Science.gov

Sample records for acoustic desorption combined

  1. Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives.

    PubMed

    Ehlert, Sven; Walte, Andreas; Zimmermann, Ralf

    2013-11-19

    The development of fast, mobile, and sensitive detection systems for security-relevant substances is of enormous importance. Because of the low vapor pressures of explosives and improvised explosive devices, adequate sampling procedures are crucial. Ion mobility spectrometers (IMSs) are fast and sensitive instruments that are used as detection systems for explosives. Ambient pressure laser desorption (APLD) and ambient pressure laser-induced acoustic desorption (AP-LIAD) are new tools suitable to evaporate explosives in order to detect them in the vapor phase. Indeed, the most important advantage of APLD or AP-LIAD is the capability to sample directly from the surface of interest without any transfer of the analyte to other surfaces such as wipe pads. A much more gentle desorption, compared to classical thermal-based desorption, is possible with laser-based desorption using very short laser pulses. With this approach the analyte molecules are evaporated in a very fast process, comparable to a shock wave. The thermal intake is reduced considerably. The functionality of APLD and AP-LIAD techniques combined with a hand-held IMS system is shown for a wide range of common explosives such as EGDN (ethylene glycol dinitrate), urea nitrate, PETN (pentaerythritol tetranitrate), HMTD (hexamethylene triperoxide diamine), RDX (hexogen), tetryl (2,4,6-trinitrophenylmethylnitramine), and TNT (trinitrotoluene). Detection limits down to the low nanogram range are obtained. The successful combination of IMS detection and APLD/AP-LIAD sampling is shown. PMID:24116702

  2. Laser-Induced Acoustic Desorption of Natural and Functionalized Biochromophores

    PubMed Central

    2015-01-01

    Laser-induced acoustic desorption (LIAD) has recently been established as a tool for analytical chemistry. It is capable of launching intact, neutral, or low charged molecules into a high vacuum environment. This makes it ideally suited to mass spectrometry. LIAD can be used with fragile biomolecules and very massive compounds alike. Here, we apply LIAD time-of-flight mass spectrometry (TOF-MS) to the natural biochromophores chlorophyll, hemin, bilirubin, and biliverdin and to high mass fluoroalkyl-functionalized porphyrins. We characterize the variation in the molecular fragmentation patterns as a function of the desorption and the VUV postionization laser intensity. We find that LIAD can produce molecular beams an order of magnitude slower than matrix-assisted laser desorption (MALD), although this depends on the substrate material. Using titanium foils we observe a most probable velocity of 20 m/s for functionalized molecules with a mass m = 10 000 Da. PMID:25946522

  3. Combined acoustic and optical trapping

    PubMed Central

    Thalhammer, G.; Steiger, R.; Meinschad, M.; Hill, M.; Bernet, S.; Ritsch-Marte, M.

    2011-01-01

    Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm allows the simultaneous trapping of many, comparatively large particles. With conventional approaches it is difficult to fully employ the strengths of each method due to the different experimental requirements. Here we present the combined optical and acoustic trapping of motile micro-organisms in a microfluidic environment, utilizing optical macro-tweezers, which offer a large field of view and working distance of several millimeters and therefore match the typical range of acoustic trapping. We characterize the acoustic trapping forces with the help of optically trapped particles and present several applications of the combined optical and acoustic trapping, such as manipulation of large (75 μm) particles and active particle sorting. PMID:22025990

  4. Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils.

    SciTech Connect

    Zinovev, A. V.; Veryovkin, I. V.; Moore, J. F.; Pellin, M. J.; Materials Science Division; Mass Think

    2007-11-01

    Laser-induced acoustic desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the single-photon ionization method combined with time-of-flight mass spectrometry, we have examined the neutral component of the desorbed flux in LIAD and compared it to that from direct laser desorption. These basic studies of LIAD, conducted for molecules of various organic dyes (rhodamine B, fluorescein, anthracene, coumarin, BBQ), have demonstrated detection of intact parent molecules of the analyte even at its surface concentrations corresponding to a submonolayer coating. In some cases (rhodamine B, fluorescein, BBQ), the parent molecular ion peak was accompanied by a few fragmentation peaks of comparable intensity, whereas for others, only peaks corresponding to intact parent molecules were detected. At all measured desorbing laser intensities (from 100 to 500 MW/cm{sup 2}), the total amount of desorbed parent molecules depended exponentially on the laser intensity. Translational velocities of the desorbed intact molecules, determined for the first time in this work, were of the order of hundreds of meters per second, less than what has been observed in our experiments for direct laser desorption, but substantially greater than the possible perpendicular velocity of the substrate foil surface due to laser-generated acoustic waves. Moreover, these velocities did not depend on the desorbing laser intensity, which implies the presence of a more sophisticated mechanism of energy transfer than direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. Also, the total flux of desorbed intact molecules as a function of the total number of desorbing laser pulses, striking the same point on the target, decayed following a power law rather than an exponential function, as would have been predicted by the shake-off model. To summarize, the

  5. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  6. A combined desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) source for mass spectrometry.

    PubMed

    Chan, Chang-Ching; Bolgar, Mark S; Miller, Scott A; Attygalle, Athula B

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H](+) or [M + metal](+) ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies. PMID:21472555

  7. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2011-03-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a commercial linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. From the four APCI reagent systems tested, neat carbon disulfide provided the best results. The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar but minor amount of fragmentation was observed for these two reagents. When the experiment was performed without a liquid reagent (nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to predominantly form stable molecular ions.

  8. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2010-01-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. Four APCI reagent systems were tested: the traditionally used mixture of methanol and water, neat benzene, neat carbon disulfide, and nitrogen gas (no liquid reagent). The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar amount of fragmentation was observed for these reagents. When the experiment was performed without a liquid reagent(nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to form stable molecular ions. PMID:21472571

  9. A combined whelk watch suggests repeated TBT desorption pulses.

    PubMed

    Ruiz, J M; Albaina, N; Carro, B; Barreiro, R

    2015-01-01

    Environmental quality in coastal Europe has improved since the complete 2003 ban on the use of tributyltin (TBT) in antifouling paints. However, there is evidence that TBT is entering the water column, presumably from illegal practices. We determined the concentration of butyltins (BTs: TBT and derivatives) in populations of two gastropods, the rock snail Nucella lapillus (n=17) and the mud snail Nassarius reticulatus (n=18) at regular intervals from pre-ban times until 2009 and 2011, respectively, in NW Spain. Although a substantial decline in TBT occurred shortly after the ban, no significant changes were observed in either species over the last 3-year period of study. In addition, the proportion of TBT relative to the sum of BTs (a marker of recent pollution) in the most recent rock snail samples unexpectedly increased; this proportion therefore showed a generally decreasing but oscillatory trend over time. The results are consistent with the theoretical expectation of BT desorption from sediments; however, this natural phenomenon is now interpreted as a recurrent episode rather than a unique, transient event. Evidence of this subtle input improves our understanding of TBT persistence in the environment in Europe and worldwide. PMID:25260162

  10. Atmospheric pressure laser-induced acoustic desorption chemical ionization mass spectrometry for analysis of saturated hydrocarbons.

    PubMed

    Nyadong, Leonard; Quinn, John P; Hsu, Chang S; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2012-08-21

    We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+•) species dominate the mass spectrum at lower capillary temperature (<100 °C) and [M - H](+) at higher temperature (>200 °C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products. PMID:22881221

  11. Acoustic emission and sorptive deformation induced in coals of various rank by the sorption-desorption of gas

    NASA Astrophysics Data System (ADS)

    Majewska, Zofia; Ziętek, Jerzy

    2007-09-01

    Simultaneous measurements of acoustic emission (AE) and expansion/contraction of coal samples subjected to gas sorption-desorption processes were conducted on high-and medium-rank coal. The aim of this study was to examine the influence of the coal rank and type of sorbate on measured AE and strain characteristics. The experimental equipment employed in this study consisted of a pressure vessel and associated pressurisation and monitoring units. The arrangement of pressure-vacuum valves permitted the coal sample to be pressurised and depressurised. Carbon-dioxide and methane were used as sorbats. Acoustic emission and strains were recorded continuously for a period of 50 hours during sorption and for at least 12 hours during the desorption process. Tests were conducted on cylindrical coal samples at 298 K. The experimental data were presented as plots of AE basic parameters versus time and in strain diagrams. These studies lead to the following conclusions: 1. There are significant differences in AE and strain characteristics for the two systems (coal-CO2 and coal-CH4); 2. There is a direct influence of rank and type of coal on its behaviour during the sorption-desorption of gas. An attempt has been made to interpret the results obtained on the grounds of the copolymer model of coal structure. More research is needed into this topic in order to get a quantitative description of the observed facts.

  12. Coupling Laser Diode Thermal Desorption with Acoustic Sample Deposition to Improve Throughput of Mass Spectrometry-Based Screening.

    PubMed

    Haarhoff, Zuzana; Wagner, Andrew; Picard, Pierre; Drexler, Dieter M; Zvyaga, Tatyana; Shou, Wilson

    2016-02-01

    The move toward label-free screening in drug discovery has increased the demand for mass spectrometry (MS)-based analysis. Here we investigated the approach of coupling acoustic sample deposition (ASD) with laser diode thermal desorption (LDTD)-tandem mass spectrometry (MS/MS). We assessed its use in a cytochrome P450 (CYP) inhibition assay, where a decrease in metabolite formation signifies CYP inhibition. Metabolite levels for 3 CYP isoforms were measured as CYP3A4-1'-OH-midazolam, CYP2D6-dextrorphan, and CYP2C9-4'-OH-diclofenac. After incubation, samples (100 nL) were acoustically deposited onto a stainless steel 384-LazWell plate, then desorbed by an infrared laser directly from the plate surface into the gas phase, ionized by atmospheric pressure chemical ionization (APCI), and analyzed by MS/MS. Using this method, we achieved a sample analysis speed of 2.14 s/well, with bioanalytical performance comparable to the current online solid-phase extraction (SPE)-based MS method. An even faster readout speed was achieved when postreaction sample multiplexing was applied, where three reaction samples, one for each CYP, were transferred into the same well of the LazWell plate. In summary, LDTD coupled with acoustic sample deposition and multiplexing significantly decreased analysis time to 0.7 s/sample, making this MS-based approach feasible to support high-throughput screening (HTS) assays. PMID:26420787

  13. Combined Photoacoustic-Acoustic Technique for Crack Imaging

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.; Chigarev, N.; Tournat, V.; Gusev, V.

    2010-01-01

    Nonlinear imaging of a crack by combination of a common photoacoustic imaging technique with additional acoustic loading has been performed. Acoustic signals at two different fundamental frequencies were launched in the sample, one photoacoustically through heating of the sample surface by the intensity-modulated scanning laser beam and another by a piezoelectrical transducer. The acoustic signal at mixed frequencies, generated due to system nonlinearity, has been detected by an accelerometer. Different physical mechanisms of the nonlinearity contributing to the contrast in linear and nonlinear photoacoustic imaging of the crack are discussed.

  14. Speaker verification using combined acoustic and EM sensor signal processing

    SciTech Connect

    Ng, L C; Gable, T J; Holzrichter, J F

    2000-11-10

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantity of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. SOC. Am . 103 ( 1) 622 (1998). By combining the Glottal-EM-Sensor (GEMS) with the Acoustic-signals, we've demonstrated an almost 10 fold reduction in error rates from a speaker verification system experiment under a moderate noisy environment (-10dB).

  15. Development of combined Opto-Acoustical sensor Modules

    NASA Astrophysics Data System (ADS)

    Enzenhöfer, A.; Anton, G.; Graf, K.; Hößl, J.; Katz, U.; Lahmann, R.; Neff, M.; Richardt, C.

    2012-01-01

    The faint fluxes of cosmic neutrinos expected at very high energies require large instrumented detector volumes. The necessary volumes in combination with a sufficient shielding against background constitute forbidding and complex environments (e.g. the deep sea) as sites for neutrino telescopes. To withstand these environments and to assure the data quality, the sensors have to be reliable and their operation has to be as simple as possible. A compact sensor module design including all necessary components for data acquisition and module calibration would simplify the detector mechanics and ensures the long term operability of the detector. The compact design discussed here combines optical and acoustical sensors inside one module, therefore reducing electronics and additional external instruments for calibration purposes. In this design the acoustical sensor is primary used for acoustic positioning of the module. The module may also be used for acoustic particle detection and marine science if an appropriate acoustical sensor is chosen.First tests of this design are promising concerning the task of calibration. To expand the field of application also towards acoustic particle detection further improvements concerning electromagnetic shielding and adaptation of the single components are necessary.

  16. Combination of acoustical radiosity and the image source method.

    PubMed

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho; Jacobsen, Finn

    2013-06-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy. PMID:23742350

  17. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-01

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM

  18. Characterization of Nonpolar Lipids and Selected Steroids by Using Laser-Induced Acoustic Desorption/Chemical Ionization, Atmospheric Pressure Chemical Ionization, and Electrospray Ionization Mass Spectrometry†

    PubMed Central

    Jin, Zhicheng; Daiya, Shivani; Kenttämaa, Hilkka I.

    2011-01-01

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H2O)+ chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H2O) with the ClMn(H2O)+ ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H2O ions, but less abundant adduct-2H2O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H2O)+ chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids. PMID:21528012

  19. An acoustical array combining microphones and piezoelectric devices.

    PubMed

    Matsumoto, Mitsuharu; Hashimoto, Shuji

    2008-04-01

    This paper describes an acoustical array combining microphones and piezoelectric devices. Conventional microphone arrays have been widely utilized to realize noise reduction, sound separation and direction of arrival estimation system. However, when a conventional microphone array is mounted on a real system, such as a machine, vehicle or robot, the microphones are set extremely close to the system's actual body. In such cases, the noise from the system itself, such as motors, gears, and engines, namely internal noise, often becomes a troublesome problem. It is difficult to reduce internal noise utilizing a conventional microphone array because internal noise sources are extremely close to the microphones. As internal noise is not always stationary, statistically independent or sparse, most useful blind source separation approaches, such as independent component analysis and the sparseness approach, cannot be employed. Our aim is to reduce internal noise utilizing microphones and piezoelectric devices attached to the internal noise source. In this paper, a general description of the acoustical array is formulated and the characteristic features of microphones and piezoelectric devices in an acoustical array are given. An acoustical array combining microphones and piezoelectric devices is also described with some experimental results. PMID:18397019

  20. Acoustical comfort of vehicles: A combination of sound and vibration

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus; Schutte-Fortkamp, Brigitte; Fiebig, Andre

    2005-09-01

    As vehicles become more and more quiet, the customer's sensitivity to acoustical comfort increases. The acoustical comfort is not independent of the vibrations the driver can feel in the seat and at the steering. The passenger of a vehicle must be regarded as part of a vibro-acoustic system. Correspondingly, the subjective judgement which passengers make about their impression of levels of acoustic comfort encompasses both sound and vibration. Achievement in this field depends on obtaining knowledge about the interaction between sound and vibration and how these factors impact subjective evaluation. To save time and money prediction tools for the estimation of sound and vibration contributions into the vehicle cabin are very important in order to simulate the final comfort with respect to sound and vibration. Based on the binaural transfer path analysis in combination with the binaural transfer path synthesis a sound and vibration reproduction in a so-called SoundCar can be realized with a very good simulation of a real situation of a car. First research tests completed for the European research project OBELICS (Objective Evaluation of Interior Car Sound) have shown that the use of SoundCar may result in more reliable sound characteristic and quality evaluation.

  1. Combining whistle acoustic parameters to discriminate Mediterranean odontocetes during passive acoustic monitoring.

    PubMed

    Azzolin, Marta; Gannier, Alexandre; Lammers, Marc O; Oswald, Julie N; Papale, Elena; Buscaino, Giuseppa; Buffa, Gaspare; Mazzola, Salvatore; Giacoma, Cristina

    2014-01-01

    Acoustic observation can complement visual observation to more effectively monitor occurrence and distribution of marine mammals. For effective acoustic censuses, calibration methods must be determined by joint visual and acoustic studies. Research is still needed in the field of acoustic species identification, particularly for smaller odontocetes. From 1994 to 2012, whistles of four odontocete species were recorded in different areas of the Mediterranean Sea to determine how reliably these vocalizations can be classified to species. Recordings were attributed to species by simultaneous visual observation. The results of this study highlight that the frequency parameters, which are linked to physical features of animals, show lower variability than modulation parameters, which are likely to be more dependent on complex eco-ethological contexts. For all the studied species, minimum and maximum frequencies were linearly correlated with body size. DFA and Classification Tree Analysis (CART) show that these parameters were the most important for classifying species; however, both statistical methods highlighted the need for combining them with the number of contour minima and contour maxima for correct classification. Generally, DFA and CART results reflected both phylogenetic distance (especially for common and striped dolphins) and the size of the species. PMID:24437790

  2. Design and Characterization of a High-power Laser-induced Acoustic Desorption (LIAD) Probe Coupled with a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Shea, Ryan C.; Habicht, Steven C.; Vaughn, Weldon E.; Kenttämaa, Hilkka I.

    2008-01-01

    We report here the construction and characterization of a high-power laser-induced acoustic desorption (LIAD) probe designed for Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometers to facilitate analysis of non-volatile, thermally labile compounds. This “next generation” LIAD probe offers significant improvements in sensitivity and desorption efficiency for analytes with larger molecular weights via the use of higher laser irradiances. Unlike the previous probes which utilized a power limiting optical fiber to transmit the laser pulses through the probe, this probe employs a set of mirrors and a focusing lens. At the end of the probe, the energy from the laser pulses propagates through a thin metal foil as an acoustic wave, resulting in desorption of neutral molecules from the opposite side of the foil. Following desorption, the molecules can be ionized by electron impact or chemical ionization. Almost an order of magnitude greater power density (up to 5.0 × 109 W/cm2) is achievable on the backside of the foil with the high-power LIAD probe compared to the earlier LIAD probes (maximum power density ~9.0 × 108 W/cm2). The use of higher laser irradiances is demonstrated not to cause fragmentation of the analyte. The use of higher laser irradiances increases sensitivity since it results in the evaporation of a greater number of molecules per laser pulse. Measurement of the average velocities of LIAD evaporated molecules demonstrates that higher laser irradiances do not correlate with higher velocities of the gaseous analyte molecules. PMID:17319645

  3. Experimental investigations of the internal energy of molecules evaporated via laser-induced acoustic desorption into a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Shea, Ryan C; Petzold, Christopher J; Liu, Ji-Ang; Kenttämaa, Hilkka I

    2007-03-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier transform ion cyclotron resonance mass spectrometer, was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kilocalories per mole. Chemical ionization with a series of proton-transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, Val-Pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have a similar internal energy as those evaporated via SALD. PMID:17263513

  4. Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis.

    PubMed

    Brender, Patrice; Gadiou, Roger; Rietsch, Jean-Christophe; Fioux, Philippe; Dentzer, Joseph; Ponche, Arnaud; Vix-Guterl, Cathie

    2012-03-01

    The analysis of the surface chemistry of carbon materials is of prime importance in numerous applications, but it is still a challenge to identify and quantify the surface functional groups which are present on a given carbon. Temperature programmed desorption with mass spectrometry analysis (TPD-MS) and X-ray photoelectron spectroscopy with an in situ heating device (TPD-XPS) were combined in order to improve the characterization of carbon surface chemistry. TPD-MS analysis allowed the quantitative analysis of the released gases as a function of temperature, while the use of a TPD device inside the XPS setup enabled the determination of the functional groups that remain on the surface at the same temperatures. TPD-MS results were then used to add constraints on the deconvolution of the O1s envelope of the XPS spectra. Furthermore, a better knowledge of the evolution of oxygen functional groups with temperature during a thermal treatment could be obtained. Hence, we show here that the combination of these two methods allows to increase the reliability of the analysis of the surface chemistry of carbon materials. PMID:22242697

  5. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.

    PubMed

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester. PMID:26931884

  6. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    NASA Astrophysics Data System (ADS)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  7. Combination of HPLC and 252-Cf plasma desorption mass spectrometry for identifying composition of ginseng tinctures.

    PubMed

    Elkin, Y N; Makhankov, V V; Uvarova, N L; Bondarenko, P V; Zubarev, R A; Knysh, A N

    1993-03-01

    The 252-Cf plasma desorption mass spectrometry (252-Cf PDMS) determination or confirmation of the ginsenoside saponins has been proposed to investigate the composition of high performance liquid chromatography (HPLC) peaks of ginseng tinctures and galenic preparations. That ionization technique is well suitable for the analysis of natural mixtures of these saponins. The 252-Cf PD mass spectra of standard ginsenosides Rb1, Rb2, Rc, Re, Rg1, Rd, NG-R2, Z-R1 contain the peaks of two types of ions, namely, molecular adduct ions (MAI) and aglycone ions. By mass the latter may be referred to either protopanaxadiol or protopanaxatriol. The masses of MAI and aglycone ions are determined by the carbohydrate chains. The collected HPLC fractions of P ginseng tincture can be tested for content of ginsenosides. After studying two MAI peaks from the 252-Cf PD mass spectra of the basic ginsenosides, an example of distinction between two galenic preparations from different Panax has been shown. PMID:8352021

  8. A procedure for combining acoustically induced and mechanically induced loads (first passage failure design criterion)

    NASA Technical Reports Server (NTRS)

    Crowe, D. R.; Henricks, W.

