    The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.

  15. All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line.

    PubMed

    Choi, Eunseo; Na, Jihoon; Ryu, Seon; Mudhana, Gopinath; Lee, Byeong

    2005-02-21

    We have implemented an all-fiber optical delay line using two linearly chirped fiber Bragg gratings cascaded in reverse order and all-fiber optics components. The features of the proposed all-fiber based technique for variable delay line are discussed theoretically and demonstrated experimentally. The non-invasive cross-sectional images of biomedical samples as well as a transparent glass plate obtained with implemented all-fiber delay line having the axial resolution of 100 mum and the dynamic range of 50dB are presented to validates the imaging performance and demonstrate the feasibility of the delay line for optical coherence tomography.

  16. Terrestrial Planet Finder cryogenic delay line development

    NASA Technical Reports Server (NTRS)

    Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.

    2004-01-01

    Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.

  17. 1st Order Modeling of a SAW Delay Line using MathCAD(Registered)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    To aid in the development of SAW sensors for Integrated Vehicle Health Monitoring applications, a first order model of a SAW Delay line has been created using MathCadA. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. This paper presents the model and the results from the model for a SAW delay line design. Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles [1]. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. Passive wireless sensors have been developed using SAW technology. For these reasons new SAW sensors are being investigated for aerospace applications.

  18. Acoustic Signal Processing in Photorefractive Optical Systems.

    NASA Astrophysics Data System (ADS)

    Zhou, Gan

    This thesis discusses applications of the photorefractive effect in the context of acoustic signal processing. The devices and systems presented here illustrate the ideas and optical principles involved in holographic processing of acoustic information. The interest in optical processing stems from the similarities between holographic optical systems and contemporary models for massively parallel computation, in particular, neural networks. An initial step in acoustic processing is the transformation of acoustic signals into relevant optical forms. A fiber-optic transducer with photorefractive readout transforms acoustic signals into optical images corresponding to their short-time spectrum. The device analyzes complex sound signals and interfaces them with conventional optical correlators. The transducer consists of 130 multimode optical fibers sampling the spectral range of 100 Hz to 5 kHz logarithmically. A physical model of the human cochlea can help us understand some characteristics of human acoustic transduction and signal representation. We construct a life-sized cochlear model using elastic membranes coupled with two fluid-filled chambers, and use a photorefractive novelty filter to investigate its response. The detection sensitivity is determined to be 0.3 angstroms per root Hz at 2 kHz. Qualitative agreement is found between the model response and physiological data. Delay lines map time-domain signals into space -domain and permit holographic processing of temporal information. A parallel optical delay line using dynamic beam coupling in a rotating photorefractive crystal is presented. We experimentally demonstrate a 64 channel device with 0.5 seconds of time-delay and 167 Hz bandwidth. Acoustic signal recognition is described in a photorefractive system implementing the time-delay neural network model. The system consists of a photorefractive optical delay-line and a holographic correlator programmed in a LiNbO_3 crystal. We demonstrate the recognition

  19. The effect of delay line on the performance of a fiber optic interferometric sensor

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Li; Lin, Ken-Huang; Lin, Wuu-Wen; Chen, Mao-Hsiung

    2007-09-01

    The optical fiber has the features of low loss and wide bandwidth; it has replaced the coaxial cable as the mainstream of the communication system in recent years. Because of its high sensitivity characteristic, the interferometer is usually applied to long distance, weak signal detection. In general, if the area to be monitored is located far away, the weak signal will make it uneasy to detect. An interferometer is used for phase detection. Thus, the hydrophone which is based on interferometric fiber optic sensor has extremely high sensitivity. Sagnac interferometric hydrophone has low noise of marine environment, which is more suitably used to detect underwater acoustic signal than that of a Mach-Zehnder interferometer. In this paper, we propose the configuration of dual Sagnac interferometer, and use the mathematical methods to drive and design optimal two delay fiber lengths, which can enlarge the dynamic range of underwater acoustic detection. In addition, we also use software simulation to design optimal two delay fiber lengths. The experimental configuration of dual Sagnac interferometer with two optical delay line is shown as Fig. 1. The maximum and minimum measurable phase signal value of dual Sagnac interferometer (L II=2 km, L 4=222.2 m), shown in Fig. 3. The fiber optic sensor head is of mandrel type. The acoustic window is made of silicon rubbers. It was shown that we can increase their sensitivities by increasing number of wrapping fiber coils. In our experiment, the result shows that among all the mandrel sensor heads, the highest dynamic range is up to 37.6 +/- 1.4 dB, and its sensitivity is -223.3 +/-1.7 dB re V / 1μ Pa. As for the configuration of the optical interferometers, the intensity of the dual Sagnac interferometer is 20 dB larger than its Sagnac counterpart. Its dynamic range is above 66 dB where the frequency ranges is between 50 ~ 400 Hz, which is 24 dB larger than that of the Sagnac interferometer with the sensitivity of -192.0 dB re

  20. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  1. The DARWIN breadboard cryogenic optical delay line

    NASA Astrophysics Data System (ADS)

    van den Dool, T. C.; Gielesen, W.; Kamphues, F.; Loix, N.; Kooijman, P. P.; de Vries, C.; van Weers, H.; Fleury, K.; Stockman, Y.; Velsink, G.; Benoit, J.; Poupinet, A.; Sève, F.

    2017-11-01

    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line (figure 1) for use in future space interferometry missions. The work is performed under ESA contract 17.747/03 in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a twomirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. The design of the BB delay line has been completed. The development test program, including operation at 100 K has been completed. The verification test programme is currently being carried out and will include functional testing at 40 K.

  2. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  3. Assessment of langatate material constants and temperature coefficients using SAW delay line measurements.

    PubMed

    Sturtevant, Blake T; Pereira da Cunha, Mauricio

    2010-03-01

    This paper reports on the assessment of langatate (LGT) acoustic material constants and temperature coefficients by surface acoustic wave (SAW) delay line measurements up to 130 degrees C. Based upon a full set of material constants recently reported by the authors, 7 orientations in the LGT plane with Euler angles (90 degrees, 23 degrees, Psi) were identified for testing. Each of the 7 selected orientations exhibited calculated coupling coefficients (K(2)) between 0.2% and 0.75% and also showed a large range of predicted temperature coefficient of delay (TCD) values around room temperature. Additionally, methods for estimating the uncertainty in predicted SAW propagation properties were developed and applied to SAW phase velocity and temperature coefficient of delay calculations. Starting from a purchased LGT boule, the SAW wafers used in this work were aligned, cut, ground, and polished at University of Maine facilities, followed by device fabrication and testing. Using repeated measurements of 2 devices on separate wafers for each of the 7 orientations, the room temperature SAW phase velocities were extracted with a precision of 0.1% and found to be in agreement with the predicted values. The normalized frequency change and the temperature coefficient of delay for all 7 orientations agreed with predictions within the uncertainty of the measurement and the predictions over the entire 120 degrees C temperature range measured. Two orientations, with Euler angles (90 degrees, 23 degrees, 123 degrees) and (90 degrees, 23 degrees, 119 degrees), were found to have high predicted coupling for LGT (K(2) > 0.5%) and were shown experimentally to exhibit temperature compensation in the vicinity of room temperature, with turnover temperatures at 50 and 60 degrees C, respectively.

  4. Acoustic power balance in lined ducts

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1979-01-01

    It is shown that the two common definitions of acoustic energy density and intensity in uniform unlined ducts carrying uniform flow are compatible to the extent that both energy densities can be used in an appropriate variational principle to derive the convected wave equation. When the duct walls are lined both energy densities must be modified to account for the wall energy density. This results in a new energy conservation equation which utilizes a modified definition of axial power and accounts for wall dissipation. Computations in specific cases demonstrate the validity of the modified acoustic energy relation.

  5. Prototype high speed optical delay line for stellar interferometry

    NASA Astrophysics Data System (ADS)

    Colavita, M. M.; Hines, B. E.; Shao, M.; Klose, G. J.; Gibson, B. V.

    1991-12-01

    The long baselines of the next-generation ground-based optical stellar interferometers require optical delay lines which can maintain nm-level path-length accuracy while moving at high speeds. NASA-JPL is currently designing delay lines to meet these requirements. The design is an enhanced version of the Mark III delay line, with the following key features: hardened, large diameter wheels, rather than recirculating ball bearings, to reduce mechanical noise; a friction-drive cart which bears the cable-dragging forces, and drives the optics cart through a force connection only; a balanced PZT assembly to enable high-bandwidth path-length control; and a precision aligned flexural suspension for the optics assembly to minimize bearing noise feedthrough. The delay line is fully programmable in position and velocity, and the system is controlled with four cascaded software feedback loops. Preliminary performance is a jitter in any 5 ms window of less than 10 nm rms for delay rates of up to 28 mm/s; total jitter is less than 10 nm rms for delay rates up to 20 mm/s.

  6. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  7. Apparatus and Method for Compensating for Process, Voltage, and Temperature Variation of the Time Delay of a Digital Delay Line

    NASA Technical Reports Server (NTRS)

    Seefeldt, James (Inventor); Feng, Xiaoxin (Inventor); Roper, Weston (Inventor)

    2013-01-01

    A process, voltage, and temperature (PVT) compensation circuit and a method of continuously generating a delay measure are provided. The compensation circuit includes two delay lines, each delay line providing a delay output. The two delay lines may each include a number of delay elements, which in turn may include one or more current-starved inverters. The number of delay lines may differ between the two delay lines. The delay outputs are provided to a combining circuit that determines an offset pulse based on the two delay outputs and then averages the voltage of the offset pulse to determine a delay measure. The delay measure may be one or more currents or voltages indicating an amount of PVT compensation to apply to input or output signals of an application circuit, such as a memory-bus driver, dynamic random access memory (DRAM), a synchronous DRAM, a processor or other clocked circuit.

  8. Electrical detection and analysis of surface acoustic wave in line-defect two-dimensional piezoelectric phononic crystals

    NASA Astrophysics Data System (ADS)

    Cai, Feida; Li, Honglang; Tian, Yahui; Ke, Yabing; Cheng, Lina; Lou, Wei; He, Shitang

    2018-03-01

    Line-defect piezoelectric phononic crystals (PCs) show good potential applications in surface acoustic wave (SAW) MEMS devices for RF communication systems. To analyze the SAW characteristics in line-defect two-dimensional (2D) piezoelectric PCs, optical methods are commonly used. However, the optical instruments are complex and expensive, whereas conventional electrical methods can only measure SAW transmission of the whole device and lack spatial resolution. In this paper, we propose a new electrical experimental method with multiple receiving interdigital transducers (IDTs) to detect the SAW field distribution, in which an array of receiving IDTs of equal aperture was used to receive the SAW. For this new method, SAW delay lines with perfect and line-defect 2D Al/128°YXLiNbO3 piezoelectric PCs on the transmitting path were designed and fabricated. The experimental results showed that the SAW distributed mainly in the line-defect region, which agrees with the theoretical results.

  9. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    PubMed

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  10. TECHNICAL DESIGN NOTE: Picosecond resolution programmable delay line

    NASA Astrophysics Data System (ADS)

    Suchenek, Mariusz

    2009-11-01

    The note presents implementation of a programmable delay line for digital signals. The tested circuit has a subnanosecond delay range programmable with a resolution of picoseconds. Implementation of the circuit was based on low-cost components, easily available on the market.

  11. The giant acoustic atom - a single quantum system with a deterministic time delay

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Grimsmo, Arne; Frisk Kockum, Anton; Pletyukhov, Mikhail; Johansson, Göran

    2017-04-01

    We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop. L. G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  12. Magnonic Crystal as a Delay Line for Low-Noise Auto-Oscillator

    DTIC Science & Technology

    2015-05-12

    Magnonic crystal as a delay line for low-noise auto-oscillator Elena Bankowski and Thomas Meitzler U.S. Army TARDEC, Warren, Michigan 48397, USA...authors propose to use the magnonic crystal patterned on the YIG magnetic film as an efficient delay line in the feedback loop of tunable auto-oscillator...increasing the thickness of such delay line as compare to the YIG film with no pattern. In turn, use of this magnonic crystal opens a way to improve

  13. Loaded delay lines for future RF pulse compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.M.; Wilson, P.B.; Kroll, N.M.

    1995-05-01

    The peak power delivered by the klystrons in the NLCRA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximatelymore » proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE{sub o} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.« less

  14. Probability of acoustic transmitter detections by receiver lines in Lake Huron: results of multi-year field tests and simulations

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher M.; Binder, Thomas; Dettmers, John M.; Cooke, Steven J.; Vandergoot, Christopher S.; Krueger, Charles C.

    2016-01-01

    BackgroundAdvances in acoustic telemetry technology have led to an improved understanding of the spatial ecology of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to distinguish between tagged fish that may have been present but not detected and from those fish that were absent from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed probability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a moving acoustic transmitter on a line of receivers.ResultsThe probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for different receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was characterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron had the strongest effect on simulated detection probability.ConclusionsPerformance of receiver

  15. Acoustic Wave Propagation in Pressure Sense Lines

    NASA Technical Reports Server (NTRS)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  16. Integrable microwave filter based on a photonic crystal delay line.

    PubMed

    Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo

    2012-01-01

    The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.

  17. Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.

  18. Blood platelet adhesion to protein studied by on-line acoustic wave sensor.

    PubMed

    Cavic, B A; Freedman, J; Morel, Z; Mody, M; Rand, M L; Stone, D C; Thompson, M

    2001-03-01

    The attachment of blood platelets to the surface of bare and protein-coated thickness-shear mode acoustic wave devices operating in a flow-through configuration has been studied. Platelets in washed from bind to the gold electrodes of such sensors, but the resulting frequency shifts are far less than predicted by the conventional mass-based model of device operation. Adherence to albumin and various types of collagen can be produced by on-line introduction of protein or by a pre-coating strategy. Differences in attachment of platelets to collagen types I and IV and the Horm variety can be detected. Platelets attached to collagen yield an interesting delayed, but reversible signal on exposure to a flowing medium of low pH. Scanning electron microscopy of sensor surfaces at various time points in this experiment reveals that originally intact platelets are eventually destroyed by the high acidity of the medium. The reversible frequency is attributed to the presence of removable platelet granular components at the sensor-liquid interface.

  19. The design of a breadboard cryogenic optical delay line for DARWIN

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun C.; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.

    2004-09-01

    TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The design of the BB delay line has been completed. Verification testing, including functional testing at 40 K, is planned to start in the 4th quarter of 2004. The current design could also be adapted to the needs of the TPF-I mission.

  20. The design of a breadboard cryogenic optical delay line for DARWIN

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.

    2004-09-01

    TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a future flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The BB delay line will be built in the second half of 2004. The manufacturing and assembly phase is followed by a comprehensive test program, including functional testing at 40 K in 2005. The tests will be carried out by Alcatel Space and SAGEIS-CSO.

  1. Line sensing device for ultrafast laser acoustic inspection using adaptive optics

    DOEpatents

    Hale, Thomas C.; Moore, David S.

    2003-11-04

    Apparatus and method for inspecting thin film specimens along a line. A laser emits pulses of light that are split into first, second, third and fourth portions. A delay is introduced into the first portion of pulses and the first portion of pulses is directed onto a thin film specimen along a line. The third portion of pulses is directed onto the thin film specimen along the line. A delay is introduced into the fourth portion of pulses and the delayed fourth portion of pulses are directed to a photorefractive crystal. Pulses of light reflected from the thin film specimen are directed to the photorefractive crystal. Light from the photorefractive crystal is collected and transmitted to a linear photodiode array allowing inspection of the thin film specimens along a line.

  2. Mixed Modeling of a SAW Delay Line Using VHDL-AMS

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2006-01-01

    To aid in the development of SAW sensors for aerospace applications we have created a model of a SAW Delay line using VHDL. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. The model includes optimization for the number of finger pairs in the IDTs and for the aperture height. This paper presents the model and the results from the model for a SAW delay line design.

  3. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism

    PubMed Central

    Sarmiento-Ponce, Edith Julieta

    2017-01-01

    Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets (Gryllus bimaculatus), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. PMID:28539524

  4. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.

    PubMed

    Hedwig, Berthold; Sarmiento-Ponce, Edith Julieta

    2017-05-31

    Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets ( Gryllus bimaculatus ), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. © 2017 The Authors.

  5. Cross delay line sensor characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, Israel J; Remelius, Dennis K; Tiee, Joe J

    There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recordingmore » space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.« less

  6. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  7. The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1993-01-01

    An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.

  8. Physical mechanism of coherent acoustic phonons generation and detection in GaAs semiconductor

    NASA Astrophysics Data System (ADS)

    Babilotte, P.; Morozov, E.; Ruello, P.; Mounier, D.; Edely, M.; Breteau, J.-M.; Bulou, A.; Gusev, V.

    2007-12-01

    We first describe the picosecond acoustic interferometry study of GaAs with two-colors pump-probe laser pulses. The dependence of the generation process on the pump wavelength and the detection process on the probe wavelength both can cause the shift in the phase of the Brillouin signal. Secondly, in order to distinguish the short high frequency wideband acoustic pulse from low frequency Brillouin contribution, we accomplished experiments with (100)GaAs semiconductor coated by a transparent and photoelastically inactive thin film, serving a delay line for the acoustic pulse. Even with highly penetrating pump light (approx 680nm), short acoustic disturbances of approx 7ps of duration have been registered.

  9. VERNIER CHRONOTRON UTILIZING AT LEAST TWO SHORTED DELAY LINES

    DOEpatents

    Rufer, R.P.

    1964-02-25

    An improved vernier chronotron featuring pulse-forming circuits of a ringing'' or back and forth'' oscillatory type is described. A delay line shorted at both ends together with transistor circuitry to introduce a pulse into that line and also to provide reinforcement of the pulse as it oscillates between the pulse-reflective extremities is provided. A transistorized coincidence circuit is also provided. Enhanced measurement of time intervals in the nanosecond range is afforded. (AEC)

  10. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, Alexey V., E-mail: a-bulanov@me.com; V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, Russia 690041; Nagorny, Ivan G., E-mail: ngrn@mail.ru

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission inmore » fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.« less

  11. Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Xie, Yiwei; Zhuang, Leimeng; Boller, Klaus-Jochen; Lowery, Arthur James

    2017-06-01

    Optical delay lines implemented in photonic integrated circuits (PICs) are essential for creating robust and low-cost optical signal processors on miniaturized chips. In particular, tunable delay lines enable a key feature of programmability for the on-chip processing functions. However, the previously investigated tunable delay lines are plagued by a severe drawback of delay-dependent loss due to the propagation loss in the constituent waveguides. In principle, a serial-connected amplifier can be used to compensate such losses or perform additional amplitude manipulation. However, this solution is generally unpractical as it introduces additional burden on chip area and power consumption, particularly for large-scale integrated PICs. Here, we report an integrated tunable delay line that overcomes the delay-dependent loss, and simultaneously allows for independent manipulation of group delay and amplitude responses. It uses a ring resonator with a tunable coupler and a semiconductor optical amplifier in the feedback path. A proof-of-concept device with a free spectral range of 11.5 GHz and a delay bandwidth in the order of 200 MHz is discussed in the context of microwave photonics and is experimentally demonstrated to be able to provide a lossless delay up to 1.1 to a 5 ns Gaussian pulse. The proposed device can be designed for different frequency scales with potential for applications across many other areas such as telecommunications, LIDAR, and spectroscopy, serving as a novel building block for creating chip-scale programmable optical signal processors.

  12. Design of hybrid optical delay line for automotive radar test system

    NASA Astrophysics Data System (ADS)

    Son, Byung-Hee; Kim, Kwang-Jin; Li, Ye; Park, Chang-In; Choi, Young-Wan

    2015-03-01

    In this paper, hybrid optical delay line (HODL) which is demanded on automotive radar test system (RTS) is proposed and demonstrated. HODL is composed with coaxial cable in short delay time (< 32 nsec) and optical fiber in long delay time (>= 32 nsec) which are considering the volume, loss and frequency characteristics. Also, the optical transceiver that has the bandwidth of 1 GHz is designed for frequency modulated continuous wave (FMCW). Experimental results show that the S21 is +/- 0.5 dB in the optical transceiver and +/- 1.7 dB in the whole system at 3.7 GHz ~ 4.7 GHz. The resolution of delay time is 1 ns and the delay flatness is +/- 0.23 ns.

  13. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; hide

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  14. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  15. Enhancing the sensitivity of three-axis detectable surface acoustic wave gyroscope by using a floating thin piezoelectric membrane

    NASA Astrophysics Data System (ADS)

    Lee, Munhwan; Lee, Keekeun

    2017-06-01

    A new type of surface acoustic wave (SAW) gyroscope was developed on a floating thin piezoelectric membrane to enhance sensitivity and reliability by removing a bulk noise effect and by importing a higher amplitude of SAW. The developed device constitutes a two-port SAW resonator with a metallic dot array between two interdigital transducers (IDTs), and a one-port SAW delay line. The bulk silicon was completely etched away, leaving only a thin piezoelectric membrane with a thickness of one wavelength. A voltage controlled oscillator (VCO) was connected to a SAW resonator to activate the SAW resonator, while the SAW delay line was connected to the oscilloscope to monitor any variations caused by the Coriolis force. When the device was rotated, a secondary wave was generated, changing the amplitude of the SAW delay line. The highest sensitivity was observed in a device with a full acoustic wavelength thickness of the membrane because most of the acoustic field is confined within an acoustic wavelength thickness from the top surface; moreover, the thin-membrane-based gyroscope eliminates the bulk noise effect flowing along the bulk substrate. The obtained sensitivity and linearity of the SAW gyroscope were ˜27.5 µV deg-1 s-1 and ˜4.3%, respectively. Superior directivity was observed. The device surface was vacuum-sealed using poly(dimethylsiloxane) (PDMS) bonding to eliminate environmental interference. A three-axis detectable gyroscope was also implemented by placing three gyrosensors with the same configuration at right angles to each other on a printed circuit board.

  16. On-line estimation and compensation of measurement delay in GPS/SINS integration

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wang, Wei

    2008-10-01

    The chief aim of this paper is to propose a simple on-line estimation and compensation method of GPS/SINS measurement delay. The causes of time delay for GPS/SINS integration are analyzed in this paper. New Kalman filter state equations augmented by measurement delay and modified measurement equations are derived. Based on an open-loop Kalman filter, several simulations are run, results of which show that by the proposed method, the estimation and compensation error of measurement delay is below 0.1s.

  17. Phase-locked-loop-based delay-line-free picosecond electro-optic sampling system

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2003-04-01

    A delay-line-free, high-speed electro-optic sampling (EOS) system is proposed by employing a delay-time-controlled ultrafast laser diode as the optical probe. Versatile optoelectronic delay-time controllers (ODTCs) based on modified voltage-controlled phase-locked-loop phase-shifting technologies are designed for the laser. The integration of the ODTC circuit and the pulsed laser diode has replaced the traditional optomechanical delay-line module used in the conventional EOS system. This design essentially prevents sampling distortion from misalignment of the probe beam, and overcomes the difficulty in sampling free-running high-speed transients. The maximum tuning range, error, scanning speed, tuning responsivity, and resolution of the ODTC are 3.9π (700°), <5% deviation, 25-2405 ns/s, 0.557 ps/mV, and ˜1 ps, respectively. Free-running wave forms from the analog, digital, and pulsed microwave signals are sampled and compared with those measured by the commercial apparatus.

  18. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  19. Radiation hard programmable delay line for LHCb calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Mauricio, J.; Gascón, D.; Vilasís, X.; Picatoste, E.; Machefert, F.; Lefrancois, J.; Duarte, O.; Beigbeder, C.

    2014-01-01

    This paper describes the implementation of a SPI-programmable clock delay chip based on a Delay Locked Loop (DLL) in order to shift the phase of the LHC clock (25 ns) in steps of 1ns, with less than 5 ps jitter and 23 ps of DNL. The delay lines will be integrated into ICECAL, the LHCb calorimeter front-end analog signal processing ASIC in the near future. The stringent noise requirements on the ASIC imply minimizing the noise contribution of digital components. This is accomplished by implementing the DLL in differential mode. To achieve the required radiation tolerance several techniques are applied: double guard rings between PMOS and NMOS transistors as well as glitch suppressors and TMR Registers. This 5.7 mm2 chip has been implemented in CMOS 0.35 μm technology.

  20. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    NASA Technical Reports Server (NTRS)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  1. ESO and Fokker Space Sign Contract about VLTI Delay Line

    NASA Astrophysics Data System (ADS)

    1998-03-01

    The European Southern Observatory is building the world's largest optical telescope, the Very Large Telescope (VLT) , at the ESO Paranal Observatory in Chile. The VLT consists of four 8.2-m unit telescopes and several smaller, moveable Auxiliary Telescopes. When coupled as the giant VLT Interferometer (VLTI) , they will together provide the sharpest images ever obtained by any optical telescope. It will in principle be able to see an astronaut on the surface of the Moon, 400,000 km away. The VLTI Delay Lines Fokker Space (Leiden, The Netherlands) has been awarded a contract for the delivery of the Delay Line of the VLTI. This is a mechanical-optical system that will compensate the optical path differences of the light beams from the individual telescopes. Such a system is necessary to ensure that the light from all telescopes arrive in the same phase at the focal point of the interferometer. Otherwise, the very sharp interferometric images cannot be obtained. ESO PR Photo 08/98 [JPEG, 102k] Schematic representation of the VLTI Delay Line, showing the retro-reflector on its moving base. For more details, please consult the technical explanation below. This highly accurate system will be developed in close co-operation with the Dutch institute TNO-TPD (Netherlands Organization for Applied Scientific Research - Institute of Applied Physics) . The most innovative feature of the Delay Line is the new control strategy, a two-stage control system, based on linear motor technology, combined with high accuracy piezo-electric control elements. This enables the system to position the so-called cat's eye reflector system with an accuracy of only a few nanometers (millionth of a millimetre (nm)) over a stroke length of 60 metres. Within radio astronomy, interferometric techniques have been applied by Dutch astronomers since many years. They will now be able to contribute with their extensive knowledge of such systems to the next generation of astronomical interferometric

  2. Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves.

    PubMed

    Foerster, Michael; Macià, Ferran; Statuto, Nahuel; Finizio, Simone; Hernández-Mínguez, Alberto; Lendínez, Sergi; Santos, Paulo V; Fontcuberta, Josep; Hernàndez, Joan Manel; Kläui, Mathias; Aballe, Lucia

    2017-09-01

    The magnetoelastic effect-the change of magnetic properties caused by the elastic deformation of a magnetic material-has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magnetization dynamics of nanostructures at the picosecond time scale and found that magnetization modes have a delayed response to the strain modes, adjustable by the magnetic domain configuration. Our results provide fundamental insight into magnetoelastic coupling in nanostructures and have implications for the design of strain-controlled magnetostrictive nano-devices.Understanding the effects of local dynamic strain on magnetization may help the development of magnetic devices. Foerster et al. demonstrate stroboscopic imaging that allows the observation of both strain and magnetization dynamics in nickel when surface acoustic waves are driven in the substrate.

  3. Development of a Low-cost, FPGA-based, Delay Line Particle Detector for Satellite and Sounding Rocket Applications

    NASA Astrophysics Data System (ADS)

    Harrington, M.; Kujawski, J. T.; Adrian, M. L.; Weatherwax, A. T.

    2013-12-01

    Electrons are, by definition, a fundamental, chemical and electromagnetic constituent of any plasma. This is especially true within the partially ionized plasmas of Earth's ionosphere where electrons are a critical component of a vast array of plasma processes. Siena College is working on a novel method of processing information from electron spectrometer anodes using delay line techniques and inexpensive COTS electronics to track the movement of high-energy particles. Electron spectrometers use a variety of techniques to determine where an amplified electron cloud falls onto a collecting surface. One traditional method divides the collecting surface into sectors and uses a single detector for each sector. However, as the angular and spatial resolution increases, so does the number of detectors, increasing power consumption, cost, size, and weight of the system. An alternative approach is to connect each sector with a delay line built within the PCB material which is shielded from cross talk by a flooded ground plane. Only one pair of detectors (e.g., one at each end of the chain) are needed with the delay line technique which is different from traditional delay line detectors which use either Application Specific Integrated Circuits (ASICs) or very fast clocks. In this paper, we report on the implementation and testing of a delay line detector using a low-cost Xilinx FPGA and a thirty-two sector delay system. This Delay Line Detector has potential satellite and rocket flight applications due to its low cost, small size and power efficiency

  4. Acoustic Quality of the 40- by 80- Foot Wind Tunnel Test Section After Installation of a Deep Acoustic Lining

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Jaeger, Stephen M.; Hayes, Julie A.; Allen, Christopher S.

    2002-01-01

    A recessed, 42-inch deep acoustic lining has been designed and installed in the 40- by 80- Foot Wind Tunnel (40x80) test section to greatly improve the acoustic quality of the facility. This report describes the test section acoustic performance as determined by a detailed static calibration-all data were acquired without wind. Global measurements of sound decay from steady noise sources showed that the facility is suitable for acoustic studies of jet noise or similar randomly generated sound. The wall sound absorption, size of the facility, and averaging effects of wide band random noise all tend to minimize interference effects from wall reflections. The decay of white noise with distance was close to free field above 250 Hz. However, tonal sound data from propellers and fans, for example, will have an error band to be described that is caused by the sensitivity of tones to even weak interference. That error band could be minimized by use of directional instruments such as phased microphone arrays. Above 10 kHz, air absorption began to dominate the sound field in the large test section, reflections became weaker, and the test section tended toward an anechoic environment as frequency increased.

  5. Sensitivity of bandpass filters using recirculating delay-line structures

    NASA Astrophysics Data System (ADS)

    Heyde, Eric C.

    1996-12-01

    Recirculating delay lines have value notably as sensors and optical signal processors. Most useful applications depend on a high-finesse response from a network. A proof that, with given response parameters, more complex systems can produce behavior that is more stable to the effects of nonidealities than a single recirculating loop is presented.

  6. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  7. Generation of tunable infrared radiation by stimulated Raman scattering on hydrogen in a prism-lens optical delay line

    NASA Astrophysics Data System (ADS)

    Andreev, R. B.; Butylkin, V. S.; Evtiushkin, V. A.; Fisher, P. S.; Khabarov, V. V.

    1983-03-01

    The threshold of stimulated Raman scattering was lowered by filling an optical delay line with hydrogen. Pumping was by a tunable neodymium laser. Lens-prism combinations were used as phase correctors in the delay line. The dependences of the energy of the Stokes component on the pump energy determined experimentally for different numbers of transits through the delay line were compared with the results of a calculation allowing for the losses in the components of this line. When the frequency conversion was by a factor of at least 2 and the tuning range was wide (tens of percent), the optimal performance was obtained from the optical delay line when total-internal-reflection prisms and lenses were combined in a single component and oriented at the Brewster angle.