    1983-01-01

    The combined load statistics are developed by taking the acoustically induced load to be a random population, assumed to be stationary. Each element of this ensemble of acoustically induced loads is assumed to have the same power spectral density (PSD), obtained previously from a random response analysis employing the given acoustic field in the STS cargo bay as a stationary random excitation. The mechanically induced load is treated as either (1) a known deterministic transient, or (2) a nonstationary random variable of known first and second statistical moments which vary with time. A method is then shown for determining the probability that the combined load would, at any time, have a value equal to or less than a certain level. Having obtained a statistical representation of how the acoustic and mechanical loads are expected to combine, an analytical approximation for defining design levels for these loads is presented using the First Passage failure criterion.

  9. Enhancement of reverse transfection efficiency by combining stimulated DNA surface desorption and electroporation

    NASA Astrophysics Data System (ADS)

    Creasey, Rhiannon; Hook, Andrew; Thissen, Helmut; Voelcker, Nicolas H.

    2007-12-01

    Transfection cell microarrays (TCMs) are a high-throughput, miniaturised cell-culture system utilising reverse transfection, in which cells are seeded onto a DNA array resulting in localised regions of transfected cells. TCMs are useful for the analysis of gene expression, and can be used to identify genes involved in many cellular processes. This is of significant interest in fields such as tissue engineering, diagnostic screening, and drug testing [1, 2]. Low transfection efficiency has so far limited the application and utility of this technique. Recently, the transfection efficiency of TCMs was improved by an application of a high voltage for a short period of time to the DNA array resulting in the electroporation of cells attached to the surface [3, 4]. Furthermore, application of a low voltage for a longer period of time to the DNA array was shown to improve the transfection efficiency by stimulating the desorption of attached DNA, increasing the concentration of DNA available for cellular uptake [5]. In the present study, the optimisation of the uptake of adsorbed DNA vectors by adherent cells, utilising a voltage bias without compromising cell viability was investigated. This was achieved by depositing negatively charged DNA plasmids onto a positively charged allylamine plasma polymer (ALAPP) layer deposited on highly doped p-type silicon wafers either using a pipettor or a microarray contact printer. Surface-dependant human embryonic kidney (HEK 293 line) cells were cultured onto the DNA vector loaded ALAPP spots and the plasmid transfection events were detected by fluorescence microscopy. Cell viability assays, including fluorescein diacetate (FDA) / Hoechst DNA labelling, were carried out to determine the number of live adherent cells before and after application of a voltage. A protocol was developed to screen for voltage biases and exposure times in order to optimise transfection efficiency and cell viability. Cross-contamination between the microarray

  10. Denoising of human speech using combined acoustic and em sensor signal processing

    SciTech Connect

    Ng, L C; Burnett, G C; Holzrichter, J F; Gable, T J

    1999-11-29

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998). By using combined Glottal-EM- Sensor- and Acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time Denoising filters can be constructed to remove noise from the user's corresponding speech signal.

  11. Speech and melody recognition in binaurally combined acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Kong, Ying-Yee; Stickney, Ginger S.; Zeng, Fan-Gang

    2005-03-01

    Speech recognition in noise and music perception is especially challenging for current cochlear implant users. The present study utilizes the residual acoustic hearing in the nonimplanted ear in five cochlear implant users to elucidate the role of temporal fine structure at low frequencies in auditory perception and to test the hypothesis that combined acoustic and electric hearing produces better performance than either mode alone. The first experiment measured speech recognition in the presence of competing noise. It was found that, although the residual low-frequency (<1000 Hz) acoustic hearing produced essentially no recognition for speech recognition in noise, it significantly enhanced performance when combined with the electric hearing. The second experiment measured melody recognition in the same group of subjects and found that, contrary to the speech recognition result, the low-frequency acoustic hearing produced significantly better performance than the electric hearing. It is hypothesized that listeners with combined acoustic and electric hearing might use the correlation between the salient pitch in low-frequency acoustic hearing and the weak pitch in the envelope to enhance segregation between signal and noise. The present study suggests the importance and urgency of accurately encoding the fine-structure cue in cochlear implants. .

  12. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  13. Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Hayen, Heiko; Volmer, Dietrich A

    2005-01-01

    The investigation of a combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry (TLC/MALDI-MS) method for the analysis of siderophores from microbial samples is described. The investigated siderophores were enterobactin, ferrioxamine B, ferrichrome, ferrirhodin, rhodotorulic acid and coprogen. Solid-phase extraction was employed to recover the siderophores from the microbial samples. After visualization of the spots via spraying with ferric chloride or chrome azurol sulfonate assay solution, the MALDI matrix was applied to the gel surface. Several TLC/MALDI experimental parameters were optimized, such as type and concentration of MALDI matrix, as well as the type and composition of solvent to facilitate analyte transport from the inside of the TLC gel to the surface. The impact of these parameters on sensitivity, precision and ion formation of the various siderophores was studied. The detection limits for the investigated siderophores were in the range 1-4 pmol. These values were about 4-24 times higher than the detection limits obtained directly from stainless steel MALDI targets. The differences were most likely due to incomplete transport of the 'trapped' analyte molecules from the deeper layers of the TLC gel to the surface and into the matrix layer. In addition, chromatographic band broadening spread the analyte further in TLC as compared with the steel plates, resulting in less analyte per surface area. The identification of the siderophores was aided by concurrently applying a Ga(III) nitrate solution to the TLC plate during the visualization step. The resulting formation of Ga(III) complexes lead to distinctive (69)Ga/(71)Ga isotope patterns in the mass spectra. The versatility of the TLC/MALDI-MS assay was demonstrated by using it to analyze siderophores in a Pseudomonas aeruginosa sample. An iron-binding compound was identified in the sample, namely pyochelin (2-(2-o-hydroxyphenyl-2-thiazolin-4-yl)-3

  14. Evaluation of combined matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis.

    PubMed

    da Silva, David; Wasselin, Thierry; Carré, Vincent; Chaimbault, Patrick; Bezdetnaya, Lina; Maunit, Benoît; Muller, Jean-François

    2011-07-15

    Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage. PMID:21638364

  15. Combined prenatal and chronic postnatal vitamin D deficiency in rats impairs prepulse inhibition of acoustic startle.

    PubMed

    Burne, Thomas H J; Féron, François; Brown, Jillanne; Eyles, Darryl W; McGrath, John J; Mackay-Sim, Alan

    2004-06-01

    There is growing evidence that 1,25-dihydroxyvitamin D3 is involved in normal brain development. The aim of this study was to examine the impact of prenatal and postnatal hypovitaminosis D on prepulse inhibition (PPI) of acoustic startle in adult rats. We compared six groups of rats: control rats with normal vitamin D throughout life and normal litter size (Litter); control rats with normal vitamin D but with a reduced litter size of two (Control); offspring from reduced litters of vitamin D deplete mothers who were repleted at birth (Birth), repleted at weaning (Weaning) or remained on a deplete diet until 10 weeks of age (Life); or control rats that were placed on a vitamin D-deficient diet from 5 to 10 weeks of age (Adult). All rats were tested in acoustic startle chambers at 5 and 10 weeks of age for acoustic startle responses and for PPI. There were no significant group differences at 5 weeks of age on the acoustic startle response or on PPI. At 10 weeks of age, rats in the Life group only had impaired PPI despite having normal acoustic startle responses. We conclude that combined prenatal and chronic postnatal hypovitaminosis D, but not early life hypovitaminosis D, alters PPI. PMID:15178159

  16. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  17. Nonlinear Response of Composite Panels Under Combined Acoustic Excitation and Aerodynamic Pressure

    NASA Technical Reports Server (NTRS)

    Abdel-Motagaly, K.; Duan, B.; Mei, C.

    1999-01-01

    A finite element formulation is presented for the analysis of large deflection response of composite panels subjected to aerodynamic pressure- at supersonic flow and high acoustic excitation. The first-order shear deformation theory is considered for laminated composite plates, and the von Karman nonlinear strain-displacement relations are employed for the analysis of large deflection panel response. The first-order piston theory aerodynamics and the simulated Gaussian white noise are employed for the aerodynamic and acoustic loads, respectively. The nonlinear equations of motion for an arbitrarily laminated composite panel subjected to a combined aerodynamic and acoustic pressures are formulated first in structure node degrees-of-freedom. The system equations are then transformed and reduced to a set of coupled nonlinear equations in modal coordinates. Modal participation is defined and the in-vacuo modes to be retained in the analysis are based on the modal participation values. Numerical results include root mean square values of maximum deflections, deflection and strain response time histories, probability distributions, and power spectrum densities. Results showed that combined acoustic and aerodynamic loads have to be considered for panel analysis and design at high dynamic pressure values.

  18. Optimizing the Combination of Acoustic and Electric Hearing in the Implanted Ear

    PubMed Central

    Karsten, Sue A.; Turner, Christopher W.; Brown, Carolyn J.; Jeon, Eun Kyung; Abbas, Paul J.; Gantz, Bruce J.

    2016-01-01

    Objectives The aim of this study was to determine an optimal approach to program combined acoustic plus electric (A+E) hearing devices in the same ear to maximize speech-recognition performance. Design Ten participants with at least 1 year of experience using Nucleus Hybrid (short electrode) A+E devices were evaluated across three different fitting conditions that varied in the frequency ranges assigned to the acoustically and electrically presented portions of the spectrum. Real-ear measurements were used to optimize the acoustic component for each participant, and the acoustic stimulation was then held constant across conditions. The lower boundary of the electric frequency range was systematically varied to create three conditions with respect to the upper boundary of the acoustic spectrum: Meet, Overlap, and Gap programming. Consonant recognition in quiet and speech recognition in competing-talker babble were evaluated after participants were given the opportunity to adapt by using the experimental programs in their typical everyday listening situations. Participants provided subjective ratings and evaluations for each fitting condition. Results There were no significant differences in performance between conditions (Meet, Overlap, Gap) for consonant recognition in quiet. A significant decrement in performance was measured for the Overlap fitting condition for speech recognition in babble. Subjective ratings indicated a significant preference for the Meet fitting regimen. Conclusions Participants using the Hybrid ipsilateral A+E device generally performed better when the acoustic and electric spectra were programmed to meet at a single frequency region, as opposed to a gap or overlap. Although there is no particular advantage for the Meet fitting strategy for recognition of consonants in quiet, the advantage becomes evident for speech recognition in competing-talker babble and in patient preferences. PMID:23059851

  19. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles

    PubMed Central

    2014-01-01

    Background Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Results Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm2 of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm2 of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm-1 × sr-1) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Conclusions Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm

  20. Experimental Investigations of the Internal Energy of Molecules Evaporated via Laser-induced Acoustic Desorption into a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer (LIAD/FT-ICR)

    PubMed Central

    Shea, Ryan C.; Petzold, Christopher J.; Liu, Ji-ang; Kenttämaa, Hilkka I.

    2008-01-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR), was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity (GB) values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kcal/mol. Chemical ionization with a series of proton transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, val-pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have less internal energy than those evaporated via SALD. PMID:17263513

  1. Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study.

    PubMed

    Sun, Yubing; Yang, Shubin; Chen, Yue; Ding, Congcong; Cheng, Wencai; Wang, Xiangke

    2015-04-01

    The adsorption and desorption of U(VI) on graphene oxides (GOs), carboxylated GOs (HOOC-GOs), and reduced GOs (rGOs) were investigated by batch experiments, EXAFS technique, and computational theoretical calculations. Isothermal adsorptions showed that the adsorption capacities of U(VI) were GOs > HOOC-GOs > rGOs, whereas the desorbed amounts of U(VI) were rGOs > GOs > HOOC-GOs by desorption kinetics. According to EXAFS analysis, inner-sphere surface complexation dominated the adsorption of U(VI) on GOs and HOOC-GOs at pH 4.0, whereas outer-sphere surface complexation of U(VI) on rGO was observed at pH 4.0, which was consistent with surface complexation modeling. Based on the theoretical calculations, the binding energy of [G(···)UO2](2+) (8.1 kcal/mol) was significantly lower than those of [HOOC-GOs(···)UO2](2+) (12.1 kcal/mol) and [GOs-O(···)UO2](2+) (10.2 kcal/mol), suggesting the physisorption of UO2(2+) on rGOs. Such high binding energy of [GOs-COO(···)UO2](+) (50.5 kcal/mol) revealed that the desorption of U(VI) from the -COOH groups was much more difficult. This paper highlights the effect of the hydroxyl, epoxy, and carboxyl groups on the adsorption and desorption of U(VI), which plays an important role in designing GOs for the preconcentration and removal of radionuclides in environmental pollution cleanup applications. PMID:25761122

  2. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  3. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  4. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearinga

    PubMed Central

    Carroll, Jeff; Tiaden, Stephanie; Zeng, Fan-Gang

    2011-01-01

    Cochlear implant (CI) users have been shown to benefit from residual low-frequency hearing, specifically in pitch related tasks. It remains unclear whether this benefit is dependent on fundamental frequency (F0) or other acoustic cues. Three experiments were conducted to determine the role of F0, as well as its frequency modulated (FM) and amplitude modulated (AM) components, in speech recognition with a competing voice. In simulated CI listeners, the signal-to-noise ratio was varied to estimate the 50% correct response. Simulation results showed that the F0 cue contributes to a significant proportion of the benefit seen with combined acoustic and electric hearing, and additionally that this benefit is due to the FM rather than the AM component. In actual CI users, sentence recognition scores were collected with either the full F0 cue containing both the FM and AM components or the 500-Hz low-pass speech cue containing the F0 and additional harmonics. The F0 cue provided a benefit similar to the low-pass cue for speech in noise, but not in quiet. Poorer CI users benefited more from the F0 cue than better users. These findings suggest that F0 is critical to improving speech perception in noise in combined acoustic and electric hearing. PMID:21973360

  5. Acoustic detection of DNA conformation in genetic assays combined with PCR.

    PubMed

    Papadakis, G; Tsortos, A; Kordas, A; Tiniakou, I; Morou, E; Vontas, J; Kardassis, D; Gizeli, E

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  6. Acoustic detection of DNA conformation in genetic assays combined with PCR

    PubMed Central

    Papadakis, G.; Tsortos, A.; Kordas, A.; Tiniakou, I.; Morou, E.; Vontas, J.; Kardassis, D.; Gizeli, E.

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  7. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.

    PubMed

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  8. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    PubMed Central

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  9. Quasi-steady acoustic response of wall perforations subject to a grazing-bias flow combination

    NASA Astrophysics Data System (ADS)

    Tonon, D.; Moers, E. M. T.; Hirschberg, A.

    2013-04-01

    Well known examples of acoustical dampers are the aero-engine liners, the IC-engine exhaust mufflers, and the liners in combustion chambers. These devices comprise wall perforations, responsible for their sound absorbing features. Understanding the effect of the flow on the acoustic properties of a perforation is essential for the design of acoustic dampers. In the present work the effect of a grazing-bias flow combination on the impedance of slit shaped wall perforations is experimentally investigated by means of a multi-microphone impedance tube. Measurements are carried out for perforation geometries relevant for in technical applications. The focus of the experiments is on the low Strouhal number (quasi-steady) behavior. Analytical models of the steady flow and of the low frequency aeroacoustic behavior of a two-dimensional wall perforation are proposed for the case of a bias flow directed from the grazing flow towards the opposite side of the perforated wall. These theoretical results compare favorably with the experiments, when a semi-empirical correction is used to obtain the correct limit for pure bias flow.

  10. Imaging living cells with a combined high-resolution multi-photon-acoustic microscope

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Weiss, Eike; Stark, Martin; Stracke, Frank; Riemann, Iris; Lemor, Robert; König, Karsten

    2007-02-01

    With increasing demand for in-vivo observation of living cells, microscope techniques that do not need staining become more and more important. In this talk we present a combined multi-photon-acoustic microscope with the possibility to measure synchronously properties addressed by ultrasound and two-photon fluorescence. Ultrasound probes the local mechanical properties of a cell, while the high resolution image of the two-photon fluorescence delivers insight in cell morphology and activity. In the acoustic part of the microscope an ultrasound wave, with a frequency of GHz, is focused by an acoustic sapphire lens and detected by a piezo electric transducer assembled to the lens. The achieved lateral resolution is in the range of 1μm. Contrast in the images arises mainly from the local absorption of sound in the cells, related to properties, such as mass density, stiffness and viscose damping. Additionally acoustic microscopy can access the cell shape and the state of the cell membrane as it is a intrinsic volume scanning technique.The optical part bases on the emission of fluorescent biomolecules naturally present in cells (e.g. NAD(P)H, protophorphyrin IX, lipofuscin, melanin). The nonlinear effect of two-photon absorption provides a high lateral and axial resolution without the need of confocal detection. In addition, in the near-IR cell damages are drastically reduced in comparison to direct excitation in the visible or UV. Both methods can be considered as minimal invasive, as they relay on intrinsic contrast mechanisms and dispense with the need of staining. First results on living cells are presented and discussed.

  11. Cochlear dead regions constrain the benefit of combining acoustic stimulation with electric stimulation

    PubMed Central

    Zhang, Ting; Dorman, Michael F.; Gifford, Rene; Moore, Brian C.J.

    2014-01-01

    Objective The aims of this study were to (i) detect the presence and edge frequency (fe) of a cochlear dead region in the ear with residual acoustic hearing for bimodal cochlear implant (CI) users, and (ii) determine whether amplification based on the presence or absence of a dead region would improve speech understanding and sound quality. Design Twenty two listeners with a CI in one ear and residual acoustic hearing in the non-implanted ear were tested. Eleven listeners had a cochlear dead region in the acoustic-hearing ear and eleven did not. Dead regions were assessed with the threshold equalizing noise (TEN) and the sweeping noise, psychophysical tuning curve (SWPTC) tests. Speech understanding was assessed with monosyllabic words and the AzBio sentences at +10 dB signal-to-noise ratio. Speech and music quality judgments were obtained with the Judgment of Sound Quality questionnaire. Results For this population, using shifted tips of the PTCs as a basis for diagnosis, the TEN had high sensitivity (0.91) and poor specificity (0.55). The value of fe was lower when estimated with the SWPTC test than with the TEN test. For the listeners with cochlear dead regions, speech understanding, speech quality and music quality were best when no amplification was applied for frequencies within the dead region. For listeners without dead regions, speech understanding was best with full-bandwidth amplification and was reduced when amplification was not applied when the audiometric threshold exceeded 80 dB HL. Conclusion Our data suggest that, to improve bimodal benefit for listeners who combine electric and acoustic stimulation, audiologists should routinely test for the presence of cochlear dead regions and determine amplification bandwidth accordingly. PMID:24950254

  12. Combining passive thermography and acoustic emission for large area fatigue damage growth assessment of a composite structure

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-05-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.

  13. Unlocking the Potential of High-Throughput Drug Combination Assays Using Acoustic Dispensing.

    PubMed

    Chan, Grace Ka Yan; Wilson, Stacy; Schmidt, Stephen; Moffat, John G

    2016-02-01

    Assessment of synergistic effects of drug combinations in vitro is a critical part of anticancer drug research. However, the complexities of dosing and analyzing two drugs over the appropriate range of doses have generally led to compromises in experimental design that restrict the quality and robustness of the data. In particular, the use of a single dose response of combined drugs, rather than a full two-way matrix of varying doses, has predominated in higher-throughput studies. Acoustic dispensing unlocks the potential of high-throughput dose matrix analysis. We have developed acoustic dispensing protocols that enable compound synergy assays in a 384-well format. This experimental design is considerably more efficient and flexible with respect to time, reagent usage, and labware than is achievable using traditional serial-dilution approaches. Data analysis tools integrated in Genedata Screener were used to efficiently deconvolute the combination compound mapping scheme and calculate compound potency and synergy metrics. We have applied this workflow to evaluate interactions among drugs targeting different nodes of the mitogen-activated protein kinase pathway in a panel of cancer cell lines. PMID:26160862

  14. Screening of the Binding of Small Molecules to Proteins by Desorption Electrospray Ionization Mass Spectrometry Combined with Protein Microarray

    NASA Astrophysics Data System (ADS)

    Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin

    2015-11-01

    The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins.

  15. Delivering an Automated and Integrated Approach to Combination Screening Using Acoustic-Droplet Technology.

    PubMed

    Cross, Kevin; Craggs, Richard; Swift, Denise; Sitaram, Anesh; Daya, Sandeep; Roberts, Mark; Hawley, Shaun; Owen, Paul; Isherwood, Bev

    2016-02-01

    Drug combination testing in the pharmaceutical industry has typically been driven by late-stage opportunistic strategies rather than by early testing to identify drug combinations for clinical investigation that may deliver improved efficacy. A rationale for combinations exists across a number of diseases in which pathway redundancy or resistance to therapeutics are evident. However, early assays are complicated by the absence of both assay formats representative of disease biology and robust infrastructure to screen drug combinations in a medium-throughput capacity. When applying drug combination testing studies, it may be difficult to translate a study design into the required well contents for assay plates because of the number of compounds and concentrations involved. Dispensing these plates increases in difficulty as the number of compounds and concentration points increase and compounds are subsequently rolled onto additional labware. We describe the development of a software tool, in conjunction with the use of acoustic droplet technology, as part of a compound management platform, which allows the design of an assay incorporating combinations of compounds. These enhancements to infrastructure facilitate the design and ordering of assay-ready compound combination plates and the processing of combinations data from high-content organotypic assays. PMID:25835292

  16. NH{sub 3} adsorption and decomposition on Ir(110): A combined temperature programmed desorption and high resolution fast x-ray photoelectron spectroscopy study

    SciTech Connect

    Weststrate, C.J.; Bakker, J.W.; Rienks, E.D.L.; Lizzit, S.; Petaccia, L.; Baraldi, A.; Vinod, C.P.; Nieuwenhuys, B.E.

    2005-05-08

    The adsorption and decomposition of NH{sub 3} on Ir(110) has been studied in the temperature range from 80 K to 700 K. By using high-energy resolution x-ray photoelectron spectroscopy it is possible to distinguish chemically different surface species. At low temperature a NH{sub 3} multilayer, which desorbs at {approx}110 K, was observed. The second layer of NH{sub 3} molecules desorbs around 140 K, in a separate desorption peak. Chemisorbed NH{sub 3} desorbs in steps from the surface and several desorption peaks are observed between 200 and 400 K. A part of the NH{sub 3ad} decomposes into NH{sub ad} between 225 and 300 K. NH{sub ad} decomposes into N{sub ad} between 400 K and 500 K and the hydrogen released in this process immediately desorbs. N{sub 2} desorption takes place between 500 and 700 K via N{sub ad} combination. The steady state decomposition reaction of NH{sub 3} starts at 500 K. The maximum reaction rate is observed between 540 K and 610 K. A model is presented to explain the occurrence of a maximum in the reaction rate. Hydrogenation of N{sub ad} below 400 K results in NH{sub ad}. No NH{sub 2ad} or NH{sub 3ad}/NH{sub 3} were observed. The hydrogenation of NH{sub ad} only takes place above 400 K. On the basis of the experimental findings an energy scheme is presented to account for the observations.

  17. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    PubMed

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,p<0.001. This regression fit suggests that over 20% of the variance of the participant's music induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). PMID:26544602

  18. Isocurvature modes and Baryon Acoustic Oscillations II: gains from combining CMB and Large Scale Structure

    SciTech Connect

    Carbone, Carmelita; Mangilli, Anna; Verde, Licia E-mail: anna.mangilli@icc.ub.edu

    2011-09-01

    We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter f{sub iso}, become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(f{sub iso}) ∼ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys.

  19. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Moorthy, Jayashree

    1995-01-01

    A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.

  20. Novel characterization of the adsorption sites in large pore metal-organic frameworks: combination of X-ray powder diffraction and thermal desorption spectroscopy.

    PubMed

    Soleimani-Dorcheh, Ali; Dinnebier, Robert E; Kuc, Agnieszka; Magdysyuk, Oxana; Adams, Frank; Denysenko, Dmytro; Heine, Thomas; Volkmer, Dirk; Donner, Wolfgang; Hirscher, Michael

    2012-10-01

    The preferred adsorption sites of xenon in the recently synthesized metal-organic framework MFU-4l(arge) possessing a bimodal pore structure (with pore sizes of 12 Å and 18.6 Å) were studied via the combination of low temperature thermal desorption spectroscopy and in situ X-ray powder diffraction. The diffraction patterns were collected at 110 K and 150 K according to the temperature of the desorption maxima. The maximum entropy method was used to reconstruct the electron density distribution of the structure and to localize the adsorbed xenon using refined data of the Xe-filled and empty sample. First principles calculations revealed that Xe atoms exclusively occupy the Wyckoff 32f position at approximately 2/3 2/3 2/3 along the body diagonal of the cubic crystal structure. At 110 K, Xe atoms occupy all 32 f positions (8 atoms per pore) while at 150 K the occupancy descends to 25% (2 atoms per pore). No Xe occupation of the small pores is observed by neither experimental measurements nor theoretical studies. PMID:22895492

  1. An Optimized Adsorbent Sampling Combined to Thermal Desorption GC-MS Method for Trimethylsilanol in Industrial Environments

    PubMed Central

    Lee, Jae Hwan; Jia, Chunrong; Kim, Yong Doo; Kim, Hong Hyun; Pham, Tien Thang; Choi, Young Seok; Seo, Young Un; Lee, Ike Woo

    2012-01-01

    Trimethylsilanol (TMSOH) can cause damage to surfaces of scanner lenses in the semiconductor industry, and there is a critical need to measure and control airborne TMSOH concentrations. This study develops a thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) method for measuring trace-level TMSOH in occupational indoor air. Laboratory method optimization obtained best performance when using dual-bed tube configuration (100 mg of Tenax TA followed by 100 mg of Carboxen 569), n-decane as a solvent, and a TD temperature of 300°C. The optimized method demonstrated high recovery (87%), satisfactory precision (<15% for spiked amounts exceeding 1 ng), good linearity (R2 = 0.9999), a wide dynamic mass range (up to 500 ng), low method detection limit (2.8 ng m−3 for a 20-L sample), and negligible losses for 3-4-day storage. The field study showed performance comparable to that in laboratory and yielded first measurements of TMSOH, ranging from 1.02 to 27.30 μg/m3, in the semiconductor industry. We suggested future development of real-time monitoring techniques for TMSOH and other siloxanes for better maintenance and control of scanner lens in semiconductor wafer manufacturing. PMID:22966229

  2. Screening of the binding of small molecules to proteins by desorption electrospray ionization mass spectrometry combined with protein microarray.

    PubMed

    Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin

    2015-11-01

    The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ. PMID:26174365

  3. Ultra trace detection of perfluorocarbon tracers in reservoir gases by adsorption/thermal desorption in combination with NICI-GC/MS.

    PubMed

    Galdiga, C U; Greibrokk, T

    2000-05-01

    A new method for the analysis of perfluorocarbon tracers (PFTs) in reservoir samples based on adsorption/thermal desorption in combination with NICI-GC/MS is presented. The tracer compounds were trapped in tubes filled with a carbon molecular sieve and in a two-step procedure thermally desorbed before they were analyzed with NICI-GC/MS. The chromatographic background noise, visible on GC/ECD-systems, due to compounds normally present in petroleum reservoir gases, could not be seen with NICI-GC/MS. Determination of the perfluorocarbons in reservoir gas samples confirmed the applicability of the method. Tracer concentrations as low as 42 femtoliter/liter were detected. PMID:11227432

  4. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  5. Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.

    2016-04-01

    This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.

  6. Combined Immersed-Boundary/High-Order Finite Difference Methods For Simulations of Acoustic Scattering

    NASA Astrophysics Data System (ADS)

    Arias-Ramirez, Walter; Olson, Britton; Wolf, William; Lawrence Livermore National Laboratory Team; University of Campinas Team

    2015-11-01

    The suitability of a continuing forcing immersed boundary method (IBM) combined with a high-order finite difference method is examined on several acoustic scattering problems. A suite of two-dimensional numerical simulations of canonical cases are conducted with the aim of analyzing the error behavior associated with the IBM, through wave reflection, wave diffraction, and the shock-boundary layer interaction phenomena. The compressible Navier-Stokes equations are solved using the Miranda code developed at Lawrence Livermore National Laboratory. Comparison of analytical solution against numerical results is shown for different flow parameters. Preliminary results indicate that the continuing forcing approach has the largest error in wave reflection compared to analytical solution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  7. Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam

    2015-03-01

    By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.

  8. Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose.

    PubMed

    Wei, Liu; Guohua, Hui

    2015-01-01

    In this study, electronic nose (EN) combined with a 433 MHz surface acoustic wave resonator (SAWR) was used to determine Kiwi fruit quality under 12-day storage. EN responses to Kiwi samples were measured and analyzed by principal component analysis (PCA) and stochastic resonance (SR) methods. SAWR frequency eigen values were also measured to predict freshness. Kiwi fruit sample's weight loss index and human sensory evaluation were examined to characteristic its quality and freshness. Kiwi fruit's quality predictive models based on EN, SAWR, and EN combined with SAWR were developed, respectively. Weight loss and human sensory evaluation results demonstrated that Kiwi fruit's quality decline and overall acceptance decrease during the storage. Experiment result indicated that the PCA method could qualitatively discriminate all Kiwi fruit samples with different storage time. Both SR and SAWR frequency analysis methods could successfully discriminate samples with high regression coefficients (R = 0.98093 and R = 0.99014, respectively). The validation experiment results showed that the mixed predictive model developed using EN combined with SAWR present higher quality prediction accuracy than the model developed either by EN or by SAWR. This method exhibits some advantages including high accuracy, non-destructive, low cost, etc. It provides an effective way for fruit quality rapid analysis. PMID:25551334

  9. Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose

    PubMed Central

    Wei, Liu; Guohua, Hui

    2015-01-01

    In this study, electronic nose (EN) combined with a 433 MHz surface acoustic wave resonator (SAWR) was used to determine Kiwi fruit quality under 12-day storage. EN responses to Kiwi samples were measured and analyzed by principal component analysis (PCA) and stochastic resonance (SR) methods. SAWR frequency eigen values were also measured to predict freshness. Kiwi fruit sample's weight loss index and human sensory evaluation were examined to characteristic its quality and freshness. Kiwi fruit's quality predictive models based on EN, SAWR, and EN combined with SAWR were developed, respectively. Weight loss and human sensory evaluation results demonstrated that Kiwi fruit's quality decline and overall acceptance decrease during the storage. Experiment result indicated that the PCA method could qualitatively discriminate all Kiwi fruit samples with different storage time. Both SR and SAWR frequency analysis methods could successfully discriminate samples with high regression coefficients (R = 0.98093 and R = 0.99014, respectively). The validation experiment results showed that the mixed predictive model developed using EN combined with SAWR present higher quality prediction accuracy than the model developed either by EN or by SAWR. This method exhibits some advantages including high accuracy, non-destructive, low cost, etc. It provides an effective way for fruit quality rapid analysis. PMID:25551334

  10. Development of a combined surface plasmon resonance/surface acoustic wave device for the characterization of biomolecules

    NASA Astrophysics Data System (ADS)

    Bender, Florian; Roach, Paul; Tsortos, Achilleas; Papadakis, George; Newton, Michael I.; McHale, Glen; Gizeli, Electra

    2009-12-01

    It is known that acoustic sensor devices, if operated in liquid phase, are sensitive not just to the mass of the analyte but also to various other parameters, such as size, shape, charge and elastic constants of the analyte as well as bound and viscously entrained water. This can be used to extract valuable information about a biomolecule, particularly if the acoustic device is combined with another sensor element which is sensitive to the mass or amount of analyte only. The latter is true in good approximation for various optical sensor techniques. This work reports on the development of a combined surface plasmon resonance/surface acoustic wave sensor system which is designed for the investigation of biomolecules such as proteins or DNA. Results for the deposition of neutravidin and DNA are reported.

  11. Identification of thymol phase I metabolites in human urine by headspace sorptive extraction combined with thermal desorption and gas chromatography mass spectrometry.

    PubMed

    Thalhamer, Bernhard; Buchberger, Wolfgang; Waser, Mario

    2011-08-25

    Development of a novel highly sensitive headspace sorptive extraction (HSSE) method in combination with thermal desorption gas chromatography coupled to a mass spectrometer (TD-GC/MS) allowed the identification of thymol and several phase I metabolites in human urine. Combined with an enzymatic hydrolysis of glucuronated or sulphated phase II metabolites of thymol and of the respective phase I metabolites prior to analysis, even trace quantities of hitherto not detected thymol phase I metabolites could be identified in urine samples of test persons after oral administration of 50mg thymol. It was proven, that human metabolism leads to a hydroxylation of the aromatic ring as well as of the iso-propyl side chain. Hydroxylation of the iso-propyl group results in the formation of the rather unstable p-cymene-3,8-diol and the corresponding dehydration product p-cymene-3-ol-8-ene which could be clearly detected in human urine samples. Furthermore, the aromatic hydroxylation products p-cymene-2,5-diol, its oxidation product p-cymene-2,5-dione and p-cymene-2,3-diol were also unambiguously identified by comparison with synthesized reference compounds. PMID:21620603

  12. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.

    PubMed

    Wei, Zongsu; Weavers, Linda K

    2016-07-01

    Scaled-up and economically viable sonochemical systems are critical for increased use of ultrasound in environmental and chemical processing applications. In this study, computational simulations and acoustic pressure maps were used to design a larger-scale sono-reactor containing a multi-stepped ultrasonic horn. Simulations in COMSOL Multiphysics showed ultrasonic waves emitted from the horn neck and tip, generating multiple regions of high acoustic pressure. The volume of these regions surrounding the horn neck were larger compared with those below the horn tip. The simulated acoustic field was verified by acoustic pressure contour maps generated from hydrophone measurements in a plexiglass box filled with water. These acoustic pressure contour maps revealed an asymmetric and discrete distribution of acoustic pressure due to acoustic cavitation, wave interaction, and water movement by ultrasonic irradiation. The acoustic pressure contour maps were consistent with simulation results in terms of the effective scale of cavitation zones (∼ 10 cm and <5 cm above and below horn tip, respectively). With the mapped acoustic field and identified cavitation location, a cylindrically-shaped sono-reactor with a conical bottom was designed to evaluate the treatment capacity (∼ 5 L) for the multi-stepped horn using COMSOL simulations. In this study, verification of simulation results with experiments demonstrates that coupling of COMSOL simulations with hydrophone measurements is a simple, effective and reliable scientific method to evaluate reactor designs of ultrasonic systems. PMID:26964976

  13. Cryogenic oxygen jet response to transverse acoustic excitation with the first transverse and the first combined longitudinal-transverse modes

    NASA Astrophysics Data System (ADS)

    Hardi, J. S.; Oschwald, M.

    2016-07-01

    The intact length of the dense oxygen core from an oxygen-hydrogen shear coaxial rocket injector was measured. The measurements were made in a rectangular rocket combustor with optical access and acoustic forcing. The combustor was operated at chamber pressures of 40 and 60 bar, with either ambient temperature or cryogenic hydrogen. The multielement injection spray is subjected to forced transverse gas oscillations of two different acoustic resonance modes; the first transverse (1T) mode at 4200 Hz and the first combined longitudinal-transverse (1L1T) at 5500 Hz. Intact core length is measured from high-speed shadowgraph imaging. The dependence of intact core length with increasing acoustic amplitude is compared for the two modes of excitation.

  14. Combined Electric and Contralateral Acoustic Hearing: Word and Sentence Recognition with Bimodal Hearing

    ERIC Educational Resources Information Center

    Gifford, Rene H.; Dorman, Michael F.; McKarns, Sharon A.; Spahr, Anthony J.

    2007-01-01

    Purpose: The authors assessed whether (a) a full-insertion cochlear implant would provide a higher level of speech understanding than bilateral low-frequency acoustic hearing, (b) contralateral acoustic hearing would add to the speech understanding provided by the implant, and (c) the level of performance achieved with electric stimulation plus…

  15. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  16. Combined action of phase-mixing and Landau damping causing strong decay of geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Palermo, F.; Biancalani, A.; Angioni, C.; Zonca, F.; Bottino, A.

    2016-07-01

    We report evidence of a new mechanism able to damp very efficiently geodesic acoustic mode (GAM) in the presence of a nonuniform temperature profile in a toroidally confined plasma. This represents a particular case of a general mechanism that we have found and that can be observed whenever the phase-mixing acts in the presence of a damping effect that depends on the wave number k r . Here, in particular, the combined effect of the Landau and continuum damping is found to quickly redistribute the GAM energy in phase-space, due to the synergy of the finite orbit width of the passing ions and the cascade in wave number given by the phase-mixing. This damping mechanism is investigated analytically and numerically by means of global gyrokinetic simulations. When realistic parameter values of plasmas at the edge of a tokamak are used, damping rates up to 2 orders of magnitude higher than the Landau damping alone are obtained. We find in particular that, for temperature and density profiles characteristic of the high confinement mode, the so-called H-mode, the GAM decay time becomes comparable to or lower than the nonlinear drive time, consistently with experimental observations (Conway G. D. et al., Phys. Rev. Lett., 106 (2011) 065001).

  17. To See or Not to See: Investigating Detectability of Ganges River Dolphins Using a Combined Visual-Acoustic Survey

    PubMed Central

    Richman, Nadia I.; Gibbons, James M.; Turvey, Samuel T.; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D.; Jones, Julia P. G.

    2014-01-01

    Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring. PMID:24805782

  18. To see or not to see: investigating detectability of Ganges River dolphins using a combined visual-acoustic survey.

    PubMed

    Richman, Nadia I; Gibbons, James M; Turvey, Samuel T; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D; Jones, Julia P G

    2014-01-01

    Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring. PMID:24805782

  19. In-source decay during matrix-assisted laser desorption/ionization combined with the collisional process in an FTICR mass spectrometer.

    PubMed

    Asakawa, Daiki; Calligaris, David; Zimmerman, Tyler A; De Pauw, Edwin

    2013-08-20

    The type of ions detected after in-source decay (ISD) in a MALDI source differs according to the ion source pressure and on the mass analyzer used. We present the mechanism leading to the final ISD ions for a Fourier transform-ion cyclotron resonance mass spectrometer (FTICR MS). The MALDI ion source was operated at intermediate pressure to cool the resulting ions and increase their lifetime during the long residence times in the FTICR ion optics. This condition produces not only c', z', and w fragments, but also a, y', and d fragments. In particular, d ions help to identify isobaric amino acid residues present near the N-terminal amino acid. Desorbed ions collide with background gas during desorption, leading to proton mobilization from Arg residues to a less favored protonation site. As a result, in the case of ISD with MALDI FTICR, the influence of the Arg residue in ISD fragmentation is less straightforward than for TOF MS and the sequence coverage is thus improved. MALDI-ISD combined with FTICR MS appears to be a useful method for sequencing of peptides and proteins including discrimination of isobaric amino acid residues and site determination of phosphorylation. Additionally we also used new software for in silico elimination of MALDI matrix peaks from MALDI-ISD FTICR mass spectra. The combination of high resolving power of an FTICR analyzer and matrix subtraction software helps to interpret the low m/z region of MALDI-ISD spectra. Finally, several of these developed methods are applied in unison toward a MALDI ISD FTICR imaging experiment on mouse brain to achieve better results. PMID:23879863

  20. Detection of dead regions in the cochlea: relevance for combined electric and acoustic stimulation.

    PubMed

    Moore, Brian C J; Glasberg, Brian; Schlueter, Anne

    2010-01-01

    A dead region is a region in the cochlea where the inner hair cells and/or the auditory neurones are functioning very poorly, if at all. People who are being considered for a combination of a cochlear implant and a hearing aid typically have a dead region in the parts of the cochlea that normally respond to medium and high frequencies, but have some functional hearing at lower frequencies. For such people, it may be useful to determine the edge frequency, f(e), of any dead region. This may be relevant to choosing the most appropriate insertion depth of the electrode array, and to the way that frequencies in the input signal are mapped to acoustic and electric stimulation. It may also be helpful in interpreting the results of research studies. This paper reviews methods for diagnosing dead regions and defining the value of f(e). It is argued that the value of f(e) cannot be determined reliably from the audiogram, although a dead region is likely to be present at a given frequency when the hearing loss at that frequency is 70 dB or more. When a sinusoidal signal is reported as sounding highly distorted or noise-like, a dead region may be present at the signal frequency, but again this is not a reliable indicator. The TEN test is a simple clinical method for diagnosis of dead regions. Where this test gives a positive diagnosis, it is recommended that psychophysical tuning curves be measured to define the value of f(e) more precisely. PMID:19955720

  1. Acoustic Oddball during NREM Sleep: A Combined EEG/fMRI Study

    PubMed Central

    Czisch, Michael; Wehrle, Renate; Stiegler, Andrea; Peters, Henning; Andrade, Katia; Holsboer, Florian; Sämann, Philipp G.

    2009-01-01

    Background A condition vital for the consolidation and maintenance of sleep is generally reduced responsiveness to external stimuli. Despite this, the sleeper maintains a level of stimulus processing that allows to respond to potentially dangerous environmental signals. The mechanisms that subserve these contradictory functions are only incompletely understood. Methodology/Principal Findings Using combined EEG/fMRI we investigated the neural substrate of sleep protection by applying an acoustic oddball paradigm during light NREM sleep. Further, we studied the role of evoked K-complexes (KCs), an electroencephalographic hallmark of NREM sleep with a still unknown role for sleep protection. Our main results were: (1) Other than in wakefulness, rare tones did not induce a blood oxygenation level dependent (BOLD) signal increase in the auditory pathway but a strong negative BOLD response in motor areas and the amygdala. (2) Stratification of rare tones by the presence of evoked KCs detected activation of the auditory cortex, hippocampus, superior and middle frontal gyri and posterior cingulate only for rare tones followed by a KC. (3) The typical high frontocentral EEG deflections of KCs were not paralleled by a BOLD equivalent. Conclusions/Significance We observed that rare tones lead to transient disengagement of motor and amygdala responses during light NREM sleep. We interpret this as a sleep protective mechanism to delimit motor responses and to reduce the sensitivity of the amygdala towards further incoming stimuli. Evoked KCs are suggested to originate from a brain state with relatively increased stimulus processing, revealing an activity pattern resembling novelty processing as previously reported during wakefulness. The KC itself is not reflected by increased metabolic demand in BOLD based imaging, arguing that evoked KCs result from increased neural synchronicity without altered metabolic demand. PMID:19707599

  2. Small scale model static acoustic investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Rathburn, E. A.

    1974-01-01

    A static acoustic and propulsion test of a small radius Jacobs-Hurkamp and a large radius Flex Flap combined with four upper surface blowing (USB) nozzles was performed. Nozzle force and flow data, flap trailing edge total pressure survey data, and acoustic data were obtained. Jacobs-Hurkamp flap surface pressure data, flow visualization photographs, and spoiler acoustic data from the limited mid-year tests are reported. A pressure ratio range of 1.2 to 1.5 was investigated for the USB nozzles and for the auxiliary blowing slots. The acoustic data were scaled to a four-engine STOL airplane of roughly 110,000 kilograms or 50,000 pounds gross weight, corresponding to a model scale of approximately 0.2 for the nozzles without deflector. The model nozzle scale is actually reduced to about .17 with deflector although all results in this report assume 0.2 scale factor. Trailing edge pressure surveys indicated that poor flow attachment was obtained even at large flow impingement angles unless a nozzle deflector plate was used. Good attachment was obtained with the aspect ratio four nozzle with deflector, confirming the small scale wind tunnel tests.