  8. AGN Space Telescope and Optical Reverberation Mapping Project. IV. Velocity-Delay Mapping of Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Horne, Keith D.; Agn Storm Team

    2015-01-01

    Two-dimensional velocity-delay maps of AGN broad emission line regions can be recovered by modelling observations of reverberating emission-line profiles on the assumption that the line profile variations are driven by changes in ionising radiation from a compact source near the black hole. The observable light travel time delay resolves spatial structure on iso-delay paraboloids, while the doppler shift resolves kinematic structure along the observer's line-of-sight. Velocity-delay maps will be presented and briefly discussed for the Lyman alpha, CIV and Hbeta line profiles based on the HST and ground-based spectrophotometric monitoring of NGC 5548 during the 2014 AGN STORM campaign.

  9. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    PubMed

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss <27  dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  10. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    PubMed Central

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  11. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.

    PubMed

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R

    2016-07-26

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.

  12. Effect of the spectrum of a high-intensity sound source on the sound-absorbing properties of a resonance-type acoustic lining

    NASA Astrophysics Data System (ADS)

    Ipatov, M. S.; Ostroumov, M. N.; Sobolev, A. F.

    2012-07-01

    Experimental results are presented on the effect of both the sound pressure level and the type of spectrum of a sound source on the impedance of an acoustic lining. The spectra under study include those of white noise, a narrow-band signal, and a signal with a preset waveform. It is found that, to obtain reliable data on the impedance of an acoustic lining from the results of interferometric measurements, the total sound pressure level of white noise or the maximal sound pressure level of a pure tone (at every oscillation frequency) needs to be identical to the total sound pressure level of the actual source at the site of acoustic lining on the channel wall.

  13. The manufacturing, assembly and acceptance testing of the breadboard cryogenic Optical Delay Line for DARWIN

    NASA Astrophysics Data System (ADS)

    van den Dool, T. C.; Kamphues, F.; Gielesen, W.; Dorrepaal, M.; Doelman, N.; Loix, N.; Verschueren, J. P.; Kooijman, P. P.; Visser, M.; Velsink, G.; Fleury, K.

    2005-08-01

    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has developed a compact breadboard cryogenic Optical Delay Line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard delay line is representative of a future flight mechanism, with all used materials and processes being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings are used for guiding. They provide frictionless and wear free operation with zero-hysteresis. The manufacturing, assembly and acceptance testing have been completed and are reported in this paper. The verification program, including functional testing at 40 K, will start in the final quarter of 2005.

  14. Enhanced Sensitivity of Novel Surface Acoustic Wave Microelectromechanical System-Interdigital Transducer Gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Oh, Haekwan; Lee, Keekeun; Yoon, Sungjin; Yang, Sangsik

    2009-06-01

    In this paper, we present a novel microelectromechanical system-interdigital transducer (MEMS-IDT) surface acoustic wave (SAW) gyroscope with an 80 MHz central frequency on a 128° YX LiNbO3 wafer. The developed MEMS-IDT gyroscope is composed of a two-port SAW resonator, a dual delay line oscillator, and metallic dots. The SAW resonator provides a stable standing wave, and the vibrating metallic dot at an antinode of the standing wave induces the second SAW in the normal direction of its vibrating axis. The dual delay line oscillator detects the Coriolis force by comparing the resonant frequencies between two oscillators through the interference effect. The coupling of mode (COM) modeling was used to extract the optimal design parameters prior to fabrication. In the electrical testing by the network analyzer, the fabricated SAW resonator and delay lines showed low insertion loss and similar operation frequencies between a resonator and delay lines. When the device was rotated, the resonant frequency differences between two oscillators linearly varied owing to the Coriolis force. The obtained sensitivity was approximately 119 Hz deg-1 s-1 in the angular rate range of 0-1000 deg/s. Satisfactory linearity and superior directivity were also observed in the test.

  15. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing.

    PubMed

    Scheperle, Rachel A; Tejani, Viral D; Omtvedt, Julia K; Brown, Carolyn J; Abbas, Paul J; Hansen, Marlan R; Gantz, Bruce J; Oleson, Jacob J; Ozanne, Marie V

    2017-07-01

    This retrospective review explores delayed-onset hearing loss in 85 individuals receiving cochlear implants designed to preserve acoustic hearing at the University of Iowa Hospitals and Clinics between 2001 and 2015. Repeated measures of unaided behavioral audiometric thresholds, electrode impedance, and electrically evoked compound action potential (ECAP) amplitude growth functions were used to characterize longitudinal changes in auditory status. Participants were grouped into two primary categories according to changes in unaided behavioral thresholds: (1) stable hearing or symmetrical hearing loss and (2) delayed loss of hearing in the implanted ear. Thirty-eight percent of this sample presented with delayed-onset hearing loss of various degrees and rates of change. Neither array type nor insertion approach (round window or cochleostomy) had a significant effect on prevalence. Electrode impedance increased abruptly for many individuals exhibiting precipitous hearing loss; the increase was often transient. The impedance increases were significantly larger than the impedance changes observed for individuals with stable or symmetrical hearing loss. Moreover, the impedance changes were associated with changes in behavioral thresholds for individuals with a precipitous drop in behavioral thresholds. These findings suggest a change in the electrode environment coincident with the change in auditory status. Changes in ECAP thresholds, growth function slopes, and suprathreshold amplitudes were not correlated with changes in behavioral thresholds, suggesting that neural responsiveness in the region excited by the implant is relatively stable. Further exploration into etiology of delayed-onset hearing loss post implantation is needed, with particular interest in mechanisms associated with changes in the intracochlear environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Study of abrasive wear process of lining of grinding chamber of vortex-acoustic disperser

    NASA Astrophysics Data System (ADS)

    Perelygin, D. N.

    2018-03-01

    The theoretical and experimental studies of the process of gas-abrasive wear of the lining of a vortex-acoustic disperser made it possible to establish the conditions and patterns of their occurrence and also to develop proposals for its reduction.

  17. A consideration on physical tuning for acoustical coloration in recording studio

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasushi

    2003-04-01

    Coloration due to particular architectural shapes and dimension or less surface absorption has been mentioned as an acoustical defect in recording studio. Generally interference among early reflected sounds arriving within 10 ms in delay after the direct sound produces coloration by comb filter effect over mid- and high-frequency sounds. In addition, less absorbed room resonance modes also have been well known as a major component for coloration in low-frequency sounds. Small size in dimension with recording studio, however, creates difficulty in characterization associated with wave acoustics behavior, that make acoustical optimization more difficult than that of concert hall acoustics. There still remains difficulty in evaluating amount of coloration as well as predicting its acoustical characteristics in acoustical modeling and in other words acoustical tuning technique during construction is regarded as important to optimize acoustics appropriately to the function of recording studio. This paper presents a example of coloration by comb filtering effect and less damped room modes in typical post-processing recording studio. And acoustical design and measurement technique will be presented for adjusting timbre due to coloration based on psycho-acoustical performance with binaural hearing and room resonance control with line array resonator adjusted to the particular room modes considered.

  18. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  19. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America

  20. Line profiles and turbulence generated by acoustic waves in the solar chromosphere. II - Contours of the Ca II and Mg II K lines

    NASA Technical Reports Server (NTRS)

    Shine, R. A.; Oster, L.

    1973-01-01

    Making use of the time-averaged absorption profiles derived by Oster and Ulmschneider, non-LTE line formation in the context of a two-level atom is investigated for an isothermal atmosphere and for the Ca II and Mg II K lines in the solar chromosphere as represented by the Harvard-Smithsonian Reference Atmosphere. Source functions and emergent line profiles are computed for a variety of assumptions concerning the acoustically broadened profiles and the solar velocity fields.

  1. The acoustic Green's function for swirling flow with variable entropy in a lined duct

    NASA Astrophysics Data System (ADS)

    Mathews, J. R.; Peake, N.

    2018-04-01

    This paper extends previous work by the authors (Journal of Sound and Vibration, 395:294-316,2017) on the acoustic field inside an annular duct with acoustic lining carrying mean axial and swirling flow so as to allow for non-uniform mean entropy, as would be found for instance in the turbine stage of an aeroengine. The main aim of this paper is to understand the effect of a non-uniform entropy on both the eigenmodes of the flow and the Green's function, which will allow noise prediction once we have identified acoustic sources. We first derive a new acoustic analogy in isentropic swirling flow, which allows us to derive the equation the tailored Green's function satisfies. The eigenmodes are split into two distinct families, acoustic and hydrodynamic modes, and are computed using different analytical methods; in the limit of high reduced frequency using the WKB method for the acoustic modes; and by considering a Frobenius expansion for the hydrodynamic modes. These are then compared with numerical results, with excellent agreement for all eigenmodes. The Green's function is also calculating analytically using the realistic limit of high reduced frequency, again with excellent agreement compared to numerical calculations. We see that for both the eigenmodes and Green's function the effect of non-uniform mean entropy is significant.

  2. BRIEF COMMUNICATIONS: Generation of tunable infrared radiation by stimulated Raman scattering on hydrogen in a prism-lens optical delay line

    NASA Astrophysics Data System (ADS)

    Andreev, R. B.; Butylkin, V. S.; Evtyushkin, V. A.; Fisher, P. S.; Khabarov, V. V.

    1983-03-01

    The threshold of stimulated Raman scattering was lowered by filling an optical delay line with hydrogen. Pumping was by a tunable neodymium laser. Lens-prism combinations were used as phase correctors in the delay line. The dependences of the energy of the Stokes component on the pump energy determined experimentally for different numbers of transits through the delay line were compared with the results of a calculation allowing for the losses in the components of this line. When the frequency conversion was by a factor of at least 2 and the tuning range was wide (tens of percent), the optimal performance was obtained from the optical delay line when total-internal-reflection prisms and lenses were combined in a single component and oriented at the Brewster angle.

  3. High-repetition-rate optical delay line using a micromirror array and galvanometer mirror for a terahertz system.

    PubMed

    Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori

    2009-07-01

    We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz.

  4. MOEMS optical delay line for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.

    2014-09-01

    Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.

  5. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  6. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Li, Guang-Hui; Wang, An-Bang; Feng, Ye; Wang, Yang

    2010-07-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.

  7. Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.

    PubMed

    Audier, Xavier; Balla, Naveen; Rigneault, Hervé

    2017-01-15

    We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.

  8. Identifying Otosclerosis with Aural Acoustical Tests of Absorbance, Group Delay, Acoustic Reflex Threshold, and Otoacoustic Emissions.

    PubMed

    Keefe, Douglas H; Archer, Kelly L; Schmid, Kendra K; Fitzpatrick, Denis F; Feeney, M Patrick; Hunter, Lisa L

    2017-10-01

    Otosclerosis is a progressive middle-ear disease that affects conductive transmission through the middle ear. Ear-canal acoustic tests may be useful in the diagnosis of conductive disorders. This study addressed the degree to which results from a battery of ear-canal tests, which include wideband reflectance, acoustic stapedius muscle reflex threshold (ASRT), and transient evoked otoacoustic emissions (TEOAEs), were effective in quantifying a risk of otosclerosis and in evaluating middle-ear function in ears after surgical intervention for otosclerosis. To evaluate the ability of the test battery to classify ears as normal or otosclerotic, measure the accuracy of reflectance in classifying ears as normal or otosclerotic, and evaluate the similarity of responses in normal ears compared with ears after surgical intervention for otosclerosis. A quasi-experimental cross-sectional study incorporating case control was used. Three groups were studied: one diagnosed with otosclerosis before corrective surgery, a group that received corrective surgery for otosclerosis, and a control group. The test groups included 23 ears (13 right and 10 left) with normal hearing from 16 participants (4 male and 12 female), 12 ears (7 right and 5 left) diagnosed with otosclerosis from 9 participants (3 male and 6 female), and 13 ears (4 right and 9 left) after surgical intervention from 10 participants (2 male and 8 female). Participants received audiometric evaluations and clinical immittance testing. Experimental tests performed included ASRT tests with wideband reference signal (0.25-8 kHz), reflectance tests (0.25-8 kHz), which were parameterized by absorbance and group delay at ambient pressure and at swept tympanometric pressures, and TEOAE tests using chirp stimuli (1-8 kHz). ASRTs were measured in ipsilateral and contralateral conditions using tonal and broadband noise activators. Experimental ASRT tests were based on the difference in wideband-absorbed sound power before and after

  9. Free-running waveform characterization using a delay-time tunable laser based delay-line-free electro-optic sampling oscilloscope

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru

    2002-12-01

    We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.

  10. Design and Performance of Ka-Band Fiber-Optic Delay Lines

    DTIC Science & Technology

    2012-12-28

    Approved for public release; distribution is unlimited. Vincent J. Urick Joseph M. singley christopher e. sUnderMan John F. diehl keith J...PAGES 17. LIMITATION OF ABSTRACT Design and Performance of Ka-Band Fiber-Optic Delay Lines Vincent J. Urick , Joseph M. Singley, Christopher E...Approved for public release; distribution is unlimited. Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 64 Vincent J. Urick (202

  11. Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.

    PubMed

    Keefe, Douglas H

    2015-04-01

    An acoustical transmission line model of the middle-ear cavities and mastoid air cell system (MACS) was constructed for the adult human middle ear with normal function. The air-filled cavities comprised the tympanic cavity, aditus, antrum, and MACS. A binary symmetrical airway branching model of the MACS was constructed using an optimization procedure to match the average total volume and surface area of human temporal bones. The acoustical input impedance of the MACS was calculated using a recursive procedure, and used to predict the input impedance of the middle-ear cavities at the location of the tympanic membrane. The model also calculated the ratio of the acoustical pressure in the antrum to the pressure in the middle-ear cavities at the location of the tympanic membrane. The predicted responses were sensitive to the magnitude of the viscothermal losses within the MACS. These predicted input impedance and pressure ratio functions explained the presence of multiple resonances reported in published data, which were not explained by existing MACS models.

  12. The acoustic sensor for rapid analysis of bacterial cells in the conductive suspensions.

    PubMed

    Borodina, I A; Zaitsev, B D; Guliy, O; Teplykh, A A; Shikhabudinov, A M

    2017-11-01

    The possibility of using the acoustic sensor on the basis of a two-channel delay line for rapid analysis of bacterial cells in the conductive suspensions was investigated. The dependencies of change in phase and insertion loss of output signal of the sensor on conductivity of buffer solution with various concentrations of cells due to a specific interaction "bacterial cells - mini-antibodies" for electrically open and electrically shorted channels of delay line were measured. It has been found that these changes have the most values for the electrically open channel. It has been also shown that the sensor rapidly responds to the specific interaction and the time stabilization of the phase and insertion loss of output signal is less than 10min. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Acoustic charge transport technology investigation for advanced development transponder

    NASA Technical Reports Server (NTRS)

    Kayalar, S.

    1993-01-01

    Acoustic charge transport (ACT) technology has provided a basis for a new family of analog signal processors, including a programmable transversal filter (PTF). Through monolithic integration of ACT delay lines with GaAs metal semiconductor field effect transistor (MESFET) digital memory and controllers, these devices significantly extend the performance of PTF's. This article introduces the basic operation of these devices and summarizes their present and future specifications. The production and testing of these devices indicate that this new technology is a promising one for future space applications.

  14. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  15. Flight parameter estimation using instantaneous frequency and time delay measurements from a three-element planar acoustic array.

    PubMed

    Lo, Kam W

    2016-05-01

    The acoustic signal emitted by a turbo-prop aircraft consists of a strong narrowband tone superimposed on a broadband random component. A ground-based three-element planar acoustic array can be used to estimate the full set of flight parameters of a turbo-prop aircraft in transit by measuring the time delay (TD) between the signal received at the reference sensor and the signal received at each of the other two sensors of the array over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the reference sensor to improve the precision of the flight parameter estimates. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the aircraft velocity and altitude can be greatly reduced when IF measurements are used together with TD measurements. Two flight parameter estimation algorithms that utilize both IF and TD measurements are formulated and their performances are evaluated using both simulated and real data.

  16. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  17. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  18. A liquid lens switching-based motionless variable fiber-optic delay line

    NASA Astrophysics Data System (ADS)

    Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz

    2018-05-01

    We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.

  19. Prove Out of Automated Assembly Line for M564 Delay Arming Mechanisms by Acquisition of 40,000 Units Assembled by Automated Line.

    DTIC Science & Technology

    1981-01-22

    Arsenal Contract DUAA25-69-C- 0301 dated 3-10-69 for "Services to design and develop an automated line for assembly of Safety Adapter, Fuze, 1564...determine the line will function at the design rate of 5,000 acceptable assemblies per day and collect production data for incorporation into final...0,000 M564 Delay Arming Mechanisms of the line: Determine that the line will function at the design rate of 5,000. acceotabie asswml I es/day. Collect

  20. A position- and time-sensitive photon-counting detector with delay- line read-out

    NASA Astrophysics Data System (ADS)

    Jagutzki, Ottmar; Dangendorf, Volker; Lauck, Ronald; Czasch, Achim; Milnes, James

    2007-05-01

    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and Astronomy.

  1. Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots

    NASA Astrophysics Data System (ADS)

    Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando

    2015-12-01

    We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.

  2. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses.

    PubMed

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J

    2015-08-01

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.

  3. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J.

    2015-08-01

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.

  4. Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain Modeste

    2018-03-01

    Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.

  5. Frequency hopping due to acousto-electric interaction in ZnO based surface acoustic wave oscillator

    NASA Astrophysics Data System (ADS)

    Dasgupta, Daipayan; Sreenivas, K.

    2011-08-01

    A 36 MHz surface acoustic wave delay line based oscillator has been used to study the effect of acousto-electric interaction due to photo generated charge carriers in rf sputtered ZnO film under UV illumination (λ = 365 nm, 20-100 μW/cm2). Design aspects for developing a delay line based SAW oscillator are specified. The observed linear downshift in frequency (2.2 to 19.0 kHz) with varying UV intensity (20-100 μW/cm2) is related to the fractional velocity change due to acousto-electric interaction. UV illumination level of 100 μW/cm2 leads to a characteristic frequency hopping behavior arising due to a change in the oscillation criteria, and is attributed to the complex interplay between the increased attenuation and velocity shift.

  6. Magnonic crystal as a delay line for low-noise auto-oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankowski, Elena; Meitzler, Thomas; Khymyn, Roman S., E-mail: khiminr@gmail.com

    2015-09-21

    It is demonstrated that a delay line based on a one-dimensional magnonic crystal used in a feedback loop of a microwave auto-oscillator can substantially reduce the phase noise figure and improve other vital performance characteristics of the auto-oscillator. The advantage is achieved due to the increase of the effective delay time in the magnonic crystal, compared to the case of an un-patterned yttrium iron garnet (YIG) film, and improvement of the power-handling characteristics due to the now possible increase of the YIG film thickness. The internal modes of a magnonic crystal caused by the periodic energy exchange between the incidentmore » and reflected spin waves play the dominant role in the described effect.« less

  7. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús, E-mail: jesus.garduno@ccadet.unam.mx

    2015-08-15

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low powermore » consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.« less

  8. Ultra-Wide Band Non-reciprocity through Sequentially-Switched Delay Lines.

    PubMed

    Biedka, Mathew M; Zhu, Rui; Xu, Qiang Mark; Wang, Yuanxun Ethan

    2017-01-06

    Achieving non-reciprocity through unconventional methods without the use of magnetic material has recently become a subject of great interest. Towards this goal a time switching strategy known as the Sequentially-Switched Delay Line (SSDL) is proposed. The essential SSDL configuration consists of six transmission lines of equal length, along with five switches. Each switch is turned on and off sequentially to distribute and route the propagating electromagnetic wave, allowing for simultaneous transmission and receiving of signals through the device. Preliminary experimental results with commercial off the shelf parts are presented which demonstrated non-reciprocal behavior with greater than 40 dB isolation from 200 KHz to 200 MHz. The theory and experimental results demonstrated that the SSDL concept may lead to future on-chip circulators over multi-octaves of frequency.

  9. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  10. Tunable surface acoustic wave device based on acoustoelectric interaction in ZnO/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Rui; Reyes, Pavel I.; Ragavendiran, Sowmya; Shen, H.; Lu, Yicheng

    2015-08-01

    A tunable surface acoustic wave (SAW) device is developed on a multilayer structure which consists of an n-type semiconductor ZnO layer and a Ni-doped piezoelectric ZnO layer deposited on a GaN/c-Al2O3 substrate. The unique acoustic dispersion relationship between ZnO and GaN generates the multi-mode SAW response in this structure, facilitating high frequency operation. A dc bias voltage is applied to a Ti/Au gate layer deposited on the path of SAW delay line to modulate the electrical conductivity for tuning the acoustic velocity. For devices operating at 1.25 GHz, a maximum SAW velocity change of 0.9% is achieved, equivalent to the frequency change of 11.2 MHz. This voltage-controlled frequency tuning device has potential applications in resettable sensors, adaptive signal processing, and secure wireless communication.

  11. VARIABLE TIME DELAY MEANS

    DOEpatents

    Clemensen, R.E.

    1959-11-01

    An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

  12. Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.

    PubMed

    Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J

    2015-02-01

    We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations.

  13. Distortion cancellation performance of miniature delay filters for feed-forward linear power amplifiers.

    PubMed

    Roy, Manas K

    2002-11-01

    The technique of feed-forward amplitude control has been widely used in the linearization of power amplifiers for wireless communication systems. In this technique, an error signal due to third order intermodulation distortion (IMD) is extracted, amplified, and used to correct the delayed main line distorted signal. For example, a miniature prototype base station for the Global System for Mobile Communications/Code Division Multiple Access (GSM/CDMA) cellular system uses feed-forward amplifiers with bulky and expensive coaxial cables, about 20 feet in length, to provide about 25 ns of delay. This paper shows alternate space-saving approaches of achieving these delays using three different types of delay filters: electromagnetic interdigital/lumped (<2.5"), ceramic (<1.8"), and ladder-type surface acoustic wave (SAW) (0.15"). The delay lines introduce phase and amplitude imbalance and delay mismatch in the linearization loop due to fabrication tolerances. These adversely affect the IMD cancellation. Using an RF system simulation tool, this paper critically compares the IMD cancellation performance achieved using the three technologies. Simulation results show that the optimization of delay mismatch can achieve the desired cancellation more easily than other parameters. It is shown that, if the critical system parameter (phase deviation from linearity), is maintained at <2.5 degrees peak-to-peak over a 20 MHz bandwidth in the frequency range 855 MHz to 875 MHz, one can achieve 25 dB of IMD cancellation performance. This paper concludes with the suggestion of a set of realistic specifications for a miniature delay filter for the low power loop of the feed-forward amplifier.

  14. Ultra-Wide Band Non-reciprocity through Sequentially-Switched Delay Lines

    PubMed Central

    Biedka, Mathew M.; Zhu, Rui; Xu, Qiang Mark; Wang, Yuanxun Ethan

    2017-01-01

    Achieving non-reciprocity through unconventional methods without the use of magnetic material has recently become a subject of great interest. Towards this goal a time switching strategy known as the Sequentially-Switched Delay Line (SSDL) is proposed. The essential SSDL configuration consists of six transmission lines of equal length, along with five switches. Each switch is turned on and off sequentially to distribute and route the propagating electromagnetic wave, allowing for simultaneous transmission and receiving of signals through the device. Preliminary experimental results with commercial off the shelf parts are presented which demonstrated non-reciprocal behavior with greater than 40 dB isolation from 200 KHz to 200 MHz. The theory and experimental results demonstrated that the SSDL concept may lead to future on-chip circulators over multi-octaves of frequency. PMID:28059132

  15. Sound propagation in and radiation from acoustically lined flow ducts: A comparison of experiment and theory

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.

    1973-01-01

    The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.

  16. Autonomous Adaptive Acoustic Relay Positioning

    DTIC Science & Technology

    2013-09-01

    underwater acoustic sensor networks . In Proc. 1st ACM International Work- shop on Underwater Networks , pages 7–16, 2006. [4] A Alvarez, A...routing in underwater delay/disruption tolerant sensor networks . In Wireless on Demand Network Systems and Services, 2008. WONS 2008. Fifth Annual...the development of multi-vehicle applications in the ocean, and the main mode of wireless data transmission underwater is acoustic .

  17. Constitutive acoustic-emission elastic-stress behavior of magnesium alloy

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Emerson, G. P.

    1977-01-01

    Repeated laoding and unloading of a magnesium alloy below the macroscopic yield stress result in continuous acoustic emissions which are generally repeatable for a given specimen and which are reproducible between different specimens having the same load history. An acoustic emission Bauschinger strain model is proposed to describe the unloading emission behavior. For the limited range of stress examined, loading and unloading stress delays of the order of 50 MN/sq m are observed, and they appear to be dependent upon the direction of loading, the stress rate, and the stress history. The stress delay is hypothesized to be the manifestation of an effective friction stress. The existence of acoustic emission elastic stress constitutive relations is concluded, which provides support for a previously proposed concept for the monitoring of elastic stresses by acoustic emission.

  18. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment

    NASA Technical Reports Server (NTRS)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide

    2016-01-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  19. Design and Fabrication of Ta filled microcavites in the delay paths of SAW devices for improved power transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Mandek; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2015-03-01

    The authors report the design and fabrication of a surface acoustic wave (SAW) device with improved power transfer due to modification of its delay path. Typically, SAW delay-line devices suffer from relatively high insertion loss (IL) (similar to 10-30 dB). Our approach is to incorporate an array of microcavities, having square cross-sectional area (lambda/2 x lambda/2) and filled with tantalum, within the delay path to maximize acoustic confinement to the surface and reduce IL. To determine the effectiveness of the cavities without expending too many resources and to explain trends found in actual devices, a finite element model of amore » SAW device with tantalum filled cavities having various depths was utilized. For each depth simulated, IL was decreased compared to a standard SAW device. Microcavities 2.5 mu m deep filled with tantalum showed the best performance (Delta IL = 17.93 dB). To validate simulated results, the authors fabricated a SAW device on ST 90 degrees-X quartz with microcavities etched into its delay path using deep reactive ion etching and filled with tantalum. Measurement of fabricated devices showed inclusion of tantalum filled microcavities increased power transfer compared to a device without cavities. (C) 2015 American Vacuum Society.« less

  20. Skeletal muscle characterization of Japanese quail line selectively bred for lower body weight as an avian model of delayed muscle growth with hypoplasia.

    PubMed

    Choi, Young Min; Suh, Yeunsu; Shin, Sangsu; Lee, Kichoon

    2014-01-01

    This study was designed to extensively characterize the skeletal muscle development in the low weight (LW) quail selected from random bred control (RBC) Japanese quail in order to provide a new avian model of impaired and delayed growth in physically normal animals. The LW line had smaller embryo and body weights than the RBC line in all age groups (P<0.05). During 3 to 42 d post-hatch, the LW line exhibited approximately 60% smaller weight of pectoralis major muscle (PM), mainly resulting from lower fiber numbers compared to the RBC line (P<0.05). During early post-hatch period when myotubes are still actively forming, the LW line showed impaired PM growth with prolonged expression of Pax7 and lower expression levels of MyoD, Myf-5, and myogenin (P<0.05), likely leading to impairment of myogenic differentiation and consequently, reduced muscle fiber formation. Additionally, the LW line had delayed transition of neonatal to adult myosin heavy chain isoform, suggesting delayed muscle maturation. This is further supported by the finding that the LW line continued to grow unlike the RBC line; difference in the percentages of PMW to body weights between both quail lines diminished with increasing age from 42 to 75 d post-hatch. This delayed muscle growth in the LW line is accompanied by higher levels of myogenin expression at 42 d (P<0.05), higher percentage of centered nuclei at 42 d (P<0.01), and greater rate of increase in fiber size between 42 and 75 d post-hatch (P<0.001) compared to the RBC line. Analysis of physiological, morphological, and developmental parameters during muscle development of the LW quail line provided a well-characterized avian model for future identification of the responsible genes and for studying mechanisms of hypoplasia and delayed muscle growth.

  1. Mass, height of burst, and source–receiver distance constraints on the acoustic coda phase delay method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Sarah; Bowman, Daniel; Rodgers, Arthur

    Here, this research uses the acoustic coda phase delay method to estimate relative changes in air temperature between explosions with varying event masses and heights of burst. It also places a bound on source–receiver distance for the method. Previous studies used events with different shapes, height of bursts, and masses and recorded the acoustic codas at source–receiver distances less than 1 km. This research further explores the method using explosions that differ in mass (by up to an order of magnitude) and are placed at varying heights. Source–receiver distances also cover an area out to 7 km. Relative air temperaturemore » change estimates are compared to complementary meteorological observations. Results show that two explosions that differ by an order of magnitude cannot be used with this method because their propagation times in the near field and their fundamental frequencies are different. These differences are expressed as inaccuracies in the relative air temperature change estimates. An order of magnitude difference in mass is also shown to bias estimates higher. Small differences in height of burst do not affect the accuracy of the method. Finally, an upper bound of 1 km on source–receiver distance is provided based on the standard deviation characteristics of the estimates.« less

  2. Mass, height of burst, and source–receiver distance constraints on the acoustic coda phase delay method

    DOE PAGES

    Albert, Sarah; Bowman, Daniel; Rodgers, Arthur; ...

    2018-04-23

    Here, this research uses the acoustic coda phase delay method to estimate relative changes in air temperature between explosions with varying event masses and heights of burst. It also places a bound on source–receiver distance for the method. Previous studies used events with different shapes, height of bursts, and masses and recorded the acoustic codas at source–receiver distances less than 1 km. This research further explores the method using explosions that differ in mass (by up to an order of magnitude) and are placed at varying heights. Source–receiver distances also cover an area out to 7 km. Relative air temperaturemore » change estimates are compared to complementary meteorological observations. Results show that two explosions that differ by an order of magnitude cannot be used with this method because their propagation times in the near field and their fundamental frequencies are different. These differences are expressed as inaccuracies in the relative air temperature change estimates. An order of magnitude difference in mass is also shown to bias estimates higher. Small differences in height of burst do not affect the accuracy of the method. Finally, an upper bound of 1 km on source–receiver distance is provided based on the standard deviation characteristics of the estimates.« less

  3. Resolution and quantification accuracy enhancement of functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays

    NASA Astrophysics Data System (ADS)

    Chu, Zhigang; Yang, Yang; Shen, Linbang

    2017-05-01

    Functional delay and sum (FDAS) is a novel beamforming algorithm introduced for the three-dimensional (3D) acoustic source identification with solid spherical microphone arrays. Being capable of offering significantly attenuated sidelobes with a fast speed, the algorithm promises to play an important role in interior acoustic source identification. However, it presents some intrinsic imperfections, specifically poor spatial resolution and low quantification accuracy. This paper focuses on conquering these imperfections by ridge detection (RD) and deconvolution approach for the mapping of acoustic sources (DAMAS). The suggested methods are referred to as FDAS+RD and FDAS+RD+DAMAS. Both computer simulations and experiments are utilized to validate their effects. Several interesting conclusions have emerged: (1) FDAS+RD and FDAS+RD+DAMAS both can dramatically ameliorate FDAS's spatial resolution and at the same time inherit its advantages. (2) Compared to the conventional DAMAS, FDAS+RD+DAMAS enjoys the same super spatial resolution, stronger sidelobe attenuation capability and more than two hundred times faster speed. (3) FDAS+RD+DAMAS can effectively conquer FDAS's low quantification accuracy. Whether the focus distance is equal to the distance from the source to the array center or not, it can quantify the source average pressure contribution accurately. This study will be of great significance to the accurate and quick localization and quantification of acoustic sources in cabin environments.