  3. Adsorption of acrolein, propanal, and allyl alcohol on Pd(111): a combined infrared reflection-absorption spectroscopy and temperature programmed desorption study.

    PubMed

    Dostert, Karl-Heinz; O'Brien, Casey P; Mirabella, Francesca; Ivars-Barceló, Francisco; Schauermann, Swetlana

    2016-05-18

    Atomistic-level understanding of the interaction of α,β-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C[double bond, length as m-dash]C vs. C[double bond, length as m-dash]O bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection-absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for multilayer coverages, reflecting the molecular structure of unperturbed molecules, with the spectra acquired for sub-monolayer coverages, at which the chemical bonds of the molecules are strongly distorted. Coverage-dependent IR spectra of acrolein on Pd(111) point to the strong changes in the adsorption geometry with increasing acrolein coverage. Acrolein adsorbs with the C[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds lying parallel to the surface in the low coverage regime and changes its geometry to a more upright orientation with increasing coverage. TPD studies indicate decomposition of the species adsorbed in the sub-monolayer regime upon heating. Similar strong coverage dependence of the IR spectra were found for propanal and allyl alcohol. For all investigated molecules a detailed assignment of vibrational bands is reported. PMID:27149902

  4. Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization.

    PubMed

    Weston, Daniel J; Bateman, Robert; Wilson, Ian D; Wood, Tim R; Creaser, Colin S

    2005-12-01

    A novel approach to the rapid analysis of pharmaceutical drug formulations using hyphenated ion mobility spectrometry (IMS) and time-of-flight mass spectrometry (ToF-MS) that requires no sample pretreatment or chromatographic separation is described. A modified quadrupole time-of-flight mass spectrometer containing an ion mobility drift cell was used for gas-phase electrophoretic separation of ions prior to ToF-MS detection. The generation of sample ions directly from tablets and cream formulations was effected by desorption electrospray ionization (DESI) using a modified electrospray ion source. The analysis of a range of over-the-counter and prescription tablet formulations is described, including histamine H2 receptor antagonist (ranitidine), analgesic (paracetamol), opiate (codeine), and aromatase inhibitor anticancer (anastrozole) drugs. The successful determination of active drugs from soft formulations, such as an antiseptic cream (chlorhexidine) and a nicotine-containing skin patch, is also presented. Limits of detection for the active drugs using the DESI/IMS/ToF-MS method fell within the high-picomole to nanomole range. In all cases, the use of ion mobility drift tube separation showed increased selectivity for active drug responses (present as low as 0.14% w/w) over excipient responses such as poly(ethylene glycol). Tandem mass spectrometric analysis of precursor ions separated by IMS allowed positive confirmation of active drugs with little loss of ion mobility efficiency. The ability to analyze hard or soft pharmaceutical formulations directly by DESI combined with ion mobility spectrometry/mass spectrometry in approximately 2 min demonstrates the potential applicability of this novel method to pharmaceutical screening of low-molecular-weight drug formulations with high selectivity over the formulation vehicle. PMID:16316164

  5. Direct Identification of Urinary Tract Pathogens from Urine Samples, Combining Urine Screening Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Íñigo, Melania; Coello, Andreu; Fernández-Rivas, Gema; Rivaya, Belén; Hidalgo, Jessica; Quesada, María Dolores; Ausina, Vicente

    2016-04-01

    Early diagnosis of urinary tract infections (UTIs) is essential to avoid inadequate or unnecessary empirical antibiotic therapy. Microbiological confirmation takes 24 to 48 h. The use of screening methods, such as cytometry and automated microscopic analysis of urine sediment, allows the rapid prediction of negative samples. In addition, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a widely established technique in clinical microbiology laboratories used to identify microorganisms. We evaluated the ability of MALDI-TOF MS to identify microorganisms from direct urine samples and the predictive value of automated analyzers for the identification of microorganisms in urine by MALDI-TOF MS. A total of 451 urine samples from patients with suspected UTIs were first analyzed using the Sysmex UF-1000iflow cytometer, an automatic sediment analyzer with microscopy (SediMax), culture, and then processed by MALDI-TOF MS with a simple triple-centrifuged procedure to obtain a pellet that was washed and centrifuged and finally applied directly to the MALDI-TOF MS plate. The organisms in 336 samples were correctly identified, mainly those with Gram-negative bacteria (86.10%). No microorganisms were misidentified, and noCandidaspp. were correctly identified. Regarding the data from autoanalyzers, the best bacteriuria cutoffs were 1,000 and 200 U/μl for UF-1000iand SediMax, respectively. It was concluded that the combination of a urine screening method and MALDI-TOF MS provided a reliable identification from urine samples, especially in those containing Gram-negative bacteria. PMID:26818668

  6. Monitoring N3 dye adsorption and desorption on TiO2 surfaces: a combined QCM-D and XPS study.

    PubMed

    Wayment-Steele, Hannah K; Johnson, Lewis E; Tian, Fangyuan; Dixon, Matthew C; Benz, Lauren; Johal, Malkiat S

    2014-06-25

    Understanding the kinetics of dye adsorption and desorption on semiconductors is crucial for optimizing the performance of dye-sensitized solar cells (DSSCs). Quartz crystal microbalance with dissipation monitoring (QCM-D) measures adsorbed mass in real time, allowing determination of binding kinetics. In this work, we characterize adsorption of the common RuBipy dye N3 to the native oxide layer of a planar, sputter-coated titanium surface, simulating the TiO2 substrate of a DSSC. We report adsorption equilibrium constants consistent with prior optical measurements of N3 adsorption. Dye binding and surface integrity were also verified by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). We further study desorption of the dye from the native oxide layer on the QCM sensors using tetrabutylammonium hydroxide (TBAOH), a commonly used industrial desorbant. We find that using TBAOH as a desorbant does not fully regenerate the surface, though little ruthenium or nitrogen is observed by XPS after desorption, suggesting that carboxyl moieties of N3 remain bound. We demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption and desorption and begin to investigate the mechanism of dye desorption in DSSCs, a system that requires further study. PMID:24848580

  7. Clinical and microbiological features of a cystic fibrosis patient chronically colonized with Pandoraea sputorum identified by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fernández-Olmos, A; Morosini, M I; Lamas, A; García-Castillo, M; García-García, L; Cantón, R; Máiz, L

    2012-03-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment. PMID:22170922

  8. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms.

    PubMed

    Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling

    2015-09-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered. PMID:26428783

  9. Normal mode solutions for seismo-acoustic propagation resulting from shear and combined wave point sources.

    PubMed

    Nealy, Jennifer L; Collis, Jon M; Frank, Scott D

    2016-04-01

    Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers. PMID:27106346

  10. Characterization of mechanical properties of hybrid contrast agents by combining atomic force microscopy with acoustic/optic assessments.

    PubMed

    Guo, Gepu; Tu, Juan; Guo, Xiasheng; Huang, Pintong; Wu, Junru; Zhang, Dong

    2016-02-01

    Multi-parameter fitting algorithms, which are currently used for the characterization of coated-bubbles, inevitably introduce uncertainty into the results. Therefore, a better technique that can accurately determine the microbubbles׳ mechanical properties is urgently needed. A comprehensive technology combining atomic force microscopy, optical, and acoustic measurements with simulations of coated-bubble dynamics was developed. Using this technique, the mechanical parameters (size distribution, shell thickness, elasticity, and viscosity) of hybrid (ultrasound/magnetic-resonance-imaging) contrast microbubbles and their structure-property relationship were determined. The measurements indicate that when more superparamagnetic iron oxide nanoparticles are embedded in the microbubbles׳ shells, their mean diameter and effective viscosity increase, and their elastic modulus decreases. This reduces the microbubbles׳ resonance frequency and thus enhances acoustic scattering and attenuation effects. PMID:26726783

  11. Laser-desorption mass spectrometry/mass spectrometry and the mechanism of desorption ionization

    SciTech Connect

    Zakett, D.; Schoen, A.E.; Cooks, R.G.; Hemberger, P.H.

    1981-03-11

    This paper reports sucrose mass spectra obtained by combining laser desorption with mass spectrometry/mass spectrometry. Remarkable similarities in fragmentation behavior with secondary ion mass spectra (SIMS) provide evidence for mechanistic similarities between SIMS and laser desorption (LD). Attachment of alkali metals to organic molecules (cationization) is a common feature of desorption ionization. This process also occurs during laser desorption of involatile compounds which further indicates the existence of underlying similarities between LD and SIMS. Steady ion currents (several thousand ions per laser pulse) of cationized sucrose are obtained for relatively long periods (minutes).

  12. Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data

    NASA Technical Reports Server (NTRS)

    Pierce, S. D.

    1986-01-01

    Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.

  13. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    SciTech Connect

    Ovchinnikova, Olga S; Nikiforov, Maxim; Bradshaw, James A; Jesse, Stephen; Van Berkel, Gary J

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

  14. Validation of TOF-SIMS and FE-SEM/EDS Techniques Combined with Sorption and Desorption Experiments to Check Competitive and Individual Pb2+ and Cd2+ Association with Components of B Soil Horizons

    PubMed Central

    Andrade, María Luisa; Vega, Flora A.

    2015-01-01

    Sorption and desorption experiments were performed by the batch method on the B horizons of five natural soils: Umbric Cambisol, Endoleptic Luvisol, Mollic Umbrisol, Dystric Umbrisol, and Dystric Fluvisol. Individual and competitive sorption and desorption capacity and hysteresis were determined. The results showed that Pb2+ was sorbed and retained in a greater quantity than Cd2+ and that the hysteresis of the first was greater than that of the second. The most influential characteristics of the sorption and retention of Pb2+ were pH, ECEC, Fe and Mn oxides and clay contents. For Cd2+ they were mainly pH and, to a lesser extent, Mn oxides and clay content. The combined use of TOF-SIMS, FE-SEM/EDS and sorption and desorption analyses was suitable for achieving a better understanding of the interaction between soil components and the two heavy metals. They show the preferential association of Pb2+ with vermiculite, chlorite, Fe and Mn oxides, and of Cd2+ with the same components, although to a much lesser extent and intensity. This was due to the latter’s higher mobility as it competed unfavourably with the Pb2+ sorption sites. TOF-SIMS and FE-SEM/EDS techniques confirmed the results of the sorption experiments, and also provided valuable information on whether the soil components (individually or in association) retain Cd2+ and / or Pb2+; this could help to propose effective measures for the remediation of contaminated soils. PMID:25893518

  15. Validation of TOF-SIMS and FE-SEM/EDS Techniques Combined with Sorption and Desorption Experiments to Check Competitive and Individual Pb2+ and Cd2+ Association with Components of B Soil Horizons.

    PubMed

    Cerqueira, Beatriz; Arenas-Lago, Daniel; Andrade, María Luisa; Vega, Flora A

    2015-01-01

    Sorption and desorption experiments were performed by the batch method on the B horizons of five natural soils: Umbric Cambisol, Endoleptic Luvisol, Mollic Umbrisol, Dystric Umbrisol, and Dystric Fluvisol. Individual and competitive sorption and desorption capacity and hysteresis were determined. The results showed that Pb2+ was sorbed and retained in a greater quantity than Cd2+ and that the hysteresis of the first was greater than that of the second. The most influential characteristics of the sorption and retention of Pb2+ were pH, ECEC, Fe and Mn oxides and clay contents. For Cd2+ they were mainly pH and, to a lesser extent, Mn oxides and clay content. The combined use of TOF-SIMS, FE-SEM/EDS and sorption and desorption analyses was suitable for achieving a better understanding of the interaction between soil components and the two heavy metals. They show the preferential association of Pb2+ with vermiculite, chlorite, Fe and Mn oxides, and of Cd2+ with the same components, although to a much lesser extent and intensity. This was due to the latter's higher mobility as it competed unfavourably with the Pb2+ sorption sites. TOF-SIMS and FE-SEM/EDS techniques confirmed the results of the sorption experiments, and also provided valuable information on whether the soil components (individually or in association) retain Cd2+ and/or Pb2+; this could help to propose effective measures for the remediation of contaminated soils. PMID:25893518

  16. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading. Final report, 15 March 1995

    SciTech Connect

    Mei, C.; Moorthy, Y.

    1995-01-01

    A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.

  17. Development of a loudness normalisation strategy for combined cochlear implant and acoustic stimulation.

    PubMed

    Francart, Tom; McDermott, Hugh J

    2012-12-01

    Users of a cochlear implant together with a hearing aid in the non-implanted ear currently use devices that were developed separately and are often fitted separately. This results in very different growth of loudness with level in the two ears, potentially leading to decreased wearing comfort and suboptimal perception of interaural level differences. A loudness equalisation strategy, named 'SCORE bimodal', is proposed. It equalises loudness growth for the two modalities using existing models of loudness for acoustic and electric stimulation, and is suitable for implementation in wearable devices. Loudness balancing experiments were performed with six bimodal listeners to validate the strategy. In a first set of experiments, the function of each loudness model used was validated by balancing the loudness of four harmonic complexes of different bandwidths, ranging from 200 Hz to 1000 Hz, separately for each ear. Both the electric and acoustic loudness models predicted the data well. In a second set of experiments, binaural balancing was done for the same stimuli. It was found that SCORE significantly improved binaural balance. PMID:23000118

  18. THERMAL DESORPTION TREATMENT

    EPA Science Inventory

    Thermal desorption is an ex situ means to physically separate volatile and some semivolatile contaminants from soil, sediments, sludges, and filter cakes. or wastes containing up to 10% organics or less, thermal desorption can be used alone for site remediation. t also may find a...

  19. Kinetic effects on geodesic acoustic mode from combined collisions and impurities

    SciTech Connect

    Yang, Shangchuan; Xie, Jinlin Liu, Wandong

    2015-04-15

    The dispersion relation for geodesic acoustic mode (GAM) is derived by applying a gyrokinetic model that accounts for the effects from both collisions and impurities. Based on the dispersion relation, an analysis is performed for the non-monotonic behavior of GAM damping versus the characteristic collision rate at various impurity levels. As the effective charge increases, the maximum damping rate is found to shift towards lower collision rates, nearer to the parameter range of a typical tokamak edge plasma. The relative strengths of ion-ion and impurity-induced collision effects, which are illustrated by numerical calculations, are found to be comparable. Impurity-induced collisions help decrease the frequency of GAM, while their effects on the damping rate are non-monotonic, resulting in a weaker total damping in the high collision regime. The results presented suggest considering collision effects as well as impurity effects in GAM analysis.

  20. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    PubMed

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size. PMID:20058949

  1. Determination of the covalent structure of an N- and C-terminally blocked glycoprotein from endocuticle of Locusta migratoria. Combined use of plasma desorption mass spectrometry and Edman degradation to study post-translationally modified proteins.

    PubMed

    Talbo, G; Højrup, P; Rahbek-Nielsen, H; Andersen, S O; Roepstorff, P

    1991-01-30

    The complete structure of protein isolated from endocuticle of sexually mature locusts, Locusta migratoria, has been determined by a combination of automatic Edman degradation and plasma desorption mass spectrometry. The protein is extensively post-translationally modified. The N-terminal is 5-oxoproline (pyroglutamic acid) and the C-terminal proline residue is amidated. Furthermore, the protein is glycosylated by a single N-acetyl-galactosamine residue at one, two or three threonines. The N-terminal sequence was obtained by analysing the N-acetylated N,O-permethylated derivative using plasma desorption mass spectrometry. The position and type of carbohydrate were determined by combining an HPLC-based carbohydrate analysis with the peak pattern of the phenylthiohydantoin derivative in automatic sequencing and with mass information on peptides. The protein has pronounced similarity to cuticular proteins from larvae of diptera and lepidoptera, but only slight resemblance to the previously sequenced locust exocuticular proteins. This indicates a similarity between soft larval cuticles and locust endocuticle, a similarity which may extend to their mechanical properties. PMID:1997327

  2. Combining AFM and Acoustic Probes to Reveal Changes in the Elastic Stiffness Tensor of Living Cells

    PubMed Central

    Nijenhuis, Nadja; Zhao, Xuegen; Carisey, Alex; Ballestrem, Christoph; Derby, Brian

    2014-01-01

    Knowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g., Young’s modulus, rather than the minimum of two terms of the stiffness tensor required by elasticity theory. In this study, we use two independent methods (acoustic microscopy and atomic force microscopy nanoindentation) to characterize the elastic properties of a cell and thus determine two independent elastic constants. This allows us to explore in detail how the mechanical properties of cells change in response to signaling pathways that are known to regulate the cell’s cytoskeleton. In particular, we demonstrate that altering the tensioning of actin filaments in NIH3T3 cells has a strong influence on the cell's shear modulus but leaves its bulk modulus unchanged. In contrast, altering the polymerization state of actin filaments influences bulk and shear modulus in a similar manner. In addition, we can use the data to directly determine the Poisson ratio of a cell and show that in all cases studied, it is less than, but very close to, 0.5 in value. PMID:25296302

  3. Experimental study of ultra-thin films mechanical integrity by combined nanoindentation and nano-acoustic emission

    NASA Astrophysics Data System (ADS)

    Zhang, Zihou

    Advancement of interconnect technology has imposed significant challenge on interface characterization and reliability for blurred interfaces between layers. There is a need for material properties and these miniaturized length scales and assessment of reliability; including the intrinsic film fracture toughness and the interfacial fracture toughness. The nano-meter range of film thicknesses currently employed, impose significant challenges on evaluating these physical quantities and thereby impose significant challenge on the design cycle. In this study we attempted to use a combined nano-indentation and nano-acoustic emission to qualitatively and quantitatively characterize the failure modes in ultra-thin blanket films on Si substrates or stakes of different characteristics. We have performed and analyzed an exhaustive group of testes that cove many diverge combination of film-substrate combination, provided by both Intel and IBM. When the force-indentation depth curve shows excursion, a direct measure of the total energy release rate is estimated. The collected acoustic emission signal is then used to partition the total energy into two segments, one associated with the cohesive fracture toughness of the film and the other is for the adhesive fracture toughness of the interface. The acoustic emission signal is analyzed in both the time and frequency domain to achieve such energy division. In particular, the signal time domain analysis for signal skewness, time of arrival and total energy content are employed with the proper signal to noise ratio. In the frequency domain, an expansive group of acoustic emission signals are utilized to construct the details of the power spectral density. A bank of band-pass filters are designed to sort the individual signals to those associated with adhesive interlayer cracking, cohesive channel cracking, or other system induced noise. The attenuation time and the energy content within each spectral frequency were the key elements

  4. Analysis of complex phthalic acid based polyesters by the combination of size exclusion chromatography and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Pretorius, Nadine O; Rode, Karsten; Simpson, Jaylin M; Pasch, Harald

    2014-01-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used in conjunction with size exclusion chromatography (SEC) to investigate a model polyester system based on phthalic anhydride-1,2-propylene glycol. The polyesters were synthesized with a 30% molar excess of glycol, with kinetic samples being removed during different intervals of the polyesterification reaction. SEC was used to track the course of the reaction by determining the molecular weight and molecular weight distributions before subsequent off-line coupling with MALDI-TOF MS as a selective detection method to determine the chemical composition, identify the functionality type distributions as well as assist in assigning structural conformations. Mass spectrometry analysis proved to be a highly effective tool to facilitate the identification of the narrowly dispersed fractions obtained from the chromatographic separations as well as serve as a core method to investigate the heterogeneous nature of the bulk kinetic samples. Through the hyphenation of these sophisticated polymer characterization techniques, information on the molecular heterogeneity of the model polyesters, showing a complex variety of possible distributions, was obtained. PMID:24370096

  5. Combining Capillary Electrophoresis Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Stable Isotopic Labeling Techniques for Comparative Crustacean Peptidomics

    PubMed Central

    Wang, Junhua; Zhang, Yuzhuo; Xiang, Feng; Zhang, Zichuan; Li, Lingjun

    2010-01-01

    Herein we describe a sensitive and straightforward off-line capillary electrophoresis (CE) matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) interface in conjunction with stable isotopic labeling (SIL) technique for comparative neuropeptidomic analysis in crustacean model organisms. Two SIL schemes, including a binary H/D formaldehyde labeling technique and novel, laboratory-developed multiplexed dimethylated leucine-based isobaric tagging reagents, have been evaluated in these proof-of-concept experiments. We employ these isotopic labeling techniques in conjunction with CE-MALDI MS for quantitative peptidomic analyses of the pericardial organs isolated from two crustacean species, the European green crab Carcinus maenas and the blue crab Callinectes sapidus. Isotopically labeled peptide pairs are found to co-migrate in CE fractions and quantitative changes in relative abundances of peptide pairs are obtained by comparing peak intensities of respective peptide pairs. Several neuropeptide families exhibit changes in response to salinity stress, suggesting potential physiological functions of these signaling peptides. PMID:20334868

  6. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    USGS Publications Warehouse

    Madonna, A.J.; Basile, F.; Furlong, E.; Voorhees, K.J.

    2001-01-01

    A rapid method for identifying specific bacteria from complex biological mixtures using immunomagnetic separation coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been developed. The technique employs commercially available magnetic beads coated with polycolonal antibodies raised against specific bacteria and whole cell analysis by MALDI-MS. A suspension of a bacterial mixture is mixed with the immunomagnetic beads specific for the target microorganism. After a short incubation period (20 mins) the bacteria captured by the beads are washed, resuspended in deionized H2O and directly applied onto a MALDI probe. Liquid suspensions containing bacterial mixtures can be screened within 1 h total analysis time. Positive tests result in the production of a fingerprint mass spectrum primarily consisting of protein biomarkers characteristic of the targeted microorganism. Using this procedure, Salmonella choleraesuis was isolated and detected from standard bacterial mixtures and spiked samples of river water, human urine, and chicken blood. Copyright ?? 2001 John Wiley & Sons, Ltd.

  7. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography-mass spectrometry.

    PubMed

    Akoto, Lawrence; Vreuls, René J J; Irth, Hubertus; Pel, Roel; Stellaard, Frans

    2008-04-01

    Gas chromatography (GC) has in recent times become an important tool for the fatty acid profiling of human blood and plasma. An at-line procedure used in the fatty acid profiling of whole/intact aquatic micro-organisms without any sample preparation was adapted for this work. A direct thermal desorption (DTD) interface was used to profile the fatty acid composition of human plasma and whole human blood of eight volunteers in a procedure omitting the usual lipid extraction steps that precede sample methylation in the traditional (off-line) protocols. Trimethylsulfonium hydroxide (TMSH) was used as reagent for thermally assisted methylation. In a fully automated manner, the liner of the GC injector is used as a sample-and-reaction container with the aid of the DTD interface. The fatty acid methyl ester (FAME) profiles obtained using this novel approach, were very identical to those obtained when the traditional off-line protocol was applied. FAME yields obtained in the at-line DTD method were found to be very similar for saturated fatty acids, but significantly higher for polyunsaturated fatty acids compared to off-line yields. As a result of the contribution of circulating cell membranes in blood, substantial differences were observed when the amount of FAMEs obtained in whole human blood and human plasma samples were compared after their analysis. Thanks to the fully automated operation of this novel procedure, large series of analyses can easily be performed. PMID:17889883

  8. Flow patterns and transport in Rayleigh surface acoustic wave streaming: combined finite element method and raytracing numerics versus experiments.

    PubMed

    Frommelt, Thomas; Gogel, Daniel; Kostur, Marcin; Talkner, Peter; Hänggi, Peter; Wixforth, Achim

    2008-10-01

    This work presents an approach for determining the streaming patterns that are generated by Rayleigh surface acoustic waves in arbitrary 3-D geometries by finite element method (FEM) simulations. An efficient raytracing algorithm is applied on the acoustic subproblem to avoid the unbearable memory demands and computational time of a conventional FEM acoustics simulation in 3-D. The acoustic streaming interaction is modeled by a body force term in the Stokes equation. In comparisons between experiments and simulated flow patterns, we demonstrate the quality of the proposed technique. PMID:18986877

  9. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  10. Effect of Digital Frequency Compression (DFC) on Speech Recognition in Candidates for Combined Electric and Acoustic Stimulation (EAS)

    PubMed Central

    Gifford, René H.; Dorman, Michael F.; Spahr, Anthony J.; McKarns, Sharon A.

    2008-01-01

    Purpose To compare the effects of conventional amplification (CA) and digital frequency compression (DFC) amplification on the speech recognition abilities of candidates for a partial-insertion cochlear implant, that is, candidates for combined electric and acoustic stimulation (EAS). Method The participants were 6 patients whose audiometric thresholds at 500 Hz and below were ≤60 dB HL and whose thresholds at 2000 Hz and above were ≥80 dB HL. Six tests of speech understanding were administered with CA and DFC. The Abbreviated Profile of Hearing Aid Benefit (APHAB) was also administered following use of CA and DFC. Results Group mean scores were not statistically different in the CA and DFC conditions. However, 2 patients received substantial benefit in DFC conditions. APHAB scores suggested increased ease of communication, but also increased aversive sound quality. Conclusion Results suggest that a relatively small proportion of individuals who meet EAS candidacy will receive substantial benefit from a DFC hearing aid and that a larger proportion will receive at least a small benefit when speech is presented against a background of noise. This benefit, however, comes at a cost—aversive sound quality. PMID:17905905

  11. Effective finite-difference modelling methods with 2D acoustic wave equation using a combination of cross and rhombus stencils

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang; Sen, Mrinal K.

    2016-07-01

    The 2D acoustic wave equation is commonly solved numerically by finite-difference (FD) methods in which the accuracy of solution is significantly affected by the FD stencils. The commonly used cross stencil can reach either only second-order accuracy for space domain dispersion-relation-based FD method or (2 M)th-order accuracy along eight specific propagation directions for time-space domain dispersion-relation-based FD method, if the conventional (2 M)th-order spatial FD and second-order temporal FD are used to discretize the equation. One other newly developed rhombus stencil can reach arbitrary even-order accuracy. However, this stencil adds significantly computational cost when the operator length is large. To achieve a balance between the solution accuracy and efficiency, we develop a new FD stencil to solve the 2D acoustic wave equation. This stencil is a combination of the cross stencil and rhombus stencil. A cross stencil with an operator length parameter M is used to approximate the spatial partial derivatives while a rhombus stencil with an operator length parameter N together with the conventional 2nd-order temporal FD is employed in approximating the temporal partial derivatives. Using this stencil, a new FD scheme is developed; we demonstrate that this scheme can reach (2 M)th-order accuracy in space and (2 N)th-order accuracy in time when spatial FD coefficients and temporal FD coefficients are derived from respective dispersion relation using Taylor-series expansion (TE) method. To further increase the accuracy, we derive the FD coefficients by employing the time-space domain dispersion relation of this FD scheme using TE. We also use least-squares (LS) optimization method to reduce dispersion at high wavenumbers. Dispersion analysis, stability analysis and modelling examples demonstrate that our new scheme has greater accuracy and better stability than conventional FD schemes, and thus can adopt large time steps. To reduce the extra computational

  12. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils

    SciTech Connect

    Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.

    2009-03-17

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  13. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils.

    SciTech Connect

    Zinovev, A. V.; Veryovkin, I. V.; Pellin, M. J.; Materials Science Division

    2009-01-01

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  14. Tunneling Desorption of Single Hydrogen on the Surface of Titanium Dioxide.

    PubMed

    Minato, Taketoshi; Kajita, Seiji; Pang, Chi-Lun; Asao, Naoki; Yamamoto, Yoshinori; Nakayama, Takashi; Kawai, Maki; Kim, Yousoo

    2015-07-28

    We investigated the reaction mechanism of the desorption of single hydrogen from a titanium dioxide surface excited by the tip of a scanning tunneling microscope (STM). Analysis of the desorption yield, in combination with theoretical calculations, indicates the crucial role played by the applied electric field. Instead of facilitating desorption by reducing the barrier height, the applied electric field causes a reduction in the barrier width, which, when coupled with the electron excitation induced by the STM tip, leads to the tunneling desorption of the hydrogen. A significant reduction in the desorption yield was observed when deuterium was used instead of hydrogen, providing further support for the tunneling-desorption mechanism. PMID:26158720

  15. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  16. Mass Spectrometry of Acoustically Levitated Droplets

    PubMed Central

    Westphall, Michael S.; Jorabchi, Kaveh; Smith, Lloyd M.

    2008-01-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air–droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-μL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing chargere combination after ion desorption. PMID:18582090

  17. Desorption from interstellar grains

    NASA Technical Reports Server (NTRS)

    Leger, A.; Jura, M.; Omont, A.

    1985-01-01

    Different desorption mechanisms from interstellar grains are considered to resolve the conflict between the observed presence of gaseous species in molecular clouds and their expected depletion onto grains. The physics of desorption is discussed with particular reference to the process of grain heating and the specific heat of the dust material. Impulsive heating by X-rays and cosmic rays is addressed. Spot heating of the grains by cosmic rays and how this can lead to desorption of mantles from very large grains is considered. It is concluded that CO depletion on grains will be small in regions with A(V) less than five from the cloud surface and n(H) less than 10,000, in agreement with observations and in contrast to expectations from pure thermal equilibrium. Even in very dense and obscured regions and in the absence of internal ultraviolet sources, the classical evaporation of CO or N2 and O2-rich mantles by cosmic rays is important.

  18. Beryllium Desorption from Sediments

    NASA Astrophysics Data System (ADS)

    Boschi, V.; Willenbring, J. K.

    2015-12-01

    Beryllium isotopes have provided a useful tool in the field of geochronology and geomorphology over the last 25 years. The amount of cosmogenic meteoric 10Be and native 9Be absorbed to soils often scales with the residence time and chemical weathering of sediments in a landscape, respectively. Thus, the concentrations in river sediment may be used to quantify the denudation of specific watersheds. When deposited in ocean sediment, these concentrations are thought to record the history of denudation on Earth over the last ~10 Ma. The use of both isotopes often relies on the premise of beryllium retention to sediment surfaces in order to preserve a landscape's erosion and weathering signature. Changes in setting, en route from the soil to fluvial system to the ocean, can cause beryllium desorption and may preclude some applications of the 10Be/9Be system. Four mechanisms were tested to determine the desorption potential of beryllium including a reduction in pH, an increase in ionic strength and complexation with soluble organic and inorganic species. These processes have the potential to mobilize beryllium into solution. For example, by both reducing the pH and increasing the ionic strength, competition for adsorption sites increases, potentially liberating beryllium from the sediment surface. In addition, organic and inorganic ligands can complex beryllium causing it to become mobilized. To determine which of these alterations influence beryllium desorption and to quantify the effect, we prepared separate solutions of beryllium bound to minerals and organic compounds and measured beryllium concentrations in solution before and after adjusting the pH, ionic strength, and changing inorganic and organic ligand concentrations. We conclude from our observations that overall, beryllium sorbed to organic compounds was more resistant to desorption relative to mineral-associated beryllium. Among the methods tested, a reduction in pH resulted in the greatest amount of

  19. Evaluation of the solid-phase extraction (SPE) cartridge method in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) for the analysis of different VOCs in liquid matrices in varying pH conditions.

    PubMed

    Pandey, Sudhir Kumar; Kim, Ki-Hyun

    2012-08-01

    In this study, the solid-phase extraction (SPE) method combined with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method is evaluated for the analysis of liquid-phase volatile organic compounds (LVOCs). Calibration experiments were performed on a number of polar and nonpolar LVOCs (including aromatic compounds, ester, ketones, and alcohol) as a function of solution pH. If the relative sensitivity of the SPE-TD-GC-MS method is compared between different VOCs across a wide range of pH (1, 4, 7, 10, and 13), optimum sensitivities for most VOCs are derived at the neutral pH. However, there were some exceptions to the general trend with the maximum sensitivity occurring either at a moderately basic pH (methyl isobutyl ketone and butyl acetate) or extremely acidic conditions (isobutyl alcohol). It was also noticed that the relative ordering of sensitivity was changed, as the pH conditions of the solution vary. The use of internal standard (IS: chlorobenzene) resulted in a notable improvement in both relative sensitivity and reproducibility for most compounds. PMID:22865756

  20. Combining tissue extraction and off-line capillary electrophoresis matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for neuropeptide analysis in individual neuronal organs using 2,5-dihydroxybenzoic acid as a multi-functional agent.

    PubMed

    Wang, Junhua; Jiang, Xiaoyue; Sturm, Robert M; Li, Lingjun

    2009-11-20

    In this study we report an improved protocol that combines simplified sample preparation and micro-scale separation for mass spectrometric analysis of neuropeptides from individual neuroendocrine organs of crab Cancer borealis. A simple, one-step extraction method with commonly used matrix-assisted laser desorption/ionization (MALDI) matrix, 2,5-dihydroxybenzoic acid (DHB), in saturated aqueous solution, is employed for improved extraction of neuropeptides. Furthermore, a novel use of DHB as background electrolyte for capillary electrophoresis (CE) separation in the off-line coupling of CE to MALDI-Fourier transform mass spectrometric (FT-MS) detection is also explored. The new CE electrolyte exhibits full compatibility with MALDI-MS analysis of neuropeptides in that both the peptide extraction process and MALDI detection utilize DHB. In addition, enhanced resolving power and improved sensitivity are also observed for CE-MALDI-MS of peptide mixture analysis. Collectively, the use of DHB has simplified the extraction and reduced the sample loss by elimination of homogenizing, drying, and desalting processes. In the mean time, the concurrent use of DHB as CE separation buffer and subsequent MALDI matrix offers improved spectral quality by eliminating the interferences from typical CE electrolyte in MALDI detection. PMID:19473662

  1. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study.

    PubMed

    Czisch, Michael; Wetter, Thomas C; Kaufmann, Christian; Pollmächer, Thomas; Holsboer, Florian; Auer, Dorothee P

    2002-05-01

    Although there is evidence that acoustic stimuli are processed differently during sleep and wakefulness, little is known about the underlying neuronal mechanisms. In the present study, the processing of an acoustic stimulus was investigated during different non rapid eye movement (NREM) sleep stages using a combined EEG/fMRI approach in healthy human volunteers: A text stimulus was presented to sleep-deprived subjects prior to and after the onset of sleep, and single-slice silent fMRI were acquired. We found significantly different blood oxygenation level-dependent (BOLD) contrast responses during sleep compared to wakefulness. During NREM sleep stages 1 and 2 and during slow wave sleep (SWS) we observed reduced activation in the auditory cortex and a pronounced negative signal in the visual cortex and precuneus. Acoustic stimulation during sleep was accompanied by an increase in EEG frequency components in the low delta frequency range. Provided that neurovascular coupling is not altered during sleep, the negative transmodal BOLD response which is most pronounced during NREM sleep stages 1 and 2 reflects a deactivation predominantly in the visual cortex suggesting that this decrease in neuronal activity protects the brain from the arousing effects of external stimulation during sleep not only in the primary targeted sensory cortex but also in other brain regions. PMID:11969332

  2. A new strategy toward Internet of Things: structural health monitoring using a combined fiber optic and acoustic emission wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Nguyen, A. D.; Page, C.; Wilson, C. L.

    2016-04-01

    This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.

  3. Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach

    NASA Astrophysics Data System (ADS)

    Jensen, C. R.; Cleveland, R. O.; Coussios, C. C.

    2013-09-01

    Passive acoustic mapping (PAM) has been recently demonstrated as a method of monitoring focused ultrasound therapy by reconstructing the emissions created by inertially cavitating bubbles (Jensen et al 2012 Radiology 262 252-61). The published method sums energy emitted by cavitation from the focal region within the tissue and uses a threshold to determine when sufficient energy has been delivered for ablation. The present work builds on this approach to provide a high-intensity focused ultrasound (HIFU) treatment monitoring software that displays both real-time temperature maps and a prediction of the ablated tissue region. This is achieved by determining heat deposition from two sources: (i) acoustic absorption of the primary HIFU beam which is calculated via a nonlinear model, and (ii) absorption of energy from bubble acoustic emissions which is estimated from measurements. The two sources of heat are used as inputs to the bioheat equation that gives an estimate of the temperature of the tissue as well as estimates of tissue ablation. The method has been applied to ex vivo ox liver samples and the estimated temperature is compared to the measured temperature and shows good agreement, capturing the effect of cavitation-enhanced heating on temperature evolution. In conclusion, it is demonstrated that by using PAM and predictions of heating it is possible to produce an evolving estimate of cell death during exposure in order to guide treatment for monitoring ablative HIFU therapy. Portions presented at the 13th International Symposium on Therapeutic Ultrasound, Heidelberg, Germany (2012).

  4. Combining Two-Dimensional Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopy, Imaging Desorption Electrospray Ionization Mass Spectrometry, and Direct Analysis in Real-Time Mass Spectrometry for the Integral Investigation of Counterfeit Pharmaceuticals

    PubMed Central

    Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique

    2016-01-01

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162

  5. OTEC gas desorption studies

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Golshani, A.

    1982-02-01

    Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.

  6. Effectiveness of 4-hydroxy phenyl N-tert-butylnitrone (4-OHPBN) alone and in combination with other antioxidant drugs in the treatment of acute acoustic trauma in chinchilla.

    PubMed

    Choi, Chul-Hee; Chen, Kejian; Vasquez-Weldon, Angelica; Jackson, Ronald L; Floyd, Robert A; Kopke, Richard D

    2008-05-01

    Acute acoustic trauma (AAT) results in oxidative stress to the cochlea through overproduction of cellular reactive oxygen, nitrogen, and other free radical species appearing from 1 h to 10 days after noise exposure. It has been shown that N-acetyl-L-cysteine (NAC), a glutathione prodrug, and acetyl-L-carnitine (ALCAR), a mitochondrial biogenesis agent, are effective in reducing noise-induced hearing loss. Phenyl N-tert-butylnitrone (PBN), a nitrone-based free radical trap, appears to suppress oxidative stress in a variety of disorders and several biological models. In this study, we tested whether 4-hydroxy PBN (4-OHPBN), a major metabolite of PBN, administered 4 h after noise exposure is effective in treating noise-induced hearing loss and whether a combination of antioxidant drugs (4-OHPBN plus NAC and 4-OHPBN plus NAC plus ALCAR) provides greater efficacy in attenuating AAT since each agent addresses different injury mechanisms. Chinchilla were exposed to a 105 dB octave-band noise centered at 4 kHz for 6 h. 4-OHPBN and combinations of antioxidant drugs were intraperitoneally administered beginning 4 h after noise exposure. Hearing threshold shifts in auditory brainstem responses and missing outer hair cell counts were obtained. 4-OHPBN reduced threshold shifts in a dose-dependent manner while both drug combinations showed greater effects. These results demonstrate that 4-OHPBN and combinations of antioxidants can effectively treat acute acoustic trauma and drug combinations may increase the effectiveness of treatment and decrease the required individual medication dose. PMID:18328271

  7. Introducing DIASCoPE: Directly Integrated Acoustic System Combined with Pressure Experiments — Changing the Paradigm from Product to Process

    NASA Astrophysics Data System (ADS)

    Whitaker, M. L.; Baldwin, K. J.; Huebsch, W. B.; Tercé, N.; Bejina, F.; Bystricky, M.; Chen, H.; Vaughan, M. T.; Weidner, D. J.

    2014-12-01

    Understanding the properties and behaviors of materials and multi-phase aggregates under conditions of high pressure and temperature is vital to unraveling the mysteries that lie beneath the surface of the planet. Advances in in situexperimental techniques using synchrotron radiation at these extreme conditions have helped to provide answers to fundamental questions that were previously unattainable. Synchrotron-based ultrasonic interferometry measurements have proven to be especially important in determining acoustic velocities and thermoelastic properties of materials at high pressures and temperatures. However, due to relatively slow data collection times, it has been difficult to measure the effects of processes as they occur, and instead the measurement is made on the end product of these processes. DIASCoPE is an important step toward addressing this problem.Over the last three years, we have designed and developed an on-board ultrasonic acoustic velocity measurement system that cuts data collection time down by over an order of magnitude. We can now measure P- and S-wave travel times in samples at extreme conditions in less than one second. Moreover, the system has been fully integrated with the multi-anvil apparatus and the EPICS control system at beamline X17B2 of the National Synchrotron Light Source, allowing for greater ease of control andfull automation of experimental data collection. The DIASCoPE has completed the testing and commissioning phase, and the first data collected using this powerful new system will be presented here.DIASCoPE represents a major step forward in acoustic velocity collection time reduction that will finally allow us to begin to witness what effects various processes in the deep Earth may have on the physical properties of materials at extreme conditions as they occur. These new capabilities will allow us to change the focus of study from the product to the process itself and will lead to a greater understanding of the

  8. Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit

    NASA Astrophysics Data System (ADS)

    Rodenhausen, K. B.; Kasputis, T.; Pannier, A. K.; Gerasimov, J. Y.; Lai, R. Y.; Solinsky, M.; Tiwald, T. E.; Wang, H.; Sarkar, A.; Hofmann, T.; Ianno, N.; Schubert, M.

    2011-10-01

    Analysis techniques are needed to determine the quantity and structure of materials composing an organic layer that is below an ultra-thin film limit and in a liquid environment. Neither optical nor acoustical techniques can independently distinguish between thickness and porosity of ultra-thin films due to parameter correlation. A combined optical and acoustical approach yields sufficient information to determine both thickness and porosity. We describe application of the combinatorial approach to measure single or multiple organic layers when the total layer thickness is small compared to the wavelength of the probing light. The instrumental setup allows for simultaneous in situ spectroscopic ellipsometry and quartz crystal microbalance dynamic measurements, and it is combined with a multiple-inlet fluid control system for different liquid solutions to be introduced during experiments. A virtual separation approach is implemented into our analysis scheme, differentiated by whether or not the organic adsorbate and liquid ambient densities are equal. The analysis scheme requires that the film be assumed transparent and rigid (non-viscoelastic). We present and discuss applications of our approach to studies of organic surfactant adsorption, self-assembled monolayer chemisorption, and multiple-layer target DNA sensor preparation and performance testing.

  9. Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit.