  4. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  5. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    NASA Technical Reports Server (NTRS)

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  6. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying, E-mail: chengying@nju.edu.cn

    2015-03-16

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logicmore » and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.« less

  7. Pretest Scores Uniquely Predict 1-Year-Delayed Performance in a Simulation-Based Mastery Course for Central Line Insertion.

    PubMed

    Diederich, Emily; Thomas, Laura; Mahnken, Jonathan; Lineberry, Matthew

    2018-06-01

    Within simulation-based mastery learning (SBML) courses, there is inconsistent inclusion of learner pretesting, which requires considerable resources and is contrary to popular instructional frameworks. However, it may have several benefits, including its direct benefit as a form of deliberate practice and its facilitation of more learner-specific subsequent deliberate practice. We consider an unexplored potential benefit of pretesting: its ability to predict variable long-term learner performance. Twenty-seven residents completed an SBML course in central line insertion. Residents were tested on simulated central line insertion precourse, immediately postcourse, and after between 64 and 82 weeks. We analyzed pretest scores' prediction of delayed test scores, above and beyond prediction by program year, line insertion experiences in the interim, and immediate posttest scores. Pretest scores related strongly to delayed test scores (r = 0.59, P = 0.01; disattenuated ρ = 0.75). The number of independent central lines inserted also related to year-delayed test scores (r = 0.44, P = 0.02); other predictors did not discernibly relate. In a regression model jointly predicting delayed test scores, pretest was a significant predictor (β = 0.487, P = 0.011); number of independent insertions was not (β = 0.234, P = 0.198). This study suggests that pretests can play a major role in predicting learner variance in learning gains from SBML courses, thus facilitating more targeted refresher training. It also exposes a risk in SBML courses that learners who meet immediate mastery standards may be incorrectly assumed to have equal long-term learning gains.

  8. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  9. Evaluating the Coda Phase Delay Method for Determining Temperature Ratios in Windy Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Sarah; Bowman, Daniel; Rodgers, Arthur

    2017-07-01

    We evaluate the acoustic coda phase delay method for estimating changes in atmospheric phenomena in realistic environments. Previous studies verifying the method took place in an environment with negligible wind. The equation for effective sound speed, which the method is based upon, shows that the influence of wind is equal to the square of temperature. Under normal conditions, wind is significant and therefore cannot be ignored. Results from this study con rm the previous statement. The acoustic coda phase delay method breaks down in non-ideal environments, namely those where wind speed and direction varies across small distances. We suggest thatmore » future studies make use of gradiometry to better understand the effect of wind on the acoustic coda and subsequent phase delays.« less

  10. Ultra-precision turning of complex spiral optical delay line

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  11. Analysis of Photonic Phase-Shifting Technique Employing Amplitude-Controlled Fiber-Optic Delay Lines

    DTIC Science & Technology

    2012-01-13

    Controlled Fiber-Optic Delay Lines January 13, 2012 Approved for public release; distribution is unlimited. Meredith N. draa ViNceNt J. Urick keith J...Draa, Vincent J. Urick , and Keith J. Williams Naval Research Laboratory, Code 5652 4555 Overlook Avenue, SW Washington, DC 20375-5320 NRL/MR/5650--12...9376 Approved for public release; distribution is unlimited. Unclassified Unclassified Unclassified UU 29 Vincent J. Urick (202) 767-9352 Fiber optics

  12. Acoustically swept rotor. [helicopter noise reduction

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  13. DFB laser - External modulator fiber optic delay line for radar applications

    NASA Astrophysics Data System (ADS)

    Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.

    1989-09-01

    A new application of a long fiber-optic delay line as a radar repeater in a radar test set is described. The experimental 31.6-kilometer fiber-optic link includes an external modulator operating with a distributed-feedback laser and low-loss single-mode fiber matched to the laser wavelength to obtain low dispersion for achieving large bandwidth-length performance. The successful tests, in which pulse compression peak sidelobe measurements are used to confirm the link RF phase linearity and SNR performance, show that fiber-optic links can meet the stringent phase and noise requirements of modern radars at high microwave frequencies.

  14. Trade-off Analysis of Underwater Acoustic Sensor Networks

    NASA Astrophysics Data System (ADS)

    Tuna, G.; Das, R.

    2017-09-01

    In the last couple of decades, Underwater Acoustic Sensor Networks (UASNs) were started to be used for various commercial and non-commercial purposes. However, in underwater environments, there are some specific inherent constraints, such as high bit error rate, variable and large propagation delay, limited bandwidth capacity, and short-range communications, which severely degrade the performance of UASNs and limit the lifetime of underwater sensor nodes as well. Therefore, proving reliability of UASN applications poses a challenge. In this study, we try to balance energy consumption of underwater acoustic sensor networks and minimize end-to-end delay using an efficient node placement strategy. Our simulation results reveal that if the number of hops is reduced, energy consumption can be reduced. However, this increases end-to-end delay. Hence, application-specific requirements must be taken into consideration when determining a strategy for node deployment.

  15. The biological acoustic sensor to record the interactions of the microbial cells with the phage antibodies in conducting suspensions.

    PubMed

    Guliy, О I; Zaitsev, B D; Borodina, I A; Shikhabudinov, А М; Teplykh, A A; Staroverov, S A; Fomin, A S

    2018-02-01

    The acoustic biological sensor for the analysis of the bacterial cells in conducting suspension was developed. The sensor represented the two channel delay line based on the piezoelectric plate of Y-X lithium niobate thick of 0.2mm. Two pairs of the interdigital transducers (IDT) for the excitation and reception of shear horizontal acoustic wave of zero order (SH 0 ) in each channel were deposited by the method of photolithography. One channel of the delay line was electrically shorted by the deposition of thin aluminum film between IDTs. The second channel remained as electrically open. The liquid container with the volume of 5ml was fixed on the plate surface between IDTs by the glue, which did not cause the additional insertion loss. For the first time the influence of the conductivity of the cell suspension on the registration of the specific and nonspecific interactions of the bacterial cells with phage-antibodies (phage-Abs) was studied by means of the developed sensor. The dependencies of the change in insertion loss and phase of the output signal on the conductivity of the buffer solution at specific/nonspecific interactions for the electrically open and shorted channels of the delay line were obtained. It was shown that the sensor successfully registered the interactions of microbial cells with phage-Abs in the range of the conductivity of 2-20 μS/cm on the model samples A. brasilense Sp245 - specific phage-Abs. The sensor in the time regime of the operation fast reacted on the specific/nonspecific interaction and the time of the stabilization of the output parameters did not exceed 10min. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults

    PubMed Central

    Keefe, Douglas H.; Hunter, Lisa L.; Feeney, M. Patrick; Fitzpatrick, Denis F.

    2015-01-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function. PMID:26723319

  17. Development of chipless, wireless current sensor system based on giant magnetoimpedance magnetic sensor and surface acoustic wave transponder.

    PubMed

    Kondalkar, Vijay V; Li, Xiang; Park, Ikmo; Yang, Sang Sik; Lee, Keekeun

    2018-02-05

    A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.

  18. Detection and display of acoustic window for guiding and training cardiac ultrasound users

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Wen; Radulescu, Emil; Wang, Shougang; Thiele, Karl; Prater, David; Maxwell, Douglas; Rafter, Patrick; Dupuy, Clement; Drysdale, Jeremy; Erkamp, Ramon

    2014-03-01

    Successful ultrasound data collection strongly relies on the skills of the operator. Among different scans, echocardiography is especially challenging as the heart is surrounded by ribs and lung tissue. Less experienced users might acquire compromised images because of suboptimal hand-eye coordination and less awareness of artifacts. Clearly, there is a need for a tool that can guide and train less experienced users to position the probe optimally. We propose to help users with hand-eye coordination by displaying lines overlaid on B-mode images. The lines indicate the edges of blockages (e.g., ribs) and are updated in real time according to movement of the probe relative to the blockages. They provide information about how probe positioning can be improved. To distinguish between blockage and acoustic window, we use coherence, an indicator of channel data similarity after applying focusing delays. Specialized beamforming was developed to estimate coherence. Image processing is applied to coherence maps to detect unblocked beams and the angle of the lines for display. We built a demonstrator based on a Philips iE33 scanner, from which beamsummed RF data and video output are transferred to a workstation for processing. The detected lines are overlaid on B-mode images and fed back to the scanner display to provide users real-time guidance. Using such information in addition to B-mode images, users will be able to quickly find a suitable acoustic window for optimal image quality, and improve their skill.

  19. Implementation of Nonlinear Control Laws for an Optical Delay Line

    NASA Technical Reports Server (NTRS)

    Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard

    2000-01-01

    This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.

  20. Development of an Acoustic Sensor for On-Line Gas Temperature Measurement in Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn; Hans Hornung

    2006-01-15

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2-Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. Since 1989 the U.S. Department of Energy has supported development of advanced coal gasification technology. The Wabash River and TECO IGCC demonstration projects supported by the DOE have demonstrated the ability of these plantsmore » to achieve high levels of energy efficiency and extremely low emissions of hazardous pollutants. However, a continuing challenge for this technology is the tradeoff between high carbon conversion which requires operation with high internal gas temperatures, and limited refractory life which is exacerbated by those high operating temperatures. Attempts to control internal gas temperature so as to operate these gasifiers at the optimum temperature have been hampered by the lack of a reliable technology for measuring internal gas temperatures. Thermocouples have serious survival problems and provide useful temperature information for only a few days or weeks after startup before burning out. For this reason, the Department of Energy has funded several research projects to develop more robust and reliable temperature measurement approaches for use in coal gasifiers. Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. Acoustic pyrometry provides several significant advantages for gas temperature measurement in hostile process environments. First, it is non-intrusive so survival of the measurement components

  1. Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays.

    PubMed

    Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng

    2015-03-01

    This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman

    2010-08-20

    We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excessmore » appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).« less

  3. 1998 Physical Acoustics Summer School (PASS 98). Volume III: Background Materials.

    DTIC Science & Technology

    1998-01-01

    propagating hydrodynamic soliton ■ Shock waves, N waves, and sound eating sound ■ Acoustic Bernoulli effect ■ Acoustic levitation ■ Acoustic match ...cess. The resulting saturation values are given in the diagrams and nicely match the values given in (10). Delay reconstructions using the experimen...VOLUME 47, NUMBER 20 PHYSICAL REVIEW LETTERS 16 NOVEMBER 1981 oscillations of the driving sound field match three oscillations of the natural

  4. Hyperglycaemia and ketosis in a non-diabetic patient--an unusual cause of delayed recovery.

    PubMed

    Pawar, Sundeep T; Nath, Soumya S; Ansari, Farrukh

    2014-01-01

    We report a case of hyperglycaemia and ketosis developing in a non-diabetic patient who underwent a neurosurgical procedure under general anaesthesia. A 52-year-old non-diabetic female patient underwent excision of acoustic neuroma under general anaesthesia. Pancreatic function was not disturbed and she received a single dose of dexamethasone (8 mg) and paracetamol (1 g). Delayed recovery from anaesthesia occurred. On investigation, she was found to have hyperglycaemia and ketosis. She was further managed on the line of diabetic ketoacidosis. After 24 hours, when blood glucose had normalised and ketosis abated, she could be weaned from mechanical ventilation and extubated. The patient did not receive any drugs known to cause such a condition. To the best of our knowledge, hyperglycaemia and ketosis developing in a non-diabetic patient causing delayed recovery and extubation is here reported for the first time.

  5. Acoustic attenuation design requirements established through EPNL parametric trades

    NASA Technical Reports Server (NTRS)

    Veldman, H. F.

    1972-01-01

    An optimization procedure for the provision of an acoustic lining configuration that is balanced with respect to engine performance losses and lining attenuation characteristics was established using a method which determined acoustic attenuation design requirements through parametric trade studies using the subjective noise unit of effective perceived noise level (EPNL).

  6. Delay-and-sum beamforming for direction of arrival estimation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2011-06-01

    Sniper positioning systems described in the literature use a two-step algorithm to estimate the sniper's location. First, the shockwave and the muzzle blast acoustic signatures must be detected and recognized, followed by an estimation of their respective direction-of-arrival (DOA). Second, the actual sniper's position is calculated based on the estimated DOA via an iterative algorithm that varies from system to system. The overall performance of such a system, however, is highly compromised when the first step is not carried out successfully. Currently available systems rely on a simple calculation of differences of time-of-arrival to estimate angles-of-arrival. This approach, however, lacks robustness by not taking full advantage of the array of sensors. This paper shows how the delay-and-sum beamforming technique can be applied to estimate the DOA for both the shockwave and the muzzle blast. The method has the twofold advantage of 1) adding an array gain of 10 logM, i.e., an increased SNR of 6 dB for a 4-microphone array, which is equivalent to doubling the detection range assuming free-field propagation; and 2) offering improved robustness in handling single- and multi-shots events as well as reflections by taking advantage of the spatial filtering capability.

  7. Acoustic echo cancellation for full-duplex voice transmission on fading channels

    NASA Technical Reports Server (NTRS)

    Park, Sangil; Messer, Dion D.

    1990-01-01

    This paper discusses the implementation of an adaptive acoustic echo canceler for a hands-free cellular phone operating on a fading channel. The adaptive lattice structure, which is particularly known for faster convergence relative to the conventional tapped-delay-line (TDL) structure, is used in the initialization stage. After convergence, the lattice coefficients are converted into the coefficients for the TDL structure which can accommodate a larger number of taps in real-time operation due to its computational simplicity. The conversion method of the TDL coefficients from the lattice coefficients is derived and the DSP56001 assembly code for the lattice and TDL structure is included, as well as simulation results and the schematic diagram for the hardware implementation.

  8. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    NASA Technical Reports Server (NTRS)

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  9. Line-Focused Optical Excitation of Parallel Acoustic Focused Sample Streams for High Volumetric and Analytical Rate Flow Cytometry.

    PubMed

    Kalb, Daniel M; Fencl, Frank A; Woods, Travis A; Swanson, August; Maestas, Gian C; Juárez, Jaime J; Edwards, Bruce S; Shreve, Andrew P; Graves, Steven W

    2017-09-19

    Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 μL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.

  10. High-speed line-scan camera with digital time delay integration

    NASA Astrophysics Data System (ADS)

    Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert

    2007-02-01

    Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.

  11. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  12. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  13. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  14. Distortion management in slow-light pulse delay.

    PubMed

    Stenner, Michael D; Neifeld, Mark A; Zhu, Zhaoming; Dawes, Andrew M C; Gauthier, Daniel J

    2005-12-12

    We describe a methodology to maximize slow-light pulse delay subject to a constraint on the allowable pulse distortion. We show that optimizing over a larger number of physical variables can increase the distortion-constrained delay. We demonstrate these concepts by comparing the optimum slow-light pulse delay achievable using a single Lorentzian gain line with that achievable using a pair of closely-spaced gain lines. We predict that distortion management using a gain doublet can provide approximately a factor of 2 increase in slow-light pulse delay as compared with the optimum single-line delay. Experimental results employing Brillouin gain in optical fiber confirm our theoretical predictions.

  15. Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay.

    PubMed

    Zhong, Xuefeng; Chen, Fangjiong; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua

    2018-01-16

    Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter-receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter-receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity.

  16. Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay

    PubMed Central

    Zhong, Xuefeng; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua

    2018-01-01

    Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter–receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter–receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity. PMID:29337911

  17. Love-type surface acoustic wave on Y-X LiTaO3 with amorphous Ta2O5 thin film

    NASA Astrophysics Data System (ADS)

    Kakio, Shoji; Fukasawa, Haruka; Hosaka, Keiko

    2015-07-01

    In this study, to obtain a substrate structure with a lower phase velocity, the propagation properties of a Love-type surface acoustic wave (Love SAW) on Y-X LiTaO3 (LT) with an amorphous tantalum pentoxide (a-Ta2O5) thin film were investigated using a simple delay line and a resonator with a wavelength λ of 8 µm. The insertion loss of a simple delay line was decreased markedly by loading with an a-Ta2O5 film owing to a transformation from a leaky SAW (LSAW) to a non-leaky Love SAW. A phase velocity of 3,340 m/s, a coupling factor of 5.8%, and a propagation loss of 0.03 dB/λ were obtained for a normalized thickness h/λ of 0.120. Moreover, the resonance properties of the Love SAW were almost equal or superior to those for an LSAW on Al/36° Y-X LT, except for the fractional bandwidth.

  18. Control of operating parameters of laser ceilometers with the application of fiber optic delay line imitation

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Klochkov, D. V.; Konyaev, M. A.; Mihaylenko, A. S.

    2017-11-01

    The article considers the problem of control and verification of the laser ceilometers basic performance parameters and describes an alternative method based on the use of multi-length fiber optic delay line, simulating atmospheric track. The results of the described experiment demonstrate the great potential of this method for inspection and verification procedures of laser ceilometers.

  19. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  20. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    PubMed

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  1. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  2. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use

  3. Achieving Bidirectional Long Delays In Pulmonary Vein Antral Lines Prior To Bidirectional Block In Patients With Paroxysmal Atrial Fibrillation (The Bi-Bi Technique For Atrial Fibrillation Ablation).

    PubMed

    Mina, Adel F; Warnecke, Nicholas L

    2016-01-01

    Background: Pulmonary Vein Antral isolation (PVAI) is currently the standard of care for both paroxysmal and persistent atrial fibrillation ablation. Reconnection to the pulmonary vein is the most common cause of recurrence of atrial fibrillation. Achieving the endpoint of bidirectional block (BDB) for cavotricuspid isthmus dependant flutter has improved our outcomes for atrial flutter ablation. With this we tried to achieve long delays in the pulmonary veins antral lines prior to complete isolation comparable to those delays found in patient with bidirectional block of atrial flutter lines. Study Objective: The objective of this paper was to evaluate feasibility and efficacy of achieving Bidirectional long delays in pulmonary vein antral lines prior to Bidirectional Block in patient with paroxysmal atrial fibrillation. Method: A retrospective analysis was performed on patients who had paroxysmal atrial fibrillation procedures at Unity Point Methodist from January 2015 to January 2016. 20 consecutive patients with paroxysmal atrial fibrillation who had AF ablation using the Bi-Bi technique were evaluated. Result: Mean age was 63, number of antiarrhythmic used prior to ablation was 1.4, mean left atrial size was 38 mm. Mean chads score was 1.3. Mean EF was 53%. Long delays in the left antral circumferential lines were achieved with mean delay of 142 milliseconds +/-100. Also long delays in the right antral circumferential lines were achieved with mean delay of 150 milliseconds +/-80. 95 % (19/20) of patients were free of any atrial arrhythmias and were off antiarrhythmic medications for AF post procedure. There was only one transient complication in one patient who developed a moderate pericardial effusion that was successfully drained with no hemodynamic changes. The only patient who had recurrence was found to have asymptomatic AF with burden on his device <1%, this patient was also found to have non PV triggers for his AF. In patients with only PV triggered AF

  4. Range-dependence of acoustic channel with traveling sinusoidal surface wave.

    PubMed

    Choo, Youngmin; Seong, Woojae; Lee, Keunhwa

    2014-04-01

    Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.

  5. Material and Phonon Engineering for Next Generation Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Kuo, Nai-Kuei

    This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra

  6. Detecting Structural Failures Via Acoustic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Joshi, Sanjay S.

    1995-01-01

    Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.

  7. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays.

    PubMed

    Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian

    2018-03-30

    To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  8. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    PubMed Central

    Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian

    2018-01-01

    To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region. PMID:29601537

  9. A comparison of matrix methods for calculating eigenvalues in acoustically lined ducts

    NASA Technical Reports Server (NTRS)

    Watson, W.; Lansing, D. L.

    1976-01-01

    Three approximate methods - finite differences, weighted residuals, and finite elements - were used to solve the eigenvalue problem which arises in finding the acoustic modes and propagation constants in an absorptively lined two-dimensional duct without airflow. The matrix equations derived for each of these methods were solved for the eigenvalues corresponding to various values of wall impedance. Two matrix orders, 20 x 20 and 40 x 40, were used. The cases considered included values of wall admittance for which exact eigenvalues were known and for which several nearly equal roots were present. Ten of the lower order eigenvalues obtained from the three approximate methods were compared with solutions calculated from the exact characteristic equation in order to make an assessment of the relative accuracy and reliability of the three methods. The best results were given by the finite element method using a cubic polynomial. Excellent accuracy was consistently obtained, even for nearly equal eigenvalues, by using a 20 x 20 order matrix.

  10. Langasite surface acoustic wave gas sensors: modeling and verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave modemore » and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.« less

  11. 75 FR 78928 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Advisories may also be issued when lake ice exists that could be hazardous to small boats. Although river...-AA17 Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective... Lake Michigan. This rule finalized interim regulations that have been in effect since 2002, with some...

  12. Numerical emulation of Thru-Reflection-Line calibration for the de-embedding of Surface Acoustic Wave devices.

    PubMed

    Mencarelli, D; Djafari-Rouhani, B; Pennec, Y; Pitanti, A; Zanotto, S; Stocchi, M; Pierantoni, L

    2018-06-18

    In this contribution, a rigorous numerical calibration is proposed to characterize the excitation of propagating mechanical waves by interdigitated transducers (IDTs). The transition from IDT terminals to phonon waveguides is modeled by means of a general circuit representation that makes use of Scattering Matrix (SM) formalism. In particular, the three-step calibration approach called the Thru-Reflection-Line (TRL), that is a well-established technique in microwave engineering, has been successfully applied to emulate typical experimental conditions. The proposed procedure is suitable for the synthesis/optimization of surface-acoustic-wave (SAW) based devices: the TRL calibration allows to extract/de-embed the acoustic component, namely resonator or filter, from the outer IDT structure, regardless of complexity and size of the letter. We report, as a result, the hybrid scattering parameters of the IDT transition to a mechanical waveguide formed by a phononic crystal patterned on a piezoelectric AlN membrane, where the effect of a discontinuity from periodic to uniform mechanical waveguide is also characterized. In addition, to ensure the correctness of our numerical calculations, the proposed method has been validated by independent calculations.

  13. Imitation of contrastive lexical stress in children with speech delay

    NASA Astrophysics Data System (ADS)

    Vick, Jennell C.; Moore, Christopher A.

    2005-09-01

    This study examined the relationship between acoustic correlates of stress in trochaic (strong-weak), spondaic (strong-strong), and iambic (weak-strong) nonword bisyllables produced by children (30-50) with normal speech acquisition and children with speech delay. Ratios comparing the acoustic measures (vowel duration, rms, and f0) of the first syllable to the second syllable were calculated to evaluate the extent to which each phonetic parameter was used to mark stress. In addition, a calculation of the variability of jaw movement in each bisyllable was made. Finally, perceptual judgments of accuracy of stress production were made. Analysis of perceptual judgments indicated a robust difference between groups: While both groups of children produced errors in imitating the contrastive lexical stress models (~40%), the children with normal speech acquisition tended to produce trochaic forms in substitution for other stress types, whereas children with speech delay showed no preference for trochees. The relationship between segmental acoustic parameters, kinematic variability, and the ratings of stress by trained listeners will be presented.

  14. Short-term retention of pictures and words as a function of type of distraction and length of delay interval.

    PubMed

    Pellegrino, J W; Siegel, A W; Dhawan, M

    1976-01-01

    Picture and word triads were tested in a Brown-Peterson short-term retention task at varying delay intervals (3, 10, or 30 sec) and under acoustic and simultaneous acoustic and visual distraction. Pictures were superior to words at all delay intervals under single acoustic distraction. Dual distraction consistently reduced picture retention while simultaneously facilitating word retention. The results were interpreted in terms of the dual coding hypothesis with modality-specific interference effects in the visual and acoustic processing systems. The differential effects of dual distraction were related to the introduction of visual interference and differential levels of functional acoustic interference across dual and single distraction tasks. The latter was supported by a constant 2/1 ratio in the backward counting rates of the acoustic vs. dual distraction tasks. The results further suggest that retention may not depend on total processing load of the distraction task, per se, but rather that processing load operates within modalities.

  15. Coherent correlator and equalizer using a reconfigurable all-optical tapped delay line.

    PubMed

    Chitgarha, Mohammad Reza; Khaleghi, Salman; Yilmaz, Omer F; Tur, Moshe; Haney, Michael W; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2013-07-01

    We experimentally demonstrate a reconfigurable optical tapped delay line in conjunction with coherent detection to search multiple patterns among quadrature phase shift keying (QPSK) symbols in 20 Gbaud data channel and also to equalize 20 and 31 Gbaud QPSK, 20 Gbaud 8 phase shift keying (PSK), and 16 QAM signals. Multiple patterns are searched successfully on QPSK signals, and correlation peaks are obtained at the matched patterns. QPSK, 8 PSK, and 16 QAM signals are also successfully recovered after 25 km of SMF-28 with average EVMs of 8.3%, 8.9%, and 7.8%. A penalty of <1 dB optical signal to noise penalty is achieved for a 20 Gbaud QPSK signal distorted by up to 400  ps/nm dispersion.

  16. Titanium honeycomb acoustic lining structural and thermal test report. [for acoustic tailpipe for JT8D engine

    NASA Technical Reports Server (NTRS)

    Joynes, D.; Balut, J. P.

    1974-01-01

    The results are presented of static, fatigue and thermal testing of titanium honeycomb acoustic panels representing the acoustic tailpipe for the Pratt and Whitney Aircraft JT8D Refan engine which is being studied for use on the Boeing 727-200 airplane. Test specimens represented the engine and tailpipe flange joints, the rail to which the thrust reverser is attached and shear specimens of the tailpipe honeycomb. Specimens were made in four different batches with variations in configuration, materials and processes in each. Static strength of all test specimens exceeded the design ultimate load requirements. Fatigue test results confirmed that aluminum brazed titanium, as used in the Refan tailpipe design, meets the fatigue durability objectives. Quality of welding was found to be critical to life, with substandard welding failing prematurely, whereas welding within the process specification exceeded the panel skin life. Initial fatigue testing used short grip length bolts which failed prematurely. These were replaced with longer bolts and subsequent testing demonstrated the required life. Thermal tests indicate that perforated skin acoustic honeycomb has approximately twice the heat transfer of solid skin honeycomb.

  17. Design and performance of duct acoustic treatment

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.

    1991-01-01

    The procedure for designing acoustic treatment panels used to line the walls of aircraft engine ducts and for estimating the resulting suppression of turbofan engine duct noise is discussed. This procedure is intended to be used for estimating noise suppression of existing designs or for designing new acoustic treatment panels and duct configurations to achieve desired suppression levels.

  18. Effect of acoustic similarity on short-term auditory memory in the monkey

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2013-01-01

    Recent evidence suggests that the monkey’s short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey’s performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample’s trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. PMID:23376550

  19. Effect of acoustic similarity on short-term auditory memory in the monkey.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2013-04-01

    Recent evidence suggests that the monkey's short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey's performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample's trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  1. Present status, future prospects of domestic acoustical instruments

    NASA Astrophysics Data System (ADS)

    Guibin, L.

    1984-01-01

    The product lines, specifications, and special features of China's main acoustical instrument products are described. The methods of operation nd the main problems associated with these products are discussed. Examples of the application of acoustical instruments are given. The main features of a digital signal analyzer are enumerated.

  2. On-line surveillance of lubricants in bearings by means of surface acoustic waves.

    PubMed

    Lindner, Gerhard; Schmitt, Martin; Schubert, Josephine; Krempel, Sandro; Faustmann, Hendrik

    2010-01-01

    The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.

  3. Acoustic method of investigating the material properties and humidity sensing behavior of polymer coated piezoelectric substrates

    NASA Astrophysics Data System (ADS)

    Caliendo, Cinzia

    2006-09-01

    The relative humidity (RH) sensing behavior of a polymeric film was investigated by means of polymer coated surface acoustic wave (SAW) delay lines implemented on single crystal piezoelectric substrates, such as quartz and LiNbO3, and on thin piezoelectric polycrystalline films, such as ZnO and AlN, on Si and GaAs. The same SAW delay line configuration was implemented on each substrate and the obtained devices' operating frequency was in the range of 105-156MHz, depending on the type of the substrate, on its crystallographic orientation, and on the SAW propagation direction. The surface of each SAW device was covered by the same type RH sensitive film of the same thickness and the RH sensitivity of each polymer coated substrate, i.e., the SAW relative phase velocity shift per RH unit changes, was investigated in the 0%—80% RH range. The perturbational approach was used to relate the SAW sensor velocity response to the RH induced changes in the physical parameters of the sensitive polymer film: the incremental change in the mass density and shear modulus of the polymer film per unit RH change were estimated. The shift of the bare SAW delay lines operating frequency induced by the presence of the polymer film, at RH =0% and at T =-10°C, allowed the experimental estimation of the mass sensitivity values of each substrate. These values were in good accordance with those reported in the literature and with those theoretically evaluated by exact numerical calculation. The shift of the bare SAW delay lines propagation loss induced by the polymer coating of the device surface, at RH =0% and at ambient temperature, allowed the experimental estimation of the elastic sensitivity of each substrate. These values were found in good accordance with those available from the literature. The temperature coefficient of delay and the electromechanical coupling coefficient of the bare substrates were also estimated. The membrane sensitivity to ethanol, methanol and isopropylic

  4. Efficient laser noise reduction method via actively stabilized optical delay line.

    PubMed

    Li, Dawei; Qian, Cheng; Li, Ye; Zhao, Jianye

    2017-04-17

    We report a fiber laser noise reduction method by locking it to an actively stabilized optical delay line, specifically a fiber-based Mach-Zehnder interferometer with a 10 km optical fiber spool. The fiber spool is used to achieve large arm imbalance. The heterodyne signal of the two arms converts the laser noise from the optical domain to several megahertz, and it is used in laser noise reduction by a phase-locked loop. An additional phase-locked loop is induced in the system to compensate the phase noise due to environmentally induced length fluctuations of the optical fiber spool. A major advantage of this structure is the efficient reduction of out-of-loop frequency noise, particularly at low Fourier frequency. The frequency noise reaches -30 dBc/Hz at 1 Hz, which is reduced by more than 90 dB compared with that of the laser in its free-running state.