    PubMed

    Rodenhausen, K B; Kasputis, T; Pannier, A K; Gerasimov, J Y; Lai, R Y; Solinsky, M; Tiwald, T E; Wang, H; Sarkar, A; Hofmann, T; Ianno, N; Schubert, M

    2011-10-01

    Analysis techniques are needed to determine the quantity and structure of materials composing an organic layer that is below an ultra-thin film limit and in a liquid environment. Neither optical nor acoustical techniques can independently distinguish between thickness and porosity of ultra-thin films due to parameter correlation. A combined optical and acoustical approach yields sufficient information to determine both thickness and porosity. We describe application of the combinatorial approach to measure single or multiple organic layers when the total layer thickness is small compared to the wavelength of the probing light. The instrumental setup allows for simultaneous in situ spectroscopic ellipsometry and quartz crystal microbalance dynamic measurements, and it is combined with a multiple-inlet fluid control system for different liquid solutions to be introduced during experiments. A virtual separation approach is implemented into our analysis scheme, differentiated by whether or not the organic adsorbate and liquid ambient densities are equal. The analysis scheme requires that the film be assumed transparent and rigid (non-viscoelastic). We present and discuss applications of our approach to studies of organic surfactant adsorption, self-assembled monolayer chemisorption, and multiple-layer target DNA sensor preparation and performance testing. PMID:22047284

  10. Highly directional acoustic receivers.

    PubMed

    Cray, Benjamin A; Evora, Victor M; Nuttall, Albert H

    2003-03-01

    The theoretical directivity of a single combined acoustic receiver, a device that can measure many quantities of an acoustic field at a collocated point, is presented here. The formulation is developed using a Taylor series expansion of acoustic pressure about the origin of a Cartesian coordinate system. For example, the quantities measured by a second-order combined receiver, denoted a dyadic sensor, are acoustic pressure, the three orthogonal components of acoustic particle velocity, and the nine spatial gradients of the velocity vector. The power series expansion, which can be of any order, is cast into an expression that defines the directivity of a single receiving element. It is shown that a single highly directional dyadic sensor can have a directivity index of up to 9.5 dB. However, there is a price to pay with highly directive sensors; these sensors can be significantly more sensitive to nonacoustic noise sources. PMID:12656387

  11. Combined acoustic radiation force impulse, aminotransferase to platelet ratio index and Forns index assessment for hepatic fibrosis grading in hepatitis B

    PubMed Central

    Dong, Chang-Feng; Xiao, Jia; Shan, Ling-Bo; Li, Han-Ying; Xiong, Yong-Jia; Yang, Gui-Lin; Liu, Jing; Yao, Si-Min; Li, Sha-Xi; Le, Xiao-Hua; Yuan, Jing; Zhou, Bo-Ping; Tipoe, George L; Liu, Ying-Xia

    2016-01-01

    AIM: To investigate the combined diagnostic accuracy of acoustic radiation force impulse (ARFI), aspartate aminotransferase to platelet ratio index (APRI) and Forns index for a non-invasive assessment of liver fibrosis in patients with chronic hepatitis B (CHB). METHODS: In this prospective study, 206 patients had CHB with liver fibrosis stages F0-F4 classified by METAVIR and 40 were healthy volunteers were measured by ARFI, APRI and Forns index separately or combined as indicated. RESULTS: ARFI, APRI or Forns index demonstrated a significant correlation with the histological stage (all P < 0.001). According to the AUROC of ARFI and APRI for evaluating fibrotic stages more than F2, ARFI showed an enhanced diagnostic accuracy than APRI (P < 0.05). The combined measurement of ARFI and APRI exhibited better accuracy than ARFI alone when evaluating ≥ F2 fibrotic stage (Z = 2.77, P = 0.006). Combination of ARFI, APRI and Forns index did not obviously improve the diagnostic accuracy compared to the combination of ARFI and APRI (Z = 0.958, P = 0.338). CONCLUSION: ARFI + APRI showed enhanced diagnostic accuracy than ARFI or APRI alone for significant liver fibrosis and ARFI + APRI + Forns index shows the same effect with ARFI + APRI. PMID:27190578

  12. Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements.

    PubMed

    Monkkonen, Lucas; Edgar, J Scott; Winters, Daniel; Heron, Scott R; Mackay, C Logan; Masselon, Christophe D; Stokes, Adam A; Langridge-Smith, Patrick R R; Goodlett, David R

    2016-03-25

    An inexpensive digital microfluidic (DMF) chip was fabricated by screen-printing electrodes on a sheet of polyimide. This device was manually integrated with surface acoustic wave nebulization (SAWN) MS to conduct hydrogen/deuterium exchange (HDX) of peptides. The HDX experiment was performed by DMF mixing of one aqueous droplet of angiotensin II with a second containing various concentrations of D2O. Subsequently, the degree of HDX was measured immediately by SAWN-MS. As expected for a small peptide, the isotopically resolved mass spectrum for angiotensin revealed that maximum deuterium exchange was achieved using 50% D2O. Additionally, using SAWN-MS alone, the global HDX kinetics of ubiquitin were found to be similar to published NMR data and back exchange rates for the uncooled apparatus using high inlet capillary temperatures was less than 6%. PMID:26826755

  13. Novel Cell Design for Combined In Situ Acoustic Emission and X-ray Diffraction of Cycling Lithium Ion Batteries

    SciTech Connect

    Rhodes, Kevin J; Kirkham, Melanie J; Meisner, Roberta Ann; Parish, Chad M; Dudney, Nancy J; Daniel, Claus

    2011-01-01

    An in situ acoustic emission (AE) and X-ray diffraction (XRD) cell for use in the study of battery electrode materials has been devised and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk which acts as both an X-ray window and a current collector. In this manner the use of beryllium and its associated cost and hazard is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles which were previously studied by the AE technique were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells while providing information about structural changes in the active material as the cell is repeatedly charged and discharged.

  14. Novel cell design for combined in situ acoustic emission and x-ray diffraction study during electrochemical cycling of batteries

    SciTech Connect

    Rhodes, Kevin; Meisner, Roberta; Daniel, Claus; Kirkham, Melanie; Parish, Chad M.; Dudney, Nancy

    2011-07-15

    An in situ acoustic emission (AE) and x-ray diffraction cell for use in the study of battery electrode materials has been designed and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk, which acts as both an x-ray window and a current collector. In this manner, the use of beryllium and its associated cost and hazards is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles, which were previously studied by the AE technique, were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells, while providing information about structural changes in the active material as the cell is repeatedly charged and discharged.

  15. Light-induced atomic desorption: recent developments

    NASA Astrophysics Data System (ADS)

    Mariotti, E.; Atutov, S. N.; Biancalana, Valerio; Bocci, S.; Burchianti, A.; Marinelli, C.; Nasyrov, K. A.; Pieragnoli, B.; Moi, L.

    2001-04-01

    Light induced atomic desorption (LIAD) is an impressive manifestation of a new class of phenomena involving alkali atoms, dielectric films and light. LIAD consists of a huge emission of alkali atoms (experimentally proved for sodium, potassium, rubidium and cesium) from siloxane films when illuminated by laser or ordinary light. Most of the experiments have been performed in glass cells suitably coated by a thin film (of the order of 10 micrometer) either of poly - (dimethylsiloxane) (PDMS), a polymer, or of octamethylcyclotetrasiloxane (OCT), a crown molecule. LIAD is a combination of two processes: direct photo-desorption from the surface and diffusion within the siloxane layer. The photo-desorbed atoms are replaced by fresh atoms diffusing to the surface. Moreover, from the experimental data it comes out that the desorbing light increases atomic diffusion and hence the diffusion coefficient. To our knowledge this is the first time that such an effect is clearly observed, measured and discussed: LIAD represents a new class of photo-effects characterized by two simultaneous phenomena due to the light: surface desorption and fastened bulk diffusion.

  16. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  17. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  18. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  19. Hybrid optical and acoustic force based sorting

    NASA Astrophysics Data System (ADS)

    O'Mahoney, Paul; Brodie, Graham W.; Wang, Han; Demore, Christine E. M.; Cochran, Sandy; Spalding, Gabriel C.; MacDonald, Michael P.

    2014-09-01

    We report the combined use of optical sorting and acoustic levitation to give particle sorting. Differing sizes of microparticles are sorted optically both with and without the aid of acoustic levitation, and the results compared to show that the use of acoustic trapping can increase sorting efficiency. The use of a transparent ultrasonic transducer is also shown to streamline the integration of optics and acoustics. We also demonstrate the balance of optical radiation pressure and acoustic levitation to achieve vertical sorting.

  20. The study of 'microsurfaces' using thermal desorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Thomas, M. E.; Poppa, H.; Pound, G. M.

    1979-01-01

    The use of a newly combined ultrahigh vacuum technique for studying continuous and particulate evaporated thin films using thermal desorption spectroscopy (TDS), transmission electron microscopy (TEM), and transmission electron diffraction (TED) is discussed. It is shown that (1) CO thermal desorption energies of epitaxially deposited (111) Ni and (111) Pd surfaces agree perfectly with previously published data on bulk (111) single crystal, (2) contamination and surface structural differences can be detected using TDS as a surface probe and TEM as a complementary technique, and (3) CO desorption signals from deposited metal coverages of one-thousandth of a monolayer should be detectable. These results indicate that the chemisorption properties of supported 'microsurfaces' of metals can now be investigated with very high sensitivity. The combined use of TDS and TEM-TED experimental methods is a very powerful technique for fundamental studies in basic thin film physics and in catalysis.

  1. Using Combined X-ray Computed Tomography and Acoustic Resonance to Understand Supercritical CO2 Behavior in Fractured Sandstone

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Nakagawa, S.

    2015-12-01

    Distribution of supercritical (sc) CO2 has a large impact on its flow behavior as well as on the properties of seismic waves used for monitoring. Simultaneous imaging of scCO2 distribution in a rock core using X-ray computed tomography (CT) and measurements of seismic waves in the laboratory can help understand how the distribution evolves as scCO2 invades through rock, and the resulting seismic signatures. To this end, we performed a series of laboratory scCO2 core-flood experiments in intact and fractured anisotropic Carbon Tan sandstone samples. In these experiments, we monitored changes in the CO2 saturation distribution and sonic-frequency acoustic resonances (yielding both seismic velocity and attenuation) over the course of the floods. A short-core resonant bar test system (Split-Hopkinson Resonant Bar Apparatus) custom fit into a long X-ray transparent pressure vessel was used for the seismic measurements, and a modified General Electric medical CT scanner was used to acquire X-ray CT data from which scCO2 saturation distributions were determined. The focus of the experiments was on the impact of single fractures on the scCO2 distribution and the seismic properties. For this reason, we examined several cases including 1. intact, 2. a closely mated fracture along the core axis, 3. a sheared fracture along the core axis (both vertical and horizontal for examining the buoyancy effect), and 4. a sheared fracture perpendicular to the core axis. For the intact and closely mated fractured cores, Young's modulus declined with increasing CO2 saturation, and attenuation increased up to about 15% CO2 saturation after which attenuation declined. For cores having wide axial fractures, the Young's modulus was lower than for the intact and closely mated cases, however did not change much with CO2 pore saturation. Much lower CO2 pore saturations were achieved in these cases. Attenuation increased more rapidly however than for the intact sample. For the core

  2. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  3. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  4. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  5. Investigations into ultraviolet matrix-assisted laser desorption

    SciTech Connect

    Heise, T.W.

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm{sup 2}. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  6. Investigating the role of combined acoustic-visual feedback in one-dimensional synchronous brain computer interfaces, a preliminary study.

    PubMed

    Gargiulo, Gaetano D; Mohamed, Armin; McEwan, Alistair L; Bifulco, Paolo; Cesarelli, Mario; Jin, Craig T; Ruffo, Mariano; Tapson, Jonathan; van Schaik, André

    2012-01-01

    Feedback plays an important role when learning to use a brain computer interface (BCI), particularly in the case of synchronous feedback that relies on the interaction subject. In this preliminary study, we investigate the role of combined auditory-visual feedback during synchronous μ rhythm-based BCI sessions to help the subject to remain focused on the selected imaginary task. This new combined feedback, now integrated within the general purpose BCI2000 software, has been tested on eight untrained and three trained subjects during a monodimensional left-right control task. In order to reduce the setup burden and maximize subject comfort, an electroencephalographic device suitable for dry electrodes that required no skin preparation was used. Quality and index of improvement was evaluated based on a personal self-assessment questionnaire from each subject and quantitative data based on subject performance. Results for this preliminary study show that the combined feedback was well tolerated by the subjects and improved performance in 75% of the naïve subjects compared with visual feedback alone. PMID:23152713

  7. ENGINEERING BULLETIN: THERMAL DESORPTION TREATMENT.

    EPA Science Inventory

    Thermal desorption is an EX SITU means to physically separate volatile and some semivolatile contaminants from soil, sediments, sludge, and filter cakes by heating them at temperatures high enough to volatilize the organic contaminants. For wastes containing up to 10 percent orga...

  8. ENGINEERING BULLETIN: THERMAL DESORPTION TREATMENT

    EPA Science Inventory

    Thermal desorption is an EX SITU means to physically separate volatile and some semivolatile contaminants from soil, sediments, sludge, and filter cakes by heating them at temperatures high enough to volatilize the organic contaminants. or wastes containing up to 10 percent organ...

  9. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  10. Erbium hydride thermal desorption : controlling kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  11. Infrared Laser Desorption: Mechanisms and Applications

    NASA Astrophysics Data System (ADS)

    Maechling, Claude Ricketts

    1995-01-01

    This thesis describes the use of two-step laser mass spectrometry (L^2MS), a combination of infrared (IR) laser desorption with resonance-enhanced multiphoton ionization (REMPI) and time-of-flight (TOF) mass spectrometry, to investigate (1) the mechanism of IR laser desorption, (2) the composition of aromatic molecules in extraterrestrial samples, and (3) the measurement of compound-specific carbon isotope ratios. First, a description of the mechanism of IR laser desorption of monolayer and submonolayer coverages of molecules adsorbed to an insulator surface is presented. The vibrational and translational energy distributions of aniline-d7 molecules desorbed from single-crystal sapphire (Al_2 O_3) are recorded using L ^2MS. The energy distributions are found to be in equilibrium with each other and with the temperature of the surface at the time of desorption. The translational and angular distributions of monolayer coverages are altered by the collisions of desorbing molecules with each other. Second, spatial and chemical analyses of the carbonaceous components in chondritic meteorites are presented. A microprobe L^2MS instrument (mu L^2MS) capable of analyzing samples with a spatial resolution of 40 mu m and zeptomole (10^{-21} mole) sensitivity is described and used to investigate polycyclic aromatic hydrocarbons (PAHs) in small particles and heterogeneous samples. PAH distributions are used to distinguish between samples from different meteorite classes, and the effects of thermal processing within a given meteorite class are observed. Sliced wafers of meteorite are found to contain an inhomogeneous distribution of PAHs. muL^2MS studies of meteorite samples are coordinated with scanning electron microscopy studies, and the abundances of aromatic compounds across the surface of a sample are consistent with gross structural features but not with elemental or mineralogical features. Third, a description of a method for performing compound-specific carbon isotope

  12. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  13. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  14. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  15. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  16. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  17. DESORPTION OF PYRETHROIDS FROM SUSPENDED SOLIDS

    PubMed Central

    Fojut, Tessa L.; Young, Thomas M.

    2014-01-01

    Pyrethroid insecticides have been widely detected in sediments at concentrations that can cause toxicity to aquatic organisms. Desorption rates play an important role in determining the bioavailability of hydrophobic organic compounds, such as pyrethroids, because these compounds are more likely to be sorbed to solids in the environment and times to reach sorptive equilibrium can be long. In this study, sequential Tenax desorption experiments were performed with three sorbents, three aging times, and four pyrethroids. A biphasic rate model was fit to the desorption data with r2 > 0.99 and the rapid and slow compartment desorption rate constants and compartment fractions are reported. Suspended solids from irrigation runoff water collected from a field that had been sprayed with permethrin one day prior were used in the experiments to compare desorption rates for field-applied pyrethroids to those for laboratory-spiked materials. Suspended solids were used in desorption experiments because suspended solids can be a key source of hydrophobic compounds to surface waters. The rapid desorption rate parameters of field-applied permethrin were not statistically different than those of laboratory spiked permethrin, indicating that the desorption of the spiked pyrethroids is comparable to those added and aged in the field. Sorbent characteristics had the greatest effect on desorption rate parameters; as organic carbon content of the solids increased, the rapid desorption fractions and rapid desorption rate constants both decreased. The desorption rate constant of the slow compartment for sediment containing permethrin aged for 28 d was significantly different from those aged 1 d and 7 d, while desorption in the rapid and slow compartments did not differ between these treatments. PMID:21538493

  18. Stir-bar-sorptive extraction and liquid desorption combined with large-volume injection gas chromatography-mass spectrometry for ultra-trace analysis of musk compounds in environmental water matrices.

    PubMed

    Silva, Ana Rita M; Nogueira, J M F

    2010-03-01

    Stir-bar-sorptive extraction with liquid desorption followed by large-volume injection and capillary gas chromatography coupled to mass spectrometry in selected ion monitoring acquisition mode (SBSE-LD/LVI-GC-MS(SIM)) has been developed to monitor ultra-traces of four musks (celestolide (ADBI), galaxolide (HHCB), tonalide (AHTN) and musk ketone (MK)) in environmental water matrices. Instrumental calibration (LVI-GC-MS(SIM)) and experimental conditions that could affect the SBSE-LD efficiency are discussed. Assays performed on 30-mL water samples spiked at 200 ng L(-1) under optimized experimental conditions yielded recoveries ranging from 83.7 ± 8.1% (MK) to 107.6 ± 10.8% (HHCB). Furthermore, the experimental data were in very good agreement with predicted theoretical equilibria described by octanol-water partition coefficients (K (PDMS/W) ≈ K (O/W)). The methodology also showed excellent linear dynamic ranges for the four musks studied, with correlation coefficients higher than 0.9961, limits of detection and quantification between 12 and 19 ng L(-1) and between 41 and 62 ng L(-1), respectively, and suitable precision (< 20%). Application of this method for analysis of the musks in real water matrices such as tap, river, sea, and urban wastewater samples resulted in convenient selectivity, high sensitivity and accuracy using the standard addition methodology. The proposed method (SBSE-LD/LVI-GC-MS(SIM)) was shown to be feasible and sensitive, with a low-sample volume requirement, for determination of musk compounds in environmental water matrices at the ultra-trace level, overcoming several disadvantages presented by other sample-preparation techniques. PMID:20049588

  19. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  20. Desorption kinetics of cesium from Fukushima soils.

    PubMed

    Murota, Kento; Saito, Takumi; Tanaka, Satoru

    2016-03-01

    Understanding the behaviors of Cs(+) in soils is crucial for evaluation of the impacts of disposal of soils contaminated by radiocesium, (137)Cs. The desorption rate of Cs(+) evaluated in relatively short periods of time may not be adequate for such a purpose. In this study, we investigated long-term desorption kinetics of (137)Cs and (133)Cs from soils collected in Fukushima Prefecture by batch desorption experiments in the presence of cation exchange resin as a sorbent. The sorbent can keep the concentration of Cs(+) in the aqueous phase low and prevent re-sorption of desorbed Cs(+). Up to 60% of (137)Cs was desorbed after 139 d in dilute KCl media, which was larger than the desorption by conventional short-term extraction with 1 M ammonium acetate. Desorption of (137)Cs continued even after this period. It was also found that high concentration of K(+) prevented desorption of Cs(+) in the initial stage of desorption, but the effect was alleviated with time. The desorbed fraction of stable Cs was smaller than that of (137)Cs. This indicated that (137)Cs may gradually move to more stable states in soils. The half-life of (137)Cs desorption from the slowest sorption site was estimated to be at least two years by a three-site desorption model. PMID:26773507

  1. Thermal Programmed Desorption of C32 H 66

    NASA Astrophysics Data System (ADS)

    Cisternas, M.; Del Campo, V.; Cabrera, A. L.; Volkmann, U. G.; Hansen, F. Y.; Taub, H.

    2011-03-01

    Alkanes are of interest as prototypes for more complex molecules and membranes. In this work we study the desorption kinetics of dotriacontane C32 adsorbed on Si O2 /Si substrate. We combine in our instrument High Resolution Ellipsometry (HRE) and Thermal Programmed Desorption (TPD). C32 monolayers were deposited in high vacuum from a Knudsen cell on the substrate, monitorizing sample thickness in situ with HRE. Film thickness was in the range of up to 100 AA, forming a parallel bilayer and perpendicular C32 layer. The Mass Spectrometer (RGA) of the TPD section was detecting the shift of the desorption peaks at different heating rates applied to the sample. The mass registered with the RGA was AMU 57 for parallel and perpendicular layers, due to the abundance of this mass value in the disintegration process of C32 in the mass spectrometers ionizer. Moreover, the AMU 57 signal does not interfere with other signals coming from residual gases in the vacuum chamber. The desorption energies obtained were ΔEdes = 11,9 kJ/mol for the perpendicular bilayer and ΔEdes = 23 ,5 kJ/mol for the parallel bilayer.

  2. Adsorption and desorption studies of cesium on sapphire surfaces

    SciTech Connect

    Zavadil, K.R.; Ing, J.L.

    1993-12-01

    Adsorption/desorption were studied using combined surface analytical techniques. An approximate initial sticking coefficient for Cs on sapphire was measured using reflection mass spectrometry and found to be 0.9. Thermal Desorption Mass Spectrometry (TDMS) and Auger Electron Spectroscopy (AES) were used to verify that a significant decrease in sticking coefficient occurs as the Cs coverage reaches a critical submonolayer value. TDMS analysis demonstrates that Cs is stabilized on a clean sapphire surface at temperatures (1200 K) in excess of the temperatures experienced by sapphire in a TOPAZ-2 thermionic fuel element (TFE). Surface contaminants on sapphire can enhance Cs adsorption relative to the clean surface. C contamination eliminates the high temperature state of Cs desorption found on clean sapphire but shifts the bulk of the C desorption from 400 to 620 K. Surface C is a difficult contaminant to remove from sapphire, requiring annealing above 1400 K. Whether Cs is stabilized on sapphire in a TFE environment will most likely depend on relation between surface contamination and surface structure.

  3. Laser desorption in an ion trap mass spectrometer

    SciTech Connect

    Eiden, G.C.; Cisper, M.E.; Alexander, M.L.; Hemberger, P.H.; Nogar, N.S.

    1993-02-01

    Laser desorption in a ion-trap mass spectrometer shows significant promise for both qualitative and trace analysis. Several aspects of this methodology are discussed in this work. We previously demonstrated the generation of both negative and positive ions by laser desorption directly within a quadrupole ion trap. In the present work, we explore various combinations of d.c., r.f., and time-varying fields in order to optimize laser generated signals. In addition, we report on the application of this method to analyze samples containing compounds such as amines, metal complexes, carbon clusters, and polynuclear aromatic hydrocarbons. In some cases the ability to rapidly switch between positive and negative ion modes provides sufficient specificity to distinguish different compounds of a mixture with a single stage of mass spectrometry. In other experiments, we combined intensity variation studies with tandem mass spectrometry experiments and positive and negative ion detection to further enhance specificity.