  5. Delay Line Detectors for the UVCS and Sumer Instruments on the SOHO Satellite

    NASA Technical Reports Server (NTRS)

    Seigmund, O. H. W.; Stock, J. M.; Marsh, D. R.; Gummin, M. A.; Raffanti, R.; Hull, J.; Gaines, G. A.; Welsh, B.; Donakowski, B.; Jelinsky, P.; hide

    1994-01-01

    Microchannel plate based detectors with cross delay line image readout have been rapidly implemented for the SUMER and UVCS instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in July 1995. In October 1993 a fast track program to build and characterize detectors and detector control electronics was initiated. We present the detector system design for the SOHO UVCS and SUMER detector programs, and results from the detector test program. Two deliverable detectors have been built at this point, a demonstration model for UVCS, and the flight Ly alpha detector for UVCS, both of which are to be delivered in the next few weeks. Test results have also been obtained with one other demonstration detector system. The detector format is 26mm x 9mm, with 1024 x 360 digitized pixels, using a low resistance Z stack of microchannel plates (MCP's) and a multilayer cross delay line anode (XDL). This configuration provides gains of approximately 2 x 10(exp 7) with good pulse height distributions (less than 50% FWHM) under uniform flood illumination, and background levels typical for this configuration (approximately 0.6 event cm (exp -2)sec(exp -1)). Local counting rates up to about 400 events/pixel/sec have been achieved with no degradation of the MCP gain. The detector and event encoding electronics achieves about 25 millimeter FVHM with good linearity (plus or minus approximately 1 pixel) and is stable to high global counting rates (greater than 4 x 10(exp 5) events sec(exp -1)). Flat field images are dominated by MCP fixed pattern noise and are stable, but the MCP multifiber modulation usually expected is uncharacteristically absent. The detector and electronics have also successfully passed both thermal vacuum and vibration tests.

  6. Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback

    NASA Astrophysics Data System (ADS)

    Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro

    2016-10-01

    This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.

  7. Experimental Realization of a Reflections-Free Compact Delay Line Based on a Photonic Topological Insulator

    PubMed Central

    Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady

    2016-01-01

    Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium’s electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices. PMID:27345575

  8. Reader Architectures for Wireless Surface Acoustic Wave Sensors.

    PubMed

    Lurz, Fabian; Ostertag, Thomas; Scheiner, Benedict; Weigel, Robert; Koelpin, Alexander

    2018-05-28

    Wireless surface acoustic wave (SAW) sensors have some unique features that make them promising for industrial metrology. Their decisive advantage lies in their purely passive operation and the wireless readout capability allowing the installation also at particularly inaccessible locations. Furthermore, they are small, low-cost and rugged components on highly stable substrate materials and thus particularly suited for harsh environments. Nevertheless, a sensor itself does not carry out any measurement but always requires a suitable excitation and interrogation circuit: a reader. A variety of different architectures have been presented and investigated up to now. This review paper gives a comprehensive survey of the present state of reader architectures such as time domain sampling (TDS), frequency domain sampling (FDS) and hybrid concepts for both SAW resonators and reflective SAW delay line sensors. Furthermore, critical performance parameters such as measurement accuracy, dynamic range, update rate, and hardware costs of the state of the art in science and industry are presented, compared and discussed.

  9. Single-photon imager based on a superconducting nanowire delay line

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; Zhu, Di; Calandri, Niccolò; Dane, Andrew E.; McCaughan, Adam N.; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F.; Berggren, Karl K.

    2017-03-01

    Detecting spatial and temporal information of individual photons is critical to applications in spectroscopy, communication, biological imaging, astronomical observation and quantum-information processing. Here we demonstrate a scalable single-photon imager using a single continuous superconducting nanowire that is not only a single-photon detector but also functions as an efficient microwave delay line. In this context, photon-detection pulses are guided in the nanowire and enable the readout of the position and time of photon-absorption events from the arrival times of the detection pulses at the nanowire's two ends. Experimentally, we slowed down the velocity of pulse propagation to ∼2% of the speed of light in free space. In a 19.7 mm long nanowire that meandered across an area of 286 × 193 μm2, we were able to resolve ∼590 effective pixels with a temporal resolution of 50 ps (full width at half maximum). The nanowire imager presents a scalable approach for high-resolution photon imaging in space and time.

  10. Acoustic metric of the compressible draining bathtub

    NASA Astrophysics Data System (ADS)

    Cherubini, C.; Filippi, S.

    2011-10-01

    The draining bathtub flow, a cornerstone in the theory of acoustic black holes, is here extended to the case of exact solutions for compressible nonviscous flows characterized by a polytropic equation of state. Investigating the analytical configurations obtained for selected values of the polytropic index, it is found that each of them becomes nonphysical at the so called limiting circle. By studying the null geodesics structure of the corresponding acoustic line elements, it is shown that such a geometrical locus coincides with the acoustic event horizon. This region is characterized also by an infinite value of space-time curvature, so the acoustic analogy breaks down there. Possible applications for artificial and natural vortices are finally discussed.

  11. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    PubMed

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  12. Acoustic emission beamforming for enhanced damage detection

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2008-03-01

    As civil infrastructure ages, the early detection of damage in a structure becomes increasingly important for both life safety and economic reasons. This paper describes the analysis procedures used for beamforming acoustic emission techniques as well as the promising results of preliminary experimental tests on a concrete bridge deck. The method of acoustic emission offers a tool for detecting damage, such as cracking, as it occurs on or in a structure. In order to gain meaningful information from acoustic emission analyses, the damage must be localized. Current acoustic emission systems with localization capabilities are very costly and difficult to install. Sensors must be placed throughout the structure to ensure that the damage is encompassed by the array. Beamforming offers a promising solution to these problems and permits the use of wireless sensor networks for acoustic emission analyses. Using the beamforming technique, the azmuthal direction of the location of the damage may be estimated by the stress waves impinging upon a small diameter array (e.g. 30mm) of acoustic emission sensors. Additional signal discrimination may be gained via array processing techniques such as the VESPA process. The beamforming approach requires no arrival time information and is based on very simple delay and sum beamforming algorithms which can be easily implemented on a wireless sensor or mote.

  13. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuuring, Janneke; Department of Neurology, Groene Hart Hospital, Gouda; Bussink, Johan

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, whenmore » combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.« less

  14. Modal processing for acoustic communications in shallow water experiment.

    PubMed

    Morozov, Andrey K; Preisig, James C; Papp, Joseph

    2008-09-01

    Acoustical array data from the Shallow Water Acoustics experiment was processed to show the feasibility of broadband mode decomposition as a preprocessing method to reduce the effective channel delay spread and concentrate received signal energy in a small number of independent channels. The data were collected by a vertical array designed at the Woods Hole Oceanographic Institution. Phase-shift Keying (PSK) m-sequence modulated signals with different carrier frequencies were transmitted at a distance 19.2 km from the array. Even during a strong internal waves activity a low bit error rate was achieved.

  15. Power cepstrum technique with application to model helicopter acoustic data

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.

    1986-01-01

    The application of the power cepstrum to measured helicopter-rotor acoustic data is investigated. A previously applied correction to the reconstructed spectrum is shown to be incorrect. For an exact echoed signal, the amplitude of the cepstrum echo spike at the delay time is linearly related to the echo relative amplitude in the time domain. If the measured spectrum is not entirely from the source signal, the cepstrum will not yield the desired echo characteristics and a cepstral aliasing may occur because of the effective sample rate in the frequency domain. The spectral analysis bandwidth must be less than one-half the echo ripple frequency or cepstral aliasing can occur. The power cepstrum editing technique is a useful tool for removing some of the contamination because of acoustic reflections from measured rotor acoustic spectra. The cepstrum editing yields an improved estimate of the free field spectrum, but the correction process is limited by the lack of accurate knowledge of the echo transfer function. An alternate procedure, which does not require cepstral editing, is proposed which allows the complete correction of a contaminated spectrum through use of both the transfer function and delay time of the echo process.

  16. A Decade of Ocean Acoustic Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    D'Spain, G. L.

    2002-12-01

    Studies of the properties of low frequency acoustic fields in the ocean continue to benefit from the use of manned, stable offshore platforms such as R/P FLIP. A major benefit is providing the at-sea stability required for deployment of extremely large aperture line arrays, line arrays composed of both acoustic motion and acoustic pressure sensors, and arrays that provide measurements in all 3 spatial dimensions. In addition, FLIP provides a high-profile (25 m) observation post with 360 deg coverage for simultaneous visual observations of marine mammals. A few examples of the scientific results that have been achieved over this past decade with ocean acoustic data collected on FLIP are presented. These results include the normal mode decomposition of earthquake T phases to study their generation and water/land coupling characteristics using a 3000 m vertical aperture hydrophone array, simultaneous vertical and horizontal directional information on the underwater sound field from line arrays of hydrophones and geophones, the strange nightime chorusing behavior of fish measured by 3D array aperture, the mirage effect caused by bathymetry changes in inversions for source location in shallow water, and the diving behavior of blue whales determined from 1D recordings of their vocalizations. Presently, FLIP serves as the central data recording platform in ocean acoustic studies using AUV's.

  17. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  18. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  19. OSO 8 observational limits to the acoustic coronal heating mechanism

    NASA Technical Reports Server (NTRS)

    Bruner, E. C., Jr.

    1981-01-01

    An improved analysis of time-resolved line profiles of the C IV resonance line at 1548 A has been used to test the acoustic wave hypothesis of solar coronal heating. It is shown that the observed motions and brightness fluctuations are consistent with the existence of acoustic waves. Specific account is taken of the effect of photon statistics on the observed velocities, and a test is devised to determine whether the motions represent propagating or evanescent waves. It is found that on the average about as much energy is carried upward as downward such that the net acoustic flux density is statistically consistent with zero. The statistical uncertainty in this null result is three orders of magnitue lower than the flux level needed to heat the corona.

  20. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  1. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces

    PubMed Central

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-01-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634

  2. Acoustic waves in the solar atmosphere at high spatial resolution. II. Measurement in the Fe I 5434 Å line

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.; Shchukina, N.

    2010-11-01

    Aims: We investigate the energy supply of the solar chromosphere by acoustic waves. Methods: A time sequence with high spatial and temporal resolution from the quiet Sun disc centre in Fe i 5434 Å (Landé factor g = 0) is analysed. We used models from a numerical simulation of granular convection and apply NLTE spectral line transfer to determine the height of formation. For estimates of acoustic energy flux, we adopted wave propagation with inclinations of the wave vector with respect to the vertical of 0°, 30°, and 45°. For a granular and an intergranular model, the transmissions of the atmosphere to high-frequency waves were determined for the three inclination angles. Wavelet and Fourier analyses were performed and the resulting power spectra were corrected for atmospheric transmission. Results: We find waves with periods down to ~40 s. They occur intermittently in space and time. The velocity signal is formed at a height of 500 km in the granular model and at 620 km in the intergranule. At periods shorter than the acoustic cutoff (~190 s), ~40% of the waves occur above granules and ~60% above intergranules. By adopting vertical propagation, we estimate total fluxes above granules of 2750-3360 W m-2, and of 910-1 000 W m-2 above intergranules. The weighted average is 1730-2 060 W m-2. The estimates of the total fluxes increase by 15% when inclined wave propagation of 45° is assumed.

  3. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    NASA Astrophysics Data System (ADS)

    Ageron, M.; Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F.; Aslanides, E.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Basa, S.; Battaglieri, M.; Bazzotti, M.; Becherini, Y.; Béthoux, N.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Coail, J.-Y.; Colnard, C.; Compére, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; Debonis, G.; de Marzo, C.; de Vita, R.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessa, J.-X.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Fiorello, C.; Flaminio, V.; Fratini, K.; Fuda, J.-L.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Guilloux, F.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Katz, U.; Keller, P.; Kneib, J. P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Lambard, G.; Languillat, J. C.; Laschinsky, H.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lefévre, D.; Legou, T.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loaec, G.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Mangano, S.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; Megna, R.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Noble, A.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H. Z.; Perez, A.; Petta, C.; Piattelli, P.; Pillet, R.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; Regnier, M.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Rusydi, G.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Urbano, F.; Valdy, P.; Valente, V.; Vallage, B.; Vaudaine, G.; Venekamp, G.; Verlaat, B.; Vernin, P.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2007-11-01

    A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented.

  4. Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity

    NASA Astrophysics Data System (ADS)

    Manohar, Greeshma

    Surface acoustic wave sensors have been a focus of active research for many years. Its ability to respond for surface perturbation is a basic principle for its sensing capability. Sensitivity to surface perturbation changes with every inter-digital transducer (IDT) design parameters, substrate selection, metallization choice and technique, delay line length and working environment. In this thesis, surface acoustic wave (SAW) sensors are designed and characterized to improve sensitivity and reduce loss. To quantify the improvements with a specific design configuration, the sensors are employed to measure temperature. Four SAW sensors design configurations, namely bi-directional, split electrode, single phase unidirectional transducer (SPUDT) and metal grating on delay line (shear transvers wave sensors) are designed and then fabricated in Nanotechnology Research and Education Center (NREC) facility using traditional MEMS fabrication processes Additionally, sensors are then coated with guiding layer SU8-2035 of 40µm using spin coating and SiO 2 of 6µm using plasma enhanced chemical vapor deposition (PECVD) process. Sensors are later diced and tested for every 5°C increment using network analyzer for temperature ranging from 30°C±0.5°C to 80°C±0.5°C. Data acquired from network analyzer is analyzed using plot of logarithmic magnitude, phase and frequency shift. Furthermore, to investigate the effect of metallization technique on the sensor performance, sensors are also fabricated on substrates that were metallized at a commercial MEMS foundry. All in-house and outside sputtered sensor configurations are compared to investigate quality of sputtered metal on wafer. One with better quality sputtered metal is chosen for further study. Later sensors coated with SU8 and SiO2 as guiding layer are compared to investigate effect of each waveguide on sensors and determine which waveguide offers better performance. The results showed that company sputtered sensors have

  5. Singer's preferred acoustic condition in performance in an opera house and self-perception of the singer's voice

    NASA Astrophysics Data System (ADS)

    Noson, Dennis; Kato, Kosuke; Ando, Yoichi

    2004-05-01

    Solo singers have been shown to over estimate the relative sound pressure level of a delayed, external reproduction of their own voice, singing single syllables, which, in turn, appears to influence the preferred delay of simulated stage reflections [Noson, Ph.D. thesis, Kobe University, 2003]. Bone conduction is thought to be one factor separating singer versus instrumental performer judgments of stage acoustics. Using a parameter derived from the vocal signal autocorrelation function (ACF envelope), the changes in singer preference for delayed reflections is primarily explained by the ACF parameter, rather than internal bone conduction. An auditory model of a singer's preferred reflection delay is proposed, combining the effects of acoustical environment (reflection amplitude), bone conduction, and performer vocal overestimate, which may be applied to the acoustic design of reflecting elements in both upstage and forestage environments of opera stages. For example, soloists who characteristically underestimate external voice levels (or overestimate their own voice) should be provided shorter distances to reflective panels-irrespective of their singing style. Adjustable elements can be deployed to adapt opera houses intended for bel canto style performances to other styles. Additional examples will also be discussed. a)Now at Kumamoto Univ., Kumamoto, Japan. b)Now at: 1-10-27 Yamano Kami, Kumamoto, Japan.

  6. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    PubMed Central

    Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size. PMID:27180912

  7. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.

    PubMed

    Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-16

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  8. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.; ,

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  9. Acoustic change detection algorithm using an FM radio

    NASA Astrophysics Data System (ADS)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  10. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  11. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    DOEpatents

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  12. Comparison between design and installed acoustic characteristics of NASA Lewis 9- by 15-foot low-speed wind tunnel acoustic treatment

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Woodward, Richard P.

    1990-01-01

    The test section of the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel was acoustically treated to allow the measurement of sound under simulated free-field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and for withstanding the environmental conditions in the test section. In order to achieve the design requirements, a fibrous, bulk-absorber material was packed into removable panel sections. Each section was divided into two equal-depth layers packed with material to different bulk densities. The lower density was next to the facing of the treatment. The facing consisted of a perforated plate and screening material layered together. Sample tests for normal-incidence acoustic absorption were also conducted in an impedance tube to provide data to aid in the treatment design. Tests with no airflow, involving the measurement of the absorptive properties of the treatment installed in the 9- by 15-foot wind tunnel test section, combined the use of time-delay spectrometry with a previously established free-field measurement method. This new application of time-delay spectrometry enabled these free-field measurements to be made in nonanechoic conditions. The results showed that the installed acoustic treatment had absorption coefficients greater than 0.95 over the frequency range 250 Hz to 4 kHz. The measurements in the wind tunnel were in good agreement with both the analytical prediction and the impedance tube test data.

  13. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    PubMed

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  14. Contribution of self-motion perception to acoustic target localization.

    PubMed

    Pettorossi, V E; Brosch, M; Panichi, R; Botti, F; Grassi, S; Troiani, D

    2005-05-01

    The findings of this study suggest that acoustic spatial perception during head movement is achieved by the vestibular system, which is responsible for the correct dynamic of acoustic target pursuit. The ability to localize sounds in space during whole-body rotation relies on the auditory localization system, which recognizes the position of sound in a head-related frame, and on the sensory systems, namely the vestibular system, which perceive head and body movement. The aim of this study was to analyse the contribution of head motion cues to the spatial representation of acoustic targets in humans. Healthy subjects standing on a rotating platform in the dark were asked to pursue with a laser pointer an acoustic target which was horizontally rotated while the body was kept stationary or maintained stationary while the whole body was rotated. The contribution of head motion to the spatial acoustic representation could be inferred by comparing the gains and phases of the pursuit in the two experimental conditions when the frequency was varied. During acoustic target rotation there was a reduction in the gain and an increase in the phase lag, while during whole-body rotations the gain tended to increase and the phase remained constant. The different contributions of the vestibular and acoustic systems were confirmed by analysing the acoustic pursuit during asymmetric body rotation. In this particular condition, in which self-motion perception gradually diminished, an increasing delay in target pursuit was observed.

  15. Acoustic Prediction State of the Art Assessment

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2007-01-01

    The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction both for systems and components. These include semi-empirical, statistical, analytical, and numerical codes. System level results are shown for both aircraft and engines. Component level results are shown for a landing gear prototype, for fan broadband noise, for jet noise from a subsonic round nozzle, and for propulsion airframe aeroacoustic interactions. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.

  16. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  17. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    NASA Astrophysics Data System (ADS)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  18. Multi-carrier Communications over Time-varying Acoustic Channels

    NASA Astrophysics Data System (ADS)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  19. CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, M.; Heinzel, P.; Švanda, M.

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra ofmore » Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.« less

  20. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    signal propagation. It is determined that on a time scale of seconds, corresponding to typical periods of surface water waves, the arrival time of reflected acoustic signals from surface waves appear as striation patterns in measured data and can be accurately modelled by ray tracing. Second, changes in acoustic beam arrival angle and acoustic ray path influenced by isotherm depth oscillations are analyzed using an 8-element delay-sum beamformer. The results are compared with outputs from a two-dimensional (2-D) parabolic equation (PE) model using measured sound speed profiles (SSPs) in the water column. Using the method of beamforming on the received signal, the arrival time and angle of an acoustic beam was obtained for measured acoustic signals. It is determined that the acoustic ray path, acoustic beam intensity and angular spread are a function of vertical isotherm oscillations on a time scale of minutes and can be modeled accurately by a 2-D PE model. Third, a forward problem is introduced which uses acoustic wavefronts received on a vertical line array, 1.48 km from the source, in the lower part of the water column to infer range dependence or independence in the SSP. The matched filtering results of received acoustic wavefronts at all hydrophone depths are compared with a ray tracing routine augmented to calculate only direct path and bottom reflected signals. It is determined that the SSP range dependence can be inferred on a time scale of hours using an array of hydrophones spanning the water column. Sound speed profiles in the acoustic field were found to be range independent for 11 of the 23 hours in the measurements. A SSP cumulative reconstruction process, conducted from the seafloor to the sea surface, layer-by-layer, identifies critical segments in the SSP that define the ray path, arrival time and boundary interactions. Data-model comparison between matched filtered arrival time spread and arrival time output from the ray tracing was robust when the SSP

  1. Acoustic modes in fluid networks

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.

    1992-01-01

    Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.

  2. Superconducting Qubit (transmon) coupled to Surface Acoustic Waves (SAWs)

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Johansson, Göran

    We work on a hybrid system, which couples the transmon in circuit QED to the propagating mechanical modes of Surface Acoustic Waves (SAWs). This is an analogue of circuit QED system but replacing the microwave photons by SAW phonons. We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. We show that the giant atom can generate entangled phonon pairs, which may have applications in quantum communication. L.G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  3. My 65 years in acoustics

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.

    2004-05-01

    My entry into acoustics began as research assistant to Professor F. V. Hunt at Harvard University. I received my doctorate in 1940 and directed the Electro-Acoustic Laboratory at Harvard from October 1940 until September 1945. In 1947, I became a tenured associate professor at MIT, and, with Richard H. Bolt, formed the consulting firm Bolt and Beranek, that later included Robert B. Newman, becoming BBN. My most significant contributions before 1970 were design of wedge-lined anechoic chambers, systemization of noise reduction in ventilation systems, design of the world's largest muffler for the testing of supersonic jet engines at NASA's Lewis Laboratory in Cleveland, speech interference level, NC noise criterion curves, heading New York Port Authority's noise study that resulted in mufflers on jet aircraft, and steep aircraft climb procedures, and publishing books titled, Acoustical Measurements, Acoustics, Noise Reduction, Noise and Vibration Control, and Music, Acoustics and Architecture. As President of BBN, I supervised the formation of the group that built and operated the ARPANET (1969), which, when split in two (using TCP/IP protocol) became the INTERNET (1984). Since then, I have written two books on Concert Halls and Opera Houses and have consulted on four concert halls and an opera house.

  4. Acoustic power of a moving point source in a moving medium

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Sarris, I. I.

    1976-01-01

    The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.

  5. Acoustic contrast control in an arc-shaped area using a linear loudspeaker array.

    PubMed

    Zhao, Sipei; Qiu, Xiaojun; Burnett, Ian

    2015-02-01

    This paper proposes a method of creating acoustic contrast control in an arc-shaped area using a linear loudspeaker array. The boundary of the arc-shaped area is treated as the envelope of the tangent lines that can be formed by manipulating the phase profile of the loudspeakers in the array. When compared with the existing acoustic contrast control method, the proposed method is able to generate sound field inside an arc-shaped area and achieve a trade-off between acoustic uniformity and acoustic contrast. The acoustic contrast created by the proposed method increases while the acoustic uniformity decreases with frequency.

  6. Acoustic Sensor Network for Relative Positioning of Nodes

    PubMed Central

    De Marziani, Carlos; Ureña, Jesus; Hernandez, Álvaro; Mazo, Manuel; García, Juan Jesús; Jimenez, Ana; Rubio, María del Carmen Pérez; Álvarez, Fernando; Villadangos, José Manuel

    2009-01-01

    In this work, an acoustic sensor network for a relative localization system is analyzed by reporting the accuracy achieved in the position estimation. The proposed system has been designed for those applications where objects are not restricted to a particular environment and thus one cannot depend on any external infrastructure to compute their positions. The objects are capable of computing spatial relations among themselves using only acoustic emissions as a ranging mechanism. The object positions are computed by a multidimensional scaling (MDS) technique and, afterwards, a least-square algorithm, based on the Levenberg-Marquardt algorithm (LMA), is applied to refine results. Regarding the position estimation, all the parameters involved in the computation of the temporary relations with the proposed ranging mechanism have been considered. The obtained results show that a fine-grained localization can be achieved considering a Gaussian distribution error in the proposed ranging mechanism. Furthermore, since acoustic sensors require a line-of-sight to properly work, the system has been tested by modeling the lost of this line-of-sight as a non-Gaussian error. A suitable position estimation has been achieved even if it is considered a bias of up to 25 of the line-of-sight measurements among a set of nodes. PMID:22291520

  7. A Low Power Linear Phase Programmable Long Delay Circuit.

    PubMed

    Rodriguez-Villegas, Esther; Logesparan, Lojini; Casson, Alexander J

    2014-06-01

    A novel linear phase programmable delay is being proposed and implemented in a 0.35 μm CMOS process. The delay line consists of N cascaded cells, each of which delays the input signal by Td/N, where Td is the total line delay. The delay generated by each cell is programmable by changing a clock frequency and is also fully independent of the frequency of the input signal. The total delay hence depends only on the chosen clock frequency and the total number of cascaded cells. The minimum clock frequency is limited by the maximum time a voltage signal can effectively be held by an individual cell. The maximum number of cascaded cells will be limited by the effects of accumulated offset due to transistor mismatch, which eventually will affect the operating mode of the individual transistors in a cell. This latter limitation has however been dealt with in the topology by having an offset compensation mechanism that makes possible having a large number of cascaded cells and hence a long resulting delay. The delay line has been designed for scalp-based neural activity analysis that is predominantly in the sub-100 Hz frequency range. For these signals, the delay generated by a 31-cell cascade has been demonstrated to be programmable from 30 ms to 3 s. Measurement results demonstrate a 31 stage, 50 Hz bandwidth, 0.3 s delay that operates from a 1.1 V supply with power consumption of 270 nW.

  8. Passive acoustic localization of the Atlantic bottlenose dolphin using whistles and echolocation clicks.

    PubMed

    Freitag, L E; Tyack, P L

    1993-04-01

    A method for localization and tracking of calling marine mammals was tested under realistic field conditions that include noise, multipath, and arbitrarily located sensors. Experiments were performed in two locations using four and six hydrophones with captive Atlantic bottlenose dolphins (Tursiops truncatus). Acoustic signals from the animals were collected in the field using a digital acoustic data acquisition system. The data were then processed off-line to determine relative hydrophone positions and the animal locations. Accurate hydrophone position estimates are achieved by pinging sequentially from each hydrophone to all the others. A two-step least-squares algorithm is then used to determine sensor locations from the calibration data. Animal locations are determined by estimating the time differences of arrival of the dolphin signals at the different sensors. The peak of a matched filter output or the first cycle of the observed waveform is used to determine arrival time of an echolocation click. Cross correlation between hydrophones is used to determine inter-sensor time delays of whistles. Calculation of source location using the time difference of arrival measurements is done using a least-squares solution to minimize error. These preliminary experimental results based on a small set of data show that realistic trajectories for moving animals may be generated from consecutive location estimates.

  9. Line length dependencies in interconnect optimization

    NASA Astrophysics Data System (ADS)

    Kadoch, Daniel; Duane, Michael; Lee, Yohan

    1997-09-01

    Metal line delay has become increasingly important for ULSI devices. Numerous expressions and software tools have been developed to describe interconnect delay as a function of the geometry and layout. Although many of these formulas have line length effects, this has not been explored in depth. Most software tools are either geared towards circuit designers, or involve more complex and CPU-intensive 3D modeling. In this work, PISCES (a 2D device simulator) was used to extract metal capacitance per unit length. We extend this approach for various lengths by creating a ladder network of the RC components and simulating in SPICE, or using simple closed-form Elmore delay equations. A new key result is that there are optimum metal line width/space for a fixed pitch and height/space ratios that are metal length dependent. For metal lines shorter than about 1500 micrometers , it is better to have narrower metal lines, and for lengths less than 500 micrometers , shrinking metal height is desirable because the penalty in resistance is more than compensated by the decrease in capacitance. For longer lines, the time delay is dominated by resistance, and wider, taller lines are better. Increasing metal spacing or reducing dielectric constant were beneficial for both long and short metal lines.

  10. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.

    PubMed

    Badiey, Mohsen; Song, Aijun; Smith, Kevin B

    2012-10-01

    During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.

  11. Fuel Line Based Acoustic Flame-Out Detection System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L. (Inventor); Franke, John M. (Inventor)

    1997-01-01

    An acoustic flame-out detection system that renders a large high pressure combustor safe in the event of a flame-out and possible explosive reignition. A dynamic pressure transducer is placed in the fuel and detects the stabilizing fuel pressure oscillations, caused by the combustion process. An electric circuit converts the signal from the combustion vortices, and transmitted to the fuel flow to a series of pulses. A missing pulse detector counts the pulses and continuously resets itself. If three consecutive pulses are missing, the circuit closes the fuel valve. With fuel denied the combustor is shut down or restarted under controlled conditions.

  12. Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003-2004

    USGS Publications Warehouse

    Petersen, T.

    2007-01-01

    In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.

  13. The vertical propagation of waves in the solar atmosphere. II Phase delays in the quiet chromosphere and cell-network distinctions

    NASA Technical Reports Server (NTRS)

    Lites, B. W.; Chipman, E. G.; White, O. R.

    1982-01-01

    The differences in the phase of the velocity oscillations between a pair of chromospheric Ca II lines was measured using the Vacuum Tower Telescope at the Sacramento Peak Observatory. The observed phase differences indicate that the acoustic modes are trapped or envanescent, rather than propagating, in the chromosphere. Systematic distinctions are found in the phase delays between quiet network and cell interior regions for both intensity and velocity oscillations in photospheric and chromospheric lines. The theory of linear perturbations in an isothermal atmosphere is invoked to interpret these differences. From this analysis it is found that one or more of the following explanations is possible: (1) the radiative damping is more effective in the network than in the cell interior; (2) the network features exclude oscillations of large horizontal wavenumber; or (3) the scale height of the chromosphere is larger in the network than in the cell interior.

  14. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    PubMed

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  15. Bottom Interaction in Ocean Acoustic Propagation

    DTIC Science & Technology

    2014-09-30

    deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the acoustic...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et al...was carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second

  16. Dynamics of human cancer cell lines monitored by electrical and acoustic fluctuation analysis.

    PubMed

    Tarantola, Marco; Marel, Anna-Kristina; Sunnick, Eva; Adam, Holger; Wegener, Joachim; Janshoff, Andreas

    2010-03-01

    Early determination of the metastatic potential of cancer cells is a crucial step for successful oncological treatment. Besides the remarkable progress in molecular genomics- or proteomics-based diagnostics, there is a great demand for in vitro biosensor devices that allow rapid and selective detection of the invasive properties of tumor cells. Here, the classical cancer cell motility in vitro assays for migration and invasion relying on Boyden chambers are compared to a real-time biosensor that analyzes the dynamic properties of adherent cells electro-acoustically with a time resolution on the order of seconds. The sensor relies on the well-established quartz crystal microbalance technique (QCM) that measures the shift in resonance frequency and damping of an oscillating quartz crystal when adsorption, desorption or changes in material properties close to the quartz surface occur. In addition, the QCM is capable of detecting the rather subtle fluctuations of the cell bodies as an indicator for their micromotility. QCM-based micromotility readings of three different cancer cell lines (HT-29, HSC-4, FaDu) are compared with the well-known electrical cell-substrate impedance sensing (ECIS) revealing collective stochastic motion that corresponds to the malignancy of the cells.