  4. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  5. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  6. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  7. Seamount acoustic scattering

    NASA Astrophysics Data System (ADS)

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  8. Huge seafloor movements associated with the 2011 off the Pacific coast of Tohoku Earthquake observed by GPS/acoustic combination technique

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Sato, M.; Ujihara, N.; Watanabe, S.; Fujita, M.; Mochizuki, M.; Asada, A.

    2011-12-01

    The Hydrographic and Oceanographic Department, Japan Coast Guard, have been developing precise seafloor positioning systems using the GPS/acoustic combination technique under technical cooperation with the Institute of Industrial Science, the University of Tokyo and carrying out campaign observations along the major trenches in the Pacific Ocean, such as the Japan Trench and the Nankai Trough. The primary purpose of these observations is to detect and monitor the crustal deformation caused by the subduction of the oceanic plate near the plate boundary where huge earthquakes repeatedly occur. On 11 March 2011, a large interplate earthquake [Mw = 9.0] occurred at the plate boundary off Miyagi Prefecture, northeastern Japan. Various studies have been under way to understand the mechanism of occurrence of this earthquake. For example, the Geospatial Information Authority of Japan (GSI) has reported coseismic displacements on land, on the basis of the dense GPS network. The largest displacement has been detected at the Oshika peninsula, amounting to about 5 m toward ESE and about 1 m downward. Because the Oshika peninsula is located about 130 km away from the epicenter of the earthquake, it is preferable to measure crustal movements closer to the focal regions, that is, on the seafloor, to better constrain the focal mechanism of the event. In order to monitor crustal movements offshore, we have been carrying out seafloor geodetic observations. Five sea-floor reference points were installed off the Tohoku region between 2000 and 2004 with campaign observations carried out three times a year on average. After the event, we conducted observations at these sites. Comparison between before and after the event yielded coseismic displacements of 5 to 24 m toward ESE and -0.8 to 3 m upward. In particular, at reference point near the epicenter, we detected a huge coseismic displacement of about 24 m toward ESE and about 3 m upward. This is more than four times larger than that

  9. First-principles calculations of helium and neon desorption from cavities in silicon.

    PubMed

    Eddin, A Charaf; Pizzagalli, L

    2012-05-01

    Combining density functional theory, the nudged elastic band technique, and the ultradense fluid model, we investigated the desorption process of He and Ne in silicon. Our results show that the internal surfaces of gas-filled bubbles are not a limiting factor during desorption experiments, since the surface reconstruction opens diffusion paths easier than in the bulk. We show that the vibrational contribution to the energy of helium in the bulk has to be considered in order to determine realistic pressures in the bubbles, when comparing experiments and simulations. At the maximum of desorption, an average pressure of 1-2 GPa is computed. PMID:22481168

  10. Integrated optical, acoustically tunable wavelength filter

    NASA Astrophysics Data System (ADS)

    Frangen, J.; Herrmann, H.; Ricken, R.; Seibert, H.; Sohler, W.

    1989-11-01

    A TM/TE convertor is combined with a TE-pass polarizer on a common LiNbO3 chip to obtain an integrated optical, acoustically tunable wavelength filter. Its tuning range is 1.45-1.57 micron wavelength with a filter half-width of 2.8 nm. Due to the combined acoustical/optical strip guide structure used in the mode convertor, a very low acoustic drive power of only 9 mW is required.

  11. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  12. Molecular dynamics calculations of nuclear stimulated desorption

    SciTech Connect

    Glikman, E.; Kelson, I. ); Doan, N.V. )

    1991-09-01

    Molecular dynamics calculations of nuclear stimulated desorption are carried out for a palladium crystal containing radioactive palladium atoms. The total desorption probability from various sites are computed, as well as the angular distribution of the desorbing atoms. The implications of the results to different experimental scenarios are discussed.

  13. Spiral Surface Growth without Desorption

    NASA Astrophysics Data System (ADS)

    Karma, Alain; Plapp, Mathis

    1998-11-01

    Spiral surface growth is well understood in the limit where the step motion is controlled by the local supersaturation of adatoms near the spiral ridge. In epitaxial thin-film growth, however, spirals can form in a step-flow regime where desorption of adatoms is negligible and the ridge dynamics is governed by the nonlocal diffusion field of adatoms on the whole surface. We investigate this limit numerically using a phase-field formulation of the Burton-Cabrera-Frank model, as well as analytically. Quantitative predictions, which differ strikingly from those of the local limit, are made for the selected step spacing as a function of the deposition flux, as well as for the dependence of the relaxation time to steady-state growth on the screw dislocation density.

  14. Desorption kinetics of {H}/{Mo(211) }

    NASA Astrophysics Data System (ADS)

    Lopinski, G. P.; Prybyla, J. A.; Estrup, P. J.

    1994-08-01

    The desorption kinetics of the {H}/{Mo(211) } chemisorption system were studied by thermal desorption and measurement of adsorption isobars. Analysis of the steady-state measurements permits the independent determination of the desorption energy ( Ed) and prefactor ( v). These quantities are found to depend strongly on coverage, with ( Ed) varying continuously from 145 {kJ}/{mol} at low coverage to 65 {kJ}/{mol} near saturation. Three regions of hydrogen adsorption are clearly indicated by the isobars as well as the thermal desorption traces. These regions can be correlated with structural changes observed previously with HREELS and LEED. The coverage dependence of the kinetic parameters is attributed to hydrogen-induced local distortions of the substrate structure. By relating the desorption energy to the isosteric heat the partial molar entropy is also extracted from the data and indicates localized adsorption as well as significant adsorbate-induced changes in the substrate degrees of freedom.

  15. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  16. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  17. Acoustic methodology review

    NASA Technical Reports Server (NTRS)

    Schlegel, R. G.

    1982-01-01

    It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.

  18. Integrated Optical, Acoustically Tunable Wavelength Filter

    NASA Astrophysics Data System (ADS)

    Frangen, J.; Herrmann, Harald; Ricken, Raimund; Seibert, Holger; Sohler, Wolfgang; Strake, E.

    1989-12-01

    An integrated optical, acoustically tunable wavelength filter, consisting of a combination of TM-TE converter and integrated polarizer in LiNbO3, is demonstrated. The filter bandwidth is 2.8 nm; the center wavelength can be tuned from λ = 1.45 pm to λ = 1.57 pm by adjusting the driving acoustic frequency. Due to the combined acoustical/optical strip guide structure, used in the mode converter, a very low acoustic drive power of only 9 mW is required.

  19. Granular acoustic switches and logic elements

    NASA Astrophysics Data System (ADS)

    Li, Feng; Anzel, Paul; Yang, Jinkyu; Kevrekidis, Panayotis G.; Daraio, Chiara

    2014-10-01

    Electrical flow control devices are fundamental components in electrical appliances and computers; similarly, optical switches are essential in a number of communication, computation and quantum information-processing applications. An acoustic counterpart would use an acoustic (mechanical) signal to control the mechanical energy flow through a solid material. Although earlier research has demonstrated acoustic diodes or circulators, no acoustic switches with wide operational frequency ranges and controllability have been realized. Here we propose and demonstrate an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force. We experimentally and numerically verify that this switching mechanism stems from a combination of nonlinearity and bandgap effects. We also realize the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain. We anticipate these results to enable the creation of novel acoustic devices for the control of mechanical energy flow in high-performance ultrasonic devices.

  20. [Desorption isotherms in amaranth flours].

    PubMed

    Alvarado, J D; Toaza, E; Coloma, G

    1990-09-01

    In milled seeds amaranth (Amaranthus hybridus) samples locally known as "ataco or sangoracha" and harvested in two consecutive years, the vapor pressure at four temperatures (15 degrees, 20 degrees, 25 degrees, 30 degrees C) was determined in samples obtained for drying in oven at different times, within a range between 60 g water/100 g dry matter for fresh seeds to 10 g water/100 g dry matter or below, as measured in a Brabender equipment. Vapor pressure of distilled water was also determined for water activity calculation. The isotherms for each temperature are presented. Application of the G.A.B. model (Guggenheim-Anderson-De Boer) allowed to establish the water content of greater stability within a range of 9.9 to 7.6 g/100 g. The third degree polynomial equations presented, adjust satisfactorily with the experimental data, and can be used to calculate equilibrium moisture content from 0.15 to 0.95 water activity values. Water desorption isotherms of foods are important to determine the equilibrium relationship between the moisture content of foods and the water activity, information which permits to establish likely physical, chemical or biological changes. It is considered that the results obtained are useful in drying, milling or storing amaranth flour. PMID:2134142

  1. State resolved desorption measurements as a probe of surface reactions

    NASA Astrophysics Data System (ADS)

    Hodgson, A.

    2000-01-01

    Surface reactions which lead directly to gas phase products can be investigated by using state resolved techniques to measure the energy released into the newly formed molecules. This technique has been used extensively to explore oxidation of CO and the dynamics of H 2 recombinative desorption at surfaces, but so far has been applied to few other reactions. Here we review the application of final state measurements and discuss the conditions under which dynamical information can be obtained for Langmuir-Hinshelwood type surface reactions. Combining resonance enhanced multiphoton ionisation with ion time of flight detection allows translational energy distributions to be measured for a wide range of products, with full quantum state resolution. The energy release reflects scattering from a thermally populated transition state, with the recombination dynamics determining how the product state distributions depart from a thermal distribution at the surface temperature. Using the principle of detailed balance the desorption dynamics can be related to the reverse process, dissociative chemisorption. Making the link between adsorption and desorption has two benefits. Firstly, it allows us to discuss quantitatively the influence of surface temperature on the product state distributions formed by surface reactions, allowing us to avoid naive models, which treat the transition state as having a unique, well-defined energy. Secondly, the desorption results can be used to obtain relative sticking probabilities with full quantum state and translational energy resolution, providing a way to determine how internal energy influences dissociation for both hydrogen and for heavy molecules, such as nitrogen. The conditions necessary to apply detailed balance successfully are discussed and the desorption distributions expected for different types of adsorption behaviour illustrated. The recombination/dissociation dynamics of hydrogen are summarised briefly and the energy

  2. Acoustic asymmetric transmission based on time-dependent dynamical scattering

    PubMed Central

    Wang, Qing; Yang, Yang; Ni, Xu; Xu, Ye-Long; Sun, Xiao-Chen; Chen, Ze-Guo; Feng, Liang; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng

    2015-01-01

    An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade’s rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies. PMID:26038886

  3. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  4. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    SciTech Connect

    King, Sean W. Tanaka, Satoru; Davis, Robert F.; Nemanich, Robert J.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  5. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  6. Surface Electronic Spectra Detected by Atomic Desorption

    SciTech Connect

    Joly, Alan G.; Beck, Kenneth M.; Henyk, Matthias; Hess, Wayne P.; Sushko, Petr V.; Shluger, Alexander L.

    2003-10-10

    Using continuously tunable laser excitation of KI we measure the velocity profiles and the yield of desorbing hyperthermal iodine atoms as a function of photon energy. Based on the theoretical model of desorption we demonstrate that these spectra display a signature of a surface exciton and constitute a new sensitive method of surface specific desorption spectroscopy. Our results demonstrate that creation of surface excitions can be a much more general phenomenon than was previously thought based on extant spectroscopic measurements.

  7. Effect of equilibration time on Pu desorption from goethite

    SciTech Connect

    Wong, Jennifer C.; Zavarin, Mavrik; Begg, James D.; Kersting, Annie B.; Powell, Brian A.

    2015-01-28

    Strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time implicates near- and far-field transport of Pu. Batch adsorption–desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Moreover, following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethite was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.

  8. Effect of equilibration time on Pu desorption from goethite

    DOE PAGESBeta

    Wong, Jennifer C.; Zavarin, Mavrik; Begg, James D.; Kersting, Annie B.; Powell, Brian A.

    2015-01-28

    Strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time implicates near- and far-field transport of Pu. Batch adsorption–desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Moreover, following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethitemore » was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.« less

  9. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  10. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  11. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  12. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  13. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  14. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  15. A New Approach to Simulate the Kinetics of Metal Desorption from Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Powell, B. A.; Kersting, A. B.; Zavarin, M.

    2010-12-01

    The relevance of colloid-facilitated metal transport is largely dependent on metal sorption/desorption kinetics and the degree of reversibility of metal surface binding. Thus, transport predictions need to incorporate modeling concepts that can simulate time- and history-dependent surface processes on the microscale. In this study, we characterized the sorption and desorption kinetics of neptunium(V) reactions on goethite in a flow-cell experiment. Modeling was used to evaluate differences between sorption and desorption kinetics in terms of aging, hysteresis, and ‘irreversible’ sorption. First, aging represents a series of surface-chemical processes on the microscale that lead to changes in contaminant surface speciation over time. Second, hysteresis effects indicate fundamental, chemical differences in the microscopic pathways of reactions for net sorption and desorption processes. Both phenomena may result in a sorbed contaminant fraction that is not readily available for exchange with the solution phase (apparent irreversible sorption). Most currently available kinetic sorption/desorption models incorporate fundamental changes in adsorption and desorption behavior indirectly, e.g., by postulating surface sites with different kinetic rates or ‘irreversible’ sorption behavior. We propose a new approach that allows for the specific incorporation of changes in overall reaction pathways for (ad)sorption and desorption processes. Based on experimental results, observed rates for Np(V) desorption from goethite are substantially slower than for (ad)sorption processes. Differences in metal sorption and desorption kinetics can be simulated with a minimum number of fitting parameters by combining isotherm-based sorption rate laws with a modeling concept related to transition state theory (TST). This concept is based on the assumption that changes in reaction pathways for (ad)sorption and desorption processes lead to differences in overall driving forces and

  16. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  17. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  18. Sounding out erosion on the Mekong river banks: insights from combined terrestrial laser scanning, multibeam echo sounding and acoustic Doppler profiling

    NASA Astrophysics Data System (ADS)

    Best, J.; Hackney, C. R.; Leyland, J.; Darby, S. E.; Parsons, D. R.; Aalto, R. E.; Nicholas, A. P.

    2015-12-01

    Knowledge of bank erosion processes and rates along very large rivers remains incomplete, primarily due to the difficulties of obtaining morphological and flow data close to the bank across various flow stages. Moreover, obtaining such process information through the entire flow and bank depth has also proved challenging. Here, we present data from a series of high spatial resolution topographic (Terrestrial Laser Scanner and Multibeam Echo Sounder) and flow (Acoustic Doppler Current Profiler) surveys undertaken on the Mekong River, Cambodia, which reveal the temporal and spatial evolution of a series of embayments on the outer bank of a large meander. These techniques yield unique data that reveal how the flow field responds to the morphology of the outer bank and subaqueous slump blocks. Specifically, we show that in the early stage of embayment growth, deposited slump blocks induce flow upwelling and bank-directed flow that enhances bank erosion. Our data also suggest that as the initial erosion process continues, a threshold embayment size is reached. Below this threshold, flow separation acts to enhance embayment growth along with the fluid dynamic effects of slump blocks, but above the threshold size, the separation zone in the embayments acts as a protective layer, thus slowing erosion. This field data allows proposition of a new conceptual model of embayment evolution.

  19. 3D electrostatic charge distribution on finitely thick busbars in micro-acoustic devices: combined regularization in the near- and far-field.

    PubMed

    Baghai-Wadji, Alireza

    2015-06-01

    The original work for 3-D charge distributions in micro-acoustic devices has been manifestly extended to account for finitely thick busbars. The work has been initiated to create a platform for simulating the electric charge localization and field enhancement at the electrode/busbar gaps depending on the thickness of the metalization in submicrometer geometries. A recipe for the construction of relevant Green's functions has been provided. A universal function (UF) for setting up system matrices in the method-of-moments' implementations has been constructed. Universal functions (moments of Green's functions) are by construction highly smooth and easy to compute. This work also presents a comprehensive completion of earlier work. For the first time, the calculation of the UF for a 3-D problem has been presented in great detail, highlighting the underlying regularization techniques. It is shown that the singular Fourier-type integrals involved can be regularized simultaneously in the near- and far-field. The pinnacle of the work is the detailed demonstration of the property that Hadamard's finite part regularization naturally arises in the construction of UFs. Three lemmata facilitate the understanding of the underlying concepts. PMID:26067048

  20. Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application

    PubMed Central

    Li, Chunhui; Guan, Guangying; Zhang, Fan; Nabi, Ghulam; Wang, Ruikang K.; Huang, Zhihong

    2014-01-01

    Mechanical properties are important parameters that can be used to assess the physiologic conditions of biologic tissue. Measurements and mapping of tissue mechanical properties can aid in the diagnosis, characterisation and treatment of diseases. As a non-invasive, non-destructive and non-contact method, laser induced surface acoustic waves (SAWs) have potential to accurately characterise tissue elastic properties. However, challenge still exists when the laser is directly applied to the tissue because of potential heat generation due to laser energy deposition. This paper focuses on the thermal effect of the laser induced SAW on the tissue target and provides an alternate solution to facilitate its application in clinic environment. The solution proposed is to apply a thin agar membrane as surface shield to protect the tissue. Transient thermal analysis is developed and verified by experiments to study the effects of the high energy Nd:YAG laser pulse on the surface shield. The approach is then verified by measuring the mechanical property of skin in a Thiel mouse model. The results demonstrate a useful step toward the practical application of laser induced SAW method for measuring real elasticity of normal and diseased tissues in dermatology and other surface epithelia. PMID:24877004

  1. Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements

    USGS Publications Warehouse

    Downing, B.D.; Boss, E.; Bergamaschi, B.A.; Fleck, J.A.; Lionberger, M.A.; Ganju, N.K.; Schoellhamer, D.H.; Fujii, R.

    2009-01-01

    Studying the dynamics and geochemical behavior of dissolved and particulate organic material is difficult because concentration and composition may rapidly change in response to aperiodic as well as periodic physical and biological forcing. Here we describe a method useful for quantifying fluxes and analyzing dissolved organic matter (DOM) dynamics. The method uses coupled optical and acoustic measurements that provide robust quantitative estimates of concentrations and constituent characteristics needed to investigate processes and calculate fluxes of DOM in tidal and other lotic environments. Data were collected several times per hour for 2 weeks or more, with the frequency and duration limited only by power consumption and data storage capacity. We assessed the capabilities and limitations of the method using data from a winter deployment in a natural tidal wetland of the San Francisco Bay estuary. We used statistical correlation of in situ optical data with traditional laboratory analyses of discrete water samples to calibrate optical properties suited as proxies for DOM concentrations and characterizations. Coupled with measurements of flow velocity, we calculated long-term residual horizontal fluxes of DOC into and out from a tidal wetland. Subsampling the dataset provides an estimate for the maximum sampling interval beyond which the error in flux estimate is significantly increased.?? 2009, by the American Society of Limnology and Oceanography, Inc.

  2. BEAM PIPE DESORPTION RATE IN RHIC.

    SciTech Connect

    HUANG, H.; FISCHER, W.; HE, P.; HSEUH, H.C.; IRISO, U.; PTITSYN, V.; TRBOJEVIC, D.; WEI, J.; YANG, S.Y.

    2006-06-23

    In the past, an increase of beam intensity in RHIC has caused several decades of pressure rises in the warm sections during operation. This has been a major factor limiting the RHIC luminosity. About 430 meters of NEG coated beam pipes have been installed in the warm sections to ameliorate this problem. Beam ion induced desorption is one possible cause of pressure rises. A series beam studies in RHIC has been dedicated to estimate the desorption rate of various beam pipes (regular and NEG coated) at various warm sections. Correctors were used to generate local beam losses and consequently local pressure rises. The experimental results are presented and analyzed in this paper.

  3. Adsorption-Desorption Kinetics of Soft Particles

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Nuebler, Johannes; Gerland, Ulrich

    2015-08-01

    Adsorption-desorption processes are ubiquitous in physics, chemistry, and biology. Models usually assume hard particles, but within the realm of soft matter physics the adsorbing particles are compressible. A minimal 1D model reveals that softness fundamentally changes the kinetics: Below the desorption time scale, a logarithmic increase of the particle density replaces the usual Rényi jamming plateau, and the subsequent relaxation to equilibrium can be nonmonotonic and much faster than for hard particles. These effects will impact the kinetics of self-assembly and reaction-diffusion processes.

  4. Diffusion Analysis Of Hydrogen-Desorption Measurements

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1988-01-01

    Distribution of hydrogen in metal explains observed desorption rate. Report describes application of diffusion theory to anaylsis of experimental data on uptake and elimination of hydrogen in high-strength alloys of 25 degree C. Study part of program aimed at understanding embrittlement of metals by hydrogen. Two nickel-base alloys, Rene 41 and Waspaloy, and one ferrous alloy, 4340 steel, studied. Desorption of hydrogen explained by distribution of hydrogen in metal. "Fast" hydrogen apparently not due to formation of hydrides on and below surface as proposed.

  5. Electronic Desorption of gas from metals

    SciTech Connect

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bender, M; Bieniosek, F M; Kramer, A; Kwan, J; Prost, L; Seidl, P A; Westenskow, G

    2006-11-02

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  6. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  7. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  8. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  9. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  10. MEMS Based Acoustic Array

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  11. North Pacific Acoustic Laboratory.

    PubMed

    Worcester, Peter F; Spindel, Robert C

    2005-03-01

    A series of long-range acoustic propagation experiments have been conducted in the North Pacific Ocean during the last 15 years using various combinations of low-frequency, wide-bandwidth transmitters and horizontal and vertical line array receivers, including a 2-dimensional array with a maximum vertical aperture of 1400 m and a horizontal aperture of 3600 m. These measurements were undertaken to further our understanding of the physics of low-frequency, broadband propagation and the effects of environmental variability on signal stability and coherence. In this volume some of the results are presented. In the present paper the central issues these experiments have addressed are briefly summarized. PMID:15810685

  12. Existence and stability of alternative ion-acoustic solitary wave solution of the combined MKdV-KdV-ZK equation in a magnetized nonthermal plasma consisting of warm adiabatic ions

    SciTech Connect

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.

    2007-09-15

    The purpose of this paper is to present the recent work of Das et al. [J. Plasma Phys. 72, 587 (2006)] on the existence and stability of the alternative solitary wave solution of fixed width of the combined MKdV-KdV-ZK (Modified Korteweg-de Vries-Korteweg-de Vries-Zakharov-Kuznetsov) equation for the ion-acoustic wave in a magnetized nonthermal plasma consisting of warm adiabatic ions in a more generalized form. Here we derive the alternative solitary wave solution of variable width instead of fixed width of the combined MKdV-KdV-ZK equation along with the condition for its existence and find that this solution assumes the sech profile of the MKdV-ZK (Modified Korteweg-de Vries-Zakharov-Kuznetsov) equation, when the coefficient of the nonlinear term of the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation tends to zero. The three-dimensional stability analysis of the alternative solitary wave solution of variable width of the combined MKdV-KdV-ZK equation shows that the instability condition and the first order growth rate of instability are exactly the same as those of the solitary wave solution (the sech profile) of the MKdV-ZK equation, when the coefficient of the nonlinear term of the KdV-ZK equation tends to zero.

  13. A microsystems enabled field desorption source.

    SciTech Connect

    Hertz, Kristin L.; Resnick, Paul James; Schwoebel, Paul R.; Holland, Christopher E.; Chichester, David L.

    2010-07-01

    Technologies that have been developed for microelectromechanical systems (MEMS) have been applied to the fabrication of field desorption arrays. These techniques include the use of thick films for enhanced dielectric stand-off, as well as an integrated gate electrode. The increased complexity of MEMS fabrication provides enhanced design flexibility over traditional methods.

  14. Indaziflam sorption-desorption in diverse soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indaziflam is a new preemergence-herbicide active ingredient, classified as a member of the new chemical class “alkylazine”. There is no published information on its fate and behavior in soil. This study is aimed at characterizing the adsorption and desorption of indaziflam in soils with different p...

  15. Quantum theory of laser-stimulated desorption

    NASA Technical Reports Server (NTRS)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  16. Asphaltene adsorption and desorption from mineral surfaces

    SciTech Connect

    Dubey, S.T. ); Waxman, M.H.

    1991-02-01

    This paper reports results of asphaltene adsorption/desorption on clay minerals, silica, and carbonates. It also describes the effect of adsorbed asphaltenes on rock wettability and a screening pyrolysis-flame-ionization-detection (P-FID) test to evaluate the ability of solvents to remove asphaltene from kaolin and formation core material.

  17. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  18. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  19. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  20. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  1. APPLICATION OF THERMAL DESORPTION TECHNOLOGIES TO HAZARDOUS WASTE SITES

    EPA Science Inventory

    Thermal desorption is a separation process frequently used to remediate many Superfund sites. Thermal desorption technologies are recommended and used because of (1) the wide range of organic contaminants effectively treated, (2) availability and mobility of commercial systems, ...

  2. Acoustic pressure-vector sensor array

    NASA Astrophysics Data System (ADS)

    Huang, Dehua; Elswick, Roy C.; McEachern, James F.

    2001-05-01

    Pressure-vector sensors measure both scalar and vector components of the acoustic field. December 2003 measurements at the NUWC Seneca Lake test facility verify previous observations that acoustic ambient noise spectrum levels measured by acoustic intensity sensors are reduced relative to either acoustic pressure or acoustic vector sensor spectrum levels. The Seneca measurements indicate a reduction by as much as 15 dB at the upper measurement frequency of 2500 Hz. A nonlinear array synthesis theory for pressure-vector sensors will be introduced that allows smaller apertures to achieve narrow beams. The significantly reduced ambient noise of individual pressure-vector elements observed in the ocean by others, and now at Seneca Lake, should allow a nonlinearly combined array to detect significantly lower levels than has been observed in previous multiplicative processing of pressure sensors alone. Nonlinear array synthesis of pressure-vector sensors differs from conventional super-directive algorithms that linearly combine pressure elements with positive and negative weights, thereby reducing the sensitivity of conventional super-directive arrays. The much smaller aperture of acoustic pressure-vector sensor arrays will be attractive for acoustic systems on underwater vehicles, as well as for other applications that require narrow beam acoustic receivers. [The authors gratefully acknowledge the support of ONR and NUWC.

  3. Investigation of water and hydroxyl groups associated with coal fly ash by thermal desorption and fourier transform infrared photoacoustic spectroscopies

    SciTech Connect

    Seaverson, L.M.; McClelland, J.F.; Burnet, G.; Anderegg, J.W.; Iles, M.K.

    1985-01-01

    Thermal desorption spectrometry (TDS) and Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS) have been used in combination to analyze the water and hydroxyl groups associated with four coal fly ashes. Measurements using the former technique on these ashes resulted in identification of three water desorption regions in the temperature range from 25/sup 0/ to 1100/sup 0/C. The regions consisted of a small desorption peak at 50/sup 0/, a broad band from 180/sup 0/ to 400/sup 0/, and an intense peak from 400/sup 0/ to 590/sup 0/. No additional water desorption was observed up to 1100/sup 0/. A fourth ash gave a similar spectrum except that it lacked the intense last peak. The TDS spectra together with FT-IR/PAS spectra taken on samples exposed to pre- and post-desorption peak temperatures allowed the first TDS peak to be assigned to the desorption of physically adsorbed water, the broad band to desorption of hydrogenbonded surface hydroxyls, and the intense last peak to the decomposition of Ca(OH)/sub 2/.

  4. Seismicity triggered by the olivine-spinel transition: new insights from combined XRD and acoustic emission monitoring during deformation experiments in Mg2GeO4

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Hilairet, N.; Brunet, F.; Gasc, J.; Cordier, P.; Wang, Y.; Green, H. W.

    2012-04-01

    Polycrystalline Mg2GeO4-olivine has been deformed (strain rates from 2.10-4/s to 10-5/s) in the deformation-DIA in 13-BM-D at GSECARS (Advanced Photon Source) at ca. 2 GPa confining pressure for temperatures between 973 and 1573 K (i.e., in the Mg2GeO4-ringwoodite field). Stress, advancement of transformation, and strain were measured in-situ using X-ray diffraction (XRD) and imaging, and acoustic emissions (AE) were recorded simultaneously. When differential stress is applied (ca. 1- to 2 GPa) and temperature is increased, the very beginning of the transformation to the ringwoodite structure (as evidenced by in situ XRD) is accompanied by AE bursts which locate within the sample. At high strain rates (>10-4/s) and low temperatures (800-900 degrees C), the number of AEs is comparable, if not larger, to that observed during the cold compression of quartz grains. The largest events always occur at a temperature slightly below that of appearance of the ringwoodite-structure phase on the XRD images patterns. This suggests that AEs are generated while the transition is still nucleation controlled (pseudo-martensitic stage). During stress-relaxation periods, the rate of AE triggering decreases, but does not completely vanish. Importantly, we still observed very large AEs at strain rates as low as approx. 10-5/ s, while at these early stages of the transformation, the samples did not show any macroscopic rheological weakening. Focal mechanism analysis of the largest AEs showed that they are all of shear type, some being even pure double couple. They radiate about the same amount of energy as typically recorded during fast crack propagation in amorphous glass material. Microstructural analysis (SEM, EBSD and TEM) highlights the presence of thin transformation bands, with plausible evidence of shear (grain distortion and grain size reduction). These bands are made of incoherent spinel and olivine nano-grains which run across germanium-olivine grain boundaries. These bands

  5. Seismicity triggered by the olivine-spinel transition: new insights from combined XRD and acoustic emission monitoring during deformation experiments in Mg2GeO4

    NASA Astrophysics Data System (ADS)

    Schubnel, A. J.; Hilairet, N.; Brunet, F.; Héripré, E.; Cordier, P.; Wang, Y.

    2011-12-01

    Polycrystalline Mg2GeO4-olivine has been deformed (strain rates from 2.10-4/s to 10-5/s) in the deformation-DIA in 13-BM-D at GSECARS (Advanced Photon Source) at ca. 2 GPa confining pressure for temperatures between 973 and 1573 K (i.e., in the Mg2GeO4-ringwoodite field). Stress, advancement of transformation, and strain were measured in-situ using X-ray diffraction (XRD) and imaging, and acoustic emissions (AE) were recorded simultaneously. When differential stress is applied (ca. 1- to 2 GPa) and temperature is increased, the very beginning of the transformation to the ringwoodite structure (as evidenced by in situ XRD) is accompanied by AE bursts which locate within the sample. At high strain rates (>10-4/s) and low temperatures (800-900 degrees C), the number of AEs is comparable, if not larger, to that observed during the cold compression of quartz grains. The largest events always occur at a temperature slightly below that of appearance of the ringwoodite-structure phase on the XRD images patterns. This suggests that AEs are generated while the transition is still nucleation controlled (pseudo-martensitic stage). During stress-relaxation periods, the rate of AE triggering decreases, but does not completely vanish. Importantly, we still observed very large AEs at strain rates as low as approx. 10-5/ s, while at these early stages of the transformation, the samples did not show any macroscopic rheological weakening. Focal mechanism analysis of the largest AEs showed that they are all of shear type, some being even pure double couple. They radiate about the same amount of energy as typically recorded during fast crack propagation in amorphous glass material. Microstructural analysis (SEM, EBSD and TEM) highlights the presence of thin transformation bands, with plausible evidence of shear (grain distortion and grain size reduction). These bands are made of incoherent spinel and olivine nano-grains which run across germanium-olivine grain boundaries. These bands

  6. Apparatus for low temperature thermal desorption spectroscopy of portable samples

    NASA Astrophysics Data System (ADS)

    Stuckenholz, S.; Büchner, C.; Ronneburg, H.; Thielsch, G.; Heyde, M.; Freund, H.-J.

    2016-04-01

    An experimental setup for low temperature thermal desorption spectroscopy (TDS) integrated in an ultrahigh vacuum-chamber housing a high-end scanning probe microscope for comprehensive multi-tool surface science analysis is described. This setup enables the characterization with TDS at low temperatures (T > 22 K) of portable sample designs, as is the case for scanning probe optimized setups or high-throughput experiments. This combination of techniques allows a direct correlation between surface morphology, local spectroscopy, and reactivity of model catalysts. The performance of the multi-tool setup is illustrated by measurements of a model catalyst. TDS of CO from Mo(001) and from Mo(001) supported MgO thin films were carried out and combined with scanning tunneling microscopy measurements.

  7. Apparatus for low temperature thermal desorption spectroscopy of portable samples.

    PubMed

    Stuckenholz, S; Büchner, C; Ronneburg, H; Thielsch, G; Heyde, M; Freund, H-J

    2016-04-01

    An experimental setup for low temperature thermal desorption spectroscopy (TDS) integrated in an ultrahigh vacuum-chamber housing a high-end scanning probe microscope for comprehensive multi-tool surface science analysis is described. This setup enables the characterization with TDS at low temperatures (T > 22 K) of portable sample designs, as is the case for scanning probe optimized setups or high-throughput experiments. This combination of techniques allows a direct correlation between surface morphology, local spectroscopy, and reactivity of model catalysts. The performance of the multi-tool setup is illustrated by measurements of a model catalyst. TDS of CO from Mo(001) and from Mo(001) supported MgO thin films were carried out and combined with scanning tunneling microscopy measurements. PMID:27131703

  8. Acoustically Enhanced Electroplating Being Developed

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2002-01-01

    In cooperation with the NASA Glenn Research Center, Alchemitron Corp. is developing the Acoustically Enhanced Electroplating Process (AEEP), a new technique of employing nonlinear ultrasonics to enhance electroplating. The applications range from electroplating full-panel electronic circuit boards to electroplating microelectronics and microelectromechanical systems (MEMS) devices. In a conventional plating process, the surface area to be plated is separated from the nonplated areas by a temporary mask. The mask may take many forms, from a cured liquid coating to a simple tape. Generally, the mask is discarded when the plating is complete, creating a solid waste product that is often an environmental hazard. The labor and materials involved with the layout, fabrication, and tooling of masks is a primary source of recurring and nonrecurring production costs. The objective of this joint effort, therefore, is to reduce or eliminate the need for masks. AEEP improves selective plating processes by using directed beams of high-intensity acoustic waves to create nonlinear effects that alter the fluid dynamic and thermodynamic behavior of the plating process. It relies on two effects: acoustic streaming and acoustic heating. Acoustic streaming is observed when a high-intensity acoustic beam creates a liquid current within the beam. The liquid current can be directed as the beam is directed and, thus, users can move liquid around as desired without using pumps and nozzles. The current of the electroplating electrolyte, therefore, can be directed at distinct target areas where electroplating is desired. The current delivers fresh electrolyte to the target area while flushing away the spent electrolyte. This dramatically increases the plating rate in the target area. In addition, acoustic heating of both the liquid in the beam and the target surface increases the chemical reaction rate, which further increases the plating rate. The combined effects of acoustic streaming and

  9. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    PubMed

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments. PMID:25144123

  10. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies.

    PubMed

    Abdolali, Atefeh; Ngo, Huu Hao; Guo, Wenshan; Zhou, John L; Du, Bin; Wei, Qin; Wang, Xiaochang C; Nguyen, Phuoc Dan

    2015-10-01

    This work attends to preparation and characterization of a novel multi-metal binding biosorbent after chemical modification and desorption studies. Biomass is a combination of tea waste, maple leaves and mandarin peels with a certain proportion to adsorb cadmium, copper, lead and zinc ions from aqueous solutions. The mechanism involved in metal removal was investigated by SEM, SEM/EDS and FTIR. SEM/EDS showed the presence of different chemicals and adsorbed heavy metal ions on the surface of biosorbent. FTIR of both unmodified and modified biosorbents revealed the important role of carboxylate groups in heavy metal biosorption. Desorption using different eluents and 0.1 M HCl showed the best desorption performance. The effectiveness of regeneration step by 1 M CaCl2 on five successive cycles of sorption and desorption displays this multi-metal binding biosorbent (MMBB) can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions in five cycles of sorption/desorption/regeneration. PMID:26162526

  11. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    PubMed

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-01

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics. PMID:26911395

  12. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids.

    PubMed

    Shiea, Jentaie; Huang, Min-Zon; Hsu, Hsiu-Jung; Lee, Chi-Yang; Yuan, Cheng-Hui; Beech, Iwona; Sunner, Jan

    2005-01-01

    A new method of electrospray-assisted laser desorption/ionization (ELDI) mass spectrometry, which combines laser desorption with post-ionization by electrospray, was applied to rapid analysis of solid materials under ambient conditions. Analytes were desorbed from solid metallic and insulating substrata using a pulsed nitrogen laser. Post-ionization produced high-quality mass spectra characteristic of electrospray, including protein multiple charging. For the first time, mass spectra of intact proteins were obtained using laser desorption without adding a matrix. Bovine cytochrome c and an illicit drug containing methaqualone were chosen in this study to demonstrate the applicability of ELDI to the analysis of proteins and synthetic organic compounds. PMID:16299699

  13. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    PubMed

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies. PMID:20590219

  14. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1983-07-26

    This invention relates generally to the field of gas desorption from metals; and, more particularly, to a method of enhancing the selective desorption of a particular isotope of a gas from metals. Enhanced selective desorption is especially useful in the operation of fusion devices.

  15. Seismicity triggered by the olivine-spinel transition: New insights from combined XRD and acoustic emission monitoring during deformation experiments in Mg2GeO4

    NASA Astrophysics Data System (ADS)

    Schubnel, A. J.; Hilairet, N.; Gasc, J.; Héripré, E.; Brunet, F.; Wang, Y.

    2010-12-01

    Polycrystalline Mg2GeO4-olivine has been deformed (strain rates from 2.10-4/s to 10-5/s) in the deformation-DIA in 13-BM-D at GSECARS (Advanced Photon Source) at ca. 2 GPa confining pressure for temperatures between 973 and 1573 K (i.e., in the Mg2GeO4-ringwoodite field). Stress, advancement of transformation, and strain were measured in-situ using X-ray diffraction (XRD) and imaging, and acoustic emissions (AE) full waveforms were recorded simultaneously. When differential stress is applied (ca. 1- to 2 GPa) and temperature is increased, the very beginning of the transformation to the ringwoodite structure (as evidenced by in situ XRD) is accompanied by AE bursts which locate within the sample. At high strain rates (>10-4/s) and low temperatures (800-900 degrees C), the number of AEs is comparable, if not larger, to that observed during the cold compression of quartz grains. The largest events always occur at a temperature slightly below that of appearance of the ringwoodite-structure phase on the XRD images patterns. This suggests that AEs are generated while the transition is still nucleation controlled (pseudo-martensitic stage). During stress-relaxation periods, the rate of AE triggering decreases, but does not completely vanish. The AE production rate increases again as soon as deformation is started again. Importantly, we still observed very large AEs at strain rates as low as approx. 10-5/ s. At these early stages of the transformation, the samples did not show any macroscopic rheological weakening. Focal mechanism analysis of the largest AEs showed that they are all of shear type, some being even pure double couple. They radiate about the same amount of energy as typically recorded during fast crack propagation in amorphous glass material. This suggests that they cannot only originate from the martensitic nucleation of oriented spinel-lamellae within a single germanium olivine crystal. Preliminary microstructural analysis (SEM and EBSD) highlights the

  16. Analytical laser induced liquid beam desorption mass spectrometry of protonated amino acids and their non-covalently bound aggregates

    NASA Astrophysics Data System (ADS)

    Charvat, A.; Lugovoj, E.; Faubel, M.; Abel, B.

    2002-09-01

    We have used analytical laser induced liquid beam desorption in combination with high resolution mass spectrometry (m/Δ mgeq 1 000) for the study of protonated amino acids (ornithine, citrulline, lysine, arginine) and their non-covalently bound complexes in the gas phase desorbed from water solutions. We report studies in which the desorption mechanism has been investigated. The results imply that biomolecule desorption at our conditions is a single step process involving laser heating of the solvent above its supercritical temperature, a rapid expansion, ion recombination and finally isolation and desorption of only a small fraction of preformed ions and charged aggregates. In addition, we report an investigation of the aqueous solution concentration and pH-dependence of the laser induced desorption of protonated species (monomers and dimers). The experimental findings suggest that the desorption process depends critically upon the proton affinity of the molecules, the concentration of other ions, and of the pH value of the solution. Therefore the ion concentrations measured in the gas phase very likely reflect solution properties (equilibrium concentrations). Arginine self-assembles large non-covalent singly protonated multimers (n=1...8) when sampled by IR laser induced water beam desorption mass spectrometry. The structures of these aggregates may resemble those of the solid state and may be preformed in solution prior to desorption. A desorption of mixtures of amino acids in water solution enabled us to study (mixed) protonated dimers, one of the various applications of the present technique. Reasons for preferred dimerization leading to simple cases of molecular recognition as well as less preferred binding is discussed in terms of the number of specific H-bonds that can be established in the clusters.

  17. Solvent-induced desorption of alkanethiol ligands from Au nanoparticles.

    PubMed

    Huang, Yuanyuan; Liu, Wei; Cheng, Hao; Yao, Tao; Yang, Lina; Bao, Jie; Huang, Ting; Sun, Zhihu; Jiang, Yong; Wei, Shiqiang

    2016-06-21

    Removing surfactants from a colloidal metal nanoparticle surface is necessary for their realistic applications, and how they could be stripped is a subject of active investigation. Here, we report a solvent-induced desorption of dodecanethiol ligands from the gold nanoparticle surface, and traced this desorption process using a combination of in situ X-ray absorption fine structure (XAFS) and Raman spectroscopic techniques. In situ analysis results reveal that the solvent exchange of ethanol with tetrahydrofuran (THF) can effectively remove dodecanethiol ligands while keeping the particle morphology unchanged. Upon increasing the THF/ethanol ratio from 0 : 1 to 5 : 1, the surface coverage of thiol on the Au surface is reduced from 0.47 to 0.07, suggesting the depletion of ligands first from the nanoparticle facet sites, then from the edge sites, while the ligands at the corner sites are intact. This work enriches our knowledge on surfactant removal and may pave the way towards preparing surface-clean nanoparticles for practical applications. PMID:27241025

  18. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  19. Pulsed-Source Interferometry in Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  20. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  1. Mass spectrometry of acoustically levitated droplets.

    PubMed

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption. PMID:18582090

  2. Sample Desorption/Onization From Mesoporous Silica

    DOEpatents

    Iyer, Srinivas; Dattelbaum, Andrew M.

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  3. Plutonium sorption and desorption behavior on bentonite.

    PubMed

    Begg, James D; Zavarin, Mavrik; Tumey, Scott J; Kersting, Annie B

    2015-03-01

    Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (≤10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations ≥10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite. PMID:25574607

  4. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    SciTech Connect

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  5. Acoustic streaming jets: A scaling and dimensional analysis

    SciTech Connect

    Botton, V. Henry, D.; Millet, S.; Ben-Hadid, H.; Garandet, J. P.

    2015-10-28

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  6. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1985-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  7. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  8. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  9. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  10. Lead sorption-desorption from organic residues.

    PubMed

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed. PMID:21780703