  17. Using paired visual and passive acoustic surveys to estimate passive acoustic detection parameters for harbor porpoise abundance estimates.

    PubMed

    Jacobson, Eiren K; Forney, Karin A; Barlow, Jay

    2017-01-01

    Passive acoustic monitoring is a promising approach for monitoring long-term trends in harbor porpoise (Phocoena phocoena) abundance. Before passive acoustic monitoring can be implemented to estimate harbor porpoise abundance, information about the detectability of harbor porpoise is needed to convert recorded numbers of echolocation clicks to harbor porpoise densities. In the present study, paired data from a grid of nine passive acoustic click detectors (C-PODs, Chelonia Ltd., United Kingdom) and three days of simultaneous aerial line-transect visual surveys were collected over a 370 km 2 study area. The focus of the study was estimating the effective detection area of the passive acoustic sensors, which was defined as the product of the sound production rate of individual animals and the area within which those sounds are detected by the passive acoustic sensors. Visually estimated porpoise densities were used as informative priors in a Bayesian model to solve for the effective detection area for individual harbor porpoises. This model-based approach resulted in a posterior distribution of the effective detection area of individual harbor porpoises consistent with previously published values. This technique is a viable alternative for estimating the effective detection area of passive acoustic sensors when other experimental approaches are not feasible.

  18. Holding Fixture For Making Piezoelectric Acoustic Sensors

    NASA Technical Reports Server (NTRS)

    Hall, E. Thomas, Jr.

    1993-01-01

    Vacuum holding device provides quick and easy method of bonding together two strips of thin film with fast-setting epoxy adhesive. Fixture holds films in place by vacuum while adhesive applied, maintaining uniform bond line between films, providing internal connection port between nickel coats on films for center conductor of coaxial cable, and eliminating need to clean up excessive adhesive. Used to fabricate acoustic sensors for use in ambulatory fetal heart monitors. Potential for other heart-monitoring applications and other applications in which acoustic sensors used.

  19. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    PubMed

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Numerical Investigation of the Acoustic Damping of Plane Acoustic Waves by Perforated Liners with Bias Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Zhong, Zhi Yuan

    Perforated liners are extensively used in aero-engines and gas turbine combustors to suppress combustion instabilities. These liners, typically subjected to a low Mach number bias flow (a cooling flow through perforated holes), are fitted along the bounding walls of a combustor to convert acoustic energy into flow energy by generating vorticity at the rims of the perforated apertures. To investigate the acoustic damping of such liners with bias flow on plane acoustic waves, a time-domain numerical model is developed to compute acoustic wave propagation in a cylindrical duct with a single-layer liner attached. The damping mechanism of the liner is characterized in real-time by using a 'compliance', developed especially for this work. It is a rational function representation of the frequency-domain homogeneous compliance adapted from the Rayleigh conductivity of a single aperture with mean bias flow in the z-domain. The liner 'compliance' model is then incorporated into partial differential equations of the duct system, which are solved by using the method of lines. The numerical results are then evaluated by comparing with the numerical results of Eldredge and Dowling's frequency-domain model. Good agreement is observed. This confirms that the model and the approach developed are suitable for real-time characterizing the acoustic damping of perforated liners.

  1. Polariton-acoustic-phonon interaction in a semiconductor microcavity

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.

    2000-01-01

    The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.

  2. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  3. Acoustic waveform of continuous bubbling in a non-Newtonian fluid.

    PubMed

    Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei

    2009-12-01

    We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.

  4. Electrical delay line multiplexing for pulsed mode radiation detectors

    NASA Astrophysics Data System (ADS)

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-04-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  5. Dramatic robustness of a multiple delay dispersed interferometer to spectrograph errors: how mixing delays reduces or cancels wavelength drift

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Linder, E.; Wishnow, E.; Edelstein, J.; Sirk, M.; Muirhead, P.; Lloyd, J.; Kim, A.

    2016-08-01

    We describe demonstrations of remarkable robustness to instrumental noises by using a multiple delay externally dispersed interferometer (EDI) on stellar observations at the Hale telescope. Previous observatory EDI demonstrations used a single delay. The EDI (also called "TEDI") boosted the 2,700 resolution of the native TripleSpec NIR spectrograph (950-2450 nm) by as much as 10x to 27,000, using 7 overlapping delays up to 3 cm. We observed superb rejection of fixed pattern noises due to bad pixels, since the fringing signal responds only to changes in multiple exposures synchronous to the applied delay dithering. Remarkably, we observed a 20x reduction of reaction in the output spectrum to PSF shifts of the native spectrograph along the dispersion direction, using our standard processing. This allowed high resolution observations under conditions of severe and irregular PSF drift otherwise not possible without the interferometer. Furthermore, we recently discovered an improved method of weighting and mixing data between pairs of delays that can theoretically further reduce the net reaction to PSF drift to zero. We demonstrate a 350x reduction in reaction to a native PSF shift using a simple simulation. This technique could similarly reduce radial velocity noise for future EDI's that use two delays overlapped in delay space (or a single delay overlapping the native peak). Finally, we show an extremely high dynamic range EDI measurement of our ThAr lamp compared to a literature ThAr spectrum, observing weak features ( 0.001x height of nearest strong line) that occur between the major lines. Because of individuality of each reference lamp, accurate knowledge of its spectrum between the (unfortunately) sparse major lines is important for precision radial velocimetry.

  6. Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography.

    PubMed

    Kim, Chulhong; Zemp, Roger J; Wang, Lihong V

    2006-08-15

    Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.

  7. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. Themore » TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.« less

  8. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    PubMed

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  10. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    NASA Astrophysics Data System (ADS)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  11. Acoustical Measurement of Nonlinear Internal Waves Using the Inverted Echo Sounder

    DTIC Science & Technology

    2009-05-05

    showed that the vertical round-trip travel time of an acoustic pulse allowed measurement of the variation of thermal stratification caused by internal...translate from distance to time , note that reflection from a position 56 m from zenith to a PIES at 1024-m depth would have a delay time of 2 ms. Note that...approximation of the travel time scatter, the delay to the arrival of the dis- tribution peak tp is directly related to the width b: t p 5 t 0 1 b. (24) The

  12. Theory for a gas composition sensor based on acoustic properties

    NASA Technical Reports Server (NTRS)

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M.

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent.

  13. IMPROVING THE PRECISION OF TIME-DELAY COSMOGRAPHY WITH OBSERVATIONS OF GALAXIES ALONG THE LINE OF SIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Zach S.; Suyu, Sherry H.; Treu, Tommaso

    2013-05-01

    In order to use strong gravitational lens time delays to measure precise and accurate cosmological parameters the effects of mass along the line of sight must be taken into account. We present a method to achieve this by constraining the probability distribution function of the effective line-of-sight convergence {kappa}{sub ext}. The method is based on matching the observed overdensity in the weighted number of galaxies to that found in mock catalogs with {kappa}{sub ext} obtained by ray-tracing through structure formation simulations. We explore weighting schemes based on projected distance, mass, luminosity, and redshift. This additional information reduces the uncertainty ofmore » {kappa}{sub ext} from {sigma}{sub {kappa}} {approx} 0.06 to {approx}0.04 for very overdense LOSs like that of the system B1608+656. For more common LOSs, {sigma}{sub {kappa}} is reduced to {approx}<0.03, corresponding to an uncertainty of {approx}< 3% on distance. This uncertainty has comparable effects on cosmological parameters to that arising from the mass model of the deflector and its immediate environment. Photometric redshifts based on g, r, i and K photometries are sufficient to constrain {kappa}{sub ext} almost as well as with spectroscopic redshifts. As an illustration, we apply our method to the system B1608+656. Our most reliable {kappa}{sub ext} estimator gives {sigma}{sub {kappa}} = 0.047 down from 0.065 using only galaxy counts. Although deeper multiband observations of the field of B1608+656 are necessary to obtain a more precise estimate, we conclude that griK photometry, in addition to spectroscopy to characterize the immediate environment, is an effective way to increase the precision of time-delay cosmography.« less

  14. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  15. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO 2 emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less

  16. A realization of sound focused personal audio system using acoustic contrast control.

    PubMed

    Chang, Ji-Ho; Lee, Chan-Hui; Park, Jin-Young; Kim, Yang-Hann

    2009-04-01

    A personal audio system that does not use earphone or any wire would have great interest and potential impact on the audio industries. In this study, a line array speaker system is used to localize sound in the listening zone. The contrast control [Choi, J.-W. and Kim, Y.-H. (2002). J. Acoust. Soc. Am. 111, 1695-1700] is applied, which is a method to make acoustically bright zone around the user and acoustically dark zone in other regions by maximizing the ratio of acoustic potential energy density between the bright and the dark zone. This ratio is regarded as acoustic contrast, analogous with what is used for optical devices. For the evaluation of the performance of acoustic contrast control, experiments are performed and the results are compared with those of uncontrolled case and time reversal array.

  17. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines.

    PubMed

    La Monica, Silvia; Cretella, Daniele; Bonelli, Mara; Fumarola, Claudia; Cavazzoni, Andrea; Digiacomo, Graziana; Flammini, Lisa; Barocelli, Elisabetta; Minari, Roberta; Naldi, Nadia; Petronini, Pier Giorgio; Tiseo, Marcello; Alfieri, Roberta

    2017-12-04

    Osimertinib is a third-generation EGFR-TKI with a high selective potency against T790M-mutant NSCLC patients. Considering that osimertinib can lead to enhanced HER-2 expression on cell surface and HER-2 overexpression is a mechanism of resistance to osimertinib, this study was addressed to investigate the potential of combining osimertinib with trastuzumab emtansine (T-DM1) in order to improve the efficacy of osimertinib and delay or overcome resistance in NSCLC cell lines with EGFR activating mutation and with T790M mutation or HER-2 amplification. The effects of osimertinib combined with T-DM1 on cell proliferation, cell cycle, cell death, antibody-dependent cell-mediated cytotoxicity (ADCC), and acquisition of osimertinib resistance was investigated in PC9, PC9-T790M and H1975 cell lines. The potential of overcoming osimertinib resistance with T-DM1 was tested in a PC9/HER2c1 xenograft model. T-DM1 exerted an additive effect when combined with osimertinib in terms of inhibition of cell proliferation, cell death and ADCC induction in PC9, PC9-T790M and H1975 cell lines. Combining osimertinib and T-DM1 using different schedules in long-term growth experiments revealed that the appearance of osimertinib-resistance was prevented in PC9-T790M and delayed in H1975 cells when the two drugs were given together. By contrast, when osimertinib was followed by T-DM1 an antagonistic effect was observed on cell proliferation, cell death and resistance acquisition. In xenograft models, we demonstrated that HER-2 amplification was associated with osimertinib-resistance and that T-DM1 co-administration is a potential strategy to overcome this resistance. Our data suggest that concomitant treatment with osimertinib and T-DM1 may be a promising therapeutic strategy for EGFR-mutant NSCLC.

  18. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  19. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  20. Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu

    2018-01-01

    This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.

  1. Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner

    NASA Astrophysics Data System (ADS)

    Beck, Benjamin S.

    2014-03-01

    To reduce the noise emitted by commercial aircraft turbofan engines, the inlet and aft nacelle ducts are lined with acoustic absorbing structures called acoustic liners. Traditionally, these structures consist of a perforated facesheet bonded on top of a honeycomb core. These traditional perforate over honeycomb core (POHC) liners create an absorption spectra where the maximum absorption occurs at a frequency that is dictated by the depth of the honeycomb core; which acts as a quarter-wave resonator. Recent advances in turbofan engine design have increased the need for thin acoustic liners that are effective at low frequencies. One design that has been developed uses an acoustic metamaterial architecture to improve the low frequency absorption. Specifically, the liner consists of an array of Helmholtz resonators separated by quarter-wave volumes to create a dual-resonance acoustic liner. While previous work investigated the acoustic behavior under normal incidence, this paper outlines the modeling and predicted transmission loss and absorption of a dual-resonance acoustic metamaterial when subjected to grazing incidence sound.

  2. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    NASA Astrophysics Data System (ADS)

    Emokpae, Lloyd

    Underwater acoustic networks (UWANs) have applications in environmental state monitoring, oceanic profile measurements, leak detection in oil fields, distributed surveillance, and navigation. For these applications, sets of nodes are employed to collaboratively monitor an area of interest and track certain events or phenomena. In addition, it is common to find autonomous underwater vehicles (AUVs) acting as mobile sensor nodes that perform search-and-rescue missions, reconnaissance in combat zones, and coastal patrol. These AUVs are to work cooperatively to achieve a desired goal and thus need to be able to, in an ad-hoc manner, establish and sustain communication links in order to ensure some desired level of quality of service. Therefore, each node is required to adapt to environmental changes and be able to overcome broken communication links caused by external noise affecting the communication channel due to node mobility. In addition, since radio waves are quickly absorbed in the water medium, it is common for most underwater applications to rely on acoustic (or sound) rather than radio channels for mid-to-long range communications. However, acoustic channels pose multiple challenging issues, most notably the high transmission delay due to slow signal propagation and the limited channel bandwidth due to high frequency attenuation. Moreover, the inhomogeneous property of the water medium affects the sound speed profile while the signal surface and bottom reflections leads to multipath effects. In this dissertation, we address these networking challenges by developing protocols that take into consideration the underwater physical layer dynamics. We begin by introducing a novel surface-based reflection scheme (SBR), which takes advantage of the multipath effects of the acoustic channel. SBR works by using reflections from the water surface, and bottom, to establish non-line-of-sight (NLOS) communication links. SBR makes it possible to incorporate both line

  3. Artificial neural networks for acoustic target recognition

    NASA Astrophysics Data System (ADS)

    Robertson, James A.; Mossing, John C.; Weber, Bruce A.

    1995-04-01

    Acoustic sensors can be used to detect, track and identify non-line-of-sight targets passively. Attempts to alter acoustic emissions often result in an undesirable performance degradation. This research project investigates the use of neural networks for differentiating between features extracted from the acoustic signatures of sources. Acoustic data were filtered and digitized using a commercially available analog-digital convertor. The digital data was transformed to the frequency domain for additional processing using the FFT. Narrowband peak detection algorithms were incorporated to select peaks above a user defined SNR. These peaks were then used to generate a set of robust features which relate specifically to target components in varying background conditions. The features were then used as input into a backpropagation neural network. A K-means unsupervised clustering algorithm was used to determine the natural clustering of the observations. Comparisons between a feature set consisting of the normalized amplitudes of the first 250 frequency bins of the power spectrum and a set of 11 harmonically related features were made. Initial results indicate that even though some different target types had a tendency to group in the same clusters, the neural network was able to differentiate the targets. Successful identification of acoustic sources under varying operational conditions with high confidence levels was achieved.

  4. Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate

    PubMed Central

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg−1 s at angular rates of up to 1,000 deg s−1 and good linearity are observed. PMID:22346678

  5. Development of a new surface acoustic wave based gyroscope on a X-112°Y LiTaO3 substrate.

    PubMed

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg(-1) s at angular rates of up to 1,000 deg s(-1) and good linearity are observed.

  6. Determination of mechanical properties of battery films from acoustic resonances

    NASA Astrophysics Data System (ADS)

    Dallon, Kathryn L.; Yao, Jing; Wheeler, Dean R.; Mazzeo, Brian A.

    2018-04-01

    Measuring the mechanical properties of lithium-ion battery films, such as thickness and elasticity, is important for predicting and improving homogeneity of the films and subsequent performance of the battery. Problems with film heterogeneity could be identified and addressed early on through accurate, non-destructive inspection of the electrode as it is being manufactured. This research investigates the use of acoustic measurements as an alternative means of non-destructive quality control that could be adapted for on-line use. Here we report on our efforts to distinguish among films with different mechanical properties using acoustic resonances. A clamped film is excited using a pulsed infrared laser to produce an acoustic resonance in a confined area, and a microphone measures the acoustic response. Because the resonance depends on properties such as thickness and density, the resonance frequency shifts with changes in these properties. As the thickness increases, the resonance frequency decreases. These results show that acoustic tests can demonstrate observable differences between films with different properties.

  7. Analysis of liquid-phase chemical detection using guided shear horizontal-surface acoustic wave sensors.

    PubMed

    Li, Zhonghui; Jones, Yolanda; Hossenlopp, Jeanne; Cernosek, Richard; Josse, Fabien

    2005-07-15

    Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.

  8. Displacement sensors using soft magnetostrictive alloys

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Reilly, R. E.

    1994-09-01

    We report results on the response of a family of displacement sensors, which are based on the magentostrictive delay line (MDL) technique, using current conductors orthogonal to the MDL. Such sensing technique is based on the change of the magnetic circuit at the acoustic stress point of origin due to the displacement of a soft magnetic material above it. Integrated arrays of sensors can be obtained due to the acoustic delay line technique and they can be used as tactile arrays, digitizers or devices for medical applications (gait analysis etc.), while absence of hysteresis and low cost of manufacturing make them competent in this sector of sensor market.

  9. Acoustic Resonance and Vortex Shedding from Tube Banks of Boiler Plant

    NASA Astrophysics Data System (ADS)

    Hamakawa, Hiromitsu; Matsue, Hiroto; Nishida, Eiichi; Fukano, Tohru

    This paper focuses on the relationship between acoustic resonance and vortex shedding from the tube banks of a boiler plant. We have built a model similar to the actual boiler plant to clarify the characteristics of acoustic resonance phenomena and vortex shedding. The model used in-line tube banks with a small tube pitch ratio. We examined the relationship between the acoustic resonance of the actual plant and that of the model, and measured the sound pressure level, acoustic pressure mode shape, spectrum of velocity fluctuation, and gap velocity. Gap velocity was defined as the mean velocity in the smallest gaps between two neighboring tubes in the transverse direction. As a result, the resonant frequencies and mode shapes of the acoustic resonances in the actual boiler plant agreed well with those in the similar model. We found many peak frequencies in the sound pressure level spectrum when acoustic resonances occurred. The typical Strouhal numbers at the onset velocity of acoustic resonances were about 0.19, 0.26 and 0.52. Periodic velocity fluctuation caused by vortex shedding was observed inside the tube banks without acoustic resonance. The Strouhal number measured for vortex shedding was 0.15. Acoustic resonances of higher-order modes were generated in this plant.

  10. Acute ethanol does not always affect delay discounting in rats selected to prefer or avoid ethanol.

    PubMed

    Wilhelm, Clare J; Mitchell, Suzanne H

    2012-01-01

    The purpose of this study was to determine whether animals predisposed to prefer alcohol possess an altered acute response to alcohol on a delay discounting task relative to animals predisposed to avoid alcohol. We used rats selected to prefer or avoid alcohol to assess whether genotype moderates changes in delay discounting induced by acute ethanol exposure. Selectively bred rat lines of Sardinian alcohol-preferring (sP; n = 8) and non-preferring (sNP; n = 8) rats, and alko alcohol (AA, n = 8) and alko non-alcohol (ANA, n = 8) rats were trained in an adjusting amount task to assess delay discounting. There were no significant effects of line on baseline discounting; however, both lines of alcohol-preferring rats exhibit slowed reaction times. Acute ethanol (0, 0.25, 0.5 g/kg) treatment also had no effect on delay discounting in any of the selectively bred rat lines. Our data indicate that in these lines of animals, alcohol preference or avoidance has no impact on delay discounting following acute ethanol exposure. It is possible that other genetic models or lines may be differentially affected by alcohol and exhibit qualitatively and quantitatively different responses in delay discounting tasks.

  11. Model simulations of line-of-sight effects in airglow imaging of acoustic and fast gravity waves from ground and space

    NASA Astrophysics Data System (ADS)

    Aguilar Guerrero, J.; Snively, J. B.

    2017-12-01

    Acoustic waves (AWs) have been predicted to be detectable by imaging systems for the OH airglow layer [Snively, GRL, 40, 2013], and have been identified in spectrometer data [Pilger et al., JASP, 104, 2013]. AWs are weak in the mesopause region, but can attain large amplitudes in the F region [Garcia et al., GRL, 40, 2013] and have local impacts on the thermosphere and ionosphere. Similarly, fast GWs, with phase speeds over 100 m/s, may propagate to the thermosphere and impart significant local body forcing [Vadas and Fritts, JASTP, 66, 2004]. Both have been clearly identified in ionospheric total electron content (TEC), such as following the 2013 Moore, OK, EF5 tornado [Nishioka et al., GRL, 40, 2013] and following the 2011 Tohoku-Oki tsunami [e.g., Galvan et al., RS, 47, 2012, and references therein], but AWs have yet to be unambiguously imaged in MLT data and fast GWs have low amplitudes near the threshold of detection; nevertheless, recent imaging systems have sufficient spatial and temporal resolution and sensitivity to detect both AWs and fast GWs with short periods [e.g., Pautet et al., AO, 53, 2014]. The associated detectability challenges are related to the transient nature of their signatures and to systematic challenges due to line-of-sight (LOS) effects such as enhancements and cancelations due to integration along aligned or oblique wavefronts and geometric intensity enhancements. We employ a simulated airglow imager framework that incorporates 2D and 3D emission rate data and performs the necessary LOS integrations for synthetic imaging from ground- and space-based platforms to assess relative intensity and temperature perturbations. We simulate acoustic and fast gravity wave perturbations to the hydroxyl layer from a nonlinear, compressible model [e.g., Snively, 2013] for different idealized and realistic test cases. The results show clear signal enhancements when acoustic waves are imaged off-zenith or off-nadir and the temporal evolution of these

  12. Simulation on the steel galvanic corrosion and acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Shi, Xin; Yang, Ping

    2015-12-01

    Galvanic corrosion is a very destructive localized corrosion. The research on galvanic corrosion could determine equipment corrosion and prevent the accidents occurrence. Steel corrosion had been studied by COMSOL software with mathematical modeling. The galvanic corrosion of steel-aluminum submerged into 10% sodium chloride solution had been on-line detected by PIC-2 acoustic emission system. The results show that the acoustic emission event counts detected within unit time can qualitative judge galvanic corrosion rate and further erosion trend can be judged by the value changes.

  13. A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Moralis-Pegios, M.; Terzenidis, N.; Mourgias-Alexandris, G.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    Disaggregated Data Centers (DCs) have emerged as a powerful architectural framework towards increasing resource utilization and system power efficiency, requiring, however, a networking infrastructure that can ensure low-latency and high-bandwidth connectivity between a high-number of interconnected nodes. This reality has been the driving force towards high-port count and low-latency optical switching platforms, with recent efforts concluding that the use of distributed control architectures as offered by Broadcast-and-Select (BS) layouts can lead to sub-μsec latencies. However, almost all high-port count optical switch designs proposed so far rely either on electronic buffering and associated SerDes circuitry for resolving contention or on buffer-less designs with packet drop and re-transmit procedures, unavoidably increasing latency or limiting throughput. In this article, we demonstrate a 256x256 optical switch architecture for disaggregated DCs that employs small-size optical delay line buffering in a distributed control scheme, exploiting FPGA-based header processing over a hybrid BS/Wavelength routing topology that is implemented by a 16x16 BS design and a 16x16 AWGR. Simulation-based performance analysis reveals that even the use of a 2- packet optical buffer can yield <620nsec latency with >85% throughput for up to 100% loads. The switch has been experimentally validated with 10Gb/s optical data packets using 1:16 optical splitting and a SOA-MZI wavelength converter (WC) along with fiber delay lines for the 2-packet buffer implementation at every BS outgoing port, followed by an additional SOA-MZI tunable WC and the 16x16 AWGR. Error-free performance in all different switch input/output combinations has been obtained with a power penalty of <2.5dB.

  14. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    PubMed

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and

  15. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  16. Ocean acoustic interferometry.

    PubMed

    Brooks, Laura A; Gerstoft, Peter

    2007-06-01

    Ocean acoustic interferometry refers to an approach whereby signals recorded from a line of sources are used to infer the Green's function between two receivers. An approximation of the time domain Green's function is obtained by summing, over all source positions (stacking), the cross-correlations between the receivers. Within this paper a stationary phase argument is used to describe the relationship between the stacked cross-correlations from a line of vertical sources, located in the same vertical plane as two receivers, and the Green's function between the receivers. Theory and simulations demonstrate the approach and are in agreement with those of a modal based approach presented by others. Results indicate that the stacked cross-correlations can be directly related to the shaded Green's function, so long as the modal continuum of any sediment layers is negligible.

  17. Translational illusion of acoustic sources by transformation acoustics.

    PubMed

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  18. Imaging of heart acoustic based on the sub-space methods using a microphone array.

    PubMed

    Moghaddasi, Hanie; Almasganj, Farshad; Zoroufian, Arezoo

    2017-07-01

    Heart disease is one of the leading causes of death around the world. Phonocardiogram (PCG) is an important bio-signal which represents the acoustic activity of heart, typically without any spatiotemporal information of the involved acoustic sources. The aim of this study is to analyze the PCG by employing a microphone array by which the heart internal sound sources could be localized, too. In this paper, it is intended to propose a modality by which the locations of the active sources in the heart could also be investigated, during a cardiac cycle. In this way, a microphone array with six microphones is employed as the recording set up to be put on the human chest. In the following, the Group Delay MUSIC algorithm which is a sub-space based localization method is used to estimate the location of the heart sources in different phases of the PCG. We achieved to 0.14cm mean error for the sources of first heart sound (S 1 ) simulator and 0.21cm mean error for the sources of second heart sound (S 2 ) simulator with Group Delay MUSIC algorithm. The acoustical diagrams created for human subjects show distinct patterns in various phases of the cardiac cycles such as the first and second heart sounds. Moreover, the evaluated source locations for the heart valves are matched with the ones that are obtained via the 4-dimensional (4D) echocardiography applied, to a real human case. Imaging of heart acoustic map presents a new outlook to indicate the acoustic properties of cardiovascular system and disorders of valves and thereby, in the future, could be used as a new diagnostic tool. Copyright © 2017. Published by Elsevier B.V.

  19. Fundamentals of Acoustic Measurements on Trees and Logs and Their Implication to Field Application

    Treesearch

    Xiping Wang

    2011-01-01

    Acoustic technologies have been well established as material evaluation tools in the past several decades, and their use has become widely accepted in the forest products industry for on-line quality control and products grading. Recent research developments on acoustic sensing technology offer further opportunities to evaluate standing trees and logs for general wood...

  20. Coupling of an acoustic wave to shear motion due to viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Goree, J.

    2016-07-15

    Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less

  1. Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment

    NASA Astrophysics Data System (ADS)

    Luo, Jing

    Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.

  2. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.

    PubMed

    Kéfélian, Fabien; Jiang, Haifeng; Lemonde, Pierre; Santarelli, Giorgio

    2009-04-01

    We report the frequency stabilization of an erbium-doped fiber distributed-feedback laser using an all-fiber-based Michelson interferometer of large arm imbalance. The interferometer uses a 1 km SMF-28 optical fiber spool and an acousto-optic modulator allowing heterodyne detection. The frequency-noise power spectral density is reduced by more than 40 dB for Fourier frequencies ranging from 1 Hz to 10 kHz, corresponding to a level well below 1 Hz2/Hz over the entire range; it reaches 10(-2) Hz2/Hz at 1 kHz. Between 40 Hz and 30 kHz, the frequency noise is shown to be comparable to the one obtained by Pound-Drever-Hall locking to a high-finesse Fabry-Perot cavity. Locking to a fiber delay line could consequently represent a reliable, simple, and compact alternative to cavity stabilization for short-term linewidth reduction.

  3. Electronic Combat Hardware-in-the-Loop Testing in an Open Air Environment

    DTIC Science & Technology

    1994-09-01

    APQ- 126 (F-111) Gun Dish Squat Eye ANAWG-9 (F-14) Grill Pan Straight Flush I-Hawk Hawk Screech Sun Visor Head Light Tall King High Fix Team Work High...the required delay to the IF, the SPCs contain a Teledyne Microwave Bulk Acoustic Wave (BAW) delay line as well as a Coherent Variable Delay Unit

  4. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions

    PubMed Central

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Vargas-Rosales, Cesar; Khan, Anwar

    2018-01-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node’s cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted. PMID:29389874

  5. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    PubMed

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Zareei, Mahdi; Vargas-Rosales, Cesar; Khan, Anwar

    2018-02-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.

  6. Enhanced viscous flow drag reduction using acoustic excitation

    NASA Technical Reports Server (NTRS)

    Nagel, Robert T.

    1987-01-01

    Proper acoustic excitation of a single large-eddy break-up device can increase the resulting drag reduction and, after approximately 40 to 50 delta downstream, provide net drag reduction. Precise optimization of the input time delay, amplitude and response threshold is difficult but possible to achieve. Drag reduction is improved with optimized conditions. The possibility of optimized processing strongly suggests a mechanism which involves interaction of the acoustic waves and large eddies at the trailing edge of the large eddy break-up device. Although the mechanism for spreading of this phenomenon is unknown, it is apparent that the drag reduction effect does tend to spread spanwise as the flow convects downstream. The phenomenon is not unique to a particular blade configuration or flow velocity, although all data have been obtained at relatively low Reynolds numbers. The general repeatibility of the results for small configuration changes serves as verification of the phenomenon.

  7. On the impact of fiber-delay-lines (FDL) in an all-optical network (AON) bottleneck without wavelength conversion

    NASA Astrophysics Data System (ADS)

    Argibay-Losada, Pablo Jesus; Sahin, Gokhan

    2014-08-01

    Random access memories (RAM) are fundamental in conventional electronic switches and routers to manage short-term congestion and to decrease data loss probabilities. Switches in all-optical networks (AONs), however, do not have access to optical RAM, and therefore are prone to much higher loss levels than their electronic counterparts. Fiber-delay-lines (FDLs), able to delay an optical data packet a fixed amount of time, have been proposed in the literature as a means to alleviate those high loss levels. However, they are extremely bulky to manage, so their usage introduces a trade-off between practicality and performance in the design and operation of the AON. In this paper we study the influence that FDLs have in the performance of flows crossing an all-optical switch that acts as their bottleneck. We show how extremely low numbers of FDLs (e.g., 1 or 2) can help in reducing losses by several orders of magnitude in several illustrative scenarios with high aggregation levels. Our results therefore suggest that FDLs can be a practical means of dealing with congestion in AONs in the absence of optical RAM buffers or of suitable data interchange protocols specifically designed for AONs.

  8. Acoustic Droplet Vaporization for the Enhancement of Ultrasound Thermal Therapy.

    PubMed

    Zhang, Man; Fabiilli, Mario; Carson, Paul; Padilla, Frederic; Swanson, Scott; Kripfgans, Oliver; Fowlkes, Brian

    2010-10-11

    Acoustic droplet vaporization (ADV) is an ultrasound method for converting biocompatible microdroplets into microbubbles. The objective is to demonstrate that ADV bubbles can enhance high intensity focused ultrasound (HIFU) therapy by controlling and increasing energy absorption at the focus. Thermal phantoms were made with or without droplets. Compound lesions were formed in the phantoms by 5-second exposures with 5-second delays. Center to center spacing of individual lesions was 5.5 mm in either a linear pattern or a spiral pattern. Prior to the HIFU, 10 cycle tone bursts with 0.25% duty cycle were used to vaporize the droplets, forming an "acoustic trench" within 30 seconds. The transducer was then focused in the middle of the back bubble wall to form thermal lesions in the trench. All lesions were imaged optically and with 2T MRI. With the use of ADV and the acoustic trench, a uniform thermal ablation volume of 15 cm(3) was achieved in 4 minutes; without ADV only less than 15% of this volume was filled. The commonly seen tadpole shape characteristic of bubble-enhanced HIFU lesions was not evident with the acoustic trench. In conclusion, ADV shows promise for the spatial control and dramatic acceleration of thermal lesion production by HIFU.

  9. Flow Duct Data for Validation of Acoustic Liner Codes for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Munro, Scott; Gaeta, R. J., Jr.

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data with hard and lined duct wall duct sections for validation of a liner prediction code being developed at NASA LaRC. Both the mean flowfield and acoustic flowfields were determined in a cross-plane of the rectangular duct. A flow duct facility with acoustic drivers connected to a rectangular (4.7 x 2.0 inch) source section and a linear acoustic liner mounted downstream of the source section was used in this study. The liner section was designed to allow liner materials to be placed on all 4 walls of the duct. The test liner was of the locally-reacting type and was made from a ceramic material. The material, consisting of a tubular structure, was provided by NASA LaRC. The liner was approximately 8.89 cm (3.5 inches) thick. For the current study, only the two "short" sides of the duct were lined with liner material. The other two sides were hard walls. Two especially built instrumentation sections were attached on either sides of the liner section to allow acoustic and flow measurements to be made upstream and downstream of the liner. The two instrumentation duct sections were built to allow measurement of acoustic and flow properties at planes perpendicular to flow upstream and downstream of the liner section. The instrumentation section was also designed to provide a streamwise gradient in acoustic (complex) pressure from which the acoustic particle velocity, needed for the model validation, can be computed. Flow measurements included pressure, temperature, and velocity profiles upstream of the liner section. The in-flow sound pressure levels and phases were obtained with a microphone probe equipped with a nose cone in two cross planes upstream of the liner and two cross plane downstream of the liner. In addition to the acoustic measurements at the cross planes. axial centerline acoustic data was acquired using an axially traversing microphone probe which was traversed from a location

  10. Displacement sensors using soft magnetostrictive alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hristoforou, E.; Reilly, R.E.

    1994-09-01

    The authors report results on the response of a family of displacement sensors, which are based on the magnetostrictive delay line (MDL) technique, using current conductor orthogonal to the MDL. Such sensing technique is based on the change of the magnetic circuit and the acoustic stress point of origin due to the displacement of a soft magnetic material above it. Integrated arrays of sensors can be obtained due to the acoustic delay line technique and they can be used as tactile arrays, digitizers or devices for medical application (gait analysis etc.), while absence of hysteresis and low cost of manufacturingmore » make them competent in this sector of sensor market.« less

  11. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  12. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron.

    PubMed

    Hayden, Todd A; Holbrook, Christopher M; Fielder, David G; Vandergoot, Christopher S; Bergstedt, Roger A; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  13. The effect of buildings on acoustic pulse propagation in an urban environment.

    PubMed

    Albert, Donald G; Liu, Lanbo

    2010-03-01

    Experimental measurements were conducted using acoustic pulse sources in a full-scale artificial village to investigate the reverberation, scattering, and diffraction produced as acoustic waves interact with buildings. These measurements show that a simple acoustic source pulse is transformed into a complex signature when propagating through this environment, and that diffraction acts as a low-pass filter on the acoustic pulse. Sensors located in non-line-of-sight (NLOS) positions usually recorded lower positive pressure maxima than sensors in line-of-sight positions. Often, the first arrival on a NLOS sensor located around a corner was not the largest arrival, as later reflection arrivals that traveled longer distances without diffraction had higher amplitudes. The waveforms are of such complexity that human listeners have difficulty identifying replays of the signatures generated by a single pulse, and the usual methods of source location based on the direction of arrivals may fail in many cases. Theoretical calculations were performed using a two-dimensional finite difference time domain (FDTD) method and compared to the measurements. The predicted peak positive pressure agreed well with the measured amplitudes for all but two sensor locations directly behind buildings, where the omission of rooftop ray paths caused the discrepancy. The FDTD method also produced good agreement with many of the measured waveform characteristics.

  14. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  15. Quantifying the line-of-sight mass distributions for time-delay lenses with stellar masses

    NASA Astrophysics Data System (ADS)

    Rusu, Cristian; Fassnacht, Chris; Treu, Tommaso; Suyu, Sherry; Auger, Matt; Koopmans, Leon; Marshall, Phil; Wong, Kenneth; Collett, Thomas; Agnello, Adriano; Blandford, Roger; Courbin, Frederic; Hilbert, Stefan; Meylan, Georges; Sluse, Dominique

    2014-12-01

    Measuring cosmological parameters with a realistic account of systematic uncertainties is currently one of the principal challenges of physical cosmology. Building on our recent successes with two gravitationally lensed systems, we have started a program to achieve accurate cosmographic measurements from five gravitationally lensed quasars. We aim at measuring H_0 with an accuracy better than 4%, comparable to but independent from measurements by current BAO, SN or Cepheid programs. The largest current contributor to the error budget in our sample is uncertainty about the line-of-sight mass distribution and environment of the lens systems. In this proposal, we request wide-field u-band imaging of the only lens in our sample without already available Spitzer/IRCA observations, B1608+656. The proposed observations are critical for reducing these uncertainties by providing accurate redshifts and in particular stellar masses for galaxies in the light cones of the target lens system. This will establish lensing as a powerful and independent tool for determining cosmography, in preparation for the hundreds of time-delay lenses that will be discovered by future surveys.

  16. Acoustic waves in the solar atmosphere at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    2009-12-01

    Aims. The energy supply for the radiative losses of the quiet solar chromosphere is studied. On the basis of high spatial resolution data, we investigate the amount of energy flux carried by acoustic waves in the solar photosphere. Methods: Time sequences from quiet Sun disc centre were obtained with the “Göttingen” Fabry-Perot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe i 5576 Å line. The data were reconstructed with speckle methods. The velocity and intensity fluctuations at line minimum were subjected to Fourier and wavelet analyses. The energy fluxes at frequencies higher than the acoustic cutoff frequency (period U ≈ 190 s) were corrected for the transmission of the solar atmosphere, which reduces the signal from short-period waves. Results: Both Fourier and wavelet analysis give an amount of energy flux of ~3000 W m-2 at a height h = 250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. Extrapolation of the flux spectra gives an energy flux of 230-400 W m-2 at frequencies ν > 20 mHz. We find that the waves occur predominantly above inter-granular areas. Conclusions: We conclude that the acoustic flux in waves with periods shorter than the acoustic cutoff period can contribute to the basal heating of the solar chromosphere, in addition to the atmospheric gravity waves found recently.

  17. Design of surface acoustic wave filters for the multiplex transmission system of multilevel inverter circuits

    NASA Astrophysics Data System (ADS)

    Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2017-07-01

    We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.

  18. Testing Delays Resulting in Increased Identification Accuracy in Line-Ups and Show-Ups.

    ERIC Educational Resources Information Center

    Dekle, Dawn J.

    1997-01-01

    Investigated time delays (immediate, two-three days, one week) between viewing a staged theft and attempting an eyewitness identification. Compared lineups to one-person showups in a laboratory analogue involving 412 subjects. Results show that across all time delays, participants maintained a higher identification accuracy with the showup…

  19. Two-dimensional directional synthetic aperture focusing technique using acoustic-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Jeon, Seungwan; Park, Jihoon; Kim, Chulhong

    2018-02-01

    Photoacoustic microscopy (PAM) is a hybrid imaging technology using optical illumination and acoustic detection. PAM is divided into two types: optical-resolution PAM (OR-PAM) and acoustic-resolution photoacoustic microscopy (AR-PAM). Among them, AR-PAM has a great advantage in the penetration depth compared to OR-PAM because ARPAM relies on the acoustic focus, which is much less scattered in biological tissue than optical focus. However, because the acoustic focus is not as tight as the optical focus with a same numerical aperture (NA), the AR-PAM requires acoustic NA higher than optical NA. The high NA of the acoustic focus produces good image quality in the focal zone, but significantly degrades spatial resolution and signal-to-noise ratio (SNR) in the out-of-focal zone. To overcome the problem, synthetic aperture focusing technique (SAFT) has been introduced. SAFT improves the degraded image quality in terms of both SNR and spatial resolution in the out-of-focus zone by calculating the time delay of the corresponding signals and combining them. To extend the dimension of correction effect, several 2D SAFTs have been introduced, but there was a problem that the conventional 2D SAFTs cannot improve the degraded SNR and resolution as 1D SAFT can do. In this study, we proposed a new 2D SAFT that can compensate the distorted signals in x and y directions while maintaining the correction performance as the 1D SAFT.

  20. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  1. Characterizing the motor execution stage of speech production: consonantal effects on delayed naming latency and onset duration.

    PubMed

    Rastle, Kathleen; Croot, Karen P; Harrington, Jonathan M; Coltheart, Max

    2005-10-01

    The research described in this article had 2 aims: to permit greater precision in the conduct of naming experiments and to contribute to a characterization of the motor execution stage of speech production. The authors report an exhaustive inventory of consonantal and postconsonantal influences on delayed naming latency and onset acoustic duration, derived from a hand-labeled corpus of single-syllable consonant-vowel utterances. Five talkers produced 6 repetitions each of a set of 168 prepared monosyllables, a set that comprised each of the consonantal onsets of English in 3 vowel contexts. Strong and significant effects associated with phonetic characteristics of initial and noninitial phonemes were observed on both delayed naming latency and onset acoustic duration. Results are discussed in terms of the biomechanical properties of the articulatory system that may give rise to these effects and in terms of their methodological implications for naming experiments.

  2. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  3. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1994-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  4. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  5. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes.

    PubMed

    Dong, Xiangshu; Kim, Wan Kyu; Lim, Yong-Pyo; Kim, Yeon-Ki; Hur, Yoonkang

    2013-02-01

    We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Endpoint Naming for Space Delay/Disruption Tolerant Networking

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Burleigh, Scott; Scott, Keith

    2010-01-01

    Delay/Disruption Tolerant Networking (DTN) provides solutions to space communication challenges such as disconnections when orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other operational constraints. DTN is critical to enabling the future space internetworking envisioned by NASA. Interoperability with international partners is essential and standardization is progressing through both the CCSDS and the IETF.

  7. Application of photonic crystal defects in constructing all-optical switches, optical delay lines and low-cross-talk waveguide intersections for ultrashort optical pulses

    NASA Astrophysics Data System (ADS)

    Lan, Sheng; Sugimoto, Yoshimasa; Nishikawa, Satoshi; Ikeda, Naoki; Yang, Tao; Kanamoto, Kozyo; Ishikawa, Hiroshi; Asakawa, Kiyoshi

    2002-07-01

    We present a systematic study of coupled defects in photonic crystals (PCs) and explore their applications in constructing optical components and devices for ultrafast all-optical signal processing. First, we find that very deep band gaps can be generated in the impurity bands of coupled cavity waveguides (CCWs) by a small periodic modulation of defect modes. This phenomenon implies a high-efficiency all-optical switching mechanism. The switching mechanism can be easily extended from one-dimensional (1D) to two-dimensional and three-dimensional PC structures by utilizing the coupling of defect pairs which are generally present in PCs. Second, we suggest that CCWs with quasiflat and narrow impurity bands can be employed as efficient delay lines for ultrashort pulses. Criteria for designing such kind of CCWs have been derived from the analysis of defect coupling and the investigation of pulse transmission through various CCWs. It is found that the availability of quasiflat impurity bands depends not only on the intrinsic properties of the constituting defects but also on the detailed configuration of CCWs. In experiments, optical delay lines based on 1D monorail CCWs have been successfully fabricated and characterized. Finally, we have proposed a new mechanism for constructing waveguide intersections with broad bandwidth and low cross-talk.

  8. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  9. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  10. Oscillational instabilities in single-mode acoustic levitators

    NASA Technical Reports Server (NTRS)

    Rudnick, Joseph; Barmatz, M.

    1990-01-01

    An extension of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The results are consistent with experimental investigations. The present approach accounts for the effect of time delays on the response of a cavity to the motion of an object inside it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of the ability to levitate are discussed.

  11. Oscillational instabilities in single mode acoustics levitators

    NASA Technical Reports Server (NTRS)

    Rudnick, J.; Barmatz, Martin

    1990-01-01

    An extention of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The authors' results are consistent with those of experimental investigators. The present approach accounts for the effects of time delays in the response of a cavity to the motion of an object inside of it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of ability to levitate are discussed.

  12. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  13. PREFACE: 11th Anglo-French Physical Acoustics Conference (AFPAC 2012)

    NASA Astrophysics Data System (ADS)

    Saffari, Nader; Lhémery, Alain; Lowe, Mike

    2013-08-01

    The 11th Anglo-French Physical Acoustics Conference (AFPAC) was held in Brighton, UK on 18-20 January 2012. This event, which is an annual collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique, successfully achieved its main aim of being a small, friendly meeting of high scientific quality, welcoming younger researchers and PhD students and covering a broad range of subjects in Acoustics. The participants heard 44 excellent presentations covering an exciting and diverse range of subjects, from audio acoustics to guided waves in composites and from phononic crystals to ultrasound surgery. As is the custom at these meetings, four prominent invited speakers set the pace for the event; these were Keith Attenborough (The Open University, UK), Claire Prada (Institut Langevin, France), David Moore (University of Nottingham, UK) and Philippe Roux (IS Terre, France). The submission of manuscripts for publication in the proceedings was, as in previous years, on a voluntary basis and in these proceedings we present 11 peer reviewed papers. Due to some unforeseen problems there has been a longer than planned delay in preparing these proceedings, for which the Editors sincerely apologise to the authors and the community. Nader Saffari, Mike Lowe and Alain Lhémery

  14. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR

    PubMed Central

    Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-01

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We

  15. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR.

    PubMed

    Friedt, Jean-Michel; Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-16

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We

  16. Delayed response to maintenance therapy after first-line chemotherapy in metastatic intrahepatic cholangiocarcinoma: a case report.

    PubMed

    Marciano, Roberta; Servetto, Alberto; Bianco, Cataldo; Bianco, Roberto

    2017-09-26

    Intrahepatic cholangiocarcinoma is an aggressive tumor originating in the epithelium of the bile duct, often associated with distant dissemination. The prognosis is poor and treatment is challenging due to low response rate to standard chemotherapy and lack of targeted therapies. Here we report the case of a 74-year-old white woman affected by intrahepatic cholangiocarcinoma with metastatic involvement of spleen, lung, peritoneum, and intra-abdominal lymph nodes. As first-line chemotherapy, she was given cisplatin-gemcitabine chemotherapy. The treatment was well tolerated with the exception of grade 1 constipation and a single episode of grade 4 thrombocytopenia occurring after the fourth course. After the first three courses of chemotherapy a computed tomography scan evaluation demonstrated no change; her CA19-9 levels were slightly decreased. However, after the sixth course of chemotherapy a computed tomography scan revealed a dimensional enlargement of the lung metastases; her CA19-9 levels increased. She was then treated with gemcitabine alone. After 2 months of gemcitabine monotherapy a significant regression of lung and spleen metastases, as well a CA19-9 level reduction, occurred. Eight months after the start of gemcitabine monotherapy no signs of progression were reported. Treatment of metastatic intrahepatic cholangiocarcinoma with gemcitabine as maintenance therapy after first-line chemotherapy could be continued until clear evidence of disease progression since delayed responses are possible.

  17. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  18. An On-Line Acoustic Fluorocarbon Coolant Mixture Analyzer for the ATLAS Silicon Tracker

    NASA Astrophysics Data System (ADS)

    Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.

    2012-10-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoropropane (C3F8) evaporative cooling fluid to a composite fluid with a probable 10-20% admixture of hexafluoroethane (C2F6). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C3F8/C2F6 mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound `chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C3F8/C2F6 flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semi-conductor manufacture and anesthetic gas mixtures.

  19. Time delay estimation using new spectral and adaptive filtering methods with applications to underwater target detection

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed A.

    1997-11-01

    In this dissertation, we present several novel approaches for detection and identification of targets of arbitrary shapes from the acoustic backscattered data and using the incident waveform. This problem is formulated as time- delay estimation and sinusoidal frequency estimation problems which both have applications in many other important areas in signal processing. Solving time-delay estimation problem allows the identification of the specular components in the backscattered signal from elastic and non-elastic targets. Thus, accurate estimation of these time delays would help in determining the existence of certain clues for detecting targets. Several new methods for solving these two problems in the time, frequency and wavelet domains are developed. In the time domain, a new block fast transversal filter (BFTF) is proposed for a fast implementation of the least squares (LS) method. This BFTF algorithm is derived by using data-related constrained block-LS cost function to guarantee global optimality. The new soft-constrained algorithm provides an efficient way of transferring weight information between blocks of data and thus it is computationally very efficient compared with other LS- based schemes. Additionally, the tracking ability of the algorithm can be controlled by varying the block length and/or a soft constrained parameter. The effectiveness of this algorithm is tested on several underwater acoustic backscattered data for elastic targets and non-elastic (cement chunk) objects. In the frequency domain, the time-delay estimation problem is converted to a sinusoidal frequency estimation problem by using the discrete Fourier transform. Then, the lagged sample covariance matrices of the resulting signal are computed and studied in terms of their eigen- structure. These matrices are shown to be robust and effective in extracting bases for the signal and noise subspaces. New MUSIC and matrix pencil-based methods are derived these subspaces. The effectiveness

  20. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detectionmore » was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.« less

  1. An approach for estimating acoustic power in a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao; Qiu, Limin; Duan, Chaoxiang; You, Xiaokuan; Zhi, Xiaoqin

    2017-10-01

    Acoustic power at the cold end of regenerator is the measure of gross cooling capacity for a pulse tube cryocooler (PTC), which cannot be measured directly. Conventionally, the acoustic power can only be derived from the measurement of velocity, pressure and their phase angle, which is still a challenge for an oscillating flow at cryogenic temperatures. A new method is proposed for estimating the acoustic power, which takes use of the easily measurable parameters, such as the pressure and temperature, instead of the velocity and phase angle between the pressure and velocity at cryogenic temperatures. The ratio of acoustic powers at the both ends of isothermal components, like regenerator, heat exchangers, can be conveniently evaluated by using the ratio of pressure amplitudes and the local temperatures. The ratio of acoustic powers at the both ends of adiabatic components, like transfer line and pulse tube, is obtained by using the ratio of pressure amplitudes. Accuracy of the approach for evaluating the acoustic power for the regenerator is analyzed by comparing the results with those from REGEN 3.3 and references. For the cold end temperature range of 40-80 K, the deviation is less than 5% if the phase angle at the cold end of regenerator is around -30°. The simple method benefits estimating the acoustic power and optimizing the PTC performance without interfering the cryogenic flow field.

  2. Test of an Acoustic Mechanism for Atmospheric Heating in Dynamo-Deficient F Stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1996-01-01

    In a qualitative sense, the heating of chromospheres and coronae has long been ascribed to either acoustic or magnetic heating. However, quantitative discussions of the energy balance with detailed comparison to the fluxes of chromospheric emission lines have begun to appear only recently. The aim of this work is to observe F stars where magnetic effects might be expected to be rather small, thereby allowing us hopefully to access acoustically heated atmospheres.

  3. Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses.

    PubMed

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-02-17

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses.

  4. Steering by hearing: a bat's acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law.

    PubMed

    Ghose, Kaushik; Moss, Cynthia F

    2006-02-08

    Adaptive behaviors require sensorimotor computations that convert information represented initially in sensory coordinates to commands for action in motor coordinates. Fundamental to these computations is the relationship between the region of the environment sensed by the animal (gaze) and the animal's locomotor plan. Studies of visually guided animals have revealed an anticipatory relationship between gaze direction and the locomotor plan during target-directed locomotion. Here, we study an acoustically guided animal, an echolocating bat, and relate acoustic gaze (direction of the sonar beam) to flight planning as the bat searches for and intercepts insect prey. We show differences in the relationship between gaze and locomotion as the bat progresses through different phases of insect pursuit. We define acoustic gaze angle, theta(gaze), to be the angle between the sonar beam axis and the bat's flight path. We show that there is a strong linear linkage between acoustic gaze angle at time t [theta(gaze)(t)] and flight turn rate at time t + tau into the future [theta(flight) (t + tau)], which can be expressed by the formula theta(flight) (t + tau) = ktheta(gaze)(t). The gain, k, of this linkage depends on the bat's behavioral state, which is indexed by its sonar pulse rate. For high pulse rates, associated with insect attacking behavior, k is twice as high compared with low pulse rates, associated with searching behavior. We suggest that this adjustable linkage between acoustic gaze and motor output in a flying echolocating bat simplifies the transformation of auditory information to flight motor commands.

  5. Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Palchikovskiy, V. V.; Belyaev, I. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Khramtsov, I. V.; Korin, I. A.; Sorokin, E. V.; Kustov, O. Yu.

    2017-01-01

    The acoustic parameters of a new anechoic chamber constructed at Perm National Research Polytechnic University (PNRPU) are presented. This chamber is designed to be used, among other things, for measuring noise from aerodynamic sources. Sound-absorbing wedges lining the walls of the chamber were studied in an interferometer with normal wave incidence. The results are compared to the characteristics of sound-absorbing wedges of existing anechoic facilities. Metrological examination of the acoustic parameters of the PNRPU anechoic chamber demonstrates that free field conditions are established in it, which will make it possible to conduct quantitative acoustic experiments.

  6. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  7. Enhanced Sensitivity of a Surface Acoustic Wave Gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua; Wang, Wen

    2009-10-01

    In this paper, we present an optimal design and performance evaluation of a surface acoustic wave (SAW) gyroscope. It consists of a two-port SAW resonator (SAWR) and a SAW sensor (SAWS) structured using a delay line pattern. The SAW resonator provides a stable reference vibration and creates a standing wave, and the vibrating metallic dot array at antinodes of the standing wave induces the second SAW in the normal direction by the Coriolis force, and the SAW sensor is used to detect the secondary SAW. By using the coupling of modes (COM), the SAW resonator was simulated, and the effects of the design parameters on the frequency response of the device were investigated. Also, a theoretical analysis was performed to investigate the effect of metallic dots on the frequency response of the SAW device. The measured frequency response S21 of the fabricated 80 MHz two-port SAW resonator agrees well with the simulated result, that is, a low insertion loss (˜5 dB) and a single steep resonance peak were observed. In the gyroscopic experiments using a rate table, optimal metallic dot thickness was determined, and the sensitivity of the fabricated SAW gyroscope with an optimal metallic dot thickness of ˜350 nm was determined to be 3.2 µV deg-1 s-1.

  8. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    NASA Astrophysics Data System (ADS)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  9. Mutual conversion between B-mode image and acoustic impedance image

    NASA Astrophysics Data System (ADS)

    Chean, Tan Wei; Hozumi, Naohiro; Yoshida, Sachiko; Kobayashi, Kazuto; Ogura, Yuki

    2017-07-01

    To study the acoustic properties of a B-mode image, two ways of analysis methods were proposed in this report. The first method is the conversion of an acoustic impedance image into a B-mode image (Z to B). The time domain reflectometry theory and transmission line model were used as reference in the calculation. The second method is the direct a conversion of B-mode image into an acoustic impedance image (B to Z). The theoretical background of the second method is similar to that of the first method; however, the calculation is in the opposite direction. Significant scatter, refraction, and attenuation were assumed not to take place during the propagation of an ultrasonic wave. Hence, they were ignored in both calculations. In this study, rat cerebellar tissue and human cheek skin were used to determine the feasibility of the first and second methods respectively. Some good results are obtained and hence both methods showed their possible applications in the study of acoustic properties of B-mode images.

  10. Evaluation of bridge cables corrosion using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2010-04-01

    Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  11. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, R.; Battistin, M.; Berry, S.

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixturemore » ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)« less

  12. Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer.

    PubMed

    Lee, Kye-Sung; Akcay, A Ceyhun; Delemos, Tony; Clarkson, Eric; Rolland, Jannick P

    2005-07-01

    Recently, Fourier-domain (FD) optical delay lines (ODLs) were introduced for high-speed scanning and dispersion compensation in imaging interferometry. We investigate the effect of first- and second-order dispersion on the photocurrent signal associated with an optical coherence imaging system implemented with a single-mode fiber, a superluminescent diode centered at 950 nm +/- 35 nm, a FD ODL, a mirror, and a layered LiTAO3 that has suitable dispersion characteristics to model a skin specimen. We present a practical and useful method to minimize the effect of dispersion through the interferometer and the specimen combined, as well as to quantify the results using two general metrics for resolution. Theoretical and associated experimental results show that, under the optimum solution, the maximum broadening of the point-spread function through a 1-mm-deep specimen is limited to 57% of its original rms width value (i.e., 8.1 microm optimal, 12.7 microm at maximum broadening) compared with approximately 110% when compensation is performed without the specimen taken into account.

  13. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  14. Effects of high voltage transmission lines on honeybees: a feasibility study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, B.

    1977-07-01

    Methodology is described for the investigation of the effects of electric fields generated by high-tension power lines on honeybees (Apis mellifera L.). The parameters to be measured include colony population, honey stores, amount of acoustical noise generated by the bees, in-hive temperature, incidence of queen cell production, and tendency to swarm. Accompanying dosimetric support includes in-hive electric field measurements, development of shielding to eliminate the electric field from selected colonies, analysis of the acoustical data, and periodic checks on the ambient electric field present under the line and at the control site.

  15. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  16. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  17. The recommendation of line-balancing improvement on MCM product line 1 using genetics algorithm and moodie young at XYZ Company, Co.

    NASA Astrophysics Data System (ADS)

    Sriwana, I. K.; Marie, I. A.; Mangala, D.

    2017-12-01

    Kencana Gemilang, Co. is one electronics industry engaging in the manufacture sector. This company manufactures and assembles household electronic products, such as rice cooker, fan, iron, blender, etc. The company deals with an issue of underachievement of an established production target on MCM products line 1. This study aimed to calculate line efficiencies, delay times, and initial line smoothness indexes. The research was carried out by means of depicting a precedence diagram and gathering time data of each work element followed by examination and calculation of standard time as well as line balancing using methods of Moodie Young and Generics Algorithm. Based on results of calculation, better line balancing than the existing initial conditions, i.e. improvement in the line efficiency by 18.39%, deterioration in balanced delay by 28.39%, and deterioration of a smoothness index by 23.85% was obtained.

  18. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  19. Compact programmable photonic variable delay devices

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1999-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  20. Bottom Interaction in Long Range Acoustic Propagation

    DTIC Science & Technology

    2006-09-30

    Pacific Ocean utilizing controlled sources and vertical and horizontal receiver arrays . Broadband sources are considered with typical center...The LOAPEX (Long-range Ocean Acoustic Propagation Experiment) vertical line arrays (VLA) are described on page 1 of the LOAPEX cruise report: " The...hydrophone arrays on the two combined VLAs covered most of the 5-km water column. We refer to one of the VLAs as the deep VLA (DVLA), located at

  1. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control

    NASA Astrophysics Data System (ADS)

    Krushynska, A. O.; Bosia, F.; Miniaci, M.; Pugno, N. M.

    2017-10-01

    Attenuating low-frequency sound remains a challenge, despite many advances in this field. Recently-developed acoustic metamaterials are characterized by unusual wave manipulation abilities that make them ideal candidates for efficient subwavelength sound control. In particular, labyrinthine acoustic metamaterials exhibit extremely high wave reflectivity, conical dispersion, and multiple artificial resonant modes originating from the specifically-designed topological architectures. These features enable broadband sound attenuation, negative refraction, acoustic cloaking and other peculiar effects. However, hybrid and/or tunable metamaterial performance implying enhanced wave reflection and simultaneous presence of conical dispersion at desired frequencies has not been reported so far. In this paper, we propose a new type of labyrinthine acoustic metamaterials (LAMMs) with hybrid dispersion characteristics by exploiting spider web-structured configurations. The developed design approach consists in adding a square surrounding frame to sectorial circular-shaped labyrinthine channels described in previous publications (e.g. (11)). Despite its simplicity, this approach provides tunability in the metamaterial functionality, such as the activation/elimination of subwavelength band gaps and negative group-velocity modes by increasing/decreasing the edge cavity dimensions. Since these cavities can be treated as extensions of variable-width internal channels, it becomes possible to exploit geometrical features, such as channel width, to shift the band gap position and size to desired frequencies. Time transient simulations demonstrate the effectiveness of the proposed metastructures for wave manipulation in terms of transmission or reflection coefficients, amplitude attenuation and time delay at subwavelength frequencies. The obtained results can be important for practical applications of LAMMs such as lightweight acoustic barriers with enhanced broadband wave

  3. Optical resonators for true-time-delay beam steering

    NASA Astrophysics Data System (ADS)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  4. From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing

    NASA Astrophysics Data System (ADS)

    Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda

    2017-12-01

    Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.

  5. Mixing in Shear Coaxial Jets with and without Acoustics (Briefing Charts)

    DTIC Science & Technology

    2012-05-21

    and heat transfer fluctuations in a rocket engine – Irreparable damage can occur in əs • Combustion Instability caused a 4-yr delay in the...common choice for cryogenic liquid rocket engines • Interactions of transverse acoustics with injector’s own modes and mixing needs to be understood...Pr = 0.44 • LAR-thin , Pr = 0.44, J = 0.5 POM 2 POM 1 Average Snapshot Power Spectral Densities (PSD) of Temporal Coefficients of POMs 1 and 2

  6. Delayed temporal discrimination in pigeons: A comparison of two procedures

    PubMed Central

    Chatlosh, Diane L.; Wasserman, Edward A.

    1987-01-01

    A within-subjects comparison was made of pigeons' performance on two temporal discrimination procedures that were signaled by differently colored keylight samples. During stimulus trials, a peck on the key displaying a slanted line was reinforced following short keylight samples, and a peck on the key displaying a horizontal line was reinforced following long keylight samples, regardless of the location of the stimuli on those two choice keys. During position trials, a peck on the left key was reinforced following short keylight samples and a peck on the right key was reinforced following long keylight samples, regardless of which line stimulus appeared on the correct key. Thus, on stimulus trials, the correct choice key could not be discriminated prior to the presentation of the test stimuli, whereas on position trials, the correct choice key could be discriminated during the presentation of the sample stimulus. During Phase 1, with a 0-s delay between sample and choice stimuli, discrimination learning was faster on position trials than on stimulus trials for all 4 birds. During Phase 2, 0-, 0.5-, and 1.0-s delays produced differential loss of stimulus control under the two tasks for 2 birds. Response patterns during the delay intervals provided some evidence for differential mediation of the two delayed discriminations. These between-task differences suggest that the same processes may not mediate performance in each. PMID:16812483

  7. Acoustic separation of circulating tumor cells

    PubMed Central

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I.; Drabick, Joseph J.; El-Deiry, Wafik S.; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-01-01

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state. PMID:25848039

  8. Acoustic separation of circulating tumor cells.

    PubMed

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I; Drabick, Joseph J; El-Deiry, Wafik S; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-04-21

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.

  9. Demonstration of a directional sonic prism in two dimensions using an air-acoustic leaky wave antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Calvo, David C.

    Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was withinmore » 9% of predicted angle magnitudes over all examined frequencies.« less

  10. Investigation of an acoustical holography system for real-time imaging

    NASA Astrophysics Data System (ADS)

    Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.

    1998-07-01

    A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.

  11. Optimal Scheduling and Fair Service Policy for STDMA in Underwater Networks with Acoustic Communications

    PubMed Central

    2018-01-01

    In this work, a multi-hop string network with a single sink node is analyzed. A periodic optimal scheduling for TDMA operation that considers the characteristic long propagation delay of the underwater acoustic channel is presented. This planning of transmissions is obtained with the help of a new geometrical method based on a 2D lattice in the space-time domain. In order to evaluate the performance of this optimal scheduling, two service policies have been compared: FIFO and Round-Robin. Simulation results, including achievable throughput, packet delay, and queue length, are shown. The network fairness has also been quantified with the Gini index. PMID:29462966

  12. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  13. Panel acoustic contribution analysis.

    PubMed

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  14. Is dust acoustic wave a new plasma acoustic mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less

  15. HYDROBS: a long-term autonomous mooring for passive acoustic monitoring

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Royer, J. Y.; Yegikyan, M.

    2017-12-01

    Passive acoustics proves an effective way for monitoring the low-level seismic activity of the ocean floor and low-frequency sounds from the ocean (baleen whales, sea-state, icebergs). Networks of synchronized autonomous hydrophones have thus been commonly deployed in the world ocean to monitor large sections of mid-oceanic ridges. HYDROBS is an improved system that meet two requirements: an easy access to the data collected by the instruments together with long-term deployments - up to 4 consecutive years - reducing the need of large vessels capable of yearly mooring operations in open seas. The system has two components: a data logger, up-to-date but similar to previous systems, and three messengers, releasable on demand to collect the data. The mooring line itself is classical, with an expandable weight at the sea-bottom to maintain the mooring, an acoustic release to free the mooring line for recovery, a line adjustable to the seafloor depth, and an immerged buoy, holding the acquisition system, to maintain the sensors at a constant depth and to bring the mooring line to the surface for its recovery. The data logger is based on a low-power microprocessor, an A/D-32bit convertor sampling at 250Hz, a 10-8 real time clock and SD card storage. Lithium batteries provide 3-4 years of autonomy. Acoustic communications with the surface-ship provide control over all functionalities at deployment and a health bulletin on demand. The 3 shuttles, encapsulated in 13" glass spheres, use the same CPU board and clock as the main station. Data transfer from the data logger to the shuttles is wireless (1Mbit/s digital inductive through water). Data are duplicated once per day on shuttles N and N+1 for redundancy. Prior to their release by acoustic command, the shuttles are synchronized with the master clock. At sea-surface, shuttles (as the main unit) look for GPS time and calculate their clock drift. So, the master clock drift can be monitored over time at every shuttle release

  16. Impact of the Test Device on the Behavior of the Acoustic Emission Signals: Contribution of the Numerical Modeling to Signal Processing

    NASA Astrophysics Data System (ADS)

    Issiaka Traore, Oumar; Cristini, Paul; Favretto-Cristini, Nathalie; Pantera, Laurent; Viguier-Pla, Sylvie

    2018-01-01

    In a context of nuclear safety experiment monitoring with the non destructive testing method of acoustic emission, we study the impact of the test device on the interpretation of the recorded physical signals by using spectral finite element modeling. The numerical results are validated by comparison with real acoustic emission data obtained from previous experiments. The results show that several parameters can have significant impacts on acoustic wave propagation and then on the interpretation of the physical signals. The potential position of the source mechanism, the positions of the receivers and the nature of the coolant fluid have to be taken into account in the definition a pre-processing strategy of the real acoustic emission signals. In order to show the relevance of such an approach, we use the results to propose an optimization of the positions of the acoustic emission sensors in order to reduce the estimation bias of the time-delay and then improve the localization of the source mechanisms.

  17. Direct observation of the lattice precursor of the metal-to-insulator transition in V2O3 thin films by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Kündel, J.; Pontiller, P.; Müller, C.; Obermeier, G.; Liu, Z.; Nateprov, A. A.; Hörner, A.; Wixforth, A.; Horn, S.; Tidecks, R.

    2013-03-01

    A surface acoustic wave (SAW) delay line is used to study the metal-to-insulator (MI) transition of V2O3 thin films deposited on a piezoelectric LiNbO3 substrate. Effects contributing to the sound velocity shift of the SAW which are caused by elastic properties of the lattice of the V2O3 films when changing the temperature are separated from those originating from the electrical conductivity. For this purpose the electric field accompanying the elastic wave of the SAW has been shielded by growing the V2O3 film on a thin metallic Cr interlayer (coated with Cr2O3), covering the piezoelectric substrate. Thus, the recently discovered lattice precursor of the MI transition can be directly observed in the experiments, and its fine structure can be investigated.

  18. Acoustic Probe for Solid-Gas-Liquid Suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, L.L.; Sangani, Ashok

    The primary objective of the research project during the first funding period was to develop an acoustic probe to measure volume percent solids in solid-liquid slurries in the presence of small amounts of gas bubbles. This problem was addressed because of the great need for a non-invasive, accurate and reliable method for solids monitoring in liquid slurries in the presence of radiolytically generated gases throughout the DOE complex. These measurements are necessary during mobilization of salts and sediments in tanks, transport of these slurries in transfer lines to processing facilities across a site, and, in some instances, during high levelmore » waste processing. Although acoustic probes have been commonly used for monitoring flows in single-phase fluids (McLeod, 1967), their application to monitor two-phase mixtures has not yet fully realized its potential. A number of investigators in recent years have therefore been involved in developing probes for measuring the volume fractions in liquid solid suspensions (Atkinson and Kytomaa, 1993; Greenwood et al., 1993; Martin et al., 1995) and in liquid-liquid suspensions (Bonnet and Tavlarides, 1987; Tavlarides and Bonnet, 1988, Yi and Tavlarides, 1990; Tsouris and Tavlarides, 1993, Tsouris et al., 1995). In particular, Atkinson and Kytomaa (1993) showed that the acoustic technique can be used to determine both the velocity and the volume fraction of solids while Martin et al. (1995) and Spelt et al. (1999) showed that the acoustic probe can also be used to obtain information on the size distribution of the particles. In a recent testing of in-line slurry monitors with radioactive slurries suspended with Pulsair Mixers (Hylton & Bayne, 1999), an acoustic probe did not compare well with other instruments most probably due to presence of entrained gases and improper acoustic frequency range of interrogation. The work of the investigators cited has established the potential of the acoustic probe for characterizing

  19. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  20. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  1. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  2. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  3. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  4. PRSA hydrogen tank thermal acoustic oscillation study

    NASA Technical Reports Server (NTRS)

    Riemer, D. H.

    1979-01-01

    The power reactant storage assembly (PRSA) hydrogen tank test data were reviewed. Two hundred and nineteen data points illustrating the effect of flow rate, temperature ratio and configuration were identified. The test data were reduced to produce the thermal acoustic oscillation parameters. Frequency and amplitude were determined for model correlation. A comparison of PRSA hydrogen tank test data with the analytical models indicated satisfactory agreement for the supply and poor agreement for the full line.

  5. Speaker verification system using acoustic data and non-acoustic data

    DOEpatents

    Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  6. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  7. Fly-ear inspired acoustic sensors for gunshot localization

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Currano, Luke; Gee, Danny; Yang, Benjamin; Yu, Miao

    2009-05-01

    The supersensitive ears of the parasitoid fly Ormia ochracea have inspired researchers to develop bio-inspired directional microphone for sound localization. Although the fly ear is optimized for localizing the narrow-band calling song of crickets at 5 kHz, experiments and simulation have shown that it can amplify directional cues for a wide frequency range. In this article, a theoretical investigation is presented to study the use of fly-ear inspired directional microphones for gunshot localization. Using an equivalent 2-DOF model of the fly ear, the time responses of the fly ear structure to a typical shock wave are obtained and the associated time delay is estimated by using cross-correlation. Both near-field and far-field scenarios are considered. The simulation shows that the fly ear can greatly amplify the time delay by ~20 times, which indicates that with an interaural distance of only 1.2 mm the fly ear is able to generate a time delay comparable to that obtained by a conventional microphone pair with a separation as large as 24 mm. Since the parameters of the fly ear structure can also be tuned for muzzle blast and other impulse stimulus, fly-ear inspired acoustic sensors offers great potential for developing portable gunshot localization systems.

  8. Seafloor horizontal positioning from a continuously operating buoy-based GPS-acoustic array

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Brown, K. M.; Tryon, M. D.; Send, U.

    2009-12-01

    Seafloor horizontal positions in a global frame were estimated daily from an autonomous buoy operating continuously over several months. The buoy (GEOCE) was moored offshore San Diego in 100-m-deep waters above an array of 4 seafloor transponders. Dual-frequency GPS data were collected at 1-Hz at a main antenna on the buoy and at 3 shore stations to provide continuous 2-3 cm positions of the buoy main antenna. Two single-frequency antennas on the buoy along with the main antenna were used to estimate the buoy attitude and short-term velocity. At one minute intervals the two-way acoustic travel time was measured between the buoy and transponders. During this few second span when transmitting and receiving acoustic signals, 10-Hz attitude and velocity were collected to locate the position of the transducer mounted approximately 2 m below the water line. The GPS and acoustic data were recorded internally and transmitted to shore over a cell-phone link and/or a wireless Ethernet. GPS data were combined with the acoustic data to estimate the array location at 1 minute intervals. The 1-minute positions are combined to provide a daily estimate of the array position. The buoy is autonomous, solar-powered and in addition to the GPS and acoustic data collects air pressure, temperature, wind speed/direction as well as water level at the surface and conductivity and temperature along the mooring line from near the sea surface to just above the sea floor. Here we report results from the horizontal positioning effort from Phase I of the project in shallow waters. The project also includes a vertical deformation sensor and physical oceanographic monitoring. A deep water (nominally 1000 m) test is planned for 2010. This work is supported by NSF-OCE-0551363 of the Ocean Technology and Interdisciplinary Coordination Program.

  9. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  10. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.

    PubMed

    Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A

    2006-12-22

    The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.

  11. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    PubMed

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  12. Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Howerton, Brian M.; Ayle, Earl

    2012-01-01

    Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.

  13. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  14. Design of MOEMS adjustable optical delay line to reduce link set-up time in a tera-bit/s optical interconnection network.

    PubMed

    Jing, Wencai; Zhang, Yimo; Zhou, Ge

    2002-07-15

    A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.

  15. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.

    PubMed

    Li, Yun; Ho, K C; Popescu, Mihail

    2014-03-01

    Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.

  16. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  17. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  18. Efficacy of passive acoustic screening: implications for the design of imager and MR-suite.

    PubMed

    Moelker, Adriaan; Vogel, Mika W; Pattynama, Peter M T

    2003-02-01

    To investigate the efficacy of passive acoustic screening in the magnetic resonance (MR) environment by reducing direct and indirect MR-related acoustic noise, both from the patient's and health worker's perspective. Direct acoustic noise refers to sound originating from the inner and outer shrouds of the MR imager, and indirect noise to acoustic reflections from the walls of the MR suite. Sound measurements were obtained inside the magnet bore (patient position) and at the entrance of the MR imager (health worker position). Inner and outer shrouds and walls were lined with thick layers of sound insulation to eliminate the direct and indirect acoustic pathways. Sound pressure levels (SPLs) and octave band frequencies were acquired during various MR imaging sequences at 1.5 T. Inside the magnet bore, direct acoustic noise radiating from the inner shroud was most relevant, with substantial reductions of up to 18.8 dB when using passive screening of the magnetic bore. At the magnet bore entrance, blocking acoustic noise from the outer shroud and reflections showed significant reductions of 4.5 and 2.8 dB, respectively, and 9.4 dB when simultaneously applied. Inner shroud coverage contributed minimally to the overall SPL reduction. Maximum noise reduction by passive acoustic screening can be achieved by reducing direct sound conduction through the inner and outer shrouds. Additional measures to optimize the acoustic properties of the MR suite have only little effect. Copyright 2003 Wiley-Liss, Inc.

  19. 14 CFR 1214.805 - Unforeseen customer delay.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...

  20. 14 CFR 1214.805 - Unforeseen customer delay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...

  1. 14 CFR 1214.805 - Unforeseen customer delay.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...

  2. An acoustic switch.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2014-01-01

    The benefits derived from the development of acoustic transistors which act as switches or amplifiers have been reported in the literature. Here we propose a model of acoustic switch. We theoretically demonstrate that the device works: the input signal is totally restored at the output when the switch is on whereas the output signal nulls when the switch is off. The switch, on or off, depends on a secondary acoustic field capable to manipulate the main acoustic field. The model relies on the attenuation effect of many oscillating bubbles on the main travelling wave in the liquid, as well as on the capacity of the secondary acoustic wave to move the bubbles. This model evidences the concept of acoustic switch (transistor) with 100% efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Evaluation of the Affymetrix CytoScan® Dx Assay for Developmental Delay

    PubMed Central

    Webb, Bryn D.; Scharf, Rebecca J.; Spear, Emily A.; Edelmann, Lisa J.; Stroustrup, Annemarie

    2015-01-01

    The goal of molecular cytogenetic testing for children presenting with developmental delay is to identify or exclude genetic abnormalities that are associated with cognitive, behavioral, and/or motor symptoms. Until 2010, chromosome analysis was the standard first-line genetic screening test for evaluation of patients with developmental delay when a specific syndrome was not suspected. In 2010, The American College of Medical Genetics and several other groups recommended chromosomal microarray (CMA) as the first-line test in children with developmental delays, multiple congenital anomalies, and/or autism. This test is able to detect regions of genomic imbalances at a much finer resolution than G-banded karyotyping. Until recently, no CMA testing had been approved by the United States Food and Drug Administration (FDA). This review will focus on the use of the Affymetrix CytoScan® Dx Assay, the first CMA to receive FDA approval for the genetic evaluation of individuals with developmental delay. PMID:25350348

  4. Texture measurement of shaped material by impulse acoustic microscopy

    PubMed

    Eyraud; Nadal; Gondard

    2000-03-01

    All the microstructural parameters involved in metallurgical processes are difficult to determine directly on a shaped material. The aim of this paper is to use an impulse line-focus acoustic microscope (LFAM) as a non-destructive alternative to X-ray diffraction for measuring texture of slightly anisotropic materials. We apply it to characterize the rolling and annealing texture for tantalum sheets.

  5. Effect of applied voltage and inter-pulse delay in spark-assisted LIBS

    NASA Astrophysics Data System (ADS)

    Robledo-Martinez, A.; Sobral, H.; Garcia-Villarreal, A.

    2018-06-01

    We report the results obtained in an investigation on the effect of the time delay between the laser and electrical pulses in a spark-assisted laser-induced breakdown spectroscopy (LIBS) experiment. The electrical discharge is produced by the discharge of a charged coaxial cable. This arrangement produces a fast unipolar current pulse (500 ns) that applies high power ( 600 kW) to the laser ablation plasma. The delay between the laser pulse and the electric pulse can be controlled at will in order to find the optimal time in terms of enhancement of the emitted lines. It was found that the application of the high voltage pulse enhances the ionic lines emitted by up to two orders of magnitude. An additional enhancement by a factor of 2-4 can be obtained delaying the application of the electric pulse by a time of 0.6-20 μs. In the tests it was noticed that the ionic lines were found to be clearly responsive to increments in the applied electric energy while the neutral lines did so marginally. Our results show that the intensification of the lines is mainly due to reheating of the ablation plasma as the application of the electrical pulse increments the temperature of the ablation plasma by about 50%. It is demonstrated that the present technique is an efficient way of intensifying the lines emitted without incurring in additional damage to the sample.

  6. Acoustic levitation of an object larger than the acoustic wavelength.

    PubMed

    Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C

    2017-06-01

    Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.

  7. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  8. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.

  9. Effects of delayed treatment with combined GDNF and continuous electrical stimulation on spiral ganglion cell survival in deafened guinea pigs.

    PubMed

    Scheper, Verena; Paasche, Gerrit; Miller, Josef M; Warnecke, Athanasia; Berkingali, Nurdanat; Lenarz, Thomas; Stöver, Timo

    2009-05-01

    Electrical stimulation (ES) of spiral ganglion cells (SGC) via a cochlear implant is the standard treatment for profound sensor neural hearing loss. However, loss of hair cells as the morphological correlate of sensor neural hearing loss leads to deafferentation and death of SGC. Although immediate treatment with ES or glial cell line-derived neurotrophic factor (GDNF) can prevent degeneration of SGC, only few studies address the effectiveness of delayed treatment. We hypothesize that both interventions have a synergistic effect and that even delayed treatment would protect SGC. Therefore, an electrode connected to a pump was implanted into the left cochlea of guinea pigs 3 weeks after deafening. The contralateral untreated cochleae served as deafened intraindividual controls. Four groups were set up. Control animals received intracochlear infusion of artificial perilymph (AP/-). The experimental groups consisted of animals treated with AP in addition to continuous ES (AP/ES) or treated with GDNF alone (GDNF/-) or GDNF combined with continuous ES (GDNF/ES). Acoustically and electrically evoked auditory brain stem responses were recorded. All animals were killed 48 days after deafening; their cochleae were histologically evaluated. Survival of SGC increased significantly in the GDNF/- and AP/ES group compared with the AP/- group. A highly significant increase in SGC density was observed in the GDNF/ES group compared with the control group. Additionally, animals in the GDNF/ES group showed reduced EABR thresholds. Thus, delayed treatment with GDNF and ES can protect SGC from degeneration and may improve the benefits of cochlear implants.

  10. Effects of channel tap spacing on delay-lock tracking

    NASA Astrophysics Data System (ADS)

    Dana, Roger A.; Milner, Brian R.; Bogusch, Robert L.

    1995-12-01

    High fidelity simulations of communication links operating through frequency selective fading channels require both accurate channel models and faithful reproduction of the received signal. In modern radio receivers, processing beyond the analog-to-digital converter (A/D) is done digitally, so a high fidelity simulation is actually an emulation of this digital signal processing. The 'simulation' occurs in constructing the output of the A/D. One approach to constructing the A/D output is to convolve the channel impulse response function with the combined impulse response of the transmitted modulation and the A/D. For both link simulations and hardware channel simulators, the channel impulse response function is then generated with a finite number of samples per chip, and the convolution is implemented in a tapped delay line. In this paper we discuss the effects of the channel model tap spacing on the performance of delay locked loops (DLLs) in both direct sequence and frequency hopped spread spectrum systems. A frequency selective fading channel is considered, and the channel impulse response function is constructed with an integer number of taps per modulation symbol or chip. The tracking loop time delay is computed theoretically for this tapped delay line channel model and is compared to the results of high fidelity simulations of actual DLLs. A surprising result is obtained. The performance of the DLL depends strongly on the number of taps per chip. As this number increases the DLL delay approaches the theoretical limit.

  11. Deep seafloor arrivals in long range ocean acoustic propagation.

    PubMed

    Stephen, Ralph A; Bolmer, S Thompson; Udovydchenkov, Ilya A; Worcester, Peter F; Dzieciuch, Matthew A; Andrew, Rex K; Mercer, James A; Colosi, John A; Howe, Bruce M

    2013-10-01

    Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.

  12. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  13. Estuarine Habitat Assessment for Construction of a Submarine Transmission Line

    NASA Astrophysics Data System (ADS)

    Hamouda, Amr Z.; Abdel-Salam, Khaled M.

    2010-07-01

    The present paper describes a submarine survey using the acoustic discrimination system QTC VIEW (Series V) as an exploratory tool to adjust final route alignment of a new pipeline. By using acoustic sound survey as an exploratory tool described in this paper to adjust final route alignment of a new pipeline to minimize the environmental impact caused and ultimately to avoid any mitigation measures. The transmission pipeline extended from the shore line of Abu-Qir Bay, on the Mediterranean Sea in Egypt, out to 70 nautical miles at sea (60 m water depth). Four main surface sediment types were defined in the study area, namely fine sand, silty sand, silt and clay. Results of the acoustic classification revealed four acoustic classes. The first acoustic class corresponded to fine sand, absence of shell debris and very poor habitats characteristics. The second acoustic class is predominant in the study area and corresponds to the region occupied by silt. It is also characterized by intermediate diversity of macrobenthic invertebrate community which is mainly characterized by polychaeta. The third acoustic class is characterized by silt to silty clay. It is characterized by a high diversity of macrobenthic invertebrate community which is mainly polychaeta with an intermediate diversity of gastropoda and bivalvia. The final acoustic class is characterized by clay and high occurrence of shell debris of gastropoda, bivalvia and polychaeta.

  14. Acoustic phonon dispersion at hypersonic frequencies in Si and Ge

    NASA Astrophysics Data System (ADS)

    Kuok, M. H.; Ng, S. C.; Rang, Z. L.; Lockwood, D. J.

    2000-11-01

    Brillouin spectra of the longitudinal acoustic (LA) mode, traveling along the [001] direction, in silicon and germanium have been recorded in 180° backscattering using 457.9-514.5-nm laser lines. The wave velocity of the LA phonon propagating in the [001] direction was determined at hypersonic frequencies, from the measured acoustic phonon dispersion in silicon and germanium. The elastic modulus c11 of the two semiconductors has been calculated from the respective measured hypersonic wave velocities and the results are compared with values determined from lower-frequency ultrasonic and other measurements. Interestingly, the hypersonic velocities are consistently lower by ~1-2 % than the ultrasonic ones, but they generally agree within the present experimental accuracy.

  15. Break-before-make CMOS inverter for power-efficient delay implementation.

    PubMed

    Puhan, Janez; Raič, Dušan; Tuma, Tadej; Bűrmen, Árpád

    2014-01-01

    A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell.

  16. Break-before-Make CMOS Inverter for Power-Efficient Delay Implementation

    PubMed Central

    Raič, Dušan

    2014-01-01

    A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell. PMID:25538951

  17. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  18. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  19. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  20. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  1. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  2. Negative refraction of acoustic waves using a foam-like metallic structure

    NASA Astrophysics Data System (ADS)

    Hladky-Hennion, A.-C.; Vasseur, J. O.; Haw, G.; Croënne, C.; Haumesser, L.; Norris, A. N.

    2013-04-01

    A phononic crystal (PC) slab made of a single metallic phase is shown, theoretically and experimentally, to display perfect negative index matching and focusing capability when surrounded with water. The proposed PC slab is a centimeter scale hollow metallic foam-like structure in which acoustic energy is mediated via the metal lattice. The negative index property arises from an isolated branch of the dispersion curves corresponding to a mode that can be coupled to incident acoustic waves in surrounding water. This band also intercepts the water sound line at a frequency in the ultrasonic range. The metallic structure is consequently a candidate for the negative refraction of incident longitudinal waves.

  3. Design and simulation of a microfluidic device for acoustic cell separation.

    PubMed

    Shamloo, Amir; Boodaghi, Miad

    2018-03-01

    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Acoustic neuroma

    MedlinePlus

    ... Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... that makes it hard to hear conversations Ringing ( tinnitus ) in the affected ear Less common symptoms include: ...

  5. Double negative acoustic metastructure for attenuation of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu

    2018-03-01

    Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.

  6. Reducing the dimensions of acoustic devices using anti-acoustic-null media

    NASA Astrophysics Data System (ADS)

    Li, Borui; Sun, Fei; He, Sailing

    2018-02-01

    An anti-acoustic-null medium (anti-ANM), a special homogeneous medium with anisotropic mass density, is designed by transformation acoustics (TA). Anti-ANM can greatly compress acoustic space along the direction of its main axis, where the size compression ratio is extremely large. This special feature can be utilized to reduce the geometric dimensions of classic acoustic devices. For example, the height of a parabolic acoustic reflector can be greatly reduced. We also design a brass-air structure on the basis of the effective medium theory to materialize the anti-ANM in a broadband frequency range. Numerical simulations verify the performance of the proposed anti-ANM.

  7. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2016-06-21

    the "Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical Society of America (Vol. 134, No . 4, Pt. 2 of 2 , October20 13...also listed. Fourteen (14) of these publications appeared in the " Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical

  8. Losing track of time through delayed body representations.

    PubMed

    Fritz, Thomas H; Steixner, Agnes; Boettger, Joachim; Villringer, Arno

    2015-01-01

    The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here, we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s) had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music).

  9. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  10. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  11. Relationships between objective acoustic indices and acoustic comfort evaluation in nonacoustic spaces

    NASA Astrophysics Data System (ADS)

    Kang, Jian

    2004-05-01

    Much attention has been paid to acoustic spaces such as concert halls and recording studios, whereas research on nonacoustic buildings/spaces has been rather limited, especially from the viewpoint of acoustic comfort. In this research a series of case studies has been carried out on this topic, considering various spaces including shopping mall atrium spaces, library reading rooms, football stadia, swimming spaces, churches, dining spaces, as well as urban open public spaces. The studies focus on the relationships between objective acoustic indices such as sound pressure level and reverberation time and perceptions of acoustic comfort. The results show that the acoustic atmosphere is an important consideration in such spaces and the evaluation of acoustic comfort may vary considerably even if the objective acoustic indices are the same. It is suggested that current guidelines and technical regulations are insufficient in terms of acoustic design of these spaces, and the relationships established from the case studies between objective and subjective aspects would be useful for developing further design guidelines. [Work supported partly by the British Academy.

  12. Magneto-acoustic wave energy in sunspots: observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.

    2011-11-01

    We have reproduced some sunspot wave signatures obtained from spectropolarimetric observations through 3D MHD numericalsimulations. The results of the simulations arecompared with the oscillations observed simultaneously at different heights from the SiI lambda10827Å line, HeI lambda10830Å line, the CaII H core and the FeI blends at the wings of the CaII H line. The simulations show a remarkable agreement with the observations, and we have used them to quantify the energy contribution of the magneto-acoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is 5-10 times lower than the amount needed to balance the chromospheric radiative losses.

  13. Virtual acoustics displays

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-03-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  14. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  15. Simulation of Acoustics for Ares I Scale Model Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Putnam, Gabriel; Strutzenberg, Louise L.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  16. [Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].

    PubMed

    Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang

    2015-08-01

    To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.

  17. Long microwave delay fiber-optic link for radar testing

    NASA Astrophysics Data System (ADS)

    Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.

    1990-05-01

    A long fiberoptic delay line is used as a radar repeater to improve radar testing capabilities. The first known generation of 152 microsec delayed ideal target at X-band (10 GHz) frequencies having the phase stability and signal-to-noise ratio (SNR) needed for testing modern high-resolution Doppler radars is demonstrated with a 31.6-km experimental externally modulated fiberoptic link with a distributed-feedback (DFB) laser. The test application, link configuration, and link testing are discussed.

  18. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  19. Waterfall notch-filtering for restoration of acoustic backscatter records from Admiralty Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Fonseca, Luciano; Hung, Edson Mintsu; Neto, Arthur Ayres; Magrani, Fábio José Guedes

    2018-06-01

    A series of multibeam sonar surveys were conducted from 2009 to 2013 around Admiralty Bay, Shetland Islands, Antarctica. These surveys provided a detailed bathymetric model that helped understand and characterize the bottom geology of this remote area. Unfortunately, the acoustic backscatter records registered during these bathymetric surveys were heavily contaminated with noise and motion artifacts. These artifacts persisted in the backscatter records despite the fact that the proper acquisition geometry and the necessary offsets and delays were applied during the survey and in post-processing. These noisy backscatter records were very difficult to interpret and to correlate with gravity-core samples acquired in the same area. In order to address this issue, a directional notch-filter was applied to the backscatter waterfall in the along-track direction. The proposed filter provided better estimates for the backscatter strength of each sample by considerably reducing residual motion artifacts. The restoration of individual samples was possible since the waterfall frame of reference preserves the acquisition geometry. Then, a remote seafloor characterization procedure based on an acoustic model inversion was applied to the restored backscatter samples, generating remote estimates of acoustic impedance. These remote estimates were compared to Multi Sensor Core Logger measurements of acoustic impedance obtained from gravity core samples. The remote estimates and the Core Logger measurements of acoustic impedance were comparable when the shallow seafloor was homogeneous. The proposed waterfall notch-filtering approach can be applied to any sonar record, provided that we know the system ping-rate and sampling frequency.

  20. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds

  1. Estimating animal population density using passive acoustics

    PubMed Central

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-01-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds

  2. Acoustic/infrasonic rocket engine signatures

    NASA Astrophysics Data System (ADS)

    Tenney, Stephen M.; Noble, John M.; Whitaker, Rodney W.; ReVelle, Douglas O.

    2003-09-01

    Infrasonics offers the potential of long-range acoustic detection of explosions, missiles and even sounds created by manufacturing plants. The atmosphere attenuates acoustic energy above 20 Hz quite rapidly, but signals below 10 Hz can propagate to long ranges. Space shuttle launches have been detected infrasonically from over 1000 km away and the Concorde airliner from over 400 km. This technology is based on microphones designed to respond to frequencies from .1 to 300 Hz that can be operated outdoors for extended periods of time with out degrading their performance. The US Army Research Laboratory and Los Alamos National Laboratory have collected acoustic and infrasonic signatures of static engine testing of two missiles. Signatures were collected of a SCUD missile engine at Huntsville, AL and a Minuteman engine at Edwards AFB. The engines were fixed vertically in a test stand during the burn. We will show the typical time waveform signals of these static tests and spectrograms for each type. High resolution, 24-bit data were collected at 512 Hz and 16-bit acoustic data at 10 kHz. Edwards data were recorded at 250 Hz and 50 Hz using a Geotech Instruments 24 bit digitizer. Ranges from the test stand varied from 1 km to 5 km. Low level and upper level meteorological data was collected to provide full details of atmospheric propagation during the engine test. Infrasonic measurements were made with the Chaparral Physics Model 2 microphone with porous garden hose attached for wind noise suppression. A B&K microphone was used for high frequency acoustic measurements. Results show primarily a broadband signal with distinct initiation and completion points. There appear to be features present in the signals that would allow identification of missile type. At 5 km the acoustic/infrasonic signal was clearly present. Detection ranges for the types of missile signatures measured will be predicted based on atmospheric modeling. As part of an experiment conducted by ARL

  3. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-11-01

    Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.

  4. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.

    2018-05-01

    A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.

  5. Delay Discounting and Intelligence: A Meta-Analysis

    ERIC Educational Resources Information Center

    Shamosh, Noah A.; Gray, Jeremy R.

    2008-01-01

    Delay discounting (DD), the tendency to prefer smaller, sooner rewards to larger, later ones, is an important indicator of self-control. Assessments of DD superficially require individuals to make choices based on motivational processes. However, several lines of evidence suggest that DD may be systematically related to cognitive ability. We…

  6. Compensating measured intra-wafer ring oscillator stage delay with intra-wafer exposure dose corrections

    NASA Astrophysics Data System (ADS)

    Verhaegen, Staf; Nackaerts, Axel; Dusa, Mircea; Carpaij, Rene; Vandenberghe, Geert; Finders, Jo

    2006-03-01

    The purpose of this paper is to use measurements on real working devices to derive more information than typically measured by the classic line-width measurement techniques. The first part of the paper will discuss the principle of the measurements with a ring oscillator, a circuit used to measure the speed of elementary logic gates. These measurements contribute to the understanding of the exact timing dependencies in circuits, which is of utmost importance for the design and simulation of these circuits. When connecting an odd number of digital inverting stages in a ring, the circuit has no stable digital state but acts as an analog oscillator with the oscillation frequency dependent on the analog propagation delay of the signals through the stages. By varying some conditions during a litho step, the delay change caused by the process condition change can be measured very accurately. The response of the ring oscillator delay to exposure dose is measured and presented in this paper together with a comparison of measured line-width values of the poly gate lines. The second part of the paper will focus on improving the intra-wafer variation of the stage delay. A number of ring oscillators are put in a design at different slit and scan locations. 200mm wafers are processed with 48 full dies present. From the intra-wafer delay fingerprint and the dose sensitivity of the delay an intra-wafer dose correction, also called a dose recipe, is calculated. This dose recipe is used on the scanner to compensate for effects that are the root cause for the delay profile; including reticle and processing such as track, etch and annealing.

  7. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology,more » and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several

  8. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  9. [Means and methods of acoustic protection in aviation: current status and outlook for development].

    PubMed

    Soldatov, S K; Bogomolov, A V; Zinkin, V N; Aver'ianov, A A; Rossel's, A V; Patskin, G A; Sokolov, B A

    2011-01-01

    Analysis of the current status of acoustic protection in aviation shows that despite the material progress in the field, risk of professional pathologies in flying and technical personnel is still high. The situation is dramatized by the lack of effective personal and crew acoustic protectors. The authors speculate on applicability of innovative materials and technologies, ingenious designs of earphones and modular prefabricated demountable structures. Tests of proposed personal protectors demonstrated their competitiveness with foreign analogs. Prospective lines of development, e.g. incorporation of active sound absorption systems in existing passive protectors are discussed.

  10. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    DTIC Science & Technology

    2016-05-02

    individual animals . 15. SUBJECT TERMS Marine mammal; Passive acoustic monitoring ; Localization; Tracking ; Multiple source ; Sparse array 16. SECURITY...al. 2004; Thode 2005; Nosal 2007] to localize animals in situations where straight-line propagation assumptions made by conventional marine mammal...Objective 1: Inveti for sound speed profiles. hydrophone position and hydrophone timing offset in addition to animal position Almost all marine mammal

  11. Longitudinal mode selection in a delay-line homogeneously broadened oscillator with a fast saturable amplifier.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2017-05-01

    Homogeneously broadened delay-line oscillators such as lasers or optoelectronic oscillators (OEOs) can potentially oscillate in a large number of cavity modes that are supported by their amplifier bandwidth. In a continuous wave operating mode, the oscillating mode is selected between one or few cavity modes that experience the highest small-signal gain. In this manuscript, we show that the oscillation mode of a homogeneously broadened oscillator can be selected from a large number of modes in a frequency region that can be broader than the full width at half maximum of the effective cavity filter. The mode is selected by a short-time injection of an external signal into the oscillator. After the external signal is turned off, the oscillation is maintained in the selected mode even if this mode has a significantly lower small-signal gain than that of other cavity modes. The stability of the oscillation is obtained due to nonlinear saturation effect in the oscillator amplifier. We demonstrate, experimentally and theoretically, mode selection in a long cavity OEO. We could select any desired mode between 400 cavity modes while maintaining ultra-low phase noise in the selected mode and in the non-oscillating modes. No mode-hopping was observed during our maximum measurement duration of about 24 hours.

  12. Relationships between processing delay and microbial load of broiler neck skin samples.

    PubMed

    Lucianez, A; Holmes, M A; Tucker, A W

    2010-01-01

    The measurable microbial load on poultry carcasses during processing is determined by a number of factors including farm or origin, processing hygiene, and external temperature. This study investigated associations between carcass microbial load and progressive delays to processing. A total of 30 carcasses were delayed immediately after defeathering and before evisceration in a commercial abattoir in groups of five, and were held at ambient temperature for 1, 2, 3, 4, 6, and 8 h. Delayed carcasses were reintroduced to the processing line, and quantitative assessment of total viable count, coliforms, Staphylococcus aureus, and Pseudomonas spp. was undertaken on neck skin flap samples collected after carcass chilling and then pooled for each group. Sampling was repeated on 5 separate days, and the data were combined. Significant increases in total viable count (P = 0.001) and coliforms (P = 0.004), but not for S. aureus or Pseudomonas loads, were observed across the 8-h period of delay. In line with previous studies, there was significant variation in microbiological data according to sampling day. In conclusion, there is a significant and measurable decline in microbiological status of uneviscerated but defeathered poultry carcasses after an 8-h delay, but the variability of sampling results, reflecting the wide range of factors that impact microbial load, means that it is not possible to determine maximum or minimum acceptable periods of processing delay based on this criterion alone.

  13. Simultaneous detection of acoustic emission and Barkhausen noise during the martensitic transition of a Ni-Mn-Ga magnetic shape-memory alloy

    NASA Astrophysics Data System (ADS)

    Baró, Jordi; Dixon, Steve; Edwards, Rachel S.; Fan, Yichao; Keeble, Dean S.; Mañosa, Lluís; Planes, Antoni; Vives, Eduard

    2013-11-01

    We present simultaneous measurements of acoustic emission and magnetic Barkhausen noise during the thermally induced martensitic transition in a Ni-Mn-Ga single crystal. The range where structural acoustic emission avalanches are detected extends for more than 50 K for both cooling and heating ramps, with a hysteresis of ˜10 K. The magnetic activity occurs during the structural transition, exhibiting similar hysteresis, but concentrated in the lower half of the temperature range. Statistical analysis of individual signals allows characterization of the broad distributions of acoustic emission and Barkhausen amplitudes. By studying the times of arrival of the avalanche events we detect the existence of correlations between the two kinds of signals, with a number of acoustic emission signals occurring shortly after a Barkhausen signal. The order of magnitude of the observed delays is compatible with the time needed for the propagation of ultrasound through the sample, showing correlation of some of the signals.

  14. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE PAGES

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya; ...

    2017-08-14

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  15. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  16. Examination of nanosecond laser melting thresholds in refractory metals by shear wave acoustics

    NASA Astrophysics Data System (ADS)

    Abdullaev, A.; Muminov, B.; Rakhymzhanov, A.; Mynbayev, N.; Utegulov, Z. N.

    2017-07-01

    Nanosecond laser pulse-induced melting thresholds in refractory (Nb, Mo, Ta and W) metals are measured using detected laser-generated acoustic shear waves. Obtained melting threshold values were found to be scaled with corresponding melting point temperatures of investigated materials displaying dissimilar shearing behavior. The experiments were conducted with motorized control of the incident laser pulse energies with small and uniform energy increments to reach high measurement accuracy and real-time monitoring of the epicentral acoustic waveforms from the opposite side of irradiated sample plates. Measured results were found to be in good agreement with numerical finite element model solving coupled elastodynamic and thermal conduction governing equations on structured quadrilateral mesh. Solid-melt phase transition was handled by means of apparent heat capacity method. The onset of melting was attributed to vanished shear modulus and rapid radial molten pool propagation within laser-heated metal leading to preferential generation of transverse acoustic waves from sources surrounding the molten mass resulting in the delay of shear wave transit times. Developed laser-based technique aims for applications involving remote examination of rapid melting processes of materials present in harsh environment (e.g. spent nuclear fuels) with high spatio-temporal resolution.

  17. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  18. On the energy flux in acoustic waves in the solar atmosphere .

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    The energy supply for the radiative losses of the quiet solar chromosphere is studied. Time sequences from quiet Sun disc centre were obtained with the ``Göttingen'' Fabry-Pérot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe I 5576 Å line. The data were reconstructed with speckle methods. The velocities as measured at the line minimum were subjected to Fourier and wavelet analysis. The energy fluxes were corrected for the transmission of the solar atmosphere. We find an energy flux of ˜ 3 000 W m-2 at a height of h=250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. The waves occur predominantly above inter-granular areas. We speculate that the acoustic flux in waves with periods shorter than the acoustic cutoff period (U≈190 s) can contribute to the basal heating of the solar chromosphere, in addition to atmospheric gravity waves.

  19. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  20. Quantitative Interferometry in the Severe Acoustic Environment of Resonant Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Raman, Ganesh

    1999-01-01

    Understanding fundamental fluidic dynamic and acoustic processes in high-speed jets requires quantitative velocity, density and temperature measurements. In this paper we demonstrate a new, robust Liquid Crystal Point Diffraction Interferometer (LCPDI) that includes phase stepping and can provide accurate data even in the presence of intense acoustic fields. This novel common path interferometer (LCPDI) was developed to overcome difficulties with the Mach Zehnder interferometer in vibratory environments and is applied here to the case of a supersonic shock- containing jet. The environmentally insensitive LCPDI that is easy to align and capable of measuring optical wavefronts with high accuracy is briefly described, then integrated line of sight density data from the LCPDI for two underexpanded jets are presented.

  1. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  2. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.

    PubMed

    Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre

    2012-01-01

    The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer. © 2012 Acoustical Society of America.

  3. 14 CFR § 1214.805 - Unforeseen customer delay.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...

  4. Acoustic-sensor-based detection of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Foote, Peter; Martin, Tony; Read, Ian

    2004-03-01

    Acoustic emission detection is a well-established method of locating and monitoring crack development in metal structures. The technique has been adapted to test facilities for non-destructive testing applications. Deployment as an operational or on-line automated damage detection technology in vehicles is posing greater challenges. A clear requirement of potential end-users of such systems is a level of automation capable of delivering low-level diagnosis information. The output from the system is in the form of "go", "no-go" indications of structural integrity or immediate maintenance actions. This level of automation requires significant data reduction and processing. This paper describes recent trials of acoustic emission detection technology for the diagnosis of damage in composite aerospace structures. The technology comprises low profile detection sensors using piezo electric wafers encapsulated in polymer film ad optical sensors. Sensors are bonded to the structure"s surface and enable acoustic events from the loaded structure to be located by triangulation. Instrumentation has been enveloped to capture and parameterise the sensor data in a form suitable for low-bandwidth storage and transmission.

  5. Reverberation Mapping of the Broad Line Region: Application to a Hydrodynamical Line-driven Disk Wind Solution

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny

    2016-08-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (I≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .

  6. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  7. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    NASA Astrophysics Data System (ADS)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  8. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  9. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition.

    PubMed

    Gong, Zhaoyuan; Walls, Jamie D

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoyuan; Walls, Jamie D.

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.

  11. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  12. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  13. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  14. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  15. Contingent attentional capture or delayed allocation of attention?

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Folk, C. L.; McLean, J. P.

    2001-01-01

    Under certain circumstances, external stimuli will elicit an involuntary shift of spatial attention, referred to as attentional capture. According to the contingent involuntary orienting account (Folk, Remington, & Johnston, 1992), capture is conditioned by top-down factors that set attention to respond involuntarily to stimulus properties relevant to one's behavioral goals. Evidence for this comes from spatial cuing studies showing that a spatial cuing effect is observed only when cues have goal-relevant properties. Here, we examine alternative, decision-level explanations of the spatial cuing effect that attribute evidence of capture to postpresentation delays in the voluntary allocation of attention, rather than to on-line involuntary shifts in direct response to the cue. In three spatial cuing experiments, delayed-allocation accounts were tested by examining whether items at the cued location were preferentially processed. The experiments provide evidence that costs and benefits in spatial cuing experiments do reflect the on-line capture of attention. The implications of these results for models of attentional control are discussed.

  16. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  17. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    PubMed Central

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-01-01

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520

  18. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  19. Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Di-Chao; Zhu, Xing-Feng; Wei, Qi; Wu, Da-Jian; Liu, Xiao-Jun

    2018-01-01

    An acoustic metasurface (AM) composed of space-coiling subunits is proposed to generate acoustic Airy-like beams (ALBs) by manipulating the transmitted acoustic phase. The self-accelerating, self-healing, and non-diffracting features of ALBs are demonstrated using finite element simulations. We further employ two symmetrical AMs to realize two symmetrical ALBs, resulting in highly efficient acoustic focusing. At the working frequency, the focal intensity can reach roughly 20 times that of the incident wave. It is found that the highly efficient acoustic focusing can circumvent obstacles in the propagating path and can be maintained in a broad frequency bandwidth. In addition, simply changing the separation between the two AMs can modulate the focal length of the proposed AM lens. ALBs generated by AMs and the corresponding AM lens may benefit applications in medical ultrasound imaging, biomedical therapy, and particle trapping and manipulation.

  20. Acoustic integrated extinction.

    PubMed

    Norris, Andrew N

    2015-05-08

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  1. A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment

    PubMed Central

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.

    2013-01-01

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266

  2. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2018-03-01

    In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2 +1 D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

  3. A study on locating the sonic source of sinusoidal magneto-acoustic signals using a vector method.

    PubMed

    Zhang, Shunqi; Zhou, Xiaoqing; Ma, Ren; Yin, Tao; Liu, Zhipeng

    2015-01-01

    Methods based on the magnetic-acoustic effect are of great significance in studying the electrical imaging properties of biological tissues and currents. The continuous wave method, which is commonly used, can only detect the current amplitude without the sound source position. Although the pulse mode adopted in magneto-acoustic imaging can locate the sonic source, the low measuring accuracy and low SNR has limited its application. In this study, a vector method was used to solve and analyze the magnetic-acoustic signal based on the continuous sine wave mode. This study includes theory modeling of the vector method, simulations to the line model, and experiments with wire samples to analyze magneto-acoustic (MA) signal characteristics. The results showed that the amplitude and phase of the MA signal contained the location information of the sonic source. The amplitude and phase obeyed the vector theory in the complex plane. This study sets a foundation for a new technique to locate sonic sources for biomedical imaging of tissue conductivity. It also aids in studying biological current detecting and reconstruction based on the magneto-acoustic effect.

  4. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  5. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  6. New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.

    2004-01-01

    A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and

  7. In-situ geophysical measurements in marine sediments: Applications in seafloor acoustics and paleoceanography

    NASA Astrophysics Data System (ADS)

    Gorgas, Thomas Joerg

    Acoustic in-situ sound speeds and attenuation were measured on the Eel River shelf, CA, with the Acoustic Lance between 5 and 15 kHz to 2.0 meters below seafloor (mbsf). A comparison with laboratory ultrasonic geoacoustic data obtained at 400 kHz on cored sediments showed faster in-situ and ultrasonic sound speeds in coarse-grained deposits in water depths to 60 m than in fine-grained deposits below that contour line. Ultrasonic attenuation was often greater than in-situ values and remained almost constant below 0.4 mbsf in these heterogeneous deposits. In-situ attenuation decreased with depth. These observations partly agree with results from other field studies, and with theoretical models that incorporate intergranular friction and dispersion from viscosity as main controls on acoustic wave propagation in marine sediments. Deviations among in-situ and laboratory acoustic data from the Eel Margin with theoretical studies were linked to scattering effects. Acoustic Lance was also deployed in homogeneous, fine-grained sediments on the inner shelf of SE Korea, where free gas was identified in late-September, but not in mid-September 1999. Free gas was evidenced by an abrupt decrease of in-situ sound speed and by characteristic changes in acoustic waveforms. These results suggest the presence of a gassy sediment layer as shallow as 2 mbsf along the 70 m bathymetry line, and was attributed to a variable abundance of free gas on short-term and/or small-regional scales on the SE Korea shelf. Bulk density variations in marine sediments obtained along the Walvis Ridge/Basin, SW Africa, at Ocean Drilling Program (ODP) Sites 1081 to 1084 were spectral-analyzed to compute high-resolution sedimentation rates (SRs) in both the time- and age domains by correctly identifying Milankovitch cycles (MCs). SRs for the ODP sites yielded age-depth models that often correlate positively with biostratigraphic data and with organic mass accumulation rates (MAR Corg), a proxy for

  8. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  9. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  10. Microlensing makes lensed quasar time delays significantly time variable

    NASA Astrophysics Data System (ADS)

    Tie, S. S.; Kochanek, C. S.

    2018-01-01

    The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.

  11. Delayed fission of atomic nuclei (To the 50th anniversary of the discovery)

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2017-09-01

    The history of the discovery of delayed nuclear fission is presented, and the retrospective of investigations into this phenomenon that were performed at various research centers worldwide is outlined. The results obtained by measuring basic delayed-fission features, including the fission probability, the total kinetic energy of fission fragments, and their mass distributions, are analyzed. Recommendations concerning further studies in various regions of nuclear map with the aim of searches for and investigation of atomic nuclei undergoing delayed fission are given. Lines of further research into features of delayed fission with the aim of solving current problems of fission physics are discussed.

  12. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H [Albuquerque, NM; Fleming, James G [Albuquerque, NM; Tuck, Melanie R [Albuquerque, NM

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  13. Spatiotemporal topology and temporal sequence identification with an adaptive time-delay neural network

    NASA Astrophysics Data System (ADS)

    Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.

    1993-08-01

    Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.

  14. History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats.

    PubMed

    Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu

    2015-01-01

    Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.

  15. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  16. Maps of interaural delay in the owl's nucleus laminaris

    PubMed Central

    Shah, Sahil; McColgan, Thomas; Ashida, Go; Kuokkanen, Paula T.; Brill, Sandra; Kempter, Richard; Wagner, Hermann

    2015-01-01

    Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD. PMID:26224776

  17. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

    2009-01-01

    Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility

  18. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  19. Suppression of nonlinear oscillations in combustors with partial length acoustic liners

    NASA Technical Reports Server (NTRS)

    Espander, W. R.; Mitchell, C. E.; Baer, M. R.

    1975-01-01

    An analytical model is formulated for a three-dimensional nonlinear stability problem in a rocket motor combustion chamber. The chamber is modeled as a right circular cylinder with a short (multi-orifice) nozzle, and an acoustic linear covering an arbitrary portion of the cylindrical periphery. The combustion is concentrated at the injector and the gas flow field is characterized by a mean Mach number. The unsteady combustion processes are formulated using the Crocco time lag model. The resulting equations are solved using a Green's function method combined with numerical evaluation techniques. The influence of acoustic liners on the nonlinear waveforms is predicted. Nonlinear stability limits and regions where triggering is possible are also predicted for both lined and unlined combustors in terms of the combustion parameters.

  20. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  1. Induction of slow oscillations by rhythmic acoustic stimulation.

    PubMed

    Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias

    2013-02-01

    Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.

  2. Way-Scaling to Reduce Power of Cache with Delay Variation

    NASA Astrophysics Data System (ADS)

    Goudarzi, Maziar; Matsumura, Tadayuki; Ishihara, Tohru

    The share of leakage in cache power consumption increases with technology scaling. Choosing a higher threshold voltage (Vth) and/or gate-oxide thickness (Tox) for cache transistors improves leakage, but impacts cell delay. We show that due to uncorrelated random within-die delay variation, only some (not all) of cells actually violate the cache delay after the above change. We propose to add a spare cache way to replace delay-violating cache-lines separately in each cache-set. By SPICE and gate-level simulations in a commercial 90nm process, we show that choosing higher Vth, Tox and adding one spare way to a 4-way 16KB cache reduces leakage power by 42%, which depending on the share of leakage in total cache power, gives up to 22.59% and 41.37% reduction of total energy respectively in L1 instruction- and L2 unified-cache with a negligible delay penalty, but without sacrificing cache capacity or timing-yield.

  3. Using Crowdsourcing to Examine Relations Between Delay and Probability Discounting

    PubMed Central

    Jarmolowicz, David P.; Bickel, Warren K.; Carter, Anne E.; Franck, Christopher T.; Mueller, E. Terry

    2016-01-01

    Although the extensive lines of research on delay and/or probability discounting have greatly expanded our understanding of human decision-making processes, the relation between these two phenomena remains unclear. For example, some studies have reported robust associations between delay and probability discounting, whereas others have failed to demonstrate a consistent relation between the two. The current study sought to clarify this relation by examining the relation between delay and probability discounting in a large sample of internet users (n= 904) using the Amazon Mechanical Turk (AMT) crowdsourcing service. Because AMT is a novel data collection platform, the findings were validated through the replication of a number of previously established relations (e.g., relations between delay discounting and cigarette smoking status). A small but highly significant positive correlation between delay and probability discounting rates was obtained, and principal component analysis suggested that two (rather than one) components were preferable to account for the variance in both delay and probability discounting. Taken together, these findings suggest that delay and probability discounting may be related, but are not manifestations of a single component (e.g., impulsivity). PMID:22982370

  4. Hybrid Electrostatic/Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won K.; Trinh, Eugene H.; Chung, Sang K.; Elleman, Daniel D.

    1987-01-01

    Because electrostatic and acoustic forces independent of each other, hybrid levitator especially suitable for studies of drop dynamics. Like all-acoustic or all-electrostatic systems, also used in studies of containerless material processing. Vertical levitating force applied to sample by upper and lower electrodes. Torques or vibrational forces in horizontal plane applied by acoustic transducers. Electrically charged water drop about 4 mm in diameter levitated electrostatically and rotated acoustically until it assumed dumbell shape and broke apart.

  5. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  6. The acoustics of ducted propellers

    NASA Astrophysics Data System (ADS)

    Ali, Sherif F.

    The return of the propeller to the long haul commercial service may be rapidly approaching in the form of advanced "prop fans". It is believed that the advanced turboprop will considerably reduce the operational cost. However, such aircraft will come into general use only if their noise levels meet the standards of community acceptability currently applied to existing aircraft. In this work a time-marching boundary-element technique is developed, and used to study the acoustics of ducted propeller. The numerical technique is developed in this work eliminated the inherent instability suffered by conventional approaches. The methodology is validated against other numerical and analytical results. The results show excellent agreement with the analytical solution and show no indication of unstable behavior. For the ducted propeller problem, the propeller is modeled by a rotating source-sink pairs, and the duct is modeled by rigid annular body of elliptical cross-section. Using the model and the developed technique, the effect of different parameters on the acoustic field is predicted and analyzed. This includes the effect of duct length, propeller axial location, and source Mach number. The results of this study show that installing a short duct around the propeller can reduce the noise that reaches an observer on a side line.

  7. Review of Progress in Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  8. Observation of seafloor crustal movement using the seafloor acoustic ranging on Kumano-nada

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2010-12-01

    Along the Nankai Trough, where the Philippine Sea plate subducts under southeastern Japan with a convergence rate of about 65 mm/yr, large interplate thrust earthquakes of magnitude 8 class have occurred repeatedly with recurrence intervals of 100-200 years. About 60 years have passed since the last earthquakes happened in 1944 and 1946. Therefore it is important to monitor the tectonic activities in the Nankai Trough. Since most of the source region of the earthquakes is located beneath the ocean, an observation system is necessary in the offshore source region. We developed a seafloor acoustic ranging system to continuously monitor the seafloor crustal movement. We aim to monitor the activity in the splay faults in the rupture area of the Tonankai earthquake in the Nankai subduction zone. Slips along the active splay faults may be an important mechanism that the elastic strain caused by relative plate motion. We carried out two experiments, a short-term (one day) and a long-term (four month) experiments, to estimate the repeatability of acoustic measurements of this system. We deployed four PXPs (precision acoustic transponders) with about 600 m (M2-S1 baseline) and 920 m (M2-S2 base line) spacing in the long-term experiment. The standard deviation in acoustic measurements was about 1 cm on each baseline. In September 2008 we carried out an observation to monitor an active splay faults on Kumano-Nada prism slope. We deployed three PXPs with about 925 m (M1-S2 baseline) and 725 m (M1-S2 base line) spacing at the depth of some 2880 m. We recovered them in August 2010 to get data of acoustic measurements for 6 month and pressure measurements for 18 month. The round trip travel time shows a variation with peak-to-peak amplitude of about 1msec. We preliminarily collected the time series of round trip travel times using sound speed, which was estimated from measured temperature and pressure, and attitude data. We discuss the result of a variation of distance.

  9. Noise radiation directivity from a wind-tunnel inlet with inlet vanes and duct wall linings

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Phillips, J. D.

    1986-01-01

    The acoustic radiation patterns from a 1/15th scale model of the Ames 80- by 120-Ft Wind Tunnel test section and inlet have been measured with a noise source installed in the test section. Data were acquired without airflow in the duct. Sound-absorbent inlet vanes oriented parallel to each other, or splayed with a variable incidence relative to the duct long axis, were evaluated along with duct wall linings. Results show that splayed vans tend to spread the sound to greater angles than those measured with the open inlet. Parallel vanes narrowed the high-frequency radiation pattern. Duct wall linings had a strong effect on acoustic directivity by attenuating wall reflections. Vane insertion loss was measured. Directivity results are compared with existing data from square ducts. Two prediction methods for duct radiation directivity are described: one is an empirical method based on the test data, and the other is a analytical method based on ray acoustics.

  10. Socio-economic status influences access to second-line disease modifying treatment in Relapsing Remitting Multiple Sclerosis patients

    PubMed Central

    Dejardin, Olivier; Droulon, Karine; Launoy, Guy; Defer, Gilles

    2018-01-01

    Objective In MS, Socio-Economic status (SES) may influence healthcare and access to disease-modifying treatments (DMTs). Optimising delays to switch patients to a second-line DMT may hamper disease progression most effectively and achieve long term disease control. The objective of this study is to identify the influence of SES on the delay between first and second line DMT in RRMS patients, in Western-Normandy, France. Methods The association between SES and the delay to access a second-line DMT were studied using data from the MS registry of Western-Normandy including 733 patients with a diagnosis of RRMS during the period in question [1982–2011]. We used the European Deprivation Index (EDI), a score with a rank level inversely related to SES. We performed multivariate adjusted Cox models for studying EDI effect on the delay between first and second line DMT. Results No significant influence of SES was observed on delay to access a second-line DMT if first-line DMT exposure time was less than 5 years. After 5 years from initiation of first-line treatment the risk of accessing a second-line DMT is 3 times higher for patients with lower deprivation indices (1st quintile of EDI) ([HR] 3.14 95%CI [1.72–5.72], p-value<0.001) compared to patients with higher values (EDI quintiles 2 to 5). Interpretation In RRMS, a high SES may facilitate access to a second-line DMT a few years after first-line DMT exposure. Greater consideration should also be given to the SES of MS patients as a risk factor in therapeutic healthcare issues throughout medical follow-up. PMID:29390025

  11. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  12. On modeling the sound propagation through a lined duct with a modified Ingard-Myers boundary condition

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Fang, Yi; Zhao, Chao; Zhang, Xin

    2018-06-01

    A duct acoustics model is an essential component of an impedance eduction technique and its computation cost determines the impedance measurement efficiency. In this paper, a model is developed for the sound propagation through a lined duct carrying a uniform mean flow. In contrast to many existing models, the interface between the liner and the duct field is defined with a modified Ingard-Myers boundary condition that takes account of the effect of the boundary layer above the liner. A mode-matching method is used to couple the unlined and lined duct segments for the model development. For the lined duct segment, the eigenvalue problem resulted from the modified boundary condition is solved by an integration scheme which, on the one hand, allows the lined duct modes to be computed in an efficient manner, and on the other hand, orders the modes automatically. The duct acoustics model developed from the solved lined duct modes is shown to converge more rapidly than the one developed from the rigid-walled duct modes. Validation against the experiment data in the literature shows that the proposed model is able to predict more accurately the liner performance measured by the two-source method. This, however, cannot be made by a duct acoustics model associated with the conventional Ingard-Myers boundary condition. The proposed model has the potential to be integrated into an impedance eduction technique for more reliable liner measurement.

  13. High throughput imaging cytometer with acoustic focussing.

    PubMed

    Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter

    2015-10-31

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

  14. Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines

    NASA Astrophysics Data System (ADS)

    Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.

    1983-09-01

    The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.

  15. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  16. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  17. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  18. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Application of acoustic surface wave technology to shuttle radar

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The application of surface acoustic wave (SAW) signal processing devices in the space shuttle was explored. In order to demonstrate the functions which a SAW device might perform, a breadboard pulse compression filter (PCF) module was assembled. The PCF permits a pulse radar to operate with a large duty cycle and low peak power, a regime favorable to the use of solid state RF sources. The transducer design, strong coupling compensation, circuit model analysis, fabrication limitations, and performance evaluation of a PCF are described. The nominal value of the compression ratio is 100:1 with 10-MHz bandwidth centered at 60 MHz and 10-microsecond dispersive delay. The PCF incorporates dispersive interdigital transducers and a piezoelectric lithium niobate substrate.

  20. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.